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Importance of In Situ Data in Remote Sensing

1. Introduction to in situ data
•In situ data refers to direct measurements collected within the environment of
interest, obtained through field surveys, instrument deployments, or sensor
installations.
•Examples include water samples from lakes, rivers, or oceans, buoy observations
of oceanographic parameters, and sensor readings from environmental
monitoring stations.

2. Validation and Calibration
•In situ data serve as ground truth measurements for validating and calibrating
remote sensing observations.
•Comparison of remote sensing data with in situ measurements allows
assessment of accuracy, identification of errors or biases, and improvement of
algorithm performance.



Importance of In Situ Data in Remote Sensing (contd.)

3. Enhancement of remote sensing products:
•In situ data provide detailed information about local environmental conditions
and processes not captured by remote sensing alone.
•Integration of in situ data enhances the interpretation and utility of remote
sensing products for scientific research, environmental monitoring, and decision-
making applications.

Remote sensing and in situ data are complementary approaches for studying
Earth's systems and monitoring environmental changes. Remote sensing provides
synoptic views of Earth's surface, while in situ data offer ground truth
observations that validate and enhance the accuracy of remote sensing
products. Understanding the connection between remote sensing and in situ data
is crucial for leveraging both approaches and advancing our knowledge of Earth's
complex systems.



Role of In Situ Data in Algorithm Development 

1. Fundamental Role of In Situ Data:
•In situ data are essential for calibrating, validating, and refining algorithms in
remote sensing applications.
•Calibration adjusts remote sensing measurements to account for sensor
characteristics and atmospheric effects, ensuring accuracy and consistency.
•Validation assesses the accuracy and reliability of remote sensing products
using ground truth measurements.
•Refinement of algorithms involves adjusting parameters to improve accuracy,
precision, and robustness.



Role of In-Situ Data in Algorithm Development (contd.)

2. Importance as Ground Truth:
•In-situ data provide direct, accurate, and reliable observations at specific
locations and times.
•In-situ measurements validate satellite-derived products such as chlorophyll-a
concentration and water clarity.
•Comparison of remote sensing observations with in-situ measurements validates
accuracy, precision, and consistency.
•Identifies errors or biases, guiding algorithm improvements for different
environmental conditions and applications.

In situ data are critical for algorithm development. They improve the accuracy,
reliability, and utility of remote sensing products for scientific research,
environmental monitoring, and decision-making. Understanding the connection
between in situ data and algorithm development is essential for advancing our
understanding of Earth's systems.



In Situ Data for Ocean Color Remote Sensing

1. Water Quality/Composition Measurements:
•Fundamental for validating satellite-derived ocean color products.
•Parameters include chlorophyll-a concentration, suspended sediment
concentration, and CDOM absorption.
•Collected using fluorometers, spectrophotometers, and radiometers on
research vessels, buoys, and autonomous platforms.

2. Radiometric Measurements:
•Provide information on water-leaving radiance and inherent optical properties.
•Essential for validating satellite-derived remote sensing reflectance and
atmospheric correction algorithms.
•Collected using radiometers, spectroradiometers, and hyperspectral sensors



In Situ Data for Ocean Color Remote Sensing (contd.)

3. Buoy Observations:
•Offer continuous time-series data on oceanographic parameters.
•Include sea surface temperature, chlorophyll-a concentration, and optical
properties.
•Collected using moored buoys equipped with sensors and instruments.

4 Validation Matchup Data:
•Involve collocating satellite overpasses with in situ measurements.
•Enable direct comparisons between satellite-derived data and in situ
observations.
•Obtained through field campaigns, research cruises, and oceanographic surveys.



Calibration and Validation of Ocean Color Remote Sensing Data

1. Definition of Calibration in Ocean Color Remote Sensing:
•Process of adjusting satellite-derived radiance or reflectance measurements to
match ground truth data from in situ measurements.
•Corrects systematic errors, biases, and inconsistencies in satellite
observations.
•Ensures accuracy and reliability in quantifying oceanic parameters like
chlorophyll-a concentration and water clarity.

