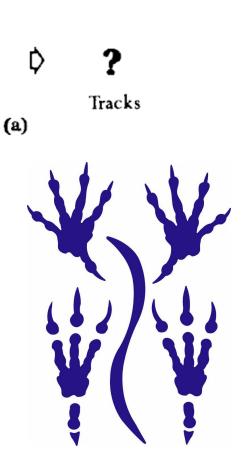
Fundamental of Ocean Color Inversion


Collin Roesler 24 July 2022

https://visibleearth.nasa.gov/images/54617/colordifference-between-mediterranean-and-black-seas/54618

Consider the light field in the ocean

- Forward approach
- Inverse approach



Direct or Forward Model

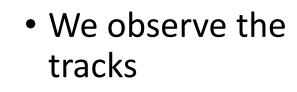
Bohren and Huffman 1983

- We know there is a dragon
- Thus, we can predict the tracks it will leave

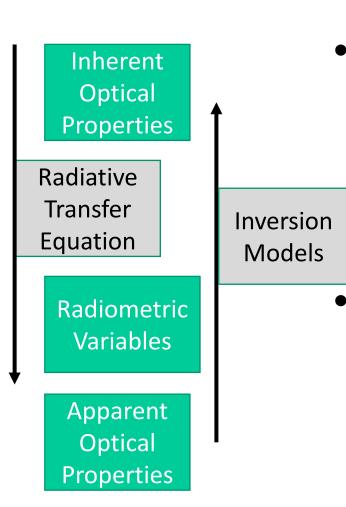
Inverse Model

Dragon

Tracks


Bohren and Huffman 1983

(b)


This dragon

 From that observation, we can determine what kind of dragon

Or this one, it makes a difference

Optically

- Forward model
 - We know (have measured) the absorption and scattering properties of the ocean (dragon)
 - Can predict the oceanic light field (imprint on light field)
 - Radiative Transfer Equation
- Inverse model
 - We observe (or measure) the light field in the ocean (or apparent properties derived from it)
 - Can predict the absorption and scattering properties that gave rise to it
 - Various inversion models

Inverse Model

- Approximations to the Radiative Transfer Equation to simplify relationship between AOPs (e.g., reflectance) and IOPs (e.g., absorption and backscattering)
- Model types
 - Empirical (e.g., OC chl algorithms)
 - Neural network (e.g., series of trained algorithms)
 - Semi-analytic (e.g., analytic solutions with varying degrees of empirical inputs)

Reports of the International Ocean-Colour Coordinating Group

An Affiliated Program of the Scientific Committee on Oceanic Research (SCOR) An Associate Member of the Committee on Earth Observation Satellites (CEOS)

IOCCG Report Number 5, 2006

Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications

Editor:

ZhongPing Lee (Naval Research Laboratory, Stennis Space Center, USA)

Report of an IOCCG working group on ocean-colour algorithms, chaired by ZhongPing Lee and based on contributions from (in alphabetical order):

Robert Arnone, Marcel Babin, Andrew H. Barnard, Emmanuel Boss, Jennifer P. Cannizzaro, Kendall L. Carder, F. Robert Chen, Emmanuel Devred, Roland Doerffer, KePing Du, Frank Hoge, Oleg V. Kopelevich, ZhongPing Lee, Hubert Loisel, Paul E. Lyon, Stéphane Maritorena, Trevor Platt, Antoine Poteau, Collin Roesler, Shubha Sathyendranath, Helmut Schiller, Dave Siegel, Akihiko Tanaka, J. Ronald V. Zaneveld

IOCCG Report Number 5, 2006

Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications

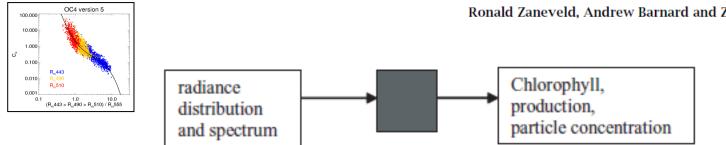


Figure 1.1 Diagram of inverse radiative transfer elements using the "black box" approach.

- Empirical estimation of chlorophyll from radiance ("black box")
- But chlorophyll isn't what is impacting radiances, the IOPs are \bullet

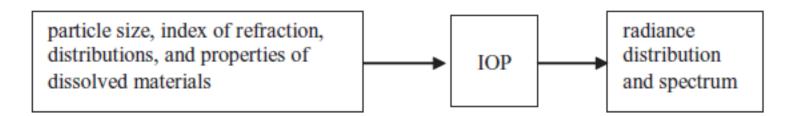


Figure 1.2 Diagram of forward radiative transfer elements.

Chapter 1

Why are Inherent Optical Properties Needed in Ocean-Colour Remote Sensing?

Ronald Zaneveld, Andrew Barnard and ZhongPing Lee

IOCCG Report Number 5, 2006

Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications Chapter 1

Why are Inherent Optical Properties Needed in Ocean-Colour Remote Sensing?

Ronald Zaneveld, Andrew Barnard and ZhongPing Lee

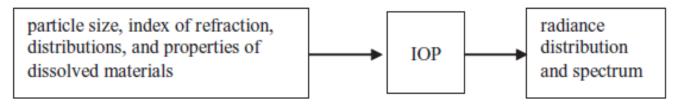
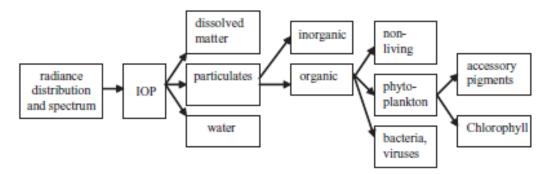



Figure 1.2 Diagram of forward radiative transfer elements.

- The IOPs are determined by constituent properties
- So inverting radiance provides information on all of these constituents

Figure 1.3 Diagram of inverse radiative transfer elements. Many further parameters are derived from these constituents, such as DOC, POC and productivity.

Philosophical problem of empirical vs analytic modeling

- Empirical (regressive, machine learning, neural network)
 - Do you need an answer?
 - Do you require a forecast based upon historical knowledge?
 - Will historical knowledge help estimation?
- Analytic
 - Do you want to know how the ocean works?
 - Do you want to be able to resolve change in the ocean?
 - Will model based upon historical knowledge impede ability to predict future?

