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Chapter 1

Bridging Satellite Ocean Colour Remote Sensing and

Biogeochemical/Ecosystem Modelling

Stephanie Dutkiewicz, Mark Baird, Stefano Ciavatta, Stephanie Henson, Anna

Hickman, Cecile Rousseaux and Charles Stock

This report is intended as part of the important dialogue between the ocean colour and the

biogeochemical/ecosystem/climate modelling communities. Numerical modellers are frequent

users of ocean colour products, but many modellers remain unsure of the best way to use

these products, and are often unaware of the uncertainties associated with them. On the other

hand, the ocean colour community often are unsure on how models work, their usefulness

and their limitations.

The colour of the ocean is set by incident light interacting with constituents (both dissolved,

living and non-living particles) in the water. “Ocean colour”, as referred to in this report, is the

science and products developed from satellite remote sensing of the light reflected from the

ocean. These satellites provide data in select visible wavebands of the light spectrum that tell

us about the “colour” of the ocean, and thus also about the types of constituents (including

phytoplankton) in the water. Chapter 2 provides a non-experts introduction to ocean colour.

In this report, the word “model” refers to process-based three-dimensional biogeochemi-

cal/ecosystem computer models at large regional or global scales. We discuss the process of

constructing models and uses of models in Chapter 3. “Biogeochemical” and “ecosystem” mo-

delling is used in the title to signify that we are encompassing models with different interests.

Biogeochemical models address questions that are related to nutrient and carbon cycling. The

focus of ecosystem models is on the ecology of the ocean. However, the difference between

the two is not clear-cut and there is significant overlap in the two types of modelling.

This report is not intended to be comprehensive. We focus particularly on large scale, three

dimensional models, and often consider open ocean (rather than coastal) processes. We have

also included mostly phytoplankton-centric research. This is a result of the working group’s

main interests and we emphasis that there are many more types of models and relevant work,

beyond what is discussed here. We have attempted to add numerous references for further

exploration by an interested reader.
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1.1 Goals of the Report

The overall goal of this report is to achieve more synergy between ocean colour and models.

To do this we:

v Provide non-experts in ocean colour with non-jargon understanding of uses, as well as

uncertainties, and limitations of ocean colour products;

v Provide the ocean colour community with an understanding of types, uses and limitati-

ons of ecosystem/biogeochemical/climate models, including data assimilation;

v Explore the similarities/difference between similarly named variables in the two commu-

nities;

v Provide recommendations on the use of ocean colour products for model skill assess-

ment;

v Introduce new developments in the parameterization of optics and radiative transfer in

models that could provide better links between the two communities;

v Provide examples of studies which have integrated ocean colour and models to better

understand processes and trends in the ocean’s ecosystem and biogeochemistry, as well

as feedback to the climate;

v Provide examples where models can help inform on ocean colour, with the goal of

fostering further use of models as laboratories for ocean colour studies, understanding

uncertainties and algorithm development;

v Highlight gaps in research and understanding.

1.2 Layout of the Report

The remaining chapters in the report are summarized here briefly to aid the reader in identi-

fying those that are most useful to them. Each chapter is written so that it stands on its own;

thus a reader does not need to read the entire report.

Chapter 2: Ocean Colour Remote Sensing Overview — In Chapter 2 we provide an overview

of satellite remote sensing products for a modelling audience to help identify the strengths

and limitations of various existing products, as well as potential future products resulting

from the anticipated capability of next generation ocean colour sensors.

Chapter 3: Biogeochemical and Ecosystem Models: What are They and How can They be

Used? — This chapter introduces scientists (particularly the ocean colour community) to

the ideas, concepts, and basic building blocks of biogeochemical/ecosystem models. We

provide a section on how modellers have treated light in models, and some of the new model

developments to include radiative transport and spectral light. We also highlight some of the

types and uses of biogeochemical/ecosystem models. Appendix 4 provides definitions of some

unavoidable jargon and other model terminology.

Chapter 4: The Mismatch between Model Output and Ocean Colour Products — In this

chapter we highlight how ocean colour products, in situ observations and biogeochemical

model output do not compare cleanly. There are discrepancies about what is actually being
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captured (a mismatch in name), uncertainties in in situ observation and ocean colour products

that are not well understood or quantified, and biases linked to missing data. These mismatches

are often not well understood and provide a hindrance to the best use of ocean colour (and

models).

Chapter 5: Ocean Colour for Model Skill Assessment — In Chapter 5, we introduce commonly

used model skill metrics, and with Chl as an example, show how these metrics are used. The

chapter highlights some of the issues that arise from using satellite products (especially as

uncertainties increase with more derived products) and in trying to compare point-to-point

in a heterogeneous ocean. Emphasis is put on using skill assessment “fit to purpose” of the

space and time scales of interest.

Chapter 6: Assimilation of Ocean Colour — The assimilation of ocean colour into biogeoche-

mical models provides a rigorous method to include both observations and models into one

unified output that incorporates the information and advantages from both sources. Chapter 6

provides a brief introduction to data assimilation, the different methods that can be employed,

and the potential outputs, including state estimates and parameter estimations. The chapter

provides several case studies of using ocean colour products and models together formally, to

provide best estimates of ocean biogeochemical fields.

Chapter 7: Synergistic Use of Ocean Colour Data and Models to Understand Marine Biogeo-

chemical Processes — The increasing number of satellite ocean colour missions and products,

combined with the continuing development of complex numerical models, allows for new and

exciting multi-disciplinary approaches to tackling ecological and biogeochemical questions.

Chapter 7 provides case studies that have used both ocean colour and models to significantly

enhance our understanding of global-, basin-, and mesoscale time-series and elucidates details

of regional processes and phytoplankton physiological states.

Chapter 8: Using Models to Inform Ocean Colour Science — Numerical models can be used

as laboratories to help understand some of the limitations and uncertainties of ocean colour

products, to help understand future needs of ocean colour missions, and to aid in algorithm

development. Additionally, models can be subsampled to match the spatial and temporal

distribution of satellite observations to investigate issues with missing data. In Chapter 8 we

provide several case studies that explore the ways that models can be used to help inform

ocean colour output, and planning for the future.

Chapter 9: Summary and Final Recommendations — In this final chapter we provide some

recommendations for the further linking of ocean colour products and models.

1.3 Definitions, Symbols, Jargon and Acronyms

According to one definition: “A model of a system or process is a theoretical description

that can help you understand how the system or process works, or how it might work”

(https://www.collinsdictionary.com/dictionary/english/model).

In the marine biogeochemical/ecosystem numerical modelling world, a model is a set

of equations (“theoretical description”) of marine physical, biogeochemical and ecological

https://www.collinsdictionary.com/dictionary/english/model


4 • Synergy Between Ocean Colour and Biogeochemical/Ecosystem Models

processes (“the system”), that are translated into computer code that then provides, as output,

how the “system” changes with time. By using a computer, many components and timescales

can be included that would otherwise not be possible.

However, the word “model” encompasses many things to many people, and it is important

here to be careful about what we mean when we use the word. Theoreticians will call the

equations a “model” by themselves. There are statistical techniques to analysis data that are

called “models”. In the ocean colour community a “model” might mean the method of taking

an ocean colour measurement (such as reflectance) and using an algorithm or semi-empirical

method to produce a derived product such as Chl-a. In this report we will usually differentiate

this type of model by using the word “algorithm” instead.

We will remind the reader of the different uses of the word “model”, and in particular what

we mean by the word, at the beginning of each chapter:

NOTE: In this report, the word “model” refers to process-based three-dimensional biogeoche-

mical/ecosystem computer models at large regional or global scales.

Both communities (ocean colour and modellers) have their own set of symbols, jargon and

acronyms. It is thus often difficult to communicate as, in some way, we are talking different

languages. In this report we try to maintain a consistent set of symbols, based mostly on those

used by the ocean colour community (Appendix 1). Appendix 2 provides some commonly used

acronyms, including those for the past, current and future sensors. Appendix 3 provides some

of the terminology used in the ocean colour and space agency communities. We also provide

a table with jargon and some of the acronyms that are frequently used by the modelling

community (Appendix 4). None of these tables are exhaustive, but hopefully provide enough

information to help the reader negotiate the often complex new language of an unfamiliar

field.



Chapter 2

Ocean Colour Remote Sensing Overview

Colleen Mouw, Cecile Rousseaux, Frédéric Mélin, Hayley Evers-King,

Amir Ibrahim and Jeremy Werdell

NOTE: In this report, the word “model” refers to process-based three-dimensional biogeo-

chemical/ecosystem computer models at large regional or global scales.

2.1 Scope

Since the launch of the first mission (Coastal Zone Colour Scanner, CZCS) in 1978, satellite

remote sensing of ocean colour has provided an unprecedented view of biogeochemical

processes of the ocean surface layer. Given the spatial coverage and repeat frequency, ocean

colour imagery has been an important data source for model assessment. The extent of these

comparisons and expansion into model assimilation grew significantly with the continuous,

global, ocean colour record, beginning with the launch of the Sea-viewing Wide-Field-of-view

Sensor (SeaWiFS) in 1997 and the following missions that continue through to the present.

There are a variety of satellite products and associated algorithms; some are intended for

global use, while others are for regionally-specific applications. Satellite products are often

used to assess model performance, however, often the satellite products are not a direct

match to the state variables (see Appendix 3, Chapter 3) in models (see Chapter 4). Most

biogeochemical models have not been developed with optical interests — rather they have

been structured to follow pathways of matter and energy, and capture basic groups of marine

organisms to investigate carbon cycling and ecology. Thus, the link to optical and ocean colour

products are not always clear. Here we provide an overview of satellite remote sensing and

associated products for a modelling community to help identify the strengths and limitations

of various commonly utilized products. The products addressed here are not meant to be an

exhaustive list, rather those commonly utilized by the modelling community.

2.2 What Does a Satellite Radiometer “See”?

The radiance observed by a satellite spectroradiometer contains information about the optically

significant constituents in the atmosphere and ocean. Ocean colour algorithms are used to

derive the optical properties of the ocean’s constituents from the visible light emerging from

below the water surface, which can, in turn, be used to infer their concentrations. In cloud-free

5
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conditions, the atmospheric constituents account for the largest contribution to the top-of-

atmosphere (TOA) radiance measured by a satellite, typically 90%, but it varies depending

on wavelength and water brightness (IOCCG 2010) (Figure 2.1). The ocean accounts for the

small residual signal necessary for deriving ocean colour products. This inherently requires a

stringent process to remove the radiometric contribution of the atmosphere and ocean surface

known as the “atmospheric correction”, which is discussed below.

CDOM Phyto

Algorithms

NAPwater

Applications

Figure 2.1 Schematic of path radiance from the Sun (bottom left), through the photic
zone of the ocean, and through the atmosphere to a satellite radiometer. The optical
constituents that influence ocean colour include pure water, chromophoric dissolved
organic matter (CDOM), phytoplankton, and non-algal particles (NAP). Satellite imagery
is produced from atmospherically-corrected spectral remote sensing reflectance, Rrs(λ),
with algorithms that connect satellite observations to optical, biogeochemical and water
quality parameters. The inlaid image (top left) is mean chlorophyll-a concentration
obtained from the MODIS-Aqua mission mean (2002–2017, https://oceancolour.gsfc.nasa.
gov/). Right: Venn diagram of the fundamental elements of ocean colour remote sensing
(from Mouw et al. (2015), reproduced with permission from Elsevier).

2.2.1 Atmosphere

Atmospheric constituents include aerosols and gas molecules (such as ozone, water vapor,

oxygen, etc.) that diversely contribute to absorption and scattering of sunlight. Air molecules

contribute to Rayleigh scattering, accounting for the largest component of the atmospheric

signal, particularly in shorter wavelengths. The scattering efficiency of these molecules

decreases with increasing wavelength. Some atmospheric gas molecules absorb the visible

light across a broad spectrum (such as ozone and nitrogen dioxide), while other gases have

strong distinct absorption features, such as water vapor and oxygen (Figure 2.2). Multispectral

satellite ocean colour bands are usually positioned at atmospheric window bands away from

strongly absorbing gases such as the oxygen and water vapor bands. Atmospheric aerosols

https://oceancolour.gsfc.nasa.gov/
https://oceancolour.gsfc.nasa.gov/
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both absorb and scatter light depending on the aerosol composition and size distribution.

Examples of global aerosols distribution, including sea salt, dust and pollution, are shown in

Figure 2.3.

Figure 2.2 Atmospheric transmittance and spectral absorption and scattering of atmos-
pheric constituents. The water vapor concentration is 0.95 cm and ozone is 355 DU and
average climatology CO2, CH4, N2O, and O2. The aerosol optical depth is 0.1 at 869 nm
with a 0.8 Ångström coefficient.

Figure 2.3 Global aerosol model distribution, where the colour-coded aerosol plumes
indicate the aerosol type. Red shaded regions indicate presence of dust, blue is sea salt,
green is carbonaceous aerosols (organic or black carbon), and gray is sulfate aerosols.
Image credit: NASA Global Modeling and Assimilation Office GEOS-5 Nature Run model.

The radiance measured at TOA by a satellite sensor, Lt(λ), is the summation of the

contribution from every component of the atmosphere-ocean system. All radiances discussed

hereafter carry units of µW cm−2 nm−1 sr−1. A standard equation of the atmospheric correction

is Gordon (1997):



8 • Synergy Between Ocean Colour and Biogeochemical/Ecosystem Models

Lt(λ) = Lr(λ)+ [La(λ)+ Lra(λ)]+ T(λ)Lg(λ)+ t(λ)Lwc(λ)+ t(λ)Lw(λ), (2.1)

where Lt(λ) is the top of atmosphere radiance measured by the satellite sensor, Lr(λ) is

radiance due to (Rayleigh) scattering by air molecules, La(λ) is radiance due to scattering

by aerosols, Lra(λ) represents the multiple scattering interactions between molecules and

aerosols, Lwc(λ) is radiance resulting from white caps, Lg(λ) is radiance resulting from specular

reflection of sunlight off the sea surface (sun glint), Lw(λ) is water-leaving radiance, t(λ) is

diffuse transmittance in the viewing direction, and T(λ) is the direct transmittance from the

surface to the sensor in the viewing direction. Lr(λ), La(λ), and Lra(λ) represent radiances

generated by the atmosphere, Lwc(λ) and Lg(λ) are radiances generated at, or immediately

below, the surface of the ocean, and Lw(λ) is water-leaving radiance resulting from light

backscattered from below the water surface. Lw(λ) is the parameter that the atmospheric

correction aims to retrieve.

As Lw depends on conditions of the observations, it is usually expressed after normaliza-

tion by writing:

LWN (λ) = Lw(λ)
F0(λ)

E+d (λ, θ0)
≈
(
d
d0

)2 Lw(λ)
t0(λ) cosθ0

, (2.2)

where F0(λ) is the mean extraterrestrial irradiance (Thuillier et al. 2003) and E+d (λ) is the

downwelling irradiance just above the sea surface associated with the solar zenith angle θ0,

t0(λ) is the diffuse transmittance of the atmosphere from the Sun to the ocean surface, d is

the Sun-Earth distance and d0 its mean. In effect, this operation corrects for the variations

of amplitude of solar irradiance at the water surface. LWN can be further corrected for

bidirectional effects (the emerging radiance field generally not being isotropic) using various

approaches that express LWN as if the water is observed at nadir with overhead Sun (e.g., Morel

et al. 2002).

Additional information beyond the satellite radiances are usually required for the atmosp-

heric correction. Lr (λ) can be computed from Rayleigh look-up tables that typically utilize

solar-sensor geometry, atmospheric pressure and wind speed (Wang 2005). White cap radiance

can be modeled using sea surface wind speed (Moore et al. 2000). In widely-used standard

atmospheric correction schemes, sun glint is primarily masked but residual contamination

is corrected (Wang and Bailey 2001). Specific atmospheric corrections have been developed

to operate in sun glint conditions (e.g., Steinmetz et al. 2011). Other quantities are required

to proceed with atmospheric correction, such as relative humidity, to select aerosol optical

properties (e.g., Ahmad et al. 2010) and ozone concentrations. These atmospheric quantities

are usually obtained at a time resolution of a day or hours from national weather prediction

centers or from satellite data.

For the rest of this chapter, we will be using remotely sensed reflectance (Rrs(λ); sr−1) as

the primary parameter derived from a satellite radiometer, rather than water-leaving radiance

noted in Equations 2.1 and 2.2. The two terms are interchangeable according to the following

expressions:
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Rrs(λ) =
Lw(λ)

t0(λ)F0(λ) cos(θ0)
= LWN (λ)
F0(λ)

(2.3)

Rrs has become the standard product distributed by space agencies (in some cases multiplied

by a factor π , then becoming dimensionless).

Given the large contribution of the atmosphere to the total light reaching a satellite

radiometer over the ocean, the largest potential source of error in measuring Rrs(λ) from

space is the error associated with the atmospheric correction. There are differing standard

approaches by various space agencies. Historically, standard atmospheric corrections (see

Mobley et al. 2016 for a comprehensive summary) decouples the radiance contributions from

the ocean and the atmosphere through the “black-pixel” assumption (Siegel et al. 2000). The

absorption coefficient for water increases dramatically in the near-infrared (NIR, >780 nm

– 2500 nm, Gordon and Wang 1994), such that an assumption can be made that Rrs(NIR) is

negligible (i.e., black) in open ocean waters — that is, the sensor-measured NIR reflectance

results only from Rayleigh scattering and atmospheric aerosols. After subtracting the calculable

molecular (Rayleigh) scattering, the remaining NIR reflectance can be attributed to the aerosols,

which are extrapolated to, and subtracted from, the visible bands. However, in waters with

abundant scattering materials (e.g., suspended sediments or intense algal blooms), Rrs(NIR) is

no longer negligible, which violates the black-pixel assumption and will lead to atmospheric

correction failures. To accommodate these cases, bio-optical modelling is used to estimate NIR

optical properties (e.g., Bailey et al. 2010) and an iterative scheme is operated to compute a

best-estimate of Rrs(NIR). In the case of the Ocean Land Colour Instrument (OLCI), following the

heritage from the Medium Resolution Imaging Spectrometer (MERIS) processing, a bright pixel

atmospheric correction method (Moore et al. 1999) addresses the NIR contribution by using a

coupled atmosphere-ocean model based on inherent optical properties (IOPs) and optimized

through inversion over five bands in the NIR.

Beyond this standard approach, a variety of atmospheric correction schemes have been

developed, with different applications and principles. IOCCG (2010) provides a review of the

published atmospheric correction approaches. Some techniques have used neural networks,

non-linear minimization (e.g., Chomko and Gordon 2001) or a Bayesian approach (Frouin and

Pelletier 2015). Few of these alternative schemes have been applied in an operational context.

Artificial neural networks are used in an operational manner to process MERIS and OLCI

data by the European Space Agency (ESA) and the European Organisation for the Exploitation

of Meteorological Satellites (EUMETSAT), respectively (Doerffer and Schiller 2007). Another

counter-example is the application of the POLYMER (POLYnomial based algorithm applied to

MERIS) algorithm (using spectral optimization based on polynomials, Steinmetz et al. 2011) in

ESA’s Climate Change Initiative.

2.2.2 Ocean

The light emerging from below the water surface is the signal useful to determine in-water

inherent optical properties (IOPs) or concentrations of optically significant constituents. The

relation between Rrs and IOPs can be approximated by the following equation:
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Rrs(λ) = G(λ)
(

(bb(λ)
a(λ)+ bb(λ)

)
, (2.4)

where G(λ) (sr−1) is a coefficient that accounts for the air-water interface effect, the bidirectio-

nal character of the in-water light field, and the effect of multiple scattering effects, and a(λ)
and bb(λ) are the bulk absorption and backscattering coefficients, respectively (m−1). The

absorption and backscattering coefficients are IOPs, which means that they are independent

of the ambient light field. Equation 2.4 puts particular emphasis on the backward part of

scattering as it is a major contributor to Rrs(λ).
The optically active constituents in the ocean show daunting complexity with size, spanning

orders of magnitude (e.g., Stramski et al. 2004). For simplicity, their optical contributions

are usually partitioned into IOPs associated with pure water, chromophoric dissolved organic

matter (CDOM), non-algal particles (NAP), and phytoplankton. The total absorption (at(λ))
is the sum of the absorption of all of these constituents (aw(λ), aCDOM (λ), aNAP(λ), and

aph(λ), respectively, Equation 2.5). Considering their similar spectral shapes, aCDOM (λ) (also

ScatteringAbsorption

a

b

c

d

Figure 2.4 Spectral absorption and scattering of ocean optical constituents. Spectral
absorption for a) water, chromophoric dissolved organic matter (CDOM), non-algal par-
ticles (NAP) or detritus, and b) various phytoplankton groups. Spectral scattering c)
NAP/detritus, water, and d) various phytoplankton groups. The phytoplankton types
were taken from Dutkiewicz et al. (2015a) and include: Syn, Synechococcus; HLPro,
Prochlorococcus; LL-Pro, Prochlorococcus; Cocco, Emiliania huxleyi; SmEuk, Isochrysis gal-
bana; Diat, Thalassiosira weissflogii; LgEuk, Prorocentrum micans; Tricho, Trichodesmium
sp. The phytoplankton optical characteristics were obtained for representative types in
culture. Spectral aCDOM are the observed average from several AMT transects (Kitidis
et al. 2006). Adapted from Dutkiewicz et al. (2015a), Creative Commons Attribution 3.0
License (CC BY 3.0).
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noted ag(λ), for Gelbstoff or yellow substance) and aNAP(λ) (also noted ad(λ) for detritus)

are often treated together as adg(λ). Their spectral absorption and scattering characteristics

are shown in Figure 2.4. CDOM is dissolved (i.e., material that passes through a 0.2µm

filter) and thus, does not scatter light. Total backscattering is due to pure water (bbw(λ)),
non-algal particles (bbNAP (λ)), and phytoplankton (bbph(λ)), where non-algal particles and

phytoplankton are often grouped into particulate backscattering (bbp(λ) = bbNAP (λ)+ bbph(λ),
Equation 2.6). Their spectral absorption and scattering characteristics are shown in Figure

2.4. A comprehensive overview of these optical properties and atmospheric correction can be

found: http://www.oceanopticsbook.info/.

a(λ) = aw(λ)+ aCDOM (λ)+ aNAP(λ)+ aph(λ) (2.5)

bb(λ) = bbw(λ)+ bbp(λ) (2.6)
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Figure 2.5 Current ocean colour mission lifetime with concurrent timeframe of major
product developments. Faded gradient indicates missions in current operation. Note: OLI
and MSI are instruments developed for terrestrial observations that have demonstrated
success in some coastal applications.

2.3 Historical and Current Instruments

The colour of the ocean has been imaged by satellite sensors for nearly 40 years. The advent

was the proof-of-concept CZCS (1978 – 1986), followed among others by SeaWiFS (1997 – 2010),

Moderate Resolution Imaging Spectrometer (MODIS, 2002 – present, 250 and 500 m for a

subset of bands), Medium Resolution Imaging Spectroradiometer (MERIS, 2002 – 2012, 1000

m and 300 m), and Visible Infrared Imaging Radiometer Suite (VIIRS, 2012 – present, 750 m

http://www.oceanopticsbook.info/
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and 375 m for a subset of bands), to name but a few (Figure 2.5). This list includes the polar

orbiting sensors that provide global coverage at roughly 1000 m spatial resolution, with some

of these also observing at medium spatial resolution. Satellite radiometers have four types of

requirements that ultimately drive the final design:

1. spatial coverage and resolution,

2. temporal coverage and revisit frequency,

3. spectral coverage as well as number and position of spectral bands, and

4. radiometric quality (IOCCG 2012) (Figure 2.6).

SeaWiFS
ACE

GO
CI

 I 
&

 II
CZCS, SeaWiFS

MODIS, MERIS, VIIRS, Oceansat
OLCI, SGLI, OCM-3, PACE

OLI, MSI 
EnMAP

HICO

Figure 2.6 Spatial and temporal resolution of heritage, current and planned ocean colour
satellite sensors. Planned sensors and missions are italicized. Note: OLI and MSI are
instruments developed for terrestrial observations that have demonstrated success in
some coastal applications. Adapted from Mouw et al. (2015).

The Korean Geostationary Ocean Colour Imager (GOCI, 2011 – present, 500 m) is the only

geostationary ocean colour sensor. It is centered on longitude 130◦E, allowing for high tempo-

ral resolution (Ryu et al. 2012). More recently, as part of the European Commission Copernicus

programme, ESA and EUMETSAT launched the Sentinel-3 platforms carrying the Ocean and

Land Colour Instrument (OLCI) in February 2016 (Sentinel-3A) and April 2018 (Sentinel-3B).

These provide continuity of MERIS-class polar orbiting observations, with global 300 m spatial

resolution. Sensors that have been utilized for coastal and inland waters due to their high spa-

tial resolution include the Hyperspectral Imager for the Coastal Ocean (HICO, 2009 – 2014, 90

m), Landsat-8 Operational Land Imager (OLI, 30 m) and the Sentinel-2 Multispectral Instrument

(MSI, 10–60 m). With the exception of HICO, all sensors launched to date have had multis-

pectral imaging capability (Figure 2.7). HICO imaged hyperspectrally with 124 bands at 5.73

nm spectral resolution between 400 to 900 nm. HICO was mounted on the International Space

Station, thus its imaging coverage of the Earth was opportunistic. OLI and MSI were developed
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for terrestrial remote sensing, thus their band placement, band width and signal-to-noise ratios

are not optimized for ocean targets, yet several studies have successfully demonstrated their

importance for coastal remote sensing (Pahlevan et al. 2014). A full list of current missions

can be found at http://ioccg.org/resources/missions-instruments/current-ocean-colour-sensors/. These

instruments are equipped with sensors optimized for measuring remote sensing reflectance

over most of the world’s oceans, but most are limited in their ability to observe inland or

coastal waters (Mouw et al. 2015). In this chapter, we focus on standard products that were

designed for application across basin to global scales. Readers interested in coastal and

non-standard cases are encouraged to consult Mouw et al. (2015), Zheng and DiGiacomo (2017),

and IOCCG (2000, 2012).
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Figure 2.7 Spectral resolution of current polar orbiting ocean colour satellite sen-
sors. Adapted from PACE Science Definition Team Report (PACE 2012). A full
list of past, current and future missions can be found at http://ioccg.org/resources/

missions-instruments/.

2.3.1 Imagery products

Most ocean colour variables are estimated from Rrs(λ) (noting that some are derived from

Lt(λ)). The optically significant constituents within the ocean dictate how sunlight is absorbed

and scattered in the water column, ultimately shaping Rrs(λ). Over time, satellite imagery

products have evolved from chlorophyll-a concentrations to primary production, specific

carbon pools, such as particulate organic carbon (POC), inherent optical properties (IOPs),

and single and multiple phytoplankton groups (Figure 2.5). This evolution has been driven

http://ioccg.org/resources/missions-instruments/current-ocean-colour-sensors/
http://ioccg.org/resources/missions-instruments/
http://ioccg.org/resources/missions-instruments/
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by the ever-increasing number of in situ optical observations across the globe driving a

continually growing understanding of the distribution and variability of the optical constituents

(described in Section 3.1.2) and their relationship with geophysical parameters. These products

typically begin with atmospherically-corrected Rrs(λ), but the methods of derivation and

their resulting uncertainties differ, in particular with regards to how far the derivation of

geophysical parameters falls from the original Rrs(λ) and the use of underlying, intermediate

optical parameters. Zheng and DiGiacomo (2017) have laid out the idea of level of derivation

and associated uncertainty by assigning various products to different “tiers” (Figure 2.8). Their

Tier 1 is the top-of-atmosphere radiance observations made directly by the satellite radiometer,

and has the least uncertainty. Conversely, Tier 5 variables have the highest level of derivation

and the most uncertainty. We have added a Tier 6, to also include primary production and

phytoplankton functional types. The uncertainty of the tiers above accumulates to the variables

in a given tier.

Tier-6: Primary Production and Phytoplankton Functional Types

NPP

PFT PSC PSD PTC

• Physiological variability
• Underlying empirical assumptions requiring 

on-going recalibration
• Small deviations in spectral shape/magnitude 

may be difficult to retrieve

A
ccum

ulation of U
ncertainty

Figure 2.8 Tiers of satellite-derived products and associated uncertainties introduced
at each tier. The list of products is representative, but not exhaustive. Adapted from
Zheng and DiGiacomo (2017), Creative Commons Attribution License (CC BY).
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The critical step of deriving quantitative in-water, optical, biogeochemical and water

quality information from satellite-derived Rrs(λ) requires the use of bio-optical algorithms. A

wide suite of algorithms have been developed, tested, and implemented (Gordon and Morel

1983; IOCCG 2000, 2006), that can be broadly categorized into two groups: empirical and

semi-analytical (Figure 2.9). Empirical methods are solely data driven and based on observed

statistical relationships, whereas semi-analytical approaches combine data driven relationships

with methods based on simplifications to the radiative transfer equation. However, the

distinction between the two approaches can sometimes be unclear, as examples exist that blur

this differentiation; some empirical algorithms have been developed from methods based on

the radiative transfer equation (e.g., Doxaran et al. 2002), and most semi-analytical algorithms

contain empirical relationships (e.g., Garver and Siegel 1997; Lee et al. 2002). Both empirical

and semi-analytical algorithms can be used for effective generation of biogeochemical products

from Rrs(λ). The earliest ocean colour satellite products focused on the retrieval of chlorophyll

concentration, [Chl], in waters where phytoplankton dominate the optical properties or covary

with other optically active constituents (Table 2.1).

Empirical Semi-Analytical

Bottom up

Top down

)(
)+ (

/

/

or [Chl]

=

[Chl] or other 
geophysical product

Figure 2.9 Schematic of fundamental connections of empirical vs. semi-analytical
algorithm approaches.

2.3.2 Chlorophyll concentration

Empirical algorithms contain explicit or implicit empirical expressions. The most widely used

empirical algorithms for the retrieval of [Chl] are based on band ratios (Gordon et al. 1983;

O’Reilly et al. 1998). For a given pixel, the ratio of the greatest Rrs(λblue) (instrument specific

bands between 443 and 520 nm) is normalized to a green band (i.e., the instrument specific

band closest to 555 nm). This band ratio is then related to [Chl] through a 4th order polynomial.

[log]10(Chl) = a0 +
N∑
i=1

ai

(
log10

(
Rrs(λblue)
Rrs(λgreen)

))i
(2.7)
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Table 2.1 Assumptions, strengths, and limitations of empirical vs. semi-analytical and
PFT algorithms. PFT algorithm summary was taken from Mouw et al. (2017).

Algorithms Assumptions Strengths Limitations

Empirical • All optical constituents covary

with the target parameter

• Easy to implement • Unable to distinguish the influence of

optical constituents that are not cova-

rying with the target parameter

• Requires on-going recalibration as envi-

ronmental change alters the relationship

between the optical and biogeochemical

parameters

Semi-

Analytical

Bottom Up

• Requires bio-optical models

for each component during the

retrieval process and derives

each individual component and

the bulk property simultane-

ously

• Ability to retrieve multi-

ple optical components

• Dependent on empirical coefficients in

the optical relationships inherent optical

properties and the optical constituents

retrieved

• Does not independently retrieve the

spectrum of any component

Semi-

Analytical

Top Down

• Retrieves the bulk property

(total absorption or total back-

scattering) first before decom-

posing into separate individual

components, thus applying

bio-optical models for each

component separately during

the inversion process

• Ability to retrieve multi-

ple optical components

• Ability to independently

retrieve optical compo-

nents

• Dependent on empirical coefficients

in the optical relationships between

the inherent optical properties and the

optical constituents retrieved

PFT

Abundance
• Change in size structure with

change in [Chl] based on genera-

lized relationships

• Easy to implement

• Strong ecological basis

• Primary empirical relationships with

[Chl] that cannot detect regional deviati-

ons

• Unable to distinguish mixed populati-

ons of similar abundance

• Requires on-going recalibration as en-

vironmental change alters phytoplankton

assemblages

• Susceptible to physiological variability

PFT

Radiance

• After normalization to [Chl],

changes in radiance are due

primarily to variability in phy-

toplankton type

• Does not require, or limi-

ted dependence on, derived

products

• Input data (Rrs ) has lo-

wer error than derived pro-

ducts

• Dependent on empirical relationships

between radiance and pigments

• Difficult to discriminate PFTs with

similar normalized radiance signatures

• Susceptible to physiological variability

particularly normalized spectra

PFT

Absorption

• Variability largely the result of

composition and pigment pack-

aging

• Primary variability in absorp-

tion is related to different PFTs

• Not directly dependent on

concentration

• Susceptible to physiological variability

• Small deviations in spectral shape/

magnitude can be difficult to retrieve

• Difficult to discriminate PFTs with simi-

lar absorption signatures

PFT

Scattering

• PSD and bbp have a power-law

shape

• Relative proportions of bio-

volume to total particulate

• Less sensitive to physio-

logical variability

• Includes all particles, not just phy-

toplankton

• Difficult to discriminate PFTs with

similar scattering signatures
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A band difference approach has been introduced to better characterize clear, low [Chl]

water by reducing artifacts associated with residual solar glint, stray light, and atmospheric

correction errors (Hu et al. 2012). The Rrs(λ) difference algorithm, known as the colour index

(CI) employs the difference between three-bands: Rrs(λgreen) and the reference linearly formed

between Rrs(λblue) and Rrs(λred).

CI = Rrs(λgreen)− [Rrs(λblue)+
(λgreen − λblue)
(λred − λblue)

× ((Rrs(λred)− Rrs(λblue))] (2.8)

The band ratio and band difference approaches (Equations 2.7 and 2.8) have been merged

and constitute NASA’s standard [Chl] product. Other empirical approaches include principal

component analysis (Sathyendranath et al. 1994; Craig et al. 2012) of Rrs(λ) that contain explicit

empirical expressions, and artificial neural networks (Schiller and Doerffer 1999; Doerffer and

Schiller 2007) that embed the empirical expressions (and associated coefficients). [Chl] can

also be derived through the use of semi-analytical algorithms with appropriate assumptions on

the phytoplankton [Chl]-specific absorption coefficient (aph/[Chl]) (e.g., Maritorena et al. 2002).

For optically-complex waters, and from sensors with appropriately placed bands (MERIS,

OLCI, MSI), red edge features can be used for derivation of [Chl] (Gower et al. 1999; Gons

2002; Mishra and Mishra 2012; Moses et al. 2012; Matthews and Odermatt 2015). Though not

included commonly in a standard suite of products, open source processors have been made

available for the community to use these methods, including through the Sentinel Application

Platform (SNAP) and Acolite processor for Landsat and Sentinel-2 (Vanhellemont and Ruddick

2018).

2.3.3 Carbon pools

There are a number of pools of carbon in the ocean that can be quantified to varying degrees

of success using satellite ocean colour data. These major pools include particulate organic

carbon (POC), particulate inorganic carbon (PIC), dissolved organic carbon (DOC), and dissolved

inorganic carbon (DIC).

One of the most mature and readily available remotely-sensed parameters in terms of

carbon pools is the concentration of POC. The algorithm of Stramski et al. (2008) is available

as a standard product from NASA, and this algorithm has shown good global performance

in recent algorithm intercomparisons (see Evers-King et al. 2017). This algorithm is based

on a blue/green reflectance ratio, similar to many chlorophyll algorithms, and empirical

approaches typically show similar performance to chlorophyll-a algorithms in global ocean

contexts. As with [Chl] algorithms, estimation of POC in coastal waters can involve more

uncertainty due to the optical complexity of these regions. There are many other experimental

algorithms to derive POC, some of which can be applied as simple empirical relationships

using derived products (e.g., IOPs — particularly bbp , attenuation coefficients, or [Chl]). More

complex methods are in development to incorporate the effects of particle size and type.

Phytoplankton carbon (the portion of POC that is contained within phytoplankton cells), is less

readily quantifiable from satellite. A number of experimental methods have been developed
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but none are routinely included in satellite products (see algorithm intercomparison from

Martinez-Vicente et al. 2017).

Products relating to PIC are mostly centered around the detection of calcite associated

with coccolithophore blooms — one of the primary sources of PIC in the ocean. Due to

their reflective properties, these blooms are relatively easy to distinguish compared to other

phytoplankton types. An algorithm from Balch et al. (2005) is included as a standard product

from NASA.

Dissolved inorganic carbon is the largest active pool of carbon in the ocean and is very

important due to its role in the ocean carbonate buffer system. However, it is also one of

the most difficult to quantify from remote sensing: it has no detectable optical signature so

that ocean colour is used only indirectly through a variable like [Chl]. A variety of experimen-

tal methods have been developed using different combinations of chlorophyll, sea surface

temperature (SST), and salinity derived from remote sensing to estimate DIC, pCO2, and total

alkalinity (Stephens et al. 1995; Sarma 2003; Ono et al. 2004; IOCCG 2006; Shutler et al. 2016).

The DOC pool as a whole does not have a single signal that can be captured by optical

remote sensing. However, the coloured dissolved organic matter (CDOM) component can be

retrieved based on its absorption spectrum, though this is often combined with detritus (which

has a similar spectral signature). There are many algorithms for deriving CDOM, however

currently it is most frequently provided as a product in the form of the absorption coefficient

of CDOM (and sometimes) detritus at a given wavelength. While CDOM and DOC are largely

unrelated at basin/global scales (Siegel et al. 2002), significant relationships are found at

regional scales in coastal/shelf areas, in particular close to estuaries (Vantrepotte et al. 2015),

leading to regional satellite-derived DOC distributions.

2.3.4 Inherent optical properties

Inherent optical properties (IOPs) only depend on the medium, thus are independent of the

ambient light field. Semi-analytical algorithms are developed based on relationships derived

from simplifications to the basic radiative transfer equation (i.e., Equation 2.4) (Gordon et al.

1975; Morel 1980; Gordon et al. 1988; Morel and Gentili 1993). Equation 2.4 indicates at each

wavelength, Rrs(λ) is a function of at least three different variables (aph, adg, and bbp ; or four

variables when adg is split into aNAP and aCDOM ). These variables are linked to biogeochemical

constituents through their mass-specific IOPs, such as the chlorophyll-a specific absorption

and mineral or detrital-specific (back)scattering coefficients. Thus, an inverse solution of

Equation 2.4 requires multiple spectral bands, assumptions on component spectral shapes,

and accurate models of the primary optical relationships.

Various semi-analytical algorithms have been developed, and a comprehensive review of

these can be found in Werdell et al. (2018). Werdell et al. (2018) outline two approaches

for retrieving IOPs: 1) using Rrs(λ) after atmospheric correction and, 2) using Lt(λ), thus

circumventing the need for atmospheric correction. The former is the approach used in

standard processing and will be treated here. Many algorithms have been developed that

invert Equation 2.4 to derive IOPs and/or concentrations of constituents, such as [Chl] or [TSM]
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(total suspended material concentration). The approaches that these algorithms employ can

be divided into two categories: bottom-up strategy (BUS) and top-down strategy (TDS) (Figure

2.9). Both BUS and TDS utilize dependence of bulk IOPs on the spectral shape and magnitude

of the three primary components, either in the visible domain (O’Reilly et al. 1998; IOCCG

2006) or extending into the red-infrared region (e.g., Gitelson 1992; Dall’Olmo et al. 2003;

Binding et al. 2012; Moses et al. 2012). A BUS algorithm requires bio-optical models for each

component during the retrieval process and derives each individual component and the bulk

property simultaneously. Thus, a BUS algorithm does not independently retrieve the spectrum

of any component (Table 2.1). Conversely, a TDS algorithm retrieves the bulk property first

before decomposing it into separate individual components, thus not requiring bio-optical

models for each component during the inversion process. This allows a TDS algorithm to

retrieve the spectrum of some components independently (Table 2.1), which can be used later

to determine various water parameters (e.g., Craig et al., 2006) using additional bio-optical

models. Examples of BUS include linear matrix inversion (Hoge and Lyon 1996; Wang 2005;

Binding et al. 2012), spectral optimization (e.g., Doerffer and Fisher 1994; Bukata et al. 1995;

Roesler and Perry 1995; Lee et al. 1999; Maritorena et al. 2002; Evers-King et al. 2014) and

look-up-tables (LUT) (Carder et al. 1991; Mobley et al. 2005). Examples of TDS include the

Quasi-Analytical Algorithm (QAA) (Lee et al. 2002), the Plymouth Marine Laboratory (PML)

algorithm (Smyth et al. 2006), and the Loisel and Stramski (2000) algorithm based on the

diffuse attenuation coefficient.

The mass-specific absorption and scattering of each constituent vary spatially and tempo-

rally. Thus, individual IOPs cannot be precisely retrieved from Rrs(λ) and can result in regional

and temporal varying uncertainty. A report summarizing the retrieval of IOPs from Rrs(λ), and

the associated difficulties (IOCCG 2006) concluded that the total absorption and backscattering

coefficients are the most reliable parameters that can be retrieved. The absorption spectra of

the individual components are not constant and often overlap each other, thereby reducing

the accuracy of the retrieved individual absorption coefficients (Smyth et al. 2006; Lee et al.

2010), which ultimately affects the derivation of the in-water constituents.

2.3.5 Attenuation coefficient and euphotic depth

The spectral diffuse attention coefficient, Kd(λ), is an apparent optical property (AOP), meaning

that it depends on the ambient light field. Kd(λ) is often used to estimate the depth of the

euphotic zone depth (Zeu) in models of primary production. The first optical depth is regarded

as the depth for which light exiting the ocean is able to be measured remotely (1/Kd(λ)). There

are three approaches for estimating Kd(490). The first is based on empirical relationships

derived from in situ measurements of Kd(490) and blue/green band ratios of Rrs(λ) (Austin

and Petzold 1981; Mueller 2000), or more generally on relationships between Kd(λ) and Rrs(λ)
revealed, for instance, by neural networks (Jamet et al. 2012). The second approach uses

empirical relationships between Kd and [Chl] (Morel 1988; Morel and Maritorena 2001). The

third approach uses a quasi-analytic method that first derives absorption and backscattering

from Rrs(λ) and then uses these coefficients to semi-analytically estimate Kd(λ) (Lee et al.
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2005b). Lee et al. (2005a) compared algorithms representative of these approaches and found

the semi-analytically derived Kd(λ) to perform the best for the broadest range of water types.

2.3.6 Primary production

Net primary production (NPP), or the rate of production of organic carbon (referred to here as

primary production), has been estimated utilizing a variety of satellite inputs with algorithms

that vary considerably in complexity. Two important characteristics define these models: the

way they treat light in the water column, and their representation of phytoplankton physiology.

As far as light is concerned, the most complete models are wavelength-, depth- and time-

resolved (they consider propagation of spectral light through the water column at various

times during the day, Behrenfeld and Falkowski 1997a). Satellite-derived photosynthetically

available radiation (PAR) is now a standard input in that context. In order to be driven

by remote sensing data, algal physiology has been kept relatively simple with a varying

degree of empiricism. The first developed and most widely used satellite primary production

algorithms are based on satellite derived [Chl] as a measure of phytoplankton biomass (and

often accessorily to define light attenuation). In that framework, models have often used

[Chl]-normalized photosynthetic parameters for photosynthesis-irradiance relationships. For

instance, photosynthetic parameters have been defined as a function of temperature (Antoine

and Morel 1996; for the Vertically Generalized Production Model, VGPM Behrenfeld and

Falkowski 1997b) or varying with season and biogeochemical provinces (e.g., Sathyendranath

et al. 1989, 1991). A variety of models and their performance with respect to field data have

been described in Carr et al. (2006) and Friedrichs et al. (2009) and Saba et al. (2011).

Phytoplankton change their cellular [Chl] content to acclimate to their nutrient and light

environment, which is challenging to represent in satellite-based algorithms. To reduce the

uncertainties in primary production estimates inherent in using [Chl], a carbon-based approach

was developed. The carbon-based primary production models utilize satellite-estimated bbp , in

addition to [Chl], PAR, Kd and SST, to estimate phytoplankton carbon biomass which is related

to growth rates from chlorophyll-to-carbon ratios (Behrenfeld et al. 2005; Westberry et al. 2008).

Further, the ‘Carbon, Absorption, and Fluorescence Euphotic resolving’ (CAFÉ) model has been

developed that takes advantage of several recent remote sensing advances allowing for the

use of phytoplankton absorption, particulate backscattering and phytoplankton carbon to

estimate NPP. Net primary production is calculated by the CAFÉ model as a product of energy

absorption and the efficiency by which absorbed energy is converted into carbon biomass,

while growth rate is calculated as NPP normalized to carbon biomass (Silsbe et al. 2016).

2.3.7 Phytoplankton functional types

A variety of approaches have emerged that attempt to discriminate ‘phytoplankton functional

types’ (PFTs), which include algorithms retrieving phytoplankton size classes (PSC), phytoplank-

ton taxonomic composition (PTC) or particle size distribution (PSD). In this way, a PFT is an

aggregation of phytoplankton, where irrespective of their phylogeny, they share similar biogeo-

chemical or ecological roles. PSC, PTC and PSD serve as a further refinement of PFTs, where the
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choice of the considered functional type depends on the question at hand (Mouw et al. 2017).

Here we highlight the primary PFT algorithm types and output products (for a comprehensive

review, see IOCCG 2014 and Mouw et al. 2017). Determination of phytoplankton functional

types has taken advantage of both empirical and semi-analytical approaches discussed above.

PFT algorithms are classified according to their theoretical basis, and include abundance-,

radiance-, absorption-, and scattering-based approaches. Abundance-based algorithms use

[Chl] as a satellite input and are based on the general observation that in the global open ocean,

a change in [Chl] is associated with a change in phytoplankton composition or size structure.

Radiance-based algorithms classify PFTs based on the shape and/or magnitude or the satellite-

observed Rrs(λ). Radiance-based approaches assume that, after normalization, changes in

radiance coincide with changes in PFT composition, as opposed to other in-water constituents

such as CDOM or NAP that may or may not co-vary with phytoplankton. The majority of the

existing PFT approaches are absorption-based, where there is some level of dependence on the

spectral magnitude or shape of phytoplankton absorption. The magnitude of aph(λ) is related

to pigment composition and total pigment concentration, dominated by [Chl] at the peak

wavelength (for oceanic waters) of 443 nm. Size information is contained in the absorption

spectrum due to pigment packaging (e.g., Bricaud and Morel 1986). Some of the approaches

utilize chlorophyll-specific phytoplankton absorption in which phytoplankton absorption is

normalized to [Chl] (Bracher et al. 2009; Mouw and Yoder 2010; Sadeghi et al. 2012; Roy

et al. 2013), either for a specific wavelength or to derive a spectral shape or slope that is

related to second order signals including pigment composition and packaging. Backscattering

approaches retrieve information on all particles rather than just phytoplankton. Generally,

the backscattering coefficient decreases according to a power law function with increasing

wavelength (Montes-Hugo et al. 2008; Kostadinov et al. 2009). Smaller particles have a greater

backscattering slope (η) than larger particles (Table 2.1). Recent approaches have sought to

include the effects of phytoplankton size and structural properties on both absorption and

backscattering properties within semi-analytical, spectral optimization algorithms (Evers-King

et al. 2014; Lain et al. 2017).

The satellite phytoplankton functional type algorithm products or outputs vary by the

algorithm type. The PSC output is most commonly grouped as pico- (0.2-2 µm), nano- (2-20

µm), and/or microplankton (>20 µm) following the size classification scheme proposed by

Sieburth et al. (1978). However, a few models allow for multi-component size classes not

constrained by the traditional size groupings (Roy et al. 2013; Brewin et al. 2014). The PSD

satellite output (Kostadinov et al. 2009; Kostadinov et al. 2010; Roy et al. 2013) can conform

to the Sieburth et al. (1978) size classification. The PTC algorithms (Alvain et al. 2005, 2008;

Bracher et al. 2009; Hirata et al. 2011; Sadeghi et al. 2012; Ben Mustapha et al. 2014) have a

variety of outputs, dictated largely by the information available from in situ calibration and/or

validation datasets.

Products that require additional satellite data sets include primary production (see Section

3.3.5) and PFTs that are ecologically based (e.g., Raitsos et al. 2008; Palacz et al. 2013). The

ecologically-based PFT estimates require additional physical and spatio-temporal information.

Raitsos et al. (2008) incorporated geographical, temporal, biological, physical and bio-optical
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information into neutral networks, to discriminate four major functional types (diatoms,

dinoflagellates, coccolithophores and silicoflagellates). Likewise, Palacz et al. (2013) used

artificial neural networks to estimate four PFTs (diatoms, coccolithophores, cyanobateria, and

chlorophytes) from satellite estimated SST, PAR, wind speed, and chlorophyll, and model

assimilated mixed layer depth, neglecting geographic and temporal information.

2.3.8 Product availability

Satellite imagery is classified by “levels” which describe the extent of processing that has

taken place (Table 2.2). Level-0 data are top-of-atmosphere radiance, raw from the sensor

and unprocessed (instrument-specific digital counts and file formats). Level-1 data consist

of top-of-atmosphere geophysical units (Lt(λ)) that are time referenced and radiometrically

and geometrically calibrated. Level-2 products consist of atmospherically corrected Rrs(λ),
as well as derived geophysical parameters, such as IOPs, and [Chl], among others. At Level-3,

the derived products are aggregated, composited, and/or projected into a spatial grid over

a defined time period. Thus, Level-3 products consist of daily, 8-day, monthly, annual, etc.

time composites that are projected onto a grid. Level-4 data are model output or results from

the analysis from multiple sources of data. Primary productivity is an example of a Level-4

product. In relating these levels to the tiers presented in Figure 2.8, Level-1 and tier-1 are

equivalent. However, tiers two through five in Figure 2.8 would fall into Level-2 here, until they

are aggregated over space and time, at which time, they would be considered Level-3. Tier six

from Figure 2.8 would fall into Level-4 here as they require additional satellite products to be

able to be derived.