2. Definition of Validation in Ocean Color Remote Sensing:
•Process of assessing accuracy and reliability of satellite-derived ocean color
products using in situ data.
•Compares satellite-derived observations with independent ground truth
measurements collected in situ.
•Provides confidence in the quality and credibility of satellite-derived ocean 
color products.



Calibration and Validation of Ocean Color Remote Sensing Data (contd.)

3. Use of In Situ Measurements for Calibration and Validation:
•Crucial for calibrating satellite sensors, correcting atmospheric effects, and
validating algorithms.
•Provide reference data to refine and improve accuracy of satellite-derived
ocean color products.
•Used to calibrate satellite sensors by comparing in situ and satellite radiance or
reflectance measurements.
•Used to validate satellite-derived ocean color products by comparing satellite
observations with in situ measurements of water properties.
•Matchup analyses enable direct comparisons between satellite and in situ
observations, assessing data accuracy and reliability.



Calibration and Validation of Ocean Color Remote Sensing Data (contd.)

4. Illustrative Examples in Ocean Color Remote Sensing:
Example 1: In situ radiometric measurements used to calibrate satellite sensors
by comparing in situ and satellite radiance values.
Example 2: In situ measurements of chlorophyll-a concentration, Kd, and POC
used to validate satellite-derived products.
Example 3: In situ radiometric measurements used to evaluate water
reflectance (fixed platforms: HYPERNETS)
Example 4: In situ radiometric measurements used to evaluate water
reflectance (profiling system: HyperNav)
Example 5: APAR algorithm development

Calibration and validation using in situ measurements are essential for ensuring
accuracy and reliability of satellite-derived ocean color products. Comparison
with ground truth data enhances algorithm performance and corrects
atmospheric effects. Crucial for scientific research, environmental monitoring,
and marine ecosystem management.



Example 1: System Vicarious Calibration (SVC) using MOBY data 

New gains (136 SVC match-ups): 
0.97253 0.98251 0.98532 0.99317
0.98491 0.98904 1.00432 1.00367

SVC gains exhibit
seasonal changes, which
yields seasonal bias in
MODIS-derived water-
leaving radiance.

Origin of the seasonal
dependence in SVC gains
is still unknown.

SVC gains were obtained by
propagating Lw_moby to Lt_moby
and then dividing Lt_moby over
Lt_modis.



N = 1347
MAE=1.167
RMSD=1.689

N = 498
MAE=1.109
RMSD=1.355

N = 247
MAE=0.872
RMSD=1.486

Example 2: In-situ validation of NASA OBPG MODIS-A [Chl-a], Kd, and POC products

[Chl-a] Kd POC



2.3 Satellite data

With the aim of demonstrating the capability of HYPERNETS
system, different available optical VSWIR satellite missions, with
varying band sets and widths and spatial and temporal resolutions,
have been chosen. Satellite data acquired from 2021-12-16 to 2022-
09-19 covering the LPAR site were downloaded and compared to
HYPSTAR® L2 data. Given that the OBPG Level 2 standard

products fails in the turbid waters of RdP and pixels are
generally masked (Dogliotti et al., 2011), Level 1A MODIS and
VIIRS data have been downloaded and processed using alternative
atmospheric correction, i.e., the black pixel approach using the
SWIR bands (more details below). For the other sensors,
operational standard Level 2 images have been downloaded. All
the evaluated systems are summarized in Table 1 and
described below.

SuperDove (SD) satellites, third generation of PlanetScope
Earth-imaging constellation, are currently in orbit and produce
imagery with 8 spectral bands in the VNIR region at a ground
sampling distance at nadir of 3–6 m (Planet, 2022). Six of the SD
bands match and have similar relative spectral responses (RSRs) to
S2/MSI bands (Supplementary Figure S1). The absolute calibration
is performed using near-simultaneous SuperDove and S2/MSI
observations and validated with RadCalNet data (Collison et al.,
2022). Level-2 surface reflectance (ρs) orthorectified GeoTIFF files
with 3 m pixel size have been downloaded from the Planet Explorer
website (https://www.planet.com/explorer). Cloud free images
(CMO processor v4.1.4) over the LPAR site have been selected
during the deployment period.