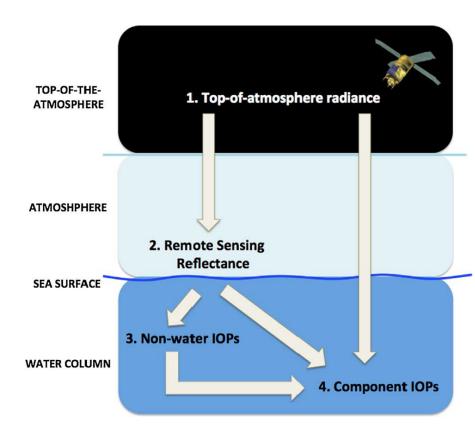
Really nice review summary of current limitations

Progress in Oceanography 160 (2018) 186-212

Review

An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing

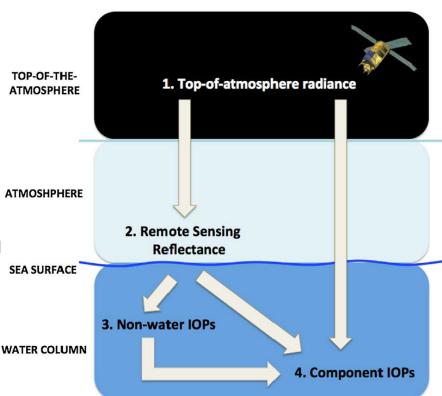
P. Jeremy Werdell^{a,*}, Lachlan I.W. McKinna^{a,b}, Emmanuel Boss^c, Steven G. Ackleson^d, Susanne E. Craig^{a,e,1}, Watson W. Gregg^f, Zhongping Lee^g, Stéphane Maritorena^h, Collin S. Roeslerⁱ, Cécile S. Rousseaux^{e,f,2}, Dariusz Stramski^j, James M. Sullivan^k, Michael S. Twardowski^k, Maria Tzortziou^{1,m}, Xiaodong Zhangⁿ


Deriving Component IOPs from Inversion

- at the satellite
 - L^{N}_{TOA}
- above surface

$$- R_{rs}(\lambda) = \frac{L_w(\lambda)}{E_d(\lambda)} (sr^{-1})$$

• below surface


$$- R(\lambda) = \frac{E_u(\lambda)}{E_d(\lambda)}$$
$$- r_{rs}(\lambda) = \frac{L_u(\lambda)}{E_d(\lambda)} (sr^{-1})$$
$$= \frac{R_{rs}(\lambda)}{0.52 + 1.7 \times R_{rs}(\lambda)}$$

Werdell et al. 2017 note this is their terminology/symbols

Deriving Component IOPs from Inversion

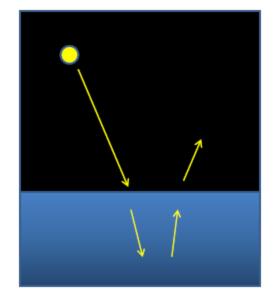
- measured IOPs (steps 3 & 4)
 - Derive components from IOP_{total-water}
- Remote sensing reflectance (2,3,4) TOP-OF-THE-ATMOSPHERE
 - Derive a_{total-water}, bb_{total-water} 2-3-4
 - Derive component IOPs directly 2-4
- TOA radiance (steps 1-4)
 - TOA to Rrs to IOP_{total-water} to compone IOPs (1-2-3-4)
 - TOA to IOP_{total-water} to IOPs (1-3-4)
 - TOA to component IOPs (1-4)

Werdell et al. 2017

Heuristic approach to Reflectance inversion

• Consider an ocean comprised solely of absorbing material (think a CDOM ocean)

How does R depend on a

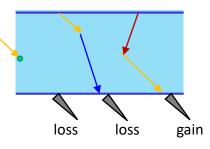

• Consider an ocean comprised solely of scattering material (think of coccolithophore blooms)

- How does *R* depend on b_b ?

- The real ocean is comprised of some combination of absorbing and scattering materials
 - So now how does R depend on a and b_b ?
 - Source of upward radiance/loss of radiance
 - $-b_b/a$

Some history on RTE approximations and semi-analytic inversions

- "Howard Gordon" Ocean
 - Homogeneous water
 - Plane parallel geometry
 - Level surface
 - Point sun in black sky



- No internal sources (e.g., fluorescence, Raman)

Solve RTE for Reflectance,

 $\begin{array}{l} \cos\theta \underline{\ } d \ \underline{\ } L(\theta, \phi) \ = \ -a \ L(z, \theta, \phi) \ -b \ L(z, \theta, \phi) \ + \ _{4\pi} \ \beta(z, \theta, \phi; \theta', \phi') L(\theta', \phi') \delta\Omega' \\ dz \end{array}$

- $\cos(\theta) \frac{d L(\theta, \varphi)}{dz}$: depth-dependent loss in radiance along path defined by angle θ from vertical
- $-a \times L(z, \theta, \varphi)$: loss in radiance due to absorption along path
- $-b \times L(z, \theta, \varphi)$: loss in radiance due to scattering out of path
- $+\beta(z,\theta,\varphi;\theta',\varphi') \times L(\theta',\varphi')$: gain in radiance due to scattering of radiance along other paths defined by directional angles θ',φ' into path defined by θ,φ
- Assumes no internal sources are adding radiance to the path due to transition from one wavelength to another, such as fluorescence, Raman scattering

 Δz

 $L(z_1, \theta, \varphi)$

Solve RTE for Reflectance

 $\begin{array}{l} \cos\theta \underline{d} \ \underline{L}(\theta, \phi) \ = -a \ \underline{L}(z, \theta, \phi) - b \ \underline{L}(z, \theta, \phi) + {}_{4\pi} \ \beta(z, \theta, \phi; \theta', \phi') \underline{L}(\theta', \phi') \delta\Omega' \\ dz \end{array}$