Table 2.2 Summary of satellite ocean colour imagery processing levels.

Level Processing Example Products

0 Raw Spectral top-of-atmosphere radiance

1 Time referenced, radiometrically and geometrically

calibrated TOA radiance

Lt(λ)

2 Atmospheric correction and algorithms are applied

for the derivation of geophysical parameters

Rrs(λ), [Chl], Kd(λ), PIC, POC, PAR, a(λ),
bb(λ), aph(λ), adg(λ), bbp(λ)

3 Aggregated and/or projected into a spatial grid over

a defined time period

Same as for Level-2, but projected and com-

posited to various time periods: daily, 8-day,

monthly, annual, etc.

4 Model outputs or products derived from multiple

measurements

Primary Production

The level of maturity of products varies. Considering their historical use and percei-

ved maturity, Rrs(λ), [Chl], Kd(490), and PAR are usually the primary standard products

for all space agencies, while at least some IOPs have been increasingly considered. ‘net-

CDF’ is now considered the standard file format for distribution. These products are hos-

ted by the agency/institution responsible for the respective missions/products (Table 2.3).

While numerous products can be found at the respective websites in Table 2.3, the mo-
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delling community could benefit from improved ease of access of the imagery through

the use of services that host a large collection of datasets, such as Environmental Re-

search Divisions Data Access Program (ERDDAP, https://upwell.pfeg.noaa.gov/erddap/index.html)

and Unidata’s Thematic Real-time Environmental Distributed Data Services (THREDDS, https:

//www.unidata.ucar.edu/software/thredds/current/tds).

Table 2.3 Satellite ocean colour imagery online access (note: IOCCG has mission specific
data access links at: http://ioccg.org/resources/data/).

Agency Data Distribution URL

NASA Ocean Color Web https://oceancolor.gsfc.nasa.gov/

Ocean Productivity https://www.science.oregonstate.edu/

ocean.productivity/

NOAA CoastWatch https://coastwatch.noaa.gov/

EUMETSAT EUMETSAT broadcast delivery system

(EUMETCast)

https://www.eumetsat.int/website/home/

Data/DataDelivery/EUMETCast/

EUMETSAT EUMETSAT Data Centre https://www.eumetsat.int/website/home/

Data/DataDelivery/EUMETSATDataCentre/

index.html

EUMETSAT

and ESA

Copernicus Online Data Access (CODA)

and SciHub

https://coda.eumetsat.int

https://scihub.copernicus.eu/

European Com-

mission

Copernicus Marine Environmental

Monitoring Service

http://marine.copernicus.eu/

ESA and PML Ocean Colour – Climate Change Initiative

(OC-CCI)

https://www.oceancolour.org/

ACRI-ST GlobColour http://globcolour.info/

There are also many products that have not yet been incorporated into the standard data

distribution streams, such as phytoplankton functional types (see Mouw et al. 2017 for a list of

PFT imagery product availability), phytoplankton pigments, and various carbon pools. Many of

these are considered developmental and under continued investigation. Some of these imagery

products have been deposited into public archives by their developers.

The various space agencies that have launched these missions also maintain software for

processing, viewing, analysis and quality control of their missions. These include NASA’s Sea-

WiFS Data Analysis System (SeaDAS, https://seadas.gsfc.nasa.gov/) and ESA’s Sentinel Application

Platform (SNAP, http://step.esa.int/main/download/). There is also image processing and visualiza-

tion software available through the United Nations Educational, Scientific and Cultural Organi-

zation’s (UNESCO) Bilko (http://www.bilko.org/, as well as several online imagery visualization

websites, including NOAA’s Ocean Colour Viewer (https://www.star.nesdis.noaa.gov/sod/mecb/color/),

NASA’s Goddard Earth Sciences Data and Information Services Interactive Online Visualization

and Analysis Infrastructure (GIOVANNI, https://giovanni.gsfc.nasa.gov/giovanni/), NASA’s State of

the Ocean (https://podaac-tools.jpl.nasa.gov/soto), NASA’s Worldview (https://worldview.earthdata.

nasa.gov/), and the on-line tools from the European Space Agency’s Ocean Colour-Climate

Change Initiative (https://www.oceancolour.org/), among others.

https://upwell.pfeg.noaa.gov/erddap/index.html
https://www.unidata.ucar.edu/software/thredds/current/tds
https://www.unidata.ucar.edu/software/thredds/current/tds
http://ioccg.org/resources/data/
https://oceancolor.gsfc.nasa.gov/
https://www.science.oregonstate.edu/ocean.productivity/
https://www.science.oregonstate.edu/ocean.productivity/
https://coastwatch.noaa.gov/
https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETCast/
https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETCast/
https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html
https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html
https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html
https://coda.eumetsat.int
https://scihub.copernicus.eu/
http://marine.copernicus.eu/
https://www.oceancolour.org/
http://globcolour.info/
https://seadas.gsfc.nasa.gov/
http://step.esa.int/main/download/
http://www.bilko.org/
https://www.star.nesdis.noaa.gov/sod/mecb/color/
https://giovanni.gsfc.nasa.gov/giovanni/
https://podaac-tools.jpl.nasa.gov/soto
https://worldview.earthdata.nasa.gov/
https://worldview.earthdata.nasa.gov/
https://www.oceancolour.org/
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2.3.9 Product Selection

How does a user choose the best satellite imagery product for a given region and/or application?

Standard products i.e., those that space agencies routinely provide at Level-2 and -3, are always

a safe selection for broad scale applications as they have undergone the most extensive

validation. However, this does not mean they are without uncertainties (see Section 2.4). When

working regionally, or in coastal and inland waters, regionally tuned and validated products

will often have less uncertainties and are recommended if a study is specific only to that region.

However, access to these products are not uniform across various regions, thus requiring

specialized data processing by the end user.

When confronted with the choice of different products, a user will likely consider the

characteristics that are best for the specific application, for instance, spectral properties or

time/space resolution and coverage. For example, for event-scale processes such as coastal

algal blooms, a daily Level-1 or -2 product may be most appropriate, while for time series

analysis of a large-scale climate phenomenon, a merged Level-3 data set may be a better choice.

It is also worth considering the assumptions that are underlying all ocean colour products,

since these might be a limiting factor in downstream applications. For instance, spectral

relationships embedded in algorithms might restrict the possibility of interpreting products

for the detection of water types or PFTs. Some modellers might favor suites of products

that are fully consistent (for instance, respecting the conservation of energy). Researchers

involved in climate research might refrain from using merged products when the merging

procedure does not account for inter-mission biases. Algorithms that have gone through a

thorough validation process and products going through quality checks should certainly be

preferred. For the same reasons, the availability of uncertainty estimates associated with

products will likely become a factor of choice, and a requirement for some applications. In

that context, high uncertainty estimates do not conflict with a high quality for the product

itself if a complete and realistic uncertainty budget has been constructed. Finally, products

with a full and clear documentation that are readily accessible in known formats should have a

competitive advantage, while dialogue between data providers and users might also direct a

proper selection of products.

Given each ocean colour mission sensor has a finite operational lifetime, combining diffe-

rent ocean colour missions to produce a consistent time series is crucial for any long-term

study. Each mission differs in their design, capability, and sampling. Different satellite ocean

colour sensors have, for example, different band locations, band widths, radiometric sen-

sitivities and orbit. For standard products, there have been efforts to merge imagery from

multiple platforms. This allows for reduced impact of cloud cover and better statistical repre-

sentation when multiple days or longer are composited together. The Ocean Colour – Climate

Change Initiative (OC–CCI, Table 2.3) provides multi-sensor (MERIS, Aqua-MODIS, SeaWiFS and

VIIRS) merged, consistent, uncertainty-characterized, global satellite essential climate data

products. Other predecessor efforts to merge multiple missions included GlobColour (Table

2.3) and MEaSURES (Making Earth Science Data Records for Use in Research Environments,

http://wiki.icess.ucsb.edu/measures). MEaSURES merged SeaWiFS, MERIS and Aqua-MODIS and is

http://wiki.icess.ucsb.edu/measures


Ocean Colour Remote Sensing Overview • 25

periodically updated. GlobColour is active and merges SeaWiFS, MERIS, Aqua-MODIS, VIIRS,

and OLCI over a variety of temporal and spatial resolutions. However, there are challenges

when merging several missions together. For example, SeaWiFS, MODIS, MERIS, and VIIRS can

provide ∼20 years of chlorophyll data. However, each instrument has different mission and

sensor designs. These include different band locations and widths, radiometric sensitivities

and capabilities, as well as orbital crossing times. These differences make the research that

relies on several sensors, including the detection of trends, very challenging.

The effects that discrepancies between missions have on the detection of trends in chlo-

rophyll have been noted in several studies (e.g., Gregg and Casey 2010; Mélin 2016). Gregg

and Casey (2010) showed that global median chlorophyll from SeaWiFS and MODIS differed by

12.2% and that these discrepancies exceeded the maximum observed interannual variability

globally, and in major oceanographic regions. Mélin (2016) found that the assessment of

trends can be impacted by drift in the chlorophyll time series resulting from sensor functions.

By comparing the slopes of the linear regressions from varying levels of inter-mission bias

and drift between SeaWiFS and MODIS for a 15-year period, they found that a threshold on

bias exceeding 2% can lead to error in trend detection. They also noted that these findings

are regionally specific with low chlorophyll regions having particularly high sensitivity to

inconsistency between sensors.

Figure 2.10 Comparison of four representations of chlorophyll trend maps in units of
percent per year (except lower left which is mg m−3 yr−1). Redrawn using data from Gregg
and Rousseaux (2014).

Previous studies have attempted to create consistent multi-mission chlorophyll time series

(Gregg and Conkright 2002; Antoine et al. 2005; Martinez et al. 2009; Mélin 2016). For example,

Gregg and Rousseaux (2014) integrated three diverse methodologies to provide a consistent

and complete global representation, free of sampling biases. They combined ocean colour



26 • Synergy Between Ocean Colour and Biogeochemical/Ecosystem Models

data from multiple satellites (SeaWiFS, MODIS-Aqua), bias correction methods based on in situ

data, and data assimilation. The bias correction approach, the Empirical Satellite Radiance-In

Situ Data (ESRID) approach, uses relationships between satellite water leaving radiances and

in situ chlorophyll data. ESRID applies the standard processing bio-optical algorithm after

processing completion, using satellite water leaving radiances, and in situ chlorophyll. Using

this method, Gregg and Rousseaux (2014) demonstrated that this approach was one way to

provide a consistent, multi-mission, satellite ocean colour record, and that the trends they

observed agreed with previous studies (Figure 2.10).

2.4 Uncertainty

As described in the previous sections, ocean colour remote sensing functions as a multi-tiered

system where uncertainties tend to accumulate at each processing step (e.g., Matthews et al.

2013, their Figure 2.7), from the calibration of the radiometric signal into the TOA radiance,

Lt(λ), the calculation of the remote sensing reflectance, Rrs(λ), after atmospheric correction,

to the application of algorithms computing optical properties and concentrations of optically

significant constituents or more advanced products such as primary production or PFTs

(Sections 3.1 and 3.3). IOCCG (2019) provides a complete review of the many sources of

uncertainties affecting ocean colour products, a summary of which is given here. The main

contributors to uncertainty are from an imperfect atmospheric correction and the relationships

between Rrs(λ) and IOPs, both of which are further exasperated in optically-complex coastal

waters.

Unaccounted atmosphere effects are a major source of uncertainty in TOA radiance.

The process of atmospheric correction relies on a faithful representation (optical properties,

vertical structure) of atmospheric constituents (gas, aerosols) and identification of challenging

conditions such as the presence of clouds, either obstructing the field-of-view or affecting

neighboring pixels (stray light, shadows). The atmospheric correction must also deal with

specific characteristics of the water surface, such as specular reflection (sun glint) or the

presence of white caps and bubbles. The presence of sea ice, floating macroalgae, post-bloom

surface scums or coccoliths are other phenomena that might affect surface conditions while

being challenging to interpret with standard algorithms. The atmospheric correction procedure

in the nearshore is further complicated by the potential presence of absorbing aerosols such

as smoke, dust, and anthropogenic emissions (e.g., NO2 and CO2, Tzortziou et al. 2013) and by

possible adjacency effects due to land (Bulgarelli et al. 2014), and the impact of the bottom in

optically shallow waters.

The relation between Rrs(λ) and IOPs through analytical expressions (such as Equation 2.4)

are simplifications relying on various assumptions. Bulk IOPs result from the optical properties

associated with a constantly evolving myriad of particles of complex shapes and of dissolved

samples, and are therefore a very simplified representation of nature. Even though large

progress has been achieved, a more detailed budget of backscattering by water constituents co-

vering orders of magnitude in size, is still needed (Stramski et al. 2004). Bio-optical algorithms
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often rely on assumptions about the relations between IOPs and concentrations of optically

significant constituents (e.g., the link between aph(λ) and [Chl], or between bbp(λ) and [TSM])

and about the spectral shape of IOPs. There are large variations in these model parameters in

natural waters, as a function of particle characteristics, chemical composition, algal species

and status. An abundant literature with descriptions of specific optical parameterizations

for the various constituents exists (see reviews in Blough and Del Vecchio 2002; Twardowski

et al. 2004 or Berthon et al. 2008). For the same reasons, purely empirical algorithms relating

Rrs(λ) to concentrations of optically significant constituents (like [Chl]) or IOPs) are not able to

capture the full extent of natural variability.

Coastal and inland waters present specific challenges (Mouw et al. 2015): in these regions,

optically significant constituents (OSC) often vary independently, requiring improved spectral

and radiometric resolutions, while physical drivers such as tides and geographic boundaries

set up different spatial and temporal scales compared to the open ocean, requiring impro-

ved spatial resolution than what is currently provided by existing space-based assets. The

independently varying optical constituents also present challenges for algorithms. Empirical

algorithms often assume the targeted parameters being retrieved co-vary with the other OSCs

present. Semi-analytical algorithms are more flexible to consider independent changes between

parameters, but there are still empirical coefficients associated with the underlying optical

relationships that may not represent well the variability of the system. Thus, algorithms

developed for coastal and inland waters need to consider the regional and temporal differences

in mass-specific optical properties. With this in mind, blended approaches that utilize a variety

of algorithms and choose those that produce the least uncertainty in various water types are

advantageous in optically diverse waters (Moore et al. 2001, 2014; Palmer et al. 2015).

Additionally, there are uncertainties associated with the editing process happening between

Level-2 and Level-3. When binned into a grid-sized point, pixels might cover only a part of

the related surface, limiting the information content. The same phenomenon is at play when

combining relatively high-resolution data onto coarser grids. Locally, daily Level-3 data are

often based on one satellite pass (for polar-orbiting platforms), which in reality is a snapshot

(around local noon) of the period. Finally, the creation of a time composite (typically weekly or

monthly) often relies on a limited number of so-called daily data, leaving open the question of

what the time composite would be if it were constructed with a full temporal sampling. So,

while the process of averaging data tends to reduce the uncertainties at Level-3 (averaging

out non-systematic errors), the way incomplete information is combined in space and time

might increase uncertainties. Finally, when combining data from different missions, systematic

effects at the level of a whole mission may introduce artefacts in the merged series and impact

trend analyses (Mélin 2016). Overall, uncertainty propagation in the creation of Level-3 data is

a complex and insufficiently characterized process that requires an extensive knowledge of

covariance fields.

So far, estimates of ocean colour data uncertainties have mostly depended on validation

studies where satellite products are compared with field observations through a well-defined

protocol (see IOCCG 2019). A fairly robust body of knowledge has been accumulated on

validation results even though the global ocean is still unevenly sampled, particularly for
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AOPs and IOPs. As for Rrs(λ), root-mean-square (RMS) differences between field and satellite

data usually decrease with wavelength, with values in the blue mostly in the range 0.0008 –

0.0025 sr−1 (Mélin and Franz 2014). Mean absolute relative differences show large variations,

only rarely close to 10%, but sometimes exceeding 10’s of %. Spectrally, they usually show

a horse-shoe shape, with values in the blue and red bands inversely related to Rrs(λ) (e.g.,

being high in the blue for low-Rrs absorbing waters). Validation studies at the scale of the

global ocean have converged on RMS differences of the order of 0.3 (in log10 units) for [Chl]

from standard algorithms (Gregg and Casey 2004) but these results exhibit spatial variations

as Chl-specific IOPs vary across regions (Szeto et al. 2011). An abundance of literature

shows that differences can be much higher in coastal, optically-complex, regions. Results

obtained for IOPs depend on the IOP and wavelength considered together with the water

type. In a large validation study, Brewin et al. (2015) documented RMS differences between

log-transformed in situ data and algorithm outputs of approximately 0.2 at 412 nm and 0.15

at 490 nm for the absorption coefficients, with higher differences when total absorption is

partitioned in component absorption. It is important to note that validation statistics provide

imperfect estimates of uncertainties, considering that they are influenced by the issue of

representativeness (satellite and field data may be registered at different times and differ

largely in their spatial scales) and by the uncertainties of the field data.

It is now well accepted that ocean colour products should be accompanied by uncertainty

estimates (and several products are now hosted with associated estimates) and there is

currently a strong emphasis on development of relevant techniques and the integration

of metrological principles in this field. At present, the available approaches rely on limiting

assumptions and consider only some of the sources of uncertainties. To reach a full uncertainty

budget with traceability to standards, all the sources should be included and the various

uncertainty contributions should be properly distinguished to allow the propagation of the

uncertainty fields to higher level products (Level-3 or -4). The amount of information needed

to describe the uncertainty fields to users varies across applications. An uncertainty estimate

informs on “the dispersion of the values that could reasonably be attributed to a measurand”

(GUM 2008) so that its description can go from a single value to a complete probability

distribution function. Similarly, the treatment of uncertainty propagation in space and time

may require covariance information, which may induce a large increase in data-file size.

Biogeochemical modelling is likely to be among the user communities most interested in

a fairly complete description of uncertainty fields, for instance for the purpose of data

assimilation (e.g., Ford and Barciela 2017).

2.5 Future Capability

2.5.1 Mission capability

As we look to the future, the most recently launched missions, the Sentinel-3 platforms with

the Ocean and Land Colour Instrument (OLCI), will be depended upon as the workhorse ocean

colour missions as other assets on orbit age out. It is anticipated that our ocean colour sensing
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ability into the 2030’s, and potentially beyond, will be reliant on OLCI from Sentinels-3A

to -3D (Sentinel-3A and -3B were launched February 2016 and April 2018, respectively with

two more flight units, Sentinel-3C and -3D, scheduled). Beyond these current and planned

Sentinel-3 platforms, there are several future missions planned (see Table 6 in Werdell et

al. (2018) and http://ioccg.org/resources/missions-instruments/scheduled-ocean-colour-sensors/) that

expand spectral, spatial, and temporal shortcomings of the current instrument suite.

Ocean colour missions fall under three categories: 1) high spatial, 2) moderate spatial, and

3) geostationary. High spatial resolution sensors are polar orbiting and provide global coverage,

but at infrequent repeat times (10 days or more). Moderate resolution sensors are also polar

orbiting and have comprised the majority of past ocean colour missions. Geostationary

missions only observe a particular region of the Earth, but at multiple times per day, allowing

investigations into diurnal processes. The planned Plankton, Aerosol, Cloud, ocean Ecosystem

(PACE) mission will extend the current moderate spatial resolution, polar-orbiting capability by

substantially increasing spectral resolution. The timeframe for the start of the PACE mission

is anticipated to be in the 2022/2023 timeframe.

There were missions in planning that greatly expanded temporal and spatial resolution,

including the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission (95◦W,

375 m resolution, possibly hyperspectral, Fishman et al. 2012; Salisbury et al. 2017) that

was envisioned to greatly expand temporal resolution, in addition to expanding the number

of spectral bands, allowing for multiple images of the same location several times per day.

This is highly important for capturing the short-term dynamics found in coastal and inland

environments. The Korean COMS mission carrying the Geostationary Ocean Colour Imager

(GOCI), centered over 130◦E, has demonstrated significant improvement in observing diurnal

variability with a similar band suite as many of the heritage sensors (Wang et al. 2013). A

second GOCI instrument is planned for launch in early 2020. The Hyperspectral Infrared

Imager (HyspIRI) was also in the planning phase and was envisioned to greatly expand both

spatial (60 m) and spectral resolution (hyperspectral), but at a 16-day revisit (Devred et al.

2013), allowing it to be most valuable for observing slow-changing properties such as benthic

type and bottom depth (Figure 2.4). The planned implementation of the GEO-CAPE and HyspIRI

missions has halted and the missions are being reimagined under the broad umbrella of

surface biology and geology guided by the recommendations of the most recent Decadal

Survey for Earth Observations from Space (National Academies of Sciences and Medicine 2018).

Other high spatial resolution missions that are proceeding with planning include a second

OLI sensor on Landsat-9, and the German mission ‘Environmental Monitoring and Analysis

Program’ (EnMAP), with 30 m spatial resolution.

2.5.2 Future products

With the anticipated expansion of spectral, spatial, and possibly temporal resolution, an

expansion and refinement of products is anticipated. Many algorithm approaches are at an

advanced stage where they could be more readily included into standard processing, such

as POC concentrations, and merged [Chl] based on optical water types. It is anticipated that

http://ioccg.org/resources/missions-instruments/scheduled-ocean-colour-sensors/
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future mature products will allow for improved/expanded phytoplankton functional types and

pigment discrimination with improved spatial resolution. Additionally, parameters related

to phytoplankton physiology are anticipated to expand and improve as a result of expanded

spectral resolution near the region of phytoplankton fluorescence. Improved uncertainty in

aCDOM products, and the ability to discriminate the spectral slope of aCDOM (Grunert et al.

2019), is anticipated by expanding spectral observations to shorter wavelengths. This will

also result in improved discrimination of all other IOPs and products further downstream,

such as phytoplankton functional types, and pigments and carbon pool products (such as PIC

and phytoplankton carbon concentrations). The uncertainty of all products is anticipated to

improve.

2.6 Recommendations

The following recommendations are anticipated to better facilitate the ease of product access,

product selection, and new product development that can be of use to the modelling commu-

nity:

v Continued development and support of future satellite missions that expand spectral,

spatial and temporal resolution, allowing for product improvement and new product

development.

v Expand merged products, not only to merge products in time, but also in space (i.e.,

blended products where the most suitable regional algorithm is selected and combined

to form a single output).

v Improve the ease of access of the imagery through the use of Environmental Research

Divisions Data Access Program (ERDDAP, https://upwell.pfeg.noaa.gov/erddap/index.html)

and Unidata’s Thematic Real-time Environmental Distributed Data Services (THREDDS,

https://www.unidata.ucar.edu/software/thredds/current/tds/).

v Encourage greater sharing of community-derived custom data products through open

data principles and services.

v Provide greater transparency on the products through more documentation.

v Develop ocean colour methods and algorithms that employ additional hydrographic and

biogeophysical information on environmental conditions.

v Provide additional information on data product uncertainties.
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NOTE: In this report, the word “model” refers to process-based three-dimensional biogeochemical/

ecosystem computer models at large regional or global scales.

The purpose of this chapter is to introduce scientists (particularly the ocean colour community) to

the theory, practicalities of implementation and uses of biogeochemical/ecosystem models. We attempt

to do this with limited amount of jargon. We include a table (Appendix 3) with definitions of some of

the field’s technical phrases and acronyms (some of which we cannot avoid using in this chapter and

elsewhere in the report). Our treatment of the subject is, by design, brief so as not to be overwhelming,

and is therefore not intended to be exhaustive.

We have used “biogeochemical” and “ecosystem” modelling in the report title to signify that we

are encompassing models with different interests. In the modelling community, “biogeochemical

models” are distinguished from “ecological models” by their focus on the processes that are most

relevant: biogeochemical cycles as opposed to biology/ecology of organisms. This is, however, a blurry

delineation, as ecological models require the underlying biogeochemistry, and biogeochemistry models

require at least some parameterization of ecosystem. Biogeochemical models may have more focus on

the cycling of elements such as carbon (e.g., air-sea flux of carbon dioxide). Ecosystem models might

ask questions such as why different organisms live in specific geographic locations, why certain types

can live together and, how biodiversity is controlled, and what controls global fish distributions.

We provide a brief overview of models (Section 3.1), followed by a more in depth section on the

concepts, and basic building blocks of biogeochemical/ecosystem models (Section 3.2). Section 3.3

deals with how modellers have treated natural light, and, in particular, some of the new developments

to include radiative transfer calculations, absorption and scattering, and spectral-resolved light. Section

3.4 provides a brief description of some of the types and uses of biogeochemical/ecosystem models.

The final Section (3.5) provides some insight into choosing models and model output for specific studies.

3.1 Introducing the Theory, Practicalities of Implementation and

Uses of Biogeochemical Models

Marine biogeochemical and ecosystem models are composed of various components covering different

aspects of the natural systems they capture (Figure 3.1). Most biogeochemical and ecosystem models

include the physical environment (temperature, salinity and circulation of the ocean), the cycling of

inorganic and detrital matter (biogeochemistry), and the explicit representation of some portion of the

living component of the ocean (e.g., phytoplankton, zooplankton). In this report we will refer to models
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that include the physics, chemistry and biology of the ocean as biogeochemical and/or ecosystem

models. This is by no means a unique definition, but one that we use here to distinguish from other

models such as habitat models.

Figure 3.1 Anatomy of a biogeochemical/ecosystem model. Models capture the 3-
dimensional physics (including the flow of water), altering distribution of inorganic
nutrients (such as nitrate) and components of the marine ecosystem (e.g., phytoplankton
biomass and Chl distributions). (a) surface speed (m s−1) showing currents and eddies; (b)
global integrated overturning circulation (Sv) showing the importance of the vertical flow
in transporting mass with depth and latitude; (c) temperature (◦C); (d) nitrate (mmol N
m−3); (e) Chl-a (mg m−3) with the deep maximum showing as a thin line at about 100–150
m through the tropical regions. (c)–(e) illustrate the 3-dimensional nature of the ocean
that cannot as yet be captured from satellites. The model highlighted here has physical
fields (e.g., temperature, speeds) from the project for Estimating the Circulation and
Climate of the Ocean (ECCO2 physical model at 18 km resolution, Menemenlis et al. 2008).
These physical fields (as well as explicit three-dimensional velocities and mixing variables)
are used to move and mix the biogeochemical (nutrients, organic matter) and ecosystem
(diverse plankton community) variables.

The circulation of the ocean is essential for re-distributing the inorganic and organic pools. As such

biogeochemical/ecosystem models must include a representation of currents, mixing, temperature,

salinity and density. Patterns of upwelling and vertical mixing are particularly important for controlling

the supply of nutrient-rich deep waters to the well-lit euphotic zone to fuel phytoplankton growth (see

e.g., Figure 3.1d).

Biogeochemistry is formally defined as the quantification of chemical species exchanged between

reservoirs of the Earth system, along with transformations within these reservoirs, both being mediated

by biological activity. Cast within the context of the marine environment, the discipline focuses on

the cycling of carbon and nutrients (Si, N, P, Fe) between the living and dead organic and inorganic

compartments of the ocean.

Ecosystem components of biogeochemical/ecosystem models represent how inorganic matter is

converted into organic matter, and most resolve at least part of the marine foodweb. The ocean biology

re-positions elements such as C, N, Si, P by consuming them as nutrients in the surface and sinking

as part of the detrital matter to depth where they are remineralized (i.e., returned to inorganic form).

Some models parameterize this “biological pump” based solely on this re-positioning of inorganic

nutrients rather than incorporating explicit food webs (e.g., Matsumoto et al. 2004; McKinley et al.



Biogeochemical And Ecosystem Models: What Are They And How Can They Be Used? • 33

2004). However, most models specifically consider the flow of elements (e.g., nitrogen) as they go

from inorganic nutrients (N), to phytoplankton (P), to zooplankton (Z), how organic matter lands in a

non-living organic pool (detritus, D), and how it is remineralized back to the inorganic pool. These are

known as NPZD models (Riley 1946; Fasham et al. 1990; Franks 2002) (Figure 3.2).

Figure 3.2 Schematic of typical ecosystem components of models. Matter is followed
from an inorganic pool (nutrients, N) while it is taken up by phytoplankton (P), which are
in turn consumed by zooplankton (Z). Both phytoplankton and zooplankton produce non-
living organic matter (detritus, D) through excretion, death and sloppy feeding. Detritus
is remineralized back to the inorganic nutrient pool.

With increased computer power and better understanding of the processes, there has been an

evolution of models to include multiple nutrients, multiple phytoplankton types (e.g., Chai et al. 2002;

Aumont et al. 2003; Moore et al. 2004; Follows et al. 2007), bacterial and virus dynamics to better

resolve microbial food webs (e.g., Weitz et al. 2015; Zakem et al. 2018), and multiple zooplankton types

to better resolve grazing controls on phytoplankton and energy flow from phytoplankton to fish (e.g.,

Stock et al. 2014b). More recently, physics, plankton and fish/fisheries models have been combined to

form “end-to-end” models (Rose et al. 2010), although often outputs from a biogeochemical/ecosystem

model are used to drive fish models (e.g., Cheung et al. 2010; Lefort et al. 2015; Watson et al. 2015).

There are, however, a growing number of fully integrated plankton and fish food web models (e.g.,

Kearney et al. 2012; Aumont et al. 2018). In this report we will not focus on these latter end-to-end fish

models, but rather on those that capture only the biogeochemistry and the lower trophic levels (see

Section 3.4).

Biogeochemical/ecosystem models often employ a highly simplified grouping of organisms which

perform major functions in biogeochemical cycles. These groupings are often referred to as plankton

functional types (PFTs) (Baretta et al. 1995; Le Quéré et al. 2005; Hood et al. 2006; IOCCG 2014).

Organism size is frequently used to differentiate between different PFTs. Examples of typical PFTs

include calcifying phytoplankton (e.g., coccolithophores), silicifying phytoplankton (diatoms), nitrogen

fixers (diazotrophs) and small and large zooplankton. Models which require more diversity frequently

adopt a trait-based approach (see e.g., Barton et al. 2016). A trait is any quantitative organism

characteristic that affects growth, reproduction or survival (e.g., resource acquisition and growth rates)

that can be compared across species (McGill et al. 2006). Size is a specific trait that can be used in

models (e.g., Ward et al. 2012). The fitness of different organisms along environmental or biological
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gradients is tied mechanistically to their functional traits and their trade-offs.

Many biogeochemical and/or ecosystem models use the standard Redfield elemental ratios (C:N:P

= 106:16:1) of organisms and fluxes within the marine food-web (Redfield 1934; Redfield et al. 1963).

This simplification allows models to use a single “currency” (e.g., carbon, nitrogen or phosphorus).

Uptake of other elements are assumed to be in the Redfield ratio with this base currency. This

greatly reduces computational costs. However, there are significant deviations around this Redfield

stoichiometry (Martiny et al. 2013). Better understanding of the drivers of these deviations has enabled

the development of a growing number models with dynamic stoichiometry (Baretta-Bekker et al. 1997;

Pahlow and Oschlies 2009; Ward et al. 2012; Daines et al. 2014). This dynamism comes with a

computational cost: a tracer is needed for each element within each plankton type, rather than tracking

a single nutrient currency for each. Chlorophyll is usually also included within the models, often with

dynamic chlorophyll-to-carbon ratios (Geider et al. 1997; Geider et al. 1998), often specifically so this

model output can be compared to ocean colour products (see Chapter 4).

The level of complexity of each biogeochemical/ecosystem model primarily reflects 1) the objectives

of the model; 2) computational constraints; and 3) constraints imposed by the boundaries of ecosystem

science and understanding. Most of the ecological resolution will be allocated to those processes

relevant to the primary objective of the model (deYoung et al. 2004). For example, a model designed

to understand phytoplankton biodiversity may include dozens of phytoplankton types (e.g., Follows

et al. 2007). Those designed primarily for multi-century global biogeochemical simulations will often

invest more on resolution of nutrient cycling, with more simplified representations of plankton food

webs (e.g., Dunne et al. 2013; Moore et al. 2013). The appropriate level of model complexity is subject

to debate (Anderson 2005; Flynn 2005), though rigorous model skill assessment against observation

provides one measure of success. Chapter 5 will discuss the crucial role that ocean colour radiometry

has played in such skill assessment.

3.2 Concepts, Equations, Code and Computers

Though most oceanographers are aware of, use results from, and often cite work by biogeochemical

and ecosystem models, such models often remain a “black box” to much of the community. Here we

very briefly unpack this black box.

In general, models are formulated as a set of equations that specify how each component of the

model (e.g. biomass of phytoplankton) will change with time as a consequence of the combined effects of

physical, chemical and biological factors (see Figure 3.3). These equations are then adapted to computer

code such that that variable can be stepped forward in time. The many computations to track how

the variable changes over days/year/centuries is done by a computer or cluster of computers. Output

from a simulation are concentrations of the modelled variables (e.g., biomass) either instantaneously,

or as means over specific time periods (daily/monthly). Rate of change of concentrations can also be

provided as model output. Below we provide a very short introduction to some of the specifics of these

steps.

3.2.1 Equations, parameters and state variables

The biogeochemical component of a model captures the flow of matter and energy between inorganic

nutrients and sunlight into organic matter (phytoplankton biomass) and back to inorganic nutrients.

The ecosystem component follows organic matter through (parts of) the food chain (see e.g., Figure

3.2). Models are based on equations that parameterize this flow. For instance, the rate at which

phytoplankton biomass changes at any location can be written as (for more explicit representation see

Equation 3.2 in Box 3.1):

change in phytoplankton biomass = + growth – losses ± transport/mixing
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Phytoplankton growth can be a function of the available nutrients, light and temperature. Losses

can include grazing by zooplankton, sinking, viral lysis, cell death and leakage from cells. Transport

and mixing refers to the process whereby biomass of the phytoplankton is removed or added at that

location by ocean physics (current flow, vertical mixing). Changes in season, interannual variability, and

mesoscale processes will lead to variation in the magnitude of the terms on the right of the equation

and thus resulting in changes in the phytoplankton biomass. However, in the long term (i.e., years),

and with no change in climate, the terms on the right should balance, and a “steady state” should be

achieved. Similarly, the rate of change in biomass of a zooplankton can be written as (see Equation 3.3

in Box 3.1):

change in zooplankton biomass = + assimilation of grazed phytoplankton – losses ±
transport/mixing

Grazing is a function of the available phytoplankton and how quickly and efficiently the zooplankton

can capture and process a phytoplankton. Loss terms can include zooplankton being eaten and death.

Additional equations can be written for the consumption and sources of nutrients, as well as the

production and remineralization of detrital matter. Some models explicitly include heterotrophic

bacteria, instead of parameterizing demineralization, and in these cases there is an equation for them

as well.

year
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Figure 3.3 Schematic on developing and using a numerical model. First the set of
appropriate equations are devised for all model state variables (e.g., for each box of the
NPZD model, see Figure 3.2). Next the equations are written as computer code that is
made into an “executable file” that a computer (or cluster of computers) will run. Output,
in terms of concentration of variables (such as biomass), are provided for analysis (and
maps as displayed here). The model output is 3-dimensional and varies with time.

We refer to the pools of matter that each equation details (e.g., nutrients, phytoplankton biomass,

zooplankton biomass) as “state variables”. The equations control how matter (and hence also energy)

are moved from one pool to another or, in model jargon, how matter moves “from one state variable

to another”. Box 3.1 below provides sample equations and a further (though still non-exhaustive)

discussion of the parameterizations often used in models.
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BOX 3.1. NPZD MODEL EQUATIONS. Simple versions of the equations used in
a NPZD model

In this box we provide a very generalized example of the types of equations used in NPZD-type

models, elaborating with a more formal mathematical approach than the discussion provided in

Section 3.2.1. Here N represents a limiting nutrient (e.g. nitrate, phosphate, iron), P phytoplankton

biomass, Z zooplankton biomass, and D detrital matter (dead organic matter).

∂N
∂t

= −µmax
I

I + Io
N

N + kN
P − rDD −∇ · (uN)+∇ · (K∇N) (3.1)

∂P
∂t

= +µmax
I

I + Io
I

N + kN
P − gmax

Pn

Pn + kP
Z −mPP −∇ · (uP)+∇ · (K∇P) (3.2)

∂Z
∂t

= +γgmax
Pn

Pn + kP
Z −mZZ −∇ · (uZ)+∇ · (K∇Z) (3.3)

∂D
∂t

= −rDD +mPP +mZZ + (1− γ)gmax
Pn

Pn + kP
Z −∇ · (uD)+∇ · (K∇D) (3.4)

The last two terms in these equations represent the advection of the state variables by the three

dimensional fluid flow u, and diffusion by sub-gridscale processes, K. The rest of the terms are

representations of the different biological processes.

In these equations, growth of phytoplankton is controlled by light I and nutrients N . Frequently

these are assumed to be saturating function (i.e., asymptoting to a maximum value at high I or N).

Io and kN are the values where the respective functions are half their maximum value. kN is called

the nutrient half saturation constant. For the nutrient response, this is called a Michaelis-Menten

functional form. Maximum growth rate is set by µmax . In most models the incoming light (Io) is

time varying to include the impact of seasons.

Grazing of phytoplankton by zooplankton, is also often represented as a saturating function with

a maximum grazing rate of gmax at high phytoplankton biomass. A refuge from grazing at low

phytoplankton biomass can be parameterized depending on the value of the exponent n. When

n = 1 this is called a Holling type II function, and when n = 2 it is called a Holling type III function

(Holling 1959). Only some of the grazed organic matter, γ, is assumed to be assimilated by the

zooplankton (called “sloppy feeding”), the rest enters the detrital pool.

Other loss rates from P and Z (potentially cell death or viral lysis) are often represented as linear

functions and they supply dead organic matter to the detrital pool. In models which do not resolve

the heterotrophic bacteria, detrital matter is often assumed to remineralize back to inorganic N at

a constant rate rN .

There is considerable debate, based on theory and observations, on the best formulations for

the processes discussed above, particularly for the treatment of light limitation and grazing. As

mentioned above, many models include more than one nutrient, phytoplankton and zooplankton

and might include bacteria rather than using a remineralization timescales. There is a long

literature on the different functional forms that the various parameterization should take (e.g.,

Franks 2002; Vallina et al. 2014) and for additional complexity of the phytoplankton groups

(Le Quéré et al. 2005; Follows and Dutkiewicz 2011). Where possible, the parameters mentioned

above (e.g., maximum growth, grazing, remineralization rates and half saturation constants) are

constrained by laboratory and field experiments.
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3.2.2 Grids, resolution, spatial scales

The equations discussed in Section 3.2.1, and more completely in Box 3.1, are solved at only a

finite number of locations in the model domain (see Figure 3.4). The model domain is divided

into a number of grid cells (“boxes” in Figure 3.4) and the biomass, nutrients, detritus (and any

other model variables) are assumed to be homogenous within each grid cell. The size of the

grid cells defines the model spatial (vertical and horizontal) “resolution”. The smaller the size

of the grids, the higher the resolution, and the more physical (and hence biological) processes

can be captured. But small grid cells mean that there needs to be many more of them to

cover the same region than if using larger grid cells. This translates into higher computational

cost: processing of more grid cells requires more Central Processing Units (CPU), and more

“wall time” to run the model. Thus spatial (vertical and horizontal) resolution is decided as a

compromise between computational cost and processes resolved, and based on the questions

to be addressed. A coastal study looking at sharp fronts will need much higher horizontal

and vertical resolution than a climate model looking at large scale processes. For open ocean

global scale models, “high resolution” is grid cells of the order 10 km in latitude and longitude

(∼1/12deg) and several meters thick in the vertical. Most climate scale models have coarser

resolution with grid cells covering 100 km horizontally and 10+ m in the vertical. Coastal

models can have grid cells in the order 1 km or even finer, but only cover a limited region (e.g.,

100s kms). The same model can have different resolution in different locations — for instance

higher resolution in locations where the processes of interest might be at smaller scale (such

as a coastal inlet) and coarser resolution in the open ocean. Such a model is said to have a

“nested grid”. More details on some typical grid configurations are given in Arakawa and Lamb

(1977).

Figure 3.4 Schematic representation of model grid. Model domain is divided in many
grid cells within which all model variables (e.g., temperature, Chl-a etc.) are assumed
homogeneous. The grid cell is three dimensional. Grid cells are stacked on top of each
other to resolve depth (right). Flow comes into and out of the box on each face (both
horizontally and vertically).
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3.2.3 Code and integration

Models take the equations as delineated in Section 3.2.1 and Box 3.1 and transform them into

computer code. The computer code then steps the state variable (i.e., each pool of matter such

as nutrients, phytoplankton concentration, zooplankton concentration) through time to see

how they change. The process by which they do this is:

state variable at time 2 = state variable at time 1 + rate of state variable change*timestep

where the rate of change of a state variable is provided by the sources and sinks represented in

the equations in Box 3.1. Thus, though the equations in Box 3.1 are written as an instantaneous

change, models approximate this through a series of finite steps of duration “timestep”. The

timestep chosen for a model will depend on the types of processes it captures, both the

physical and biological. For many biogeochemical and ecosystem models the timesteps are

minutes to hours. Smaller time steps are often required to maintain stability in the model

with smaller grid cells (Courant et al. 1928), compounding the computational cost of higher

resolution. A factor of 2 increase in horizontal resolution generally leads to approximately 8

times increase in computational cost — it leads to 4 times as many grid cells and requires a

timestep half as long as the coarser resolution.

The models step the state variables at each grid cell from some initial condition through

many timesteps. The number of timesteps, and hence the length of the simulation, will depend

on the questions the model is addressing. For instance, a model considering climate change

will integrate from pre-industrial conditions until the end of the 21st century and will integrate

for several hundreds of (model) years. With a timestep of 1 hour, this can mean several million

integrations steps. However, a model looking at a short term process might only integrate for

months or a year. A spin-up is needed to bring the models physics, chemistry and ecosystem

into equilibrium with one another. Models studying biogeochemistry, in particular carbon

uptake, may need hundreds or even several thousands of (model) years of spinup such that

the deep ocean biogeochemical drifts are minimal. Otherwise the model air-sea flux results

will include significant drifts. Note here that when we talk of simulations of many years, we

refer to simulated “model years”, not actual time the computers take to do the simulations.

This latter is known in model jargon as “wall times”.

3.2.4 Model output

Output from the models include the variables that the equations capture, such as nutrient

concentration and biomass of phytoplankton and zooplankton (see Section 3.2.1 and Box 3.1).

Usually models will also output rates such as primary production and nitrogen fixation. All of

these output are provided as numbers either for an instant in time, but more often as averages

over a time period (e.g., daily, monthly). Except for 0 and possible 1-D models, the amount of

output is too large for something like an Excel spreadsheet. Thus output is usually in a format

such as NetCDF or binary that can handle large amounts of data. Maps, transect, and timeseries

(e.g., Figure 3.3) can then be produced from these numbers. Outputs are often referred to as

“model diagnostics”, since they allow the user to diagnose the dynamics underlying simulated
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patterns. Storing model diagnostics for large models requires substantial computer disk space

and can often pose as large a challenge as running the model itself.

3.3 Treatment of Light

Through photosynthesis, light has a critical influence on ocean biology. When light hits the

surface of the ocean, it is absorbed and scattered by various components in the water. The

amount of light that enters the ocean itself depends on the season, time of the day, solar

zenith angle, presence of clouds, aerosols, etc. All of these conditions, as well as the type of

components in the water, influence the amount of light available for photosynthesis. Despite

these complex processes and the complex nature of light and its path in the oceans, models

that include a high level of complexity in the transfer of light in the oceans are rare.

Typically, light at the surface of the ocean is prescribed (in model jargon, a “forcing field”).

The most basic representation is to use a surface bulk irradiance (i.e., shortwave radiation e.g.,

Maier-Reimer et al. 2005; Doney et al. 2006) or a photosynthetically active radiation (PAR) at the

surface (e.g., Palmer and Totterdell 2001; Zielinski et al. 2002). Most biogeochemical/ecosystem

models include depth resolution (i.e., many grid cells in the vertical), and often to the bottom

of the ocean, and thus it is important that a parameterization of light attenuation is included.

3.3.1 Typical treatment

The most basic models usually distinguish between the attenuation by water and total phy-

toplankton in the water column (e.g., Jiang et al. 2003; Maier-Reimer et al. 2005; Xiu and Chai

2014). In general, such models use an exponential decay of light, such that light at depth I(z)
is a function of the light at the surface Io, attenuation by water molecules (coefficient cw , units

m−1), and by phytoplankton Chl-a (attenuation coefficient, cchl , units m−1 (mg Chl m−3)−1).

E(z) = Eo exp
(
−(cw + cchl ∗ Chl)

)
(3.5)

3.3.2 Including additional optically important constituents

There is growing recognition of the importance of other water constituents, such as colou-

red dissolved organic matter (CDOM) and non-algal particles (including non-living organic

particulate detritus) for ocean biogeochemistry modeling (e.g., Dutkiewicz et al. 2015a; Kim

et al. 2015). These components can be included by adding additional terms in the exponent of

Equation 3.5

In a series of sensitivity experiments, Dutkiewicz et al. (2015a) showed that including

other optically important constituents (such as CDOM and detrital matter) led to significant

differences in the depth of the subsurface Chl-a maximum and the 1% light level (Figure 3.5b,c)

relative to in situ observations (Figure 3.5a). Several models now include CDOM and detritus

as important components affecting the light levels (e.g., Gregg and Casey 2007a; Xiu and

Chai 2014; Kim et al. 2015; Baird et al. 2016). Additional constituents, such as minerals and
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viruses are likely to also be important (Stramski et al. 2001), but have not yet (at least to our

knowledge) been addressed by models.
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Figure 3.5 Sensitivity experiments showing the impact of resolving optical complexity.
(a) Observations of Chl-a (mg m−3) with depth, taken as part of the Atlantic Meridional
Transect 15. (b)–(d) Model output of the same transect from three sensitivity experiments:
(b) a single waveband of PAR, and attenuation of light only through water molecules and
Chl-a; (c) single waveband of PAR, but now including optical impact of CDOM; (d) thirteen
25 nm wavebands of irradiance included, as well as optical impact of CDOM, and detrital
material. Note that experiment in (b) includes only a simple attenuation code (such as
Eq. 3.5) while (c) and (d) have a 3-stream radiative transfer code (see Section 3.3.3). Black
line and symbols indicate the 1% irradiance depth. Figure adapted from Dutkiewicz et al.
(2015a), Creative Commons Attribution 3.0 License (CC BY 3.0).

3.3.3 Including radiative transfer model

Light is not simply attenuated by water and other constituents as described in Equation 3.5.

In fact, light is scattered and absorbed (Figure 3.6). Downward light (Ed) is absorbed (a) by

dissolved substances and particles (e.g., phytoplankton, detritus, CDOM). The light is also

scattered in all directions, including a forward component (b) and a back component (bb). This

latter scattering leads to upwelling light. For more details, see Chapter 2.1.2.

Capturing these complex processes requires a radiative transfer model (that is the equati-

ons/computer code that captures the radiative transfer interactions of light scattering and

absorption through the water column). Recently a few numerical models have included



Biogeochemical And Ecosystem Models: What Are They And How Can They Be Used? • 41

Figure 3.6 Schematic of light passage through the water column. Downward irradiance
(Ed) is absorbed (a) by substances and particles (e.g., phytoplankton, detritus, CDOM).
The light is also scattered in all directions, but includes a forward component (b) and a
back component (bb). This latter scattering leads to upwelling radiance, Lu (see Chapter
2.1).

such radiative transfer modules. The standard in radiative transfer models is Hydrolight

(www.hydrolight.info; Mobley et al. 1993; Mobley 1994; Mobley and Sundman 2008a,b). However,

Hydrolight is computationally expensive to use with biogeochemical models. The Ecosystem

Light Subroutine (EcoLight-S) radiative transfer code (Mobley 2011) was developed to address

the need for accurate but computationally fast irradiance calculations in any water body.

Ecolight-S has similar computational algorithms to HydroLight, but EcoLight is a modular

package designed to be implemented into any ecosystem models to improve the optical calcu-

lations. In Mobley et al. (2015), EcoLight-S was compared against a simple exponential light

attenuation formula. EcoLight produced 57% more chlorophyll concentrations compared to

the simpler formulation, suggesting that using a simpler model is not likely to capture light,

and hence chlorophyll, correctly.

Another computationally less expensive option is the 3-stream model (Ocean Atmosphere

Spectral Irradiance Model-OASIM, Gregg and Casey 2009) used in Gregg and Casey (2007a).

Here, two downward streams of light (direct and diffuse) and one upwelling stream are

captured. This type of model captures sufficient complexity to provide better representation

of light fields and impacts on Chl-a (Figure 3.5, and see Dutkiewicz et al. 2015a; Gregg and

Rousseaux 2017) but with less computational expense than a full radiative transfer model. This

inclusion of complexity does improve the realism of the light field (e.g., 1% light level, Figure

3.5d) relative to observations (Figure 3.5a) with consequences for modelled phytoplankton

www.hydrolight.info
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populations (Dutkiewicz et al. 2015a).

