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Objectives of shallow water remote sensing 

• Bottom mapping 

      - corals, seagrasses, macroalgae 

• Water optical properties 

• Bathymetry (depth) 

 

Applications 

• Spatial ecology (science) 

• Resource mapping, MPA design, 
impact assessments. 

• Assessing ecosystem services 

      - coastal protection and stabilisation 

      - fisheries, local subsistence 

      - blue carbon 

      - tourism 



Applications on coral reefs and similar environments 

Hedley et al. 2018, RSE, 216, 598–614 

 Need higher spatial resolution than typical ocean colour satellites 



High Spatial Resolution Imagery 

• Many past and present (archive imagery still available) 

• Pleiades, DigitalGlobe (WorldView-2, 3, 4, GeoEye, IKONOS), Planet (various) 

• Typically 4 bands, R, G, B and NIR, but WorldView has 8 bands 

Pixel size < 5 m 

Pixel size 10 - 30 m 

• SPOT (various) 

• Landsat 8 (30 m) 

• Sentinel 2 (10 m in four bands) 

Notes:  

• Radiometric calibration on commercial satellites is often not as good as on space 
agency satellites.  

• For these sensors bands are spectrally wide, not narrow as with ocean colour satellites 
        - not always appropriate to just use centre wavelength  
        - may need to integrate over wavelength 



WorldView-2 image of Yucatan coast, Mexico (15 Feb 2008)   
(pixels < 2 m, 8 bands, 5 usable) 

(c) DigitalGlobe 



Sentinel-2 image of Yucatan coast, Mexico (17 April 2018)   
(pixels 10 m, 5 usable bands) 

ESA / Copernicus 



Sentinel 2 -  useful bands are at different resolutions  

 Interesting potential issues / artefacts 



Methods for bottom mapping and/or bathymetry 
 
Many and very diverse  overlap with terrestrial methods 
 
Empirical, image based, requires training from in-situ data 

• Classification, depth invariant indices 
• Bathymetry by regression methods 
 
Model inversion 

• ‘Physics based’ radiative transfer models 
 
Object orientated 

• Classification combined with rules which can take data from various 
remote sensing methods 

• e.g. depth, wave energy (wind) 



Stumpf et al. 2003 

Lyzenga 1978 a0, a1, a2 from regression 

m0, m1, from regression 

Empirical image based methods (e.g. bathymetry) 

• Usually assume exponential attenuation of light with depth (i.e. constant Kd) 

• Requires training of points from imagery (deep water, known depths etc.) 

• Similar methods for water column correction, change detection, etc. 



Benthic classification example, Lizard Island, GBR 

Depth invarient indices 
 



An index that should be the same for bottom types of the same reflectance at all depths 

Example from bands 2 and 3 of a Sentinel 2 image of Lizard Island  

sandy bottom not sand 

noise 

Bottom classification - depth invariant indices 

only need ratio of attenuation coefficients 
can extract from image using sand at different depths 



Image segmentation (object orientated methods) 

Can input object metrics into classifier, as well as image data: 
• size 
• shape 
• orientation, etc. 



Object-orientated / machine learning techniques 

bottom 
reflectance 

bathymetry 

original image 
 

environmental data 
(e.g. wave energy, wind) 

habitat map 

segmented 
object metrics 

[See papers by Chris Roelfsema et al.] 



Sun-glint : different types of glint dependent on spatial scale 

High spatial resolution, pixels < 10 m 
 individual waves 

Large images e.g. MERIS, pixels > 100 m 
 function of solar-view geometry and sea state 

Eg. IKONOS, QuickBird, WorldView 2, Sentinel 2 



Cox & Munk (1956) Slopes of the Sea Surface Deduced 
from Photographs of Sun Glitter. Scripps Inst. 
Oceanogr. Bull. 6(9): 401–88 

Glint prediction and correction - large scale  

Cox and Munk equations 

• 1950s - based on photographs of surface glitter 

• Many subsequent studies: all agree 

Mean square slope = 0.003 + 0.00512 U10 

Sun-glint depends only on: 

1) sun position 

2) sensor position 

3) wind speed (and to a small extent wind direction) 

Result is statistical model of the sea surface: 

• Statistical description at large scales and open ocean  large pixels (100s m) 

• No use for high resolution imagery and shallow areas 

wind speed ms-1 



• Can correct using a Near-Infra Red (NIR) band to assess the glint 

• Assumption 1 - Glint has a uniform spectral signature  

• Assumption 2 - NIR from below the water surface is zero 

Glint correction or “deglint” of high spatial resolution images 

• Start with a sample of pixels over deep water, where it is 
assumed there is no sub-surface variation in reflectance 