- Successive order scattering, SOS
 - Separate radiance into unscattered (L_o), single scattered (L₁), doubly scattered (L₂),...(L_n) contributions
- Single scattering approximation, SSA
 - Consider only the unscattered and singly scattered radiance terms, L_o and L₁
- Quasi-single scattering approximation, QSSA
 - Note volume scattering function are highly peaked in forward direction
 - Forward scattered is like no scattering all
 - Thus, replace b with b_b

QSSA

- $b = b_f + b_b \rightarrow b_b$
- $c = a + b \rightarrow a + b_b$

•
$$\omega_o = {}^b/_c \rightarrow {}^b/_a + b_b$$

 Solve the SSA for the upward/downward radiant fields (see optics web book)

•
$$R \sim \frac{b_b}{a+b_b}$$

Deriving Component IOPs from Inversion

radiance

•
$$r_{rs}(\lambda) = \frac{L_u(\lambda)}{E_d(\lambda)}(sr^{-1})$$

 $- = \sum_{i=1}^2 G_i(\lambda)[u(\lambda)]^i$
 $- u = \frac{b_b(\lambda)}{a(\lambda)+b_b(\lambda)}$
 $- G_1 = 0.0949 (sr^{-1})$
 $- G_2 = 0.0794$, term often ignored
 $0.0794 \times \left(\frac{b_b(\lambda)}{a(\lambda)+b_b(\lambda)}\right)^2$
• $R(\lambda) = \frac{E_u(\lambda)}{E_d(\lambda)} = 0.33 \times \frac{b_b(\lambda)}{a(\lambda)}$

- What happens to *R* if there is
 - Increase in CDOM

ayoqq.org

- What happens to *R* if there is
 - Increase in CDOM

ayoqq.org

Darker and greener

- What happens to *R* if there is
 - Increase in heterotrophic bacteria

ayoqq.org

• What happens to *R* if there is

Increase in heterotrophic bacteria

ayoqq.org

Brighter but still blue

- What happens to *R* if there is
 - Increase in phytoplankton

ayoqq.org

- What happens to R if there is
 - Increase in phytoplankton

Can be brighter or darker (depending on backscattering properties) and greener

 Now we will look at the early forward problem, IOPs → R, to understand the basis of the inverse problem R→IOPs

You have heard how to estimate chl from spectral reflectance ratios, but back in 1977 Morel and Prieur were already investigating the IOP \leftarrow \rightarrow R relationship

Analysis of variations in ocean color¹

André Morel and Louis Prieur

Laboratoire de Physique et Chimie Marines, Station Marine de Villefranche-sur-Mer, paper... 06230 Villefranche-sur-Mer, France Abstract

Spectral measurements of downwelling and upwelling daylight were made in waters different with respect to turbidity and pigment content and from these data the spectral values of the reflectance ratio just below the sea surface, $R(\lambda)$, were calculated. The experimental results are interpreted by comparison with the theoretical $R(\lambda)$ values computed from the absorption and back-scattering coefficients. The importance of molecular scattering in the light back-scattering process is emphasized. The $R(\lambda)$ values observed for blue waters are in full agreement with computed values in which new and realistic values of the absorption coefficient for pure water are used and presented. For the various green waters, the chlorophyll concentrations and the scattering coefficients, as measured, are used in computations which account for the observed $R(\lambda)$ values. The inverse process, i.e. to infer the content of the water from $R(\lambda)$ measurements at selected wavelengths, is discussed in view of remote sensing applications.

LIMNOLOGY AND OCEANOGRAPHY

Measurements of $R = \frac{E_u}{E_d}$ QSSA* leads to: $R = 0.33 \frac{b_b}{a+b_b}$

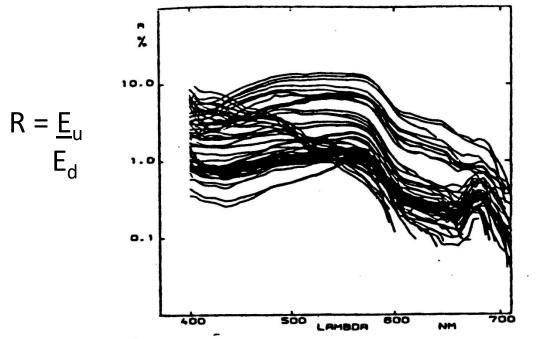


Fig. 1. Reflectance ratio $R(\lambda)$, expressed in percent, plotted with logarithmic scale vs. wavelength λ in nm, for 81 experiments in various waters. Same units and scales also used in Figs. 4, 5, 6, 7, and 11.

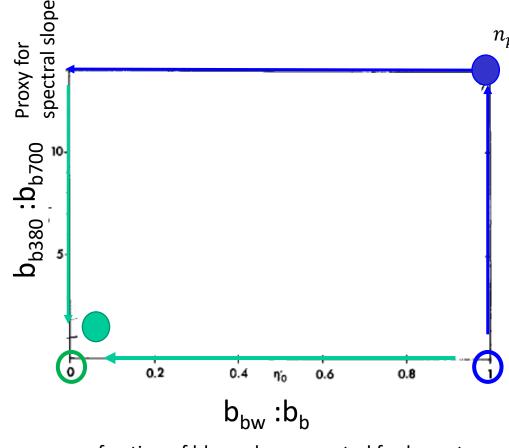
Goals of paper

- Explain variations in R with respect to b_b , a
- Model the IOPs to predict *R*(→forward model)
- These results are the basis for semi-analytic inversions

*Quasi-single scattering approximation (approx. to RTE)