3.3.4 Including directional and spectral light

Most models have traditionally used a single waveband of photosynthetically available radiation

(PAR, irradiances in the visible spectrum between 400 and 700 nm). But the optically important

water constituents, such as CDOM as well as phytoplankton, absorb and scatter light differently

at different wavelength (see Figure 2.4). For instance, phytoplankton absorb more at the blue

end of the spectrum than in the green and yellow. Recognition of the importance of including

spectral light in models dates back to the late 80’s (Sathyendranath and Platt 1988) from in situ

investigations of phytoplankton light absorption and estimates of primary production. More

recently Fujii et al. (2007) and Kettle and Merchant (2008) further reinforced the importance of

resolving spectral light fields in radiative transfer models, especially in ability to compare to

more observations (e.g., optical). Some examples of studies that incorporate spectral irradiance

include a 1-dimensional regional model of the Sargasso Sea (Bissett et al. 1999a), the West

Florida Shelf (Bissett et al. 2004), and 3-dimensional models of the eastern U.S. continental

shelf (Mobley et al. 2009), the North Pacific (Xiu and Chai 2014), the Great Barrier Reef (Baird

et al. 2016) and globally (Dutkiewicz et al. 2015a; Gregg and Rousseaux 2017). The study of

Dutkiewicz et al. (2015a) showed that including spectral light further changes the shape of the

deep Chl-a maximum and 1% light level (Figure 3.5c) and found that spectral light was also

important for the composition of phytoplankton communities.

Incorporating a spectrally-resolved radiative transfer module into physical and biological

models can not only improve the visible light calculation (400–700 nm) but can also lead to

better short-wave irradiance calculations (400–1000 nm) which are important for the upper

ocean heat budget. Mobley et al. (2015) used EcoLight-S with the ROMS-CoSiNE to demonstrate

that the changing biological conditions can also affect the total irradiance (400–1000 nm)

calculation which impacts upper ocean thermal structure. For example, the surface chlorophyll

values computed with EcoLight-S were 40% greater than the values computed with a simple

light model, and modelled temperature was as much as 0.3◦C warmer at the surface and as

much as 0.1◦C cooler at depth (Mobley et al. 2015). This thermal change shows the effect of

including absorption by phytoplankton in near-surface waters, and consequent shading of

deeper waters, which results in altering upper ocean thermal structure. The biological feedback

to upper ocean heating can be calculated with a spectrally-resolved radiative transfer model

coupled with physical-biological models.

Gregg and Rousseaux (2016) used the three-stream radiative transfer OASIM model (see

Section 2.3.3) to assess the importance of including directional and spectral light in simulations

of ocean radiative transfer. By sequentially removing directional (i.e., direct versus diffuse)

and spectral irradiance they showed that including directional and spectral irradiance when

simulating the ocean light field can be important for the biology, but that the magnitude varies

with variables and regions of interest. For example, assuming that all irradiance was diffused

had little effect on the primary production, but nitrate and chlorophyll concentrations declined

by about 20% globally. The changes in nitrate and chlorophyll were much larger in the tropics



Biogeochemical And Ecosystem Models: What Are They And How Can They Be Used? • 43

and sub-tropics. High latitudes are naturally dominated by diffused irradiance due to the

presence of persistent clouds, so treating all the irradiance here as diffuse had less of an effect

than in the tropics and sub-tropics, since there is already less direct irradiance to begin with.

Disregarding spectral irradiance had effects that depended upon the choice of attenuation

wavelength.

3.3.5 Including spectral inherent optical properties

Radiative transfer models can also include the optical properties of the various water constitu-

ents (see e.g., Section 3.3.2). The inherent optical properties (IOPs, see Chapter 2, Section 2.3.3),

such as the absorption and scattering properties of the different biogeochemical standing

stocks, can be included in models in terms of their spectral qualities. Fujii et al. (2007), for

example, included the spectral effects of absorption and scattering of various constituents,

and highlighted the fact that those optical properties play an important role in identifying and

reducing the uncertainties in ecosystem models. CDOM in particular absorbed strongly in the

blue, making it an important quantity to include spectrally. Dutkiewicz et al. (2015a) used a

radiative transfer model with an explicit treatment of water molecules, detrital matter, CDOM,

and several phytoplankton types to calculate surface upwelling irradiance and evaluate the

resulting light fields with several data sets. That study found that including these constituents

explicitly improved the distribution of light through the water column (Figure 3.5).

3.3.6 Impact of the sea floor

It is common for global biogeochemical/ecosystem models and the ocean colour products

used to assess models, to consider only regions of the ocean where the fraction of light

returning from the seabed is small. This criterion can result in ocean colour products from

waters as deep as 25 m being excluded from consideration. In regional studies using biogeo-

chemical/ecosystem models, such as in estuaries or coral reef systems, models often focus

on shallow regions, including the inter-tidal zone. In these shallow regions, it is often the

dynamics of bottom habitats such as seagrass meadows and coral reefs that are the motivation

for the models (Baird et al. 2016). Ocean colour remote sensing in optically-shallow waters

can be used to determine water optical properties, bathymetry and habitat distribution if the

benthic reflectance is considered (Dekker et al. 2011; Garcia et al. 2018). Further, bottom

reflectance can be used to improve the model simulation of remote-sensing reflectance, thereby

allowing a more accurate model assessment against ocean colour (Baird et al. 2016).

Traditionally, shallow water systems have been studied using high resolution sensors

with poor temporal coverage, such as Landsat. More recent satellites such as Sentinel-3 now

provide good spatial and temporal coverage, opening up new opportunities for integrated

ocean colour/biogeochemical model studies in shallow water systems. Thus it should be

possible to use remotely-sensed estimates of seagrass biomass to the dynamics of seafloor

biota in a biogeochemical/ecosystem model.
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3.4 Different Models for Different Applications

Biogeochemical and ecosystem models are used for a variety of applications. As such they

focus on different aspects of the system (Section 3.1). This report will largely consider models

that focus more on the bottom of the foodweb, investigating phytoplankton/zooplankton

ecology and ocean carbon and nutrient cycling. As described in Section 3.1, these models

often truncate the foodweb (Figure 3.7a). Such models often parameterize the impact of higher

trophic levels (e.g., a loss term that represents grazing by fish). Models might also focus on

the upper water column, especially if they are designed for open ocean questions. Models

focusing on coastal issues might include details of the benthic organisms and sedimentation

(e.g., Baird et al. 2016; Butenschön et al. 2016). Spatial and temporal scales will depend on

questions of interest: whether regional or global, days (e.g., for studying a spring bloom events),

multi-annual (e.g., for interannual variability), to centennial (e.g., climate change), or millennial

(e.g., for paleo-oceanography). Here we provide a non-exhaustive flavour of the different types

of applications.

Figure 3.7 Schematic of different types of models. (a) Some models focus on the base of
the foodweb, and higher trophic levels are heavily parameterized (in jargon often called
“closure terms”). (b) Some models use Chl as an input and focus on the higher trophic
levels (often a single fish species). In this report we will focus on the types of models
represented in (a).

While the focus of this report is on biogeochemical and/or ecosystem models, it is worth

noting that ocean colour products are also critical to other modelling activities. Another area

of expanding usage is in species distribution models (SDMs) for marine species (schematically

shown in Figure 3.7b). SDMs which include chlorophyll have been used for optimizing survey
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efficiency (Zwolinski et al. 2011), helping fishers avoid high bycatch areas (Hazen et al. 2018),

and examining risk of ship strikes to whales (Redfern et al. 2013). The use of ocean colour

variables in SDMs is usually justified on the basis that it is a proxy for “foraging habitat”.

Models validated against ocean colour for the current climate (Chapter 5) can be used for

chlorophyll-influenced predictions of changing species distributions and fish catch (Cheung

et al. 2010) when used in climate change studies. Other uses of chlorophyll in similar statistical

modelling frameworks include applications to harmful algal blooms (e.g., Stumpf and Tomlin-

son 2005) and hypoxia (e.g., Rose et al. 2017). These models usually do not incorporate the

specific processes, but rather statistically relate fish catch or other observations to concurrent

environmental factors to understand the conditions under which a particular species is most

often found.

The skillful simulation of ocean biogeochemistry in a model relies on transport and

physical properties provided by an ocean general circulation component of the model. Models

of ocean circulation and biogeochemistry can either be run sequentially (off-line mode) or

together (on-line mode). In the former, ocean velocities are computed independently from

biogeochemistry and used as time-averaged fields (e.g., weekly, monthly, yearly averages) to

drive tracer transport. Coupled physical-biogeochemical ocean general circulation models can

be run in an “ocean-only” mode (i.e., where the atmospheric forcing is prescribed and the

ocean heat/carbon cycles do not feed back to the atmosphere), or as an interactive component

of an Earth system model including ocean, atmosphere, land and cryosphere components (i.e.,

where heat and carbon feedbacks between components are explicitly included).

3.4.1 Hindcast modelling

A hindcast simulation tests whether a model can explain or reproduce historical events. Ocean

hindcasts typically use atmospheric forcing (winds, heat fluxes, precipitation) from historical

reconstructions of atmospheric conditions derived by combining observations and models

to reproduce oceanographic conditions. These products are referred to as atmospheric re-

analyses, and there are many options, for example, MERRA (see Gelaro et al. 2017), NCEP (see

Kalnay et al. 1996) and ERA-Interim (see Dee et al. 2011). The atmospheric forcing typically

covers several decades, based on the observations available. The ocean modelling community

uses hindcasts (which are also sometimes referred to as retrospective ocean simulations)

to intercompare and assess the quality of ocean simulations as part of the Ocean Model

Intercomparison Project (OMIP, Griffies et al. 2016; Orr et al. 2017). Similar intercomparison

efforts have been extended to global biogeochemical and ecosystem simulations (Orr et al.

2017, MAREMIP, https://pft.arc.hokudai.ac.jp/maremip/index.shtml) and hindcasts are a broadly

used configuration for regional applications.

Hindcast models provide a tool to explore the mechanisms controlling seasonal and

interannual variability (e.g., Christian et al. 2001; Schlitzer 2004; Pastor et al. 2013). For

instance, the hindcast model of Rousseaux and Gregg (2012) investigated the effect of ENSO

on phytoplankton community composition in the Equatorial Pacific, finding that the decline

in total chlorophyll observed during El Niño events using ocean colour data coincided with a

https://pft.arc.hokudai.ac.jp/maremip/index.shtml
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shift in phytoplankton community composition. Concentration of diatoms decreased during

an El Niño event while cyanobacteria concentration increased (Figure 3.8).

Figure 3.8 Hindcast Model. Temporal variation of Chl and phytoplankton concentration
in the Equatorial Pacific. Seasonal average (Jan/Feb/March, detrended, seasonal climato-
logy removed and average added) of (a) chlorophyll-a (mg chl-a m−3) and (b) abundance
of modelled cyanobacteria and diatoms (mg chl-a m−3). Figure redrawn from Rousseaux
and Gregg (2012).

3.4.2 Climate and Earth system models

Coupled global climate models include representations of the energy and of chemical species

exchange across the three Earth system reservoirs — atmosphere, continental surfaces and

ocean. The “coupling” in this context refers to the integration of atmosphere, ocean, and land

models. These models produce their own climate in response to imposed radiative forcing

at the top of the atmosphere, volcanic eruptions, green houses gases (e.g., CO2, N2O, CH4)

and other climate active species of anthropogenic origin (e.g., anthropogenic aerosols). The

purpose of these projections is to simulate the evolution of Earth’s climate over multi-decadal

to centennial time-scales. As such, while global climate models simulate the correct frequency

of modes of natural variability (e.g., ENSO), climate change projections are not designed to

capture the historically observed timing of natural fluctuations. These models are sometimes

referred to as Earth system models (ESMs). From a climate impacts’ perspective, including a

biogeochemical/ecosystem model enables projections of a range of potential ocean ecosystem

stressors (Bopp et al. 2013), including changes in ocean colour (Dutkiewicz et al. 2019). For a

review of construction characteristics of projection models see Stock et al. (2011) and Heavens

et al. (2013).

Output from climate and Earth system projections from around the globe are collected as

part of the Coupled Model Intercomparison Project (CMIP). Contributions include projections
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under alternative greenhouse gas projection pathways. These outputs provide an essential con-

tribution to the “Assessment Reports” prepared under the auspices of the “Intergovernmental

Panel of Climate Change” (IPCC). Such models can suggest how biogeochemically important

components (e.g., Chl) may change over the 21st Century (Figure 3.9).

Δ Chl (mg/m3)

Figure 3.9 Change in Chl-a (mg Chl m−3) between present (1998–2015) and the end
of the century (2085–2100). Greenhouse emissions are not curtailed. Results are for a
“business as usual” scenario, where blue indicates a decrease in Chl-a by the end of the
century. Only areas with a statistically significant differences between the two periods
(p<0.05) are shown. Figure redrawn from Dutkiewicz et al. (2019), Creative Commons CC
BY license.

Ocean colour products are used by the climate model community for evaluating models

within the 20 year record for which there have been such products (Séférian et al. 2014). More

recent applications include decadal predictions of marine productivity (Séférian et al. 2014)

and the identification of emerging constraints on projected primary production (Kwiatkowski

et al. 2017). For more information on the use of such models for seasonal to multi-annual

predictions, and their use for marine resource applications, see Tommasi et al. (2017b).

3.4.3 Regional modelling

Regional models simulate limited portions of the global ocean, from the spatial scales of

large ocean basins (e.g., the North East Atlantic, Ciavatta et al. 2016, Figure 3.10) down to

coastal estuaries (e.g., Chesapeake Bay, Da et al. 2018). They are employed to investigate

confined ecosystem dynamics (e.g., shelf-sea carbon fluxes, Wakelin et al. 2012; Mannino

et al. 2016, and regional phytoplankton communities, Ciavatta et al. 2019) and often focus on

local environmental issues that are relevant to marine policy and management of coastal and

shelf areas, such as eutrophication (Laurent et al. 2018), harmful algae blooms (Glibert et al.

2014), hypoxia (Rose et al. 2017), and regional response to a CO2 enriched atmosphere (Artioli

et al. 2014). Nonetheless, they can contribute to global studies, for example, to quantify the

contribution of shelf-seas to the global biogeochemical cycles (Fennel et al. 2006) or fisheries

(Merino et al. 2012).

The objectives of regional models usually require high spatial resolution (from a few

meters to ∼10 km). Reducing the domain of regional models, however, makes such spatial
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Figure 3.10 Regional Model. Surface chlorophyll concentration (mg m−3) from the
simulation of a regional model of the North East Atlantic: average value in the years 1998–
2009. The white dashed line represents the shelf border, i.e., the 200 m isobath. Figure
adapted from Ciavatta et al. (2016), Creative Commons Attribution 4.0 International (CC
BY 4.0).

resolution computationally affordable. Global-scale models are still restricted to resolutions of

roughly 1/12◦ to 1◦. A challenging issue of regional models (compared to the global ones) is

the need for defining values of the physical and biogeochemical variables at the open boundary

of the spatial domain, i.e., defining the open boundary conditions. These conditions are often

approximated by downscaling larger-domain models, or using climatological data from global

reanalysis or datasets, or a combination of these approaches.

Regional models of shallow coastal basins should take into account energy and matter

fluxes at the land and sediment interfaces, and often require the explicit representation of

bottom friction and sediment resuspension, realistic forcing data or models for riverine inputs

of fresh waters and nutrients, and full coupling of pelagic and benthic ecosystem dynamics

(e.g., Butenschön et al. 2016).

Regional models can make use of ocean colour data for calibration, validation and data

assimilation in the same way as their global counterparts. However, a distinguishing challenge

is that they are often set up for shelf and coastal regions encompassing optically-complex, Case

2 waters. There, land inputs of coloured dissolved organic matter, sediment interferences and

resuspension of particles can imply particularly high errors in ocean colour chlorophyll (IOCCG

2014). A careful account of the uncertainty of global chlorophyll products (e.g., per-pixel errors

of the ESA-CCI product, Ciavatta et al. 2016), the application of regional chlorophyll products

(Baird et al. 2016) or the use of alternative products (e.g., remote sensing reflectance, Jones

et al. 2016), is therefore recommended when using ocean colour in combination with regional

models of shelf-sea and coastal ecosystems.
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3.4.4 Data assimilation

Data assimilation includes a number of formal methods for bringing models into consistency

with observations, thus embracing the best of both model and observations. Assimilation of

observations in order to improve biogeochemical and ecosystem models has a long history,

beginning with parameter optimisation studies (Matear 1995) and extending through to modern

day operational systems (Fennel et al. 2019). Ocean colour is often the first choice of data

sets for assimilation into biogeochemical models, due wide availability and good spatial

and temporal coverage. However, many challenges remain in using ocean colour in data

assimilation, which are considered in depth in Chapter 6.

The products of data assimilative ocean-ecosystem runs are often referred to as ocean-

ecosystem state estimates, ocean reanalyses, or, debatably, data-assimilative hindcasts. The

integration of observed properties generally improves the fit to ocean and biogeochemical

properties, though this also results in some uncertainty regarding the model deficiencies and

processes underlying the corrections arising from data assimilation.

3.4.5 Operational models

Operational ocean models provide a nowcast and forecast of ocean conditions, such as water

levels, temperature, salinity, currents, and biogeochemical properties, for global, regional or

coastal areas. Very similar to weather forecasting systems, the ocean weather forecasts are

derived from a combination of a suite of models and real-time observations. The operational

ocean models include a series of ocean circulation, wave and ice, and biogeochemical models.

These integrated models are forced by the outputs from weather forecast systems. In addition,

operational ocean forecasting systems also include real-time ocean observations from both

in situ and remote-sensing products for data assimilation by the operational ocean models.

The real-time observations are also used to assess model skill and are incorporated into the

long-term database to improve model hindcast results.

Nowcasts and forecasts are simulations of the present and future states of ocean conditions.

A nowcast typically covers the period of time from the past few days to the present, and

provides model outputs on locations where observational data are not available. A forecast

provides information from the present time up to a few days as a short-term prediction, and/or

up to a few months depending on the application needs (e.g., El Niño forecast). A forecast is

usually initiated by the results of a nowcast.

There are several operational ocean forecasting systems producing physical variable short-

term forecasts on global and regional levels. The European Marine Environment Monitoring

Service (marine.copernicus.eu) has several versions of global and regional models, with higher

spatial resolution for regional forecasting systems, combined with real-time data assimilation to

produce daily to weekly forecasts of water levels, temperature and salinity, and ocean currents

(Le Traon et al. 2017). The HYCOM consortium with multiple institutional partners (hycom.org)

uses a global high resolution and adaptive vertical coordinate system to produce nowcasts and

forecasts of ocean conditions, which include three-dimensional ocean temperature, salinity,

and current structure; surface mixed layer depth; and the location of mesoscale features such

marine.copernicus.eu
hycom.org
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as eddies, meandering currents, and fronts. At regional and local levels, NOAA Operational

Forecast System (tidesandcurrents.noaa.gov) has developed and maintains a network of nowcast

and forecast hydrodynamic model systems driven by real-time data and meteorological,

oceanographic, and/or river flow rate forecasts to issue short-term predictions of physical

parameters (e.g., water levels, currents, salinity, temperature, waves) and disseminates them to

users.

Compared to physical forecasting systems, developing operational models for predicting

biogeochemical and ecosystem variables has been challenging. There are several operational

centers which have started to take up this challenge by integration of biogeochemical models

into operational systems (Gehlen et al. 2015). Some demonstrations at global and regional

levels have shown that the concepts of biogeochemical data assimilation using advanced

biogeochemical models are mature enough to be transitioned to operational centers (Ford et al.

2012; She et al. 2016; Skákala et al. 2018; Teruzzi et al. 2018). The capacity for producing

biogeochemical forecasts along with reanalyses is a key requirement for the development of

biogeochemical/ecological applications and services (Gehlen et al. 2015; Fennel et al. 2019).

3.5 Model and Model Output Selection

How does a user choose the best model and model output for an application? The choice

should be based on the type of question to be addressed, and the spatial and temporal scale

required. It is a good idea to contact the model developers to discuss the use of model output

and the appropriateness to the question of interest.

If the question addresses a small region of the ocean (i.e., the North Sea), and if there is

an appropriate regional model (see Section 3.4.3), then this is likely the best choice. Issues to

keep in mind in this case are the appropriateness of the boundary conditions specific for the

question being asked. For instance, if interested in how upwelling nutrients impacts coastal

Chl-a, then the model needs to adequately capture this input through the open boundary.

If there is no regional model, then a larger scale or global model may be helpful, but the

non-resolved coastal physics must be kept in mind. If the question is global in nature, then

a global model is required. One can also go one step further and use several global models

(see e.g., Henson et al. 2010; see Chapter 8, Case Study 8.3.1) so as to cover some of the

uncertainties in each model.

The length of the model simulation should also be considered. If the question involves

understanding how interannual variability affects ocean colour, then using a model specifically

designed for a hindcast (i.e., forced by the appropriate winds/heat for years, see Section

3.4.1) should be considered. Careful evaluation of the model is necessary to ensure that it

captures the appropriate processes and at the required temporal scales. If the question is more

immediate (e.g., the potential for a harmful algal bloom in the next week), an operational model

(see Section 3.4.3) with a now- and forecast would be more appropriate. If the question is on

climate change, then an Earth system model (see Section 3.4.2) would be more appropriate, but

here it must be remembered that Earth system models have their own modes of variability and

tidesandcurrents.noaa.gov
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may not capture, for instance, El Niño in the same years as the real ocean.

The level of complexity of the ecosystem model should also be considered when making a

selection. For questions concerning changes in phytoplankton communities, one will require

a model that captures at least some level of complexity of functional types or size classes.

However, a more complex ecosystem model might not be as important to explore biogeochemi-

cal questions such as change in carbon cycling over the 21st Century. If the question is more

optical in nature, then there are a few models that have incorporated various elements of the

optics and radiative transfer that might be more appropriate (see Section 3.3).

Model output and how to compare to ocean colour (or other) products also requires careful

consideration. For instance, model Chl-a may not always be exactly comparable to satellite

derived Chl-a. This difference could be important when considering issues such as phenology

(see e.g., Dutkiewicz et al. 2018). Once again contacting the model developers to discuss the

applicability of the specific model to the specific problem to be addressed, would be very

beneficial. See Chapter 4 for more discussion on the discrepancies between model output and

ocean colour products, and Chapter 5 for model skill assessment. A relative knowledge of the

model to be used and the meaning of the output is also recommended.

Acknowledgements: The authors thank Colleen Mouw, Cara Wilson and Laura Lorenzoni for reviewing

and providing valuable feedback to improve this Chapter.
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Chapter 4

The (Mis)match between Biogeochemical/Ecosystem Model

Variables and Ocean Colour Products

Stephanie Dutkiewicz, Anna Hickman, Colleen Mouw, Cecile Rousseaux, Stefano

Ciavatta, Mark Baird, Charles Stock and Fei Chai

NOTE: In this report, the word “model” refers to process-based three-dimensional biogeochemical/

ecosystem computer models at large regional or global scales.

Satellite products, with their temporal and spatial coverage, are essential in model validation

(see Chapter 5) and data-assimilation (see Chapter 6). However, it is important that modellers use

these products in an appropriate manner. The discrepancies between what a model outputs and what

the ocean colour product produces, as well as biases and missing data must be incorporated into

comparisons between the two. This chapter is designed to elucidate these issues to modellers, and to

provide the ocean colour community a context for understanding the modeller’s dilemmas when using

ocean colour products.

The link between ocean colour products and the variables that are used in biogeochemical models

are not as clear or easy as might be hoped. Models have developed from interests such as carbon cycling

and ecology, so have been structured to follow pathways of matter and energy, and capture basic

groups of marine organisms. Though there has been a considerable development of radiative transfer

modeling (e.g., Hydrolight, Mobley et al. 1993; Mobley 1994; Mobley and Sundman 2008a,b), radiative

transfer and optics have not, in general been integrated in biogeochemical/ecosystem models (though

see Section 3.3 below and Section 4.1.1 in Chapter 4). And since biogeochemical/ecosystem models are

not (usually) developed for optical interests, the link to optical and ocean colour products are not clear.

Moreover, the terminology between modelling and ocean colour communities sometimes varies. For

instance, in the modelling communities “POC” often specifically refers to non-living particulate organic

carbon. However, many other communities, who measure “POC” in situ or estimate it from satellite,

include all living and dead organic carbon — the precise definition often depends on measurement

technique. Mis-communications such as these can lead to confusion.

Modellers and other non-ocean colour experts often equate satellite-derived products with their

“in situ” counterparts (e.g., satellite derived Chl-a and in situ Chl-a) without fully appreciating that

there are distinct differences. The uncertainties are compounded going from first order measurements

from satellites (such as water leaving radiances) to derived products such as Chl-a, and even more so

for primary production. This degree of “derivedness” is encapsulated in Figure 4.1 (see also Figure

2.8). Deriving information from remote sensing reflectance is done empirically (i.e., using empirical

relationships between remote sensing reflectance and the property of interest) or semi-analytically (i.e.,

using the radiative transfer equation) or a combination of both. Thus, most ocean colour products are

themselves a type of model (in this report we refer to these as “algorithms”). The different information

used, including the observed remote sensing reflectance, theoretical and empirical relationships, and

the necessary assumptions and averaging, can each contribute to mismatches in magnitude and/or

53
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variability of properties when compared to output from numerical models.

Radiance & Reflectance

Inherent Op�cal Proper�es
A – Total IOPs

B – Component IOPs
Mass Concentra�ons

POC, Phytoplankton Carbon

Level of O
cean Colour Product “Derivideness”

O
ce

an
 C

ol
ou

r P
ro

du
ct

 U
nc

er
ta

in
ty

N
um

be
r o

f A
ss

um
p�

on
 to

 C
al

cu
la

te
 M

od
el

 V
ar

ia
bl

e

Phytoplankton types Rates 
primary produc�on, export

[Chl]

Figure 4.1 Schematic depicting uncertainties and level of “derivedness”. For ocean
colour products, uncertainty is coloured in blues, with darker colours suggesting more
uncertainty. Assuming radiance and reflectance are the least derived ocean colour, the
vertical position (tier) of each box depicts how many levels of products are used to derive
it. The gray arrows indicate which products are used to derive which other products.
For instance, Chl-a can be derived either from radiances and reflectance or from IOPS.
In general, the more derived the product is, the more uncertain it is. The brown colours
surrounding the boxes indicate the level of assumptions needed to calculate the variable
in the model. Most models follow carbon, so phytoplankton carbon is one of the most
basic variables. IOPs and reflectance require the most assumptions in the model to
calculate.

The central currency of many biogeochemical/ecosystem models is an element (e.g., carbon,

nitrogen). Nitrogen is often used as it is the proximal limiting nutrient in many ocean regions, and

carbon and nitrogen are linked in a relatively constant proportion compared to more dynamic fluctuating

C:P or C:Fe (Redfield 1934; Redfield et al. 1963; Martiny et al. 2013). Quantities for comparison with

ocean colour must be derived from these central currencies and additional models of their relationship

with chlorophyll or other optical properties (Geider et al. 1998). Thus there is an opposite direction

between models and ocean colour products (see coloured arrow in Figure 4.1), with model (usually)

going from a base unit of carbon, and ocean colour products inverting carbon from the optics and

algorithms.

Models have regular grids and there is no “missing data”, though comparisons can be limited

by the timescale over which the output is averaged (days/months/years, see Section 3.2.4). Satellite

measurements have missing data due to orbital periods, clouds, aerosols etc., so that satellite products

are not true means. The ocean colour community call the resulting data “climatologies”, whereas

the word “climatology” to a modeller usually refers to a long term mean (e.g., over several years),

with continuous output (i.e., a true mean). Biogeochemical/ecosystem model grids are also three

dimensional, with depth-averaged data within each grid point. Ocean colour products are provided as

two-dimensional fields, usually “seeing” one optical depth (1/attenuation coefficient, see Appendix 3).

There can thus be confusion between the two communities about the different resolution and averaging

of data.

In this chapter we highlight how comparing ocean colour products, in situ observations and

biogeochemical model output is rarely like-for-like (see for instance Figure 4.24). Even though satellite

products and model output can both be compared directly to in situ data they will not necessarily

compare to each other because they are built on different assumptions/have different biases. In general,
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in situ measurements have less uncertainty (i.e., they are closer to the truth) than satellite-derived

products. However, different in situ measurements have different levels of uncertainty (e.g., HPLC vs.

fluorescence measurements of Chl-a). Similarly, different satellite products of the same quantity have

different levels of uncertainty (see Chapter 2). What should models compare too? How should the

relative uncertainties be weighed against each other? We only begin to address these questions in this

report (though see Chapter 5), but pose these as important issues to be considered when considering

model variables against both ocean colour products and in situ measurements.

Truth

In Situ 
observa�on 

Ocean Colour 
Product 

Model Variable 

Figure 4.2 Schematic of uncertainties in in situ and ocean colour products. Truth (e.g.,
the actual Chl-a concentration at a location) can be measured in the field by several
techniques (e.g., HPLC, fluorometry, see Section 4.1.3) and there are several ocean colour
products of Chl-a (e.g., derived from reflectance ratios or semi-empirical methods, see
Section 2.3.2). The length of solid arrows suggests the level of uncertainty of the me-
asurements. Generally, in situ measurements are less uncertain than the ocean colour
products. Model variables can be compared to either in situ or ocean colour products
(usually both). It is important to remember that the two types of measurements are
different, with different uncertainties and biases. Even though the quantities can be given
the same “name”, they often have considerable mismatches in what they actually capture.

Section 4.1 below discusses the mismatch between model and satellite product for several different

products (and where appropriate, their in situ counterpart), focusing on the “mismatches in kind”. Next,

we discuss issues arising from the difference in the spatial and temporal resolution (Section 4.2).

4.1 Same Name, Different “Measurement”

In this section, we consider the differences between ocean colour products and model variables that

share the same name. For instance, ocean colour produces an estimate of Chl-a from remotely sensed

reflectance, but this is not estimated in the same way as in situ Chl-a (which, in turn, can be measured

in different ways). The model variable “Chl-a” is defined in a way more similar to in situ Chl-a: it is the

actual Chl-a content of the model phytoplankton, as opposed to the satellite product which is derived

from satellite optical measurements. We will discuss such discrepancies and possible implications
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below. We focus on links between ocean colour products that are freely available, usually globally, and

not on regional, project-specific products. As such, this section does not provide a good overview of

coastal products. We refer the reader to Mouw et al. (2015) and Zheng and DiGiacomo (2017) for a

comprehensive review of coastal remote sensing.

There are distinct advantages to models producing output closer to what satellites measure (e.g.,

reflectance) and thus closer to the satellite derived products (e.g., Chl-a, albeit with care taken to consider

discrepancies between the measurements and the model output). However, there is computational costs

and additional complexities for models to provide more comparable output, especially reflectance and

optical properties. Additionally, end users of models (e.g., ecosystem managers) are often more familiar

with quantities such as Chl-a rather than reflectance. We anticipate that different models and different

scientific motivations will dictate how closely models will link to ocean colour products in the future.

While this chapter deals with fields that directly relate to model state variables (i.e., Chl-a and

phytoplankton carbon), we also consider other direct links between model output and ocean products

such as reflectance and inherent optical properties (see Section 2.3.4 in Chapter 2). Fujii et al. (2007)

suggested that including explicit optics in an ecosystem model allowed a more accurate subsurface

light field as well as additional constraints on model parameters. Several additional studies have de-

monstrated the value of adding optics to biogeochemical models (e.g., Babin et al. 1993; Sathyendranath

and Platt 2007; Kettle and Merchant 2008; Dutkiewicz et al. 2015a). Thus, we also discuss here the

links between models that include optical properties and their relevant ocean colour products. We

follow from least to highest level “derivedness” and uncertainty from the satellite products’ perspective

(Figure 4.1).

4.1.1 Water leaving radiance and reflectance

Water leaving radiance and reflectance (see Section 2.2.2 in Chapter 2) are the primary variables observed

by ocean colour radiometers, and can be thought of as the primary ocean colour products. They have

the least associated uncertainty of any satellite ocean colour product (Figures 4.1 and 4.2). However,

very few numerical models simulate these quantities explicitly (see discussion in Section 3.3, Chapter 3).

Here we highlight the few models that do capture these quantities, and show that even then, there is a

mismatch between the ocean colour and model quantities.

Satellite sensors usually take measurements close to noon, but the solar angle still varies due to

latitude. Water leaving radiances provided by space agencies have been converted to approximately

zero zenith angle (i.e., as if the sun is directly overhead) by dividing by the cosine of the solar angle,

as well as including corrections for other atmospheric, air-sea interface and orbital cycle effects (see

Chapter 2.1). While these assumptions correct for the effect of changing solar angle on the downwelling

radiance (and hence water leaving radiance), they cannot correct for the ocean colour products seeing

deeper in the water column at zero zenith angle. A simple example of this is demonstrated by the

approximately 20% decrease in Secchi depth at a sun zenith angle of 50◦ (Lee et al. 2015b). However,

products that use more than one band implicitly assume that the ocean is mixed such that the different

penetration depth makes little difference to the output. Satellite downward irradiance is also a product,

as while these estimates are based on measurements, there are conversions used resulting in the final

estimate. Thus, provided a biogeochemical/ecosystem model uses the same downward irradiance as the

satellite product, water-leaving radiance is likely the closest comparison between model and satellite

products.

While radiance measurements made at sea do not have atmospheric correction issues and are

measured from directly overhead, they may not be observed at noon, and have challenges associated

with sensor and water shadowing. As such, there is also a mismatch between in situ radiometric

measurement and even the most basic of satellite ocean colour measurements.
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4.1.1.1 EcoLight-S

EcoLight-S has similar computational algorithms to HydroLight (Mobley 1994), but EcoLight is a modular

package designed to be embedded into ecosystem models to improve the optical calculations (Mobley

2011). EcoLight-S solves the radiative transfer equations for radiance. It automatically accounts for

transmission of sky radiance (hence of irradiance) through the sea surface as a function of wind speed,

solar zenith angle, and atmospheric conditions. The spectral absorption and scattering properties of

water are used as inputs to EcoLight-S, which can describe any water body from the clearest Case 1 water

to the most turbid Case-2 water. EcoLight-S is therefore valid for use in any water conditions, and there

is no need to predetermine a water type for light and heating calculations. EcoLight-S also provides

outputs of the remote-sensing reflectance, in-water spectral irradiances and upwelling radiance, which

can be used to validate ecosystem predictions via remotely sensed or in-water optical measurements

such as BGC-Argo (Fujii et al. 2007; Mobley et al. 2015).

4.1.1.2 Three-stream model

The models of Gregg and Casey (2007a) and Dutkiewicz et al. (2015a) both include a three stream-

radiative transfer code (Gregg and Carder 1990). The three stream (downward direct, Edd , downward

diffuse, Eds and upwelling, Eu) model follows Aas (1987), Ackleson et al. (1994), and Gregg (2002a).

Downwelling (direct and indirect) irradiance just below the ocean surface are provided as forcing fields.

The three streams are followed through the water column by the radiative transfer model. Converting

these model outputs to remotely sensed reflectance requires some assumptions and simplifications.

The upwelling irradiance, Eu, must be converted to radiance (Lu) using a distribution function (Q) which

has values between 3 and 5 steradian (Morel et al. 2002) and depends on several variables, including

inherent optical properties of the water, wavelength, and solar zenith angles (Morel et al. 2002; Voss

et al. 2007). The subsurface values must also be adjusted to be above surface, to link to satellite-like

measurements.

Gregg and Rousseaux (2017) convert to normalized upwelling spectral radiance (LwN) using a

formula that takes into account mean extraterrestrial irradiance just below the ocean surface, surface

reflectance, and the index of refraction. Using 1-nm spectral resolution in the model simplifies the

comparison with MODIS-Aqua LwN by avoiding band mismatches. The model provided radiances that

were within -0.074 mW cm−2 um−1 sr−1 of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and

667 nm. The water leaving radiances from the model were significantly correlated to those from

MODIS-Aqua (R = 0.71 p<0.05) and on average 10.4% lower than those from MODIS-Aqua with a mean

semi-interquartile range of 0.08. These results suggested that this model has skill in simulating global

water leaving radiances, and supports the use of these simulations for various applications including

satellite mission design and analysis (e.g., PACE).

In Dutkiewicz et al. (2018, 2019) the below water reflectance diagnostic output was recalculated as

if the sun was directly overhead (i.e., side-stepping the issues that the real satellite products have to

correct). However, the same issues (as mentioned above) of converting irradiance to radiance, and from

below to above water still needed to be parameterized. In these studies, model output was converted to

above surface remotely sensed reflectance (Rrs) using the formula of Lee et al. (2002). The Rrs from the

model was in 25 nm bands from 400 nm to 700 nm. These bands do not match those from satellite

sensors, which measure over smaller bands and centered at different wavelengths (see Figure 2.7).

Interpolation to satellite wavelength provide additional uncertainty when comparing directly to satellite

products. However, there was good correspondence between the model remotely sensed reflectance

and the satellite product.
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4.1.1.3 Relationship to absorption and scattering

To avoid the significant computational cost of an explicit radiative transfer model, Baird et al. (2016)

made a simpler calculation of remote-sensing reflectance using depth-resolved optical properties

directly. First, the model calculates the depth-resolved absorption, total scattering and backscattering

of different water constituents. From these, the depth-resolved ratio of backscattering to the sum

of backscattering and absorption, µ =bbtot/(atot + bbtot ), is determined for each layer. The irradiance

reflectance just below the surface, R(λ,0), is then calculated by weighting the influence of each layer

using twice the fraction of light attenuated in the layer, and summing the weighted µ for the entire water

column, and including the bottom reflectance, if light reaches the bottom. The remaining calculations

converting irradiance reflectance to remote-sensing reflectance follow the procedure of Lee et al. (2002).

The use of an optical depth-weighted µ gives an identical solution to a full radiative transfer model

for waters in which the optical depth of water is shallower than the surface model layer thickness (for

example with red light and/or turbid waters), but deviates when upwelling irradiance from lower layers

becomes important.

Case Study: The Use of Reflectance in Models

Model water leaving irradiance and reflectance can be quantitatively compared at multiple wavelengths

to assess the skill of the biogeochemical model. For qualitative but quite insightful comparisons

in “colourful” water bodies, such as the shallow waters of the Great Barrier Reef, Baird et al. (2016)

have shown the usefulness of comparing simulated true colour with observed true colour (Figure

4.3). Comparison of the two images immediately reveals some of the strengths and weakness of the

biogeochemical model. The 1-km model sufficiently resolves submerged reefs so that individual features

can be readily identified in both images, although on the shelf edge some reefs in the model are too

deep to be seen from space. In both the observed and simulated true colour images, the macrotidal

shallow coastal waters of Broad Sound (22◦S) appear a similar hue of brown. This illustrates that

the model both resuspends material in the correct locations, and that the resuspended material has

mass-specific optical properties similar to the observed suspensions. But the waters off Fitzroy River

are not sufficiently brown, possibly suggesting the suspended concentrations in the Fitzroy River flow

are underestimated. Even in the relatively oligotrophic waters of the Great Barrier Reef, the patterns of

algal blooms can be seen in both model and observations.

4.1.2 Optical properties

Uncertainty grows the further a satellite derived product gets from the light signal directly measured by

a satellite radiometer (Figure 4.1). Inherent optical properties (IOPs) refer to water optical characteristics,

including the absorption and scattering coefficients in the water column (see Section 2.3.4 in Chapter 2),

and are the next tier in terms of level of derivation and uncertainty after Rrs (see Figure 4.1). As such,

IOPs could be better comparison products than chlorophyll concentration or other products based on

mass concentration that are further down the table of “derivedness”. However, many models do not

include these as output, and users of models might have less understanding of these quantities than

for more biogeochemically relevant quantities such as Chl-a. Though for completeness, and since more

models are likely to include some aspects of IOPs in the future, we include this section here.

IOPs provided from ocean colour satellite data are products derived from optical measurements.

Both the measurements, and the algorithms used to derive the IOPS have uncertainties associated with

them. The underlying optical relationships used in the IOP algorithms are dependent on empirically-

derived constant spectral shape coefficients (see Chapter 2). As such, they do not capture the full range

of temporal and spatial variability found in specific regions of the ocean, creating regionally varying

uncertainty (see uncertainty maps of IOP products hosted by NASA: https://oceancolor.gsfc.nasa.gov/).

Some new approaches (Werdell et al. 2018) are emerging that attempt to allow the coefficients to vary,

https://oceancolor.gsfc.nasa.gov/
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MODEL MODIS

Figure 4.3 Comparison of simulated (left) and observed (right) true colour in the complex
coastal waters of the Great Barrier Reef on 2 June 2018. Simulated true colour (left)
obtained from simulated remote-sensing reflectance at 645, 555 and 470 nm of the ∼1-km
resolution eReefs simulation (www.eReefs.info, Baird et al. 2016). The ∼250 m observed
true colour (right) is from the MODIS Aqua sensor processed using the NASA Worldview
application (worldview.earthdata.nasa.gov). Both images are generated using the NASA
true-colour processing algorithm. Worldview uses MODIS Bands 1, 4, and 3, respectively
corresponding to the red, green, and blue range of the light spectrum, assigned to the
red, green, and blue channels of a digital image. The images include a brightening factor
that depends on the graphics package rendering the image, and have been approximately
matched.

reducing uncertainty.

Several studies have demonstrated the value of adding optics to biogeochemical models (e.g., Babin

et al. 1993; Fujii et al. 2007; Sathyendranath and Platt 2007; Kettle and Merchant 2008) and newer

models explicitly resolve IOPs (Fujii et al. 2007; Gregg and Casey 2007a; Xiu and Chai 2014; Dutkiewicz

et al. 2015a; Baird et al. 2016). For instance, better optics provides a more realistic/unbiased light

field for the ecosystem processes (e.g., phytoplankton growth). Moreover, including IOPs increases the

amount and types of data that can be used to validate a model (see e.g., Fujii et al. 2007).

Total scattering, backscattering and absorption are a product of the different optically important

constituents such as water molecules, phytoplankton, detrital matter, coloured dissolved organic

matter (only important for absorption), viruses, minerals and salt. Models that include IOPs must make

simplifications and rarely include all optically important components. In the models, each constituent

must be related to the concentration of the corresponding model state variables (CDOM, detrital matter,

and phytoplankton Chl-a or biomass) and to the absorption/scattering spectra assumed for each (see

Figure 2.4).

Thus, while the satellite IOP products are high up in the table of “derivedness”, the model IOPs are

emergent properties of complex feedbacks involving many optical constituents, though some of which

may be quite crudely represented. Here we consider absorption by CDOM (aCDOM ), as a case example of

the difficulties between linking ocean colour satellite measurements, in situ measurements, and model

output.

www.eReefs.info
worldview.earthdata.nasa.gov
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Case Study: Absorption by CDOM (Models, Ocean Colour and In Situ)

Coloured dissolved organic matter (CDOM), also known as gelbstoff or gilvin, is particularly important

in absorbing in the blue portion of the spectra. However, CDOM is made up of many compounds and

is not usually a state variable in models. Absorption by CDOM (aCDOM ) is typically measured as the

difference in absorption of water samples before and after filtration through a 0.2 µm pore size filter.

In contrast, most satellite products do not separate CDOM from absorption by detrital particles and the

satellite-derived property is referred to as “CDM” (though see some GIOP products, Werdell et al. 2013).

Though it is likely that detrital particles contribute <20% to CDM (Siegel et al. 2002), this is regionally

variable. Thus, even in situ and satellite-derived products of aCDOM are not directly comparable.

A few models have included aCDOM , though at different levels of complexity. Fujii et al. (2007)

included uniform aCDOM , and in Gregg and Casey (2007b) aCDOM was treated as a function of Chl-

a. Dutkiewicz et al. (2015a) and Xiu and Chai (2014) included a CDOM-like tracer similar to Bissett

et al. (1999a): it is assumed to have a source that is a fraction of DOM production, to have a long

remineralization timescale, and to be bleached under high light conditions. aCDOM is then related to the

“CDOM” tracer. The absorption from CDOM calculated in the latter models are actually quite similar to

those measured in the water column, and the comparison between model and these in situ observations

is quite straightforward (see Figure 4.4e,f). However, comparing to satellite derived aCDOM is far more

complex, given that the ocean colour product is itself a “model” and the ocean product also includes

detrital particles. Thus, in models that also capture absorption by non-living particles, the comparison

should be between ocean colour aCDM and model aCDOM + aDET .

There are a number of other considerations common to comparing model output to satellite-derived

and in situ observations. Firstly, many numerical models do not resolve the terrigenous sources of

aCDOM that may have different turnover times and optical properties than aCDOM produced in the ocean.

Models also do not resolve the different turnover timescales of the different components of aCDOM ,

including the potentially large pool of recalcitrant aCDOM that would be captured by satellite (Hansell

2013).

Case Study: Vertical Attenuation (Models and Satellite)

The satellite product for vertical attenuation, Kd(490) (m−1), returns the diffuse attenuation coefficient

for downwelling irradiance at 490 nm calculated using an empirical relationship derived from in

situ measurements of Kd(490) and blue-to-green band ratios of remote sensing reflectances (Rrs).

Traditionally, biogeochemical models with simple optics have calculated a vertical attenuation rate

based on the sum of vertically attenuating components (e.g., Fasham et al. 1990), accepting that, as

recently demonstrated by Lee et al. (2018), attenuation is not simply the sum of individual constituents.

More recently, sophisticated optical models calculate the absorption, scattering and backscattering of

individual optically-significant components, and then calculate Kd(490) depending on the light field,

most critically on the solar zenith angle.

The vertical attenuation coefficient is fundamental to depth of solar heating and the vertical

distribution of primary production, so strongly determines model behaviour. At the same time, the

satellite products for Kd(490) are more directly related to the phenomena they are quantifying than

other IOP algorithms, such as chlorophyll concentration. Thus when Ciavatta et al. (2014) (see Chapter

6) used the mismatch between satellite-observed and simulated Kd (here for 443 nm, not 490 nm), they

found better performance than assimilating satellite-observed chlorophyll concentration.

4.1.3 Chlorophyll-a

To highlight the points made by Figure 4.2, we first provide a brief description of uncertainties in in

situ methods of measuring Chl-a. The most established approach for measuring Chl-a concentration

in the field is by filtering water samples through GF/F filters and measuring the Chl-a fluorescence of
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Figure 4.4 In situ observations and model comparisons along a transect through the
Atlantic (Atlantic Merdional Transect 15). Observations on left are from (a) Chl-a; (c)
nitrate; (e) absorption by CDOM, and (g) absorption by phytoplankton. The right column
shows the model of Dutkiewicz et al. (2015a). (b) Chl-a with acclimation following Geider
et al. (1998); (d) nitrate as a state variable; (f) absorption by CDOM, where CDOM is a state
variable: an exponential function relates absorption to CDOM concentration at different
wavelengths; (h) absorption by phytoplankton, where absorption is linked to each of
the 9 modelled phytoplankton functional groups with a wavelength dependent spectral
function determined from laboratory experiments. From Dutkiewicz et al. (2015a),
Creative Commons Attribution 4.0 License.

the retained material resuspended in solvent (e.g., Welschmeyer 1994). However, Chl-a determined

fluorometrically typically includes the effects of chlorophyll-b and phaeopigments in addition to Chl-a

(Trees et al. 1985). An alternative approach using High Performance Liquid Chromatography (HPLC,

e.g., Bidegare et al. 2002) better isolates and quantifies Chl-a, and is preferred for satellite validation

(Mueller et al. 2003). HPLC measurements are, however, more time consuming and expensive so there is

far more fluorometric data. Concentrations derived using the two methods are well correlated, with

Chl-a typically 40% higher when measured fluorometrically compared to HPLC (Trees et al. 1985). A

calibration is often used to scale fluorometric to equivalent HPLC values, but the relationship varies with

cell physiology, and thus ocean conditions, so that cruise or region-specific calibrations are preferred

(Mueller et al. 2003). Chl-a fluorescence can also be measured using various in situ sensors, including

on profilers or autonomous vehicles. Again, the relationship between the measured fluorescence and

Chl-a varies considerably, with non-photochemical quenching making the use of such data for remote

sensing purposes particularly problematic (Roesler et al. 2017).

The most often-used algorithm for estimating Chl-a from ocean colour relies on the greater

absorption in the blue range of the light spectrum than the green. The ratio of the amount of blue to

green light leaving the ocean surface at any location therefore supplies information on the concentration

of Chl-a. Using datasets of coincident radiometric observations and in situ Chl-a, a 4th order polynomial
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can be constructed to estimate Chl-a from measured blue/green reflectance ratios (e.g., O’Reilly et al.

2000, see Section 2.3.1 in Chapter 2 for more in-depth discussion). This empirical algorithm is then used

globally with satellite remote-sensing reflectance. The relationship is typically considered robust in open

ocean conditions where the optical effects of phytoplankton co-vary with other optical constituents

(including CDOM and detritus), so called Case-1 conditions (Smith and Baker 1978; Morel 1988; O’Reilly

et al. 2000). Though even in these waters the mean error estimate is about 35% and rises even higher in

coastal waters (Moore et al. 2009). It is likely that locally the errors are much larger, especially in areas

of low Chl-a.

It is relatively well understood in the ocean colour scientific community that these ocean colour

products have large errors and specific regional biases (Hu et al. 2000; Moore et al. 2009; Szeto et al.

2011; Blondeau-Patissier et al. 2014). However, there remain aspects of errors, biases and uncertainties

that are poorly quantified, particularly in regions where there are little or no in situ data to compare to

the satellite derived products. Further, many users of ocean colour products whose main expertise are

in other arenas (e.g., numerical modellers) are less aware of these issues.

Most numerical models capture phytoplankton biomass in terms of carbon or nitrogen concentra-

tion (e.g., mmol C m−3). Chl-a is rarely the main “currency” (though see for instance Gregg and Casey

2007b). Many models however diagnose a Chl:C ratio associated with the phytoplankton species (or

types) captured in the model. Such Chl:C ratios are a function of the environment (nutrients, light,

temperature). A frequently used formulation of the Chl:C ratio used in models is that of Geider et al.

(1997, 1998), though potential improvements have been suggested (e.g., Baird et al. 2013; Jackson et al.