WorldView-2 Image 
(c) DigitalGlobe 
 
pixels 2 m  



Hedley et al. (2005) International Journal of Remote Sensing 26: 2107-2112 
and other similar methods - see Kay et al. (2009) Remote Sensing 1: 697-730 

Glint correction or “deglint” of high spatial resolution images 

NIR reflectance 
(or SWIR) Sample over deep water 



Glint correction or “deglint” of high spatial resolution images 

Sample over deep water 

• Before or after atmospheric correction?  using minimum NIR reflectance means it 
probably doesn’t matter if you assume uniform atmospheric contribution 



Before deglint  



After deglint  



Deglint example (Landsat 8) 



Deglint example (Landsat 8) 



Glint corrected images are quite noisy 

1) Signal to noise issue - take a big signal away to leave 
a small signal, but noise was on the big signal. 

2) Also, combining noise from two bands - visible band 
and NIR band. 

3) Process is not perfect - band alignment, etc. 

   Spatial filtering (smoothing) may be useful 

Before After 

Pixel-to-pixel noise 



Over-correction when NIR below surface is not zero  

• Assumption of zero NIR from below the water is not valid in shallow water 

• Result is “dark halo” effect around land features 

• Causes problems for subsequently applied algorithms  

Before After 



Specific challenges with Sentinel-2 

Pixel size means hard to get a “no glint” reference 

The darkest pixels probably still contain some glint 
So glint correction is incomplete and there remains a glint contribution 



Specific challenges with Sentinel-2 

PIxel size means hard to get a “no glint” reference 

Force correction to assume zero NIR reflectance rather than empirical minimum 

But that assumes NIR really should be zero  

  - i.e. atmospheric correction has removed any aerosol contribution in the NIR 
  - but atmospheric corrections often use NIR to estimate aerosol! 



s = 0  v = 0  

Atmospheric reflectance, Marine 99% RH aerosol model (libRadtran) 

• In this plot sun and view are directly overhead (zenith and nadir) 

• Indirect surface reflectance but no direct glint included 

• Top two lines include aerosols, bottom line Rayleigh only 

SWIR doesn’t help much - there still is an aerosol and glint contribution 

 Very difficult to disentangle glint from aerosol contribution 
in Sentinel-2 imagery - without additional information 

aerosol 
contribution in 
NIR and SWIR  



Use ancillary data 

• Glint correction for Sentinel-2 

• Uses SWIR to characterise glint 

• Wavelength dependence based 
on refractive index of water 

• Relies on a-priori separation of 
atmospheric reflectance from 
surface glint 

Need this data for atmospheric 
correction, e.g. from AERONET 
station. 

Effectively this adds information 
to reduce uncertainty between 
aerosol and glint 

Harmel T. et al. (2018) Remote Sensing of Environment, 204: 308-321 doi: 10.1016/j.rse.2017.10.022 



Inversion methods for shallow water applications 

• Depth 

• Water column constituents 

• Bottom type (sand, coral, etc.) 

Go from image Rrs(λ) to model inputs  =  model inversion 



Shallow water models for Rrs 

1) HydroLight-EcoLight 

Build look-up tables for different depths, water 
column optical properties and bottom reflectances 
 
Mobley et al. (2005) Applied Optics 44, 3576-3592 

 

2) Semi-analytical models 

Develop a simpler conceptual model and estimate coefficients or 
parameters from a physically exact model such as HydroLight 
 
Results in a forward model that is faster to compute 
 
Lee et al. (1998) Applied Optics 37, 6329-6338 

 



Spectral Matching (LUT) 

Depth,    Phytoplankton,    CDOM, … etc 

1 m             0.1 mg m-3 

2 m             0.1 mg m-3 

3 m             0.1 mg m-3 

4 m             0.1 mg m-3 

 

1 m             0.2 mg m-3 

2 m             0.2 mg m-3 

3 m             0.2 mg m-3 

4 m             0.2 mg m-3 

 

1 m             0.4 mg m-3 

2 m             0.4 mg m-3 

3 m             0.4 mg m-3 

4 m             0.4 mg m-3 

 

MODEL 

Estimate: 

Depth = 2 m              

Phytopankton = 0.2 mg m-3 

... etc 

Image pixel 

• No in-situ calibration data required. 



