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Importance of In Situ Data in Remote Sensing

1. Introduction to in situ data

-Tn situ data refers to direct measurements collected within the environment of
interest, obtained through field surveys, instrument deployments, or sensor
installations.

-Examples include water samples from lakes, rivers, or oceans, buoy observations
of oceanographic parameters, and sensor readings from environmental
monitoring stations.

2. Validation and Calibration

*In situ data serve as ground truth measurements for validating and calibrating
remote sensing observations.

‘Comparison of remote sensing data with in sifu measurements allows
assessment of accuracy, identification of errors or biases, and improvement of
algorithm performance.



Importance of In Situ Data in Remote Sensing (contd.)

3. Enhancement of remote sensing products:

‘In situ data provide detailed information about local environmental conditions
and processes not captured by remote sensing alone.

‘Integration of in situ data enhances the interpretation and utility of remote

sensing products for scientific research, environmental monitoring, and decision-
making applications.

Remote sensing and in situ data are complementary approaches for studying
Earth's systems and monitoring environmental changes. Remote sensing provides
synoptic views of Earth's surface, while in situ data offer ground truth
observations that validate and enhance the accuracy of remote sensing
products. Understanding the connection between remote sensing and in situ data

/s crucial for leveraging both approaches and advancing our knowledge of Earth's
complex systems,



Role of In Situ Data in Algorithm Development

1. Fundamental Role of In Situ Data:

‘In situ data are essential for calibrating, validating, and refining algorithms in
remote sensing applications.

-Calibration adjusts remote sensing measurements to account for sensor
characteristics and atmospheric effects, ensuring accuracy and consistency.

-Validation assesses the accuracy and reliability of remote sensing products
using ground truth measurements.

‘Refinement of algorithms involves adjusting parameters to improve accuracy,
precision, and robustness.



Role of In-Situ Data in Algorithm Development (contd.)

2. Importance as Ground Truth:

‘In-situ data provide direct, accurate, and reliable observations at specific
locations and times.

*In-situ measurements validate satellite-derived products such as chlorophyll-a
concentration and water clarity.

Comparison of remote sensing observations with in-situ measurements validates
accuracy, precision, and consistency.

‘Identifies errors or biases, guiding algorithm improvements for different
environmental conditions and applications.

In situ data are critical for algorithm development. They improve the accuracy,
reliability, and utility of remote sensing products for scientific research,
environmental monitoring, and decision-making. Understanding the connection
between in situ data and algorithm development is essential for advancing our
understanding of Earth's systems.



In Situ Data for Ocean Color Remote Sensing

1. Water Quality/Composition Measurements:
‘Fundamental for validating satellite-derived ocean color products.

‘Parameters include chlorophyll-a concentration, suspended sediment
concentration, and CDOM absorption.

‘Collected wusing fluorometers, spectrophotometers, and radiometers on
research vessels, buoys, and autonomous platforms.

2. Radiometric Measurements:
‘Provide information on water-leaving radiance and inherent optical properties.

‘Essential for validating satellite-derived remote sensing reflectance and
atmospheric correction algorithms.

*Collected using radiometers, spectroradiometers, and hyperspectral sensors



In Situ Data for Ocean Color Remote Sensing (contd.)

3. Buoy Observations:
‘Offer continuous time-series data on oceanographic parameters.

‘Include sea surface temperature, chlorophyll-a concentration, and optical
properties.

*Collected using moored buoys equipped with sensors and instruments.

4 Validation Matchup Data:
‘Involve collocating satellite overpasses with in situ measurements.

‘Enable direct comparisons between satellite-derived data and in situ
observations.

*Obtained through field campaigns, research cruises, and oceanographic surveys.



Calibration and Validation of Ocean Color Remote Sensing Data

1. Definition of Calibration in Ocean Color Remote Sensing:

‘Process of adjusting satellite-derived radiance or reflectance measurements to
match ground truth data from in situ measurements.

‘Corrects systematic errors, biases, and inconsistencies in satellite
observations.

‘Ensures accuracy and reliability in quantifying oceanic parameters like
chlorophyll-a concentration and water clarity.

2. Definition of Validation in Ocean Color Remote Sensing:

‘Process of assessing accuracy and reliability of satellite-derived ocean color
products using in situ data.

‘Compares satellite-derived observations with independent ground truth
measurements collected in situ.

‘Provides confidence in the quality and credibility of satellite-derived ocean
color products.



Calibration and Validation of Ocean Color Remote Sensing Data (contd.)

3. Use of In Situ Measurements for Calibration and Validation:

‘Crucial for calibrating satellite sensors, correcting atmospheric effects, and
validating algorithms.

‘Provide reference data to refine and improve accuracy of satellite-derived
ocean color products.

Used to calibrate satellite sensors by comparing in situ and satellite radiance or
reflectance measurements.

‘Used to validate satellite-derived ocean color products by comparing satellite
observations with in situ measurements of water properties.

