



### C2RCC

Roland Doerffer<sup>1</sup>, Carsten Brockmann<sup>1</sup>, Marco Peters<sup>4</sup>, Kerstin Stelzer<sup>1</sup>, Sabine Embacher<sup>1</sup>, Olaf Danne<sup>1</sup>, <u>Ana Ruescas<sup>1,3</sup></u>, Carole Lebreton<sup>1</sup>, Martin Hieronymi<sup>2</sup>, Rüdiger Röttgers<sup>2</sup>, <u>Dagmar Müller<sup>1</sup></u>

1 Brockmann Consult GmbH 2 Department of Optical Oceanography, Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht, Germany 3 Image Processing Laboratory, University of València 4 EOMasters

IOCCG Summer Lecture Series 2024



## C2RCC Introduction



## Case-2 Regional CoastColour

- The Secrets of C2RCC Development
- Design of C2RCC
- Processing with SNAP

### From substances to IOPs to AOPs





EUM/SCIR/VWG/18/9921

ETSAT Operations 3

Ana Dogliotti

## From AOPs to IOPs to substances: inverse modelling

The conceptual process involved in solving a remotesensing inverse radiative transfer problem



#### Most popular techniques:

*"Inversions are always based on an assumed model that relates what is known to what is desired."* 

#### Some techniques that give possible accurate solutions

- Numerical modelling: by solving the radiative transfer equation→ HydroLight, 6S, MODTRAN, Monte Carlo simulations, Mie theory.
- 2. Semi-analytical models: Quasi-Analytical Algorithm (QAA), Garver-Siegel-Maritorena (GSM) model, HOPE, GIOP...
- 3. Empirically build relationships with in-situ data (regression). E.g. Chlorophyll-a determination with polynomial algorithms (OC4ME).
- 4. Machine learning/deep learning: Case 2 Regional Coast Colour (C2RCC) based on neural net technologies.



🗲 EUMETSAT

opernicus

### **C2RCC** Heritage

- Neural Network inversion of large database of simulated TOA radiances
  - Case2Regional, C2R
  - Doerffer & Schiller 2007 & 2008
  - Used in MERIS 3rd reprocessing for Case2 water branch
- Significant update through ESA CoastColour
  - C2RCC

### Today

- Available through SNAP Sentinels Application Platform since 2016
- Open source within Optical Toolbox Kit
- Used in OLCI processing for Case2 water branch
- C2RCC community project







campaigns

Source: Brockmann et al 2016 Evolution of the C2RCC Neural Network

## Target: 5 IOP components

www.eumetsat.int

**Bio-optical Model** 



## Ranges and covariances are based on NOMAD analysis Example: a\_det, a\_pig and a\_gelb, a\_pig





Select **a\_pig** randomly. Calculate **a\_det** and **a\_gelb** including random term for natural variability.

logn\_ad\_443 = logn\_ap\_443 \* 1.172 - 1.152 +- 0.5 ad\_443 =exp(logn\_ap\_443\*1.172 -1.152 - 1 + rand\*2.0) logn\_ag\_443=logn\_ap\_443 \* 0.775 - 0.77 +- 0.751 ag\_443=exp(logn\_ap\_443\*0.775 - 0.77 - 1.5 + rand\*3.0)

### Ranges are based on Aeronet analysis

| Sun zenith angle                                             | $\theta_s$          | [deg]       | 0 - 79.6 |
|--------------------------------------------------------------|---------------------|-------------|----------|
| View zenith angle                                            | $\theta_{v}$        | [deg]       | 0 - 45   |
| View azimuth angle                                           | $\phi_v$            | [deg]       | 0-180    |
| Optical thickness at 550 nm of:                              | τ(550)              | [-]         |          |
| - maritime aerosols (99% relative humidity) in 0-2 km height |                     |             | 0-0.2    |
| - urban aerosols (45% relative humidity) in 0-2 km height    |                     |             | 0-0.5    |
| - continental aerosols in 2-12 km height                     |                     |             | 0-0.165  |
| - cirrus clouds in 8-11 km height                            |                     |             | 00.3     |
| - stratospheric aerosols in 12-50 km height:                 |                     |             | 0-0.5    |
| Angstrom exponent of aerosols determined with $\tau_a$ :     | $\alpha(490 - 870)$ | [-]         | 0 - 2.4  |
| Wind speed at 10 m                                           | U10                 | $[ms^{-1}]$ | 0-10     |
| Air pressure at sea level                                    | P                   | [hPa]       | 800-1040 |

