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Lecture content

@ Ocean colour radiometry (OCR) from space; are you kidding?
@ \ery basics of ocean colour sensors
% Basic principles, different types of sensors, ..
@ Succinct history of passive ocean colour radiometry (OCR)
% From the “proof-of-concept” CZCS to currently on-orbit scientific and operational missions
@ Future of satellite OCR:
There is need for better resolving
% Long time scales: ensuring continuity of global observ. from LEO sensors
% Small time scales: the geostationary vantage point
% Ecosystems complexity: going hyper-spectral
% Particle types: taking advantage of polarisation
% The vertical structure: satellite-borne LIDARs
% Local processes: high spatial resolution sensors

And making all this simpler and cheaper.. ?
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Setting up of “the scene”: can this really work?
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Figure 3 in Hooker SB et al., 1992. An overview of SeaWiFS and ocean color, NASA TM 104566, vol 1, NASA GSFC, Greenbelt, MD 20771
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How it all started

George L. Clarke, Gifford C. Ewing and Carl J. Lorenzen, 1970. Spectra of Backscattered Light from the Sea Obtained from
Aircraft as a Measure of Chlorophyll Concentration, Science 167 (3921), 1119-1121.
DOI: 10.1126/science.167.3921.1119
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Fig. 1. Upwelling light as received at the
indicated altitudes at Station S (Fig. 2)
east of Cape Cod, 26 August 1968 be-
tween 1345 and 1512 hours, E.D.T.

Fig. 3. Data from the high and low
chlorophyll curves plotted as percentage
of the incident light and compared with
data taken on the same day from an area
with very low chlorophyll concentration
south of the Gulf Stream.

Station E, 1315 hours. The spectrometer
with polarizing filter was mounted at 53°
tilt and directed away from the sun. Con-
centrations of chlorophyll a were mea-
sured from shipboard as follows: on 27
August, Station A, 1238 hours; on 28
August, Station B, 0600 hours; Station C,
0730 hours; Station D, 1230 hours.
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How it all started

George L. Clarke, Gifford C. Ewing and Carl J. Lorenzen, 1970. Spectra of Backscattered Light from the Sea Obtained from
Aircraft as a Measure of Chlorophyll Concentration, Science 167 (3921), 1119-1121. DOI:
10.1126/science.167.3921.1119

Abstract. Spectra of sun and skylight backscattered from the sea were obtained from
a low-flying aircraft and were compared with measurements of chlorophyll
concentration made from shipboard at the same localities and at nearly the same
times. Increasing amounts of chlorophyll were found to be associated with a relative
decrease in the blue portion of the spectra and an increase in the green.
Anomalies in the spectra show that factors other than chlorophyll also affect the
water color in some instances; these factors include other biochromes, suspended
sediment, surface reflection, polarization, and air light.

Last sentence of the paper: If such interference can be eliminated, or identified and allowed for,
spectrometric procedures from aircraft (and perhaps from satellites) will be of great value in the rapid
investigation of oceanic conditions, including conditions important for biological productivity.
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The “Coastal Zone Color Scanner”,

CZCS on NIMBUS 7/

NINBUS 7 Launched October 1978

Channel Type Spectral Range (um cpsy e Function
. 1 visible 0.453 - 0.453 purple chlorophyll
J 2 visible 0.510 - 0.530 blue-green reference
3 visible 0.540" - 0.560 yellow-green sediments
4 visitle 0.660 - 0.680 red chlorophyll
5 Near IR 0.700 - 0.800 . surface vegatation
6 IR 10.5 - 12.5 e surface temperature

Illustration and Table taken from: Development of the Coastal Zone
Color Scanner for Nimbus 7. Vol. 1: mission objectives and instrument
description. Final report F78-11, Rev A, May 1979. NASA-CR-166720-
Vol-1. Ball Aerospace Systems Div., Boulder. 76pp.

COASTAL ZONE
COLOR SCANNER
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From: NIMBUS-7 CZCS. Coastal Zone Color Scanner Imagery for Selected Coastal Regions. NASA report, 1984.
Available at: https://archive.org/details/NASA NTRS Archive 19880013063
See also: Hovis et al., 1980. Science 210, 60-63
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And, guess what? it worked!
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Fig. 3. Values of C = (Chla + Phaeoa) (in milligrams per cubic meter) from Fig. 2 (14 Novem-
ber 1978) compared with a track line of concentrations measured aboard the R.V. Athena IT on
13 and 14 November 1978. The track line is superimposed on Fig. 2, and distance (above) runs
from south to north. The estimated CZCS data have been subsampled to coincide with the ship
samples for comparison.

Gordon et al., 1980. Science 210, 63-66
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A milestone: first global data set

Transactions, American Geophysical Union
Vol. 70 No. 23 June 6,°1989

From: Feldman G.C., N. Kuring, C. Ng, W. Esaias, C. McClain, J. Elrod, N. Maynard, D. Endres, R. Evans, J. Brown, S. Walsh, M. Carle and G.

