Metrology: The case of EO data

IOCCG Training 22-23 Apr. 2024

Frédéric Mélin

Specific challenges to EO

Traceability chain broken at launch

Earth observation framework (no repeatability)

Specific challenges to EO

Fraceability chain broken at launch

- Earth observation framework (no repeatability)
- Field data may be sparse and unevenly distributed
- Sensors in space are complex objects

Specific challenges to EO

Fraceability chain broken at launch

- Earth observation framework (no repeatability)
- Field data may be sparse and unevenly distributed
- Sensors in space are complex objects
- Massive amounts of data with poorly characterized error correlation undergoing complex processing

Propagation of Uncertainties (1)

A word on errors

- Input
- Model structure / parameters
- Numerical / technical
- Editing
- Random
- Locally (time/space) systematic
- Systematic
 - Uncorrelated
 - Spectrally correlated
 - Spatially correlated

Propagation of Uncertainties (2)

Requirements: depend on applications

 McClain et al. 1992: Radiometric accuracy to within 5% absolute and 1% relative Water-leaving radiance to within 5% absolute Chlorophyll-a concentration to within 35% over the range 0.05–50 mg m⁻³ Global primary production to within 50% absolute with a precision to within 10%,

Mission-specific: e.g., OLCI (Drinkwater & Rebhan 2017), PACE (Werdell et al. 2019)

Requirements for Ocean Color Climate Data Records

	Space res.	Time res.	Accuracy	Stability (dec. ⁻¹) ⁽²⁾
L _{WN} / R _{RS}	4-km	daily	5% ⁽¹⁾	0.5%
[Chl-a]	30-km	weekly	30%	3%

1: for the blue and green wavelengths in open ocean

2: maximum acceptable change in systematic error per decade

GCOS (2011)

Sources of Uncertainties for EO data

Setting the stage

Setting the stage (1)

Top-Of-Atmosphere Radiance, written as:

 $L_{toa}(\lambda) = L_{atm}(\lambda) + t_d(\lambda) L_w(\lambda) + t_d(\lambda) L_{wc}(\lambda) + t(\lambda) L_g(\lambda)$ (1)

 L_{toa} : top-atmosphere radiance at sensor; L_{atm} : atmospheric path radiance $=L_r + L_a$ in single scattering approximation; L_w : water leaving radiance; L_{wc} : radiance due to white caps (foam); L_g : glint (specular reflection; t_d : diffuse transmittance; t: beam transmittance. **Signal of interest**

 $t(\lambda,\theta) = exp[-(\tau_r(\lambda) + \tau_a(\lambda))/\cos\theta].exp[-\tau_{O3}(\lambda)/\cos\theta]$ (1)

Rayleigh

$$t_d(\lambda,\theta) = exp[-0.5C_r(\lambda,\theta)\tau_r(\lambda)/\cos\theta] \cdot exp[-\beta_a(\lambda,\theta)\tau_a(\lambda)/\cos\theta] \cdot exp[-\tau_{O3}(\lambda)/\cos\theta]$$

depend on molecular and aerosol optical thickness and geometry

¹⁰ NB: A mathematically ill-posed problem

aerosols

ozone

Setting the stage (2): Optical Properties

Preisendorfer 1961

Apparent:

- may vary with variations in illumination conditions (ambient light)
- depend on geometry of observation
- measured under existing illumination conditions (in the field)

Inherent:

- inherent property of the medium
- independent of illumination conditions (ambient light)
- obey additive principles
- measured under strictly-defined light conditions

ex: $R_{RS}(\lambda)$, $K_{d}(\lambda)$

11

ex: $a(\lambda)$, $b(\lambda)$, $c(\lambda)$, ...

Setting the stage (3)

 $L_w(\lambda) = \alpha R_{RS}(\lambda) =$ function (IOPs) \approx function(b_b ,a) for each λ

_

Sources of Uncertainties for EO data

from L1 to L2

. . .