‘Matchup analyses enable direct comparisons between satellite and in situ
observations, assessing data accuracy and reliability.



Calibration and Validation of Ocean Color Remote Sensing Data (contd.)

4. Illustrative Examples in Ocean Color Remote Sensing:

Example 1: In situ radiometric measurements used to calibrate satellite sensors
by comparing in situ and satellite radiance values.

Example 2: In situ measurements of chlorophyll-a concentration, Ky, and POC
used to validate satellite-derived products.

Example 3: In situ radiometric measurements used to evaluate water
reflectance (fixed platforms: HYPERNETS)

Example 4: In situ radiometric measurements used tfo evaluate water
reflectance (profiling system: HyperNav)

Example 5: APAR algorithm development

Calibration and validation using in situ measurements are essential for ensuring
accuracy and reliability of satellite-derived ocean color products. Comparison
with ground ftruth data enhances algorithm performance and corrects
atmospheric effects. Crucial for scientific research, environmental monitoring,
and marine ecosystem management.



Lt ratio

Example 1: System Vicarious Calibration (SVC) using MOBY data
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SVC gains were obtained by
propagating Lw_moby to Lt_moby
and then dividing Lt_moby over
LT_modis.

New gains (136 SVC match-ups):
0.97253 0.98251 0.98532 0.99317
0.98491 0.98904 1.00432 1.00367

SVC  gains exhibit
seasonal changes, which
yields seasonal bias in

MODIS-derived water-
leaving radiance.

Origin of the seasonal
dependence in SVC gains
is still unknown.
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Example 2: In-situ validation of NASA OBPG MODIS-A [Chl-a], K4, and POC products
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Example 3: Validation of water reflectance using HYPERNETS, Rio de la Plata
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Example 4: Evaluation of SGLT water reflectance using HyperNav systems

-HyperNav is a spectroradiometer/float system developed by SeaBird,
Inc. to support hyperspectral ocean color satellite missions, such as PACE.

Es (412, 490, 555, 705 nm) GMl™ Two-Way Communication data
OCR-504 \ () Lridium Transmission
: : Surface ' ﬁ
Dual Upwelling Radiance (Lu) - e A e 1
Spectral Range: 350-780 nm s r arda B
Channel spacing: 0.4 nm T,S,and P ’ Collection y
Full Width Half-Max: ~2.2 nm Navis CTD

& Fov Pitch & Roll
Integrated shutters for darks
Uncertainty: < 4% UV-G, 6 % R-NIR

Descent

Advantages of using a float

Full profile (0.1 to 500 m) Pressure Sensor
Reduced errors in L (O) extrapolation DigiQuartz®
Reduced bio-fouling (park at 500 m)

Portable (easy to deploy/recover)

-3 sites tested (Crete, Hawaii, San Diego); 2 long deployments (58 and 69 profiles); 19
deployments to date (5% loss; HI004 - 0052); 166 HyperNav enabled profiles (2-year period).

-Data were used to evaluate SGLI-derived R.s (35 quality match-ups).
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Example 4: Evaluation of SGLI water reflectance using HyperNav systems (contd.)
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Example 4: Evaluation of SGLI water reflectance using HyperNav systems (contd.)
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-Large variability in SLI R.s in UV and blue during CROO1 deployment,
despite stable water conditions, with underestimation in many cases
(possibly due to the presence of dust from North Africa).



Example 5: APAR modeling using environmental variables

-We used an ensemble of regular MLPs to model APAR from in-situ R.s in all 6 SGLI spectral
bands in the PAR spectral range (1266 situations) with and without environmental variables,
i.e., Sun zenith angle, SST, daylength, and latitude. No noise was included in the data.

-We divided the training data into 5 partitions, use 4 partitions for training and 1 partition
for evaluation, and rotate until all 5 partitions have been used as evaluation partition once.
Thus, we can have 5 models. We do this 5 rounds to have a total of 25 models in the ensemble.

-We also used an ensemble of GAMs with coefficients dependent on the environmental
variables. In this case, we did 10 random realizations and in each realization the data were

split randomly (80% for training and 20% for validation).

-In the end, we used the ensemble of models together with their respective standard scalers

to do inference on the full dataset. For each model we have a set of predictions, and the final
prediction is the mean across all the models, associated with a standard deviation.

-The APAR uncertainty consists of two parts: (1) the model uncertainty el, i.e., the standard
deviation obtained using the model ensembles, and (2) the uncertainty between modeled and
actual APAR. Final uncertainty was then calculated as the square root of el”2+e2”2.



Estimated APAR

Example 5: APAR modeling using environmental variables (contd.)
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-Performance is significantly increased by adding environmental variables, with R? of 0.765 instead of
0.671 using NN ensemble and 0.642 instead 0.326 using GAM ensemble.

-Results are also much better than classifying R.s spectra in multi-linear combinations (leading tfo R? of
only 0.535), i.e., environmental variables might be better predictors than R.s classes.

