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Objectives of shallow water remote sensing 

• Bottom mapping 
        - corals, seagrasses, macroalgae 
• Water optical properties 
• Bathymetry (depth) 

Applications 
• Spatial ecology (science) 
• Resource mapping, MPA design, impact 

assessments 
• Assessing ecosystem services 
         - coastal protection and stabilisation 
        - fisheries, local subsistence 
        - blue carbon 
        - tourism 
• Hydrography (bathymetry for navigation) 



Applications on coral reefs and similar environments 

Hedley et al. 2018, RSE, 216, 598–614 

 Need higher spatial resolution than typical ocean colour satellites 



High Spatial Resolution Imagery 

• Many past and present (archive imagery still available) 
• Pleiades, DigitalGlobe (WorldView-2, 3, 4, GeoEye, IKONOS), Planet (various) 
• Typically 4 bands, R, G, B and NIR, but some now have 8 bands 

Pixel size < 5 m – typically commercial 

Pixel size 10 - 30 m – typically not focussed on aquatic applications 

• Landsat 8, 9 (30 m) 
• Sentinel 2 (10 m in four bands) 

Notes:  
• Radiometric calibration on commercial satellites is often not as good as on 

space agency satellites.  
• For these sensors bands are spectrally wide, not narrow as with ocean colour 

satellites 
        - not always appropriate to just use centre wavelength  
        - may need to integrate over wavelength 



Band widths are typically wider than ocean colour sensors  
Worldview-3 

MERIS / OLCI 

Smaller pixel means less light energy, wider bands required for acceptable SNR   

Martins et al. (2020). doi: 10.1016/j.jag.2020.102215 
Zeng et al. doi: 10.3390/rs13173349  



WorldView-2 image of Yucatan coast, Mexico (15 Feb 2008)   
(pixels < 2 m, 8 bands, 5 in wavelengths useable for sub-surface applications) 

(c) DigitalGlobe 



Sentinel-2 image of Yucatan coast, Mexico (17 April 2018)   
(pixels 10 m, 5 usable bands) 

ESA / Copernicus 



Stumpf et al. 2003 

Lyzenga 1978 a0, a1, a2 from regression 

m0, m1, from regression 

Empirical image based methods (e.g. bathymetry) 

• Assume exponential attenuation of light with depth ( constant Kd and KLu) 
• Requires training of points from imagery (deep water, known depths etc.) 

should be deeper 
than 15m! 



Bottom classification – machine learning 

Depth invarient indices 
 

• train on dataset 
• apply to image 



An index that is approximately constant for the same reflectance at different depths 

Example from bands 2 and 3 of a Sentinel 2 image of Lizard Island, band “d23” 

sandy bottom not sand 

noise 

Bottom classification - depth invariant indices 

Need: 1) ratio of attenuation coefficients 
            2) deep water reflectance 
 can extract from image using sand and deep water 

Get one band from each pair of original bands  



Machine learning  



Mathematical transform Machine learning 

Fundamentally 
inseparable 



Machine learning - comparing techniques 

Many different techniques 
• Support Vector Machines (SVM) 
• Neural Networks 
• Random Forest 
• etc. 
 

Why do they perform differently? (if they do) 
 
• What does it tell you about the structure of the data? 
• Is there a fundamental limitation? 
• Can we learn something? 

These algorithms may appear like “black boxes” but it  
is possible to look inside them * 



Going beyond single pixels - image segmentation 

Can input object metrics into classifier, as well as image data: 
• size 
• shape 
• orientation, etc. 



Object-orientated machine learning techniques 

bottom 
reflectance 

bathymetry 

original image 
 

environmental data 
(e.g. wave energy, wind) 

habitat map 

segmented 
object metrics 

[See papers by Chris Roelfsema et al.] 



Sun-glint : different types of glint dependent on spatial scale 

High spatial resolution, pixels < 10 m 
 individual waves 

Large images e.g. MERIS, pixels > 100 m 
 function of solar-view geometry and sea state – Cox & Munk equations 

Kay et al. 2009 Remote Sens., 1(4), 697-730, doi: 10.3390/rs1040697  



Avoidance is best, but not always possible 
Sun-synchronous orbit means glint occurs frequently in Sentinel-2 imagery 

• Solar zenith angle at a specific location varies mostly with season 
• East-west position in swath is important (equivalent to tilt, max. 12) 
• Some places are imaged in two orbits so occur at both east and west edges 

Hedley et al. 2018, RSE, 216, 598–614 



• Can correct using a Near-Infra Red (NIR) band to assess the glint 
• Assumption 1 - Glint has a uniform spectral signature  
• Assumption 2 - NIR from below the water surface is zero 