Top-Of-Atmosphere Signal

- Calibration
- Noise
- Spectral response function; out-of-band response
- **Dark current**
- **Radiometric angular dependency (RVS)**
- Sensitivity to polarized light
- **Straylight**

IOCCG (2019) (adapted from Bulgarelli & Zibordi 2018)

VIIRS (Xiong et al. RS 2015)

White caps occur for wind speed >~ 3 m.s⁻¹.

Relationship between white cap reflectance and wind speed is variable.

Fig. 1. $[\rho_{wc}]_N = r_{wc}f$ as a function of wind speed and atmospheric stability. For the Monahan and O'Muircheartaigh¹⁷ relationship (dashed curves), the lower the value of $[\rho_{wc}]_N$, the greater the stability of the atmosphere. The solid curve is from Ref. 21, and the circles are from Ref. 11.

Gordon & Wang, Appl. Opt., 1994.

Sun Glint

Determination of the area affected by glint and glint radiance

using geometric criteria

function for the orientation (slope) of wave facets (as a function of wind) + Fresnel law

Cox, C., W. Munk: Statistics of the sea surface derived from sun glitter. *J. Mar. Res.*, 13, 198-208, 1954.

redrawn from Wang, M., S. Bailey: Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products. *Appl. Opt.*, 4790-4798, 2001.

17

- Adjacency effects from land, ice, clouds, ...
- Bottom effects

• Unexpected surface features (mucilage, blooms, sargassum, ships, ship wake, wind farms, ...)

Aerosols: Nature (1)

solid or liquid particles suspended in air with diameters of 0.002-100 µm

Classifications:

- Primary / Secondary
 (emitted directly into the atmosphere)
 the atmosphere)
 by gas-to-particle conversion processes)
- Natural / Anthropogenic
- Tropospheric / Stratospheric
- Geographical location of the source
- Chemical composition
- Particle size

Aerosols: Nature (2)

Natural:

Sea salt Soil dust Bioaerosols (bacteria, virus, pollen, fungi, cell debris, biofilms) Volcanic dust Sulfate from biogenic gases / volcanic SO₂

Anthropogenic:

Industrial particulates Dust Soot Biomass burning Sulfate / Nitrate from SO₂ / NO_x Organics

Aerosols: Microphysical properties (1)

Aerosol samples collected during summer 1998 in Germany

Figure 1. Secondary electron images of aerosol particles: (a) silicate spheres (fly ash); (b) silicate (presumably soil material); (c) iron oxides spheres; (d) calcium sulfate; (e) carbonate; (f) sea salt; (g) biological particle; (h) carbon/sulfate mixed particles; (i) large soot agglomerate and small silicate fly ash particles (bright spheres); (j) ammonium sulfate agglomerates; (k) soot (1), ammonium sulfate (2), and carbon/sulfate mixed particles (3); (1) carbon-rich particle (C_{res}).

Ebert, et al., "Complex refractive index of aerosols during LACE 98 as derived from the analysis of individual particles." *J. Geophys. Res.*, 107, 8121, 10.1029/2000JD000195, 2002.

Aerosols: Microphysical properties (2)

Size spectrum and processes:

Once in the atmosphere, aerosols may:

- be transported to long distances
- o be removed (dry deposition, wet removal)
- have their size and/or composition changed by microphysical transformation (humidity, interaction with clouds)
- be affected by chemical transformation

Aerosols: Vertical distribution

Hamonou, et al., "Characterization of the vertical structure of Saharan dust export to the Mediterranean basin." *J. Geophys. Res.*, 104, 22257-22270, 1999.

b)

Thessaloniki

a)

Ancillary Atmospheric Variables

- Surface pressure
- Wind speed
- Water vapor
- Relative humidity
- Ozone concentration

