Shallow Water Remote Sensing

John Hedley, IOCCG Summer Class 2024

- Overview
- High spatial resolution imagery and Sentinel-2
- Empirical methods / machine learning
- Sun-glint correction of high spatial resolution images
- Model inversion methods
- Canopy modelling
- Uncertainty propagation
- Multi image analysis and statistical tests
- ICESat-2 space-bourne LIDAR

Objectives of shallow water remote sensing

- Bottom mapping
 - corals, seagrasses, macroalgae
- Water optical properties
- Bathymetry (depth)

Applications

- Spatial ecology (science)
- Resource mapping, MPA design, impact assessments
- Assessing ecosystem services
 - coastal protection and stabilisation
 - fisheries, local subsistence
 - blue carbon
 - tourism
- Hydrography (bathymetry for navigation)

Applications on coral reefs and similar environments

> Need higher spatial resolution than typical ocean colour satellites

Hedley et al. 2018, RSE, 216, 598-614

High Spatial Resolution Imagery

Pixel size < 5 m – typically commercial

- Many past and present (archive imagery still available)
- Pleiades, DigitalGlobe (WorldView-2, 3, 4, GeoEye, IKONOS), Planet (various)
- Typically 4 bands, R, G, B and NIR, but some now have 8 bands

Pixel size 10 - 30 m – typically not focussed on aquatic applications

- Landsat 8, 9 (30 m)
- Sentinel 2 (10 m in four bands)

Notes:

- Radiometric calibration on commercial satellites is often not as good as on space agency satellites.
- For these sensors bands are spectrally wide, not narrow as with ocean colour satellites
 - not always appropriate to just use centre wavelength
 - may need to integrate over wavelength

Band widths are typically wider than ocean colour sensors

Worldview-3

Smaller pixel means less light energy, wider bands required for acceptable SNR

Martins et al. (2020). doi: 10.1016/j.jag.2020.102215 Zeng et al. doi: 10.3390/rs13173349

WorldView-2 image of Yucatan coast, Mexico (15 Feb 2008) (pixels < 2 m, 8 bands, ~5 in wavelengths useable for sub-surface applications)

(c) DigitalGlobe

Sentinel-2 image of Yucatan coast, Mexico (17 April 2018) (pixels 10 m, ~5 usable bands)

ESA / Copernicus

Empirical image based methods (e.g. bathymetry)

- Assume exponential attenuation of light with depth (~ constant K_d and K_{μ})
- Requires training of points from imagery (deep water, known depths etc.)

Lyzenga 1978

$$X_i = \ln(L_i - L_{si}),$$

$$Z = a_0 + a_i X_i + a_j X_j$$

a0, a1, a2 from regression

Stumpf et al. 2003 $z = m_1 \frac{\ln(nR_w(\lambda_i))}{\ln(nR_w(\lambda_i))} + m_0$ m0, m1, from regression

> should be deeper than 15m!

5

10

15

20

25

Depth (m)

Bottom classification – machine learning

- train on dataset
- apply to image

Deep Water	Medium Seagrass	Rubble / Sparse Cora
Sand	Dense Seagrass	Reef Matrix
Land		

Bottom classification - depth invariant indices

An index that is approximately constant for the same reflectance at different depths

$$d_{ij} = X_i - \frac{k_i}{k_j} X_j$$

 $X_i = \ln(R_i - R_i^{\text{deep}})$

Get one band from each pair of original bands

Need: 1) ratio of attenuation coefficients 2) deep water reflectance

can extract from image using sand and deep water

Example from bands 2 and 3 of a Sentinel 2 image of Lizard Island, band " d_{23} "

Machine learning

Machine learning

Mathematical transform

Machine learning - comparing techniques

Many different techniques

- Support Vector Machines (SVM)
- Neural Networks
- Random Forest
- etc.

Why do they perform differently? (if they do)

- What does it tell you about the structure of the data?
- Is there a fundamental limitation?
- Can we learn something?

These algorithms may appear like "black boxes" but it is possible to look inside them

Going beyond single pixels - image segmentation

Can input object metrics into classifier, as well as image data:

- size
- shape
- orientation, etc.