Glint correction or “deglint” of high spatial resolution images 

• Start with a sample of pixels over deep water, where it is 
assumed there is no sub-surface variation in reflectance 

WorldView-2 Image 
(c) DigitalGlobe 
 
pixels 2 m  



Hedley et al. (2005) International Journal of Remote Sensing 26: 2107-2112 
and other similar methods - see Kay et al. (2009) Remote Sensing 1: 697-730 

Glint correction or “deglint” of high spatial resolution images 

NIR reflectance 
(or SWIR) Sample over deep water 



Glint correction or “deglint” of high spatial resolution images 

Sample over deep water 

• Before or after atmospheric correction?  using minimum NIR reflectance means it 
probably doesn’t matter, if you assume uniform atmospheric contribution 



Before deglint  



After deglint  



Glint corrected images are quite noisy 

1) Signal to noise issue - take a big signal away to leave 
a small signal, but noise was on the big signal. 

2) Also, combining noise from two bands - visible band 
and NIR band. 

3) Process is not perfect - band alignment, etc. 

   Spatial filtering (smoothing) may be useful 

Before After 

Pixel-to-pixel noise 



Over-correction when NIR below surface is not zero  
 

• Assumption of zero NIR from below the water may not be valid in shallow water 
• Corals and photosynthetic benthos can be bright in the NIR 
• May or may not cause problems for subsequently applied algorithms  

Before After 



The challenge of getting a radiometrically correct output 
Is the darkest pixel really a “no glint” reference? 

The darkest pixels may contain some ‘sub-pixel’ glint, we have no way to know. 
At TOA MinNIR is sub-pixel glint plus aerosol backscatter. 
Typically NIR is also important for aerosol estimation in atmospheric correction. 
We are trying to use the NIR for two things! 



• Harmel T. et al. (2018)  
• Glint correction for Sentinel-2 
• Uses SWIR to characterise glint 
• Relies on a-priori separation of 

atmospheric reflectance from 
surface glint using data from 
AERONET station 

Adds information to reduce 
uncertainty between 
aerosol and glint 

Harmel T. et al. (2018) 
Remote Sensing of 
Environment, 204: 308-321 

1. Use ancillary data 

Two routes to avoid this problem 

2. Recognise we don’t really need to separate glint or aerosol 

• Doesn’t matter if the glint and aerosol backscatter are confused as long their 
joint effect is removed, but, spectrally they may not be the same. 



Inversion methods for shallow water applications 

• Depth 
• Water column constituents 
• Bottom type (sand, coral, etc.) 

Go from image Rrs(λ) to model inputs  =  model inversion 



Shallow water models for Rrs(λ) 

1) HydroLight 
Build look-up tables for different depths, water 
column optical properties and bottom reflectances 
 
Mobley et al. (2005) Applied Optics 44, 3576-3592 
 

2) Semi-analytical models 
Develop a simpler conceptual model and estimate coefficients or 
parameters from a physically exact model such as HydroLight 
 
Results in a forward model that is faster to compute 
 
Lee et al. (1998) Applied Optics 37, 6329-6338 
 



Spectral Matching (LUT) 

Depth,    Phytoplankton,    CDOM, … etc 
1 m             0.1 mg m-3 

2 m             0.1 mg m-3 

3 m             0.1 mg m-3 

4 m             0.1 mg m-3 

 
1 m             0.2 mg m-3 

2 m             0.2 mg m-3 

3 m             0.2 mg m-3 

4 m             0.2 mg m-3 

 
1 m             0.4 mg m-3 

2 m             0.4 mg m-3 

3 m             0.4 mg m-3 

4 m             0.4 mg m-3 
 

MODEL 

Estimate: 
Depth = 2 m              
Phytopankton = 0.2 mg m-3 

... etc 

Image pixel 

• No in-situ training data required. 



Lee et al's semianalytical model for  
shallow water reflectance 

H = depth in metres 
P = phytoplankton concentration (proxy) 
G = dissolved organic matter concentration (proxy) 
X = backscatter 
Y = (spectral slope of backscatter) is fixed at 1 

remote 
sensing 
reflectance 

bottom reflectance 

Also incorporates sun 
and view zenith angles 

Various factors derived 
from HydroLight 



• Use pairs selected from a small spectral library 
• Then mixture is just one parameter, m, ranging 0 to 1 
• Another parameter, E, specifies which particular pair are used. 
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Sand Coral 

Bottom reflectance can be treated as a mix of types 

m  (1 - m)  



Inversion of the model 
This is a forward model it describes what can occur in every 
individual pixel based on what is in the pixel 

Six values describe every pixel 

But we start with this 
and wish to deduce this 

Successive approximation technique such as the Levenberg-Marquardt 
algorithm, keeps adjusting inputs to find the best match for the pixel rrs() 
 
NOTE: You can get an estimate for more parameters than the number of 
bands, so you don’t need 6 bands to do this.  