Podesta, 1989. Ocean color : availability of the global data set. EQS, 70, 634.
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What an “ocean colour sensor” does?
Steps to deliver OCR “imagery”:

@ Collecting light (photons): telescope, lenses, mirrors

€ Making this insensitive to the polarisation state (within a few %): design, coatings, scramblers

@ “Sorting” this in a number of spectral bands: filters, beam splitters, gratings

€ Converting collected photons in an electric signal: detector(s)

€ Converting this signal into bits: analog-to-digital conversion

€ Sending those bits to the ground: transmission capability

€ Doing the inverse path: from bits to radiances: calibration (pre-launch + onboard devices
such as diffusers)

@ Locating these information on the ground: satellite orbit / attitude control (precise orbit
determination, gyroscopes, star trackers)

6t |IOCCG Summer Lecture Series, INCOIS, Hyderabad, India, 4-15 November 2024



A simplified scheme

I's'é;,;;,'e','.': Optics  Spectral  Detector .
; ‘\ | g Separation Focal Plane Electronics
§ é »O Analog
i ; ~ Shnals
Optional |~~~ | Cryogemc : g::"::-
Opﬁomit-.Coojor ..........
Spacecraft
lAtmosphere

///_S:;n Direction \*

National Research Council. 2011. Assessing the Requirements for Sustained Ocean Color Research and Operations.
Washington, DC: The National Academies Press. https://doi.org/10.17226/13127.
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Example: the CZCS optical layout
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The CZCS was a cross-track scanning radiometer

[llustration and Table taken from: Development of the Coastal Zone Color Scanner for Nimbus 7. Vol. 1: mission objectives
and instrument description. Final report F78-11, Rev A, May 1979. NASA-CR-166720-Vol-1. Ball Aerospace Systems Div.,
Boulder. 76pp.
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Another example: the MERIS optical layout
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Figure 4.11 in: “Optical Payloads for Space Missions”, Shen-En Qian Ed., John Wiley & Sons, 26 Jan. 2016, 1008 pp.

MERIS is a “push-broom” imaging spectrometer

See also: https://earthobservatory.nasa.gov/Features/EQ1/eo0l 2.php
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What has happened since CZCS was launched?

m 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[Hi-Res] HSI (CHIME, ESA) s s
[Geo] [Hi-Res] HSI (GLIMR, NASA) e s s
Planned OLCI (Sentinel-3C, EC/ESA/EUMETSAT)
SABIA-MAR-A (CONAE) s s s s
[Hi-Res] OCI (PACE, NASA)
Orbiting COCTS2/CZ12 (HY-1E, CNSA)
VIIRS (NOAA-21 formerly JPSS-2, NOAA/NASA)
I OCM-3 (Oceansat-3, ISRO)
Terminated COCTS/CZI (HY-1D, CNSA)
[Geo] GOCI-II (GeoKompsat-2B, KARI/KIOST)
COCTS/CZI (HY-1C, CNSA)
OLCI (Sentinel-3B, EC/ESA/EUMETSAT)
SGLI (GCOM-C, JAXA)
VIIRS (JPSS-1, NOAA/NASA)
OLCI (Sentinel-3A, EC/ESA/EUMETSAT)
VIIRS (Suomi NPP, NOAA)
[Geo] GOCI (COMS, KARI/KIOST)
OCM-2 (Oceansat-2, ISRO)
COCTS/CZI (HY-1B, SOA)
POLDER-3 (Parasol, CNES)
GLI/POLDER-2 (ADEQS-2, NASDA/CNES) s m—
COCTS/CZI (HY-1A, SOA) e s s
MODIS (Aqua, NASA)
MERIS (Envisat, ESA)
OSMI (Kompsat-1, KARI/KORDI)
MODIS (Terra, NASA)
OCM (Oceansat-1, ISRO)
SeaWiFS (Orb-View2, NASA)
OCTS/POLDER (ADEQS, NASDA/CNES) e m—
MOS (IRS-P3, DLR)
CZCS (Nimbus-7, NASA) s m—
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THE COLOR OF THE
ATMOSPHERE WITH
THE OCEAN BELOW If you want to know all about the

path from CZCS to SeaWiFS ,MODIS etc..,
this is what you need to read

A HISTORY OF NASA'S
OCEAN COLOR MISSIONS

JAMES ACKER
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In which direction has this been going?

Main drivers of the evolution of satellite OCR, from the lessons learned with the pioneers (CZCS):

Technical/scientific rationale:

€ Radiometric quality!! We need to see more than “nuances of blue and green”
@ Spectral resolution: more bands!

€ Calibration (absolute and temporal changes): the CZCS internal lamps failed to provide accurate control on
temporal changes in calibration

€ Vicarious calibration is needed as well
€ We want global data sets

€ We need to do more in coastal waters (the irony of the name “CZCS” is that it actually did more to reveal
the global need for OCR than it did for coastal applications)

€ We want to see deeper in the oceans

More “politically-driven”:

€ Industry has to get contracts from Government / Space agencies to work.