-Generalization may be difficult because theoretical data sets do not include environmental variables;
Need for more (representative) in situ data.



Application of NN ensemble using Rrs + SZA, SST, DL, Lat to SGLI imagery
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obvious artifacts,
despite different
domains of R
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sifu and satellite
data, i.e., NN has
some generalizing
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estimate, not only
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on whether data
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compatible.



Challenges and Limitations in Ocean Color Remote Sensing

1. Spatial and Temporal Representativeness:

‘In situ data may not adequately represent spatial and temporal variability of
oceanic processes.

‘Limited spatial coverage and temporal gaps in observations can lead to
uncertainties in algorithm performance.

-Comprehensive coverage and continuous monitoring are essential for accurate
algorithm development.

2. Data Quality Assurance:
-In situ data quality assurance is crucial for accurate algorithm development.

‘Errors, biases, and inconsistencies in in situ measurements must be identified
and mitigated.

*Quality control procedures such as sensor calibration and data validation are
necessary.



Challenges and Limitations in Ocean Color Remote Sensing (contd.)

3. Scalability:

-Scaling up in situ data collection presents challenges due to limited resources
and logistical constraints.

*Collaborative efforts and innovative technologies are needed to enhance
scalability.

‘Integration of diverse data sources and advances in sensor technology can
improve scalability.

4. Importance of Addressing Challenges:

‘Overcoming challenges associated with in situ data utilization is crucial for
advancing remote sensing algorithms.

‘Comprehensive spatial and temporal coverage, coupled with high-quality in situ
data, enhances the accuracy and reliability of remote sensing products.

*Collaborative efforts and interdisciplinary approaches are essential for
addressing these challenges and advancing ocean color remote sensing.



Future Perspectives and Opportunities

1. Emerging Technologies and Methodologies:
‘Machine Learning:

-Neural networks and deep learning models can enhance satellite-derived
ocean color products by learning from in situ measurements.

-Data-driven approaches improve algorithm development, calibration, and
validation.

‘Data Assimilation Techniques:

-Ensemble Kalman filters and particle filters integrate in situ data into remote
sensing algorithms.

-Improves spatial and temporal resolution, enhances predictive capabilities,
and reduces uncertainties.

-Crowdsourcing Initiatives:

-Citizen science projects augment observational networks and expand spatial
coverage.

-Engages volunteers in data collection, enhancing diversity of observations.



Future Perspectives and Opportunities (contd.)

2. Interdisciplinary Collaborations
Opportunities:
-Remote sensing scientists, field researchers, and data providers collaborate
to address challenges.
-Capitalizes on complementary expertise and resources.
*Collaborative Initiatives:

-Co-design of observational campaighs and sensor deployments tailored to
research objectives.

-Integration of in situ measurements into remote sensing algorithms.
-Engaging Data Providers:

-Government agencies, research institutions, and non-profit organizations
promote data sharing and interoperability.

-Open data policies enhance accessibility and quality assurance.



Conclusions and Summary

We have delved into the intricate realm of ocean color remote sensing, exploring
the vital role of in situ data in improving the accuracy and reliability of remote
sensing algorithms.

1. Recap of key concepts:

‘We explored the critical role of in situ data, encompassing measurements
collected directly from the ocean's surface through buoys, research vessels,
and autonomous platforms, in calibrating, validating, and refining remote sensing
algorithms.

‘We discussed the applications of in situ data in algorithm development and
showcased examples of using buoy measurements for calibrating satellite
sensors and validating ocean color products.



Conclusions and Summary (contd.)

2. Encouragement for Continued Exploration:

T encourage each of you to continue your exploration and engagement in ocean
color remote sensing research and applications in collaborative ways.

‘By harnessing the power of in situ data, we have the potential to make
significant strides in understanding and monitoring our oceans, thereby
contributing to the conservation and sustainable management of marine
ecosystems.

3. Leveraging In Situ Data for Environmental Challenges:

‘Incorporating in situ data info remote sensing algorithms enables us to address
pressing environmental challenges, including harmful algal blooms, coastal
pollution, and climate change impacts on marine ecosystems.

By leveraging in situ measurements, we can enhance the accuracy and reliability
of satellite-derived ocean color products, providing valuable insights for
policymakers, resource managers, and stakeholders.



Conclusions and Summary (contd.)

4. Advancing Scientific Knowledge:

‘The integration of in situ data info remote sensing algorithms facilitates
advancements in scientific knowledge, allowing us to unravel the complexities of
ocean dynamics, biogeochemical cycles, and ecosystem functioning.

*Through interdisciplinary collaborations and innovative methodologies, we can
expand our understanding of marine processes and phenomena, paving the way
for informed decision-making and sustainable ocean stewardship.

In conclusion, the synerqgy between in situ data and remote sensing technologies
offers unprecedented opportunities for unlocking the mysteries of the ocean
and addressing global environmental challenges.