Parameterize the Spectral Backscattering

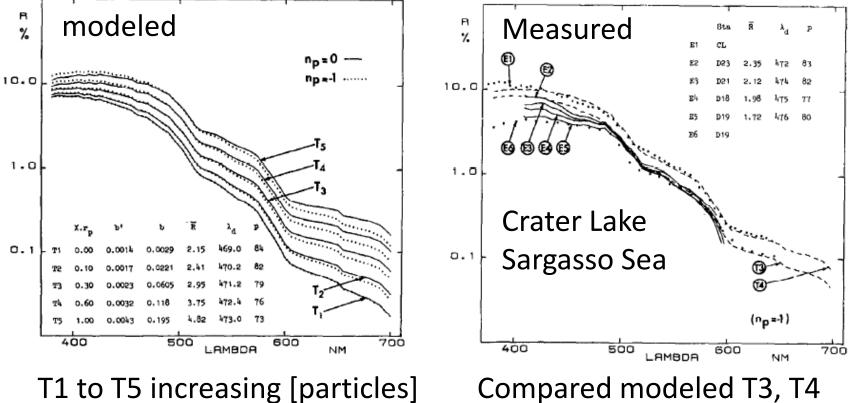
(remember there were no measurements)


$$\begin{split} b(\lambda) &= b_w(\lambda) + b_p(\lambda) & \text{and } b_b(\lambda) = b_{b_w}(\lambda) + b_{b_p}(\lambda) \\ &= b_{b_w}(\lambda_o)\lambda^{-4.3} + b_{b_p}(\lambda_o)\lambda^{n_p} \end{split}$$

 $n_p \equiv power \ function \ slope, not \ refractive \ index$

when water dominates the spectral slope is dominated by that of water, power slope ~ 4.3, ratio 14

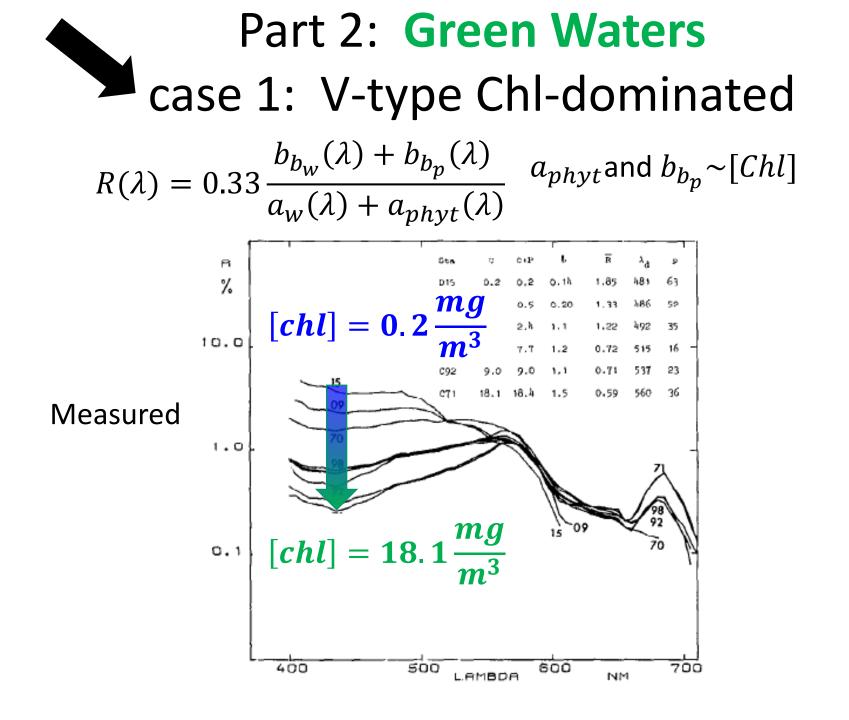
but as particles dominate, the spectral slope is very reduced *and* dependent upon the slope of the power function $(n_p) \rightarrow$ size proxy

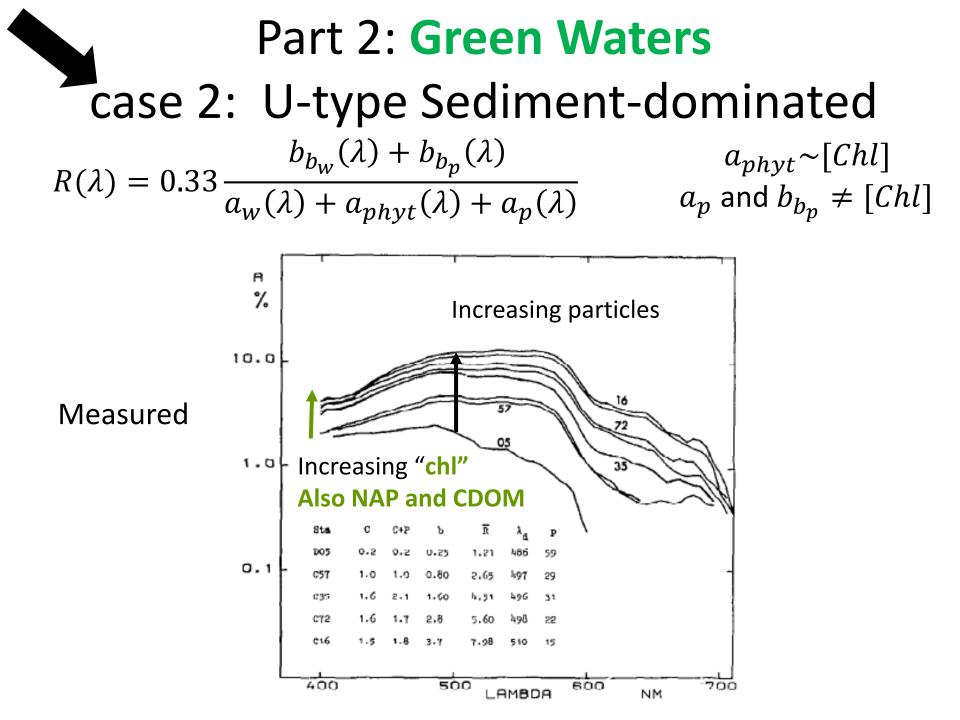

fraction of bb can be accounted for by water

Part 1: Blue Waters

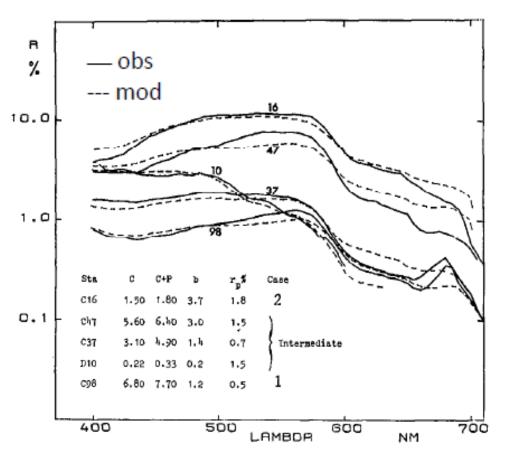
$$R(\lambda) = 0.33 \frac{b_{b_w}(\lambda) + b_{b_p}(\lambda)}{a_w(\lambda)}$$