€ Countries want to demonstrate capability
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Radiometric quality
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From: IOCCG, 1998, Minimum Requirements for an Operational, Ocean-Colour Sensor for the Open Ocean, André
Morel (Ed.), Reports of the International Ocean-Colour Coordinating Group, No. 1, IOCCG, Dartmouth, Canada.
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Spatial resolution

Not so much change here, at least if we consider global ocean missions

Past and current:

& CZCS: 825m

€ SeaWiFS: 1km

4 MERIS: 300m /1.2 km

€ MODIS: 250m (land), 1 km
4 VIRS: 750m

¢ OLC: 300m /1.2 km

€ SGL: 250m/1km

Future:

€ PACE: 1km

Higher spatial resolution missions are now also used, whose purpose was not initially ocean
colour however (later on in this lecture)
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Calibration degradation: CZCS
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See: Evans, R. H., and H. R. Gordon, 1994. J. Geophys. Res., 99, 7293-7307.

Antoine, D., Morel, A., Gordon, H.R., Banzon, V.F. and R.H. Evans, 2005. Journal of Geophysical Research, VOL. 110,
C06009, doi:10.1029/2004JC002620
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Calibration degradation: SeaSTAR-SeaWiFS, SNPP-VIIRS

SeaWiFS Lunar Calibrations
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Sun, J.; Xiong, X.; Lei, N.; Li, S.; Twedt, K.; Angal, A. Ten

Years of SNPP VIIRS Reflective Solar Bands On-Orbit
Calibration and Performance. Remote Sens. 2021, 13,
2944, https://doi.org/10.3390/rs13152944
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From: Ludovic Bourg, ACRI-ST, Personal communication
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System Vicarious Calibration (SVC)

One requirement for satellite OCR is:

Which errors can we tolerate on reflectances in the blue and green that we still can derive Chlorophyll
within, say, +30%?

The answer was: 5% in blue bands for an oligotrophic ocean (Gordon and Clark, 181. Appl. Opt. 20:4175-
4180)

It was rapidly realized that this requirement could not be met with pre-launch and onboard calibration
capabilities only

5% at the Ly level means 0.5% at TOA

Therefore, we need a process by which, overall, we eliminate biases in ocean color products (R:s). Scatter
(uncertainties) are not here considered.

Basically: measure Ly as accurately as possible, add the atmospheric signal on top of it, and compare to
the measured total signal at the “top of atmosphere” level (TOA), to obtain a “vicarious calibration gain”

Do this on a number of “matchups”, and average the gains to end up with a “mission-average” gain.

Beware: SVC does not addressing the temporal degradation issue
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Global data sets

Going from intermittent to systematic sampling

https://oceancolor.gsfc.nasa.gov/cgi/13/C1979032.L.3m DAY CHL chl ocx 9km.nc.png?sub=img
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Global data sets

Going from intermittent to systematic sampling

https://oceancolor.gsfc.nasa.gov/cgi/13/C1979032.L.3m DAY CHL chl ocx 9km.nc.png?sub=img
https://oceancolor.gsfc.nasa.gov/cgi/13/V2012032.L.3m DAY SNPP CHL chlor a 9km.nc.png?sub=img
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Global data sets

Merging data from multiple missions
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Global, multi-mission data sets
 The ESA Ocean Colour Climate Change Initiative (OC-CCl)

https://climate.esa.int/en/projects/ocean-colour

e The GlobCOLOUR data set

https://www.globcolour.info

https://data.marine.copernicus.eu/product/OCEANCOLOUR GLO BGC L4
MY 009 104/services

* The NASA’s Ocean Biology Processing Group (OBPG)

https://oceancolor.gsfc.nasa.gov
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What the future is made of?
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What the future is made of?