Creating the atmosphere training data with *SOS* based LUTs (R. Santer):

- Create combinations of aerosols following natural distributions (combined to maximum  $\tau$ 550=0.8)
- Select water leaving reflectance spectrum as boundary condition (from HydroLight training data)
- Run simulations for different angles (sun and observation direction, including nadir view for normalisation), surface conditions (wind) at OLCI band wavelengths -> 5\*10<sup>6</sup> cases
  - *rTOSA*
  - upwelling and downwelling transmittance
  - path radiance

### Ranges and covariances are based on NOMAD analysis

|        | Wind speed at 10 m                                  | U10                | $[ms^{-1}]$ | 0-10              |
|--------|-----------------------------------------------------|--------------------|-------------|-------------------|
|        | Air pressure at sea level                           | P                  | [hPa]       | 800-1040          |
|        | Sea Surface Temperature                             | SST                | [deg C]     | 0-36              |
|        | Sea Surface Salinity                                | SSS                | [PSU]       | 0-43              |
| a_pig  | Phytoplankton pigment absorption coefficient        | a <sub>d</sub> 442 | $[m_1]$     | 0-53.5            |
| b_part | Particle scattering coefficient                     | bp442              | $[m_1]$     | 0 - 589           |
| a det  | Detritus (bleached particle) absorption coefficient | ad442              | $[m_1]$     | 0 - 60            |
|        | Detritus absorption wavelength exponent             | $S_d$              | $[m_1]$     | $0.008 \pm 0.005$ |
| D_WI   | White* particle scattering coefficient (* slope=0)  | b <sub>w</sub> 442 | $[m_1]$     | 0 - 577           |
| a_gelb | Gelbstoff (CDOM) absorption coefficient             | ag442              | $[m_1]$     | 0-60.0            |
|        | Gelbstoff absorption wavelength exponent            | $S_g$              | $[m_1]$     | $0.014 \pm 0.002$ |

Creating the in-water training data with *HydroLight* (C. Mobley):

- Create combinations IOPs following the natural distributions
- Select random specific phytoplankton absorption (mixture of 2 of 6 types)
- White scatterer (bwit) accounts for air bubbles, coccolithophores and sun glint.
- Run simulations of **rho\_w** for different angles (sun and observation direction including nadir view for normalization), surface conditions (wind) at OLCI band wavelengths

www.eumetsat.int



campaigns

Source: Brockmann et al 2016 Evolution of the C2RCC Neural Network

### rho\_w\_560 vs rho\_w\_443, measured and simulated



www.eumetsat.int



Source: Brockmann et al 2016 Evolution of the C2RCC Neural Network

### NN training – Atmospheric correction AC + in-water

#### www.eumetsat.int



## C2RCC Design - Overview

C2RCC processor is built as a combination of several Neural Networks trained for specific tasks.

#### Main parts

- Atmospheric correction AC: L1b TOA reflectance Rtoa to water leaving reflectance Rw
- Inversion in-water properties: water leaving reflectance to Inherent Optical • **Properties IOPs**

#### Outputs

- AC
  - **TOA** reflectance Rtoa .
  - water leaving reflectance Rw
  - normalised water leaving reflectance Rwn
  - optional path radiance, downwelling and upwelling transmittance Rpath, td, tu .
  - Flags: Rtosa\_oos, Rpath\_oor
- in-water
  - **IOPs** 
    - pigment, detritus and gelbstoff absorption at 443nm apig, adet, agelb
    - scattering coefficient of marine particles at 443nm bpart
    - scattering coefficient of white particles at 443nm bwit .
    - and combinations detritus + gelbstoff adg, total absorption atot, total scattering btot
  - Uncertainties per IOP •
  - **Concentrations** 
    - Total suspended matter TSM as function of btot .
    - Chlorophyll concentration as function of apig •
  - Attenuation
    - Irradiance attenuation coefficient at 489nm kd489
    - kdmin
    - kd z90max
    - Flags

.