Object-orientated machine learning techniques

segmented

Sun-glint : different types of glint dependent on spatial scale

Large images e.g. MERIS, pixels > 100 m

 \rightarrow function of solar-view geometry and sea state – Cox & Munk equations

High spatial resolution, pixels < 10 m

 \rightarrow individual waves

Kay et al. 2009 Remote Sens., 1(4), 697-730, doi: 10.3390/rs1040697

Avoidance is best, but not always possible

Sun-synchronous orbit means glint occurs frequently in Sentinel-2 imagery

- Solar zenith angle at a specific location varies mostly with season
- East-west position in swath is important (equivalent to tilt, max. $\sim 12^{\circ}$)
- Some places are imaged in two orbits so occur at both east and west edges

Glint correction or "deglint" of high spatial resolution images

- Can correct using a Near-Infra Red (NIR) band to assess the glint
- Assumption 1 Glint has a uniform spectral signature
- Assumption 2 NIR from below the water surface is zero

WorldView-2 Image (c) DigitalGlobe

pixels ~2 m

 Start with a sample of pixels over deep water, where it is assumed there is no sub-surface variation in reflectance

Glint correction or "deglint" of high spatial resolution images

Hedley et al. (2005) *International Journal of Remote Sensing* 26: 2107-2112 and other similar methods - see Kay et al. (2009) *Remote Sensing* 1: 697-730

Glint correction or "deglint" of high spatial resolution images

• Before or after atmospheric correction? – using minimum NIR reflectance means it probably doesn't matter, if you assume uniform atmospheric contribution

Before deglint

After deglint

Glint corrected images are quite noisy

- 1) Signal to noise issue take a big signal away to leave a small signal, but noise was on the big signal.
- 2) Also, combining noise from two bands visible band and NIR band.
- 3) Process is not perfect band alignment, etc.
- → Spatial filtering (smoothing) may be useful

Pixel-to-pixel noise

Over-correction when NIR below surface is not zero

- Assumption of zero NIR from below the water may not be valid in shallow water
- Corals and photosynthetic benthos can be bright in the NIR
- May or may not cause problems for subsequently applied algorithms

The challenge of getting a radiometrically correct output

Is the darkest pixel really a "no glint" reference?

The darkest pixels may contain some 'sub-pixel' glint, we have no way to know. At TOA Min_{NIR} is sub-pixel glint plus aerosol backscatter. Typically NIR is also important for aerosol estimation in atmospheric correction. We are trying to use the NIR for two things!

Two routes to avoid this problem

1. Use ancillary data

- Harmel T. et al. (2018)
- Glint correction for Sentinel-2
- Uses SWIR to characterise glint
- Relies on a-priori separation of atmospheric reflectance from surface glint using data from AERONET station

Adds information to reduce uncertainty between aerosol and glint

2. Recognise we don't really need to separate glint or aerosol

• Doesn't matter if the glint and aerosol backscatter are confused as long their joint effect is removed, but, spectrally they may not be the same.

Inversion methods for shallow water applications

Go from image $R_{rs}(\lambda)$ to model inputs = model inversion

Shallow water models for $R_{rs}(\lambda)$

1) HydroLight

Build look-up tables for different depths, water column optical properties and bottom reflectances

Mobley et al. (2005) Applied Optics 44, 3576-3592

2) Semi-analytical models

Develop a simpler conceptual model and estimate coefficients or parameters from a physically exact model such as HydroLight

Results in a forward model that is faster to compute

Lee et al. (1998) Applied Optics 37, 6329-6338

Lee et al's semianalytical model for shallow water reflectance $r_{\rm rs}(\lambda) \approx f(P,G,X,H,\rho(\lambda),\lambda)$

$$a(\lambda) = a_{\rm w}(\lambda) + [a_0(\lambda) + a_1(\lambda)\ln P]P + G\exp\left[-0.015\left(\lambda - 440\right)\right]$$
$$b_{\rm b}(\lambda) = b_{\rm bw}(\lambda) + X\left(400/\lambda\right)^Y$$
$$u(\lambda) = b_{\rm b}(\lambda) / [a(\lambda) + b_{\rm b}(\lambda)], \quad \kappa(\lambda) = a(\lambda) + b_{\rm b}(\lambda)$$

 $r_{\rm rs}^{\rm dp}(\lambda) \approx [0.084 + 0.170 u(\lambda)] u(\lambda)$

 $D_{\rm u}^{\rm C}(\lambda) \approx 1.03\sqrt{1+2.4u(\lambda)}$ $D_{\rm u}^{\rm B}(\lambda) \approx 1.04\sqrt{1+5.4u(\lambda)}$

- *H* = depth in metres
- P = phytoplankton concentration (proxy)
- G = dissolved organic matter concentration (proxy)
- X = backscatter
- Y = (spectral slope of backscatter) is fixed at 1

Also incorporates sun and view zenith angles

Various factors derived from HydroLight

Bottom reflectance can be treated as a mix of types

- Use pairs selected from a small spectral library
- Then mixture is just one parameter, *m*, ranging 0 to 1
- Another parameter, *E*, specifies which particular pair are used.