Landsat 8 and 9 satellites, on orbit since 2013 and
2021 respectively, carry the Operational Land Imager (OLI) that
provides data at 9 spectral bands, eight of which at 30 m spatial
resolution and one panchromatic band at 15 m. Considering both
satellites together, the revisit time for data collection is every 8 days.
Level 2 Collection 2 images over the LPAR site (path row 225/084)

FIGURE 1
Location of the LPAR site next to La Plata harbor on the Sentinel-3A/OLCI (left) and Sentinel-2A/MSI images taken 2022-09-05 and photos of the
platform and HYPSTAR® sensor (right).

FIGURE 2
In situ HYPSTAR® L2 average spectra (bold lines) collected at
LPAR on February (green) and July (blue) 2022. The shadowed areas
delimit the +/-1 standard deviation respect to the average of all
available spectra for each month.

TABLE 1 Characteristics of the systems evaluated in the present study.

Platform/sensor Pixel Size (m) Spectral bands (400–1,000 nm) Revisit frequency (at equator) Launch

PlanetScope/SuperDove 3–6 8 Daily 2021onward

Landsat 8-9/OLI 30 5 8 days (2 sats) 2013/2021

Sentinel-2 A-B/MSI 10/20/60 9 (4/6/3) 5 days (2 sats) 2015/2017

Sentinel-3 A-B/OLCI 300 21 Daily (2 sats) 2016/2018

Aqua/MODIS 250/500/1,000 2/2/9 Daily 2000

SNPP-JPPS/VIIRS 750 7 Daily 2011/2017

PRISMA 30 66 On demand 2019

Frontiers in Remote Sensing frontiersin.org04

Dogliotti et al. 10.3389/frsen.2024.1354662

were similar to the ones obtained for the turbid waters of the Belgian
Coastal Zone (Vanhellemont, 2023), i.e., low relative errors between
566 and 707 nm (APD = 8.4–12%) and larger relative differences
(APD = 25–134%) in the blue (444 nm) and NIR (866 nm) bands,
but reaching lower and higher values than in the BCZ, with APD =

15–20% and APD = 30–99.4%, respectively. The general
overestimation found in this study could be related, as suggested
in Vanhellemont (2023), to the use of ancillary (not from image)
aerosol optical thickness that could be biased low, especially for the
blue band, and due to not corrected sun glint.

FIGURE 8
Scatter plots of in situHYPSTAR versus satellite-derived water reflectance (ρw) for PS/SD, L89/OLI, S2/MSI, S3/OLCI, Aqua/MODIS, SJ/VIIRS. Statistics
are presented as the best-fitted SMA linear regression and associated determination coefficient, the RMSD, RPD, APD and the number of data (N) and
processed images (in brackets). For L89/OLI and S2/MSI, grey symbols correspond to discarded match-ups due to sun glinted images.

FIGURE 9
RMSD spectra for S2/MSI (left) and L89/OLI (right) for ρs matchups using all coincident images (grey) and masking sun glinted images (GM) (red).
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Example 3: Validation of water reflectance  using HYPERNETS, Rio de la Plata 

Dogliotti et al., 2024)

Aqua/MODIS and SJ/VIIRS sensors, processed using OCSSW/l2gen
and SWIR bands, systematically underestimated in situ ρw data. For
SJ/VIIRS, increased overestimation can be observed when
SWIR12 and SWIR13 bands are used compared to SWIR23. In
general, differences increased towards the shorter wavelengths,
retrieving negative ρw values in the blue bands, especially for

Aqua/MODIS. Finally, PRISMA also showed a systematic
underestimation of the in situ ρw throughout the spectra.

3.3 Matchups analysis

Comparisons between satellite-derived and HYPSTAR® in situ
water reflectance data for the six multispectral sensors (PS/SD, L89/
OLI, S2/MSI, S3/OLCI, JS/VIIRS, and Aqua/MODIS) considering all
bands together, are shown in Figure 8. A first evaluation of JS/VIIRS
atmospheric correction results comparing the three SWIR bands
combination showed that, even though a general underestimation at
all bands is evident for all configurations, differences between
satellite and in situ data were lower when the SWIR23 bands
were used (Figure 8 and Supplementary Figures S3, S4).
Therefore the analysis of JS/VIIRS matchups using only the
SWIR23 band combination are presented in the following results.
Given that comparisons with in situ measurements (plots and
statistics) for the same instrument on board of different satellites
are comparable, all data from each sensor regardless of the satellite
were analyzed and plotted together, i.e., OLI from Landsat-8/9, MSI
from S2A/B, and VIIRS from JPPS/SNPP. A breakdown per satellite
sensor statistics and scatterplots can be found in Supplementary
Figures S5–S12.