#### Source: Doerffer 2015. MERIS Case 2 water ATBD 4th reproc EUMETSAT

in-

#### EUM/SCIR/VWG/18/992176, v4D Draft, 11 January 2023

| Spectrum View<br>Spectral Unmixing | >シンピるの第日/11                                                                                                                 |                                                 |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Geometric >                        | (                                                                                                                           |                                                 |
| Preprocessing >                    |                                                                                                                             |                                                 |
| Thematic Land Processing >         |                                                                                                                             |                                                 |
| Phernutic Water Processing )       | ARC SST Processor<br>FLH/MCI Processor                                                                                      |                                                 |
|                                    | C2RCC Processon >                                                                                                           | OLCI                                            |
|                                    | S2 MCI Processor<br>MERIS FUB-CSIRO Coastal Water Processor<br>MPH/CHL Processor<br>FU Classification<br>OWT Classification | S2-MSI<br>Landsat-8<br>MERIS<br>MERISA<br>MODIS |

SNAP includes an implementation of the C2RCC Processor for sensors

- Sentinel 3 OLCI
- Sentinel 2 MSI
- Landsat-8
- MERIS (3<sup>rd</sup> reprocessing)
- MERIS (4<sup>th</sup> reprocessing)
- MODIS
- SeaWiFS
- VIIRS

#### C2RCC OLCI Processor File Help 1/O Parameters Processing Parameters Source Products OLCI L1b product [2] \$3A\_OL\_1\_EFR\_\_\_202205027101746\_202205027102046\_2022050371557... Ozone interpolation start product (TOMSOMI): (optional) Ozone interpolation end product (TOMSOMI): (optional) Air pressure interpolation start product (NCEP): (optional) Air pressure interpolation end product (NCEP): (optional) Target Product Name 1220502T102046\_20220503T155703\_0179\_085\_008\_1980\_MAR\_0\_NT\_002.SEN3\_C2RCC Save as: BEAM-DIMAP 141 **Directory:** C/Users\/Dagmar Open in SNAP 11

Run

Close

#### C2RCC OLCI Processor × X File Help I/O Parameters Processing Parameters Valid-pixel expression: h inland water) .... Salinity 35.0 PSU ¥ .... 15.0 C Temperature: 4 ..... Ozone: 330.0 DU Air Pressure at Sea Level: 1000.0 hPa 42-TSM factor: 1.06 TSM exponent: 0.942 ¥ = CHL exponents 1.04 21.0 CHL factor 41-Threshold stosa OOS: 0.01 Threshold AC reflectances OOS: 0.15 Threshold for Cloud\_risk flag on down transmittance @865. 0.955 Atmospheric aux data path: Alternative NN Path: Output AC reflectances as ms instead of rhow -Derive water reflectance from path radiance and transmittance Use ECMWF aux data of source product. ✓ Output TOA reflectances Output gas corrected TOSA reflectances Output gas corrected TOSA reflectances of auto nn Output path radiance reflectances Output downward transmittance Output upward transmittance Output atmospherically corrected angular dependent reflectances Output normalized water leaving reflectances Output out of scope values Output imadiance attenuation coefficients Output uncertainties

#### www.eumetsat.int

Run

Close

## Atmospheric Correction – RwNN

Atmospheric correction starts with the translation of TOA radiance into reflectance Rtoa.

Rtoa undergoes gas correction to standard atmosphere Rtosa:

- Water vapour correction at 709nm
- Ozone correction all bands

Water leaving reflectance Rw is calculated with a dedicated NN from Rtosa.

#### Water leaving reflectance NN RwNN

- OLCI: 23 inputs, 3 fully connected hidden layers (33x23x13), 16 outputs
- Input: Rtosa (16 bands) + Pressure corrected to sea level + geometry, T, S
- Output: Rw (16 bands)

**Radiative Transfer Simulations** are used as training data. A wide range of sun and observations angles, aerosol properties and boundary conditions. Aerosol optical thickness can have a maximum of  $\tau$ (550nm)=0.8, combining maritime, urban, continental aerosols with cirrus clouds and stratospheric aerosols.



