Introduction to Metrology The science of measurements

IOCCG Training 22-23 Apr. 2024

Frédéric Mélin

Dissemination of a unit

2

- Measurement standard (Royal Cubit)
- Traceability of length measurements to a reference
- Calibration of measuring systems (comparison of cubit sticks to the reference at each full Moon)

European

De Bièvre AQA 2005

Standardization of measurement procedures over all Egypt

Metrology: in 4 dates (1)

 1799: Definition of the "Mètre définitif" and adoption of the metric system in France

Metrology: in 4 dates (2)

 1875: Metre convention ("convention du mètre") creation of BIPM (International Bureau of Weights & Measures)

Bureau International des Poids et

Metrology: in 4 dates (3)

 1960: International System of Units (SI) established by the General Conference on Weights & Measures

 2019: Four units re-defined in terms of universal constants (kg, A, K, mol)

National Metrology Institutes (NMIs)

Argentina: Instituto Nacional de Tecnología Industrial (INTI)

https://www.argentina.gob.ar/inti

Brazil: Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO)

https://www.gov.br/inmetro/pt-br

Metrology: 3 principles

Traceability:

- unit definition (SI)
- primary standards (BIPM, NMIs)
- secondary standards
 - calibration (users)
- measurements

Uncertainty analysis

https://www.bipm.org/en/committees/jc/jcgm/publications

Comparison

Metrology & Ocean Colour Remote Sensing

Colour Remote Sensing

Reports of the International Ocean-Colour Coordinating Group

REPORT NUMBER 18

An Affiliated Program of SCOR An Associate Member of CEOS

IOCCG Report #18 (2019)

- Terminology and Main Principles
- Sources of Uncertainties
- Uncertainty Estimates
- Representation and Distribution of Uncertainties
- Requirements for Different Applications
- Recommendations

https://ioccg.org/what-we-do/ioccg-publications/ioccg-reports/

Vocabulary

measurand: well-defined physical quantity that is to be measured

Incertainty of a measurement: a parameter, associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand

dispersion => uncertainty expressed as a standard deviation (standard uncertainty *u*) y-U < Y < y+U with U=*k.u* ; *k*: coverage factor

evaluation of uncertainty:

- Type A: based on a statistical analysis of a series of measurements
- Type B: based on other methods (expert judgment, specifications, ...)

Vocabulary

measurand: well-defined physical quantity that is to be measured

- uncertainty of a measurement: a parameter, associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand
- traceability: property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty
- **error:** difference between the measurement and the true value of the measurand (or a reference quantity value, assumed to have negligible uncertainty)
- **accuracy:** closeness of agreement between a measured quantity value and the true value of the measurand

ERROR

UNCERTAINTY

Vocabulary

precision: closeness of agreement between values obtained by replicate measurements

repeatability, reproducibility

 verification: process providing objective evidence that stated uncertainty fulfill specific requirements

compatibility: property of a set of measurement results, such that the absolute value of the difference of any pair of measured quantity values from two different measurement results is smaller than some chosen multiple of the standard measurement uncertainty of that difference (agreement within stated uncertainties)

- Random
- Locally systematic
- Systematic

- Uncorrelated
- Spectrally correlated
- Spatially correlated

...

Uncertainty tree

sensitivity coefs

European

Measurement model/equation defined as a function of influence quantities

For each element:

- Understand the process
- Identify assumptions made in modelling
- Characterize the error terms (distribution, ...)
- Identify error correlation terms (time, space, spectrally, ...)