A high correlation for all bands together was found for all
sensors (R2 > 0.8), being higher (R2 > 0.9) for L89/OLI and S2/MSI
(Figure 8). The latter also showed the lowest average RPD (−3.52 and
2.45), APD (14.67 and 12.20) and RMSD (0.0124 and 0.0091) for
L89/OLI and S2/MSI respectively. In both cases, higher
underestimation is found at higher water reflectance
values (slope <1).

It is interesting to note that if images contaminated with sun
glint are not removed (using the ρs(~1,600)>0.05 criterion) and are
thus included in the analysis (grey symbols in Figures 8, 9 for S2/MSI
and L89/OLI), correlations decrease (R2 = 0.65 and 0.81) and all
statistics increase (Table 4). Moreover, higher overestimation
(RPD = 29.74% and 7.4%) and scatter (APD = 37.14% and

FIGURE 5
Frequency of APD values lower than 15% calculated using the
whole S2/MSI time series (left) and ρw at 865 nm for S3A/OLCI
(300 m), SNPP/VIIRS (750 m), and Aqua/MODIS (1,000 m) images
taken on 2022-09-05 (right). Location of the reference pixel
(black round symbol) and the corresponding 3 × 3 pixel window
(dashed black square) are indicated.

FIGURE 6
Frequency map of APD values lower than 15% where the location of the reference pixel and corresponding 3 × 3 pixel window are indicated for
different sensors: PS (grey), MSI (magenta), OLI (cyan), OLCI (white), VIIRS (blue), and MODIS (black). Detailed view of the LPAR site (right).
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Even though L89/OLI and S2/MSI standard L2 products use
land remote sensing algorithms for the atmospheric correction,
they showed better results compared to the other systems and

considering all bands together (Figure 9). Similar results have
been found in other turbid waters. Kuhn et al. (2019) found that
L8 standard land surface reflectance product had the best
performance in the highly scattering (turbid) waters of the
Lower Amazon river, with median APD of 4%–17% and
RMSD 0.003–0.0157 across the spectrum and varying on the
tidal condition (high or low water) of the river. Li et al. (2023)
also showed good results for S2 images over turbid waters using
Sen2Cor. For turbid waters, aerosol reflectance contributes
relatively less to the top of atmosphere signal. A crude
aerosol correction can therefore be sufficient and is more
robust than typical extrapolative algorithms for aerosol
correction.

It is common that nadir-viewing sensors, like L89/OLI, S2/MSI
and PS/SD, are frequently affected by sun glint on the air water

TABLE 4 Validation statistics for OLI and MSI matchups considering all
possible matchups and only non-glinted images (GM: Glint Masked).

Statistics L89 L89-GM S2 S2-GM

R2 0.81 0.94 0.65 0.95

APD 24.11 14.67 37.14 12.20

RPD 7.40 −3.52 29.74 2.45

RMSD 0.0170 0.0124 0.0227 0.0091

N 80 65 225 171

FIGURE 10
In situ HYPSTAR ρw (black) and PRISMA standard Level-2 ρs (red) spectra.

FIGURE 11
Spectra of RMSD (left), RPD (centre) and APD (right) for the different satellite-sensors evaluated: PS/SD (grey), L89/OLI (red), S2/MSI (orange), S3/
OLCI (blue), Aqua/MODIS (green), JS/VIIRS (violet), and PRISMA (light blue).
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Example 4: Evaluation of SGLI water reflectance using HyperNav systems

-HyperNav is a spectroradiometer/float system developed by SeaBird,
Inc. to support hyperspectral ocean color satellite missions, such as PACE.