Source: Doerffer 2015. MERIS Case 2 water ATBD 4th reproc

EUMETSAT

17

## Atmospheric Correction – RnormNN

Atmospheric correction starts with the translation of TOA radiance into reflectance Rtoa.

Rtoa undergoes gas correction to standard atmosphere Rtosa:

- Water vapour correction at 709nm
- Ozone correction all bands

Water leaving reflectance is calculated with a dedicated NN from Rtosa.

#### Water leaving reflectance NN RwNN

- OLCI: 23 inputs, 3 fully connected hidden layers (33x23x13), 16 outputs
- Input: Rtosa (16 bands) + Pressure corrected to sea level + geometry, T, S
- Output: Rw (16 bands)

**Radiative Transfer Simulations** are used as training data. A wide range of sun and observations angles, aerosol properties and boundary conditions. Aerosol optical thickness can have a maximum of  $\tau$ (550nm)=0.8, combining maritime, urban, continental aerosols with cirrus clouds and stratospheric aerosols.

#### Normalised Water leaving reflectance NN RnormNN

- OLCI: 17 inputs, 3 fully connected hidden layers (77x77x77), 12 outputs
- Input: Rw (12 bands) + geometry, T, S
- Output: Rwn (12 bands)

All reflectances are trained in log-transform, both in input and output. Therefore, C2RCC always generates non-negative reflectance values.

#### EUM/SCIR/VWG/18/992176, v4D Draft, 11 January 2023



Source: Doerffer 2015. MERIS Case 2 water ATBD 4th reproc

EUMETSAT

18

## Atmospheric Correction – Flag Rtosa\_oos

### Auto-associative Neural Network aaNN

- Bottleneck architecture
- OLCI: 23 inputs, 3 fully connected hidden layers (31x7x31), 16 outputs
- Input: Rtosa (16 bands) + Pressure corrected to sea level + geometry, T, S
- Output: Rtosa (16 bands)

The flag out of scope Rtosa\_oos is raised, if the output spectrum is not similar to the input spectrum. The aaNN learns amplitudes and shapes of the spectra in the training data and reproduces them accurately.

If deviation is large, the input spectrum has not been part of the training dataset and therefore the following NNs will not be able to provide reasonable answers to the task of atmospheric correction.



19

## Atmospheric Correction – Flag Cloud\_risk

Path radiance and atmospheric downwelling and upwelling transmittance is calculated by two NNs from Rtosa. (*Optional*)

#### Path Radiance NN RpathNN

- OLCI: 23 inputs, 3 fully connected hidden layers (31x37x37), 16 outputs
- Input: Rtosa (16 bands) + Pressure corrected to sea level + geometry, T, S
- Output: Rpath (16 bands)

#### Transmittance NN RtransNN

- OLCI: 23 inputs, 3 fully connected hidden layers (31x37x37), 16 outputs
- Input: Rtosa (16 bands) + Pressure corrected to sea level + geometry, T, S
- **Output**: transd (16 bands) + transu (16 bands)

*Cloud\_risk flag*. trans\_d(865nm) < 0.955

*Optional output:* Water leaving reflectance from path radiance and transmittance



Source: Doerffer 2015. MERIS Case 2 water ATBD 4th reproc

(opernicus

20

#### www.eumetsat.int

EUM/SCIR/VWG/18/992176, v4D Draft, 11 January 2023

### Atmospheric Correction – Example C2RCC Flags

#### www.eumetsat.int



#### Example:

- rtosa\_oos flag (red)
- cloud\_risk flag (grey)

Gas corrected TOA spectrum compared to aaNN result of this spectrum.

Spectrum in the Saaler Bodden (**Pin** 1) with strong cyanobacteria bloom cannot be reconstructed sufficiently by the aaNN.

Spectrum in the Baltic Sea (**Pin 2**) shows good agreement between TOAgc and its counterpart from the aaNN. These kind of spectra have been part of the training dataset and AC can be applied here and is expected to be successful.

### In-water Processing – IOPinvNN

Inverting the water leaving reflectance into inherent optical properties is the main task in the in-water processing.