Law of propagation of Uncertainties

$$y = f(x_i)_{i=1,N}$$

$$y + \varepsilon = f(x_i + \varepsilon_i)_{i=1,N}$$

$$\varepsilon = \sum_{i=1}^N \frac{\partial f}{\partial x_i}(x_i)\varepsilon_i$$

Taylor expansion for small perturbations

combined uncertainty of measurand y:

$$u_{c}^{2}(y) = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$
covariance terms

$$u_c^2(y) = \sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{x_j} r_{ij} u(x_i) u(x_j)$$

Impact of error correlation

Example of a temperature gradient:

$$u_{c}^{2}(\Delta T) = u^{2}(T_{1}) + u^{2}(T_{2}) - 2r_{12}u(T_{1})u(T_{2})$$

$$u(T_{1}) = 0.1^{\circ}C$$

$$u(T_{2}) = 0.15^{\circ}C$$

$$r_{12} = 0 \qquad u(\Delta T) = 0.18^{\circ}C$$

$$r_{12} = 1 \qquad u(\Delta T) = 0.05^{\circ}C$$

$$r_{12} = -1 \qquad u(\Delta T) = 0.25^{\circ}C$$

European

Commission

Law of propagation of Uncertainties (2)

combined uncertainty of measurand *y*:

$$u_c^2(y) = \sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{x_j} u(x_i, x_j)$$

Application to Radiometric Data

Uncertainties of AERONET-OC *R*_{*RS*} data

AERONET-OC

born as a JRC/NASA collaboration, generates globally distributed, highly consistent, time-series of standardized reflectance $R_{RS}(\lambda)$ and $\tau_a(\lambda)$ measurements to support Ocean Color validation activities

Bahia_BlancaRdP-EsNM

 N_T =11 measurements for L_T (average of lowest 2) N_i =2 for L_i (average)

Gergely & Zibordi M 2014

Figure 1. AERONET-OC measurement geometry for direct solar irradiance E_s , sky-radiance L_i , and total radiance from the sea L_T .

Measurement equation for *L_w*

 $u^{2}(L_{w}) = (L_{T}u_{\%}(L_{T}))^{2} + (L_{i}u_{\%}(L_{i})\rho)^{2} + (L_{i}u_{\%}(\rho)\rho)^{2}$

Cazzaniga & Zibordi JAOT 2023

Calibration

TABLE A1. Sources and related relative uncertainties (in %) contributing to absolute radiometric calibration uncertainties.

	λ (nm)								
	400	412	443	490	510	560	620	667	
Lamp (NPL #1333)	0.90	0.55	0.55	0.50	0.50	0.45	0.45	0.40	
Lamp fit	0.30	0.30	0.20	0.20	0.20	0.20	0.20	0.20	
Lamp aging (with 25 h of use)	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	
Plaque	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	
Shunt	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
Power supply (with a 7.5 mA bias)	0.07	0.07	0.07	0.06	0.06	0.05	0.05	0.04	
Lamp-plaque distance	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
Lamp positioning	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
Plaque repositioning	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
Sensor alignment	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	

Cazzaniga & Zibordi JAOT 2023

Hooker et al., SeaWiFS Postlaunch NASA-TM, vol. 17, 2002

+ sensitivity decay

Standard uncertainty for *L_{WN}*:

 $u^{2}(L_{WN}) = (C_{Q}C_{A}u(L_{w}))^{2} + (L_{w}u_{\%}(C_{Q})C_{A}C_{Q})^{2} + (L_{w}C_{Q}C_{A}u_{\%}(C_{A})C_{A}C_{Q})^{2}$

Cazzaniga & Zibordi JAOT 2023

24

Sciuto et al. 2023

Uncertainty at AAOT:

Source of	u _% (L _{WN})								
uncertainty	412	443	488	551	667				
absolute calibration	2.7	2.7	2.7	2.7	2.7				
sensitivity change	0.4	0.2	0.2	0.2	0.2				
correction C_Q	1.6	2.0	2.8	2.9	1.9				
t_d	1.5	1.5	1.5	1.5	1.5				
ρ	1.8	1.3	0.7	0.6	2.5				
wind w	1.1	0.8	0.4	0.4	0.4				
environmental effects	3.1	2.1	2.1	2.1	6.4				
quadrature sum	5.1	4.5	4.7	4.7	7.8				

Zibordi et al. JAOT 2009

Argentinian sites (tentative results):

Argentinian sites (tentative results): $u_{\%}(R_{RS})$

Bahia Blanca

Rio de la Plata

Commission

30

 A measurement is meaningless unless accompanied by a statement of uncertainty

Respect terminology

 Include metrological practices right at the start of any project