Inversion of the model

This is a **forward model** it describes what can occur in every individual pixel based on what is in the pixel

$$\lambda) \approx f(P, G, X, H, m, E)(\lambda)$$

Six values describe every pixel

But we start with this and wish to deduce this

Successive approximation technique such as the Levenberg-Marquardt algorithm, keeps adjusting inputs to find the best match for the pixel $r_{rs}(\lambda)$

NOTE: You <u>can</u> get an estimate for more parameters than the number of bands, so you don't need 6 bands to do this.

Examples of inversion products (Lizard Island, GBR)

Sentinel 2 image, RGB

Bottom reflectance, RGB

Bathymetry

≥ 20

15

10

5

0

depth (m)

Water column k_d (PAR)

Canopy modelling, seagrass Thalassia testudinium

Low LA

- 3-dimensional geometric optics model ٠
- Hedley & Enríquez, L&O 2010 •
- Hedley, Russell, Randolph & Dierssen, RSE 2016

Reflectance above the canopy as a function of leaf area index (LAI)

Leaf and sand optical properties

Reflectance and transmittance

Canopy structure

- flexible strips in a simple wave motion model

Canopy structure

- flexible strips in a simple wave motion model

Model outputs (RGB from 17 bands)

LAI 4.5, depth 0.5 m

LAI 1.0, depth 1.5 m

Model outputs (RGB from 17 bands)

LAI 4.5, depth 0.5 m

LAI 1.0, depth 1.5 m

 $\rho(\lambda) \approx R_{\text{canopy}}(\text{LAI}, e, \lambda)$

e is a parameter that ranges from 0 to 1 and encompasses the variation for a specific LAI

Embed into Lee's model for shallow water reflectance

Gives a model that can be inverted directly for LAI

$$r_{\rm rs}(\lambda) \approx f(P, G, X, H, \text{LAI}, e, \lambda)$$

Seagrass LAI mapping, Yucatán, Mexico

Hedley et al. 2021, Frontiers in Marine Science, 8, 733169 doi:10.3389/fmars.2021.733169

Difficulty in geo-locating ground truth data

Hedley et al. 2021, Frontiers in Marine Science, 8, 733169 doi:10.3389/fmars.2021.733169

Benthic mapping – uncertainties and confidence

Typical objectives:

- say how much of something is there
- say if it has changed

How to be sure of conclusions?

- uncertainty estimates
- statistical tests

Two potential approaches

- 1) Image based uncertainty propagation
- 2) Multi image analysis and statistical tests

1. Uncertainty propagation through model inversion

Fundamental uncertainty

 \rightarrow similar spectra from differing parameters

Bathymetry estimation with uncertainty

2. Multi-image analysis

- Slow changing features e.g. benthic cover or bathymetry
- How to utilise the image archive?

1. Pick a good image

2. Automated – make a median image

3. Automated – median product

(note processing does include cloud screening)

Annual median LAI (canopy density)

Change detection in annual median LAI estimates - with statistical test

p < 0.01

Mood's median test

Detail of one location (yellow dot)

- Space-bourne LIDAR
- Launched 15 Sept. 2018
- Global acquisition
- Data freely available on on the web
- Possible to extract bathymetry

Typical ICESat-2 data

- Under favourable conditions depths to 20 m (or more) can be extracted
- Difficult to automate extraction
- Correct for refractive index, apparent depth is $\sim 1.33 \times depth$

Coveney et al. 2021, *Remote Sensing*, 13, 4352; doi:10.3390/rs13214352

- Scale is more appropriate to remote ۰ sensing than echo sound data
- Use data for calibration or validation ۲

Hedley et al. 2021, Frontiers in Marine Science, 8, 733169 doi:10.3389/fmars.2021.733169

Comparison of model inversion bathymetry vs. ICESat-2 data for the entire Yucatan coast (~400 km)

Questions...