### Inherent Optical Properties Inversion NN IOPinvNN

- OLCI: 17 inputs, 3 fully connected hidden layers (37x37x37), 5 outputs
- Input: Rw (12 bands, 400–754nm) + geometry, T, S
- Output: apig, adet, agelb, bpart, bwit at 443nm

Radiative Transfer Simulations with HydroLight built the training dataset.

Reflectances and IOPs are trained in log-transformed state to avoid negative values and emphasize small values. Mixtures of different specific phytoplankton absorption functions have been used to accommodate a large variety of algae groups.

The white scatterer (bwit) accounts for air bubbles, coccolithophores and sun glint.

L1b TOA reflectance Rtoa Aux data Sun and viewing angles Surfpress, ozone, Water T, salinity

www.eumetsat.int

#### water (surface) parameters

| Wind speed at 10 m                                  | U10                | $[ms^{-1}]$               | 0-10              |
|-----------------------------------------------------|--------------------|---------------------------|-------------------|
| Air pressure at sea level                           | P                  | [hPa]                     | 800-1040          |
| Sea Surface Temperature                             | SST                | [deg C]                   | 0-36              |
| Sea Surface Salinity                                | SSS                | [PSU]                     | 0-43              |
| Phytoplankton pigment absorption coefficient        | ad442              | [ <i>m</i> <sub>1</sub> ] | 0-53.5            |
| Particle scattering coefficient                     | b <sub>p</sub> 442 | [m1]                      | 0 - 589           |
| Detritus (bleached particle) absorption coefficient | ad442              | [m1]                      | 0 - 60            |
| Detritus absorption wavelength exponent             | $S_d$              | $[m_1]$                   | $0.008 \pm 0.005$ |
| White* particle scattering coefficient (* slope=0)  | b <sub>w</sub> 442 | [m <sub>1</sub> ]         | 0 - 577           |
| Gelbstoff (CDOM) absorption coefficient             | ag442              | [ <i>m</i> <sub>1</sub> ] | 0-60.0            |
| Gelbstoff absorption wavelength exponent            | Sg                 | [ <i>m</i> <sub>1</sub> ] | $0.014 \pm 0.002$ |



(opernicus

### In-water Processing – IOP conversion

**TSM** and **chlorophyll concentrations** are calculated by empirical relationships of **apig** and **btot**. Derived from NOMAD database and measurements in the North Sea.

$$TSM[\frac{g}{m^3}] = 1.06 * b_{tot}^{0.942}$$
$$Chl\left[\frac{\mu g}{l}\right] = 21.0 * a_{pig}^{1.04}$$

TSM and Chl can easily be adapted to regional conditions, if in-situ data is available and new relationships with apig and btot can be derived.

Non-phytoplankton absorption at 443nm (from dissolved constituents and detritus):

$$a_{dg}(443nm)[m^{-1}] = a_{gelb}(443nm) + a_{det}(443nm)$$



EUM/SCIR/VWG/18/992176, v4D Draft, 11 January 2023

### In-water Processing – Flag Rw\_oos

C2RCC contains a forward NN, which emulates the biooptical simulations of the physical model.

### Forward NN IOPforNN

- OLCI: 10 inputs, 3 fully connected hidden layers (77x77x77), 12 outputs
- Input: apig, adet, agelb, bpart, bwit at 443nm + geometry, T, S
- Output: Rw\* (12 bands) -> Flag Rw\_oos

Training is done with log-transformed IOPs as input and Rws as output. Only non-negative values will be derived.

Definition: Rw out of scope flag Band ratios Rw  $s1 = \frac{Rw560}{Rw420}$ ,  $s2 = \frac{Rw620}{Rw560}$ Band ratios Rw\*  $s1^* = \frac{Rw^*560}{Rw^*420}$ ,  $s2^* = \frac{Rw^*620}{Rw^*560}$ test = max( $|s1 - s1^*|$ ,  $|s2 - s2^*|$ )

### if test > 0.15 : Rw\_oos raised

EUM/SCIR/VWG/18/992176, v4D Draft, 11 January 2023

slopes of spectra are compared!



### C2RCC Design – In-water Processing IV

C2RCC derives a set of "uncertainties" per IOP.