Examples of inversion products (Lizard Island, GBR) 
Sentinel 2 image, RGB 

Bottom reflectance, RGB Water column kd(PAR) 

Bathymetry 



Canopy modelling, seagrass Thalassia testudinium 

Low LAI  High LAI  

• 3-dimensional geometric optics model 
• Hedley & Enríquez, L&O 2010 
• Hedley, Russell, Randolph & Dierssen, RSE 2016 

 
 Reflectance above the canopy as a function of 

leaf area index (LAI) 



Leaf and sand optical properties 
Reflectance and transmittance 



Canopy structure  

- flexible strips in a simple 
  wave motion model 



Canopy structure  

- flexible strips in a simple 
  wave motion model 



Model outputs (RGB from 17 bands) 

LAI 4.5, depth 0.5 m  LAI 1.0, depth 1.5 m  



LAI 4.5, depth 0.5 m  LAI 1.0, depth 1.5 m  

Model outputs (RGB from 17 bands) 



e is a parameter that ranges from 0 to 1 
and encompasses the variation for a 
specific LAI 

Model many canopies 
with a multi-factor design 

Reduce results to a simpler model 
by regression & function fitting 



bottom reflectance 

Embed into Lee’s model for shallow water reflectance 

Substitute bottom reflectance for a model 
based on LAI and variation term e 

Gives a model that can be 
inverted directly for LAI 



Seagrass LAI mapping, Yucatán, Mexico  

Hedley et al. 2021, Frontiers in Marine Science, 8, 733169 doi:10.3389/fmars.2021.733169 

RGB Image (Sentinel-2)  LAI in lagoon area  



Difficulty in geo-locating ground truth data 
Hard to survey at scales relevant to remote sensing 

Hedley et al. 2021, Frontiers in Marine Science, 8, 733169 doi:10.3389/fmars.2021.733169 



Benthic mapping – uncertainties and confidence 
 
Typical objectives: 
•  say how much of something is there 
•  say if it has changed 

 
How to be sure of conclusions? 
• uncertainty estimates 
• statistical tests 

 
Two potential approaches 
1) Image based uncertainty propagation 
2) Multi image analysis and statistical tests  



Fundamental uncertainty 
 similar spectra from differing parameters 

1. Uncertainty propagation through model inversion 



Sources of "noise"  uncertainty 

model 

"noise" 

sensor 

atmosphere 

spectrally 
correlated 

Hyperspectral deep water pixels 



image noise 
 

(multivariate 
normal) 

subtract random 
noise term  20 times 

20 reflectance spectra 

invert to retrieve 
parameter estimations 

discard upper and  
lower tails to give 

90% conf. intervals 

Propagation through inversion Image pixel 

use mean for  
actual result 

is actually better than direct  
single-inversion result 



Bathymetry estimation with uncertainty 

CASI 

Quickbird 

= 90% confidence interval 

0 m 300 m 100 m 200 m 



2. Multi-image analysis 
• Slow changing features - e.g. benthic cover or bathymetry 
• How to utilise the image archive? 

 
PRODUCT 

 

1. Pick a good image 



2. Automated  make a median image 

take 
median 
value 

PRODUCT 



 
 

3. Automated  median product 

PRODUCT 

take 
median 
value 

MEDIAN 
PRODUCT 

plus information on 
image-to-image 

variation 

(note processing does include cloud screening) 



Annual median LAI (canopy density) 

LAI 

annual median LAI 
(from 65 images) source images 



Change detection in annual median LAI estimates   - with statistical test 

2018 to 2019 

2019 to 2020 

Increase 

Decrease 

p < 0.01 
 
Mood’s median test 



2016 -2017 2017 -2018 2018 -2019 2019 -2020 

Detail of one location (yellow dot) 



ICESat-2 

Image: NASA 

• Space-bourne LIDAR 
• Launched 15 Sept. 2018 
• Global acquisition 
• Data freely available on on the web 
• Possible to extract bathymetry 



Coveney et al. 2021, Remote Sensing, 13, 4352; doi:10.3390/rs13214352 

Typical ICESat-2 data 

water surface 

sea bed 

• Under favourable conditions depths to 20 m (or more) can be extracted 
• Difficult to automate extraction 
• Correct for refractive index, apparent depth is 1.33  depth 



• Scale is more appropriate to remote 
sensing than echo sound data 

• Use data for calibration or validation 

Comparison of model inversion 
bathymetry vs. ICESat-2 data for 

the entire Yucatan coast (400 km) 

Hedley et al. 2021, Frontiers in Marine Science, 8, 733169 
doi:10.3389/fmars.2021.733169 



Questions... 