C. rie 9 9 00 ດ ()

Gulf of Tehuantepec

Prosper et al. ESD 2019

Relationship IOPs - AOPs

The relationship between AOPs (R, R_{RS}) and IOPs (a,b,c, β) is not straightforward and is often simplified (e.g., Zaneveld *JGR* 1995).

$$R(\theta_0) = f(\theta_0) \frac{b_b}{a} = f'(\theta_0) \frac{b_b}{b_b + a} \qquad \text{Morel \& Gentili, AO 1991, 1993} \\ f \sim 0.33 \qquad f \sim 0.33 \qquad f \sim 0.33 \qquad f'Q \sim 0.085 - 0.10 \qquad \text{often } b_b < < a \qquad \text{often } b_b < < a \qquad \text{often } b_b < < a \qquad \text{fr}_r(\lambda) = l_1 \frac{b_b(\lambda)}{b_b(\lambda) + a(\lambda)} + l_2 (\frac{b_b(\lambda)}{b_b(\lambda) + a(\lambda)})^2 \qquad \text{Gordon et al., JGR 1988} \\ \text{Ex.: } l_1 \sim 0.0949, \ l_2 \sim 0.0794 \qquad \text{Kingle of the set of th$$

2

Normalization to $R_{RS} = L_{WN}/E_0$

$$L_W(\lambda, \theta, \theta_0, \phi, \tau_a, IOP, w) = \Re(\theta, w) \frac{f'(\lambda, \theta_0, \tau_a, IOP, w)}{Q(\lambda, \theta, \theta_0, \phi, \tau_a, IOP, w)} \frac{b_{b,t}(\lambda)}{b_{b,t}(\lambda) + a_t(\lambda)} \frac{E_d(0^+, \lambda, \theta_0, \tau_a, \tau_a)}{(1)}$$

$$L_{WN}(\lambda) = \frac{L_w(\lambda)}{E_d(0^+, \lambda)} E_0(\lambda) = \frac{L_w(\lambda)}{\cos \theta_0 t_d(\theta_0, \lambda)}$$
(2)

$$L_{WN}^{ex}(\lambda) = L_{WN}(\lambda) \frac{\Re(0,w)}{\Re(\theta,w)} \frac{f'(\lambda,0,\tau_a,IOP,w)}{f'(\lambda,\theta_0,\tau_a,IOP,w)} \frac{Q(\lambda,\theta,\theta_0,\phi,\tau_a,IOP,w)}{Q(\lambda,0,0,0,\tau_a,IOP,w)}$$
(3)

Gordon & Clark, *Appl. Opt.*, 20, 4175-4180, 1981. Morel et al., *Appl. Opt.*, 41, 6289-6306, 2002.

The "exact" L_{WN} would be the hypothetical radiance that would be measured if the Sun were at zenith, in the absence of atmosphere, and with the Earth at its mean distance from the Sun.

water leaving radiance; depends on:

- the bidirectional geometry,
- the water content,
- the atmospheric content,
- the air-sea interface

normalized water leaving radiance

"exact" normalized water leaving radiance

Vertical Distribution in Water (1)

 $\overline{C} = \frac{\int_{0}^{z} C(z)g(z)dz}{\int_{0}^{z_{90}} g(z)dz}$ "satellite" value: $g(z) = \exp \left| -2\int_{0}^{z} K(z')dz' \right|$ with

> Gordon & McCluney, AO 1975, Gordon & Clark, AO 1980

and on the way up : light scattered close to the surface has a larger weight on L_w.

Vertical Distribution in Water (2)

Different penetration depths across the spectrum

In multi-band algorithms, R_{RS} is not "sensitive" to the same layer

Pure Water Absorption

Nature of particles (hydrosols) and dissolved substances

Optically significant agents:

- pure water
- bubbles (+coating)
- microorganisms
- non-living organic particles
- * minerogenic particles
- colloids

...

Stramski, et al., "The role of seawater constituents in light scattering in the ocean." *Prog. Oceanogr.*, 61, 27-56, 2004.