2017). The Chl-a content of the phytoplankton can either be a diagnostic value, or an explicit variable

in the model that is followed over time with rates of synthesis and loss of chlorophyll determined

via a parameterization such as Geider et al. (1998). It is advantageous to include Chl-a in a model

as it improves the parameterization of photosynthetic rates and productivity. However, a secondary

reason to include Chl-a in models is that this is the easiest and most ubiquitous variable with which to

compare to observations. For instance, Chl-a is more often easier to measure in the real ocean than

phytoplankton carbon, and model Chl-a fields are easy to compare to in situ measurements of Chl-a

concentration (see Figure 4.4a,b). Moreover, the ocean colour Chl-a is better known than the ocean

colour products of phytoplankton carbon, and likely have lower errors associated with them (Figures

4.1 and 2.8). Thus, global and seasonal evaluation of model Chl-a can be done with ocean colour Chl-a

(see e.g., Chapter 5).

Ocean colour satellite-derived Chl-a is not only used as an evaluation product, but has also been

used for data assimilation (e.g., Gregg 2008; Ciavatta et al. 2011; Rousseaux and Gregg 2012). The

likely biases in the Chl-a estimates are often not appreciated by the modelling community. Modellers

sometimes misinterpret mismatches as model defects that are actually potentially due to satellite

product biases, or worse, have tuned their models or assimilated the products, to capture the ocean

colour derived Chl-a even where it is likely biased. It should be made clear that Chl-a from satellites is

merely an estimate of Chl-a and that there are likely (though not necessarily known) biases in these

data.

Case Study: Modelling Actual and Satellite-Like Derived Chl-a

Dutkiewicz et al. (2018) explored the difference between Chl-a estimated from a blue-green reflectance

ratio and the Chl-a that was explicit in the numerical model. They used a global 3-dimensional physical,

biogeochemical, and ecosystem model that included nine phytoplankton functional types which had

dynamically changing Chl-a concentrations. The sum of this explicit and dynamic Chl-a across all

phytoplankton types can be referred to as model “actual” Chl-a (Figure 4.5a). When this model “actual”

Chl-a is compared to satellite derived Chl-a (OC-CCI OC4 algorithm), large biases are evident, especially

at high latitudes (Figure 4.5b).

The model also had radiative transfer of spectral irradiance in 25 nm bands between 400 and
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Figure 4.5 Comparison of model Chl-a to satellite-derived Chl-a. (a) Model annual
average “actual” Chl-a. This is the explicit and dynamic Chl-a found from the phytoplank-
ton in the model. (b) Bias between model and MODIS satellite derived Chl-a. Positive
suggests that model over-estimates the Chl-a found from the satellite measurements. (c)
product using the blue-green reflectance ratio and a 4th order polynomial to estimate
Chl-a in the manner used in satellite products (e.g., NASA OC4). (d) Bias between model
“satellite-like derived” Chl-a and the MODIS-derived Chl-a.

700 nm, that allowed the model to output spectral surface upwelling irradiance, output that is similar

to measurements made by ocean colour satellites. Using these reflectances, the authors were able to

construct an “ocean colour-like derived” Chl-a product. They first calculated the blue-green reflectance

ratios and then used a 4th order polynomial (similar to the NASA OC4 algorithm) to estimate this

“satellite-like derived” product (Figure 4.5c). When this satellite-like derived Chl-a product was compared

to the real MODIS product its bias (Figure 4.5d) was less that the “actual” Chl-a bias (Figure 4.5b). If

the authors had evaluated their model as in Figure 4.5c, they would have thought their model was

performing far worse than when they compared more similar variables, that is, Chl-a calculated in

the same way as the real satellite products are calculated. This study therefore showcases that ocean

colour Chl-a itself has bias due to processes affecting the blue/green ratio that are not captured in the

algorithm, and should be used with care in evaluation of (or assimilation into) a numerical model.

4.1.4 Carbon pools

Deriving information about the different carbon pools from ocean colour satellite data is a more recent

development than deriving Chl-a (Legendre and Michaud 1999; Stramski 1999; Stramski et al. 1999;

Sathyendranath et al. 2009, Chapter 2.3.3), largely due to the difficulties of measuring the different pools
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of carbon in situ (e.g., dissolved, particulate, organic, inorganic, living, dead, autotrophic, heterotrophic

pools). However, the carbon pools are the products that link to the more fundamental variables in

numerical models (Figure 4.1). Carbon pools are comprised of a range of different compounds and

entities, which vary globally. The components impact ocean colour via the absorption and/or scattering

properties of the different constituents. The optical properties of each constituent are determined

by its composition and structure, so that information on, for example, particle size is contained

within the ocean colour signal (e.g., Vaillancourt et al. 2004; Hirata et al. 2008; Kostadinov et al. 2009).

Consequently, a number of approaches to derive carbon pools from ocean colour have been developed

(Section 2.3.3 in Chapter 2). The different constituents and their varied optical properties present a

complex problem for retrieving information from ocean colour. Algorithms use a range of different

approaches, assumptions and empirical datasets, even with diverse approaches to derive the same

property.

The properties of carbon pools that are important for driving ocean colour (e.g., particle size) are

often poorly resolved by biogeochemical/ecosystem models, with some pools (e.g., bacteria, detritus)

resolved simply, or omitted entirely. Furthermore, any model that uses fixed elemental ratios will

encounter a further potential source of mismatch to ocean colour products.

4.1.4.1 Particulate organic carbon

Field measurements of particulate organic carbon (POC) commonly capture the carbon associated with

(living or dead) particles retained on a filter (Menzel and Vaccaro 1964), with the precise particle size

depending on the method used. GF/F filters are typically used (with approximate 0.7 µm pore size) and

samples may also be pre-screened to remove a large particle fraction.

In terms of IOPs, POC would fall under the absorption and scattering from both non-algal particles

(NAP) and phytoplankton (Evers-King et al. 2017). Backscattering from the organic or inorganic pools

cannot usually be discerned, and thus is most commonly defined as particulate backscatter, which

incorporates all living and non-living particles. The relationships between satellite-derived particulate

backscatter and POC (e.g., Stramski et al. 1999; Cetinić et al. 2012) account for the inclusion of the

non-organic contribution to particulate backscatter through their empirical relationships.

A range of different assumptions and in situ datasets have been used to generate a variety of

satellite POC products (Evers-King et al. 2017). Algorithms typically use satellite-derived Chl-a (where

variability is driven by blue/green reflectance ratio) or satellite-derived backscatter, combined with

empirical relationships between these observations and POC measured in situ. Some algorithms use

additional information including satellite-derived Kd (Gardner et al. 2006). The spatial and temporal

variability in POC satellite products is largely determined by the base measurement (reflectance ratio or

backscatter) while the absolute magnitude is generally determined by the empirical relationships that

scale the base measurement to POC. Satellite products will have different mismatches in variability and

absolute magnitude when compared to model output (e.g., satellite products based on backscatter will

have different variability to those based on Chl-a and blue/green reflectance ratio). The various satellite

products are biased to different components of the POC pool, depending on the observations used in

the algorithm. For example, products based on empirical relationships with in situ measurements of

POC retained on GF/F filters are biased towards the variability of larger phytoplankton (>0.7 µm) and

potentially small zooplankton that comprise this material. The satellite products are based on different

assumptions and empirical datasets resulting in varied biases, and thus different mismatches when

compared to model output.

Modellers often use the name “POC” to refer to the fraction of “dead” phytoplankton or zooplankton

that exists as detritus, at least in models with an explicit detritus pool (Wild-Allen et al. 2010; Dutkiewicz

et al. 2015a). Detrital carbon is lost to the dissolved (organic and/or inorganic) pools via simple functions

representing degradation and mineralization. The description of detritus is often highly simplified,

partly because it is hard to constrain, with the goal typically to be able to reproduce observed patterns
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of POC decay with depth, rather than POC concentrations themselves. Furthermore, parameterizations

of the bio-optical properties (mass-specific absorption and scattering) of POC used in coupled optical-

biogeochemical models (Baird et al. 2016) are typically based on a small number of discrete water

samples (e.g., Blondeau-Patissier et al. 2009). These discrete samples represent a specific mixture of

POC sources that are unlikely to accurately represent the time-evolving combinations of POC sources

that a model may endeavor to represent (i.e., changing fractions of labile and refractory detritus

from dead phytoplankton and zooplankton). Models also omit small, slow turnover, detrital particles

and heterotrophic bacteria which will likely affect the magnitude of the difference between modelled

and satellite-derived POC but less so the variability, because those carbon constituents are relatively

homogeneous globally (Ducklow 1999).

Model and satellite POC therefore differ in the components of the POC pool they represent. Most

models explicitly resolve phytoplankton, zooplankton and detritus, but whether or not all of these

pools should be combined when comparing to a particular satellite POC product is not straightforward.

Nor is it straightforward to determine the effect of the model representation of heterotrophic bacteria,

viruses or the myriad different sized other labile/refractory particles that influence the ocean colour

product in a model-satellite comparison.

4.1.4.2 Phytoplankton carbon

The phytoplankton carbon pool is more clearly-defined than POC. Field measurements of phytoplankton

carbon typically use cell enumeration by microscopy (cells larger than around 2 µm) and/or flow

cytometry (cells smaller than around 5 µm) and then convert cell counts to carbon biomass using

published conversion factors (e.g., Menden-Deuer and Lessard 2000; Tarran et al. 2006). Phytoplankton

carbon may also be measured directly using carbon within the phytoplankton component separated

using cell sorting flow cytometry (Graff et al. 2012; Graff et al. 2015). Most biogeochemical and

ecosystem models have a clearly defined phytoplankton pool (e.g., Aumont et al. 2003; Le Quéré et al.

2005), though recent efforts to incorporate mixotrophy in models (e.g., Ward and Follows 2016) may

make it more complicated to define the phytoplankton pool.

A range of approaches to derive phytoplankton carbon from satellite have been attempted (Martinez-

Vicente et al. 2017). Products are typically based on satellite-derived Chl-a (the blue/green reflectance

ratio) or particle backscattering derived semi-empirically from reflectance using information on ab-

sorption and scattering components (Behrenfeld et al. 2005; Martinez-Vicente et al. 2013). Some use

information on allometry and additional combinations of satellite-derived and in situ measurements

(Kostadinov et al. 2016; Roy et al. 2017). Most algorithms include empirical relationships between

phytoplankton carbon and in situ POC. In a similar way to POC, implicit biases within the satellite

products will affect the comparisons to model output. For example, products that are based on

backscatter and/or flow cytometric data may be biased by the smaller (pico)phytoplankton, whilst

those using microscopy data or incorporating POC measured on GF/F filters may be biased towards

larger phytoplankton. Since phytoplankton carbon products are based on similar (or the same) base

measurements as some POC products, and some use simple empirical relationships between POC and

phytoplankton carbon as part of the algorithm, some satellite-derived phytoplankton carbon products

are quite similar to those for POC.

Case Study: POC and Phytoplankton Carbon

Output from a global numerical model (Dutkiewicz et al. 2015a) was compared to selected satellite POC

and phytoplankton carbon products as part of the ESA-funded “Pools of Carbon in the Ocean” project.

The model resolved 3-dimensional physical, biogeochemical and ecosystem processes that included

nine phytoplankton functional types and two zooplankton size classes. Model “POC” for comparison to

satellite products was defined as phytoplankton, detritus and small zooplankton pools. Small (but not
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large) zooplankton were included because they could contribute to the in situ POC used to develop the

satellite algorithms. The model output selected for the comparison was monthly averages (to capture

seasonal cycles but not temporal mismatches such as blooms occurring a few days too early or late),

the time period 1998 – 2006 (to match ESA OC-CCI products) and water depths >1000 m (because the

model was not designed to resolve coastal processes).

The model output was compared to four satellite POC products and three phytoplankton carbon

products (Figure 4.6). For POC, the first product is based on an empirical relationship between a

reflectance band ratio and POC (Stramski et al. 2008, method 1), and the second is based on backscatter

(bbp) analytically derived from ocean colour combined with an empirical relationship between bbp and

POC (Stramski et al. 2008, method 2). The third is based on bbp derived from reflectance and Kd, and

empirical relationships between total particle scattering (bp), bbp and POC involving Chl-a (Gardner et al.

2006). For phytoplankton carbon, Cphy , the first product is based on satellite Chl-a (i.e., a reflectance

band ratio) and an empirical relationship between Chl-a and Cphy (Sathyendranath et al. 2009). The

second is based on analytically derived bbp and empirical relationships between bbp , POC and Cphy

(Behrenfeld et al. 2005) and the third is based on bbp and empirical relationship between bbp and Cphy

(Martinez-Vicente et al. 2013).

The model overestimated the range in Cphy and POC between high and low biomass conditions

relative to all the satellite products, attributable to known issues, for example, the model over predicts

the range in phytoplankton biomass partly due to grazing and because the model resolution is too

coarse to capture certain physical processes in the gyre regions (Dutkiewicz et al. 2015a). The similarity

in the mismatches between model and satellite-derived phytoplankton carbon and POC products is

explained by the ratio of phytoplankton carbon to POC in the model being almost constant. Furthermore,

the model POC is dominated by phytoplankton, and the detritus and small zooplankton carbon co-vary

closely with phytoplankton biomass. Some of the satellite approaches also assume a fixed contribution

of phytoplankton carbon to POC within their algorithms (Behrenfeld et al. 2005; Sathyendranath et al.

2009).

The correlations between the model output and satellite products based on the reflectance band

ratio were similar to one another, were more linear, and had lower RMSE compared to the correlations

for products based on backscatter (Figure 4.6), demonstrating the importance of the base measurement

for driving the variability within satellite products, and hence the variability in the model-satellite

comparison. Since the overall magnitude of the satellite-derived carbon concentrations is largely

determined by the empirical relationships within the algorithms, the magnitude of the difference

between model and satellite is likely to stem from disparities between the model POC pools and the

pools captured by the in situ measurement. In general, model POC was underestimated more than

phytoplankton carbon, potentially because the model lacks many components of the POC measured in

situ (such as refractory particles). The modelled ratio of phytoplankton carbon to POC was relatively

high, and relatively constant, again potentially reflecting missing components of POC in the model

(Smith and Baker 1978; Martinez-Vicente et al. 2013; Graff et al. 2015), though in situ observations of

this ratio are sparse.

Whether or not large zooplankton were included in the model POC had a small effect on the

difference between model and satellite-derived POC (on average <2% of the difference globally), with the

impact mainly in high biomass conditions where large zooplankton carbon is most important.

4.1.4.3 Dissolved organic carbon

Dissolved organic carbon (DOC) is one of the largest pools of carbon in the ocean. DOC is an important

component in biogeochemical and ecosystem models, and is usually a state variable (i.e., it is a

field explicitly stepped through time in the model, see Section 3.2.1 in Chapter 3) and as such, the

concentration at any location at any time is part of the model. In biogeochemical models, DOC is

usually parameterized as being formed from lysis and mortality of phytoplankton and zooplankton
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Figure 4.6 Pools of carbon from ocean colour products and models. Cphy (top two
panels) and POC (bottom two panels) from the model compared to Cphy and POC derived
from selected satellite approaches. For each comparison the top panels are surface
monthly-mean values at all model grid points from 1998–2006 compared to values
from each satellite-derived product, where colours indicate the density of points. The
bottom panels are the percent difference between model and satellite-derived values for
monthly-mean for March 1998 ((model - satellite) / model). Correlation statistics (r 2 and
the root mean square error as percentage of model values) are provided for the log-log
relationship and linear relationship (in parentheses). For Cphy , the satellite products are
from left to right: Sathyendranath et al. (2009) (left panels), Behrenfeld et al. (2005)
(middle panels) and Martinez-Vicente et al. (2013) (right panels). For POC the satellite
approaches from left to right are: Stramski et al. (2008, method 1), Stramski et al. (2008,
method 2), and Gardner et al. (2006). We acknowledge help from Hayley Evers-King and
Victor Martinez-Vicente with the satellite-based calculations shown in this figure.

at a size-dependent proportion to detritus, and as a result of sloppy feeding. DOC is remineralised

to dissolved inorganic carbon (DIC) usually with a very simple constant timescale parametrization,

although some models do include explicit heterotrophic bacteria (Fasham et al. 1990; Stock et al. 2014b;

Zakem et al. 2018). In general, the DOC in models does not include the refractory pool.
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Limited in situ data hinders the accurate representation of DOC concentration in both models and

satellite products. There is very little in situ data on either the total DOC or the proportion that absorbs

light (CDOM, discussed in Sections 2.3.3 and 4.1.2). Rather, in situ observations are mainly of aCDOM

(e.g., Nelson and Siegel 2013). This is due to the ease of capturing the coloured fraction (i.e., CDOM) of

DOM with optical approaches that can be applied to satellite and autonomous observations (Siegel et al.

2005; Xing et al. 2012). CDOM is particularly important optically, absorbing strongly in the blue portion

of the spectrum (see Figure 2.4), although CDOM is only a small part of the DOM pool.

Models typically do not resolve CDOM (though see Bissett et al. 1999b; Xiu and Chai 2014; Dutkie-

wicz et al. 2015a; Baird et al. 2016, and discussion in Section 4.1.2). When they do, it is usually because

they include an optical component that requires this important water constituent. Such models do not

use CDOM to evaluate or tune their DOC fields, as these are not comparable quantities.

There is no global algorithm for obtaining DOC from satellite measurements. In coastal waters,

however, CDOM absorption tracks the spectral shape of DOC due to the presence of a strong gradient of

relatively degraded, terrestrial-derived material and conservative mixing (Stedmon and Markager 2003;

Fichot and Benner 2011; Mannino et al. 2014; Cory and Kling 2018). These consistent relationships

between aCDOM and DOC do not hold up in open ocean waters due to relatively low production rates

and strong photodegradation in surface ocean waters (Nelson et al. 2010; Helms et al. 2013).

4.1.4.4 Particulate inorganic carbon

Particulate inorganic carbon (PIC) is produced by marine calcifying organisms including corals, forami-

nifera, pteropods and coccolithophores. Coccolithophores, a major producer of PIC, are surrounded by

a shell made of coccoliths. The coccoliths can detach from the cells thereby largely determining the

PIC concentration of seawater. Balch et al. (2005) developed an algorithm to quantify the amount of

PIC using normalized water-leaving radiance at 440 and 550 nm. Models may have a representation

of coccolithophores, or PIC, or both. It is therefore important to keep this difference in mind when

comparing satellite data and model output. Coccolithophores and PIC are not the same. Moreover,

coccolithophores are not the only source of PIC. For instance, other marine organisms (e.g., foramini-

fera) produce PIC, and there are terrestrial sources. Thus models and ocean colour algorithms such

as Balch et al. (2005) underestimate actual PIC. The difference between total PIC, and that produced

by coccolithophores alone, need to be remembered, especially since PIC production affects model

alkalinity.

Case Example: Modelling of PIC Production

Few models incorporate explicit PIC. In the model of Gregg and Rousseaux (2017), PIC is produced by

the growth of coccolithophores and is lost via sinking and dissolution. PIC is produced as a fraction

(25%) of the coccolithophore growth rate (Gregg and Casey 2007a) minus respiration. The PIC sinking

rate is represented as an exponential function of concentration, assuming that large concentrations of

PIC are associated with larger coccolith size. Dissolution follows Buitenhuis et al. (2001), except that no

dissolution is allowed for depths shallower than the calcium carbonate compensation depth, which

was defined as 3500 m. The PIC from the model was compared to the global PIC using the algorithm

developed by Balch et al. (2005). They found that the model PIC distributions largely corresponded

to the satellite distributions, although local maxima in the southern central North Pacific and the

Greenland are subdued in the model (Gregg and Rousseaux 2017).

4.1.5 Phytoplankton types/groups

Satellite approaches to estimate phytoplankton functional types (PFTs) began with identifying dominant

single groups and have evolved to capturing multiple groups. The identification and mapping of the
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distributions of coccolithophore blooms (Brown and Yoder 1994; Brown and Podesta 1997), Tricho-

desmium (Subramaniam et al. 2002), harmful species (Hu et al. 2008; Tomlinson et al. 2009; Stumpf

et al. 2016), and diatoms (Sathyendranath et al. 2004; Jackson et al. 2011) were based on spectral

ratios, thresholding, and the unique spectral signatures (absorption and backscattering) associated

with each phytoplankton group. The detection of multiple groups, such as phytoplankton size clas-

ses, phytoplankton taxonomic composition and particle size distribution (that includes all particles,

not phytoplankton alone) have several different approaches (IOCCG 2014; Bracher et al. 2017; Mouw

et al. 2017, see Section 2.3.7 and Table 2.1). Abundance-based approaches rely on phytoplankton

concentration (expressed as chlorophyll concentration or absorption coefficient, e.g., Uitz et al. 2006;

Aiken et al. 2007; Brewin et al. 2010; Hirata et al. 2011) as an indicator of phytoplankton community

composition. Radiance-based approaches classify multiple PFTs based on the spectral bounds of the

shape and/or magnitude of satellite-observed spectral remote sensing reflectance (e.g., Alvain et al.

2005, 2008). Absorption-based approaches rely on the spectral shape or magnitude of phytoplankton

absorption to estimate phytoplankton size composition (e.g., Ciotti and Bricaud 2006; Hirata et al.

2008; Mouw and Yoder 2010; Brewin et al. 2011; Devred et al. 2011; Fujiwara et al. 2011; Roy et al.

2011; Bricaud et al. 2012) and phytoplankton taxonomic groups (Bracher et al. 2009; Sadeghi et al.

2012). Scattering-based approaches utilize particulate backscatter to estimate particle size distribution

(Montes-Hugo et al. 2008; Kostadinov et al. 2009; Kostadinov et al. 2010). Finally, some authors also

rely on other information such as blending physical data in addition to bio-optical information from

ocean colour to distinguish between different phytoplankton groups (e.g., Raitsos et al. 2008; Palacz

et al. 2013).

Phytoplankton composition in biogeochemical/ecosystem models are mostly based on biogeoche-

mical functions. Numerical models in general encompass limited diversity of phytoplankton. They

rarely (if ever) capture a single species, but usually parameterize groups of phytoplankton as a single

entity, e.g., “diatoms” (which will have a silica requirement) and “non-diatoms” (which do not). Many

models include phytoplankton functional groups such as diatoms, pico-cyanobacteria, and diazotrophs

(e.g., Baretta et al. 1995; Bopp et al. 2005; Gregg and Casey 2007a). Some models capture explicit

size classes instead (e.g., Ward et al. 2012; Ward and Follows 2016). A few studies have assimilated

PFT ocean-colour products into ecosystem models (Ciavatta et al. 2018, 2019; Skákala et al. 2018, see

Chapter 6).

Studies suggest that model and satellite estimates of phytoplankton biogeography often do not

compare well in terms of phytoplankton dominance patterns (Vogt et al. 2013; Ciavatta et al. 2019), and

in the timing of blooms (Hashioka et al. 2013; Kostadinov et al. 2017). These discrepancies may suggest

that the numerical models are not sophisticated enough, or the satellite products are not well developed,

or (more likely) that the groupings that each capture are different enough that the comparison is

ill-posed. This latter has been identified as a major gap in current ocean colour phytoplankton diversity

studies (Bracher et al. 2017), which recent studies are tackling by coordinating the definition and

computation of PFTs from ocean-colour algorithms and marine ecosystem models (e.g., the regional

algorithms by Brewin et al. 2017a and the ERSEM model in Ciavatta et al. 2018).

Case Study: Phytoplankton Size Class Phenology Across Satellite Imagery and Mo-
dels

Satellite PFT algorithms have a variety of phytoplankton classes, units, and satellite product outputs,

precluding direct comparison of algorithm performance. Instead, Kostadinov et al. (2017) compared

phenological cycles (bloom timing) between PFT algorithms and several CMIP5 models to identify spatial

patterns of agreement and disagreement (Figure 4.7). The timing, amplitude and duration of blooms

of microplankton were compared. The standard NASA chlorophyll concentration product was used

as reference. While the phenology of the PFT algorithms on global scales agrees to a first order, there

were significant differences. This points to a need for a more extensive comparison effort with a
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comprehensive harmonized in situ data set incorporating co-located radiometric, bio-optical (pigment

concentration, IOPs) and derived biological quantities (phytoplankton Chl, size structure, etc.). This

will allow the ability to resolve whether differences are due to algorithm uncertainties or to actual

biogeophysical differences (Bracher et al. 2017). The comparison of phenological parameters in CMIP5

model output (diatom carbon biomass) to those of satellite imagery suggest the models represent the

timing of the bloom well, but biases are found in other phenological characteristics in CMIP5 models.

The biases include: 1) more pronounced seasonal variability in the models, 2) clear seasonality is evident

in the satellite data along a zonal band at 30◦ latitude, but this feature is not reflected in the models,

and 3) models exhibit a single annual biomass peak over most of the ocean, except for the Equatorial

band, whereas the satellite data capture secondary blooms in temperate latitude zonal bands that are

not reflected in the climate models. These biases are attributed to an over-simplification of processes in

models and a damped response to interannual variability than in reality (Cabré et al. 2016).

Figure 4.7 Comparison of satellite and modelled microplankton phenology in Longhurst
(1998) North Atlantic Drift province. (a) Months of maxima of the satellite PFT algorithms;
(b) Months of maxima of the models’ diatom carbon biomass for the North Atlantic Drift
Region. Image adapted from Kostadinov et al. (2017) with permission from Elsevier.

4.1.6 Primary production

The most widely used satellite primary production products are based on satellite derived Chl-a. Such

products use an empirical model that derives the primary production from Chl-a, surface irradiance,

light attenuation (often derived from Chl-a) and/or mixed layer depth and the photosynthetic efficiency

described by photo-physiological parameters (often derived from SST, e.g., the VGPM model, Behrenfeld

and Falkowski 1997b). The empirical models to quantify primary production from this information

are well established (e.g., Ryther and Yentsch 1957; Platt 1986; Sathyendranath et al. 1989, 1991;

Antoine and Morel 1996; Behrenfeld and Falkowski 1997b). Phytoplankton change their cellular Chl-a

content to acclimate to their nutrient and light environment. To reduce the uncertainties in primary

production estimates inherent in using Chl-a, a carbon-based approach was developed. The carbon-

based primary production models utilize satellite-estimated bbp to estimate phytoplankton carbon

biomass which is related to growth rates from chlorophyll-to-carbon ratios (Behrenfeld et al. 2005;

Westberry et al. 2008). Further, the “Carbon, Absorption, and Fluorescence Euphotic-resolving”(CAFÉ)

model has been developed to take advantage of several recent remote sensing advances allowing for

the use of phytoplankton absorption, particulate backscattering and phytoplankton carbon to estimate
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net primary production (NPP). NPP is calculated by the CAFÉ model as a product of energy absorption

and the efficiency by which absorbed energy is converted into carbon biomass, while growth rate is

calculated as NPP normalized to phytoplankton carbon (Silsbe et al. 2016).

Primary production algorithms have additional uncertainties relative to some of the other products

discussed earlier (they are more “derived”, see Figures 4.1 and 2.8). These include, but are not limited

to, the assumption of the temperature dependence of primary production, the relationship between

chlorophyll and carbon, the relationship between surface and depth integrated carbon/chlorophyll,

the assumption of the light dependence of photosynthesis, and light attenuation in the water co-

lumn/euphotic zone. Carr et al. (2006) argue that differences in the temperature dependence of primary

production underlie the primary differences in the spatial patterns in the primary production algorithms.

They also highlight the high uncertainty in the predicted global net primary production magnitude,

which likely arises from the collective effects of all the other factors.

The satellite products are validated against in situ observations, with the most established technique

to quantify primary production in the field being the assimilation rate of radio-labelled carbon (14C)

during incubations of water samples at simulated in situ conditions (Steemann Nielsen 1952). However,

the approach is time consuming and has large uncertainties that remain difficult to quantify (Marra

2002). For example, whether the incubations measure gross or net primary production (which includes

nighttime respiration) depend on the incubation timescale (typically a few hours to 12 h or 24 h), with

incubations typically representing something between the two. There are also artifacts that mean there

is a large degree of variability between studies (Marra 2002). Additional physiological information

is required by many satellite algorithms, including the maximum quantum yield and/or maximum

Chl-a-specific carbon fixation rate, which are obtained from short-term (typically 2–4 h) 14C incubations

over a light gradient (photosynthesis vs. irradiance experiments).

Other aspects of phytoplankton photosynthesis and community production can be observed using

active Chl-a fluorescence and other isotope (e.g., oxygen) techniques, but some of these are difficult

to relate to phytoplankton carbon fixation (Suggett et al. 2009; Quay et al. 2012). Although there are

numerous different ways of measuring the various metrics of phytoplankton and community production,
14C-derived measurements remain the benchmark because it is the most longstanding technique with

reasonable data coverage (Regaudie-de-Gioux et al. 2014).

In one satellite product inter-comparison (Saba et al. 2011), the average root-mean-square-error for

all algorithms and regions was around 30%, with roughly half of the mismatch between satellite products

and in situ observations stemming from uncertainties on the input variables (in particular Chl-a), with a

further fifth attributed to uncertainties in the in situ observations within the primary production dataset.

For the 21 products, the more complex depth or wavelength resolved algorithms performed no better

than simple ones (Saba et al. 2011). The high uncertainty in satellite-derived primary production leads

to the large range in predicted global NPP magnitude (Carr et al. 2006). Given the large uncertainties in

the primary production products, space agencies do not provide these production products. However,

such products are available elsewhere (e.g., https://www.science.oregonstate.edu/ocean.productivity/).

Models also use parameterizations for primary production that relate the biomass (or Chl-a), light

and primary production, but typically depend on nutrient availability as well (such as the Geider et al.

1998 formulation). Model primary production is a particularly important property to validate against

observations because it is often the rate within the biogeochemistry and ecosystem processes that can

be most reliably constrained. However, the large uncertainties in in situ data and satellite products

make model validation problematic. Discrepancies are to be expected if the satellite algorithm and

model include different assumptions about photophysiology, including the quantum yield, and different

assumptions about light penetration and/or predict different mixed layer depth or vertical distribution

of Chl-a.

Variability between different models and satellite products have been investigated in a series of

round robin inter-comparison exercises (Campbell et al. 2002; Carr et al. 2006; Friedrichs et al. 2009;

Saba et al. 2010; Lee et al. 2015a). Mismatches between the models, satellite products and in situ data

https://www.science.oregonstate.edu/ocean.productivity/
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remain large (Lee et al. 2014). When compared to in situ data, ocean colour products have been shown

to perform no better than biogeochemical models (Friedrichs et al. 2009).

4.2 Temporal and Spatial Mismatch of Model Outputs and Ocean

Colour Products

There are differences in the spatial and temporal resolution of the model variables and the ocean colour

products. For instance, most global models are often on a coarser grid (around 100 km) than the

ocean colour measurements (<10 km), while on the other hand coastal models may have resolution

at much finer scales (<1 km) than that provided by ocean colour products. Moreover, ocean colour

products typically only cover the globe every few days, giving incomplete instantaneous coverage.

There are issues comparing model temporally averaged variables (which include every time step and

every location) and satellite “climatologies” (which contain incomplete instantaneous coverage and

can miss data from clouds and, in high latitudes, when there is insufficient sunlight). Additionally,

ocean colour products are provided from two-dimensional measurements, while model variables are

three-dimensional. These issues make comparing the variables that models output difficult to compare

to ocean colour products. Here we discuss just a few of these issues, and leave others for Chapter 5.

4.2.1 Temporal gaps in ocean colour measurements

Models have regular grids, and temporally, the output is usually statistical “means” over days, months

or years that includes input from every timestep: there is no missing data. On the other hand, satellite

measurements are not continuous, with missing data due to orbital periods, clouds, aerosols etc.

Satellite products are potentially misleadingly provided as “climatologies”, where all available data are

averaged together. One potential solution to this is to limit data with gaps, such as satellite data, to

seasonal climatologies (mean for several years, but where the months are kept separate e.g., a mean of

all Januaries, all Februaries, etc.). The word “climatology” to a modeller usually refers to a long term

mean (e.g., over several years), with continuous output (i.e., a true mean). Thus there can be distinct

confusion between the two communities.

In high latitudes, a satellite Chl product could have as little as six months of data for an annual

“climatology”, due to low sun angle, and likely further reduced by cloud coverage. Such annual averages

cannot be compared to model “climatology” which would include all the model output i.e., output

from all months, and no missing data due to cloud cover (though note newer technologies such as

CALIOP will provide more complete coverage of the globe all year). Gregg and Casey (2007b) showed,

for example, that persistent clouds, especially in the high latitudes such as in the North Pacific, lead

to an overestimate of chlorophyll concentration from the satellite data since the satellite “sees” the

chlorophyll only when there are no clouds (which generally corresponds to a period of higher growth

for phytoplankton). In the North Pacific, clouds can limit the number of available days of satellite ocean

colour observations to <5 days per month. This sampling problem can lead to biases between 6–13% in

chlorophyll concentration estimates for the months of May through July, a period of high growth for

phytoplankton in this region (Gregg and Casey 2007b). Similarly, aerosols can lead to underestimates in

chlorophyll concentration from ocean colour by ∼30% by selective sampling in lower aerosol thickness

periods, which correspond to lower phytoplankton growth periods. High solar zenith angle, clouds,

aerosols, sun glint, inter-orbit gaps and sensor tilt changes can each represent a source of gaps in

ocean colour data (See Chapter 8, Case Study 8.1.1 for more details on this study). The seasonal and

interannual variability of these factors can be large, and further complicate the quantification of ocean

colour-derived data as well as any seasonal and trend analysis. It is therefore crucial to keep these gaps

in mind when using any satellite ocean colour data for research purposes, and in particular, for model

validation (see Chapter 8, Case Study 8.1.2 for more on this topic).
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4.2.2 Matching in time

The dynamic nature of the optical properties of the ocean means that any mismatch in the timing

of observations and models needs to be minimized. For calibration of satellite algorithms such as

OC3M, satellite and in situ observations usually occur within 3 h in the open ocean, and 1/2 h in the

coastal ocean. This short time window is to account for changing chlorophyll concentration and the

movement of fronts, among other processes. A similar maximum time mismatch should be used for

model-observation match-ups.

A second reason to ensure a tight match-up in time of models and satellite observations is the

changing solar angle. Most satellite measurements are apparent optical properties (AOPs) meaning that

they depend on the solar angle (though note that geostationary satellites will help provide corrections

for these issues). The satellite measured remote-sensing reflectance and normalized water leaving

radiances account for the effect of solar angle on incoming solar radiation per m2 by normalizing to

the solar radiation at zero zenith value. But this normalisation does not account for the effect of solar

angle on the vertical attenuation of light through the water column. Thus satellite observations at high

zenith angles will be measuring properties closer to the surface than those at a zero zenith angle. The

error in the mismatch in time due to the changing solar zenith angle will be greatest at high latitudes,

as well as when the time between the local noon and the observation is greatest.

4.2.3 Biases in ocean colour products due to spatial resolution of in situ measure-

ments

The spatial and temporal sampling of the in situ data used to develop the algorithms also lead to biases

in satellite products. In situ datasets may be biased to coastal rather than open ocean regions, or vice

versa, with empirical relationships often omitting data from particular ocean basins. Some regions may

be strongly biased to spring and summer months. Some regions may not conform to the empirical

relationships used in the algorithms. A recent model study suggested significant deviations from the

Chl-a vs. blue-green reflectance ratio used in the OC4 Chl-a algorithm in some under-sampled regions

including the Southern Ocean (Dutkiewicz et al. 2018, see Chapter 8, Case Study 8.2.2). Assessing the

uncertainties in regions with no data is clearly problematic and should be born in mind when validating

model output for these regions.

4.2.4 Mismatches due to depth resolution: comparing 2- and 3-dimensional quan-

tities

Biogeochemical models produce a range of three-dimensional variables (e.g., nutrients, phytoplankton

biomass, Chl-a) that are properties of the volume of each individual grid cell (see Section 3.2.2. in

Chapter 3). Pixelated ocean colour observations are determined from the two-dimensional water leaving

irradiance fields with an orientation aligned with the satellite path, and with contributions from a range

of depths in the water column.

A number of methods have been undertaken to convert a 3-dimensional model variable to the

2-dimensional field. The simplest, and most common approach, is to assume the surface model field is

equivalent to the ocean colour product. However, this is a large assumption unless the water column is

well mixed to the greatest depth of returning light. In a slightly more sophisticated approach (Gordon

and Clark 1980), a 2-D ocean colour-like product (C2D) can be determined from the model 3-D field,

C(z), using an exponential weighting function, f(z), that accounts for arriving irradiance having been

attenuated differentially at each depth.

C2D =
∫ z
0 C(z)f(z)dz∫ z

0 f(z)dz
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f(z) = exp
(
−
∫ z

0
2Kddz

)
This approach also has limitations, in particular in assuming that the downwelling and upwelling

pathlengths are the same. However, it has been used to calculate remote-sensing reflectance from

depth-resolved model IOP fields (Baird et al. 2016) and depth-resolved chlorophyll fields (Moline and

Prezelin 2000).

A further complication of this approach for ocean colour products using band ratios is to determine

what Kd value to use. In fact, this illustrates an inherent limitation of band ratio algorithms: since

bands have a different profile of vertical attenuation, the ocean colour product is based on the return

of light from two different depth profiles. In the case of satellite-derived chlorophyll, it is the ratio of

green light returned from, on average, shallower depths than the returned blue light. This inconsistency

highlights the advantages of calculating satellite-like ocean colour products from model remote-sensing

reflectance (see e.g., Baird et al. 2016; Gregg and Rousseaux 2016; Dutkiewicz et al. 2018, see also

case study in Section 4.1.3). The satellite-like product will be different to the model variable its name

suggests it should represent, but nonetheless more comparable to the satellite-derived ocean colour

product.

4.2.5 Mismatches due to uncertainty of in situ measurements

The uncertainty and availability of different data varies considerably, so that some measurements may

have high uncertainty but abundant data and vice versa. For instance, there are far more fluorometrically-

determined Chl-a measurements than those measured via HPLC, although HPLC determination of Chl-a

is more accurate. Both data types are more abundant and have lower uncertainty than phytoplankton

carbon or primary production. The uncertainties on many types of in situ measurements remain difficult

to quantify (a notable example is primary production, Williams and Purdie 1991). Moreover, when

models or satellite algorithms use empirical relationships or observations within them, then some

aspects of the methodological errors will be incorporated into those models or satellite products (e.g.,

McKee et al. 2014, 2015b). Obviously, presence of uncertainties does not mean that we should stop

using in situ data (or the satellite products informed by them), but it is important to be aware of the

existence of, and potential implications of, such uncertainties.

4.3 Summary and Recommendations

In this chapter we have highlighted how ocean colour products, in situ observations and biogeochemical

model output do not compare cleanly (schematically shown in Figure 4.2). There are mismatches in

what is understood by a variable’s name, uncertainties are not well understood or quantified, and there

are biases linked to missing data. These mismatches are not well understood and provide a hindrance

to the best use of ocean colour (and models). Miscommunication linked to the lack of dialogue between

ocean colour product producers and the users (in this case the modelling community) can lead to

incorrect use of products. Both models and ocean colour products contribute to our understanding

of the biogeochemical and ecological processes and variability in the ocean, but in different ways. A

combined use of the two tools can be valuable (see e.g., Chapter 7), but require a better understanding

of the advantages and disadvantages of each.

We have stepped through the ocean colour products in order of their “derivedness” (see Figure

4.1), that is the level of uncertainty that goes with each step away from what is actually measured by

the satellite sensor, and the number and complexity of algorithms needed to reach a specific product

(i.e., from remotely sensed reflectance, to Chl-a, to primary production, which takes the derived Chl-a

as an input). The different information used, including the observed Rrs , theoretical and empirical
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relationships, and the necessary assumptions and averaging, can each contribute to mismatches in

magnitude and/or variability of properties when compared to output from numerical models.

4.3.1 Questions to consider when comparing model and satellite output

v Which model variables compare most directly to the satellite ocean colour product?

v Are uncertainties in the ocean colour product quantified (rarely), and if not, what is the level of

derivedness of the product (assuming the uncertainties get larger with addition derivation)?

v Are there underlying biases in model or satellite products due to assumptions, optical properties

or biases in in situ data?

v Which products are the priorities to ‘get right’ (e.g., Chl-a or carbon)?

v What are the biases from missing satellite measurements?

v What are the biases from limited in situ data to train or validate the ocean colour products?

It is important to consider separately the biases associated with 1) the satellite measurement that

provides the spatial and temporal variability (e.g. reflectance ratio, analytically-derived backscatter)

and 2) the (normally empirical) relationships that scale the variability to the property of interest (e.g.,

reflectance ratio vs. Chl-a, backscatter ratio vs. POC). In the case of primary production, it is clear that

satellite-model comparisons are model-to-model: an empirically-based satellite model and a (typically

more) mechanistic simulation model. Careful consideration should be given to what information is

actually being gained from the satellite product and how to interpret comparisons.

4.3.2 Should we bring model output closer to ocean colour or ocean colour pro-

ducts closer to model outputs?

Models could (and likely will) continue to be developed to resolve ocean colour at its least derived

form (e.g., water leaving radiances) as these products are likely the most robust field to validate and

assimilate (Jones et al. 2016). Though there is already a remarkable fidelity in the model connections to

fields such as Rrs and normalized water radiance (e.g., Baird et al. 2016; Gregg and Rousseaux 2016;

Dutkiewicz et al. 2018, 2019) there are still uncertainties with these model outputs. Such models will

likely continue to resolve greater complexity in the optical constituents to better compare to the ocean

colour observed from space. Such increased complexity could include:

v resolving size partitioning of particulate carbon (phytoplankton, zooplankton, detrital material);

v resolving additional optically important water constituents such as bacteria and viruses, and

their optical make up;

v resolving CDOM more adequately through including terrestrial sources and a variety of turnover

times.

However, to compare model output to the least uncertain ocean colour-derived quantity (e.g.,

reflectance) may often not be possible given the additional computational costs and added complexity

of the model. Moreover, stakeholders are more familiar with quantities such as Chl-a than reflectance

or IOPs. It is likely that both approaches will be needed in the future: models that link closer to ocean

colour, and newer ocean colour products that are closer to the needs of more traditional biogeochemical

models (e.g., that do not explicitly include optics or radiative transfer components). Such products will

likely improve on the capturing of specific pools of carbon. Communication between modellers and

remote sensing scientists is key to decide “where best to meet in the middle”.
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4.3.3 Recommendations

Models, in situ observations and ocean colour products are different tools to help us understand the

ecological and biogeochemical processes in the ocean. At some level we can ask if we do, in fact, need

to bring all three into a format where we can match them exactly, or instead use them for their best

application and rather merge the understanding that comes from them. This, in the end, is a worthy

outcome, especially as non-scientist stakeholders would prefer one answer (rather than three different

ones). However, such integrated results will need a multi-way discussion.

We recommend that modellers should have better information about using satellite data as well

as the development of new satellite approaches. Agencies providing ocean colour products should

examine and explore how additional information can be presented alongside satellite products to help

modellers make informed choices and interpretations. On the other hand, the needs of modellers, and

the potential usefulness of models, for instance for algorithm development (see Chapter 8), should be

borne in mind with new ocean colour product development.

The needs of the modelling community will change as ecosystem models become more complex

(such as resolving mixotrophs, bacteria, viruses, other carbon pools). Simply developing satellite

algorithms for deriving each of these (a reactionary approach) is not recommended. Consideration is

needed of users’ requirements, in situ and satellite observational constraints, and of the assumptions,

errors and uncertainties of different approaches to assess the most robust comparisons between

satellite products and model output.
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Chapter 5

Ocean Colour for Model Skill Assessment

Charles Stock and Stefano Ciavatta

NOTE: In this report, the word “model” refers to process-based three-dimensional biogeochemical/

ecosystem computer models at large regional or global scales.

5.1 Introduction

Underlying the development of most marine ecosystem models is a desire to make inferences beyond

observed patterns. This can occur spatially, across ecosystem properties, or as predictions of future

ocean states. In all cases, the question arises: how much should we trust the model predictions?

In the Earth sciences, compelling attempts to confront this question arise for weather predictions

and climate change projections. For weather, comparison of past predictions against observed outcomes

over many years provide highly developed probabilistic frameworks for assessing and communicating

prediction skill (e.g., Stanski et al. 1989; von Storch and Zwiers 2002; Jolliffe and Stephenson 2003;

Mason and Stephenson 2008; Wilks 2011). Extensive retrospective forecast experiments also provide a

foundation for assessing the skill of seasonal to multi-annual climate predictions (Becker et al. 2014;

Kirtman et al. 2014; Stock et al. 2015). Century-scale climate change projections, however, do not have

the luxury of a large catalog of past anthropogenic climate change experiments with which to quantify

skill. Confidence in model projections must instead be built upon an assessment of the model’s capacity

to reproduce current and past climate states (Randall et al. 2007; Cheung et al. 2016).

Recent years have seen rapid growth in the use of marine ecosystem models to inform decisions

in ways analogous to weather and climate predictions (Clark et al. 2001; Allen et al. 2015; Gehlen

et al. 2015; Tommasi et al. 2017b). This burgeoning transition of marine ecosystem models from

research, to applications, to operations, has increased the impetus for rigorous model skill assessment.

In this context, a flawed assessment of the question “how much do we trust an ecosystem prediction?”

does not just lead to flawed scientific conclusions, but to flawed decisions that can impact property,

livelihoods and lives.

The primary obstacle in assessing the skill of ocean ecosystem model simulations and predictions

is the availability of relevant observations at relevant scales. As we will describe in this Chapter, the

revolutionary capacity of satellite-based ocean colour measurements to reveal ecosystem properties

over a broad range of spatial and temporal scales has ensured satellite measurements a central role in

ecosystem model skill assessment. The decision about which ocean colour patterns to assess models

against should be based on the intended use of the model. That is, skill assessments should be “fit

to purpose”. A model intended to simulate the evolution of large-scale ocean biomes on decadal to

century scales (e.g., Polovina et al. 2011) would be well served to capture both mean biome states and

their historical inter-annual variation. In contrast, a model intended to explore the integrated effect of

mesoscale or sub-mesoscale processes should faithfully simulate the spatiotemporal statistics of such

features (Powell et al. 2006).

77
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In this Chapter, we begin our discussion of ocean colour-based model skill assessment with a brief

review of skill assessment metrics in Section 5.2. Section 5.3 then highlights ocean colour comparisons

intended to support a range of model applications across a range of spatiotemporal scales. Examples are

drawn mainly from chlorophyll comparisons and emphasize 1) the challenges posed by uncertainty and

regional biases in ocean colour estimates; 2) strengths, weaknesses, and alternatives to point-to-point

comparisons between models and satellite data; and 3) the need for comparisons and retrospective

forecast evaluation at the space and time scales of interest for each application.

In some examples, uncertainty in satellite-based estimates are large enough to make skill assessment

difficult, even when comparing quite different models. This uncertainty arises from the gap between

what most satellites measure (remote-sensing reflectance at select wavelengths) and what we use these

measurements to infer (e.g., plant pigment concentration). It also underscores a fundamental aspect of

model skill assessment: what we observe and compare models against is an imperfect measure of the

true ocean state, which is impossible to know exactly (Lynch et al. 2009, Figure 5.1).
 

 

Figure 5.1 Truth, error and misfit in comparing ocean colour estimates and models
(following Lynch et al. 2009). Both satellite-based measurements and simulations approx-
imate of the true ocean conditions (e.g., chlorophyll), with errors characterized by εSat

and εMod, respectively. When assessing model predictions, one is ultimately interested
in εMod, but the true state of the ocean cannot be known exactly. One must instead use
the misfit (δ) between the model and satellite-based estimates. The panels illustrate the
implications of this for three different levels of satellite accuracy. Panel A, shows a case
where both model and satellite estimates have significant uncertainty, but the satellite is
slightly more accurate. In this case, perhaps typical of chlorophyll in open ocean regions
(Gregg and Casey 2004), δ and δMod are similar: the measure of skill provided by the
comparison with satellite is a reasonably robust measure of skill relative to the true
ocean state, but should still be viewed with some caution. In Panel B, both the satellite
estimate and the model are subject to large uncertainties. This case is comparable to skill
assessments in the coastal ocean (Ciavatta et al. 2011), or comparing against primary
production (Carr et al. 2006; Friedrichs et al. 2009) and the misfit δ relative to any single
NPP algorithm may not be a good approximation of εMod. Finally, panel C represents a
case where the satellite estimate is an excellent measure of the ocean state such that
there is only a small difference between δ and εMod.

Chlorophyll estimation has long been a focal point of ocean colour measurements (Gordon et al.

1983). It has relevance to diverse potential model applications, including understanding seasonal

variations and fish recruitment (Platt et al. 2003), predicting fisheries catch (Friedland et al. 2012;

Mcowen et al. 2015), and understanding ocean habitats, including bycatch avoidance (Hazen et al. 2018).

Chlorophyll is not, however, “fit to purpose” for building confidence across all model applications.
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Section 5.4 thus discusses comparisons between models and satellite-based estimates beyond chlo-

rophyll (e.g., primary production, the distribution of sizes and functional types in the phytoplankton

community). Such properties are generally more “derived” (sensu Zheng and DiGiacomo 2017, Chapter

2) than chlorophyll. That is, the number and boldness of assumptions and approximations required

to connect native satellite measurements to the estimated quantity are greater than those required

to estimate chlorophyll. This often results in greater differences between satellite estimates and the

true ocean state for the more derived quantity than for chlorophyll (Figure 5.1b). Alternatively, direct

comparison between models and satellite-measured remote sensing reflectance (e.g., Baird et al. 2016;

Dutkiewicz et al. 2019) reduces the distance between what a satellite actually measures and what the

model is compared against (Figure 5.1c). Simulating remote sensing reflectance, however, requires

biophysical models to include more complex (and potentially computationally expensive) optical and

radiative transfer components than most biophysical models currently include. Also, while comparing

directly with remote sensing reflectance may be natural for some studies (Baird et al. 2016), it may not

be “fit to purpose” for other model applications.