1) A bit more of the same: Ensuring continuity in the global OCR record

m 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[Hi-Res] HSI (CHIME, ESA) e s
[Geo] [Hi-Res] HSI (GLIMR, NASA) s s s—
Planned OLCI (Sentinel-3C, EC/ESA/EUMETSAT) s s s s s
SABIA-MAR-A (CONAE) e s s s
[Hi-Res] OCI (PACE, NASA) s s s s s
Orbiting COCTS2/CZI2 (HY-1E, CNSA)
VIIRS (NOAA-21 formerly JPSS-2, NOAA/NASA)
OCM-3 (Oceansat-3, ISRO)
COCTS/CZT (HY-1D, CNSA)
[Geo] GOCI-1I (GeoKompsat-2B, KARI/KIOST)
R COCTS/CZI (HY-1C, CNSA)
l" CCG OLCI (Sentinel-3B, EC/ESA/EUMETSAT)
SGLI (GCOM-C, JAXA)
VIIRS (JPSS-1, NOAA/NASA)
OLCI (Sentinel-3A, EC/ESA/EUMETSAT)
VIIRS (Suomi NPP, NOAA)
[Geo] GOCI (COMS, KARI/KIOST)
OCM-2 (Oceansat-2, ISRO)
COCTS/CZI (HY-1B, SOA)
POLDER-3 (Parasol, CNES)
GLI/POLDER-2 (ADEOS-2, NASDA/CNES) s s
COCTS/CZI (HY-1A, SOA) s s s
MODIS (Aqua, NASA)
MERIS (Envisat, ESA)
OSMI (Kompsat-1, KARI/KORDI)
MODIS (Terra, NASA)
OCM (Oceansat-1, ISRO)
SeaWiFS (Orb-View2, NASA)
OCTS/POLDER (ADEOS, NASDA/CNES) e s
MOS (IRS-P3, DLR)
CZCS (Nimbus-7, NASA) s

Terminated
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Primary production, mng"zday

“Climate Change detectability”
Henson et al., 2010, Biogeosciences, 7, 621-640

a) 32N, 27W
800 ' :
600
400+
2000 2020 2040 2060 2080 2100
b) 25N, 56W

2000 2020 2040 2060 2080 2100
¢) 49N, 48W
500 /\/\/\j\/\ﬁ/\/\,—\/\,\/v
400" :
300
2000 2020 2040 2060 2080 2100

Their fig. 7 (example from the GFDL model)

Their work:

* Running 3 global coupled ocean-ecosystem models
(GFDL MOM-4/TOPAZ, IPSL NEMO/PISCES, NCAR
physical model/CCM-3) over 2001-2100. * Comparing
Chl and production in reference runs and

“climate change runs” with the IPCC AR4 A2 scenario

Their conclusions:

*Detection of climate change-driven trends in the satellite data is
confounded by the relatively short time series and large interannual and
decadal variability.

*Thus, recent observed changes in chlorophyll, primary production and
the size of the oligotrophic gyres cannot be unequivocally attributed to
the impact of global climate change.

*Analysis of modeled chlorophyll and primary production from

2001-2100 suggests that, on average, the climate change-driven
trend will not be unambiguously separable from decadal variability
until 2055.

*Because the magnitude of natural variability in chlorophyll and
primary production is larger than, or similar to, the global warming
trend, a consistent, decades-long data record must be established if
the impact of climate change on ocean productivity

is to be definitively detected
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Martinez et al., Science, Vol 326, 27 Nov 2009

Chl ratio “Climate-Driven Basin-Scale Decadal Oscillations of
Oceanic Phytoplankton”
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Abundance & distribution of phytoplankton in the Pacific & Atlantic depend on
decadal oscillations of physical properties in these basins.

45E 'E 5'E 180" 135'W 90'W 45'W. o
Behrenfeldet al.,, 2006, Nature

Martinez, E., D. Antoine, F. D’Ortenzio, B. Gentili (2009). Climate-Driven Basin-Scale Decadal Oscillations of Oceanic Phytoplankton. Science 326, 1253; doi:
10.1126/science.1177012
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What the future is made of?
2) OCR sensors on geostationary orbits

@ Current missions have one major drawback: they observe the ocean at best once a day, always
at the same time

@ The resulting “repeat” is, at best, of a few days, exceptionally less
€@ Many processes occur at temporal scales largely inferior to the day(s)

€ Obtaining full spatial coverage of a given area, e.g., an ocean basin, requires accumulating
data over long periods of time (a week for instance): this is “blurring” the spatio-temporal
variability

—> There is an obvious mismatch between how the oceans vary and how we observe them
from space

- Hence the idea of putting ocean colour sensors on geostationary orbits
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Advantages of the GEO orbit

1. Within a range of conditions of observation (solar & view angles, clouds, ...), the diel dynamics of the ocean
will be accessible. The 1%t objective in this case is to study the ocean ecosystem functioning at the diurnal
scale. The diurnal cycle of photosynthesis / respiration .. generates a diel cycle in the particulate pool,
hence of the optical properties and of the recorded signal

2. In the above conditions and also when a little less observations will be available over a day, the 2" group of
objectives is related to observation & understanding of rapidly evolving phenomena (river outflows,
aerosol plumes, phytoplankton blooms, (sub)meso-scale features ..). These phenomena are not necessarily
linked to the biological functioning, and rather under the influence of physical forcings

3. When the conditions of observation do not allow the diel changes to be sampled, there is still the capability
to dramatically improve coverage, with at least one observation of good quality per day in many areas. This
is of tremendous importance for all operational uses, from data assimilation into coupled biological-
physical 3D models to services in coastal zones
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Diurnal cycles of ocean properties

Fraction of day
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Advantages of the GEO orbit

Sea Level and SeaWiF S Sampling

(Yaquina River tide at crossing times)

e e

Courtesy from Joo-Hyung Ryu, KIOST
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Advantages of the GEO orbit

%

2 4 W g cred (4, W ST
AL bt 10 SO 3T

Figure A.1.3. 1 Example of monthly data availability in March for two mission configurations: constellation of two Sentinel-
3 alone (left), and complemented by a GEO with 1 hour revisit (right). A realistic cloud coverage is taken into account (MSG

data for year 2007) as well as geometrical constraints (air mass < 5, glint reflectance smaller than 5 10-%). For a given
pixel, availability must be understood as at least one clear observation per day (50% means there is at least one daily data
for half of the days in the month). The observation area is constrained by the MSG observation area (MSG clouds).