Lee et al's semianalytical model for  
shallow water reflectance 

H = depth in metres 
P = phytoplankton concentration (proxy) 
G = dissolved organic matter concentration (proxy) 
X = backscatter 
Y = (spectral slope of backscatter) is fixed at 1 

remote 
sensing 
reflectance 

bottom reflectance 

Also incorporates sun 
and view zenith angles 

Various factors derived 
from HydroLight 



• Use pairs selected from a small spectral library 

• Then mixture is just one parameter, m, ranging 0 to 1 

• Another parameter, E, specifies which particular pair are used. 
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Sand Coral 

Bottom reflectance can be treated as a mix of types 

m  (1 - m)  



Inversion of the model 

This is a forward model it describes what can occur in every 
individual pixel based on what is in the pixel 

Six values describe every pixel 

But we start with this 
and wish to deduce this 

Successive approximation technique such as the Levenberg-Marquardt 
algorithm, keeps adjusting inputs to find the best match for the pixel rrs()  



Fundamental uncertainty 

 similar spectra from differing parameters 

Uncertainty Propagation 



Sources of "noise"  uncertainty 

model 

"noise" 

sensor 

atmosphere 

spectrally 

correlated 

Hyperspectral deep water pixels 



image noise 
 

(multivariate 

normal) 

subtract random 

noise term  20 times 

20 reflectance spectra 

invert to retrieve 

parameter estimations 

discard upper and  

lower tails to give 

90% conf. intervals 

Propagation through inversion Image pixel 

use mean for  

actual result 

• better than direct result 

• spatially smoother 



Bathymetry estimation with uncertainty 

CASI 

Quickbird 

= 90% confidence interval 

0 m 300 m 100 m 200 m 



Sentinel-2 bathymetry of Lizard Island (GBR) by model inversion 

• Uses bands 1, 2, 3, 4 and 5 

• ALUT inversion of Lee et al. equations 

• In-situ echo-sound data for comparison 



Direct result (single inversion) Mean of 20 noise perturbed results 

Single inversion vs. mean of noise perturbed inversions 

• Marginally better statistics, r-squared, mean absolute residual, etc. 

• Cosmetically better (spatially smoother) 



Coral reef 

Fish pens 

Bolinao, Philippines (QuickBird image) 



Light absorption due to CDOM 
Total absorption 



Light absorption due to CDOM 
Total absorption 



Bottom reflectance 

• Either directly from the inversion or use the bathymetry estimate and 
water optical properties to make water column correction 



Bottom reflectance 

• Either directly from the inversion or use the bathymetry estimate and 
water optical properties to make water column correction 



Canopy modelling, seagrass Thalassia testudinium 

Low LAI  High LAI  

• 3-dimensional geometric optics model 

• Hedley & Enriquez, L&O 2010 

• Hedley, Russell, Randolph & Dierssen, RSE 2016 

 

 Reflectance above the canopy as a function of 

leaf area index (LAI) 



Leaf and sand optical properties 

Reflectance and transmittance 



Canopy structure  

- flexible strips in a simple 

  wave motion model 



Canopy structure  

- flexible strips in a simple 

  wave motion model 



Model outputs (RGB from 17 bands) 

LAI 4.5, depth 0.5 m  LAI 1.0, depth 1.5 m  



LAI 4.5, depth 0.5 m  LAI 1.0, depth 1.5 m  

Model outputs (RGB from 17 bands) 



e is a parameter that ranges from 0 to 1 
and encompasses the variation for a 
specific LAI 

Model many canopies 
with a multi-factor design 

Reduce results to a simpler model 
by regression & function fitting 



remote 
sensing 
reflectance 

bottom reflectance 

Other benthic metrics - seagrass density (leaf area index, LAI) 

Substitute bottom reflectance for a model 
based on LAI and variation term e 

Gives a model that can be 
inverted directly for LAI 



Seagrass LAI mapping, Yucatán, Mexico  

Hedley et al. 2021, Frontiers in Marine Science, 8, 733169 doi:10.3389/fmars.2021.733169 

RGB Image (Sentinel-2)  LAI in lagoon area  



Difficulty in geo-locating ground truth data 

Hard to survey at scales relevant to remote sensing 

Hedley et al. 2021, Frontiers in Marine Science, 8, 733169 doi:10.3389/fmars.2021.733169 



ICESat-2 

Image: NASA 

• Space-bourne LIDAR 

• Launched 15 Sept. 2018 

• Global acquisition 

• Data freely available on on the web 

• Possible to extract bathymetry 



Coveney et al. 2021, Remote Sensing, 13, 4352; doi:10.3390/rs13214352 

Typical ICESat-2 data 

water surface 

sea bed 

• Under favourable conditions depths to 20 m (or more) can be extracted 

• Difficult to automate extraction 

• Correct for refractive index, apparent depth is 1.33  depth 



• Scale is more appropriate to remote 

sensing than echo sound data. 

• Use data for calibration or validation? 

Comparison of model inversion 

bathymetry vs. ICESat-2 data for the 

entire Yucatan coast (400 km) 

Hedley et al. 2021, Frontiers in Marine Science, 8, 733169 
doi:10.3389/fmars.2021.733169 