Section 5.5 concludes with a forward-looking discussion of advances by the modelling and ocean co-

lour communities that would further build confidence in marine ecosystem predictions and projections.

On the modelling side, there has been tremendous progress since the literature review of Arhonditsis

and Brett (2004) highlighted meager skill assessment efforts for marine ecosystem models. However,

more work is needed to ensure that skill assessment is “fit to purpose”. The utility of ecosystem

predictions is often linked to capturing subtle anomalies around strong mean spatial and temporal

patterns. More focused assessments on these decision-relevant scales, including formal retrospective

prediction experiments (Séférian et al. 2014; Rousseaux and Gregg 2017; Park et al. 2019) are needed

to further strengthen model skill assessment. Ocean colour is unique in its capacity to support such

efforts, as it provides a global, multi-scale, decades long, time series of ecosystem state. The utility

of ocean colour would be further strengthened by reducing the uncertainty in ocean colour based

estimates of ocean conditions (i.e., striving for Figure 5.1c), continuing to develop new metrics for

societally critical ecosystem phenomena, and rigorously quantifying uncertainties. Efforts on all these

fronts are pivotal to realizing the aspiration of translating ecosystem predictions and projections into

improved societal resilience.

5.2 Model Skill Assessment Metrics

Diverse metrics are used in model skill assessment. This chapter does not attempt a full review, and

readers interested in a more complete treatment are directed to numerous texts and papers on the

topic (Burnham and Anderson 2003; Stow et al. 2009; Wilks 2011). A few of the most common metrics

are provided in Table 5.1. The reader will note that Table 5.1 does not use “model” and “observed”

designations. This reflects the complexities expressed in Figure 5.1: we are comparing two estimates

of the same ocean quantity, with one derived from a physical-biological model and the other derived

from satellite-observed ocean colour. We use y to designate the satellite-based estimate, and ŷ to

indicate the estimates arising from a model. The differences between the model and satellite-based

estimates (δ = y − ŷ) are then referred to as “misfits” or “residuals”. In comparisons against satellites,

all quantities (δ, ŷ,y) are generally gridded values in space and time, interpolated or averaged onto a

common comparison grid.

The metrics in Table 5.1 measure different aspects of the model-satellite comparison. The correla-

tion coefficient, for example, measures pattern consistency: it quantifies agreement (or disagreement)

in the relative highs and lows on a normalized (-1 to 1) scale. It does not, however, contain information

on the magnitude of misfits as does, for example, the root mean squared difference (RMSD). The RMSD

can be further decomposed into a mean bias (B) and a contribution due to misfits remaining after the

mean bias is subtracted (RMSD’). This decomposition is useful for understanding how much of the
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Table 5.1 Common skill metrics used in comparisons of models with satellite data. In
all cases, δ is the misfit between the model-based estimate (ŷ) and the satellite-based
estimate (y), and n is the number of comparison points. The standard deviation of the
model and satellite data are indicated as σŷ and σy , respectively.

Metric Formula Interpretation

Root Mean Squared Difference

(RMSD)*
RMSD =

√√√√ 1
n

n∑
i=1

δ2
i The standard deviation (dispersion) of

the model-satellite misfits

Bias (B) B = 1
n

n∑
i=1

δi The mean model-satellite misfit

Correlation coefficient (r )** r =
1
n

∑n
i=1((ŷi − ¯̂y)(yi − ȳ))

σŷσy
Normalized measure consistency of re-

lative spatiotemporal variations

Unbiased Root Mean Squared

Deviation (RMSD’)

RMSD′ =

√√√√ 1
n

n∑
i=1

(δi − B)2 RMSD after subtracting out mean bias

Normalized standard devia-

tion

σ∗ = σŷ/σy Ratio of variability in model to that of

the comparison data

Nash-Sutcliffe model effi-

ciency (NSE)***

NSE = 1−
∑n

i=1 δ
2
i∑n

i=1(yi − ȳ)2
Measure of performance relative to a

model capturing just the mean; fraction

of the variance explained when > 0; per-

fect model has NSE = 1

* Also referred to as the root mean squared error (RMSE). We adopt “difference” herein for reasons explained in

Figure 5.1
** This is the Pearson correlation coefficient. Another commonly encountered variant, Spearman’s rank

correlation, is discussed in Table 5.2
*** See text for discussion of the relationship between NSE and the coefficient of determination (R2)

misfit is due to a constant error across an ocean region, and how much may be due to smaller-scale

spatial mismatches between simulated and satellite-estimated patterns.

A common model skill benchmark can be defined by comparing the misfit variance to those arising

from a reference model that represents only the mean of the data (ȳ). This can be seen in the Nash-

Sutcliffe Model Efficiency (NSE, Table 5.1). The NSE formula is identical to that for the coefficient of

determination (R2) commonly applied in statistical regression analysis. Values > 0 can be interpreted as

the fraction of variance explained (just like R2), and a perfect model has an NSE of 1. NSE values < 0

indicate that the model does worse than a model that represents only the mean of the data. There are

many variants of such metrics, and many variants for reference models. Skill relative to a persistence

forecast, for example, is a common metric used in forecasting (e.g., Stock et al. 2015; Jones et al. 2016).

The comparison metrics in Table 5.1 can be calculated with raw values or after logarithmic

transformation. Many satellite properties, including chlorophyll, vary over several orders of magnitude

(Campbell 1995; Van Oostende et al. 2018). Logarithmic transformation has the advantage of weighting

misfits equally across orders of magnitude. That is, a misfit between a modelled value of 1 mg Chl

m−3 and a satellite-based estimate of 0.1 mg Chl m−3 is given the same weight as a misfit between

10 mg Chl m−3 and 1 mg Chl m−3. If values are not log-transformed, skill metrics are much more

strongly influenced by values at the high end of chlorophyll’s dynamic range. On a global scale, the

desire to match chlorophyll patterns across their dynamic range often argues for log-transformation
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(see examples in Section 5.3.3). A strongly skewed misfit distribution is a good indication that log-

transformation will give a more balanced assessment of model performance across the range of the

quantity being estimated.

Skill metrics generally have probabilistic underpinnings that can be harnessed for significance

tests and model weighting. For example, the RMSD is broadly used because minimizing the RMSD

is equivalent to maximizing the probability that a model explains an observed pattern, if the misfits

are independent and normally distributed. That is, the model that minimizes the RMSD under these

conditions is also the “maximum likelihood” model. This probabilistic interpretation, which can be

expanded to non-normal distributions, enables use of a diverse hypothesis testing, model selection and

inference tools (Burnham and Anderson 2003).

The metrics in Table 5.1 are more difficult to interpret if residuals remain strongly non-Gaussian

even after log-transformation. They are highly sensitive to outliers, raising the possibility that a

judgement of poor (or good) skill may actually rest on just a few points. Furthermore, many of

the significance tests assume that residuals are approximately Gaussian. Other transformations can

be applied to achieve a Gaussian distribution of residuals (Simon and Bertino 2009; Friedland et al.

2012), but an alternative (or complementary) approach is to use “robust skill assessment metrics”

(Daszykowski et al. 2007). These have similar interpretations to the metrics in Table 5.1 but do

not require assumptions about the distributions of the data. These metrics rank the values of the

distributions and use the median and the inter-percentile ranges to characterize their central positions

and dispersion, instead of the mean and standard deviations. Table 5.2 provides examples of robust

metrics and their interpretation.

Table 5.2 Robust skill metrics used in comparing models with satellite data. In all cases,
δ is the misfit between the model-based estimate (ŷ) and the satellite-based estimate (y),
and n is the number of comparison points. The interquartile ranges of the model and
satellite data are indicated as IQRŷ and IQRy , respectively. The ranked values of model
and satellite data are indicated as ŷr and yr , and the standard deviation of the model
and satellite data are indicated as σŷr and σyr .

Metric Formula Interpretation

Median absolute deviation

(MAD)

MAD =median(|δ|) The dispersion of the model-satellite

misfits

Robust bias (B∗) B∗ =median(ŷ)−median(y) The distance between model and satel-

lite medians

Spearman’s rank correlation

coefficient (ρ)

ρ =
1
n

∑n
i=1((ŷr,i − ¯̂yr)(yr,i − ȳr ))

σŷrσyr
Normalized measure of monotonic con-

sistency of relative spatiotemporal vari-

ations

Unbiased Median Absolute De-

viation (MAD’)

MAD′ =median(|δ− B∗|) MAD after subtracting out the robust

bias

Normalized interquartile

range

IQR∗ = IQRŷ/IQRy Ratio of variability in model to that of

the comparison data

Summary diagrams combine multiple metrics from Table 5.1 into a single visual depiction of model

skill. A commonly applied diagram in geoscience is the Taylor diagram (Taylor 2001), which is a polar

coordinate plot combining correlation (angular position) and the normalized standard deviation (radial
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position). Satellite ocean colour examples can be found in numerous published works (e.g., Gruber

et al. 2006; Doney et al. 2009; Friedrichs et al. 2009; Moore et al. 2013; Aumont et al. 2015). Jolliff et al.

(2009) noted that Taylor diagrams lacked information on model bias and proposed the “target diagram”,

which combines RMSD and bias information, to address this (e.g., Doney et al. 2009; Friedrichs et al.

2009; Saba et al. 2010, 2011; Lee et al. 2015a, 2016). Summary diagrams can be constructed with robust

statistics (Laufkötter et al. 2015; Ciavatta et al. 2016). Section 5.3 provides an example application of

these diagrams to compare the ability of Earth System Models contributed to the 5th Coupled Model

Inter-comparison Project (CMIP5) to simulate annual mean chlorophyll observed via satellite.

A common probabilistic skill assessment alternative to the metrics in Tables 5.1 and 5.2 arises

in the case where the model is designed to predict discrete outcomes e.g., can a model predict high

biomass blooms? (Allen et al. 2007, 2008). Frameworks have been developed to assess the predictive

power of binary (or otherwise discrete) classification systems based on the distributions of correct

positives, correct negatives, false positives and false negatives (Brown and Davis 2006). A common

means of summarizing the skill of such a system is a Receiver Operator Characteristic (ROC) curve,

which summarizes the skill of correctly predicted blooms while avoiding false negative (e.g., Shutler

et al. 2011). Such an approach is a good example of “fit to purpose” for testing the robustness of

prediction systems for high risk events, such as its original application for differentiating friendly and

enemy aircraft during the Second World War (Brown and Davis 2006). Further discussion of applications

of this approach for ocean ecosystem models can be found in Allen et al. (2007) and Stow et al. (2009).

Lastly, it is notable that all but one of the skill assessment metrics in Table 5.1 require close spatial

matches between modelled and satellite-based estimates for a model to rate highly (the one exception

being the normalized standard deviation). This is a stringent (i.e., challenging) test, especially given the

satellite-driven revelation that chlorophyll and other optical properties vary dynamically across a full

range of spatiotemporal scales (Abbott and Zion 1985; Denman and Abbott 1988, 1994). Substantial

ocean colour variation is associated with physical phenomena (e.g., eddies, fronts) that may be resolved

by models, but may not occur in precisely the same location as those observed. This may be an issue

if the goal of a simulation is spatially precise ocean state estimation and/or 1–3 day forecasts, but

process-oriented models are more concerned with capturing phenomena faithfully and may be ill-served

by metrics requiring a strict spatial match. Likewise, seasonal to multi-annual predictions are generally

expected to provide information on larger-scale anomalies, not the precise position of mesoscale fronts

or eddies.

The simplest approach to relaxing the requirement of strict spatial agreement for small-scale

features is averaging prior to comparison. Such comparisons, however, fail to assess whether smaller-

scale features arise in a manner consistent with those observed in even a statistical sense. There

are, however, other approaches to address this by relaxing requirements for a strict spatial match, or

focusing on statistical or spectral properties (Powell et al. 2006; Rose et al. 2009; Stow et al. 2009;

Shutler et al. 2011; Saux Picart et al. 2012). These will be discussed further in Section 5.3.

5.3 Ocean Chlorophyll Comparisons Across Scales

Satellite ocean colour measurements provided the first truly global perspective on ocean ecosystems.

Chlorophyll estimates revealed variations in the convergence of nutrients and light in the surface

ocean that drive phytoplankton production (Figure 5.2a): elevated equatorial chlorophyll arising

from upwelling currents induced by easterly winds sweeping toward the tropical convergence zone,

highly stratified oligotrophic subtropical gyres with surface chlorophyll below 0.1 mg m−3, chlorophyll

rich temperate and subpolar regions fueled by the upward mixing of nutrient-rich deep waters each

winter, and richly productive coastal ecosystems where dynamic circulation across complex bathymetry

generates chlorophyll in excess of 10 mg m−3. Climate variability alters these confluences of nutrients

and light (Chavez et al. 2011; Taboada et al. 2019) and climate change is expected to do so (Bopp et al.
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2013; Laufkötter et al. 2015). Thus, a foundational test of global and regional ecosystem models is

whether they can capture mean chlorophyll distributions.

Figure 5.2 Panel A: The mean annual chlorophyll concentration estimated from a 20
year average of GlobColour data (mg Chl m−3, 1998–2017). Means at high latitudes reflect
non-winter months with satellite returns. Panel B: The annual chlorophyll concentration
from GFDL’s ESM2M-COBALT climate model (mg Chl m−3). High latitude values only
include data from months with satellite returns to allow for a consistent comparison
with satellite data. Panel C: The misfit, which has been transformed from a difference
between the log-transformed values to an equivalent ratio of the modelled to the satellite
estimate (=10δ) to ease comparison. The values of the skill metrics in Table 5.1 for this
comparison are: RMSD = 0.34, B = 0.06, RMSD’ = 0.34, r = 0.69, NSE = 0.48, and σ∗= 0.58.
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An example comparison for the Geophysical Fluid Dynamics Laboratories global Earth System

Model, ESM2M (Dunne et al. 2013) running with the Carbon, Ocean Biogeochemistry and Lower Trophics

(COBALT, Stock et al. 2014a,b) is given in Figure 5.2. The model output is compared against the Glo-

bColour chlorophyll estimates (http://www.globcolour.info/, ACRI-ST GlobColour, 2017). Model outputs

were taken from 20 years of the late 20th century historical period of a climate projection. That is, the

model’s concentration of greenhouse gases, aerosols and radiation from the sun are consistent with

recent years. All other aspects of the atmospheric, ocean, terrestrial physical, chemical and ecosystem

responses are internally determined by the model (i.e., there is no data assimilation, “nudging”, or

incorporation of observed winds). Such loosely constrained runs are critical for understanding and

projecting climate changes, but can lead to regional climate biases and drifts. The model’s ocean

resolution is coarse (∼1◦) to enable computationally expensive multi-century climate change projections

(readers are directed to Stock et al. 2011 for further discussion of global climate and Earth system

models).

The model output is compared against 20 year annual mean chlorophyll from GlobColour. Both the

GlobColour satellite estimate used in Figure 5.2 and the model output have also been mapped onto a

standardized 1◦ grid. As discussed in Section 5.2, this spatiotemporal averaging focuses the comparison

on fidelity with large scale features (i.e., chlorophyll variations across ocean biomes). The simulated

chlorophyll is furthermore averaged over the top grid cell of the model, which for ESM2M is 10 m. As

noted in Chapter 4, this is a simplification often made in model comparisons with satellite data and

ignores that the depth sampled by satellites varies with wavelength and optical constituents. While this

does not compromise the cross-biome variations of interest in Figure 5.2, more advanced approaches

are warranted in other circumstances (Gordon and Clark 1980; Moline and Prezelin 2000; Baird et al.

2016). Both the satellite and model data have been plotted on logarithmic scales to highlight similarities

and contrasts across the dynamic range of ocean chlorophyll. We use the chlorophyll comparison in

Figure 5.2 to provide an intuition for the skill assessment metrics in Table 5.1.

The correlation coefficient (r ) between the log-transformed model and satellite-based surface chlo-

rophyll estimates is 0.69, indicating generally consistent relative spatiotemporal chlorophyll variations.

The difference between the model and the data, however, can be greater than a factor of 4 in some

places (Figure 5.2c). The model under-estimates chlorophyll in many coastal areas and over-estimates

chlorophyll in sub-tropical gyres (i.e., the “ocean deserts” indicated by the deep blue colours in the

satellite data). The largest over-estimates often occur along the edges of the sub-tropical gyres, where

the smaller size of the biomes and moderate displacements in biome boundaries can lead to very

large misfits. This highlights the challenge posed by the strict spatial fidelity required by the skill

metrics in Table 5.1. The misfit RMSD is 0.34, or roughly a factor of 2 variation. While this may seem

large, it should be viewed relative to the orders of magnitude variation in chlorophyll dynamic range.

The mean bias is modest (B=0.06) such that RMSD’ is also 0.34 to within rounding error. The NSE

is 0.48, indicating that the model captures roughly half of the variance in the data. The normalized

standard deviation (σ∗= 0.58) confirms the clear visual impression that the model chlorophyll variation

is damped relative to observations. Thus, the model has little bias, is robustly correlated with observed

chlorophyll, captures about half the observed variance, but under-represents the dynamic chlorophyll

range and can have large regional biases due to displaced biome boundaries and under-representation

of very high chlorophyll coastal areas.

Comparison of satellite-based and simulated surface chlorophyll for ESM2M-COBALT and the suite

of ESMs contributed to the 5th Coupled Model Intercomparison Project (CMIP5) provides an opportunity

to highlight the utility of Taylor (Taylor 2001, Figure 5.3a) and target (Jolliff et al. 2009, Figure 5.3b)

summary diagrams. A very broad range of model skill across CMIP5 is immediately apparent. This in

part reflects wide variation in model comprehensiveness that arises from varying research foci and

computational constraints across modelling centers. It should also be noted that models in Figure 5.3

are coarsely calibrated, to the limited extent that computational capacity allows, to satellite-observed

chlorophyll patterns. For example, the highly uncertain iron scavenging rate in ESM2M-COBALT was

http://www.globcolour.info/
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calibrated to get reasonable mean levels of iron, chlorophyll and nitrate in iron-limited High Nutrient,

Low Chlorophyll regions (Stock et al. 2014b; Tagliabue et al. 2016). Since Figure 5.3 is intended solely

as an example of a summary diagram, and we cannot fully discuss variations in model complexity and

calibration explaining differences in skill, we refrain from identifying individual models aside from

ESM2M-COBALT (blue dot).

Figure 5.3 Summaries of the skill of ESMs contributed to IPCC-AR5 at capturing global
mean chlorophyll (i.e., Figure5.2). Model output was downloaded from the NOAA Cli-
mate Change Web Portal (https://www.esrl.noaa.gov/psd/ipcc/, Scott et al. 2016). In the
Taylor diagram (left), the polar coordinate is the correlation coefficient (r ) and the radial
coordinate in the normalized standard deviation (σ∗). The distance between each model
and the perfect model (r = σ∗ = 1; red diamond) is proportional to RMSD’. In the Target
diagram (right), the x-coordinate is used for the unbiased RMSD and the y-coordinate is
used for the bias. Since RMSD’ is always positive, the sign of the x-axis is used to indicate
whether the standard deviation of the model data is larger (x > 0) or smaller (x < 0) than
the standard deviation of the satellite data.

In the Taylor diagram (Figure 5.3a), ESM2M-COBALT produces one of the better correlation coef-

ficients (the polar coordinate) but has the lowest normalized standard deviation (radial coordinate).

A perfect model would produce r = σ∗ = 1 (the red diamond). The relatively short distance from

ESM2M-COBALT to the red diamond indicates low unbiased RMSD relative to most models but, as

Jolliff et al. (2009) point out, the Taylor diagram contains no information about the relative biases

between models. The target diagram (Figure 5.3b) emphasizes the low bias of ESM2M-COBALT relative

to other models. The target circles are drawn for 1
2 , 1 and 2 times the standard deviation of the satellite

chlorophyll. None of the models fall within the inner target, but 7, including ESM2M-COBALT, fall within

the second ring. The negative value on the x-axis indicates that the simulated standard deviation of the

model data is less than that of the satellite data (i.e., σ∗ < 1).

Fidelity with mean spatial chlorophyll gradients on global or regional scales provides a valuable

baseline model skill assessment, but it is just a starting point. In the remainder of this section, we briefly

highlight two challenges for ocean colour comparisons and one area for priority development where

ocean colour has a prominent role to play. The first challenge is posed by uncertainties in satellite-based

chlorophyll estimates, particularly persistent regional biases relative to in situ observations. The second

challenge is posed by the difficulty of point-to-point comparisons in an ocean where chlorophyll often

varies at very fine scales. The priority development focuses on the need for more focused comparison

of models against ocean colour variations at the space and time scales of intended use, including formal

retrospective forecast experiments (Séférian et al. 2014; Rousseaux and Gregg 2017; Park et al. 2019).

https://www.esrl.noaa.gov/psd/ipcc/
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5.3.1 Regional biases in satellite chlorophyll measurements

As discussed in Chapters 2 and 4, satellite chlorophyll estimates and other satellite-based estimates must

be derived from remote sensing reflectance at a limited number of wavelengths. This ultimately results in

reliance on mechanistically-motivated empirical relationships between Rrs and chlorophyll concentration

that have considerable overall fidelity with observed global patterns, but may be inaccurate regionally

and/or temporally. Persistent regional or temporal biases could lead to false conclusions or mis-

calibration of model dynamics.

A prominent biome-scale observation bias, for example, occurs in the Southern Ocean where global

satellite-based algorithms consistently under-estimate in situ chlorophyll observations (Gregg and Casey

2004). Figure 5.4 compares mean SeaWiFS surface chlorophyll estimates (NASA 2014) in the Southern

Ocean for December–February with the Southern-Ocean SeaWiFS algorithm of Johnson et al. (2013). The

standard SeaWiFS algorithm is typically a factor of 2 lower than chlorophyll estimated from Johnson

et al. (2013). Similar results were found for global MODIS and GlobColour algorithms (Johnson et al.

2013). Such discrepancies can significantly change the conclusions drawn from a comparison between

simulated and satellite-estimated chlorophyll and create challenges when merging satellite products

(GlobColour 2017). The chlorophyll comparison versus GlobColour in Figure 5.2, for example, gives the

impression that ESM2M-COBALT overestimates chlorophyll over much of the Southern Ocean away from

the coast of Antarctica, while Figure 5.4b suggests the opposite. Continued work toward globally robust

satellite products, effective communication of regional limitations where they exist, and streamlined

access to regionally refined products from the same portals providing global data would reduce risks of

misinterpretation.

Figure 5.4 Comparison of chlorophyll estimated via the SeaWiFS algorithm (panel A,
obtained from the Ocean Productivity Page, science.oregonstate.edu/ocean.productivity/
index.php) and chlorophyll estimated by the Southern Ocean chlorophyll algorithm of
Johnson et al. (2013) (panel B). Units are mg Chl m−3 in both panels.

Another uncertainty that challenges the use of satellite-based chlorophyll estimates in skill asses-

sment are high uncertainties in optically-complex coastal waters (Schofield et al. 2004; Dierssen 2010),

which can generate discrepancies similar in magnitude to the Southern Ocean example in Figure 5.4

(Gregg and Casey 2004). An example of the interpretative difficulty posed by optically-complex coastal

waters is provided in Figure 5.5, which shows results from a decadal reanalysis of the biogeochemistry

in the North West European shelf (Ciavatta et al. 2016), compared to the ocean colour product of the Cli-

mate Change Initiative of the European Space Agency (ESA CCI OC, http://www.esa-oceancolour-cci.org/;

Sathyendranath et al. 2017). The largest deviations between model (Figure 5.5a) and satellite product

science.oregonstate.edu/ocean.productivity/index.php
science.oregonstate.edu/ocean.productivity/index.php
http://www.esa-oceancolour-cci.org/
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(Figure 5.5b) were found at the coast (higher RMSD and lower correlations in Figure 5.5c and Figure

5.5d). Here, however, both the model and the satellite derived estimates are likely to have the largest

divergence from the truth (Figure 5.1b). Riverine input variability is poorly represented by climatology

data in the model, while terrestrial dissolved organic matter and sediment resuspension increase the

uncertainty in the ocean colour product. This makes a skill assessment inconclusive by means of ocean

colour only, and supports augmenting comparisons against ocean colour-based measurements with in

situ data.

(a) Reanalysis [mg m-3]

 

(b) ESA CCI OC [mg m-3]

(c) RMSD [mg m-3]

 

(d) Pearson correlation [unitless]

Figure 5.5 Skill assessment of a decadal reanalysis simulation of chlorophyll in the North
East Atlantic in the years 1998–2009. (a) Average reanalysis chlorophyll concentrations;
(b) Average ocean-colour-based chlorophyll concentrations (ESA’s CCI product). (c) Root-
mean-square-deviation, and (d) Pearson correlation defined in Table 5.1 were computed
using time series of monthly data at each model grid point. Figure reproduced from
Ciavatta et al. (2016), Creative Commons Attribution 4.0 International (CC BY 4.0).

The effect of coastal biases can also impact global-scale comparisons. Stock et al. (2017), for

example, assessed the capacity of a high-resolution Earth system model (10-km ocean resolution) to

capture mean chlorophyll patterns across globally distributed coastal “Large Marine Ecosystems” (LMEs,

Sherman and Alexander 1986). Initial comparison including all ocean depths suggested that simulated

chlorophyll is correlated with observed patterns, but under-estimates observed values (i.e., has a low
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bias) of roughly a factor of 2. However, subsequent analysis revealed that much of this bias arose

from gross under-estimates of chlorophyll in waters < 50 m (Table 5.3). The model under-predicts

high chlorophyll in coastal areas, but the initially severe assessment should be tempered by its strong

dependence on less reliable satellite-based chlorophyll estimates in optically-complex shallow waters.

Table 5.3 Comparison of simulated chlorophyll in GFDL’s high-resolution ESM2.6 global
Earth system model with SeaWiFS chlorophyll across coastal Large Marine Ecosystems
(adopted from Stock et al. 2017). The arithmetic average across each LME was taken,
and then log10-transformed before comparison. For the bias, we also report Fmed = 10B ,
which is interpretable as the characteristic ratio of the modelled to the observed value
(Campbell et al. 2002). Note the pronounced effect of excluding waters that are < 25 m
and < 50 m deep on model skill.

Depths R Bias (Fmed) RMSD*

All 0.74 -0.23 (0.59) 0.32

> 25m 0.84 -0.12 (0.76) 0.22

> 50m 0.86 -0.08 (0.83) 0.19

* Note that an RMSD of 0.3 implies a factor of 2 variability around

the modelled value; while a value of 0.18 implies a factor of 1.5.

5.3.2 Challenges of point-to-point comparisons in a heterogenous ocean

As discussed in Section 5.2, many broadly applied skill metrics assess the match between models

and satellite data “point-to-point”. That is, they place high value on a direct spatial and/or temporal

match between model and data. Snapshots of ocean colour data and the Northwest European Shelf

pre-operational simulations of Skákala et al. (2018) illustrate the difficulties posed by this criteria (Figure

5.6). The ocean colour snapshot (Figure 5.6, “EO” = Earth Observations) reveals fronts throughout the

region, where chlorophyll can vary by a factor of 5 over fine spatial scales. Note, for example, the thin

lines of high chlorophyll extending eastward from the English coast, or the small elevated chlorophyll

feature displaced offshore east of Scotland. The precise timing of the generation and subsequent

movement of such features may be difficult for a simulation to capture and even slight displacement

can lead to a large misfit. A coupled physical-biological simulation without data assimilation, for

example, creates fine-scale features of qualitatively similar magnitude and scale (Figure 5.6, “reference”),

but errors in the placement of these features, along with some larger-scale biases, lead to a substantial

bias and RMSD relative to satellite-based chlorophyll estimates (Figure 5.6, bottom right, red dot).

Assimilation of plankton functional types reduces both persistent biases and improves the spatial

match to fine-scale features (Figure 5.6, bottom left), significantly reducing bias and RMSD at the model

initialization and over 5 day prediction experiments (Figure 5.6, bottom right, blue stars).

More precise spatial matches with fine-scale features may be critical for short-term (1–5 day)

forecasts of phenomena with acute local impacts (e.g., Skákala et al. 2018), but expecting a precise

spatial match at fine scales for seasonal to century-scale predictions is less reasonable. The goal of such

efforts is generally prediction of regional anomalies or trends, not the precise location of each eddy,

meander or front. Furthermore, a model diagnosing the net effect and internal dynamics of fine-scale

features need not capture their precise timing and locations at each point in time. Generating realistic

fine-scale fronts at realistic frequencies and distributions may be enough.

The challenges of “point-to-point” comparison are not limited to fine-scales. Figure 5.2 highlights

the impact of displaced fronts on skill metrics requiring a strict spatial match. The displacement of

ocean biomes (e.g., sub-tropical gyres) creates large misfits, at times exceeding a factor of 4, along

biome-boundaries. It is arguable that such large penalties for small displacements may be inappropriate
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Figure 5.6 An example of chlorophyll comparison over fine scales redrawn from Skákala
et al. (2018). Top left: a snapshot of satellite-estimated chlorophyll (mg Chl m−3) from
the Northwest European Shelf taken on May 28, 2010; EO = Earth Observation. Top right:
Simulated chlorophyll during the same period from for a pre-operational model of the
North West European shelf. Bottom left: The snapshot after assimilating ocean colour
products into the model, improving the fit to mesoscale features. Bottom right: Skill
metrics for the reference simulation (red dot), the simulation after data assimilation
(star with the lowest RMSE’ and bias), and for a 5 day forecast (5 subsequent stars with
increasing RMSE’ and bias). Note that the skill stays above that of the reference simulation
throughout the forecast. The simulations were obtained from the pre-operational model
NEMO-ERSEM of the North West European shelf and the PFT products were derived from
the ocean colour product of the ESA CCI programme, within the European Copernicus
Marine Environment Monitoring Service project TOSCA (Skákala et al. 2018), reproduced
with permission from John Wiley and Sons.

for a model attempting to track changes in the scale of ocean-biomes across centuries (e.g., Polovina

et al. 2011).

As discussed briefly in Section 5.2, a variety of approaches have been applied to relax the require-

ment of exact spatial mismatches, the simplest being spatial and temporal averaging onto relatively

coarse grids prior to comparison (e.g., Figure 5.2). Methods have also been devised to allow features to

“slip or slide” in limited ways to avoid over-penalizing small spatial misfits across sharp frontal features

(Rose et al. 2009). Yet another approach involves isolating the features of interest in both the model and

data and comparing feature properties. Empirical orthogonal functions and eddy detection algorithms,

for example, are often used to isolate ocean colour signals associated with large-scale modes of variation

(e.g., see Taboada et al. 2019 for a recent example) and eddies (e.g., Chelton et al. 2011), respectively.

Such features can be compared as composites across all occurrences (e.g., Chelton et al. 2011; Turi

et al. 2018), or skill can be broken down by scale (Shutler et al. 2011; Saux Picart et al. 2012). Yet
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another approach to filtering out the impact of small-scale spatial ocean colour mismatches is eschewing

spatial comparison altogether in favor of the statistical distributions of ocean properties over broad

regions. This can be done with histograms or “violin plots” of modelled versus satellite-observed points

(Van Oostende et al. 2018, Figure 5.7), or through ecologically interpretable distributional parameters

(Cael et al. 2018).

Figure 5.7 Violin plots comparing the probability distributions of annual mean chlo-
rophyll from various global Earth System Models (ESMs) against chlorophyll estimated
from SeaWiFS (figure redrawn from Van Oostende et al. 2018). The width of each violin
is proportional to the number of points in each bin. Note that spatial agreement is not
assessed in this comparison, only the distribution of chlorophyll values across the range
of global values.

5.3.3 Making the space and time scales of skill assessments “fit to purpose”

The skill assessment examples in the preceding sections focused on assessing models against a variety

of spatial, temporal and statistical ocean colour patterns. Successful comparisons strictly support

model-based analysis of the drivers underlying the patterns to which the model was compared. The

objectives of modelling efforts, however, often extend beyond dominant spatial or temporal patterns.

Relatively subtle seasonal anomalies or trends, for example, may be far more important than comparing

mean states across biomes or seasons. Furthermore, successful simulation of past ocean colour

variations does not imply a capacity to predict future changes. Thus, while comparison against

dominant spatiotemporal patterns is a good starting point, it is critical that skill assessments match

the intended applications of a model as closely as possible. That is, skill assessment metrics should be

“fit to purpose”.

As an example, the biome-scale comparison provided in Figure 5.2 supports further analysis of

the plankton dynamics underlying biome-scale ocean colour variation (e.g., Stock et al. 2014b). It does
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not, however, demonstrate the model’s capacity to simulate seasonal to inter-annual variations within

biomes. Tight linkages between seasonal and inter-annual ecosystem anomalies and marine resources

(Lehodey et al. 2006) has led to closer scrutiny of seasonal chlorophyll anomalies (Doney et al. 2009;

Park et al. 2018). The more subtle anomaly patterns present a higher bar than stark spatial gradients

or seasonal changes (Figure 5.8, left panel), but are ultimately essential before diagnosing drivers of

seasonal to inter-annual ocean colour anomalies. Additional examples of assessment of the capacity of

ecosystem models to capture relatively subtle inter-annual anomalies and fluctuations can be found in

analyses of bloom phenology (Henson et al. 2009).

Building confidence in seasonal to inter-annual chlorophyll predictions presents a further challenge.

Successful simulation of past ocean colour variability does not imply successful forecasts of future

ocean colour variations. The latter relies not only on a skillful ecosystem model, but also a robust

estimate of current ocean conditions and skillful atmosphere and ocean forecasts. Assessing the skill of

ecological forecasts requires computationally-intensive retrospective forecast experiments. Our capacity

to predict seasonal atmospheric and oceanic temperature anomalies, for example, has been assessed

with over 30 years of retrospective forecast experiments (Becker et al. 2014; Kirtman et al. 2014; Stock

et al. 2015): dozens of forecasts are initiated each month over the past 30 years and assessed for their

capacity to reproduce observed patterns. Similar retrospective forecast experiments are now being

conducted for ecosystem models using the ocean colour time series to assess forecast skill. This is

being done at global (Séférian et al. 2014; Rousseaux and Gregg 2017; Park et al. 2019) and regional

scales (e.g., Skákala et al. 2018).

Figure 5.8 Anomaly correlation coefficients between ESM2M-COBALT simulated chlo-
rophyll and GlobColour from a simulation integrating COBALT dynamics with physical
data assimilation (Park et al. 2018). Anomaly correlation coefficients are based on data
from 1997–2017. The monthly chlorophyll climatology was removed before calculating
anomalies, thus focusing the comparison on monthly anomalies rather than the monthly
mean pattern. Reproduced from Park et al. (2018), Creative Commons Attribution Non-
Commercial No Derivatives License (CC BY-NC-ND).

Climate change presents a particularly challenging time-scale for building confidence. There is

still substantial uncertainty surrounding the impact of climate change on ocean productivity (Bopp

et al. 2013; Laufkötter et al. 2015). Climate change signals on ocean ecosystems are generally relatively

subtle trends underlying pronounced variations that can take decades to manifest (Rodgers et al. 2015;

Henson et al. 2017). In most cases, satellite ocean colour time-series are not yet long enough to reliably

isolate climate change signals from those associated with variability (Henson et al. 2010). Confidence in

climate projections must thus lean on the mechanistic underpinnings of the model and its capacity

to represent past fluctuations, often on shorter time scales (Randall et al. 2007; Cheung et al. 2016).
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Recent work has linked modelled ocean productivity responses to El Niño with the strength of a model’s

climate change response (Kwiatkowski et al. 2017). This relationship, together with satellite-based

estimates of past El Niño responses, has improved constraints on ocean productivity change. A capacity

to compare directly with climate change trends, however, would further build confidence. Avoidance of

gaps in satellite coverage is crucial for this goal (Beaulieu et al. 2013).

5.4 Beyond Chlorophyll: Assessing Skill Against Other Satellite-

Derived Ecosystem Properties

Comparison with satellite-based chlorophyll estimates account for the majority of uses of ocean colour

data for model skill assessment. However, as useful as chlorophyll may be as an indicator of ecosystem

state, the end goal of most modelling efforts is not solely simulation of chlorophyll. For example, a

model’s intended purpose may be simulating changes in sediment, primary production, phytoplankton

community composition, the export of carbon between the surface and depth, or hypoxia. Skill

assessment of robust satellite-based estimates of such quantities would be more “fit to purpose” than

chlorophyll alone.

The challenge with satellite-based estimates of such quantities is that they often require additional

assumptions to get from remote sensing reflectance to the quantities of interest (Zheng and DiGiacomo

2017, Chapters 2 and 4). This, combined with the relative scarcity of direct measurements of these

properties, leads to an uncertainty between satellite values and the true ocean that is comparable to, or

larger than that of coupled physical biological models (i.e., Figure 5.1c). Many such comparisons are

effectively “model-to-model” (Doney et al. 2009).

Figure 5.9 provides one example of the large spread between more “derived” satellite-based

estimates. The top row gives primary production estimated from the Vertically Generalized Production

Model (VGPM, Behrenfeld and Falkowski 1997a). This formulation used a limited set of in situ primary

production estimates to posit that there is a peak in maximum chlorophyll-specific carbon fixation

near 20◦, which is reflected in productivity maxima at mid-latitudes in Figure 5.9a. Figure 5.9b is

identical, except that the original temperature scaling of maximum carbon fixation is replaced with a

monotonic increase inspired by, though not equivalent to, observed relationships between the maximum

phytoplankton growth rate and temperature (Eppley 1972; Bissinger et al. 2008). The productivity

maximum is much more skewed toward equatorial regions as a result. Other NPP algorithms tend to

cluster around these two highly distinct patterns (Carr et al. 2006), yet in situ NPP observations still

have difficulty determining which is more accurate (Friedrichs et al. 2009; Saba et al. 2011). This partly

reflects difficulties measuring NPP (e.g., Barber and Hilting 2002) and partly uncertainties associated

with the relationship between satellite measurements and NPP. While concerted efforts to resolve these

uncertainties continue (Buitenhuis et al. 2013; Silsbe et al. 2016), they have yet to result in a community

consensus on ocean productivity patterns.

Similarly significant spreads in estimates apply to other highly derived quantities, including

phytoplankton sizes and functional types (Brewin et al. 2017b; Mouw et al. 2017). This is not meant

to imply that comparing models against more “derived” satellite estimates is not useful. Chlorophyll,

and indeed any observation (Figure 5.1), is subject to uncertainty. However, modellers should carefully

consider the range of uncertainty when assessing models. Table 5.4 provides some useful references

for characterizing uncertainty for different satellite-based ocean property estimates. Efforts to further

characterize and, where possible, reduce these uncertainties would be highly beneficial to ocean colour

applications in model skill assessment (see Section 5.5). In some cases, diagnoses of the simulated

relationships between surface observed and derived properties in models may offer new perspective for

the design and improvement of ocean colour algorithms (Stock 2019).
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Figure 5.9 Primary production (mg C m−2 day−1) simulated by the VGPM (panel A) and
Eppley-VGPM primary production algorithms (panel B).

Table 5.4 Some critical references for understanding and quantifying uncertainties in
satellite-based ocean property estimates.

Property References

Chlorophyll Gregg and Casey (2004); Moore et al. (2009); Jackson et al. (2017)

Carbon Evers-King et al. (2017)

Primary Production Campbell et al. (2002); Carr et al. (2006); Friedrichs et al. (2009);

Saba et al. (2010, 2011); Buitenhuis et al. (2013); Lee et al. (2015a,

2016); Silsbe et al. (2016)

Phytoplankton

size/functional type

Mouw et al. (2017); Brewin et al. (2017a)

5.5 Conclusions

The primary obstacle to assessing the skill of ecosystem models is the availability of observations. The

spatially continuous, global, multi-decadal picture of ocean ecosystems provided by satellite-based
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ocean colour measurements has thus played a crucial role in building confidence in marine ecosystem

models and the predictions and projections they provide. This holds for models designed to project

multi-decadal changes across ocean basins, those simulating inter-annual fluctuations in seasonal

transitions and anomalies, and those simulating fine-scale dynamics along mesoscale fronts and eddies.

The continued extension of the ocean colour time series, improvements to existing products, and

development of new products have furthered this role. There are, however, challenges that still must be

confronted by the modelling and ocean colour communities to continue on this positive trajectory.

For the modelling community, work by Arhonditsis and Brett (2004) highlighted the need for

increased skill assessment in ecosystem modelling studies, noting that only 30% of 153 modelling

studies reviewed reported a measure of goodness-of-fit. Since then, the model analysis community

has embraced expanded model skill assessment against a range of ocean observations with improved

approaches (e.g., Lynch et al., 2009). Calls for ecosystem predictions to inform decisions (e.g., Hobday

et al. 2016; Tommasi et al. 2017a), however, place added pressure on skill assessment to provide an

accurate and quantitative answer to the question: “how much should we trust the model prediction?”.

This requires skill assessment metrics to be closely fit to the space and time scales of interest. In cases

of ecological forecasting, retrospective forecast experiments that accurately reflect the conditions under

which current forecasts are being made (e.g., Séférian et al. 2014; Rousseaux and Gregg 2017; Skákala

et al. 2018; Park et al. 2019), are essential.

The heightened need for rigorous skill assessment, including retrospective forecast experiments,

further enhances the importance of ocean colour. The unique combination of spatial and temporal

coverage of ecosystem responses that ocean colour offers enables applications that match the space

and time scales of the evaluation with those of the intended prediction. The multi-decadal duration of

the ocean colour time series supports retrospective forecast experiments on seasonal to inter-annual

time scales. These become more robust with each year of new data. The continued lengthening of the

satellite time series will also enable more direct testing of climate change trends (Beaulieu et al. 2013;

Sathyendranath et al. 2017). Advances in a number of areas, however, would be highly beneficial. First,

reduction in uncertainty, particularly regional biases, would greatly assist skill assessment by making

model-satellite misfits more robust metrics of the difference between models and the true ocean state

(i.e., Lynch et al. 2009, Figure 5.1). Second, improved characterizations of uncertainties (Table 5.4)

would ensure proper interpretation of misfits, in addition to enabling formal integration of models and

satellite data in assimilative frameworks.
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Assimilation of Ocean Colour
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NOTE: In this report, the word “model” refers to process-based three-dimensional biogeochemical/

ecosystem computer models at large regional or global scales.

The challenge of quantifying the spatially- and temporally-resolved biological state of the ocean

has often split into two distinct endeavours: analysis of observations (including ocean colour remote

sensing) and biogeochemical modelling. This split produces two results, sometimes difficult to reconcile,

while failing to take advantage of the relative strengths of the two approaches. The assimilation of

ocean colour into biogeochemical (BGC) models, like the assimilation of remotely-sensed physical

variables into hydrodynamic models, provides a rigorous method to include both observations and

models into one unified output that incorporates the information from both sources. As such, ocean

colour assimilation is highly-sought after both by the scientific (Ciavatta et al. 2016) and environmental

management (Jones et al. 2016) communities.

The earliest example of a formal assimilation of data into a BGC model used in situ nutrient and

plankton observations to optimize parameter values in 3-, 4- and 7- component configurations of a

NPZD model (Matear 1995). A history of BGC assimilation is available in Matear and Jones (2011).

This Chapter will concentrate on examples of BGC data assimilation using ocean colour products. The

earliest example of the use of ocean colour for data assimilation involved “nudging” a BGC model to

the observed value from the Coastal Zone Color Scanner (CZCS, Armstrong et al. 1995). More recent

studies investigating the benefits of assimilating ocean colour products, predominantly SeaWiFS-derived

Chl-a, into BGC models include those of Carmillet et al. (2001) and Natvik and Evensen (2003), with a

comprehensive review of algorithms used and observations assimilated detailed in Gregg (2008) and

Edwards et al. (2015). There are now examples of operational and pre-operational global systems that

routinely assimilate Chl-a products (Ford et al. 2018; Fennel et al. 2019). Additionally, there has been

further experimentation with assimilating alternative remotely-sensed products such as phytoplankton

functional types (Ciavatta et al. 2018, 2019), apparent optical properties (AOPs) such as the vertical

attenuation coefficient at 443 nm, Kd(443) (Ciavatta et al. 2014) and inherent optical properties (IOPs)

such as phytoplankton absorption (aph), as described in Shulman et al. (2013).

This Chapter describes the basic concepts used in the assimilation of ocean colour into BGC models,

and provides recent case studies that illustrate a number of recent successful applications.

6.1 Basics of Assimilation/Types of Assimilation Models

Numerical ocean models predict the evolution of a set of prognostic variables in time and space

determined by a set of governing equations. In the case of ocean general circulation models (OGCMs),

the prognostic variables are typically sea-surface elevation, temperature, salinity and currents. In the

95
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case of biogeochemical models, the prognostic variables vary, but typically include phytoplankton

biomass, nutrients, as well as organic and inorganic particles. Data assimilation (DA) is the process of

using observations to reduce the error between observations and the model’s prognostic variables (see,

e.g., Moore et al. 2019. To align the language used in this chapter with that used in the DA literature,

we refer to the model “state” vector as a vector of model prognostic and diagnostic variables that are

mapped from the full 2D/3D reference space into a single column vector.

There are a variety of DA techniques that have been successfully applied to BGC models. In the

broadest sense, these can be considered as state estimation, parameter estimation and joint (state

and parameter) estimation. State estimation DA algorithms can then be further categorized as either

sequential approaches (Figure 6.1, dark blue line) or variational approaches (Figure 6.1, brown line),

each with their own distinct advantages and disadvantages. Gregg (2008) presents a broad review of the

techniques applied until 2008, and Edwards et al. (2015) discuss advances since 2008, while Friedrichs

et al. (2007) examined how well observations are able to constrain differing complexities of models. A

key theme that has emerged in BGC data assimilation literature is an acknowledgment that the structure

and equations of BGC models are uncertain, and the quality, sparsity and relationship between BGC

observations and the BGC model state variables is challenging (Parslow et al. 2013; Dowd et al. 2014;

Jones et al. 2016; Ciavatta et al. 2016; Ford and Barciela 2017).

time

state

observation

unconstrained 
model

Sequential 
method

Variational
method

t1 t3t2

Figure 6.1 Schematic of data assimilation techniques. Red dots represent observational
data (e.g., satellite derived Chl) with an estimate of uncertainty. Blue dashed line is an
unconstrained model (i.e., a model without data assimilation). Dark blue lines represent
a data assimilated model that uses a sequential method to nudge the model at specific
times toward the observations. Brown line indicates model using the variational method
that has parameters/initial conditions adjusted to best match the observations over the
full course of the time period.

6.1.1 Variational methods

Derived from optimal control theory, variational data assimilation methods seek a solution that

minimizes a cost function, typically consisting of the weighted sum of squared model data differences.

Non-linear models (such as BGC models) generally result in cost functions with multiple, local minima.

Linearization of the dynamics yield a quadratic cost function with a single minimum that can be found

iteratively in complex, multi-dimensional problems using tangent linear and adjoint models. The

tangent linear model steps forward in time, a (small) perturbation to the BGC state using dynamics

linearized about the prior solution (obtained from the nonlinear BGC model). The adjoint model steps

the linearized model backward in time to obtain the gradient of the cost function with respect to the
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control vector. Arguably, the greatest challenge for variational methods, and one that has likely reduced

its broader application, is the necessary construction and maintenance of the adjoint and tangent linear

models. Automated tools exist to build these complex codes (e.g., Giering and Kaminski 1998), but

laborious hand construction is also accomplished (Song et al. 2016a). Recently, Mattern and Edwards

(2017) have developed a method appropriate for BGC models to approximate the tangent linear and

adjoint models using finite differences, and this method may be sufficiently efficient to apply to a wide

range of BGC models of intermediate complexity.

The variational approach has been applied to parameter estimation applications in one (vertical)

dimension (e.g., Friedrichs et al. 2006; Ward et al. 2010). In these cases, the control vector consists

of the set of model parameters, generally numbering 10 or more parameters. Variational methods

applied to 1-dimensional problems have shown limited success in constraining parameters of simple

BGC models. Parameter estimation using non-variational methods (Monte Carlo and genetic search

algorithms applied to the full nonlinear model) in realistic, 3-dimensional configurations have shown

promise (Mattern and Edwards 2017), but application of the variational approach to this 3-dimensional

problem has not yet been demonstrated.

Rather, variational methods in realistic OGCM configurations have focused on BGC state estimation

in which the control vector consists of the BGC ocean state (i.e., all prognostically-modelled BGC

elements). This work has built on the extensive penetration and maturity of these approaches in physical

oceanography. Two methods are common. In 3-dimensional variational (3D-Var) data assimilation, the

ocean is considered static during the interval that a set of observations is made. In contrast, methods

that exploit ocean dynamics to connect observations collected through time during a finite assimilation

cycle are referred to as 4-dimensional variational (4D-Var) methods. Variational BGC state estimation

methods have been developed using 4D-Var.

In 4D-Var methods, results depend sensitively on choices made for the weighting coefficients,

embodied in the observation and background error covariance matrices. Although these matrices are

poorly known, Desroziers et al. (2005) offered diagnostic consistency tests for portions of these error

co-variances, yielding objective methods to constrain their values. These methods have been applied in

the California Current System to improve 4D-Var BGC estimates by Mattern et al. (2018).

Two challenges specific to the BGC assimilation problem are that variables are positive definite,

and the error statistics of BGC variables are non-Gaussian. Campbell (1995) demonstrated that surface

chlorophyll concentrations in the ocean are reasonably described by log-normal statistics. Fletcher and

Zupanski (2006a,b) and Fletcher (2010) developed a theoretical approach to 4D-Var for log-normally

distributed variables for applications in meteorology. Song et al. (2016a,b,c) and Mattern et al. (2017)

applied this method to a realistic regional configuration in the California Current System. There have

been a variety of approaches trialed that span the simple tuning of parameters through to the full use

of an adjoint and tangent linear model in 4D-Var (Mattern et al. 2017).