Dual Upwelling Radiance (Lu)
Spectral Range: 350-780 nm

Channel spacing: 0.4 nm
Full Width Half-Max: ~2.2 nm

9o FOV
Integrated shutters for darks

Uncertainty: < 4% UV-G, 6 % R-NIR

Advantages of using a float
Full profile (0.1 to 500 m)
Reduced errors in LU(0-) extrapolation
Reduced bio-fouling (park at 500 m)
Portable (easy to deploy/recover)

Pitch & Roll

Pressure Sensor
DigiQuartz®

Es (412, 490, 555, 705 nm)
OCR-504

Two-Way Communication
Iridium

T, S, and P
Navis CTD

Surface

data
Collection

Ascent

data
Transmission

ParkPark

Descent

-3 sites tested (Crete, Hawaii, San Diego); 2 long deployments (58 and 69 profiles); 19
deployments to date (5% loss; HI004 - 0052); 166 HyperNav enabled profiles (2-year period).

-Data were used to evaluate SGLI-derived Rrs (35 quality match-ups).



Crete Hawaii Southern California

Example 4: Evaluation of SGLI water reflectance using HyperNav systems (contd.)



-Large variability in SLI Rrs in UV and blue during CR001 deployment,
despite stable water conditions, with underestimation in many cases
(possibly due to the presence of dust from North Africa).

Example 4: Evaluation of SGLI water reflectance using HyperNav systems (contd.)



Example 5: APAR modeling using environmental variables 

-We used an ensemble of regular MLPs to model APAR from in-situ Rrs in all 6 SGLI spectral
bands in the PAR spectral range (1266 situations) with and without environmental variables,
i.e., Sun zenith angle, SST, daylength, and latitude. No noise was included in the data.

-We divided the training data into 5 partitions, use 4 partitions for training and 1 partition
for evaluation, and rotate until all 5 partitions have been used as evaluation partition once.
Thus, we can have 5 models. We do this 5 rounds to have a total of 25 models in the ensemble.

-We also used an ensemble of GAMs with coefficients dependent on the environmental
variables. In this case, we did 10 random realizations and in each realization the data were
split randomly (80% for training and 20% for validation).

-In the end, we used the ensemble of models together with their respective standard scalers
to do inference on the full dataset. For each model we have a set of predictions, and the final
prediction is the mean across all the models, associated with a standard deviation.

-The APAR uncertainty consists of two parts: (1) the model uncertainty e1, i.e., the standard
deviation obtained using the model ensembles, and (2) the uncertainty between modeled and
actual APAR. Final uncertainty was then calculated as the square root of e1^2+e2^2.



Using Rrs only Using Rrs + SZA, SST, DL, Lat

-Performance is significantly increased by adding environmental variables, with R2 of 0.765 instead of
0.671 using NN ensemble and 0.642 instead 0.326 using GAM ensemble.

-Results are also much better than classifying Rrs spectra in multi-linear combinations (leading to R2 of
only 0.535), i.e., environmental variables might be better predictors than Rrs classes.

-Generalization may be difficult because theoretical data sets do not include environmental variables;
Need for more (representative) in situ data.

Using Rrs + SZA, SST, DL, LatUsing Rrs only

NN NN GAM

Example 5: APAR modeling using environmental variables (contd.) 



Application of NN ensemble using Rrs + SZA, SST, DL, Lat to SGLI imagery
02/15/2020, Argentina

02/15/2020, Italy

02/15/2020, Argentina

02/15/2020, Italy

-APAR imagery
does not exhibit
obvious artifacts,
despite different
domains of Rrs
variability for in-
situ and satellite
data, i.e., NN has
some generalizing
capability.

-Need to identify
observations that
do not fit model,
i.e., to associate
to each APAR
estimate, not only
uncertainty, but
also information
on whether data
and model are
compatible.



Challenges and Limitations in Ocean Color Remote Sensing

1. Spatial and Temporal Representativeness:
•In situ data may not adequately represent spatial and temporal variability of
oceanic processes.
•Limited spatial coverage and temporal gaps in observations can lead to
uncertainties in algorithm performance.
•Comprehensive coverage and continuous monitoring are essential for accurate
algorithm development.