Taken from the “GeOCAPI” proposal to ESA
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Main challenges of the GEO orbit

The sensor is at ~36,000km from the Earth, instead of being at about
700km in the case of Low-Earth Orbit §LEO) sensors

If the same at-the-ground spatial resolution is aimed at, the
instantaneous field of view is much smaller (the solid angle is much
smaller).

This might be an issue for the signal-to-noise!

However, because of the GEO position, the sensor can “stare” and,
therefore, the integration time can be much longer than for a LEO
sensor. At the end, similar SNRs to LEO sensors are reachable (~1000
in the blue)

Pointing stability is however another big challenge

High latitudes are not covered

III

Other challenges are more of a “political” nature: launching to the

GEO orbit is expensive.

Reports and Monographs of the International
Ocean-Colour Coordinating Group

An Affiliated Program of the Sdentific Committee on Oceanic Research (SCOR)
An Associated Member of the (CEOS)

IOCCG Report Number 12, 2012

Ocean-Colour Observations from a Geostationary
Orbit

Edlted by:
David Antolne, Laboratolre d’Océanographie de Villefranche (LOV-CNRS),
Villefranche-sur-mer, France)

Report of an IOCCG working group on Ocean-Colour Observations from a Geo-
stationary Orbit, chaired by David Antoine, and based on contributions from (in
alphabetical order):

Yu-Hwan Ahn Korea Institute of Ocean Science and Technology (KIOST)
David Antoine Laboratoire d’Océanographie de Villefranche, France
Jean-Loup Bézy ESA/ESTEC, The Netherlands

Prakash Chauhan Indian Space Research Organisation (ISRO), India

Curtiss Davis Oregon State University (OSU), USA

Paul DiGiacomo National Oceanic and Atmospheric Administration, USA
Xiangiang He State Key Lab of Satellite Ocean Environment Dynamics, China
Joji Ishizaka Nagoya University, Japan

Hiroshi Kobayashi University of Yamanashi, Japan

Anne Lifermann Centre National d’Ftudes Spatiales (CNES), France

Antonio Mannino  National Aeronautics and Space Administration (NASA), USA
ACRI-ST, Sophia Antipolis, France
Management Unit of the North Sea Mathematical Models

(MUMM), Belgium

Constant Mazeran
Kevin Ruddick

Serles Editor: Venetla Stuart
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OCR from the GEO orbit

Do we have plans?
There are already two OCR sensors on a GEO orbit: the Korean

“Geostationary Ocean Colour Instrument” (GOCI) and GOCI-II

s h s 3
GOCIYCOMS 20110430 0016 UTC Korea Ocean Satelﬁ:ﬁe enter
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OCR from the GEO orbit

Do we have plans?

GLIMR’s areas of interest (boxes) and ground control points Geo§ynchronous Littoral Imaglng and Monltorlng
Radiometer (GLIMR)

Pis:
Joe Salisbury (UNH),
Antonio Mannino (NASA)

The two main science goals of GLIMR are to:

1. Understand the processes contributing to rapid
changes in phytoplankton growth rate and community
composition.

2. Quantify how high frequency fluxes of sediments,
organic matter, and other materials between and
within coastal ecosystems regulate the productivity and
health of coastal ecosystems.

https://eospso.nasa.gov/missions/geosynchronous-littoral-imaging-and-monitoring-radiometer-evi-5
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What the future is made of?
3) Going hyperspectral

—Means “continuous” observations from the near UV to near IR at a high spectral resolution; always
some “averaging” or “smoothing”, however

Spectral sampling
Often defined at the “full-width-half-maximum” (FWHM)

—> Basic assumption is that we can derive more information on ocean ecosystems from using a richer
spectral information, as compared to the few spectral bands of most current OCR sensors

= Instruments have to be designed in such a way that radiance is measured from the near UV to the
near IR with, e.g., a 3nm resolution. Need a spectro-radiometer. That’s actually what MERIS was
and what OLCl is (only a subset of bands is aggregated and transmitted to ground, however).
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What the future is made of?
3) Going hyperspectral

- Going hyperspectral is an attempt to solve ill-posed problems by bringing more (supposedly)
independent observations