6.1.2 Sequential methods

The most common sequential methods used in BGC data assimilation are the Ensemble Kalman Filter

(EnKF), and other related Kalman Filter variants (e.g., Ciavatta et al. 2011; Jones et al. 2016). Sequential

methods rely on the approximation of the probability distribution of state of the prognostic variables

at time t, Xt , based on observations of state up until time t, Yt , p(Xt|Y1:t). The probability is calculated

via a discrete approximation generated using multi-simulation (ensemble) methods. The most common

method to estimate p(Xt|Y1:t) are the various flavors of the Kalman Filter. For large-scale non-linear

BGC models, EnKF is the most common sequential assimilation method. Additionally, there are a

growing number of applications using non-parametric methods including the Particle Filter (PF) (Jones

et al. 2010; Mattern et al. 2012; Parslow et al. 2013) and emulator approaches (Mattern et al. 2012;

Margvelashvili et al. 2013).

Sequential methods employing full dynamic ensemble techniques are easier to implement than
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adjoint methods because they do not require the substantial investment in developing adjoint and

tangent linear models. Furthermore, because the sequential method algorithms operate on the model

output of existing non-assimilating codes, generic data assimilation software has been developed that

can be applied to models’ numerous research fields (Sakov 2018). The downside of sequential methods

relates to their computation burden, often requiring a large number of ensemble members (10s – 100s)

to sample the probability distribution of the state, p(Xt|Y1:t) .

6.1.3 Common requirements of observational data sets

Regardless of the data assimilation method chosen, there are shared requirements common to all

data assimilation systems. Most state variables in biogeochemical models are measured in an indirect

way, which is especially true for observations derived from ocean colour remote sensing. Therefore,

the observation operator that quantifies the relationship between the observation and model state

variable can be quite complex, with error and uncertainty arising from many sources. Jones et al. (2016)

identified three sources of error when relating observations to the modelled state variables:

1. Analytical — errors arising from precision error in the measurement technique;

2. Difference-in-kind — errors arising from the conversion of an observed quantity to and from a

modelled quantity (e.g., the OC3M algorithm that relates remote-sensing reflectance to HPLC

derived Chl-a concentration);

3. Spatial representation — errors caused from models representing an average quantity over a

model grid cell being compared to a measurement with a different spatial scale in a complex

spatial structure. Discussed in detail in Oke and Sakov (2008).

With respect to ocean colour observations, there is an additional error that stems from scene wide atmos-

pheric correction that may cause large spatially-coherent errors in the form of bias. Additionally, cloud

clearing algorithms can, at times, allow small regions within a scene to have a large locally-correlated

error. The handling of difference-in-kind error, atmospheric correction problems, and cloud clearing

all have the potential to play havoc with both sequential and variational data assimilation methods.

Bad-batch and outlier detection can filter some of these errors out, but if the correlation/covariance

structure of the errors can be specified, then the assimilation system can be configured such that the

analysis fields are less sensitive to such errors.

6.1.4 Parameter estimation

Estimating optimal values for parameters that are difficult to measure is greatly aided by data assimila-

tion procedures that objectively search for values resulting in an optimal match between simulation

output and observations. Data derived from satellite ocean colour measurements are well suited for

these procedures (Hofmann and Friedrichs 2001; Friedrichs and Kaufman 2019), as they provide surface

concentration estimates of chlorophyll and other properties with high spatial and temporal coverage.

Assimilation of ocean colour satellite data was a goal for coupled physical-biogeochemical models for

nearly a decade (Abbott, 1992) before the first ocean colour data assimilation experiments (Friedrichs

2002). Since then, parameter optimization efforts have expanded to include a wide variety of methodo-

logies. Below we describe examples in the literature, including the early assimilation experiments of

SeaWiFS data, as well as more recent developments in utilizing a variety of novel satellite products and

assimilation techniques. We also describe how the lessons learned from ocean colour assimilation are

more recently being adopted to assimilate bio-optical data, not only from space, but also from in situ

autonomous measurement platforms.

In order to optimize parameter values for a one-dimensional biogeochemical model developed for

the equatorial Pacific, Friedrichs (2002) conducted a series of experiments assimilating different subsets
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of satellite and in situ data. The experiments specifically compared the assimilation of in situ cruise data

with the assimilation of daily and 8-day composites of SeaWiFS ocean colour data over an ∼8 month

period. An adjoint of the ecosystem model was constructed following the method of Lawson et al.

(1995), and was used to optimize parameters governing processes such as recycling, remineralization,

mortality, growth, and grazing. Nearly identical parameter sets were obtained regardless of whether

8-day satellite composites or in situ data were assimilated. However, assimilating daily satellite data

instead of 8-day composites resulted in unsuccessful parameter optimization experiments with no

optimal parameter sets being identified. These results illustrate that when assimilating satellite-derived

data into marine ecosystem models for the purpose of parameter estimation, modelled temporal scales

must closely match those of the assimilated data.

Xiao and Friedrichs (2014b,a) optimized parameters for a 1D biogeochemical model at four conti-

nental shelf sites in the Mid-Atlantic Bight and investigated the effect of assimilating different types of

satellite-derived data products. Assimilation experiments revealed differences in model-data misfits

when assimilating satellite-derived total chlorophyll, size-fractionated chlorophyll, and/or particulate

organic carbon (POC). Assimilating POC without assimilating chlorophyll generated substantially worse

modelled chlorophyll estimates; in contrast, assimilation of chlorophyll without assimilating POC

resulted in almost no decrease in model-data misfit. The best model-data misfits were achieved when

both size-fractionated chlorophyll and POC were assimilated together.

Due to the high computational expense of running a model multiple times over a large 3D domain,

parameter optimization is often carried out in 1D, as in the previous examples (though sometimes

optimal parameters generated from a 1D assimilative application are then used in a 3D implementation,

e.g., Oschlies and Schartau 2005; McDonald et al. 2012; St-Laurent et al. 2017. Identifying efficient and

effective means of optimizing 3D biogeochemical models directly is a key challenge to more widespread

use of parameter estimation, and overcoming this challenge requires experiments comparing diverse

assimilation setups to provide guidance for further optimization efforts. Mattern and Edwards (2017)

compared the performance of four different parameter estimation methods based on evolutionary

algorithms (heuristic search routines) in a 3D model domain of the coastal eastern Pacific. Experiments

were conducted for the year 2000 using assimilated SeaWiFS imagery, for two models of different

complexities. It was found that the evolutionary algorithms, on average, converged to solutions quicker

than random, uninformed searches. Multiple cost function formulations were tested, and correlations

between the various cost functions enabled a more informed selection of an appropriate cost function

definition.

The effectiveness of parameter estimation through data assimilation has improved through the

considerable developments in effective utilization of ocean colour, as well as through development

and deployment of new measurement platforms, which complement the synoptic views available

from satellites. Efforts to assimilate data from novel platforms benefit from the lessons learned

from assimilating ocean colour in studies like those mentioned above, and in recent years bio-optical

observations from autonomous platforms have been effectively assimilated as well. For example,

Bagniewski et al. (2011) assimilated chlorophyll, oxygen and nutrient observations from a Lagrangian

float using a variational adjoint during the North Atlantic spring bloom to optimize parameters in

three different 1D ecosystem models. Their efforts resulted in well-constrained parameters with small

estimated uncertainties, however they concluded that subsurface measurements are important for

estimating vertical carbon export. More recently, chlorophyll and POC observations derived from a

buoyancy-driven glider were assimilated to optimize parameters in a 1D biogeochemical model for

the Ross Sea (Kaufman et al. 2018). Parameter optimization experiments utilizing various subsets

of the glider observations demonstrated some potential differences between assimilation of in situ

versus satellite-derived data, and the importance of high-resolution data when attempting to constrain

biogeochemical models in such remote and variable marine environments.
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6.2 Role of Ocean Colour and Model Structural Uncertainties

6.2.1 Model structure uncertainty

Model structural uncertainty refers to incomplete or non-representative model equations that lead to

errors in model predictions. These errors are, of course, inevitable, not least because biogeochemical

models are a simplification of a complex web of plankton and nutrients, driven by imperfect hydrodyn-

amic models. Although model formulations vary, the representation of processes like phytoplankton

growth tend to be relatively insensitive to model changes. In contrast, models can be very sensitive

to changes in zooplankton processes. In a numerical experiment, Baird (2010) used a size-resolved

plankton model to investigate the effect of small changes in the structure of models on the model

outputs. The clear result was that plankton models are extremely sensitive to the predator-prey links.

That is, the addition of just one zooplankton class that persists, and consumes a unique diet of prey,

could significantly change the model. This is one reason why biogeochemical models, which often have

multiple nutrient and phytoplankton functional types, typically keep the number of zooplankton and

higher trophic level types to a minimum.

6.2.2 Ocean colour data uncertainty

As for any other data, it is necessary to define the error co-variances associated with ocean colour

observations for the assimilation into biogeochemical models. Ideally, such definitions should quantify

the different sources of error (analytical, representation and difference-in-kind errors) at each model

grid point and assimilation step. In practice, these sources are unknown and, typically, observation

errors have been assumed uncorrelated and constant in space and time. For example, Natvik and

Evensen (2003) fixed the chlorophyll percentage error to 35% of the concentration value, i.e., to the

pre-launch accuracy target for SeaWiFS (Hooker et al. 1992). This error was scaled to different constant

values in the global ocean basins by Nerger and Gregg (2007), taking account of the spatial variability of

the accuracy of SeaWiFS chlorophyll data compared to in situ data (13% – 56% with global average of

31%; Gregg and Casey 2004). Constant percentage errors were applied also when assimilating optical

data retrieved from ocean colour (Ciavatta et al. 2014).

Each ocean colour missions’ sensors has a finite operational lifetime, and sensors differ in their

design, with different band locations, band widths, radiometric sensitivities and orbit. Therefore, it

is difficult to combine data from different ocean colour missions to produce a consistent time series

of chlorophyll concentration for data assimilation over longer than a single mission period. Several

studies have observed the effects of these discrepancies (e.g., Gregg and Casey 2010; Mélin 2016;

see also Section 2.3.7). The advantages of defining spatial-temporal variable errors for improving

the performance of ocean colour assimilation have been argued by approximating the variability as a

function of i) the distance of the assimilated data from land (Ciavatta et al. 2011); ii) the variance of the

data in the assimilated composites (Teruzzi et al. 2014) and, iii) mismatches between model predictions

and assimilated observations (Ford et al. 2012).

Ocean colour products that provide data with per-pixel error values (GlobColour, Blower et al.

2009; ocean colour from the Climate Change Initiative (OC-CCI) of the European Space Agency, Brewin

et al. 2013; Brewin et al. 2017a Jackson et al. 2017; Groom et al. 2019) offered new opportunities to

characterize observation error in data assimilation systems. For instance, Ciavatta et al. (2016) used

per-pixel bias and root-mean-square-error data of the OC-CCI product to compute unbiased values

and variance of assimilated chlorophyll composites, in a decadal reanalysis of the North East Atlantic

biogeochemistry.

Per-pixel error information helps to define the analytical error of the assimilated data more

accurately, but defining the contributions of difference-in-kind and the representation error is less

well understood. Jones et al. (2016) showed that modelling and assimilation of the remote sensing
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reflectance (i.e., the “real” parameter observed by satellites) by-passed the difference-in-kind error

between ocean colour chlorophyll products and biogeochemical model chlorophyll concentration,

improving the simulation of Case I and Case II waters. Quantification of representation error and

inclusion of observation error correlations remain open challenges in the framework of ocean-colour

data assimilation.

6.3 Examples Studies

In this section we describe published examples of biogeochemical data assimilation, providing both a

summary of the studies themselves, and also insights from the authors on the pitfalls and successful

approaches to the particular stream and technique of assimilation.

6.3.1 Assimilating chlorophyll

Data assimilation techniques can be used to constrain a model to track observation time series. Carmillet

et al. (2001) used a singular evolutive extended Kalman filter to assimilate observations into a model for

the North Atlantic and were able to constrain phytoplankton as well as fields such as nitrate. Natvik and

Evensen (2003) used satellite chlorophyll assimilation to improve surface phytoplankton concentration

and to reduce the variance of surface nitrate concentration. Gregg (2008) further demonstrated the

potential of chlorophyll assimilation to improve model results by assimilating SeaWiFS chlorophyll

data in a three-dimensional global ocean model. They found that this assimilation decreased the bias

(21.0%) and uncertainty (65.3%) observed in the free-run compared to the assimilation (bias of 5.5%

and uncertainty of 10.1%). Hemmings et al. (2002) assimilated satellite chlorophyll to refine model

parameters in the North Atlantic and found that the assimilation improved chlorophyll concentrations

in some areas but seasonal variability was poorly represented.

The assimilation of satellite chlorophyll is also known to reduce spatial and temporal biases when

compared to satellite data. The assimilation of satellite chlorophyll produces estimates within 0.1%

bias and 33.4% uncertainty as compared to in situ data (Gregg 2008, Figure 6.2) thereby decreasing the

bias of satellite data (-1.3%) while keeping the same level of uncertainty (32.7%, Gregg 2008). Rousseaux

and Gregg (2014) compared the chlorophyll concentration from a free-run with those from a run that

assimilates satellite chlorophyll and found that the assimilation consistently improved the chlorophyll

estimates in all major oceanographic regions. They found that the assimilation improved the chlorophyll

concentration in the regions with the highest bias by 10–20%.

6.3.2 Assimilating remotely-sensed diffuse attenuation coefficient using localized

ensemble Kalman filter (EnKF)

Modelling and assimilation of water optical properties can be useful for improving the simulation of

biogeochemical variables in oceanic and coastal areas (see e.g., Fujii et al. 2007). Bio-optical modelling

exploits the causal links between optical properties and key biogeochemical variables and processes,

enhancing the simulation realism for marine ecosystems (Fujii et al. 2007). In addition, remotely-sensed

optical properties can be retrieved with lower errors than chlorophyll, in particular in shelf-seas affected

by terrestrial inputs of coloured matter (see, e.g., Lee et al. 2005a; Saba et al. 2011; Zhao et al. 2013).

Ecosystem models that include the description of water optical properties have been proposed and

successfully applied in marine studies (e.g., Gregg and Walsh 1992; Bissett et al. 1999b, 2005; Manizza

et al. 2005; Fujii et al. 2007; Mouw et al. 2012. However, the assimilation of satellite-derived optical

data into ecosystem models is still in its infancy. In this case study we show the benefits of assimilating

data of diffuse light attenuation coefficient from ocean colour (Ciavatta et al. 2014).
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Figure 6.2 Comparison of chlorophyll (mg m−3) for April 1, 2001 from (left) the assimi-
lation model and (right) the daily SeaWiFS Chlorophyll for April 1, 2001. Reprinted from
Gregg (2008) with permission from Elsevier.

6.3.2.1 Study region and model configuration

The study area is the western English Channel (WEC), a shelf-sea region that includes both Case I and

Case II waters (Groom et al. 2009). The model of the WEC ecosystem (Lewis and Allen 2009) couples

the hydrodynamic model POLCOMS (Proudman Oceanographic Laboratory Coastal Ocean Modelling

System; Holt and James 2001) with the biogeochemical model ERSEM (European Regional Seas Ecosystem

Model; Blackford et al. 2004) and includes a bio-optical module (Ciavatta et al. 2014). ERSEM describes

the dynamic of four phytoplankton functional types, three zooplankton types and one bacteria type,

characterized by variable internal stoichiometry. The model includes the dynamics of five inorganic

dissolved nutrients (carbon, nitrate, ammonia, phosphate and silicate), dissolved oxygen, particulate

and dissolved organic matter. The bio-optical module describes the spatio-temporal variability of the

spectral diffuse attenuation coefficients, Kd(λ), at three optical bands (blue λ = 443 nm; green λ = 555

nm; red λ = 670 nm). Kd(λ) is a function of the inherent optical properties (IOPs) of the optically active

compounds simulated by ERSEM (Lee et al. 2005b) and, in turn, the IOPs are computed using bio-optical

equations and parameterizations from the scientific literature (see Ciavatta et al. 2014 for details).

6.3.2.2 Data assimilation system

Diffuse attenuation coefficient in the blue band, Kd(443), measured by SeaWiFS, was assimilated into

the WEC ecosystem model by using the Ensemble Kalman filter (EnKF) (Evensen 1994, 2003; Ciavatta

et al. 2011). The EnKF was applied with: i) a localized configuration (with spatially variable radius); ii)

perturbation of the observations; iii) analysis with log-transformation of state and observations; and

iv) 100 ensemble members. Model error is accounted for through the stochastic perturbation of the

diffuse attenuation coefficients in the EnKF forecast (Gaussian perturbation with standard deviations

equal to 10% of the simulated Kd(λ) values). Model error was also added to all the forecasted variables

prior to the analysis step (10% of the value of the variables). The observation error was assumed

uncorrelated and constant, i.e., equal to 20% of the assimilated Kd(443) values. This system was applied

in a one-year long reanalysis, spanning the year 2006, by assimilating five-day composites of Kd(443)

into the ecosystem model, with a weekly frequency. The performance was also compared to a reanalysis

were total chlorophyll from SeaWiFS was assimilated into the same system.
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6.3.2.3 Skill improvement of the system

The data assimilation performance for year 2006 was assessed using independent, weekly data of 18

biogeochemical and optical time series measured at station L4 of the Western Channel Observatory

(WCO), a NERC National Capability at PML (www.westernchannelobservatory.org.uk). The comparison bet-

ween the reference model run (without assimilation) and the assimilative run showed that assimilation

reduced the root mean square error (RMSE) and improved the correlation with the (unassimilated) L4

data for most variables (see Figure 6.3a). Moreover, Kd(443) assimilation performed better than the

assimilation of total chlorophyll data (Figure 6.3b).

a) 

 
b) 

 
 

 Figure 6.3 a) Skill of Kd(443) assimilation in estimating the not-assimilated, in situ data.
The bars represent the percentage differences between RMSE of the assimilation (DA)
versus the reference simulation; b) Skill for Kd(443) versus chlorophyll (chl) assimilation
in estimating the not-assimilated, in situ data. The bars represent the differences between
the RMSE obtained in the two assimilative runs. The x-axis lists model variables: N1P -
phosphate; N3N - nitrate; N4N - ammonium; N5S - silicate; P1C - diatom carbon biomass;
P2C - nanophytoplankton; P3C - picophytoplankton; P4C - dinoflagellates; Z5C - micro-
zooplankton; Chl - chlorophyll; PtC - total phytoplankton carbon biomass; TPC and TPN -
total particulate carbon and nitrogen, respectively; Kd(λ) - diffuse light attenuation coef-
ficient at the wavelength (λ); aCDOM (λ), aph, adet - absorption of CDOM, phytoplankton
and detritus, at the wavelength λ = 443 nm. Figure modified from Ciavatta et al. (2014),
Creative Commons Attribution License (CC BY).

Assimilation of Kd(443) also impacted the simulation of the carbon fluxes within the plankton

community (Figure 6.4a-c), resulting in a shift of the simulated food chain from the herbivorous food

chain towards the microbial loop (see the conceptual diagram in the lower part of Figure 6.4). This

shift contributed to improving the simulation of total particulate carbon (TPC in Figure 6.3, which is a

diagnostic model variable computed by summing up eleven model variables across the whole simulated

trophic system).

www.westernchannelobservatory.org.uk
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Figure 6.4 Scheme of the direct and indirect effects of data assimilation on the simula-
tion of the trophic dynamic at the in situ monitoring site. In the graphs, the bars represent
the differences between selected carbon fluxes resulting from the data assimilation and
reference simulations. The differences refer to winter (January – March), spring (April –
June), summer (July – September) and autumn (October – December) 2006. The percen-
tage values in brackets are the differences normalized by the mean seasonal values from
the reference simulation. Reproduced from Ciavatta et al. (2014), Creative Commons
Attribution License (CC BY 3.0).
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6.3.2.4 Lessons learned

In this case study, the assimilation of Kd(443) not only improved the reference model simulation of

unassimilated biogeochemical data, but it also outperformed the assimilation of total chlorophyll. To

explain this result, the lower error of the satellite optical products should be considered, in particular

in coastal Case II waters (compare, e.g., Saba et al. 2011; Zhao et al. 2013), which is advantageous

because it can drive the assimilation corrections closer to the “true values” of the assimilated variable.

Secondly, the light attenuation coefficient assimilated in this case study represents a bulk property of

marine systems, summing up the effects of optically active variables ranging from inorganic suspended

solids to phytoplankton, while chlorophyll approximates just the last mentioned compound. Thus, in

principle, the assimilation of bulk properties could drive direct corrections to a larger set of model

variables. In practice, this requires further efforts to properly parameterize and model the contributions

of the different optical compounds, so that multivariate assimilation can partition the corrections

among the model state variables properly.

Finally, this case study shows that ocean-colour assimilation can impact the simulation of emergent

properties of the ecosystem, such as the shift of the food web through the continuum pathways

proposed by Legendre and Rassoulzadegan (1995). This was allowed by the complexity and plasticity of

the model applied in the case study (ERSEM), i.e., by the adaptability of the model functional groups

to the changes in the variables imposed by the data assimilation system. In particular, modelling

variable carbon-to-chlorophyll and carbon-to-nutrients allowed ocean colour assimilation to impact the

simulation of the trophic processes, and eventually, to simulate better ecosystem indicators and fluxes.

6.3.3 Assimilating remote-sensing reflectance using a deterministic ensemble Kal-

man filter (DEnKF)

In some of the above approaches, one source of error in the assimilation system was the need to use an

IOP algorithm to calculate the observed state variable against which the model variable was compared.

This error has been reduced in some studies by using a more basic IOP (i.e., vertical attenuation Kd,

Section 6.3.2) instead of the concentration of optically-activity constituents such as chlorophyll. In

this case study (described in Jones et al. 2016 with on-going improvements, in preparation) the data

assimilation system goes one step further — the assimilation used the mis-match between simulated

and observed remote-sensing reflectance, Rrs , directly, thus avoiding the need for an IOP algorithm.

6.3.3.1 Study region and model configuration

The biogeochemical model used data from the Great Barrier Reef off the northeast coast of Australia, a

region characterized by complex coastal waters influenced by terrestrial runoff. The waters are also

shallow, with benthic reflectance influencing the remotely-sensed observations. The biogeochemical

model contained >20 optically-active constituents (including phytoplankton, CDOM, sediments, bottom

substrates) that contribute to the simulated remote-sensing reflectance. The optical model calculated

Rrs for each horizontal pixel based on an optical-depth weighting of the ratio of the vertical profile of

the backscatter to the absorption plus backscatter. Analysis of model output showed that the error

between the observed and simulated Rrs was primarily due to errors in the dynamical prediction of the

time- and space- varying optically-active constituents, not the calculation of the simulated Rrs . Thus, in

correcting Rrs through updating optically-active state variables, the data assimilation model improved

the prediction of the state variables themselves.

6.3.3.2 Data assimilation system

The study employed a deterministic ensemble Kalman filter (DEnKF) constrained by the mismatch

between the observed Rrs and the simulated Rrs . The observed Rrs was calculated using local atmospheric
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correction, a necessity in the complex coastal waters. The ensemble size employed was 108 members,

and used the software package EnKF-C. Care was taken to match the time of the simulated and observed

Rrs to within 30 minutes.

Figure 6.5 Top panel: Comparison of the skill of the unassimilating (control) run and
the mean of the ensemble, quantified as a mean absolute percent error of the mismatch
between the simulated and observed Rrs . Bottom panel: Comparison of the chlorophyll
concentration measured by a moored fluorometer (Obs), and the control and assimilating
runs at one site (Double Cone off Airlie Beach, central Queensland) at 5 m depth.

6.3.3.3 Skill improvement of the system

The assimilation reduced the mean absolute percent error (MAPE) of the prediction of the variable being

assimilated, OC3M (the MODIS algorithm based on the blue-green band ratio) from 50 % to 42 % (Figure

6.5, top). Further, the assimilation system improved the comparison to in situ data at 13 of the 14

observations sites. The system was able to correct both the bias, and add variability that matched the

observed variability (Figure 6.5, bottom).

6.3.3.4 Lessons learned

The assimilation of remote-sensing reflectance, instead of IOPs, introduces the possibility of a large

observation state vector composed of 8 bands, in the case of MODIS ocean colour bands, or more

for future hyperspectral sensors. In reality, it was found that some remote-sensing reflectance bands

(observed state) either co-varied with optically-active constituents (model state), or were uninformative.

A non-exhaustive investigation into combinations of remote-sensing reflectance bands for the purpose of

constraining the model found the ratio of the blue and green bands provide the best constraint. Further,

if this ratio was quantified by the OC3M algorithm, the assimilating observed state took a form that

was more familiar to biogeochemical modellers (i.e., units of mg m−3) than remote-sensing reflectance.

Thus, while assimilation of hyperspectral remote-sensing reflectance has the promise of vastly larger

observational data sets, and therefore better system performance, the law of diminishing returns,

and the careful selection of spectral bands in the existing moderate resolution sensors to capture

chlorophyll, suggests little will be gained from future hyperspectral satellites for data assimilation.
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A second lesson learned from the assimilation of like-for-like variables was the simplicity with

which observed and model states can be compared. Firstly, there is no need for a locally-calibrated

IOP algorithm. But perhaps more importantly, ocean colour is inherently a 2-dimensional field, while

the model state is quantified by a 3-dimensional field of optically-activity constituents such as phy-

toplankton. By comparing the calculated remote-sensing reflectance, there is no need to determine

a depth-weighting function for the integral of the 3-dimensional field to reduce for comparison to

2-dimensional ocean colour.

6.3.4 Assimilating phytoplankton functional type (PFT) data

The size of the phytoplankton groups composing the ocean plankton community plays a key role in

marine ecology and biogeochemical cycling, because the size impacts growth, nutrient assimilation,

sinking rate, and predation (Chisholm 1992). State-of-the-art marine ecosystem models describe size-

based phytoplankton functional types (PFTs) to increase the realism of marine ecosystem models (a

non-exhaustive list of such models includes ERSEM (Baretta et al. 1995; Butenschön et al. 2016), PISCES

(Aumont et al. 2003), NOBM (Gregg et al. 2003), BFM (Vichi et al. 2007), the MITgcm-biogeochemical

(Follows et al. 2007), PlankTOM (Le Quéré et al. 2005), and MEDUSA (Yool et al. 2013). However, the

simulation of phytoplankton types remains challenging, mainly due to the difficulty of formulating their

processes (Shimoda and Arhonditsis 2016). The assimilation of PFT data is a promising new approach

to improve the simulation of PFTs and their biogeochemical feedbacks. Xiao and Friedrichs (2014a)

showed that assimilating ocean-colour PFT data improved the simulation of two plankton groups with a

testbed one-dimensional model of the Mid-Atlantic Bight. The case study presented here shows the

benefits of assimilating a regional product for four PFTs into an ecosystem model of the North East

Atlantic in a multiannual reanalysis (Ciavatta et al. 2018).

6.3.4.1 Study region and model configuration

The study area is the North East Atlantic (NEA), including the North West European Shelf (NWS).

The model of the NEA ecosystem (Artioli et al. 2012) couples the hydrodynamic model POLCOMS

(Proudman Oceanographic Laboratory Coastal Ocean Modelling System; Holt and James 2001) with the

biogeochemical model ERSEM (European Regional Seas Ecosystem Model; version 15.06: Butenschön

et al. 2016). ERSEM has been described in Section 6.3.3 as a model capable to describe the dynamics

of four phytoplankton functional types (diatoms, dinoflagellates, nanoplankton, picoplankton), three

zooplankton types and one type of bacteria, characterized by variable internal stoichiometry. This case

study used a novel parameterization of ERSEM which enhanced the differences among the PFTs, i.e., the

differences among PFT rates and feedbacks to the ecosystem biogeochemistry (Butenschön et al. 2016).

6.3.4.2 Data assimilation system

Ocean-colour PFT data for the NEA region — diatoms, dinoflagellates, nanophytoplankton, and picophy-

toplankton, parameterized as a function of sea-surface temperature and provided with per-pixel errors

by Brewin et al. (2017a) (EU CMEMS TOSCA and ESA’s CCI Ocean Colour projects) — were assimilated

into the NEA ecosystem model using the ensemble Kalman filter (EnKF) (Evensen 2003; Ciavatta et al.

2018). The EnKF was applied here with i) a localized configuration (with spatially variable radius); ii)

perturbation of the observations; iii) analysis with log-transformation of state and observations; and

iv) 100 ensemble members. Model error was accounted for through the stochastic perturbation of the

solar irradiance at sea-surface (Gaussian perturbation with standard deviations equal to 20% of the

irradiance values). Model error was also added to all the forecasted variables (10% of the value of the

variables) prior to the first annual analysis steps. The observation error was assumed uncorrelated and

was derived from the per-pixel values of bias and root-mean-square-deviation provided with the PFT
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data (Ciavatta et al. 2016). Five-day composites of the ocean-colour PFTs were assimilated monthly in a

reanalysis simulation spanning the years 1998–2003. A reanalysis assimilating total chlorophyll data

from ocean colour was also performed for years 1998–2003, for comparison.

6.3.4.3 Skill improvement of the system

The reanalysis outperformed the reference model simulation in estimating not only the assimilated

plankton functional types, but also the non-assimilated total chlorophyll (Figure 6.6, first row, Cia-

vatta et al. 2018). In general, the reference model simulation overestimated the PFTs on the ocean

and shelf regions, in particular diatoms and picophytoplankton in the Northern region (not shown).

The reanalysis reduced the overestimation by systematically correcting the PFTs towards the lower

observed concentrations, reducing the model RMSD up to 50% for dinoflagellates (Figure 6.6, first row).

The reanalysis improved the model estimation of nanophytoplankton on the shelf, though this was

deteriorated on the ocean part of the domain.
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Figure 6.6 Skill of the reanalysis in simulating the ocean-colour phytoplankton functi-
onal types. The maps show the percentage differences (%) between the data-to-output
root-mean square-deviation (RMSD) of the PFT assimilation versus the reference simu-
lation without assimilation (1st row) and versus total chlorophyll assimilation (2nd row).
Negative values indicate that the RMSD of PFT assimilation is lower than the RMSD of the
alternative simulation. The dotted lines indicate the 50 m and 200 m isobaths. Figure
modified from Ciavatta et al. (2018), Creative Commons Attribution License (CC BY).

Quantitative skill metrics demonstrate that assimilation of ocean-colour markedly improved the

model simulation of in situ data of pCO2 and phosphate (Figure 6.7), as well as for all the PFTs. However,

the reanalysis also clearly increased the bias of nitrate and, slightly, of silicate. The skill for the

remaining variables was affected only negligibly (i.e., pH, O2, NH4). Temperature and salinity were not

included in the analysis, though their good reference skill is reported for completeness.

6.3.4.4 Lessons learned

In this case study, the assimilation of PFT data not only improved the reference model simulation of

phosphate and partial pressure of CO2, but it also outperformed the assimilation of total chlorophyll

in estimating both the ocean-colour PFTs and the total chlorophyll itself. In fact, total chlorophyll

assimilation performed relatively poorly in this case study, when compared to the application by Ciavatta

et al. (2016) in the same region. This follows the use of a new, more realistic PFT parameterization,



Assimilation of Ocean Colour • 109

Figure 6.7 Skill of the reanalysis (circles) and reference (squares) simulations in estima-
ting in situ data of ten physical and biogeochemical variables observed in the shelf waters
in the years 1998–2003. The in situ observed variables are: NO3 - nitrate; Si - silicate; PO4
- phosphate; Chl - chlorophyll; NH4 - ammonium; O2 - oxygen; pCO2 - partial pressure of
CO2; T - temperature; S - salinity. The robust skill metrics represented in the diagram
are: bias, Spearman correlation; IQR: interquartile range; MAE’: unbiased median absolute
error. The subscript “o” indicates “observations”. In situ data were extracted from the
ICES (www.ices.dk) and SOCAT (http://www.socat.info; Bakker et al. 2014) databases. Figure
modified from Ciavatta et al. (2018), Creative Commons Attribution License (CC BY).

which enhanced the non-linearity between the concentrations of total chlorophyll and of the PFTs,

weakening the linear approximation and effectiveness of the ensemble Kalman filter in the case of total

chlorophyll assimilation. On the other hand, PFT assimilation corrected, directly and selectively, the

biomasses of the PFTs through linear links between observed and simulated variables. PFT assimilation

also improved the simulation of key emergent properties of the ecosystem, i.e., the net ecosystem

respiration and the flux of atmospheric carbon dioxide at the air sea-sea interface (Figure 6.7). This

case study suggests that the assimilation of ocean-colour PFTs is a new promising approach to simulate

marine ecosystems, with potential benefits in the context of operational oceanography (Skákala et al.

2018) as well as analysis of PFT distributions and impacts on ecosystem functioning at regional (Ciavatta

et al. 2019) and global scales (Pradhan et al. 2019).

6.3.5 Assimilation of satellite derived bio-optical properties: impact on short-

term model predictions

The objective in this study was to investigate whether the assimilation of satellite-derived bio-optical

properties (either as chlorophyll or absorption coefficient) can improve the ecosystem model predictions

of chlorophyll and phytoplankton populations in a coastal ocean on time scales of 1–5 days. The specific

time scale of 1 – 5 days was chosen because it coincides with the time scale of the atmospheric model

forecast needed to force the oceanic model forecast.

Data assimilation experiments were conducted during five days of steady upwelling in the Monterey

Bay area. With the assimilation of satellite-derived bio-optical properties (chlorophyll-a or absorption

due to phytoplankton), the model was able to reproduce intensity and tendencies in subsurface

chlorophyll distributions observed at water samples locations in Monterey Bay, CA. Data assimilation

www.ices.dk
http://www.socat.info
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also improved agreement between the observed and model-predicted ratios between diatoms and small

phytoplankton populations (Shulman et al. 2013).

6.3.5.1 Study region and model configuration

Computational experiments were designed to coincide with a large bio-optical field campaign that was

conducted in Monterey Bay, California during a sustained wind-driven upwelling event in June, 2008.

The field programme captured the dynamic response of the Bay ecosystem to the continuous supply of

nutrients from coastal upwelling.

The Monterey Bay model consists of a physical model (primitive equation model), which is coupled

to a biochemical model (Shulman et al., 2013). The biochemical model simulates the dynamics of two

sizes of phytoplankton, small phytoplankton cells (< 5 µm in diameter) and diatoms, two zooplankton

grazers, nitrate, silicate, ammonium, and two detritus pools (Chai et al. 2002). Constituents from

the biochemical model are used to estimate chlorophyll and inherent optical properties (IOPs). For

example, absorption due to phytoplankton, aph(λ), is modelled as the sum of absorption from small

phytoplankton and diatoms. The chlorophyll-specific absorption coefficients for small phytoplankton

and diatoms are modelled separately, taking into account their photo-adaptive state (e.g., their specific

chlorophyll-to-carbon ratio). This requires specification of high/low light absorption coefficients for

each phytoplankton group (small phytoplankton and diatoms). For more details see Shulman et al.

(2013). Phytoplankton chlorophyll-to-carbon ratios are not constant and depend on light, nutrients,

temperature etc. However, to model the ratio as variable will require the introduction of more state

variables, as well as more highly-uncertain model parameters into the bio-chemical model. Because

the objective was modelling on short-term time scales (1 to 5 days), constant relations were used,

rather than increasing the number of biochemical model state variables and highly-uncertain model

parameters.

6.3.5.2 Data assimilation system

Chlorophyll-a (Chl) data for assimilation were derived from MODIS-Aqua imagery using the OC3M

algorithm (O’Reilly et al. 2000), while phytoplankton absorption data, aph(488), were derived using the

quasi-analytical algorithm (QAA) of Lee et al. (2002). Resolution for both data sets is 1 km.

To assimilate bio-optical measurements into the ecosystem model, reduced-order Kalman filter

was used with a stationary forecast error covariance. The forecast error covariance was specified in the

subspace of the multivariate (bio-optical, physical) empirical orthogonal functions (EOFs) estimated from

a month-long model run. It was assumed that observational error covariance had diagonal structure

(uncorrelated errors), stationary and was equal to 10% of the field variance (see Shulman et al. 2013 for

more details). No localization of the forecast error covariance was needed to assimilate MODIS-Aqua Chl

data into the model. However, localization was needed for assimilation of phytoplankton absorption to

mitigate the presence of spurious correlations in the approximation to the forecast error covariance,

and to exclude remote observations from the analysis of the local grid point. For assimilation of

MODIS-Aqua derived phytoplankton absorption, the forecast error covariance was localized using the

box-car localization function with localization distance set to 10 km.

A 12 h data assimilation cycle was used, and assimilation of physical properties into the physical

model of the coupled system was separated from the assimilation of bio-optical properties into the

biochemical model. Therefore, for each 12 h of the model run, physical observations were first

assimilated into the physical model, creating a new restart file (containing physical and biochemical

state variables) with updated (analyzed) temperature and salinity fields. This restart file was used to

assimilate MODIS-Aqua Chl or absorption data into the biochemical model, creating a new restart file

(nowcast) with updated (analyzed) small phytoplankton and diatom fields. The next segment of the
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model run was started from this restart file and was run for 12 h until the next model restart file was

created.

6.3.5.3 Skill improvement of the system

The assimilation of MODIS-Aqua derived optical properties (Chl or phytoplankton absorption) improved

surface and subsurface agreement between the model and observations (Figure 6.8). Results show

that the reduction in RMSE errors between model and independent water samples ranged from 5%

to 35%, in contrast to the non-assimilative run (Shulman et al., 2013). Assimilation of MODIS-Aqua

bio-optical observations increased (decreased) the concentration of diatoms (small phytoplankton)

inside the Bay in comparison to the non-assimilative run. At the same time, the assimilation of aph(488)

also created an artificial tongue of small phytoplankton offshore from the northern part of the domain

along the coast (Shulman et al., 2013). This might be a result of difficulties in assimilation of offshore

values of absorption, which are significantly lower in comparison to the values in the Bay. Assimilation

of bio-optical data improved fractionation of phytoplankton biomass between diatoms and small

phytoplankton in the model. Without assimilation, the percentage of large diatoms varied during the

experiment between 20% and 80% (Figure 6.8). In contrast, high performance liquid chromatography

(HPLC) observations showed that the fraction of diatoms to the total phytoplankton population was in

the range of 90%. Assimilation of MODIS-Aqua surface chlorophyll produced much better agreement

with the independent, non-assimilated HPLC observations. With the assimilation, the RMSE error

between HPLC observed and model-predicted fraction of diatoms is less than the RMSE error for the

non-assimilative run. There were also improvements in the fraction of diatoms to total phytoplankton

predictions for the run with assimilation of aph(488) after a couple days of assimilation (Figure 6.8).

6.3.5.4 Lessons learned

While the assimilation improved the model predictions, the model subsurface Chl distributions retained

an under-prediction bias as compared to observed profiles from water samples (Figure 6.8). One of the

reasons might be that MODIS-Aqua bio-optical data are assimilated as observed surface values, while

satellite data provide an estimate of the average, e.g., chlorophyll concentration over the layer between

the surface and one attenuation depth.

The assimilation of MODIS-Aqua observations did not improve the model predictions of nitrate.

This can be explained by the fact that multivariate data assimilation tends to increase the phytoplankton

population in the Bay (due to the underestimated a priori Chl and absorption values in the model), and

at the same time tends to decrease nutrients. Results showed that an instantaneous update of nitrate

based on statistical relations between temperature and nitrate (derived from the AUV observations

taken prior to the data assimilation experiments) corrected the model underestimation of the nitrate

fields (Shulman et al. 2013).

The experiments conducted in this study, were limited to a five-day period during a steady upwel-

ling event. More complicated bio-optical conditions are usually observed during wind weakening and

relaxation, when transitions from diatoms to other phytoplankton groups might occur with correspon-

ding drastic changes in bio-optical properties on time scales of days to a week. Our experiments with

the ensemble computed from a month-long model simulation suggest that ensemble methods are very

capable at capturing complex multi-variate relationships between optical properties, phytoplankton

biomass, and ecosystem structure (as represented by small and large phytoplankton pools in the model).

Finally, in this study, assimilation of physical properties and assimilation of bio-optical properties

are separated. The adjustment of updated physical and bio-optical variables is achieved through

the coupled, bio-optical physical model run during the data assimilation cycle. At the same time, an

instantaneous joint update of physical and bio-optical properties is preferable, to maintain dynamical

consistency between the assimilated physical and bio-optical fields.
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Figure 6.8 (a) Location of water sampling stations (Sections A and B); (b) Comparisons of
observed and model-predicted subsurface chlorophyll distributions at water sampling sta-
tions in Sections A and B; (c) Observed and model-predicted fractions of diatoms to total
phytoplankton population at sampling locations: green = HPLC observed fractions; light
blue = run without assimilation of bio-optical properties; brown = run with assimilation
of satellite Chl data; red = run with assimilation of phytoplankton absorption.

6.4 State Estimates/Re-analysis

Long-term trends and interannual variability of biogeochemical variables that are relevant to climate

studies and marine policy can be evaluated by merging numerical models and ocean colour in an

extended “biogeochemical reanalysis” (Lahoz and Schneider 2014). Typically, this is a multi-annual

model simulation that assimilates ocean colour time series with a consistent model set-up and analysis

algorithm, which corrects the model state variables to provide consistently-processed, gap-free estimates

of the “true” state of the ocean. These estimates include non-assimilated variables that cannot be

observed from satellite and that are sparse in time and space (e.g., nutrient and oxygen, Figure 6.9), as

well as biogeochemical fluxes and emergent ecosystem properties simulated by the model (e.g., air-sea

carbon fluxes). Furthermore, reanalyses can be used to provide boundary and initial conditions for

other models, e.g., in the context of operational oceanography (Gehlen et al. 2015). They can also offer

insides into model biases and processes, which can be used to inform model development and observing

network design. In performing reanalysis, special care is needed in choosing the assimilated ocean

colour time series, to avoid that spurious ocean colour signals (e.g., trends due to sensor decays or

inter-sensor shifts) that can drive unrealistic trends and shifts in the reanalysed ocean biogeochemistry

(Ford and Barciela 2017).

Assimilative reanalysis is a well-established approach in environmental disciplines such as atmosp-

heric science (Bengtsson and Shukla 1988; Trenberth and Olson 1988) and ocean physics modelling



Assimilation of Ocean Colour • 113

et 

the 

Figure 6.9 Reanalysis of the global ocean ecosystem by assimilating integrated ocean
colour time series of chlorophyll concentrations measured by SeaWiFS, MODIS, and VIIRS.
Significant trends
1998–2015 (% y−1

Francis Ltd.

(Stockdale et al. 1998), however it is relatively new in the framework of ocean biogeochemical modelling.

The first (quasi) decadal biogeochemical reanalysis estimated the interannual variability of global

primary production in years 1998–2004 by assimilating chlorophyll from SeaWiFS into the NASA Ocean

Biogeochemical Model (OBM, Nerger and Gregg 2007). A comparable variability of primary production

was obtained in the reanalysis by Gregg (2008), who in addition described the spatial patterns of

chlorophyll in the global oceans. The reanalysis by Fontana et al. (2013) evaluated spatial-temporal

patterns of chlorophyll and nitrate in the North Atlantic Ocean in years 1998–2006, by assimilating

in a) total chlorophyll, b) diatoms, c) cyanobacteria over the period
). From Gregg et al. (2017), reprinted with permission from Taylor &
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SeaWiFS chlorophyll into a coupled physical-biogeochemical model. Reanalyses for years 1998–2012,

using chlorophyll observations from SeaWiFS and MODIS and the NASA OBM, evaluated significant

declining trends of chlorophyll in the Northern Hemisphere and Indian oceans (Gregg and Rousseaux

2014), and estimated declining trends of phytoplankton functional groups in part of the global oceans

(Rousseaux and Gregg 2015). These trends were confirmed by the reanalyses of Gregg et al. (2017),

who integrated and assimilated ocean colour data from SeaWiFS, MODIS, and VIIRS, spanning the years

1998–2015 (Figure 6.9). Ford and Barciela (2017) assimilated two different ocean-colour products in

separate global reanalyses (ESA’s Ocean Colour–Climate Change Initiative, and GlobColour), and found

that, despite some differences, both reanalyses improved not only the simulation of in situ chlorophyll

profiles, but also the estimates of nutrient concentrations and carbon dioxide fugacity.

The above works all demonstrated the value of reanalysis for open ocean ecosystems. However, only

a few examples are currently available for biogeochemical reanalysis in shelf-sea ecosystems, where the

influence of riverine inputs and sediments make less obvious the availability of adequate ocean colour

time series. Ciavatta et al. (2016) assimilated an ocean colour product developed for both Case I and II

waters, with per-pixel error estimates of bias and root-mean-square-deviation (ESA’s OC-CCI Version 3;

Sathyendranath et al. 2017) in a decadal reanalysis of biogeochemical indicator and fluxes in the North

West European shelf (1998–2009). The reanalysis improved the model prediction of the assimilated

ocean colour chlorophyll and provided quality-assessed estimates of biogeochemical indicators that

are relevant for marine policy (e.g., dissolved oxygen deficiency, Figure 6.10). However, the skilled

reference simulation of biogeochemical variables was not improved significantly by assimilating the

ocean colour product, possibly due to the relatively low assimilation frequency (monthly) and relatively

high errors of the ocean colour chlorophyll product in coastal areas. In shelf-seas, alternative ocean

colour products have been suggested as valuable approaches to reanalysis, e.g., plankton functional

types and optical data (see Sections 6.3.2 to 6.3.5), because they are more directly related to a large

number of biogeochemical model variables, or they are less prone to analytical and/or difference-in-kind

errors. The importance of biogeochemical reanalysis for marine ecosystem assessment and management

is pushing the development of new operational reanalysis systems in a number of recent research and

development projects (e.g., in Europe, the H2020 “Operational Ecology” project and the Copernicus

Marine Environment Monitoring Service, Le Traon et al. 2017) prospecting future relevant progress in

this area of synergic application of modelling and ocean colour observation (see also Fennel et al. 2019).

6.4.1 Available software for biogeochemical data assimilation

v Data Assimilation Research Testbed (DART): www.image.ucar.edu/DAReS/DART/

v Ensemble Kalman Filter (EnKF): http://enkf.nersc.no/

v Ensemble Kalman Filter coded in C (EnKF-C): https://github.com/sakov/enkf-c

v Employing MPI for Researching Ensembles (EMPIRE): http://www.met.reading.ac.uk/~darc/empire/

index.php

v Parallel Data Assimilation Framework (PDAF): http://pdaf.awi.de

6.5 Recommendations

The assimilation of ocean colour products into marine biogeochemical models is a relatively new

and promising field of research. This approach has the potential to improve the understanding of

marine ecosystem functioning, prediction of biogeochemical indicators and simulation of climate-

relevant biogeochemical fluxes. Ocean colour assimilation methods have been influenced by the more

established fields of physical oceanographic and meteorological assimilation; however biogeochemical

www.image.ucar.edu/DAReS/DART/
http://enkf.nersc.no/
https://github.com/sakov/enkf-c
http://www.met.reading.ac.uk/~darc/empire/index.php
http://www.met.reading.ac.uk/~darc/empire/index.php
http://pdaf.awi.de


Assimilation of Ocean Colour • 115

Figure 6.10 Reanalysis of biogeochemical indicators in the North West European shelf
(years 1998–2009) by assimilating an ocean colour chlorophyll product with the ensemble
Kalman filter (100 ensemble members; Ciavatta et al. 2016): (a) Minimum daily values
of dissolved oxygen simulated by the ensemble median at the bottom of the shelf, and
(b) map of the areas at risk of oxygen deficiency, i.e., with at least one daily value in
1998–2009 below the threshold of 6 mg l−1 (OSPAR 2013). In (b), yellow colour represents
deficient areas at the 1% confidence level (i.e., at least one member of the ensemble signals
oxygen deficiency), red represents 100% confidence (all one hundred members signal
deficiency). Figure from Ciavatta et al. (2016), Creative Commons Attribution License (CC
BY 4.0).

data assimilation poses specific challenges, such as high non-linearity, non-Gaussianity and positive-

definition of the simulated ecosystem states and parameters, which is being addressed by means of

new approaches.

The novel assimilation of ocean-colour products complementary to the traditional total chlorophyll

(e.g., remote sensing reflectance, phytoplankton functional types, ocean carbon stocks) demonstrated

some advantages and should be explored further. One possible limitation of ocean colour assimilation

is that its impact might be limited to the simulated upper layers of the ocean. Though some assimi-

lation methods are capable of propagating the observed information within the water column, the

simultaneous assimilation of remotely-sensed and in situ biogeochemical profiles (e.g., from gliders

and biogeochemical-Argo floats) appears a useful way forward. We expect that the use of ocean colour

assimilation will continue to expand in modern operational modelling systems and the increased

availability of better resolved, error-characterized, hyperspectral satellite data will further support such

applications.

Acknowledgements: The authors thank Charles Stock and Pierre Brasseur for reviewing, and

providing valuable feedback to improve this Chapter.
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Chapter 7

Synergistic Use of Ocean Colour Data and Models to

Understand Marine Biogeochemical Processes

Stephanie Henson, Colleen Mouw, Cecile Rousseaux and Jerry Wiggert

NOTE: In this report, the word “model” refers to process-based three-dimensional biogeochemical/

ecosystem computer models at large regional or global scales.

In the early years of model development, satellite ocean colour data was used simply to validate the

climatological values, spatial distribution and seasonal variability of chlorophyll or primary production.