Only $b_{b_p}(\lambda)$ varies, $\rightarrow n_p$



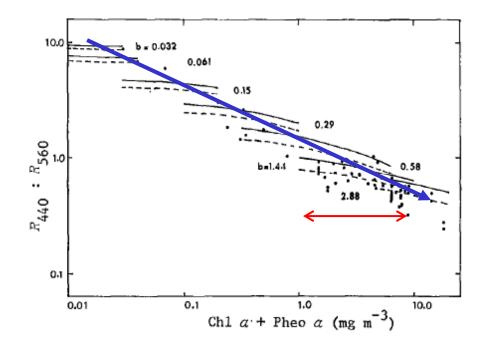

With measured spectra (solid)

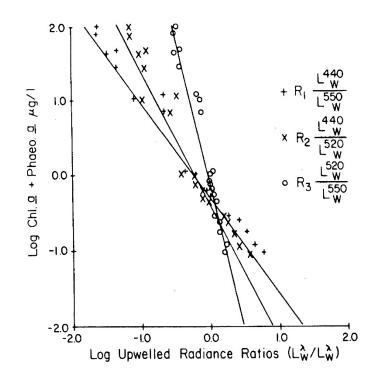
T1 to T5 increasing [particles] $n_p = 1$ (dotted), $n_p = 0$ (solid)


Part 2: Green Waters

- Case 1:
 - "chlorophyll concentration is high relative to the scattering coefficient"
 - Nice description of how R changes as chlorophyll increases (think phytoplankton absorption)
 - V-type
- Case 2:
 - "relatively higher inorganic particles than phytoplankton"
 - Nice description of how R changes as turbidity increases (think CDOM and NAP IOPs)
 - U-type

Generalized semi-analytic model $a(\lambda) = a_w(\lambda) + [Chl + Pheo] \times a_{phyt}^*(\lambda) + |b| \times a_p(\lambda)$ $b_b(\lambda) = b_{b_w}(\lambda) + (b - b_w) \times \frac{b_{b_p}}{b_p}$




(know b_w , b_{b_w} , measure b)

Assume a backscattering ratio for particles is spectrally flat, adjust b_p to match R(500nm)

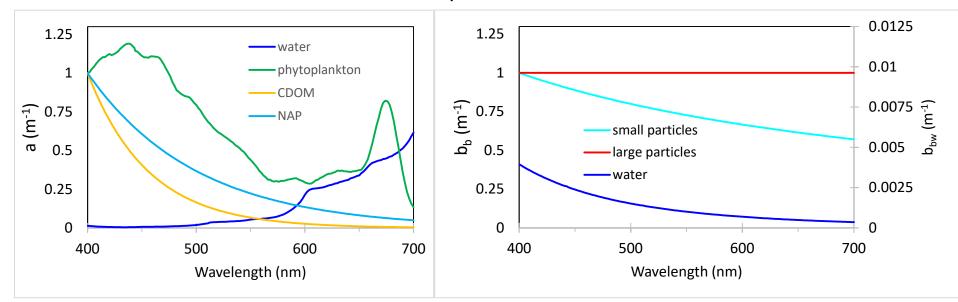
The results

Order of magnitude variations exist between reflectance ratios and pigment due to combined spectral variations of absorption and backscattering

Variations in ocean color are explained by more than variations in pigment concentrations

Figure 7.12 Ratios R of upwelling radiance just above the sea surface between pairs of light bands, as a function of the chlorophyll and phaeopigment concentration at the surface. The superscript on L refers to the wavelength in nanometers (from Gordon and Clark, 1980).

- If the water is green, the OC algorithms will provide a chl value. What else could cause green water?
- Now we will talk about inversion approaches
 R → IOPs


 $\mathsf{R}(\lambda) = \mathsf{f}/\mathsf{Q} \, \frac{b_b(\lambda)}{a(\lambda) + bb(\lambda)}$

Starting in 1995 there was an explosion of papers (well, OK, less than 5) focused on semi-analytical inversion models to obtain IOPs from reflectance

Here is how it works...

1990s Invert R to obtain IOPs $R(\lambda) = f/Q \frac{b_b(\lambda)}{a(\lambda) + bb(\lambda)}$

Step 1. The IOPs are additive, separate into absorbing and backscattering components $a(\lambda) = a_w(\lambda) + a_{phyt}(\lambda) + a_{NAP}(\lambda) + a_{CDOM}(\lambda)$ $b_b(\lambda) = b_{bw}(\lambda) + b_{bp}(\lambda)$

1990s Invert R to obtain IOPs $R(\lambda) = f/Q \frac{b_b(\lambda)}{a(\lambda) + bb(\lambda)}$

Step 2. Beer's Law indicates component IOPs are proportional to component concentration, define concentration-specific spectral shapes. For example chlorophyll-specific phytoplankton absorption $a_{phyt}(\lambda) = [chl] a_{phyt}^*(\lambda)$

Component IOP = concentration x concentration-specific IOP

- = scalar x vector
- = magnitude x spectral shape
- = eigenvalue x eigenvector

In the hyperspectral satellite world, each component could be further deconstructed into multiple constituents if the IOPs differ

•
$$r_{rs}(\lambda) = 0.0949 \times \frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)}$$

•
$$a(\lambda) = a_w(\lambda) + a_{phyt}(\lambda) + a_{CDOM}(\lambda) + a_{NAP}(\lambda)$$