12 .
H ; . In situ, 28-Oct
—> Typical problems that are tackled with hyperspectral RS: ol e it
HICO 26-Oct / ATREM
- O  HICO 26-Oct/ Tafkaa-6s
- Bathymetry in shallow and clear waters — gl b HICO 26.00t I SeaDAS
- Phytoplankton functional types 2
o
- HABs 0.16 le-5 =
0.14 1 8¢-6 o
6e-6 =
- 0.124 4e-6 %
B Uy 2e-6 &
= 0.08 1 0o g
< 0.06 206 2 ; ' : :
s 0. 4 1B 400 500 600 700 800
0.04 1 fak B Wavelength (nm)
0.02 -8¢-6 Ryan et al., 2014. Remote Sens, 6, 1007-1025;
0.00 -le-5 .
400 4;0 5(1)0 ssl,o 660 (aili() 7('»0 doi:10.3390/rs6021007

A (nm)

Organelli, E., A. Bricaud, D. Antoine and J. Uitz, 2013. Applied Optics, 52, 2257-2273.
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What the future is made of?
3) Going hyperspectral

—>Current / scheduled hyperspectral sensors

HyspIRI NASA VSWIR instrument >2022 145 60

https://hyspiri.jpl.nasa.gov

EnMAP DLR HSI 2019 30 30
(Germany)

http://www.enmap.org
PACE NASA od 2022/2023 2000 1000

https://pace.gsfc.nasa.gov

10 nm contiguous 380-2500 LEO, Sun
bands Sync.

242 420-2450 Polar

hyperspectral (5Snm  350-2250 Polar
from350t0 890 nm nm
+ 6 in NIR-SWIR)

https://ioccg.org/resources/missions-instruments/
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What the future is made of?
4) OCR sensors recording the polarisation state

- Basically, the idea is to introduce an additional, independent, piece of information in the inversion problem:
polarisation

- Polarisation is highly dependent on the particle composition (so: index of refraction) and particle size

distribution (PSD) and particle shape

- The main aims are 1) to better identify aerosols in order to improve atmospheric corrections and, 2) to
discriminate between mineral and biogenic particles in the ocean (coastal zones)

100+~
L —n=105,¢=3
- n=126,(=3
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From Loisel et al., 2008, Optics Express, 16(17),
12905-12918

Degree of polarisation as a function of n and the
PSD (slope parameter G).

6th I0CCG Summer Lecture Series, INCOIS, Hyderabad, India, 4-15 November 2024



34°S

38°S -

S

38'S

'S

36'S

38'S

Rio de La Plata

Barentz Sea

0.030 '

S8W S6°W 20E 25 0
jﬁ' % R - .‘ -
. b 3N 3 >
- — ) L $ .
! \”., ala > .
- 0.060
: 2N v
0,045
y t

0.015 /
0.000
{

0.0100

0.0075

00050

0.0025

0.0000

(a)
S8°W 56w 20E
2\ T, T Fioy
e N o .
s 5 o
] N S Lo "" :
'\\ -
00100/ N e 0.003
- \ +
(),(X)'.'i\\.,,\ » . ‘. ' . - 0,002
-
0.0050 71N . @ P 0.001
- 00025 f N .}','!; b1 ry 3
/ Mo /P ¥ 0.000
TAEARS g
(c) (d)
S8°W 20E 3E 0E
\“"\ P . s‘?
b ” 2 ¥
S < 5 u~.fH o~
0.5 - f4 05
-e

7I'N

75.‘;.,“,-_. ‘ﬁ".
b«ﬂ‘}?" 2 e &
U]

Polarisation:

Past / current / future sensors with a polarisation capability

Past:
€ POLDER1, 2, 3 (CNES)

€ MISR (NASA)
Present:

€ S-GLI (JAXA)
€ PACE (NASA)
Future

€ 3MI (EUMETSAT)

From Loisel et al., 2008, Optics Express, 16(17), 12905-12918 Using
POLDER observations

(b)

010 Ice
Liquid

00 10 140 160 180
Scattering Angle

POLDER observations used for cloud studies.
From Riedi et al., 2010. Atmos. Chem. Phys., 10, 11851—-
11865, doi:10.5194/acp-10-11851-2010
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Polarisation
The NASA PACE mission carries 2 polarimeters

SPEXone Polarimeter

PACE's SPEXone instrument is a multi-angle polarimeter. It measures the intensity, Degree of Linear Polarization (DoLP) and
Angle of Linear Polarization (AoLP) of sunlight reflected back from Earth's atmosphere, land surface, and ocean. The focus of
the SPEXone development is to achieve a very high accuracy of DoLP measurements, which facilitates accurate
characterization of aerosols in the atmosphere.

Aerosols are small solid or liquid particles suspended in the air that affect climate directly through interaction with solar
radiation. Aerosols affect climate indirectly by changing the micro- and macro-physical properties of clouds. According to the
Intergovernmental Panel on Climate Change, aerosols are the largest source of error in quantifying the radiative forcing of
climate change. SPEXone will enable measurements of optical and micro-physical properties of aerosols with unprecedented
detail and accuracy.