More recently, however, there has been increasing interest in synthesising the satellite data and model

output to provide insight into the driving factors behind the observed seasonal and interannual

variability in ocean colour. The increasing number of satellite ocean colour missions and products,

combined with the continuing development of complex numerical models, allows for new and exciting

multi-disciplinary approaches for tackling ecological and biogeochemical questions. Studies that have

combined ocean colour data with models have significantly enhanced our understanding of global-,

basin-, and mesoscale time-series and elucidated details of regional processes and phytoplankton

physiological states. Furthermore, the scope of these integrated approaches can be extended to

encompass, for example, complex food-web interactions such as the recruitment of fish.

7.1 Use of Hindcast Simulations to Explore Processes that Result in

Observed Ocean Colour Variability

In hindcast simulations, ocean biogeochemical models are generally forced with observed atmospheric

conditions, such as wind speed, heat flux etc. (see also Section 3.4 for description of different model

types, and Appendix 3 for terminology). Reanalysis products, which incorporate in situ and satellite-

derived data, are typically available from 1948 onwards, enabling multi-decadal simulations. Because

these models are driven with realistic atmospheric forcing, the simulated seasonal and interannual

variability should be directly comparable with the observations. For example, we would expect a

hindcast model to simulate a strong El Niño event in 1997/1998, followed by a La Niña in 1998/1999.

This permits the use of a hindcast model to investigate processes and mechanisms underlying the

seasonal and interannual variability observed in satellite ocean colour data. Often the biogeochemical

model provides information on parameters important to chlorophyll variability but difficult to measure

in situ at the resolution necessary to relate to satellite ocean colour fields, e.g., macronutrients or iron

concentration. Provided a model shows the relevant property-property relationships to the observations,

and the model’s dynamical features are thoroughly understood, meaningful physical and biogeochemical

interpretations of the observed variability are possible.

Seasonal variability in chlorophyll concentration is pronounced in many ocean regions and has

been well-characterised by satellite ocean colour observations. However, defining the mechanisms
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driving seasonal and intra-seasonal chlorophyll patterns often requires more information than can be

obtained from remote sensing images alone. Synthesis of hindcast simulations and satellite data allows

for the investigation of both the processes controlling seasonal variability, and its subsequent impacts.

For example, the canonical theory of bloom initiation, Sverdrup’s critical depth hypothesis (Sverdrup

1953), has been examined in different biogeochemical provinces of the northern Atlantic (Dutkiewicz

et al. 2001; Follows and Dutkiewicz 2002). A model was used to investigate basin-scale patterns of

nutrient supply, mixed layer depth and euphotic zone depth, which were then correlated with satellite

observations of bloom timing and magnitude. This study demonstrated how the interplay between

light, buoyancy provided by heat flux, and wind mixing acted on phytoplankton blooms in both the

subpolar and subtropical North Atlantic.

Model output can provide information on potential forcing mechanisms that may be difficult

to diagnose on the appropriate time and space scales from satellite data or in situ observations

alone. For example, the response of chlorophyll to Indian Ocean monsoon variability was investigated

using SeaWiFS data and a biogeochemical model which revealed that wind-induced mixing drives the

intraseasonal patterns of chlorophyll distribution (Resplandy et al. 2009). The additional advantage

of using a model in conjunction with satellite data is that the consequences of variability can also be

investigated. In the case of Resplandy et al. (2009), the model allowed investigation of the vertical

distribution of chlorophyll, with an increase in surface production in response to wind-induced mixing

episodes compensated by a decrease in subsurface production. Consequently, there was no change

in carbon export. Similarly, Bennington et al. (2009) explored the influence of seasonal variability

in satellite-derived chlorophyll concentration on North Atlantic air-sea CO2 flux, concluding that

phytoplankton bloom timing drives summer variability in pCO2.

Processes acting on interannual timescales to alter ocean productivity are also readily investigated

through synthesis of hindcast models and ocean colour data. For example, Fauchereau et al. (2011)

noted that in the Southern Ocean, the correlation between mixed layer depth, measured from Argo

floats, and satellite chlorophyll could be either positive or negative and was surprisingly heterogeneous.

Use of a biogeochemical model allowed Fauchereau et al. (2011) to investigate chlorophyll responses

to transient mixing events and subsequent alteration of iron and light availability, and thus elucidate

the mechanisms driving the observed variability. In a similar fashion, Santoleri et al. (2003) applied a

coupled physical-biogeochemical model to the Adriatic Sea to investigate whether changes in convective

mixing, and thus nutrient supply, could explain the observed interannual variability in chlorophyll.

A series of sensitivity analyses with the model allowed them to pinpoint interannual variability in

water masses, in particular the East Mediterranean Transient, and subsurface nutrient concentration

as the primary control on chlorophyll. A sensitivity analysis was also used by Echevin et al. (2008) to

investigate the controls on observed seasonal and interannual variability of chlorophyll in the Peruvian

upwelling. In this case, the authors concluded that mixed layer depth was the most important factor,

whilst surface irradiance and SST had little impact on chlorophyll variability. The role of nutrient supply

was also implicated in a study of the Arabian Sea that found the winter bloom amplitude derived from

SeaWiFS data to be driven by interannual variability in the mixed layer depth and heat flux (Keerthi et al.

2016).

In the following case studies, we explore how biogeochemical models have been used in combination

with satellite ocean colour data to explore the drivers of variability in phytoplankton populations over

interannual to decadal timescales.

7.1.1 Case Study: Elucidating the nutrient supply routes controlling primary pro-

duction

The eastern boundary upwelling system of the subtropical North Atlantic is the most variable of the

four major eastern boundary currents and is associated with high annual primary production (Carr

2002). The size of the upwelling region varies interannually, likely driven by variability in the large-scale
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wind stress field (Pelegri et al. 2006), which is hypothesised to alter the supply route of nutrients to

the region through changes in stratification and/or Ekman transport. However, testing which nutrient

supply pathway dominates the region and consequently the links to decadal-scale oscillations cannot be

achieved via satellite data alone. Pastor et al. (2013) were able to tackle this issue through combined use

of SeaWiFS chlorophyll concentration and biogeochemical model output. This allowed them to assess

the drivers of chlorophyll interannual variability in the region by quantifying all terms in the euphotic

zone nutrient budget.

7.1.1.1 Approach

The biogeochemical model used was NOAA-GFDL’s TOPAZ (Dunne et al. 2013), integrated with the

MOM-4 physical model (Gnanadesikan et al. 2006). The TOPAZ model includes four nutrient elements

(N, P, Si, Fe), dissolved organic pools, variable chlorophyll-to-carbon ratio, and light and nutrient co-

limitation. Three classes of phytoplankton are represented: ‘large’ (diatoms and other eukaryotes),

‘small’ (cyanobacteria and picoeukaryotes) and ‘diazotroph’ (nitrogen fixers). The phytoplankton are

grazed by a single zooplankton class. The model was forced with reanalysis meteorological fields, i.e.,

a hindcast simulation, so that the model ocean is responding to meteorological conditions with the

correct timing (the term ‘reanalysis’ in this context refers to the assimilation of historical observations

over an extended period into a numerical model to generate spatially and temporally varying fields).

The model was validated by assessing its ability to reproduce the phenomenon of interest, in this case

the observed spatial and temporal patterns of chlorophyll variability.

7.1.1.2 Findings

The authors were able to exploit the model output to investigate the relative importance of the different

mechanisms of nutrient supply in the region. Vertical advection was found to dominate over diffusivity

in driving interannual variability in chlorophyll concentration (Figure 7.1). On interannual to decadal

timescales, the upwelling of nutrients was found to vary in association with changing vertical velocity,

rather than the subsurface nutrient reservoir. Finally, the authors found no link between decadal scale

variability in the size of the high chlorophyll region and the El Niño-Southern Oscillation (ENSO), as

previously suggested, but did find a weak relationship with the Atlantic Meridional Mode, although even

the 50 year model run was insufficiently long to capture more than one cycle of the oscillation.

Figure 7.1 Model results of nutrient supply to the upwelling region of the northeast
Atlantic in contrasting high and low chlorophyll years. Solid arrows show the horizontal
and vertical advective supply and curly arrows show the mixing term (all terms in 10−10

mol m−2 s−1 (redrawn using data from Pastor et al. 2013).
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7.1.2 Case Study: Drivers of trends in phytoplankton community composition

Identifying major trends in the biogeochemical composition of the oceans is essential to improve our

understanding of biological responses to climate forcing. Previous studies have assessed the existence

of trends at the global scale using ocean colour (e.g., Gregg et al. 2005; Henson et al. 2010; Vantrepotte

and Mélin 2011; Beaulieu et al. 2013; Siegel et al. 2013). While these efforts have provided a first line of

information on the existence of trends in ocean biology, little is known about global and large-scale

regional trends, or multi-annual to decadal variability in phytoplankton composition and the processes

leading to these trends.

7.1.2.1 Approach

Rousseaux and Gregg (2015) used the NASA Ocean Biogeochemical Model (NOBM) to investigate the

decline in chlorophyll concentration in the high northern latitudes over the period 1998–2012. The

NOBM includes four nutrients (silicate, nitrate, ammonium and iron), four phytoplankton groups (dia-

toms, cyanobacteria, chlorophytes and coccolithophores), variable chlorophyll:carbon ratios, particulate

and dissolved carbon pools, and is coupled to a global general circulation model (Poseidon) and a

radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM; Gregg and Carder 1990;

Gregg 2002b; Gregg and Casey 2009). The NOBM assimilates satellite ocean chlorophyll from SeaWiFS,

MODIS-Aqua and VIIRS and uses the Modern-Era Retrospective analysis for Research and Applications

(MERRA) data to force the circulation model.

7.1.2.2 Findings

Using the NOBM, Rousseaux and Gregg (2015) found that the previously observed declining trends

in phytoplankton in the northern high latitudes (Gregg and Rousseaux 2014) were the result of a

significant decline in diatoms (-1.22% yr−1). This decline coincided with a decline in nitrate (-0.38%

yr−1), a shallowing of the mixed layer depth (MLD) of -0.20% yr−1 and a significant increase in surface

PAR of 0.09% yr−1. These trends illustrate the diversity and complexity of mechanisms that drive

phytoplankton community response to variable conditions of nutrients, light, and mixed layer depth

(Figure 7.2). This type of study provides a first insight into the existence of trends in phytoplankton

composition over the maturing satellite ocean colour era and illustrates how changes in the conditions

of the oceans in the last 15 years may have affected phytoplankton populations. Whether the trends

are part of a longer-term climate change response, or a response to interannual/decadal variability, is

unclear given the relatively short ocean colour time series. This issue is discussed in more detail in

Section 8.2.

7.1.3 Case Study: Investigating the potential for iron limitation of primary pro-

duction

The geomorphology of the northern portion of the Indian Ocean basin leads directly to the monsoon

cycle which is the leading order control on the region’s dynamics, including its unique seasonally

reversing boundary currents (Hood et al. 2017). In addition, these arid terrestrial regions serve as a

source of wind blown dust that have led to the Arabian Sea being considered as “Mother Nature’s Iron

Experiment” (Smith 2001). Within this context, climatological forcing was applied to a coupled physical-

biogeochemical model of the Indian Ocean that included iron as a micronutrient. Two results, relating

to the spatio-temporal distribution patterns of iron limited phytoplankton growth, are highlighted

here to demonstrate the power and utility of combining modelling and remote sensing to advance

mechanistic understanding of ocean biogeochemical processes.
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Figure 7.2 Model derived statistically significant trends (1998–2012) in various biological
and biogeochemical properties in 12 oceanographic regions. Redrawn from Rousseaux
and Gregg (2015), with permission from John Wiley and Sons.

7.1.3.1 Approach

Following the JGOFS Arabian Sea Expedition, a coupled physical-biogeochemical model was used to

explore how to integrate the available observations and extrapolate to broader spatial and seasonal

scales, with the goal of gaining deeper insight into the basin’s biophysical variability and biogeochemical

cycling (Wiggert et al. 2006; Wiggert and Murtugudde 2007). The biogeochemical model was originally

developed and applied to study iron cycling in the Pacific Ocean (Christian et al. 2002). The model was

run with climatological forcing, with the objective of illuminating seasonal variability in this poorly

sampled ocean domain.

7.1.3.2 Findings

A surprising result concerning the seasonal variability of the Arabian Sea was that, despite the ele-

vated dust fluxes known to impact the region, the model indicated that the coastal upwelled waters

propagating offshore of the Arabian Peninsula during the Southwest Monsoon were prone to iron

limitation. Within the model, this reflects the N:Fe ratio of the waters being upwelled into the euphotic

zone by the monsoonal forcing. The data obtained at the station nearest to shore during the US

JGOFS Southwest Monsoon cruise established that the N:Fe of these waters in the upper 50 m was

greater than 15,000, which suggests this area is prone to iron limitation (Measures and Vink 1999).

In addition to this unexpected manifestation of iron limitation in the Arabian Sea upwelling region,

the model indicated that a broad swathe of the southwest Indian Ocean over the Seychelles-Chagos

Thermocline Ridge is consistently iron limited (Figure 7.3), which is to be expected given its distance

from terrestrial source regions. Support for iron limitation in both of these regions was provided

through a satellite-based ocean colour algorithm that used the fluorescence line height product available

from the MODIS-Aqua sensor to obtain distributions of quantum yield of fluorescence (φsat ), where

elevated φsat is indicative of phytoplankton subject to iron stress (Behrenfeld et al. 2009). The spatial

correspondence between iron-limited growth suggested by the model and iron-stressed phytoplankton

apparent in satellite-derived φsat is clear, which gives confidence in the iron limitation variability in

the model, which is not subject to the cloudiness issues that are a particular challenge for the Arabian

Sea during the Southwest Monsoon. Subsequent fieldwork seeking to confirm whether iron limitation
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occurs in the Arabian Sea has indeed confirmed this, with the majority of stations exhibiting indications

of iron limitation during the latter stages of the 2007 Southwest Monsoon (Moffett et al. 2015).

 

 

Figure 7.3 Indian Ocean (a)φsat and (b) model-based growth constraint index (GCI)
(Wiggert et al., 2006) for boreal summer (June–August). (c) State-space comparison of φsat

and GCI. Credit: redrawn from Behrenfeld et al. (2009), Creative Commons Attribution
3.0 Unported (CC BY 3.0).

7.2 Using Hindcast Models to Extend Satellite Data into the Recent

Past to Explore Decadal Variability

Biogeochemical models run in hindcast mode have an important additional function, other than

examining the forcing controlling observed variability in the satellite chlorophyll record. Because

forcing fields from reanalysis efforts (e.g., NCEP/NCAR) stretch back to 1948 in many cases, hindcast

models can be used to extend the satellite record back in time to examine decadal variability. For

example, the North Atlantic Oscillation (NAO) has generally been in a positive or neutral phase for much

of the satellite ocean colour record (the exception was 2009–2011 which saw strong negative conditions).

Thus investigating the phytoplankton response to decadal variability associated with the NAO has been

limited by the relatively short satellite data time series. Biogeochemical models are a powerful tool in

such a situation, provided of course that they can reproduce the phenomenon of interest as observed

in the satellite data. Henson et al. (2009), for example, used a biogeochemical model to examine the

effect of decadal variability in physical conditions on the timing of the phytoplankton bloom in the
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North Atlantic. The model was first shown to reproduce the observed bloom timing and interannual

variability, before the differences in historic positive and negative NAO phases were examined. The

authors concluded that increased mixing in subpolar regions in positive NAO periods delayed the onset

of the spring bloom. Further insights into the processes controlling phytoplankton blooms on a decadal

timescale were gained by Patara et al. (2011) who constructed means over NAO positive and negative

periods of chlorophyll anomalies and seasonal cycles using a hindcast model. Their detailed study of

the instantaneous and lagged responses to shifts in the NAO revealed how advection of subsurface

nutrient anomalies in the North Atlantic Current altered the subpolar chlorophyll bloom.

The El Niño-Southern Oscillation (ENSO) is perhaps the most widely studied ocean phenomenon,

and here too the combination of biogeochemical models and satellite data provides new insights into

the processes at work. By extending their model run back to 1993, Radenac et al. (2001) were able

to investigate the chlorophyll response to ENSO prior to the 1997–1999 event observed by SeaWiFS.

The studied interplay of advective and vertical supply of nutrients throughout the Equatorial Pacific

demonstrated the relevance of conditions prior to the satellite observations in setting the chlorophyll

response. A close inspection of the SeaWiFS chlorophyll record undertaken by Ryan et al. (2006) revealed

that blooms occurred at the termination of El Niño events. The authors then used a biogeochemical

model to investigate the changes in subsurface currents associated with the end of an El Niño and

discovered that the iron-rich New Guinea Counter Current was intensified. This resulted in increased

iron transport from the New Guinea margin into the equatorial undercurrent which relieved iron

limitation.

The changes in nutrient availability associated with ENSO events are hypothesised to alter the

phytoplankton community structure. Community structure is extremely challenging to measure in situ

at spatial and temporal scales large enough to investigate basin-wide phenomena such as ENSO, which

made validating results from early modelling studies difficult. Nevertheless, Rousseaux and Gregg

(2012) used a data-assimilating model to demonstrate that the ENSO-driven changes in chlorophyll

observed in the satellite data arise from a phytoplankton composition shift during the 1997/98 El

Niño. The low nutrient conditions during El Niño conditions favoured an increase in cyanobacteria

concentration while diatoms plummeted. Recent advances in satellite biological oceanography have

resulted in several algorithms to estimate phytoplankton community structure remotely (e.g., IOCCG

2014). This allowed Masotti et al. (2011) to confirm that modelled changes in community composition

in the Equatorial Pacific during El Niño/La Niña transitions resemble those estimated from satellite

ocean colour data. Again, the use of a biogeochemical model allowed the authors to investigate the

environmental variables controlling the interannual shift in phytoplankton composition.

As yet, limited use has been made of hindcast models to investigate natural climate oscillations

other than ENSO or the NAO. An exception to this relates to the impact of the Indian Ocean Dipole

(IOD) on chlorophyll distribution patterns throughout the Indian Ocean basin. Wiggert et al. (2009)

contrasted the impact of two recent IOD events (1997/1998 and 2006/2007) in a detailed satellite

and in situ data exploration of the spatio-temporal patterns of surface chlorophyll, and the associated

physical drivers (surface winds and planetary waves). The principal ocean colour signature of the IOD is

extensive phytoplankton blooms extending westward off Java and Sumatra that occur in boreal autumn.

A 40-year hindcast of a coupled biophysical model has provided more comprehensive insight into the

impact of the IOD on Indian Ocean bloom dynamics (Currie et al. 2013). By extending the ocean colour

time series with model output, Currie et al. (2013) demonstrated that the most pronounced anomalous

blooms associated with the IOD occur in coastal and equatorial upwelling regions of the eastern Indian

Ocean where upward thermocline displacement occurs in response to atypical upwelling favourable

winds. Through their modelling effort, Currie et al. (2013) also demonstrated that negative, off-equator

chlorophyll anomalies in the western Indian Ocean during boreal winter were the result of atypical

planetary wave dynamics.

Extending the satellite ocean colour record back in time using biogeochemical models was also

instrumental in determining the driving factors of changes that have been observed since the advent of
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ocean colour. Several studies on the expansion of oligotrophic gyres for example concluded, on the

basis of 9–10 years of SeaWiFS chlorophyll data, that the size of the gyres was increasing (Polovina et al.

2008; Irwin and Oliver 2009). By examining variability in gyre size from the 1950’s onwards using a

hindcast model, Henson et al. (2010) showed that the recent apparent expansion of the gyres was more

likely due to decadal variability associated with ENSO. Other studies have used ocean colour data in

combination with numerical models to assess the driving factors of trends in the oceans. For example,

Rousseaux and Gregg (2015) found that the decline in total phytoplankton observed in the northern

latitudes could be attributed to a shallowing of the mixed layer and a decrease in mixed layer nutrient

concentration that coincided with a decline in diatoms. This example demonstrates the difficulty of

detecting long-term trends with a dataset that is substantially shorter than the natural time scales of

variability, a theme we will return to in the next chapter, where the potential for synthesising satellite

data and model output for detecting biogeochemical response to global climate change is examined.

7.2.1 Case Study: Exploring the response of the North Atlantic bloom to decadal

variability

In the North Atlantic Ocean, a major climate oscillation mode, the North Atlantic Oscillation (NAO),

controls westerly wind strength and winter storm tracks (Hurrell et al. 2003). A biological response

to the NAO has been posited on the basis of long-term plankton recorder datasets (e.g., Barton et

al. 2003), however the underlying mechanisms and spatial extent of the response cannot be easily

quantified due to data restrictions. Also, the ocean colour satellite record is not sufficiently long to

investigate decadal-scale variability. The decadal variability in the physical conditions driving the timing

of the phytoplankton bloom in the North Atlantic were investigated in Henson et al. (2009) using a

biogeochemical model.

7.2.1.1 Approach

Henson et al. (2009) overcame the temporal limitations of the satellite ocean colour data record by

using a biogeochemical model to investigate the satellite-era phytoplankton bloom seasonality back

to the late 1950’s. The biogeochemical model used was NOAA-GFDL’s TOPAZ (Dunne et al. 2013) in

the same configuration as described in Case Study 7.1.1. The model was run in hindcast mode so that

the phasing of the NAO variability in the model corresponds directly to the real world. The model was

first shown to reproduce the phenomenon of interest, i.e., the satellite-derived bloom timing and its

interannual variability, which gave confidence that the model could be used to explore the decadal

variability in phenology.

7.2.1.2 Findings

By comparing the modelled bloom timing and spatial patterns in periods of historic positive and

negative NAO phases, the basin-scale response to the NAO could be explored (Figure 7.4). The onset

of the spring bloom was found to be delayed in positive NAO periods with respect to negative NAO

conditions. The use of the model further allowed the mechanism underlying this contrast to be

investigated. The strong westerly winds across the subpolar gyre associated with positive NAO periods

drove deeper mixed layers in the model, which had the effect of delaying the start of the spring bloom

by 2–3 weeks in this light limited region. On the other hand, the timing of the subtropical bloom was

found not to correlate with the NAO index.
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Figure 7.4 Top panel: difference in modelled bloom start date between the long-term
mean (1960–2004) and a positive NAO phase (1988–1995), where positive values indicate
a later bloom start in positive NAO phases. Middle panel: Time series of modelled
subpolar bloom start date (red line), annual mean modelled MLD (black line) and Argo
float-derived MLD (black dots). Bottom panel: Time series of modelled subpolar bloom
start date (red line) and the NAO index (black line)(redrawn from Henson et al. 2009 with
permission from John Wiley and Sons.)

7.2.2 Case Study: Investigating the mechanisms of decadal variability in North

Atlantic biomass

The distribution of phytoplankton biomass in the North Atlantic is affected by both vertical processes

(modification of nutrient or light limitation) and horizontal processes (Ekman processes). The response
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of phytoplankton to horizontal processes is difficult to ascertain without recourse to a biogeochemical

model due to the large scale nature of the forcing. The influence of changing ocean circulation, geo-

strophic advection and induction (large scale movement of nutrients from the permanent thermocline

into the mixed layer) on upper ocean nutrient supply is challenging to assess using observational

datasets alone. A regional model was used by McKinley et al. (2018) to explore how changes in both

vertical and horizontal nutrient supply may have driven the satellite-observed variability in chlorophyll

concentration. McKinley et al. (2018) then investigated the response on decadal timescales by analysing

the model output over 1949–2009.

7.2.2.1 Approach

The MIT-GCM (Massachusetts Institute of Technology General Circulation Model) in its North Atlantic

configuration was used (Marshall et al. 1997a,b). The model was forced with reanalysis meteorological

and radiative fields from 1948–2009. The biogeochemical module contains a phosphorus-based system

with two phytoplankton classes (“large” diatoms and “small” phytoplankton) and one zooplankton class

(Dutkiewicz et al. 2005). The biogeochemical model incorporates phosphorus, silica and iron, as well as

carbonate chemistry. In previous work, the model had been demonstrated to reproduce the timing and

magnitude of the subpolar bloom as captured by SeaWiFS (Bennington et al. 2009).

7.2.2.2 Findings

Over the period of SeaWiFS observations (1998–2007), phytoplankton biomass (model of Westberry

et al. 2008) increased in the northwest subpolar gyre and decreased east of 30◦W. Using the 3D fields

provided by the biogeochemical model, McKinley et al. (2018) were able to determine that a weakening

of the subpolar gyre and associated shoaling of the mixed layer (which relieved light limitation) led

to the observed increases in biomass in the northwest of the region. The biomass decline in the east

of the basin was attributed to reduced horizontal convergence of phosphate, due to reduced vertical

phosphate supply as a consequence of suppressed deep winter mixing west of 35◦W. The use of a

hindcast model run allowed the authors to extend their analysis to decadal timescale (1949–2009).

Variability in biomass in the northeast of the subtropical gyre was ascribed to variability in both

horizontal and vertical phosphate supply, whereas in the subpolar gyre horizontal fluxes dominated.

7.3 Caveats and Recommendations

Use of biogeochemical models in combination with satellite-derived ocean colour data has provided

a wealth of insight on the underlying mechanisms controlling observed phytoplankton variability

in several regions of the global ocean. Hindcast runs of biogeochemical models have also proven

useful to evaluate phytoplankton variability on interannual to decadal timescales occurring prior to

the start of the ocean colour satellite data record. However, there are many areas of research in

which biogeochemical models could be used to inform ocean colour studies which have not yet been

explored. One example is to use model output to extend satellite data sub-surface. For example, a

biogeochemical model could be used to explore how much of the variability in chlorophyll concentration

in the subtropical ocean is due to changes in the depth of the sub-surface chlorophyll maximum.

However, the use of biogeochemical models to study variability in phytoplankton populations does

have its challenges. Clearly, the model must be able to reproduce the observed variability. This is

actually more challenging than might be expected. In a comparison of three state-of-the-art climate

models, Schneider et al. (2008) found that only one of them was able to reproduce the observed

variability in subtropical primary production. At a regional scale, the models may fare even worse: a

comparison of 14 biogeochemical models to in situ primary production measured at BATS and HOTS
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showed that almost all the models underestimated the observed mean, variance and trends (Saba et al.

2010). Similarly, a comparison of nine models to a database of in situ primary production measured

in the tropical Pacific demonstrated consistent underestimation of the observed variability (Friedrichs

et al. 2009). Even when a model is able to adequately represent observed interannual variability there

may be features of the longer term record, such as regime shifts or trends, that the model does not

capture (Friedrichs et al. 2009).

The fact that a biogeochemical model may not necessarily capture the observed variability may

arise because the model is less complex than reality. This can be both a boon and a disadvantage.

On the positive side, the relative simplicity of the typical biogeochemical model allows the processes

underlying the variability in phytoplankton populations to be readily diagnosed. On the negative side,

the model may be missing processes which are fundamental to driving the observed variability.

Additionally, the biogeochemical model needs sufficient spatial and temporal resolution to match

the real-world phenomenon of interest. As many biogeochemical models (particularly those projecting

future climate scenarios) are ∼1◦ spatial resolution and 1 month temporal resolution, this limits

the underlying processes or variability that can be diagnosed. Typically, the combination of ocean

colour and models is most suited to exploration of basin-scale variability over interannual to decadal

timescales, although higher resolution models (both spatially and temporally) have been used to explore,

for example, phenology (Henson et al. 2018) and mesoscale eddies (Levy et al. 2014).

Models are not, and can never be, a perfect reproduction of reality. Nevertheless, the adage “all

models are wrong, but some models are useful” (Box 1976) applies equally well to the combined use of

ocean colour and models. Models can be an extremely useful additional tool in the kit as outlined in

this chapter, when applied bearing the above caveats in mind.
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128 • Synergy Between Ocean Colour and Biogeochemical/Ecosystem Models



Chapter 8

Using Models to Inform Ocean Colour Science

Stephanie Dutkiewicz, Stephanie Henson, Colleen Mouw and Cecile Rousseaux

NOTE: In this report, the word “model” refers to process-based three-dimensional biogeochemical/

ecosystem computer models at large regional or global scales.

Numerical models can be used as laboratories to help understand some of the limitations and

uncertainties of ocean colour products, help understand future needs of ocean colour missions, and

assist in algorithm development. Numerical models can extend beyond the depth, temporal and

spatial scales that satellites can observe. Models can be subsampled similarly to observations to

investigate issues with missing data. In this chapter, we review studies that have used models to

inform interpretation of ocean colour output and plan for the future. Just as ocean colour products are

important for models, we show that models can also be useful for ocean colour science.

8.1 Exploring the Consequences of Missing Data

Satellite ocean colour data are limited by clouds (and associated stray light), thick aerosols, inter-orbit

gaps, sun glint, sensor tilt changes and low light in polar regions (Figure 8.1). These data gaps can

severely limit the availability of daily data in some regions of the oceans. Furthermore, high latitudes

and regions with frequent clouds and aerosols can have persistent data gaps, even at the monthly

timescale. Here we provide two case studies to explore the impact of missing data in terms of calculating

means (or “climatologies”, see Chapter 4) and in determining phytoplankton phenology.

8.1.1 Case Study: Effect of missing data on annual and monthly means

Polar orbiting spectroradiometers (e.g., MODIS, SeaWiFS, MERIS, OLCI, and VIIRS) are assumed to provide

global representation of ocean colour. However, to achieve true global representation, the data have to

be merged over several weeks or even months and there can be considerable gaps in the data (Figure 8.2).

By averaging the available data over a month, the spatial coverage is improved, except for regions where

persistent clouds and aerosols exist, or high latitude regions in winter. The effects that these sampling

irregularities have on the monthly means and whether those irregularities in sampling produce biases

in the global and regional chlorophyll means was investigated by Gregg and Casey (2007b).

8.1.1.1 Approach

Gregg and Casey (2007b) quantified the bias due to missing data using the satellite chlorophyll

assimilating NASA Ocean Biogeochemical Model (NOBM). This three-dimensional global biogeochemical

model includes a circulation model, radiative transfer model and a biological model. The biological

model includes multiple nutrients, phytoplankton groups and carbonate chemistry components within

a dynamical representation of the global oceans. This configuration is used to create a “truth-field” that

129
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Figure 8.1 Daily ocean coverage by MODIS-Aqua and SeaWiFS, with sources causing
data gaps identified. Reproduced from Gregg and Casey (2007b) with permission from
Elsevier.

Figure 8.2 Top left: chlorophyll concentration (mg m−3) from assimilation model sam-
pled by MODIS-Aqua (white indicates ice, black indicates missing data). Top right:
chlorophyll concentration (mg m−3) from a run assimilating MODIS data for August 2003.
Bottom left: percent difference MODIS sampling – assimilation. Bottom right: number
of days sampled by MODIS. Reproduced from Gregg and Casey (2007b) with permission
from Elsevier.
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is sub-sampled as though a satellite were making the observations (i.e., using the orbit and scanning

characteristics of the corresponding ocean colour satellite, as well as the lack of data from clouds

etc.). Some regions have considerable lack of coverage on a monthly basis (see Figure 8.1). Mean error

statistics are then calculated from the model “truth” and the subsampled results.

8.1.1.2 Findings

This study found that global annual mean biases due to missing data were ∼8% (MODIS) and >∼6%

(SeaWiFS). Biases were much larger at high latitudes (20% as basin annual mean and over 80% in some

months) as a result of the low sun angle. These biases at high latitudes vary monthly leading to artifacts

in the seasonal cycle. Clouds are the second largest source of sampling error. The North Pacific is the

region most impacted by clouds, which can lead to biases of between 6 and 13% between May and July.

After clouds, aerosols are the next contributor to sampling error but their effects are relatively localized

in both time and space. The effect is most pronounced in the North Indian ocean, with satellite ocean

colour having a negative bias of ∼-30%, driven by data gaps occurring during the Southwest Monsoon

when the chlorophyll concentrations are at their highest. The biases in chlorophyll concentration

as well as the seasonal and interannual variability resulting from this irregular sampling therefore

needs to be taken into consideration when using ocean colour products. The use of satellite ocean

colour assimilation in biogeochemical models provides a potential solution to these biases by providing

consistent, global data-constrained, estimates of chlorophyll concentration.

8.1.2 Case Study: How do gaps in satellite data affect phenology studies?

Satellite ocean colour data is ideally suited to estimating phytoplankton phenology — the study of the

timing of regular seasonally occurring events. The high temporal resolution of the data is essential to

capturing transient events such as the onset of the spring bloom, while the spatial coverage allows

large-scale patterns to be discerned. However, missing data may impact the estimation of phenology

as gaps could occur during key events. For example, the North Atlantic, site of one of the largest

phytoplankton blooms on Earth, can have missing data due to cloud or low sun angle (i.e., too little

light) for > 50% of the time.

8.1.2.1 Approach

The study of Cole et al. (2012) used the NOBM (described in case study 8.1.1). The assimilation of

SeaWiFS data into the NOBM ensures that it reproduces the seasonal cycle of chlorophyll concentration

closely, making it useful for investigating the influence of missing data on phenological metrics. Cole et

al. (2012) first verified that the modelled chlorophyll time series reproduced the phenomenon of interest

— in this case, the timing of the spring phytoplankton bloom and of peak chlorophyll concentration.

The bloom start and peak timing were initially calculated from the gap-free model output. Then, gaps

were introduced into the model time series on the same date and location as found in the SeaWiFS

dataset. Bloom start and peak timing were calculated again using the time series with gaps, and the

two estimates of bloom metrics (with and without gaps) were compared. This allowed the uncertainty

introduced by gaps in the satellite record to be quantified.

8.1.2.2 Findings

Cole et al. (2012) concluded that gaps in time series from sub-polar regions result in uncertainty on

the bloom initiation date. The uncertainty in predicting the bloom initiation was ∼30 days, and ∼15

days for predicting the bloom peak (Figure 8.3). In subtropical regions, gaps are less frequent and as

a result errors are smaller, ∼10 days for bloom initiation and ∼5 days for bloom peak. In addition,
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in subpolar regions the error introduced by gaps in the data was likely to result in later estimates of

bloom timing than the true date. Cole et al. (2012) were also able to derive an empirical relationship

between the percentage of missing data at a particular location and the error in phenological metrics.

This information is valuable in studies of bloom phenology using satellite ocean colour data, as the

error introduced into the estimates of bloom timing or peak can be quantified if the proportion of

missing data for a location is known.

Figure 8.3 Maps of (top) uncertainty in bloom initiation date and (bottom) bloom peak
date due to gaps in the satellite ocean colour time series (both in days). White areas do
not have a distinct seasonal chlorophyll cycle (and therefore bloom initiation cannot be
reliably calculated). Figure redrawn from Cole et al. (2012).

8.2 Use of Models to Inform on Ocean Colour Signals and Products

By resolving variables that are similar to ocean colour measurements (e.g., reflectance), models can

also be used to help explore uncertainties in ocean colour products and potentially aid in algorithm

development. The early efforts to investigate coupling physical/ecosystem/optical models (Bissett et al.

1999a,b; Fujii et al. 2007; Gregg and Casey 2007a) demonstrated a better fit with observations and more

closely reproduced biogeochemical processes than those that did not include optics. The first study

to use numerical output to investigate uncertainties in ocean colour products was Mouw et al. (2012),

which used offline diagnostics (i.e., after the model has been run) to calculate ocean colour-like products

such as reflectance. The study isolated the effects of chlorophyll concentration, phytoplankton cell size,

and size-varying absorption on remotely sensed reflectance (see Case Study 8.2.1).
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However, it is only recently that models have included treatment of light at a level of detail which

allows for online diagnostics (i.e., that are output while the model is running), such as remotely sensed

reflectance (e.g., Dutkiewicz et al. 2015a; Baird et al. 2016; Gregg and Rousseaux 2017; Dutkiewicz et al.

2018). In such fully 3-D physical, optical and ecosystem coupled models, optical properties vary with

optically active state variables (such as Chl-a, CDOM, detrital matter). This allows for the in-water light

field to be accurately represented and permits the model to capture critical feedbacks between the light

field, phytoplankton and biogeochemical parameters. Further, the coupled model allows estimation of

remote sensing reflectance, enabling a direct comparison between model outputs and satellite products.

Such models can be used to explore uncertainties in ocean colour products and algorithms. Dutkiewicz

et al. (2018) provided a proof-of-concept study on using model output to explore an often used Chl-a

algorithm (Case Study 8.2.2). It is recommended that the more sophisticated models become in their

treatment of satellite-like products, the more they should be used to quantify ocean colour uncertainty.

8.2.1 Case Study: Contribution of phytoplankton functional types to ocean colour

product uncertainty

The determination of phytoplankton community structure using satellite remote sensing has evolved

to a highly active area of research with varied discrimination approaches and output products (see

Chapter 2, IOCCG 2014; Mouw et al. 2017). Mouw et al. (2012) used model output to determine the

relative contribution of phytoplankton cell size and chlorophyll to overall spectral remote sensing

reflectance. Further, the study looked at the impact of cell size on remotely sensed reflectance and how

that affected the uncertainty in chlorophyll estimated by band ratio algorithms (i.e., OC4, O’Reilly et al.

1998).

8.2.1.1 Approach

Mouw et al. (2012) used optical and radiative transfer models linked offline to a model that couples the

Community Climate System Model (CCSM-3) with the ocean Biogeochemical Elemental Cycling (BEC)

model (Doney et al. 2009). The CCSM-3 BEC model output includes three phytoplankton groups (a

small fraction consisting of pico/nanoplankton (<20 µm), diatoms (considered to be all microplankton,

> 20 µm) and diazotrophs) and dissolved organic carbon (DOC). The ecosystem state variables were

converted to inherent optical properties (IOPs; absorption and scattering). The IOPs were then converted

to apparent optical properties (AOPs), specifically Rrs(λ), through the radiative transfer software

Hydrolight (Mobley 1994; Mobley and Sundman 2008a,b). Two sensitivity studies were carried out, each

with several scenarios to isolate the effects of chlorophyll concentration, phytoplankton cell size, and

size-varying phytoplankton absorption on Rrs(λ). The goal was to determine the relative contribution

of phytoplankton cell size and chlorophyll to overall Rrs(λ) and to understand where a standard band-

ratio algorithm (OC4) may under/overestimate chlorophyll due to Rrs(λ) being significantly affected by

phytoplankton size.

8.2.1.2 Findings

In the first sensitivity study, an annual average of CCSM-3 BEC model output was explored for the follow-

ing scenarios: 1) full cell size and chlorophyll concentration variability, 2) chlorophyll concentration

held constant at the global mean (0.17 mg m−3) and, 3) phytoplankton size composition held constant

at the global mean (35% microplankton). Mouw et al. (2012) found that chlorophyll concentration has

the primary impact on remotely sensed reflectance. Phytoplankton cell size was found to contribute

secondarily to Rrs(λ) variability and to amplify or dampen the seasonal cycle in Rrs(λ), driven by

chlorophyll. Globally, the percent fractional error of phytoplankton cell size on Rrs(443) was lower

than the percent fractional error of Chl-a, and generally opposite in sign. High latitude regions
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expressed the greatest impact on Rrs(443) due to phytoplankton size (Figure 8.4a,b). High latitudes

are particularly susceptible to under- and overestimation of remote sensing reflectance. When not

considering phytoplankton size effects, Rrs(443) will be underestimated in the subtropical oceans in

both hemispheres during local spring through early fall months and overestimated during local winter

months.

Figure 8.4 Examples of the sensitivity studies investigating the impact of phytoplankton
cell size and chlorophyll on overall spectral remote sensing reflectance and chlorophyll
concentration. Sensitivity Study 1: annual percent fractional error of normalized remote
sensing reflectance at 443 nm for A) constant chlorophyll concentration, B) constant
phytoplankton community size distribution. Sensitivity Study 2: SeaWiFS standard band-
ratio chlorophyll concentration (OC4, mg m−3) resulting from the spectral remote sensing
reflectance values for C) size-independent chlorophyll-specific absorption and D) size-
dependent chlorophyll-specific absorption. This resulted in an annual average of -21.5%
and 1.4% difference in OC4 Chl-a estimates for the size-dependent and size-independent
cases respectively. Modified from Mouw et al. (2012), with permission from Elsevier.

Satellite algorithms and optical models often assume constant average chlorophyll-specific phy-

toplankton absorption spectra. The second sensitivity study aimed to demonstrate when and where

this assumption does not hold true; identifying the seasonal and spatial variability of where Rrs(λ)
was significantly impacted by phytoplankton size composition. Two scenarios were performed in

this sensitivity study: 1) full cell size and chlorophyll concentration variability, where phytoplankton

absorption varies due to phytoplankton cell size (size-dependent) and, 2) chlorophyll concentration

variability only; phytoplankton chlorophyll-specific absorption held constant, thus absorption did not

change with variation in cell size (size-independent absorption). In each of the scenarios, only the

parameters of interest were changed; all other optical parameters were treated identically.

When applying band-ratio algorithms, remote sensing reflectance and chlorophyll concentration

are empirically related; thus an impact on Rrs(λ) by phytoplankton size will also impact Chl-a estimates.

As Chl-a increases, phytoplankton absorb more light, resulting in decreased Rrs(443). In the second

sensitivity study, Mouw et al. (2012) showed that when phytoplankton size effects are not considered,

Chl-a will be underestimated by standard satellite algorithms (e.g., OC4). Mouw et al. (2012) found

that considering size-varying phytoplankton absorption in an optical model resulted in the global

average Rrs(443) and OC4 Chl-a being, respectively, 14% lower and 22% higher than when holding

phytoplankton absorption constant (Figure 8.4c,d). The difference between scenarios reflects the

impact that phytoplankton size has on remote sensing reflectance and chlorophyll estimates. These

results have important implications as to when and where the satellite standard algorithms will either

overestimate or underestimate Chl-a due to Rrs(443) being significantly affected by phytoplankton size.
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8.2.2 Case Study: Exploring uncertainty in the remotely sensed Chl product deri-

ved from limited in situ observations

Ocean colour products such as Chl-a are determined via algorithms that are based on concurrent

measurements of remotely sensed reflectance and in situ observations of radiometry and of the variable

of interest (e.g., Chl-a from HPLC). However, there are a limited number of in situ measurements with

which to calibrate the algorithms. Moreover, recognizing that different waters can have distinct optical

properties (Szeto et al. 2011; Moore et al. 2014), there have been several projects to produce regionally

distinct algorithms (e.g., Szeto et al. 2011; Johnson et al. 2013, release V3 of the OC-CCI project,

https://www.oceancolour.org). How much of the uncertainty in Chl-a arising from the algorithm itself

could be reduced with more in situ data? Models with their “full” knowledge (at least of the model

system) can be used to explore these uncertainties. Dutkiewicz et al. (2018) used a numerical model

that fully coupled radiative transfer with a 3-D physical-biogeochemical model to explore uncertainty in

a widely applied ocean colour Chl-a algorithm.

8.2.2.1 Approach

The model simulates the spectral absorption and scattering properties of water molecules, nine

phytoplankton types (and their Chl-a content), detritus, and coloured dissolved organic matter (CDOM).

Irradiance just below the surface of the ocean is provided by the Ocean-Atmosphere Spectral Irradiance

Model (OASIM, Gregg and Casey 2009). The model includes explicit radiative transfer of spectral

irradiance in 25 nm bands between 400 and 700 nm, which is used to calculate upwelling irradiances

at the surface of the ocean. Together with the downwelling irradiance, the model outputs remotely

sensed reflectance. This model provides both the “actual Chl-a”, that is dynamically changing within

the nine phytoplankton functional types, and the ocean colour-like “remotely sensed Chl-a” product

derived using the same approach as the commonly used blue/green ratio algorithm (O’Reilly et al. 2000).

Specifically, the equivalent empirical relationship used in the real world algorithm is found within the

model, but using model results to determine the necessary coefficients. Comparison to the model

“actual” Chl-a and this derived Chl-a provides a means to ascertain uncertainties in the derived product,

which is very challenging to achieve in the real ocean due to very limited concurrent ocean colour and

in situ measurements.

8.2.2.2 Findings

The study found that the mean absolute bias between derived and actual Chl-a was 22% (Figure 8.5

a,d) when using a simple blue/green reflectance ratio algorithm defined using coefficients determined

by limited sampling of concurrent model “actual” measurements of Chl-a and radiometry. Using the

maximum number of “in situ” measurements (i.e., all the model daily output for 13 years) to train the

algorithm, produced mixed results. There was an overall global improvement, but at the expense of

some regions, especially in lower latitudes where the biases increase (Figure 8.5b,e). Regional specific

algorithms (i.e., where the coefficients were determined using the daily output in each grid location

independently of other locations) provide a significant improvement (Figure 8.5c,f), at least in the

annual mean (bias reduced to 17%). However, regardless of the data density available for calculation

of the algorithm coefficients, there was often a temporal mismatch between the derived and actual

Chl-a. These mismatches stemmed from the temporal decoupling between Chl-a and other optically

important water constituents (such as coloured dissolved organic matter and detrital matter). The

degree of decoupling differs regionally and over time. For example, in many highly seasonal regions,

the timing of initiation and peak of the spring bloom in the derived Chl-a lags the actual Chl-a by days,

and sometimes weeks.

https://www.oceancolour.org


136 • Synergy Between Ocean Colour and Biogeochemical/Ecosystem Models

Figure 8.5 Percentage bias between monthly mean model “actual” Chl-a and model
“derived” Chl-a using algorithm coefficients estimated for: (a, d) subset of output similar
to that used in real world algorithm; (b, e) full model output daily over 13 years (about
11 million data points); and (c, f) each grid cell only using daily data over 13 years. Top
row is for January, Bottom row is for July. White areas indicate unresolved high latitude
regions and/or where PAR is less than 15 µEin m−2 s−1. Credit: Modified from Dutkiewicz
et al. (2018), Creative Commons Attribution 4.0 International License (CC BY 4.0).

8.2.3 Caveats

Including optics and radiative transfer sub-routines in large scale biogeochemical models is a relatively

new development. Continued development is likely to improve the representation of ocean colour-

like diagnostics. A continued dialogue with ocean colour experts will help in this regard. In the

meantime, the limitations of these models must be kept in mind when using them in studies such

as those described here. How well are the models capturing the individual optically important water

constituents? For instance, different models make different assumptions on the parameterization of

coloured dissolved organic matter and also the spectral nature of phytoplankton absorption (see for

instance the sensitivity studies and discussion in Dutkiewicz et al. 2015a). Such choices could alter

their ability to aid in algorithm development.

8.3 Climate Models for Trend Detection and Attribution

Biogeochemical models can also be used to project the future response of phytoplankton to climate

change. Globally integrated primary production is, in general, predicted to decrease with continued

climate change as a result of reduced supply of macro-nutrients to the sunlit layer (Bopp et al. 2013).

However, the responses vary regionally, with some areas projected to increase in productivity due to

reduction in light limitation (due to increased stratification) and higher growth rates due to increased

temperatures (Taucher and Oschlies 2011; Dutkiewicz et al. 2013). Among the many model projections

of phytoplankton response to climate change, there is large uncertainty in these regional responses.

Models also do not necessarily account for all the changes that are likely to affect productivity, such as

ocean acidification (though see e.g., Dutkiewicz et al. 2015b). In general, models suggest a shift to a

greater relative abundance of small cells (Bopp et al. 2005; Dutkiewicz et al. 2013; Marinov et al. 2013)

since smaller cells tend to require fewer nutrients. Studies have also investigated additional responses

to climate change, such as the timing of the phytoplankton spring bloom, which is predicted to advance

by up to 13 days in the North Pacific (Jang et al. 2011), and the area of the subtropical biome which is

predicted to increase by 30% as the boundary moves northward by 1000 km by 2100 (Polovina et al.

2011).
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All of these indicators of the phytoplankton response to climate change may be detectable in

satellite ocean colour data. Models can be used to help us understand when effects of climate change

will be observable relative to natural variability. They can also inform on locations for enhanced in

situ observational efforts by, for instance, projecting which regions will undergo the fastest or most

significant changes, and also areas that could benefit from enhanced satellite validation and/or regional

satellite products?
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Figure 8.6 Examples of control and global warming simulations showing how both
natural variability and long-term trends occur simultaneously in long time series. Output
from the GFDL MOM4-TOPAZ model (Dunne et al. 2013) control and warming simulation,
run for the period 2001–2100 under the IPCC A2 scenario (Nakicenovic and Swart 2000), is
plotted for three locations in the North Atlantic. Thick lines are the annual mean primary
production from the warming simulation; thin solid lines are the primary production
from the control simulation; thin dashed lines are the mean of the control run ± one
standard deviation (calculated over the 100 year time series of the control run).

Coupled biogeochemical models are particularly useful for discriminating between patterns of

natural variability and anthropogenic climate change trends, as the same model configuration can be run

in two modes: control and warming (see e.g., Figure 8.6). In a control run, no external forcing is applied,

so that the modelled system reflects only the natural variability. In a warming run, anthropogenic

forcing, typically in the form of a CO2 emission scenario or representative concentration pathway

developed by the IPCC (Nakicenovic and Swart 2000), is imposed. This results in a modelled system

with both inherent variability and the climate change response. By comparing the control and warming

runs, the response to natural variability can be distinguished from the response to climate change

(see Figure 8.6). As coupled climate models generate their own internal variability, results can only be

compared to observations in a statistical sense. For example, the model should simulate an ENSO cycle

with a 2–7 year periodicity, but is not expected to generate specific El Niño events, such as the one that

occurred in 1997/1998.

8.3.1 Case Study: Detection of Climate Change Trends in Satellite Ocean Colour

Records

Since 1998, ocean colour satellites have provided a continuous record of data on surface ocean

chlorophyll concentration. With longer time series, investigations of long-term, potentially climate
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change-driven trends become a prospect. A key factor in determining long-term trends is the need to

separate the natural variability (which in this context is “noise”) from the trend (the desired “signal”).