### IOP Uncertainty NN uncNN

- OLCI: 5 inputs, 3 fully connected hidden layers (77x77x77), 5 outputs
- Input: apig, adet, agelb, bpart, bwit at 443nm
- Output: uncertainty for apig, adet, agelb, bpart, bwit at 443nm

### Definition:

 $Error = ||\log IOP_{train} - \log IOP_{NN}||$ The uncNN is trained with the absolute differences of log-transformed IOPs based on the simulated data set. IOP\_train are the inputs of the simulated data, the simulated spectrum is inverted by the IOPinvNN and the IOP\_NN are derived.



#### EUM/SCIR/VWG/18/992176, v4D Draft, 11 January 2023



## In-water Processing – Attenuation

### Attenuation NN kdNN

- OLCI: 17 inputs, 3 fully connected hidden layers (97x77x77), 2 outputs
- Input: Rw (12 bands, 400–754nm) + geometry, T, S
- Output: kdmin, kd498

# Depth of light penetration maximum with 90% intensity

z90max = 1/kdmin



## C2RCC- Flags Overview

| Name                                            | Value (Bit)        | Description                                                                                                                                     |
|-------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Rtosa_00S                                       | 0                  | The input spectrum to the atmospheric correction neural net was out of the scope of the training range and the inversion is likely to be wrong  |
| Rtosa_00R                                       | 1                  | The input spectrum to the atmospheric correction neural net out of training range                                                               |
| Rhow_00R                                        | 2                  | One of the inputs to the IOP retrieval neural net is out of training range                                                                      |
| Cloud_risk                                      | 3                  | High downwelling transmission is indicating cloudy conditions                                                                                   |
| IOP_OOR                                         | 4                  | One of the IOPs is out of range                                                                                                                 |
| Apig, Adet, Agelb,<br>Bpart, Bwit <b>at_max</b> | 5, 6, 7, 8, 9      | Output of the IOP retrieval neural net is at its maximum. The true value is this value or higher.                                               |
| Apig, Adet, Agelb,<br>Bpart, Bwit <b>at_min</b> | 10, 11, 12, 13, 14 | Output of the IOP retrieval neural net is at its minimum. The true value is this value or lower.                                                |
| Rhow_00S                                        | 15                 | The Rhow input spectrum to IOP neural net is probably not within the training range of the neural net, and the inversion is likely to be wrong. |
| Kd489_00R                                       | 16                 | Kd489 is out of training range                                                                                                                  |
| Kdmin_00R                                       | 17                 | Kdmin is out of training range                                                                                                                  |
| Kd489_at_max                                    | 18                 | Kd489 is at maximum of training range                                                                                                           |
| Kdmin_at_max                                    | 19                 | Kdmin is at maximum of training range                                                                                                           |
| Valid_PE                                        | 20                 | Default: !quality_flags.invalid && (!quality_flags.land    quality_flags.fresh_inland_water)                                                    |

www.eumetsat.int



Source: Brockmann et al 2016 Evolution of the C2RCC Neural Network

| Spectrum View<br>Spectral Unmixing | >シンピるの第日/11                                                                                                                 |                                                 |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Geometric >                        | (                                                                                                                           |                                                 |
| Preprocessing >                    |                                                                                                                             |                                                 |
| Thematic Land Processing >         |                                                                                                                             |                                                 |
| Phernutic Water Processing )       | ARC SST Processor<br>FLH/MCI Processor                                                                                      |                                                 |
|                                    | C2RCC Processon >                                                                                                           | OLCI                                            |
|                                    | S2 MCI Processor<br>MERIS FUB-CSIRO Coastal Water Processor<br>MPH/CHL Processor<br>FU Classification<br>OWT Classification | S2-MSI<br>Landsat-8<br>MERIS<br>MERISA<br>MODIS |

SNAP includes an implementation of the C2RCC Processor for sensors

- Sentinel 3 OLCI •
- Sentinel 2 MSI •
- Landsat-8
- MERIS (3<sup>rd</sup> reprocessing)
- MERIS (4<sup>th</sup> reprocessing) ۲
- MODIS .
- SeaWiFS •
- VIIRS •