-
$$a_{phyt}(\lambda) = \sum_{i=1}^{N_{phyt}} a_{phyt_i}^*(\lambda) \times A_{phyt} \text{ or } \sum_{i=1}^{N_{pig}} a_{pig_i}^*(\lambda) \times [Pig]$$

$$- a_{CDOM}(\lambda) = \sum_{j=1}^{N_{CDOM}} a^*_{CDOM_j}(\lambda) \times A_{CDOM}$$

$$- a_{NAP}(\lambda) = \sum_{k=1}^{N_{NAP}} a_{NAPk}^*(\lambda) \times A_{NAP}$$

•
$$b_b(\lambda) = b_{b_w}(\lambda) + b_{bp}(\lambda)$$

- $b_{bp}(\lambda) = \sum_{m=1}^{N_p} b_{bp_m}^*(\lambda) \times B_{bp}$

$$R(\lambda) = \frac{f}{Q} \frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)}$$

Step 3. Put it all together

 $R(\lambda) = \frac{f}{Q} \times$

 $\frac{\boldsymbol{b}_{\boldsymbol{b}\boldsymbol{w}}(\boldsymbol{\lambda}) + A_{bbp} \times b_{bp}^{*}(\boldsymbol{\lambda})}{\boldsymbol{a}_{\boldsymbol{w}}(\boldsymbol{\lambda}) + A_{phyt} \times a_{phyt}^{*}(\boldsymbol{\lambda}) + A_{nap} \times a_{nap}^{*}(\boldsymbol{\lambda}) + A_{CDOM} \times a_{CDOM}^{*}(\boldsymbol{\lambda}) + \boldsymbol{b}_{\boldsymbol{b}\boldsymbol{w}}(\boldsymbol{\lambda}) + A_{bbp} \times b_{bp}^{*}(\boldsymbol{\lambda})}$

water IOPs known and constant

$$R(\lambda) = \frac{f}{Q} \frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)}$$

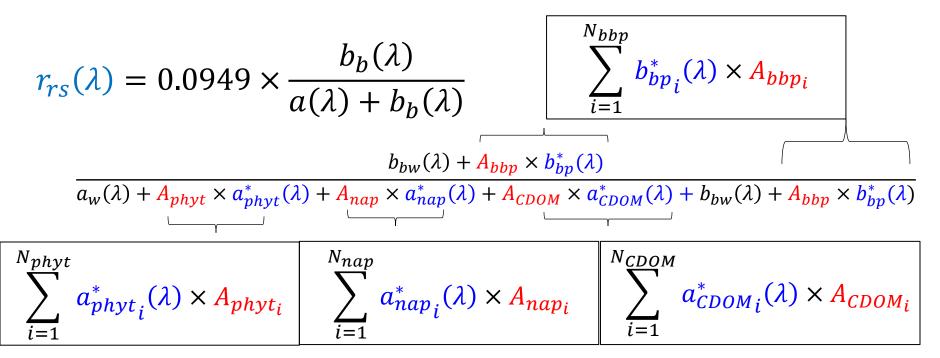
Step 3. Put it all together

 $R(\lambda) = \frac{f}{Q} \times \frac{b_{bw}(\lambda) + A_{bbp} \times b_{bp}^*(\lambda)}{a_w(\lambda) + A_{phyt} \times a_{phyt}^*(\lambda) + A_{nap} \times a_{nap}^*(\lambda) + A_{CDOM} \times a_{CDOM}^*(\lambda) + b_{bw}(\lambda) + A_{bbp} \times b_{bp}^*(\lambda)}$ water IOPs known and constant

eigenvectors are spectra, representative shapes, i.e., "known"

$$R(\lambda) = \frac{f}{Q} \frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)}$$

Step 3. Put it all together


 $R(\lambda) = \frac{f}{Q} \times$

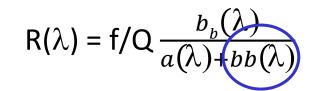
 $b_{bw}(\lambda) + A_{bbp} \times b^*_{bp}(\lambda)$

 $\overline{a_w(\lambda) + A_{phyt} \times a_{phyt}^*(\lambda) + A_{nap} \times a_{nap}^*(\lambda) + A_{CDOM} \times a_{CDOM}^*(\lambda) + b_{bw}(\lambda) + A_{bbp} \times b_{bp}^*(\lambda)}$

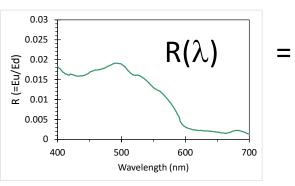
water IOPs know and constant

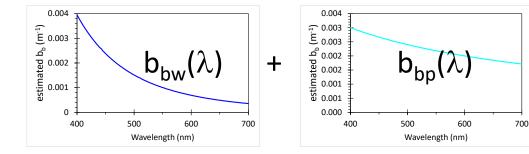
eigenvectors are spectra, representative shapes, i.e., "known" eigenvalues are scalars to be estimated And in the hyperspectral satellite world, can be further deconstructed into multiple constituents

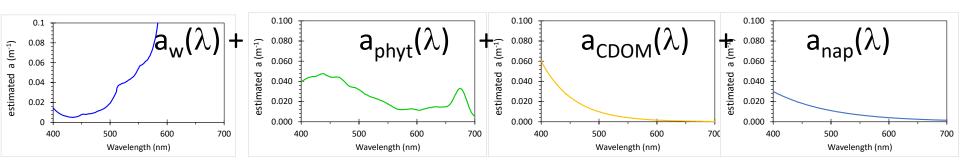
water IOPs know and constant


eigenvectors are spectra, representative shapes, i.e., "known" eigenvalues are scalars to be estimated by regression