Chlorophyll concentrations have substantial natural variability, particularly at high latitudes, at a range

of scales from daily through seasonal to interannual and decadal. Notwithstanding the pronounced

seasonal cycle, chlorophyll concentration also responds to interannual variability in light and nutrient

availability that may be driven by climatic oscillations, such as the El Niño-Southern Oscillation or the

North Atlantic Oscillation. In order to distinguish a trend from the background natural variability, the

signal must be substantially greater than the noise.

8.3.1.1 Approach

Henson et al. (2010) explored this issue using a suite of three climate models, run in both hindcast

(1958–2006) and future projection (2001–2100; IPCC A2 scenario) models (see Chapter 3 and Appendix

4 for definition of terms). Each of the models (GFDL TOPAZ, Dunne et al. 2013; IPSL PISCES, Aumont

and Bopp 2006; and NCAR CCSM-3, Moore et al. 2004; Doney et al. 2006) represents two or three

phytoplankton groups (diatoms, small phytoplankton and, in the case of GFDL and NCAR, diazotrophs)

and one or two zooplankton groups (PISCES includes both micro and mesozooplankton). All models

include limitation of phytoplankton growth by nitrate, phosphate, silicate and iron. Hindcast simulations

were forced with reanalysis data of atmospheric conditions. For the future projection runs, the fully

coupled climate-biogeochemistry versions of the models were used. Historical forcing (greenhouse

gases, aerosol emissions) from 1860–2000, and the IPCC A2 scenario (Nakicenovic and Swart 2000)

from 2001–2100 were used.

First, hindcast runs were used to determine if trends in the existing satellite record are representa-

tive of long-term change, or are capturing natural decadal variability. The study showed that trends in

Chl-a for 14 representative ocean biomes and the oligotrophic gyre size over 10 years of SeaWiFS data

(1998–2007) were within the range of previous decadal variability simulated by the model for the period

1958–2006, implying that the satellite-derived “trends” were artifacts arising from the pronounced

interannual variability in Chl-a and short satellite time series. In the second part of the analysis, Henson

et al. (2010) used the future model projections to investigate how many years of data would be needed

to separate a climate change trend from the natural variability. The formulation of Weatherhead et al.

(1998), which uses the ratio of noise (natural variability) to signal (trend), including accounting for

autocorrelation in the time series, allows the length of data record needed to distinguish a trend to be

calculated. The trend was calculated for each model grid point using linear regression, and the noise

was defined as the standard deviation of the residuals after the trend was removed from the time series.

8.3.1.2 Findings

This study concluded that ∼40 years of continuous data are needed to detect a globally-averaged

climate change trend (Figure 8.7). Some regions had shorter detection times (e.g., equatorial regions,

20 to 30 years), while the Southern Ocean had very long detection times (∼60 years). In some regions,

notably the oligotrophic gyres, a climate change-driven trend was not distinguishable from natural

variability before the end of the simulation in 2100. A similar framework was used by Henson et al.

(2013) and Henson et al. (2018) to explore whether trends in phytoplankton phenology may be more

rapidly detectable than trends in chlorophyll concentration. However, use of bloom initiation or peak

timing did not reduce the 30 to 40 year timescale for trend detection. Finally, Henson et al. (2016) found

that derived properties such as primary production, export production or diatom-driven production,

also require ∼30 years of continuous data for trend detection.
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GFDL

IPSL

NCAR

Figure 8.7 Number of years of continuous data required to distinguish a climate change-
driven trend in chlorophyll concentration from natural variability, calculated for the GFDL,
IPSL and NCAR models (IPCC A2 scenario, 2001–2100). White areas indicate where the
trend is not statistically significant. Figure modified from Henson et al. (2010), Creative
Commons Attribution 3.0 Unported License (CC BY 3.0).

8.3.2 Case Study: Exploring the effect of data record gaps on trend detection

Detecting long-term trends requires a stable, consistent and (ideally) gap-free dataset. How do discon-

tinuities in a time series, such as those that might be introduced by a break in the satellite ocean colour

record or a change of sensor without sufficient cross-calibration, affect our ability to detect climate

change-driven trends? Beaulieu et al. (2013) explored this question by using output from three coupled

models forced with the IPCC A2 future climate change scenario from 2001–2100.

8.3.2.1 Approach

Beaulieu et al. (2013) used the same models as Henson et al. (2010) (Section 8.3.1) and extended their

approach to include a discontinuity in the time series. The modelled time series were “interrupted” at

different points in the time series and the effect on trend detection was assessed. The interruption was

included in the linear trend calculation as an indicator function representing the effect of the change,

where the indicator had a value of 0 before the discontinuity and 1 afterwards.
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8.3.2.2 Findings

The number of additional years of data needed to detect a trend depends on when the discontinuity

occurs. Beaulieu et al. (2013) concluded that if a discontinuity occurred half-way through the satellite

chlorophyll time series, the number of years of data needed to detect a trend would increase from

27 to 43 years (global average). Model-derived trends were also combined with the observed range in

autocorrelation and standard deviation of the SeaWiFS time series to explore how these factors influence

trend detection. In a time series with substantial variability and autocorrelation (i.e., subsequent months

are strongly dependent on each other), the number of years required to detect a trend would increase

to 65 years (compared to 25 years with low variability and autocorrelation). For trend detection in

ocean colour records, this presents a serious challenge: natural variability tends to be pronounced,

particularly at high latitudes, and the decorrelation time scale is on the order of three months. At the

time of publication of Beaulieu et al. (2013), the Earth observing community had serious concerns that

a gap in the ocean colour record could occur due to the failure of MODIS-Aqua before the launch of

VIIRS or OLCI on Sentinel-3. Of equal concern for trend detection was the possibility of an insufficient

period of overlap between successive sensors which would prohibit a thorough cross-calibration, and

therefore the data record may not be consistent over time. Although VIIRS and OLCI are now operational,

combined satellite data and model studies of this kind can provide the impetus to maintain a long-term,

consistent ocean colour record.

Breaks in the satellite record are just one of many possible sources of discontinuities in the record

that can affect trend detection. For example, reprocessing of datasets (as is done regularly for ocean

colour data as algorithms improve or sensors deteriorate) or sensor drifts due to aging, can introduce

a discontinuity. Datasets that merge ocean colour records from multiple satellites, e.g., GlobColour

or ESA OC-CCI, attempt to overcome issues associated with discontinuities by providing a long-term,

consistent time series.

8.3.3 Case Study: Comparing trends in multiple components of the system

The inclusion of additional complexity in the parameterization of the light field in models can provide a

mechanism to explore how additional ocean colour products (such as remotely sensed reflectance) may

change over time.

8.3.3.1 Approach

The study of Dutkiewicz et al. (2019) used the ecosystem/biogeochemical optics model of Dutkiewicz

et al. (2015a), described in Case Study 8.2.2, and applied a future climate change scenario. The model

explored the changes that occur to the system, including the optics, under an unchecked emissions

scenario (Sokolov et al. 2009), similar to RCP 8.5 (IPCC Report 2014) over the course of the 21st century.

Using generalized least squares fits, the study calculated the trends of remotely sensed reflectance in

25 nm bands from 400 to 700 nm, as well as the optically important water constituents (e.g., Chl-a,

detrital matter and CDOM), and asked when and where trends driven by the forcing were unambiguous

relative to the natural interannual variability.

8.3.3.2 Findings

Remotely sensed reflectance (at least at wavebands shorter than 600 nm) had an unambiguous signal

from the forced trends over more of the ocean than did the optically important constituents (Figure 8.8).

This includes Chl-a which is usually used in studies to determine changes to the marine ecosystem. This

finding can be explained by the reflectances individually having smaller relative interannual variability

and also integrating changes over all in-water constituents. This study identifies 467–512 nm as

promising wavelengths for capturing the trends in remotely sensed reflectance over more of the ocean
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than other wavebands. In the model, the trends in remotely sensed reflectance at 475 nm reached

over 1% per decade in some locations. Thus, sensor drift will need to be less than 1% to observe

trends. Although the model bands were too coarse (at 25 nm) to provide more details of the best

wavelength and bandwidth most suitable for trend analysis, current and historic sensors (e.g., SeaWiFS,

MODIS, VIIRS, MERIS) have all included wavebands around 490 nm. This modelling study suggests that

future missions should maintain a compatible band in order to detect the earliest signatures of marine

ecosystem changes.
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Figure 8.8 The amount of open ocean area that has a statistically significant trend
over the course of the 21st century. (a) Chl-a, (b) “detritus” is the non-living particulate
organic pool, (c) “CDOM” is the coloured dissolved organic matter, (d) the remotely
sensed reflectance (Rrs) in 25 nm wavebands from 400 to 600 nm. Rrs results for higher
wavebands are not shown as the model underestimates the natural variability in those
wavebands. Figure modified from Dutkiewicz et al. (2019), Creative Commons Attribution
4.0 International License.

8.3.4 Caveats

A caveat of using biogeochemical models for studies of variability or climate change is that these

responses may depend strongly on the chosen parameterisations for biological processes (Taucher and

Oschlies 2011; Laufkötter et al. 2015). A corollary is that if a model has been tuned to reproduce the

response to contemporary ocean, future responses to climate change can be expected to mirror the

response to natural variability. For example, suppose we observe a decrease in primary production

and trace it to an increase in stratification. We might assume that in the future, stronger stratification

will consistently result in decreased primary production. However, additional processes that may not

be included in the model, such as changes to dust deposition, ecosystem adaptation or evolution,

may occur, resulting in differences in how primary production will change relative to what the model

projects. Provided these caveats are borne in mind when assessing biogeochemical model output, the

combination of satellite ocean colour data and models is a powerful tool for investigating natural

variability and climate change.

8.4 Models Informing Future Ocean Colour Products and Missions

Biogeochemical models provide a spatially explicit indication of the magnitude and rate of change at

interannual (see Case Studies in Chapter 7) and century (see Case Studies 8.3.1, 8.3.2 and 8.3.3) time-

scales. Analyses such as Henson et al. (2010) and Dutkiewicz et al. (2019) also provide spatially explicit
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estimates of the length of time series needed to separate the climate change-driven trends from natural

variability. Taken together, this information can be used to plan sites for future time series stations

to ensure they are located in regions of large or rapid response to interannual variability or climate

change. The model studies also indicate regions where climate change response in ecological/optical

properties is likely to be weak, or where the natural variability is so large that a trend is undetectable.

Clearly, if the goal is to study the phytoplankton response to climate change, these areas should be

avoided. Existing time series of observations can be analysed in the framework of these projections

to distinguish the climate change signal, provided the data record is long enough. However, formal

detection/attribution studies (e.g., Hasselmann 1993) are currently limited by the short length of ocean

colour time series. Modelling studies, as outlined here, provide impetus for the sustained observations

of ocean biology that are essential for detecting long-term trends. These priority sites will also facilitate

improved satellite validation in those regions and/or development of regional products.

In planning for future missions, one factor to be considered is the degree of acceptable instrument

drift. This is particularly important if the instruments are designed with the intention of capturing

trends. There is also considerable effort expended to determine the best spectral bands for satellite

sensors (Lee et al. 2007; Wolanin et al. 2016). However, estimates of trends and the choice of the bands

best suited to capturing long term trends have been hindered by lack of knowledge of how the ocean’s

optics will change. Climate change models can help in these regards. The study of Dutkiewicz et al.

(2019) (Case Study 8.3.3) found that the trends in remotely sensed reflectance at 475 nm reached over

1% per decade in some locations, i.e., sensor drift will need to be less than this to capture the predicted

trend.

Observing System Experiments (OSEs for existing observations, see Appendix 4 for definition) and

Observing System Simulation Experiments (OSSEs for future observations) are modelling studies that

can be used to help design observing systems. A typical OSSE consists of a state-of-the-art “nature run”

that realistically represents the phenomena of interest and is assumed to be the “true” ocean, and a

second non-assimilative, operational ocean model. The nature run output is sub-sampled using the

space/time sampling characteristics of the observing system under evaluation, and these “observations”

are then assimilated into the operational ocean model. The impact of the observing system is quantified

by comparing the reduction in errors from the operational model with respect to the nature run. OSSEs

have been in use longer, and are more advanced for the atmosphere, compared to the ocean.

OSEs and OSSEs can be used in a variety of ways: (1) to provide a quantitative assessment of the

potential impact of existing or future observing systems on the Earth system and its prediction, (2) to

evaluate new methodologies for the processing and assimilation of remotely sensed data, (3) to evaluate

tradeoffs in the design and configuration of observing systems (e.g., coverage, resolution, accuracy

and data redundancy), and (4) to determine the ability of existing observing systems to detect climatic

trends and to optimize the observing system for climate monitoring and other applications. OSSEs are

useful tools for determining the usefulness of a proposed observing system and how this system may

improve ocean analyses and forecasts. Such experiments are relatively cheap when compared to the

investment required to establish new observing systems.

Observing System Experiments have been successfully performed to evaluate ocean observing

systems such as satellite altimetry, satellite sea surface temperature, and Argo floats (e.g., Raicich and

Rampazzo 2003; Oke and Schiller 2007; Oke et al. 2015; Halliwell et al. 2015). The use of OSSEs to

evaluate the effects of existing or future observations on ocean biogeochemical models is even less

advanced. Some studies have used OSSEs to demonstrate the impact of an existing in situ dataset on

simulated conditions for ocean biogeochemistry (e.g., Lenton et al. 2006; Majkut et al. 2014; Oke et al.

2015; Basu et al. 2018) but to our knowledge no OSSEs have been performed to assess existing or future

satellite ocean colour missions.

Models can support the development of future satellite missions in various ways. For example,

models can be used to generate simulated datasets to test algorithms, atmospheric corrections and

instrument design (band location, width). Models can also be used for Observing System Simulation
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Experiments to assess the effects that existing or future observations may have. While this approach

has not been used widely, upcoming field and satellite missions should include a modelling component

from the early stage onwards.

Currently, measurements of ocean water constituents and phytoplankton community composition

are hindered because of the limited number of spectral bands available on contemporary satellite ocean

colour sensors. Future satellite missions such as the Plankton, Aerosols, Clouds and Ecosystem (PACE)

mission will provide hyperspectral water leaving radiances (350–800 nm at 5 nm resolution plus several

additional short-wave infrared bands). Moving from multispectral to hyperspectral resolution will allow

us to distinguish an increasing number of water constituents and to potentially identify the composition

and distributions of phytoplankton communities. This information will improve our understanding and

quantification of ocean biogeochemical cycling and ecosystem function in response to anthropogenic

and natural environmental variability and change. To support pre-launch mission development and

assess on-orbit capabilities, Gregg and Rousseaux (2017) conducted a model study to simulate upwelling

radiance between 250 and 800 nm at 1-nm resolution. There was significant correlation between the

simulated dataset and data from an existing satellite ocean colour platform (MODIS-Aqua, Figure 8.9).

Figure 8.9 Model normalized water-leaving radiances for 412 and 443 nm compared
to MODIS-Aqua radiances. Reproduced from Gregg and Rousseaux (2017), Creative
Commons CC-BY licence.

Gregg and Rousseaux (2017) found that the unassimilated radiances were within -0.074 mW cm−2

µm−1 sr−1 of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented

a bias of -10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global distributions

of MODIS radiances. The skill in the model to generate hyperspectral water leaving radiances suggests

that it can be used for mission design and analysis. While the authors caution the limitations of this

dataset, they also highlight a range of applications from band selection (location, width, number and
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center location), to testing the variability of various orbital tracks over a range of solar and satellite

angles, to the inclusion of optics, such as the spectral response function. These model applications can

be used as a part of trade-off studies to provide answers on the best possible instrument to tackle the

goals of the mission. The model can also be used for algorithm development effort and design of data

collection strategies.

8.5 Summary: Using Models to Inform Ocean Colour Science

In this chapter we have reviewed modelling studies that contribute to ocean colour science. Models are

imperfect simplified systems representing the real ocean. However, models are internally consistent

and outputs provide full representation in 4 dimensions (space and time). As such, models can be

more thoroughly interrogated than the real world (where there are limited in situ data, missing satellite

imagery, and observations sometimes have unquantifiable uncertainties). For example, we can sub-

sample the model in space and time to mimic typical satellite coverage, which allows exploration

of biases in ocean colour products (e.g., monthly means) and in phenological studies. Future model

projections provide estimates of climate change impacts on marine ecosystems, and suggest the spatial

patterns, magnitudes and rates of change that may occur. Future projections also provide a basis for

development of monitoring strategies for detection of climate change impacts on ocean ecosystems,

including where, when and for how long we should observe.

There is tremendous potential for models to aid even more directly in ocean colour studies. Recent

advances in models to include optics, and output such as reflectance, means that models can assist

in algorithm development and mission planning, e.g., choice of wavebands. There is also important

potential for use of biogeochemical/ecosystem models in OSSEs for future observational network

planning. Further, models could be used to extend ocean colour output to depth, to provide information

on the vertical distribution of Chl-a, information which is not currently observable from space.

8.6 Recommendations to Facilitate Modelling Applications

In this chapter we have highlighted how models can be an additional tool that can be of great use to the

ocean colour community. They provide a laboratory for trend and detection analyses, for quantifying

consequences of data gaps in space and time, and for testing and developing ocean colour algorithms.

Models can provide valuable context for mission development. The following steps can facilitate the

full potential of these applications:

v Communication and collaboration: Increased dialogue between the modelling and ocean colour

communities is recommended through workshops, dedicated collaborations, and inclusion of

models and modellers in ocean colour algorithm development, future satellite mission and

observational network design.

v Inclusion of optics into models: A continuation of model development is recommended that

includes optically important components and other output that relates directly to ocean colour.

v Use of models for algorithm development: The use of optical numerical model output is

recommended as a laboratory to explore hyperspectral algorithm methods and frameworks.

Acknowledgements: The authors thank Stefano Ciavatta, Anna Hickman and Galen McKinley for

reviewing, and providing valuable feedback to improve this Chapter.
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Summary and Recommendations
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NOTE: In this report, the word “model” refers to process-based three-dimensional biogeochemical/

ecosystem computer models at large regional or global scales.

Through this report, we hope to promote an open discussion between the ocean colour and the biogeo-

chemical/ecosystem/climate modelling communities. We have provided easily accessible information

about ocean colour (Chapter 2), biogeochemical and ecosystem modelling (Chapter 3), and the inherent

problems of linking the two (Chapter 4). We have demonstrated that ocean colour is uniquely important

for model evaluation and data assimilation (Chapter 5 and 6), that models can also be useful for the

ocean colour community by providing context beyond what is measured from space (Chapter 7), and

can be a laboratory or tool to help ocean colour science (Chapter 8). In essence, we have emphasized

the strength that can come from a more synergistic use of ocean colour and model products.

Models, in situ observations, and ocean colour products are different tools that can each be used to

understand ecological and biogeochemical processes in the ocean. However, each provides a different

“measurement” (see Chapter 4, Figure 4.2) inhibiting straightforward inter-comparison (Chapter 4).

Ocean colour scientists and modellers are distinct communities that have evolved separately, with

different priorities and terminology. However, a synthesis between ocean colour and models can

help us understand the ocean state and the underlying dynamics better. Integrated “results” are

therefore important, but will need a discussion between the different communities. Improved alignment

between model output and satellite products is likely to be an important feature of future work. New

developments in numerical models over the last few years to include components that directly link to

ocean colour products (e.g., remotely sensed reflectance) can help with stronger links between modelling

and ocean colour communities.

9.1 Summary

9.1.1 Using ocean colour products to evaluate models

There is a need for increased skill assessment in ecosystem/biogeochemical modelling studies. In-

creasing calls for ecosystem predictions to inform decision-making demands a closer focus on the

metrics most suitable — most “fit to purpose” — for the intended applications. Ocean colour, with

its combination of higher spatial and temporal coverage than in situ measurements, enables us to

match the space and time-scales of model predictions. The multi-decadal duration of the ocean colour

time series supports retrospective forecast experiments on seasonal to inter-annual time-scales. These

become more robust as each year of new data is added. However, limitations of the use of ocean colour

products come from:

v Regional (and temporal) biases;

145
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v Large, usually unquantified and uncharacterized, uncertainties;

v Complications with merged products and satellite sensor drifts.

Recommendations

We recommend that modellers endeavour to be better informed about using satellite data, as well as the

development of new satellite approaches. We stress the importance of learning more about the other

discipline, and taking the responsibility to understand the tools being used, and how and when to use

them. For instance, point-wise model comparison to ocean colour products is often not appropriate.

Moreover, it is important to choose the appropriate and “most similar” ocean colour product to compare

model output to, and understand the uncertainties (Chapter 4 and Section 9.2.2). However, the task of

learning will be greatly enhanced by better and more easily available documentation, as well as more

opportunities for cross-disciplinary education (e.g., through high level, but not community-specific

workshops, town halls, breakout sessions at large international meetings etc.). Agencies and groups

providing ocean colour products should examine and explore how additional information can be

presented alongside satellite products to help modellers make informed choices and interpretations.

This includes limitations from merging products and details of potential instrument drifts. On the other

hand, the needs of modellers should be borne in mind with new ocean colour product development, e.g.,

through “User requirement” questionnaires and reports. Though difficult to implement, there might be

an attempt to standardize the way ocean colour products are used in model evaluation methods. The

ocean colour community should also have larger appreciation of models, their needs and limitations.

9.1.2 Using models and ocean colour products together: data assimilation

Data assimilation provides a formal mechanism to synthesize observations and models into a single

product. Biogeochemical/ecosystem data assimilation is still a new field, with teams usually aligned

with groups undertaking physical data assimilation. As a result, new techniques are regularly becoming

available, but the work to adapt these techniques to biogeochemical phenomena is moving more slowly.

Recommendations

Given the relatively small number of marine biogeochemical data assimilation studies that have been

undertaken so far, it is recommended that groups continue to explore present approaches more fully,

and try new approaches. It is too early to recommend a single, or small number, of data assimilation

approaches. Nonetheless, it does appear that the assimilation of satellite-derived chlorophyll has

problems. It is likely that assimilation of less uncertain products, such as vertical attenuation at 490

nm, or remote-sensing reflectance, is a direction forward. These represent an effort to use the model

to produce an output that is closer to the raw observation of the satellite. It is also clear that, for

biogeochemical/ecosystem data assimilation to reach its full potential, a better understanding of the

uncertainty in ocean colour data products is required.

9.1.3 Using models and ocean colour products together: process studies

Formal data assimilation is not the only way to use models and ocean colour products together. Use

of data assimilated or “unconstrained” (i.e., those that do not use data assimilation) biogeochemical

models in combination with satellite-derived ocean colour data has provided a wealth of information

on the processes controlling observed phytoplankton variability, leading to a greater understanding

of how this variability arises. Using a model to help understand the phenomena (such as interannual

variability) observed in the ocean colour records is a promising direction (see e.g., studies of Resplandy

et al. 2009 and McKinley et al. 2018, Chapter 7). Provided a model captures the processes of interest and
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variability at the appropriate scales, it can also provide context not available from satellite observations,

such as nutrient distribution, biogeochemical and trophic fluxes (e.g., air-sea carbon exchange, net

ecosystem metabolism, zooplankton grazing), physical phenomena and depth dependent information

(e.g., horizontal transport, deep chlorophyll maximum and carbon export).

Recommendations

Model and ocean colour products should be chosen based on the question to be addressed, and more

discussion between the ocean colour community and modellers is advised. Points to keep in mind are

the spatial and temporal resolution required, as well as the level of the biogeochemical, ecological and

optical complexity to be included. Higher levels of complexity require increased computational expense,

and in most models, there is a trade-off between these different components. As with ocean colour

products, model documentation/articles should be clear on the limitation of the model and its outputs.

Studies that use model and satellite products as independent and complimentary types of information

will be improved by knowing the limitations and assumptions of each type of data. For applications

where model and satellite products are assumed to represent the same property, it is important for

models to keep developing to be closer to ocean colour products, so they compare more closely and at

better spatial and temporal resolutions, to ocean colour products.

9.1.4 Using models to inform ocean colour science

Models offer an additional tool to the ocean colour community, by providing information that cannot be

currently derived from satellite data, such as depth resolution and coverage, even in the presence of (for

instance) clouds. Models can provide a laboratory to aid in trend and detection analyses, quantifying

consequences of data gaps in space and time, testing and developing ocean colour algorithms, providing

depth and temporal context, and supporting mission development (Chapter 8).

Recommendations

This is a particularly promising, but as yet under-utilized use of models. Continued dialogue and

collaboration between modellers and ocean colour communities will be required to facilitate the full

potential of this model application. Collaborations could provide demonstrations of models’ usefulness

in, for instance, algorithm development. We recommend continued development of models that include

ocean optics and output that relate directly to ocean colour, as such models will be able to more

directly connect with the ocean colour community. The potential usefulness of such models, for

instance in algorithm development (see Chapter 8), should be borne in mind with new ocean colour

product development. There should be an emphasis on including models in ocean colour studies, and

particularly in mission and ocean monitoring design and planning. In particular, additional development

of biogeochemical/ecosystem models for Observing System Simulation Experiments (OSSEs) should

be a priority to help with observational network design. As yet OSSEs have not been used much in

biogeochemical or ecological contexts (though they have been used in physical oceanography). For

instance, OSSEs could be valuable in generating more robust global Chl-a products by indicating where

additional in situ measurements are needed to reduce biases.

9.2 Final Recommendations

9.2.1 Recommendations for continued and new developments of ocean colour

products

For the synergistic uses of models and ocean colour products, there needs to be a continued development

and maintenance of ocean colour products. We recommend the maintenance of projects that continue
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to improve algorithms (for instance including fixes for instrument drift) and that maintain a long-

term continuity in ocean colour products (e.g., OC-CCI and GlobColour). Including a modeller in

such projects would be helpful to provide a model context for the use of ocean colour products. We

suggest prioritizing improving global products (e.g., Chl-a, POC) that reduce regional biases, rather

than developing a diversity of unconstrained products (especially if these products are not consistent

between themselves e.g., pools of carbon, primary production, phytoplankton functional types, see

Chapter 4).

Rate measurements (e.g., primary production, grazing) from ocean colour are particularly useful

to the modelling community, but need significant improvement in their overall certainty and docu-

mentation. For example, there are now a plethora of primary production products, with little clarity

on which is most appropriate for a modeller to validate the output against. We recommend that the

ocean colour community provide more information on the uncertainties in these products (e.g., review

papers, inter-comparisons) especially when they are included as standard products. New geostationary

satellites offer a promising avenue for better, and more types of, rate measurements.

As with primary production, there are a confusing number of phytoplankton functional type

products. These would be more useful with greater information supplied by the ocean colour community.

Reviews and intercomparisons of phytoplankton functional types exist (IOCCG 2014; Kostadinov et al.

2017; Mouw et al. 2017), but new methods are continually being developed.

We recommend improving the ease of access of the ocean colour products through portals

e.g., Unidata’s Thematic Real-time Environmental Distributed Data Services (THREDDS, unidata.ucar.

edu/software/thredds/current/tds/), NASA Giovanni (giovanni.gsfc.nasa.gov/giovanni/), ESA CCI-OC (www.

oceancolour.org/portal/) and NOAA ERDDAP (upwell.pfeg.noaa.gov/erddap/index.html). We also suggest

greater transparency on what the products represent by providing more thorough documentation.

9.2.2 Recommendations for choosing ocean colour products to use in model stu-

dies

It is not necessarily obvious which ocean colour products to use in model/ocean colour synthesis

studies, data assimilation, or model evaluation. Some considerations for deciding which of several

ocean colour products to use are:

1. Which model output compares most directly to the ocean satellite colour product?

2. Are the uncertainties in the ocean colour product quantified, and if not, what are the levels of

“derivedness” and uncertainty of the product (see Chapter 4, Figure 4.1)?

3. Are there underlying biases in model or satellite products due to assumptions, optical properties

or biases in in situ data?

4. Which products are the priorities to “get right” (e.g., Chl-a, phytoplankton carbon or primary

production)? What is the tradeoff in uncertainty with other products?

5. What are the biases from missing satellite measurements (i.e., cloud cover)?

6. For long time periods, merged products (e.g., OC-CCI) will be needed, and the issues with

instrument drift must be taken into account.

It is important to consider separately the biases associated with a) the satellite measurement that

provides the spatial and temporal variability, and b) the (normally empirical) relationships that scale

the variability to the property of interest. It is also important to remember that mechanistically derived

ocean colour products often do not have less uncertainty than empirically derived products. For some

products (e.g., primary production) it is probably best to consider several products, in particular those

that have been determined to fit into different categories (e.g., see Carr et al. 2006). It is also very

unidata.ucar.edu/software/thredds/current/tds/
unidata.ucar.edu/software/thredds/current/tds/
giovanni.gsfc.nasa.gov/giovanni/
www.oceancolour.org/portal/
www.oceancolour.org/portal/
upwell.pfeg.noaa.gov/erddap/index.html
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important to keep in mind that such comparisons are model-to-model: an empirically-based satellite

model and a (typically more) mechanistic simulation model. Careful consideration should be given to

what information is actually being gained from the satellite product and how to interpret comparisons.

There is also value in exploring whether the model’s emergent properties match the empirically found

relationships in the ocean colour products (and the in situ data used for training). In fact, getting such

relationships, and in particular gradients, in the properties right, may be more important than getting

the absolute values of a certain field correct.

9.2.3 Recommendations for choosing model and model output for ocean colour/

process studies

Model and model output choice should be based on the type of question to be addressed, and the

spatial and temporal scale required. The model should adequately capture the processes and timescales

of interest (see Section 3.5). For instance, a coarse resolution climate model will not adequately capture

processes for a harmful bloom algal study in a specific small region. Model output and how to compare

to ocean colour (or other) products also requires careful consideration. For instance, model Chl-a may

not always be exactly comparable to satellite derived Chl-a (see Chapter 4). The level of complexity

of the ecosystem model should also be considered in the choice of model. For questions concerning

changes in phytoplankton communities, one will require a model that captures at least some level of

complexity of functional types or size classes. If the question is more optical in nature, then there

are a few models that have incorporated various elements of the optics and radiative transfer that

might be more appropriate (see Section 3.3). Since no model is perfect, we suggest that, if possible, it

would be good to use several models. In this way model structure uncertainty will at least be partially

addressed. We recommend contacting the model developers to discuss the use of model output, and

the appropriateness to the question of interest, as well as becoming relatively conversant with the

model to be used and the meaning of the output.

9.3 Bridging Across Scientific Communities

Many of the recommendations above emphasize the importance of facilitating more collaboration

between the modelling and ocean colour communities. It is our belief that synergistic use of model

and ocean colour products will provide a significant avenue for understanding our oceans and the life

within it. This report is part of an important dialogue that needs to happen between the communities

to facilitate these synergies. We suggest that such an open discussion should continue through

mechanisms such as:

1. Breakout sessions or working groups at both large ocean colour and modelling meetings — with

modellers presenting at the ocean colour meetings and ocean colour scientists at modelling

meetings. The goal is to make each community more aware of the other. At the modelling

meeting it would be useful to have talks based on which ocean colour products are available,

how they are produced, and discussion of their uncertainties. At the ocean colour science

meeting, talks could focus on the simple explanation of models, discussion of different types

of model, and how ocean colour products are used. In both cases, it would be important to

emphasise the synergistic use of models and ocean colour. Some targeted meetings include

the International Ocean Colour Science (IOCS) and the Ocean Optics meetings, both held every

second year, and the Advances in Marine Ecosystem Modelling Research (AMEMR) meetings

held every third year, as well as connecting with the GODAE Ocean View community meetings.

Some funding opportunities will likely need to be established to promote researchers attending

meetings that they may not normally consider.
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2. Facilitate more early-career cross-discipline collaboration through summer schools designed to

attract scientists from both communities.

3. Integrate ocean colour and models at the project level and include both communities in large

projects (e.g., EXPORTS, the Climate Modelling User Group (CMUG) in the ESA’s Climate Change

Initiative, www.esa-cmug-cci.org/, Ford and Barciela 2017).

4. In the process of developing ocean colour products there should be more evaluation across

disciplines: modellers should be brought into the discussion earlier. This will also help to

facilitate further collaborations.

5. Include modellers early on in future ocean colour satellite mission planning, and make more

effort to include Observing System Simulation Experiments (OSSEs) in such plans for both

satellite mission details, and in designing calibration and validation systems.

9.4 Looking Forward

9.4.1 Model development

Models continue to be developed to include more detail at the biogeochemical level, for example,

including additional nutrients (Tagliabue et al. 2018), and carbon pools (Polimene et al. 2018), and at

the ecological level, such as including more diversity and other trophic levels (Ward et al. 2012; Ward

and Follows 2016; Coles et al. 2017; Stock et al. 2017; Leles et al. 2018; Zakem et al. 2018). The needs of

the modelling community will change as ecosystem models become more complex (such as resolving

mixotrophs, bacteria, viruses, other carbon pools). Simply developing satellite algorithms for deriving

each of these is not recommended. Consideration is needed of users’ requirements, in situ and satellite

observational constraints, and of the assumptions, errors and uncertainties of different approaches, to

assess the most robust comparisons between satellite products and model output. On the other hand,

model development could be directed towards addressing novel ocean colour products. For example,

as ocean colour products develop, it may emerge that (for instance) size distribution of particles can

be more robustly determined than function. If that is the case, more emphasis on simulating size

distribution in models may be a worthwhile direction.

There is some debate as to whether models should produce output that is more similar to what

satellites measure (e.g., reflectance) or whether there should be satellite-derived products that are

more similar to what models require (e.g., phytoplankton carbon). This discussion should take care to

consider discrepancies between the measurements and the model output (see Chapter 4). Comparing the

most similar quantities has distinct advantages. However, there are computational costs and additional

complexities associated with models providing direct reflectance and optical output. Additionally, users

of models (e.g., ecosystem managers) are often more familiar with quantities such as Chl-a rather than

reflectance. We anticipate that different models and different uses will dictate how closely models

will link to ocean colour products in the future. However, the development of models with greater

connection to optics and ocean colour is likely to spur more synergy between the two communities, and

should be strongly encouraged.

Improved numerical models and satellite products depend on in situ data. Continued field sampling

and development of new techniques is clearly a requirement for both communities. Dialogue and

interaction between observationalists, remote sensing scientists, and modellers is clearly desirable to

maximise the opportunities for, and use of, field observations for modelling and remote sensing, and

the synergy between all three (see for instance schematic Figure 4.2 in Chapter 4).

www.esa-cmug-cci.org/
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9.4.2 New ocean colour missions

With the anticipated increase of spectral, spatial and possibly temporal resolution, an expansion and

refinement of satellite products is anticipated. Geostationary satellites allowing for multiple images of

the same location, multiple times per day, will be important for capturing the short-term dynamics found

in coastal and inland environments, and for improving estimates of rate processes. Improved spectral

resolution (e.g., that anticipated on the PACE mission) will allow for improved/expanded phytoplankton

discrimination through functional types and pigment discrimination, as well as lower uncertainty in

colored dissolved organic matter absorption and its spectral slope. Improved discrimination of all other

IOPs and products further downstream will be possible with expanded spectral observations at shorter

wavelengths. The higher spectral resolution will expand carbon pool products and, potentially, carbon

export, and improve parameters related to phytoplankton physiology. Increased spectral resolution is

also anticipated to improve uncertainty of all of these products. Greater focus on product continuity

over algorithm continuity will aid in the improvement. With greater sensing capability, there will be the

possibility of more ocean colour products that are independent of each other. Lidar observations will

allow depth resolution, that will be particularly important for modellers. Including OSSEs in the future

missions is highly encouraged, as is the continual recruitment of modellers on science advisory teams.
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Appendix 1: Mathematical Notation

Symbol Description Typical Units

θ0 Solar zenith angle deg

a(λ) Spectral total absorption coefficient m−1

aCDOM (λ) Spectral coloured dissolved organic matter absorption coefficient m−1

adg(λ) Spectral absorption due to coloured dissolved and detrital matter m−1

aNAP(λ) Spectral non-algal particle absorption coefficient m−1

ap(λ) Particulate absorption coefficient m−1

aph(λ) Spectral phytoplankton absorption coefficient m−1

aw(λ) Spectral water absorption coefficient m−1

bb(λ) Spectral total backscattering coefficient m−1

bNAP(λ) Spectral particulate backscattering coefficient due to non-algal particles m−1

bb_ph(λ) Spectral particulate backscattering coefficient due to phytoplankton m−1

bbp(λ) Spectral particulate backscattering coefficient m−1

bbw(λ) Spectral water backscattering coefficient m−1

[Chl] Chlorophyll-a concentration mg m−3 or µg l−1

Ed(λ) Spectral downwelling plane irradiance µW cm−2 nm−1

F0(λ) Spectral extraterrestrial solar irradiance mW cm−2 µm−1

Kd(λ) Diffuse attenuation coefficient m−1

La(λ) Spectral radiance due to scattering by aerosols µW cm−2 nm−1 sr−1

Lg(λ) Spectral radiance resulting from sun glint µW cm−2 nm−1 sr−1

Lr (λ) Spectral radiance due to (Rayleigh) scattering by air molecules µW cm−2 nm−1 sr−1

Lra(λ) Spectral radiance from multiple scattering interactions between molecu-

les and aerosols

µW cm−2 nm−1 sr−1

Lt(λ) Spectral top of atmosphere radiance measured by the satellite sensor µW cm−2 nm−1 sr−1

Lw Spectral upwelling water-leaving radiance µW cm−2 nm−1 sr−1

Lwc(λ) Spectral radiance resulting from white caps µW cm−2 nm−1 sr−1

Rrs(λ) Spectral remote-sensing reflectance sr−1

t(λ) Spectral atmospheric diffuse transmittance from the ocean surface to a

satellite sensor

unitless

T(λ) Spectral direct transmittance from the surface to the sensor unitless

t0(λ) Spectral atmospheric diffuse transmittance from the sun to the ocean

surface

unitless

Zeu or Z1% Euphotic zone depth m
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Appendix 2: Ocean Colour Acronyms and Sensors

Ocean Colour Acronyms

AOPs Apparent Optical Property

CDOM Chromophoric Dissolved Organic Matter

CI Colour Index

DIC Dissolved Inorganic Carbon

DOC Dissolved Organic Carbon

DOM Dissolved Organic Matter

ENSO El Niño-Southern Oscillation

EO Earth Observation

ESA European Space Agency

ESRID Empirical Satellite Radiance-In Situ Data

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites

IOD Indian Ocean Dipole

IOPs Inherent Optical Properties

IQR Interquartile Range

LME Large Marine Ecosystem

LUT Look-Up-Tables

MAD Median Absolute Deviation

MERRA Modern-Era Retrospective Analysis for Research and Applications

MLD Mixed Layer Depth

NAO North Atlantic Oscillation

NAP Non-algal Particles

NIR Near Infra-Red

NPP Net Primary Production

NSE Nash-Sutcliffe Model Efficiency

OASIM Ocean-Atmosphere Spectral Irradiance Model

OSC Optically Significant Constituents

PAR Photosynthetically Available Radiation

PIC Particulate Inorganic Carbon

PFT Plankton Functional Type

PIC Particulate Inorganic Carbon

POC Particulate Organic Carbon

PSC Plankton Size Class

PSD Particle Size Distribution

PTC Plankton Taxonomic Composition

QAA Quasi-Analytical Algorithm
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RMS Root-Mean-Square

RMSD Root Mean Squared Difference

SNAP Sentinel Application Platform

SST Sea Surface Temperature

TOA Top of Atmosphere

TSM Concentration of total suspended material (mg l−1)

VGPM Vertically Generalized Production Model

Ocean Colour Sensors

CZCS Coastal Zone Color Scanner

EnMAP Environmental Monitoring and Analysis Program

GEO-CAPE GEOstationary Coastal and Air Pollution Events

GOCI Geostationary Ocean Color Imager

HICO Hyperspectral Imager for the Coastal Ocean

HyspIRI Hyperspectral Infrared Imager

MODIS Moderate Resolution Imaging Spectrometer

MERIS Medium Resolution Imaging Spectroradiometer

MSI Multispectral Instrument (Sentinel-2)

OCM Ocean Colour Monitor

OLCI Ocean and Land Colour Instrument

OLI Operational Land Imager (Landsat-8)

PACE Plankton, Aerosol, Cloud, ocean Ecosystem

SeaWiFS Sea-viewing Wide-Field-of-view Sensor

SGLI Second Generation Global Imager

VIIRS Visible Infrared Imaging Radiometer Suite



Appendix 3: Satellite Imagery Terminology

Term/Acronym Definition

Absorption Any process whereby radiant energy is converted to non-radiant energy and results

in the disappearance of photons.

Apparent optical property

(AOP)

Any optical quantity that depends on the properties of the water and on the ambient

light field.

Algorithm A sequence of mathematical steps to convert radiometric observations to geophysical

parameters.

Atmospheric correction The process of removing all other radiances beyond the water-leaving radiance from

the total radiance measured at the top of the atmosphere.

Attenuation The loss of radiant energy due to absorption or scattering.

Backscattering Scattering through angles greater than 90 degrees relative to the incident direction.

Band ratio The division of radiances measured at two difference wavelength bands often empi-

rically related to a geophysical parameter.

Climatology Averaging satellite pixel values over a specified period of time.

Coloured dissolved organic

matter (CDOM)

High-molecular-weight organic compounds (humic and fulvic acids) formed from

the decomposition of plant tissue; they strongly absorb light at the blue end of the

spectrum and can give water a yellowish colour at high concentrations. Also called

chromophoric dissolved organic matter, yellow matter, gilvin, or Gelbstoff.

Conus The area of the Earth able to be imaged by a satellite in geostationary orbit.

Empirical Relationships derived from in situ observations.

Euphotic depth The maximum depth in the water column to which significant phytoplankton photo-

synthesis can take place.

Euphotic zone The upper region of a water body in which significant phytoplankton photosynthesis

can take place; often taken to be the layer down to which photosynthetically available

radiation at noon falls to 1% its value just below the sea surface.

Fluorescence A scattering process in which a photon is absorbed by a molecule and shortly

thereafter another photon of greater wavelength is emitted.

Fluorescence line height Fluorescence magnitude determined from three bands centered at 667, 678 and 748

nm. The magnitude of the 678 nm band is used to determine fluorescence and the

667 and 748 nm bands are used for the removal of the background contribution.

Geophysical parameter Fundamental biological or physical measurement able to be made with remote

sensing techniques that can be mapped on the Earth.

Imagery A representation of measured energy emitted from a mapped location on Earth that

may be converted to a geophysical parameter. Numerous pixels mapped together.

Inherent optical property

(IOP)

Any optical quantity that depends only on the properties of the water and is inde-

pendent of the ambient light field.

Irradiance The radiant power per unit area, per unit wavelength, interval.

Nadir A point directly below an observation point in the downward vertical direction.

Non-algal particle All particles except living phytoplankton cells.
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Normalized water leaving ra-

diance

The radiance that could be measured by a nadir-viewing instrument, if the Sun were

at the zenith, in the absence of any atmospheric loss, and when the Earth is at its

mean distance from the Sun.

Ocean colour A generic term referring to the spectral dependence of the radiance leaving a water

body.

Optical depth The optical distance in the vertically downward direction. The first optical depth

is regarded as the depth for which light exiting the ocean is able to be measured

remotely (1/attention coefficient).

Volume scattering function Describes both the angular pattern of the light scattered from an incident direction

and the magnitude (strength) of the scattering.

Photic depth The depth at which an ocean colour radiometer is able to sense radiant energy.

Photosynthetically available

radiation (PAR)

The integral over visible wavelengths (400–700 nm) of the number of photons

available for photosynthesis.

Phytoplankton functional

type

An aggregation of phytoplankton that share similar biogeochemical or ecological

roles.

Pixel The smallest non-divisible element of a two-dimensional digital image grid (an

abbreviation for picture element).

Radiance The radiant power in a beam per unit solid angle, per unit area perpendicular to the

beam, per unit wavelength interval.

Radiative transfer Conservation of energy in terms of the radiance that describes the rate of change

with distance of the radiance in a collimated beam with a specified location, direction,

and wavelength; the equation accounts for all losses (e.g., due to absorption and

scattering out of the beam) and gains (e.g., by emission or scattering into the beam).

Radiometer An instrument used to measure radiant energy.

Rayleigh scattering The scattering (identical in the forward and backward directions) of light off of

molecules that are smaller than the wavelength of light; inversely proportional to

the fourth power of wavelength.

Remote sensing reflectance The ratio of the “water-leaving” radiance in air to the downward plane irradiance

incident onto the sea surface, with both measured just above the sea surface.

Satellite (ocean colour) pro-

duct

The output of an algorithm applied to satellite imagery.

Scattering Redirection of photons from the incident path.

Semi-analytical An algorithm approach that accounts for theoretical understanding of optical relati-

onships and reduces the reliance on empirical coefficients as much as possible.

Solar zenith angle The angle between zenith (an imaginary point directly above a particular location)

and the sun’s location.

Spatial resolution Ground size of an image pixel.

Spectral resolution Number, spacing, and width of the different wavelength bands recorded.

Stray light Light that is detected by an optical system and that belongs to a wavelength other

than the one initially selected.

Temporal resolution Frequency of flyovers by the sensor.

Top of atmosphere (TOA) ra-

diance

Solar radiance scattered by atmospheric molecules and aerosols, Sun and sky radi-

ance reflected by the sea surface, and from water-leaving radiance.

Validation Checking satellite algorithm output against in situ measured reference values.

Zenith An imaginary point directly above a particular location.

A more comprehensive list of optical and ocean colour remote sensing terms can be found at: http://www.

oceanopticsbook.info/view/references/brief_definitions.

http://www.oceanopticsbook.info/view/references/brief_definitions
http://www.oceanopticsbook.info/view/references/brief_definitions


Appendix 4: Model Terminology and Acronyms

Term/Acronym Definition

1D/3D 1-Dimensional model usually includes a single water column.

3-Dimensional model includes many water columns that have advection/diffusion

between them.

Adjoint In linear algebra, the transpose (interchange of rows and columns), of a linear

map between two fields. An adjoint model is a component of a variational data

assimilation system.

Climate Model A coupled atmosphere/terrestrial/ocean model developed to study climate from

sub-seasonal to centennial (sometimes even millennial) timescales.

Climatology Modeller: Multiyear mean of a state variable.

Ocean Colour Community: Composite of all available ocean colour data over a certain

time period (e.g., months, year, multi-year).

CMIP Coupled Model Intercomparison Project.

Data Assimilation Formal integration of observations into model simulations.

Detrital Matter Dead organisms at a number of stages of breakdown, sometimes referred to as POC

in models.

Ensemble Kalman Filter A sequential data assimilation algorithm that estimates the uncertainty in the model

from the statistical distribution of an ensemble of model simulations.

Earth System Model (ESM) Integrated model of the earth system components, including cryosphere, ocean,

atmosphere, land, and may include ocean biogeochemistry. Generally, for centennial

and global scale simulations.

Forcing Fields Fields (e.g., solar radiation, wind, iron dust) that are used to drive a model (see

Chapter 3).

Future projections Model derived estimates of future climate (usually century timescales) under alterna-

tive scenarios.

Future predictions Model derived estimate of climate in the nearer term (e.g., seasonal to decadal).

Grid Model is spatially broken down in a collection of boxes, the equations (see Box 3.1)

are applied to each box.

Hindcast Model (retro-

spective simulation)

Model developed to study past ocean conditions (often over last several decades);

typically forced by atmospheric re-analyses.

Initial Conditions Initial values of the model state variables (e.g., nitrate concentration, see Chapter

3.2.3).

Inverse Model A model that uses the outcome of a suite of processes to calculate process rates. (In

marine optics this specifically means the calculation of IOPs from observed AOPs).

IPCC Intergovernmental Panel on Climate Change.

Nowcast/Forecast Nowcast is estimation of the present state of the marine ecosystem.

Forecast is prediction of the future state of the marine ecosystem.

NPZD Nutrient-Phytoplankton-Zooplankton-Detritus (a typical ecosystem model configura-

tion, see Section 3.1 and Fig. 3.2).
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Online/offline Online: When physical and biogeochemical equations are solved in the same mo-

del simulation, and therefore can (but not necessarily) include feedbacks between

biogeochemistry and physics.

Offline: When previous estimated physical fields are used to drive a biogeochemical

model (see Section 3.4).

Operational model Provides routinely nowcast and forecast (normally for a short term, from a few days

to a few months) of ocean conditions, possibly including biogeochemical properties,

delivered on a regular basis to inform time critical decisions (see Section 3.4).

OSE Observing system simulations: Simulation to evaluate the effect of adding or remo-

ving individual components of an existing observing system.

OSSE Observing System Simulation Experiment: Simulation where model generated data

are assimilated into a model (often the same model) to assess and compare the

performance of alterative (usually future) monitoring networks (see Section 8.4).

Phytoplankton Functional

Type (PFT)

Aggregation of phytoplankton that share similar biogeochemical or ecological roles

(e.g., silica users, nitrogen fixers etc., see Section 3.1).

RCP Representative Concentration Pathways: Emissions Scenarios used by the IPCC.

Spinup Initial part of simulation that allows physical, biogeochemical and ecosystem to

come into consistency with each other (see Section 3.2.3).

State estimate Estimate of ocean state often derived from synthesizing models and multiple obser-

vation.

State variable (prognostic va-

riables)

Model quantities that change over time (e.g., temperature, nutrient pool, phytoplank-

ton biomass, see Section 3.2.1).

Re-analysis A long term model simulation that uses consistent data assimilation algorithms

(possibly with multiple data sets), forcing, and boundary conditions.

Resolution – spatial Distance between centers of model grid cells. A coarse resolution model is typically

about 100 km between grid centers laterally and 10 m vertically (see Section 3.2.2).

Tendency term Change in state variable with time — used for the model integration (see Section

3.2.1, Box 3.1).

Timestep Time between changes in model state variables. Note: Resolution of save model

output will likely be at a longer time average than the timestep (see Section 3.2.3).
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