#### C2RCC OLCI Processor File Help 1/O Parameters Processing Parameters Source Products OLCI L1b product [2] \$3A\_OL\_1\_EFR\_\_\_202205027101746\_202205027102046\_2022050371557... Ozone interpolation start product (TOMSOMI): (optional) Ozone interpolation end product (TOMSOMI): (optional) Air pressure interpolation start product (NCEP): (optional) Air pressure interpolation end product (NCEP): (optional) Target Product Name 1220502T102046\_20220503T155703\_0179\_085\_008\_1980\_MAR\_0\_NT\_002.SEN3\_C2RCC Save as: BEAM-DIMAP 141 **Directory:** C/Users\/Dagmar Open in SNAP 11

Run

#### C2RCC OLCI Processor × X File Help I/O Parameters Processing Parameters Valid-pixel expression: h inland water) .... Salinity 35.0 PSU ¥ .... 15.0 C Temperature: 4 ..... Ozone: 330.0 DU Air Pressure at Sea Level: 1000.0 hPa 42-TSM factor: 1.06 TSM exponent: 0.942 ¥ = CHL exponents 1.04 21.0 CHL factor 41-Threshold stosa OOS: 0.01 Threshold AC reflectances OOS: 0.15 Threshold for Cloud\_risk flag on down transmittance @865. 0.955 Atmospheric aux data path: Alternative NN Path: Output AC reflectances as ms instead of rhow -Derive water reflectance from path radiance and transmittance Use ECMWF aux data of source product. ✓ Output TOA reflectances Output gas corrected TOSA reflectances Output gas corrected TOSA reflectances of auto nn Output path radiance reflectances Output downward transmittance Output upward transmittance Output atmospherically corrected angular dependent reflectances Output normalized water leaving reflectances Output out of scope values Output imadiance attenuation coefficients Output uncertainties Close Close

#### EUM/SCIR/VWG/18/992176, v4D Draft, 11 January 2023

Run

30

### Example C2RCC OLCI Processor

- Select OLCI L1b product as source product
- Target product automatically named original filename + C2RCC
- Select an output format
- Select an output directory
- "Open in SNAP" opens the processed product automatically in SNAP.
- Optional: Provide Ozone data from TOMSOM and air pressure data from NCEP.
  Data needs to be downloaded from respective sites before.
  OLCI L1b data comes with ozone and air pressure values, which is used by default.



### Example C2RCC OLCI Processor

### **Processing Parameters**

- valid-pixel expression based on OLCI L1b flags selects all water bodies (ocean + inland water bodies): !invalid && (!land || fresh\_inland\_water)
- Salinity and Temperature are taken as the fixed values for the scene
- Ozone, air pressure at sea level are only considered as constant fields, if the satellite product has no auxilliary data and no optional data source has been provided.

By default, the box 'use ESMWF aux data of source product' is checked.

- Factor and exponent of empirical functions for TSM and Chl concentrations
- Thresholds for OOS flag tests
- Threshold for cloud risk flag based on downwelling transmittance at 865nm
- Atmospheric aux data path?
- Alternative NN path -> for development only