Artist's impression of SPEXone instrument in space - ©Airbus SPEXone instrument in SRON clean room - ©Airbus Defence and
Defence and Space Netherlands & SRON Netherlands Institute for Space Netherlands & SRON Netherlands Institute for Space
Space Research Research.

https://pace.oceansciences.org/spexone.htm

HARP2 Polarimeter

HARP2 (Hyper-Angular Rainbow Polarimeter #2) is a wide angle imaging polarimeter designed to measure aerosol particles
and clouds, as well as properties of land and water surfaces. The amount and type of particles in suspension in the
atmosphere are relevant to applications pertaining to health effects, cloud life cycle and precipitation, climate, etc. HARP2
will combine data from multiple along track viewing angles (up to 60), four spectral bands in the visible and near infrared
ranges, and three angles of linear polarization to measure the microphysical properties of the atmospheric particles
including their size distribution, amount, refractive indices and particle shape.

HARP2 is a contributed instrument to the PACE mission, designed and built by UMBC's Earth and Space Institute.

https://pace.oceansciences.org/harp2.htm
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What the future is made of?
5) Satellite-borne LIDARs

@ Passive ocean colour allows accessing a signal whose 90% comes from depths
< ~1/Kq4(Gordon and McLuney, 1975, Applied Opitcs 14(2))

€ |n the clearest waters, this is about 20 m in the blue; otherwise, just a few meters
€ We know, however that the vertical structure in the upper layers is important as well,
and not necessarily uniform

®Hence the idea that LIDARs could help, because they are precisely designed to resolve
vertical structures

& Satellite LIDARs have been essentially used for atmospheric purposes, however. Ocean
LIDARs have been rather deployed from ships or aircrafts, with a variety of applications
but, most often, for bathymetry determination
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Satellite-borne LIDARSs
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Figure 1 in Hostetler et al., 2018, Spaceborne Lidar in the Study of Marine Systems, Annual Review of
Marine Science, 10:121-47. https://doi.org/10.1146/annurev-marine-121916-063335
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Satellite-borne LIDARs for the ocean
Main advantage: they resolve information on the vertical
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From Figure 4 in Hostetler et al., 2018, Spaceborne Lidar in the Study of Marine Systems, Annual Review of
Marine Science, 10:121-47. https://doi.org/10.1146/annurev-marine-121916-063335
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Figure 1| Phytoplankton bi observations from CALIOP and MODIS.

a, MODIS phytoplankton biomass retrievals poleward of 45° latitude
(white: no data) for northern latitudes (December 2010). b, CALIOP
phytoplankton biomass retrievals for December 2010. ¢, Black lines:
CALIOP orbit tracks poleward of 45° latitude. The red dashed ring demarks
the 45°-55° ‘comparison zone". Yellow rings demark the north polar zone
(60°-81.5° latitude). d, 2006-2015 monthly mean phytoplankton biomass
for the north ‘comparison zone'. e-h, As in a-d, respectively, but for
southern latitudes during June 2010 (south polar zone in f: 60°-75°). Grey
shading: ice cover in panels a,b and e f.
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Figure 2 | Polar phytoplankton cycles. a,c, Black symbols: CALIOP monthly
mean phytoplankton biomass (C). Blue line: phytoplankton division rates
(u). Green line: phytoplankton loss rates (I, which are indistinguishable
from ). Red line: calculated C time series from model predictions of dy./dt
(Methods). b,d, Open symbols, black line: biomass rates of change (r)
calculated from CALIOP observations (equation (2)). Red line: modelled
dpe/dt (equations (1) and (3)). Statistics on relationships between r and
dp/dt are: r? =0.63, n=10, p < 0.001 (b) and r> =0.71, n=110, p < 0.001
(d). Vertical tan bars: months with no MODIS data.

From: Behrenfeld et al., 2017, Nature Geosciences, 10, doi:
10.1038/NGE02861
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What the future is made of?

6) High spatial resolution sensors

& The “Satellite OCR” realm is essentially made of moderate (medium) spatial
resolution sensors. Sub-satellite resolution in the hectometre domain:
basically 250 m to 1 km
& This is totally fine for most regional to global applications
& This is not necessarily adapted to observing / studying more local
phenomena, in particular in coastal environments
& There is accordingly an increased interest in using high spatial resolution sensors
& Mot of these, however, have not been specifically designed for ocean
colour research and applications
& “A bit” of work is needed to apply those to the marine environment
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ESA Sentinel2/MSI instrument
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High spatial resolution sensors:

Some issues to consider

& High spatial resolution inevitably means lower SNR: how much “lower” is
acceptable to still be useful for ocean applications ?

& When is it that the radiometric quality (SNR) is so much degraded that the
guantitative aspect of satellite OCR is lost?