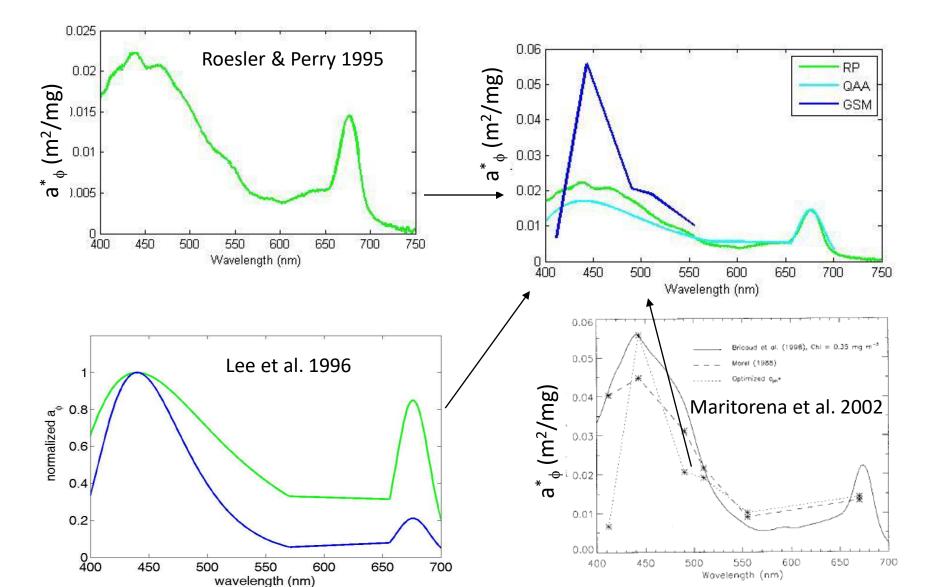
1990s Invert R to obtain IOPs $R(\lambda) = f/Q \frac{b_b(\lambda)}{a(\lambda) + bb(\lambda)}$


Step 4. input known eigenvectors (component IOP spectra), perform regression against measured reflectance spectrum to estimate eigenvalues (magnitudes, *A*s)


 $R(\lambda) = f/Q \frac{b_w(\lambda) + A_{bbp} b_{bp}^*(\lambda)}{a_w(\lambda) + A_{phyt} a_{phyt}^*(\lambda) + A_{NAP} a_{NAP}^*(\lambda) + A_{CDOM} a_{CDOM}^*(\lambda) + b_w(\lambda) + A_{bbp} b_{bp}^*(\lambda)}$


How much of each absorbing and backscattering component is needed (in a least squares sense) to reconstruct the measured reflectance spectrum?

Graphical equation



 $\mathsf{R}(\lambda) = \mathsf{f}/\mathsf{Q} \, \frac{b_b(\lambda)}{a(\lambda) + bb(\lambda)}$

Starting in 1995 there was an explosion of papers (well, OK, ~4) inversion models utilizing this approach. The differences between them lies in:

1) Definition of eigenvectors (spectral shapes)

e.g., phytoplankton absorption eigenvector

 $\mathsf{R}(\lambda) = \mathsf{f}/\mathsf{Q} \, \frac{b_b(\lambda)}{a(\lambda) + bb(\lambda)}$

Starting in 1995 there was an explosion of papers (well, OK, ~4) inversion models utilizing this approach. The differences between them lies in:

1) Definition of eigenvectors (spectral shapes)

- 2) Inversion method
 - non-linear least squares
 - Optimized non-linear least squares
 - linear matrix inversion
 - "by eye"

 $\mathsf{R}(\lambda) = \mathsf{f}/\mathsf{Q} \, \frac{b_b(\lambda)}{a(\lambda) + bb(\lambda)}$

Starting in 1995 there was an explosion of papers (well, OK, ~4) inversion models utilizing this approach. The differences between them lies in:

- 1) Definition of eigenvectors (spectral shapes)
- 2) Inversion method

3) Validation and error analysis varied tremendously

- Model validated with independent data
- Tested over broad optical range
- Sensitivity analyses
- Uncertainty determinations

Take Home messages

- Semi-analytic reflectance inversion models are powerful tools for estimating spectral IOPs from ocean color
- The devil is in the details
 - Eigenvector definitions (are they regionally tuned or globally relevant)
 - Over constrained (hyperspectral vs multispectral)
- Solution method
 - Non-linear
 - "optimized" non-linear
 - linear
- Important considerations
 - Tested against *independent* data (*not* the same as data subset)
 - Sensitivity analysis
 - Uncertainty calculations
 - Validation by other research teams

Let's give it a try

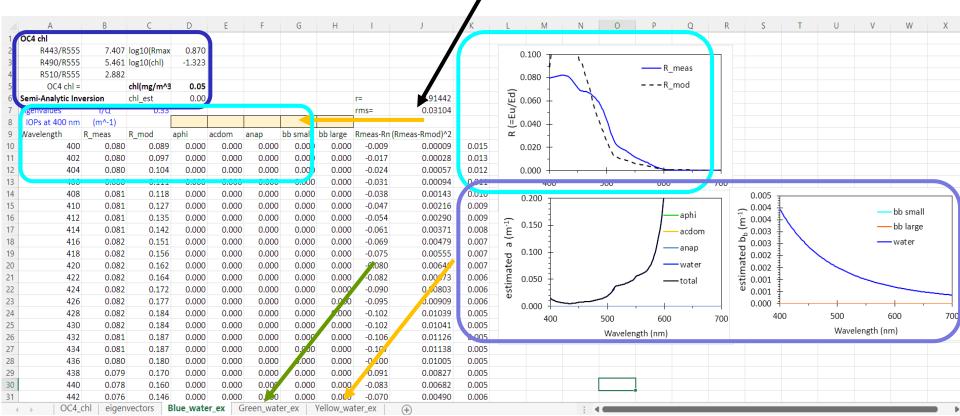
- Open the excel spreadsheet sent to you
- Data from Roesler and Perry 1995