| Ele Help                                                                                                                                                                                       |                     | ×   | www.eumetsat.int       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|------------------------|
| 1/O Parameters Processing Parameters                                                                                                                                                           |                     |     |                        |
| Valid-pixel expression:                                                                                                                                                                        | h_inland_water)     |     | valid pixel expression |
| Salinitys                                                                                                                                                                                      | 35.0                | PSU |                        |
| Temperature                                                                                                                                                                                    | 15.0                | c   |                        |
| Ozone                                                                                                                                                                                          | 330.0               | DU  |                        |
| Air Pressure at Sea Level                                                                                                                                                                      | 1000.0              | hPa |                        |
| TSM factor                                                                                                                                                                                     | 1.04                |     |                        |
| TSM exponent                                                                                                                                                                                   | 0.942               |     | ISM conversion         |
| CH express                                                                                                                                                                                     | 1.04                |     |                        |
| Chill factor                                                                                                                                                                                   | 21.0                |     | CHL conversion         |
| Deschold days 005                                                                                                                                                                              | 0.01                |     |                        |
| Therebald AC unflastences COC                                                                                                                                                                  | 0.01                |     |                        |
| Threshold AC reflectances OUs                                                                                                                                                                  | 0.15                |     |                        |
| Inteshold for Cloud_risk flag on down transmittance @800                                                                                                                                       | 0.955               |     |                        |
| Atmospheric aux data path:                                                                                                                                                                     |                     |     |                        |
| Alternative NN Path:                                                                                                                                                                           |                     |     |                        |
| Output AC reflectances as ms instead of rhow                                                                                                                                                   | 2010                |     |                        |
| Derive water reflectance from path radiance and transm                                                                                                                                         | attance             |     |                        |
| Use ECMWP aux data of source product                                                                                                                                                           |                     |     |                        |
| Codepit non resected TOSA reflectances                                                                                                                                                         |                     |     |                        |
| Output gas corrected TOSA reflectances of auto on                                                                                                                                              |                     |     |                        |
| Output path radiance reflectances                                                                                                                                                              |                     |     |                        |
| Output downward transmittance                                                                                                                                                                  |                     |     |                        |
| Output upward transmittance                                                                                                                                                                    |                     |     |                        |
| C Output atmospherically corrected angular dependent re                                                                                                                                        | flectances          |     |                        |
| Output normalized water leaving reflectances                                                                                                                                                   |                     |     |                        |
| Output out of scope values                                                                                                                                                                     |                     |     |                        |
| C Output imadiance attenuation coefficients                                                                                                                                                    |                     |     |                        |
| 2 Output uncertainties                                                                                                                                                                         |                     |     |                        |
| tput atmospherically corrected angular dependent re<br>tput normalized water leaving reflectances<br>tput out of scope values<br>tput imadiance attenuation coefficients<br>tput uncertainties | flectances<br>Run O | ose |                        |

### Example C2RCC OLCI Processor Processing Parameters

Check boxes control the output primarily Defaults:

- Use ECMWF aux data of source product
- TOA reflectance
- Rhow (angular dependent)
- normalised Rhow
- kdmin, kd\_z90max
- uncertainties of IOPs

#### Options:

- output rrs instead of rhow
- experimental rhow product from path radiance and transmittance
- Rtosa with gas correction
- Rtosa output from aaNN
- Rpath
- td
- tu
- out of scope values (for Rtosa\_00S)

| VO Parameters Processing Parameters                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Valid-oixel expressions                                  | h inland water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |
| Salinity                                                 | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSU |
| Termerature                                              | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Owner                                                    | 110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DU  |
| Air Descoure at Sea Level                                | 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hPa |
| TO Harter                                                | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |
| The second                                               | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 13W experience                                           | 0.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| CHL exponent:                                            | 1,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| CHL factor.                                              | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Threshold itesa 005:                                     | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Threshold AC reflectances OOS                            | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Threshold for Cloud_risk flag on down transmittance @865 | 0.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Atmospheric aux data path:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Alternative NN Path:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Output AC reflectances as ms instead of rhow             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Derive water reflectance from path radiance and transm   | ittance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Use ECMWF aux data of source product                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Cutput TOA reflectances                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Output gas corrected TOSA reflectances                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Output gas corrected TOSA reflectances of auto nn        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Output path radiance reflectances                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Output downward transmittance                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Cutput upward transmittance                              | Bachances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| Curput atmospherically corrected angular dependent re    | neclances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| Output number of score values                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Cutout inadiance attenuation coefficients                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Cutput uncertainties                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                                          | and the second se |     |

#### www.eumetsat.int

Close

Run:



- C2RCC is a NN processor based on physical models and their adaptation of in-situ databases
- Atmosphere and water are represented by simulations of SOS and HydroLight
- Multiple NNs are trained to cover the different aspects of the simulations which reflect natural conditions.
- C2RCC is limited by the ranges of the training data and by the relationships the physical models have covered.
- Extension of training data needs a retraining of all NNs.



#### www.eumetsat.int

## Please revisit the videos and materials of the Short Course on C2RCC :

https://classroom.eumetsat.int/course/view.php?id= 541

Short\_course\_48\_Applying Case 2 Regional Coast Colour (C2RCC) Algorithms to EUMETSAT OLCI Products

More v



Webinar with Ana Ruescas, Dagmar Müller, Jorrit Scholze (Brockmann Consult GmbH) and Ben Loveday (EUMETSAT)

Register here for this short course on 24 and 25 October 2024, 12:00 - 14:00 UTC