Fig. 1. Schematic diagram showing various seawater constituents in the broad size range from molecular size of the order of 10^{-10} m to large particles and bubbles of the order of 10^{-3} 10^{-2} m in size. The arrow ends generally indicate approximate rather than sharp boundaries for different constituent categories.

Algal Cells

Definition of Optical Properties

 $L_w(\lambda) = \alpha R_{RS}(\lambda) =$ function (IOPs) \approx function(b_b ,a) for each λ

 $\begin{array}{ll} \text{water} & \text{particles} \\ \text{back-scattering} & b_b(\lambda) = b_{b,w}(\lambda) + b_{b,p}(\lambda) \\ \\ \text{absorption } a(\lambda) = a_w(\lambda) + a_{ph}(\lambda) + a_{np}(\lambda) + a_{cdom}(\lambda) \\ \\ & \text{pure} & \text{phyto non-pigmented CDOM} \end{array}$

pure

need for assumptions (e.g., on spectral shapes)

but beware natural variability!

$$a_{ph}(\lambda) = \sum_{i=1}^{N} a_{ph,i}(\lambda)$$
Absorption by different phytoplankton species
$$a_{ph}(\lambda) = a_{ph}^{*}(\lambda).Chl$$
Examples of specific inherent optical properties
(sIOP)

32

water plankton particles

Europ

Natural Variability in IOPs (1)

Phytoplankton:

> package effect

size

combinations of pigments

Figure 1. Assumed in vivo weight-specific absorption spectra of the main pigments, $a_{sol,i}^*(\lambda)$ (in m² mg⁻¹), as derived from absorption spectra of individual pigments in solvent (see text). Absorption spectra of photosynthetic and nonphotosynthetic carotenoids are shown in red and blue, respectively.

Bricaud et al. JGR 2004

Natural Variability in IOPs (2)

Absorption often represented by exponential functions:

Absorption by non pigmented particles:

 $a_{np}(\lambda) = a_{np}(\lambda_0).e^{-S_{np}(\lambda-\lambda_0)}$

Absorption by dissolved substance (CDOM):

 $a_{ds}(\lambda) = a_{ds}(\lambda_0).e^{-S_{ds}(\lambda-\lambda_0)}$

large variability of S in nature, possibly associated with different types of constituents
part of this variability is due to method of calculations of the slope (linear/non linear fit, spectral range)

S_{ds}: 0.010-0.025 nm⁻¹, 0.014-0.018 nm⁻¹ typical]

Natural Variability in IOPs (3)

Fig. 5. Typical site-by-site measured b_p spectra (normalized at 870 nm).

Doxaran et al., LO 2009

Scattering by particles

<u>scattering</u> $b_{p}(\lambda) = b_{p}(\lambda_{0}) \left(\frac{\lambda_{0}}{\lambda}\right)^{\eta_{b}}$

 $\eta \sim 0$ (large) to 2 (small)

Natural Variability in slOPs (1)

Relationships between IOPs and mass concentrations of constituents

Examples of <u>specific</u> inherent optical properties

Natural Variability in sIOPs (2)

Natural Variability: Implications

Introduces model errors

Leads to scattering around empirical relationships

Szeto et al., JGR 2011

Sources of Uncertainties for EO data

from L2 to L3 - Editing

Data Editing: Case of Composites (1)

Uncertainty tree:

- $u(q_0)$ model error
 - Discrete sampling for a daily datum (e.g., polar-orbiting)
 - Grid points incompletely/variably filled
 - Incomplete suite of days for a time composite

Data Editing: Case of Composites (2)

Uncertainty for a time/space/mission composite (e.g., for an average):

Isn't it overflowing?

Some claims might be overoptimistic but it works!

NSF included Ocean Color as one of the landmark achievements in biology oceanography in its review "50 Years of Ocean Discovery (1950-2000)"

The potential of Ocean Color can be fully realized if we are able to derive trustworthy uncertainty budgets