& High spatial resolution also means that the way we model surface effects no

longer holds, e.g., the slope of the interface may differ for each pixel
& The above may sometimes be an advantage?
& Shadows

& Because most uses of the high spatial resolution observations are for the coastal
environment: atmospheric corrections becomes more complex, at least more
difficult to achieve properly
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ngh spatlal resolutlon Sensors: surface effects

~1 km

p(6,.8,.4¢)=—— ol l{ tan” (5)

62=0.003+5.12103W

= 7 PF P(6s 6. AP)/ (4 cos(8,) cos(8,) cos (B)T(8,) T(6)

Valid for medium resolution sensors

Cox C. and W. Munk, 1954. Statistics of the sea surface derived
from sun glitter. J. Mar. Res., 13, 198-227.
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Examples of observations from high spatial resolution sensors

Landsat 8
June 30, 2015

Landsat 8 shows a sediment plume in the North
Sea near England on June 30, 2016. Credit:
USGS/NASA Landsat Program.

Sentinel-2A shows a sediment plume in the North Sea
near England on July 23, 2016. Credit: ESA Sentinel-2.
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Example using S2/MSI

- - Sentinel 2 (4x4 pixel Average) vs InSitu Rrs, - Karratha Sentinel 3 (Single pixel) vs In Situ Rrs - Karratha
fove -P — < 0.03 0.03
[ TR 2 o\ \l\
p !v- 1 ,;, iy @ Sentinel 2 vs In Situ Rrs -
% N 3 | | Y =1.0736x + 0.0003 , r*2 = 0.9503 o o
‘\ 0.025 11 line 4 0.025

0.02 0.02 - : *
= E P ©
2
£ = o,
=
£ : iy
o~ 0015 o 0015
E 2
B z
o
* &
0.01 - 0.01
0.005 -} 0.005 @ "Sentinel 3 vs InSitu Rrs"
Y =1.0824x + 0.0015 , r*2 = 0.8867
11 line
] t t t 1 0-f T t T T 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 0.01 0.015 0.02 0.025 0.03
In Situ Rrs (/sr) In Situ Rrs
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What the future is made of?

7) Cube sats.. “and the like”
HAND-SIZED HYPERSPECTRAL CAMERA TO FLY ON ESA'S NEXT CUBESAT

8 January 2018 Colour equals information, so the
more spectral bands an Earth-observing satellite
sees, the greater quantity of environmental
findings returned to its homeworld. Now ESA is
ready to fly a hand-sized hyperspectral imager -
small enough to fit on its next nanosatellite.

Observing in 45 visible and near-infrared spectral
bands, the HyperScout instrument will be launched
on 2 February, aboard ESA’s cereal box-sized
GomX-4B nanosatellite.

Mini-TMA telescope

Hyperspectral instruments divide up the light they receive into many narrow, adjacent wavelengths to
reveal spectral signatures of particular features, crops or materials, providing valuable data for fields
such as mineralogy, agricultural forecasting and environmental monitoring.

http://www.esa.int/Our Activities/Space Engineering Technology/Hand-sized hyperspectral camera to fly on ESA s next CubeSat
and

http://www.esa.int/Our Activities/Space Engineering Technology/Hyperspectral imaging by CubeSat on the way
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6th

What the future is made of?
7) Cube sats.. “and the like”

https://uncw.edu/socon/index.html

SeaHawk-1 Ocean Color Cubesat is now
OPERATIONAL

MORE UPDATES COMING SOON

Hawkeye image gallery

https://www.earthdata.nasa.gov/learn/articles/seahawk-hawkeye-ocean-color
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E'NAR | Elcmmumesy]

Proudly West Australian

An entire
spacecraft on a
single circuit

board

Cost-effective manufacturing, rapid
iterative prototyping, and far greater
payload capacity.

Other 1U Cubesats Binar 1U Cubesat

BUS SIZE BUS SIZE

PAYLOAD CAPACITY PAYLOAD CAPACITY

https://www.binars

COMMUNICATIONS

ATTITUDE CONTROL SYSTEM
BINAR BUS \" 2 POWER SUPPLY

100% INTEGRATED 8 LAYER
PCB

CHASSIS

PAYLOAD

dace.com
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% CSIRO Space Optics Lab Measured Reflectance Spectrum at Warren Reservoir - 18nm Smoothing

10

= 03/05/2022
== 10/05/2022

> / Uncategorized / CSIRO and SA Water demonstrate cyanobacteria detection with <

CSIRO and SA Water
demonstrate cyanobacteria
detection with sensor
technology that is bound for
space.

Normalised Reflectance (a.u.)

May 24th, 2022

0.0

450 500 550 600 650 700
Wavelength (nm)

https://research.csiro.au/laboratory-for-satelliteoptics/csiro-
and-sa-water-demonstrationcyanobacteria-detection-with-
sensor-technology-thatis-bound-for-space/
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Thanks for your attention

Image ©; ESA/ATG Madialab