2. Data Quality Assurance:
•In situ data quality assurance is crucial for accurate algorithm development.
•Errors, biases, and inconsistencies in in situ measurements must be identified
and mitigated.
•Quality control procedures such as sensor calibration and data validation are
necessary.



Challenges and Limitations in Ocean Color Remote Sensing (contd.)

3. Scalability:
•Scaling up in situ data collection presents challenges due to limited resources
and logistical constraints.
•Collaborative efforts and innovative technologies are needed to enhance
scalability.
•Integration of diverse data sources and advances in sensor technology can
improve scalability.

4. Importance of Addressing Challenges:
•Overcoming challenges associated with in situ data utilization is crucial for
advancing remote sensing algorithms.
•Comprehensive spatial and temporal coverage, coupled with high-quality in situ
data, enhances the accuracy and reliability of remote sensing products.
•Collaborative efforts and interdisciplinary approaches are essential for
addressing these challenges and advancing ocean color remote sensing.



Future Perspectives and Opportunities

1. Emerging Technologies and Methodologies:
•Machine Learning:

-Neural networks and deep learning models can enhance satellite-derived
ocean color products by learning from in situ measurements.

-Data-driven approaches improve algorithm development, calibration, and
validation.
•Data Assimilation Techniques:

-Ensemble Kalman filters and particle filters integrate in situ data into remote
sensing algorithms.

-Improves spatial and temporal resolution, enhances predictive capabilities,
and reduces uncertainties.
•Crowdsourcing Initiatives:

-Citizen science projects augment observational networks and expand spatial
coverage.

-Engages volunteers in data collection, enhancing diversity of observations.



Future Perspectives and Opportunities (contd.)

2. Interdisciplinary Collaborations
•Opportunities:

-Remote sensing scientists, field researchers, and data providers collaborate
to address challenges.

-Capitalizes on complementary expertise and resources.
•Collaborative Initiatives:

-Co-design of observational campaigns and sensor deployments tailored to
research objectives.

-Integration of in situ measurements into remote sensing algorithms.
•Engaging Data Providers:

-Government agencies, research institutions, and non-profit organizations
promote data sharing and interoperability.

-Open data policies enhance accessibility and quality assurance.



Conclusions and Summary

We have delved into the intricate realm of ocean color remote sensing, exploring
the vital role of in situ data in improving the accuracy and reliability of remote
sensing algorithms.

1. Recap of key concepts:
•We explored the critical role of in situ data, encompassing measurements
collected directly from the ocean's surface through buoys, research vessels,
and autonomous platforms, in calibrating, validating, and refining remote sensing
algorithms.
•We discussed the applications of in situ data in algorithm development and
showcased examples of using buoy measurements for calibrating satellite
sensors and validating ocean color products.



Conclusions and Summary (contd.)

2. Encouragement for Continued Exploration:
•I encourage each of you to continue your exploration and engagement in ocean
color remote sensing research and applications in collaborative ways.
•By harnessing the power of in situ data, we have the potential to make
significant strides in understanding and monitoring our oceans, thereby
contributing to the conservation and sustainable management of marine
ecosystems.

3. Leveraging In Situ Data for Environmental Challenges:
•Incorporating in situ data into remote sensing algorithms enables us to address
pressing environmental challenges, including harmful algal blooms, coastal
pollution, and climate change impacts on marine ecosystems.
•By leveraging in situ measurements, we can enhance the accuracy and reliability
of satellite-derived ocean color products, providing valuable insights for
policymakers, resource managers, and stakeholders.



Conclusions and Summary (contd.)

4. Advancing Scientific Knowledge:
•The integration of in situ data into remote sensing algorithms facilitates
advancements in scientific knowledge, allowing us to unravel the complexities of
ocean dynamics, biogeochemical cycles, and ecosystem functioning.
•Through interdisciplinary collaborations and innovative methodologies, we can
expand our understanding of marine processes and phenomena, paving the way
for informed decision-making and sustainable ocean stewardship.

In conclusion, the synergy between in situ data and remote sensing technologies
offers unprecedented opportunities for unlocking the mysteries of the ocean
and addressing global environmental challenges.