×	AutoSave	Off 📙 Semi_ana	lytic_inversion_IOCCG_202	22_class.xlsx • Saved 🗸	₽ Search	(Alt+Q)							Co	ollin Roesler	🚯 🖉	-	D	\times
F	ile Home	Insert Page Layout	t Formulas Data	Review View He	lp Acrobat										۶c	ommente	s 🖻 S	hare
1	× v	B I U ≪								s Cell Styles ~		elete Format	∑ ~ ↓ ~ � ~			e Sensi	itivity ,	
	Undo Clipbo		Font	A R	lignment	Number	۲ <u>م</u>		Styles		(Cells		Editing	Analysi	s Sensi	tivity	
A	~	$\times \checkmark f_x$ c0																~
	А	В	С	D	E	F	G	Н	I.	J	К	L	Μ	N	0	P	Q	
		l algorithm for SeaWiF																
2	log_10 (chl) =	c0*(log_10 Rmax)^0+	c1*(log_10 Rmax)^1 +	c2*(log_10 Rmax)^2 +	c3*(log_10 Rmax)^3 +	c4*(log_10 Rmax)^4												
	where																	
	Rmax = max	R443/R555	R490/R555	R510/R555														
	and																	
6	c0	0.308																
7	c1	-3.0882																
8 9	c2	3.044																
9 10	c3 c4	-1.2013 -0.7992																
11	C4	-0.7992																
12																		
13																		
14																		
15																		
16																		
17																		
18																		
19																		
20																		
21																		
22 23																		
24																		
25																		-
26																		
27																		
28																		
) OC4	_chl eigenvectors	Blue_water_ex	Green_water_ex Yello	ow_water_ex +						_	_	-	_	-	_		•

Worksheet 1 = OC4 chl algorithm

• Equation and coefficients to calculate the chlorophyll concentration from reflectance ratios

🔕 AutoSave 🕘 Off) 📙 Semi_analytic_inversion_IOCCG_2022_class.xlsx • Saved ∨						n (Alt+Q)							Co	ollin Roesler	8	* _	ð	×
File	Home	Insert Page Layou	t Formulas Data	Review View Help	o Acrobat										₽ (Comment	s 🖻 S	hare
Undo	Paste				Merge & Center	General \$ ~ % 9 Fs Number	~ 00. 00→ 00. 00→	Condition Formatting	al Format a V Table V Styles	as Cell Styles ~	Insert D	elete Format	∑ ~ ↓ ~ ♦ ~	AZY Find Sort & Find Filter ~ Selec Editing	Analys Analys Analys	/ze Sensi a `	itivity ; sitivity	~
A6	~	: × ✓ <i>fx</i> c0																~
			С	D	E	F	G	Н	I.	J	K	L	Μ	Ν	Ο	Р	Q	
		ll algorithm for SeaWiF																- 1
		c0*(log_10 Rmax)^0+	c1*(log_10 Rmax)^1 +	- c2*(log_10 Rmax)^2 +	c3*(log_10 Rmax)^3 +	c4*(log_10 Rmax)^4												
3 whe		R443/R555	R490/R555	R510/R555														
5 and		K445/K555	R490/R333	K310/K333														
6	c0	0.308																
7	c1																	
8	c2	3.044																
9	c3																	- 1
10	c4	-0.7992																- 1
11																		
12 13																		
14																		
15																		
16																		
17																		
18																		- 1
19																		
20																		
21																		
23																		
22 23 24																		
25																		
25 26																		
27		1																
28																		
		4_chl eigenvectors	Blue_water_ex G	Green_water_ex Yello	w_water_ex +									-	Ш			•


Worksheet 2 = eigenvectors

• Defined spectra for eigenvectors (combination of analytic and those based on measurements)

	А	В	С	D	E	F	Н		J	K	L	М	Ν	0	Р	Q	R
1		absorption					backscattering										
2				S_CDOM	S_NAP	avg CDM		eta	eta								
3	tuneable slo	opes		0.018	0.01	0.0145		-1	0								
4																	
5	wavelen 🔉	water	phytoplankton	CDOM	NAP	CDOM+NAP	water	small particles	large particles								
6	40	0.0146	1	1	1	1	0.003947	1	1	1.25	\sim		—_w	ater			
7	40	0.0132	1.007087961	0.964640293	0.980198673	0.971416464	0.0038632	0.995024875	1		\sim		nl	nytoplankton			
8	404	0.012	1 00770155	0.020520806	0.060780420	0.04264004	0.0007017	0.000000000	1	1	× ×	\backslash					
9	406	0.011	1.04339679	0.897627596	0.941764534	0.916677096	0.0037022	0.985221673	1	<u> </u>		\searrow		MOC			
10	408	0.0101	1.06194498	0.865887748	0.923116346	0.890475223	0.0036248	0.980392154	1	(1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1			— N	AP	Λ		
11	410	0.0092	1.079406892	0.835270211	0.904837418	0.865022293	0.0035494	0.975609753	1				CI	DOM+NAP	/ / /		
12	412	0.0085	1.091600358	0.805735302	0.886920437	0.840296898	0.0034759	0.970873783	1	o.5 סי		```	\mathbf{N}				
13	414	0.0079	1.102626076	0.777244738	0.869358235	0.816278241	0.0034042	0.966183571	1	0.25				\nearrow			
14	416	0.0073	1.103467941	0.749761592	0.852143789	0.792946123	0.0033344	0.961538457	1	0.25					N		
15	418	0.0069	1.113977677	0.723250242	0.835270211	0.77028092	0.0032664	0.956937794	1	0			\sim				
16	420	0.0065	1.123346821	0.697676326	0.818730753	0.748263568	0.0032	0.952380947	1	0		500			700		
17	422	0.0063	1.116584743	0.673006696	0.802518798	0.726875549	0.0031353	0.947867292	1	4	00	500	60		700		
18	424	0.0059	1.121798876	0.649209377	0.786627861	0.7060988/6	0.0030722	0.94339622	1			Wavele	ngth (nm))			
19	426	0.0056	1.130163213	0.626253524	0.771051586	0.68591 0074	0.0030107	0.938967129	1								
20	428	0.0053	1.140537164	0.604109383	0.755783741	0.666310167	0.0029506	0.934579432	1	4.25						0.0125	
21	430	0.0052	1.155826521	0.582748252	0.740818221	0.6 7264667	0.0028921	0.93023255	1	1.25							
22	432	0.005		0.562142445		628763554	0.0028349	0.925925917	1	4					-	0.01	
23	434	0.0049	1.181381202	0.542265253	0.711770323	0.610791269	0.0027792	0.921658977	1	1							
24	436	0.005		0.523090913		0.593332695	0.0027248	0.917431183	1						-	- 0.0075 -	() (
25	438	0.0052	1.191212014	0.504594572	0.683861409	0.576373149	0.0026717	0.913241999	1	E 0.75		small par	stieles			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ē
26	440	0.0054		0.486752256	0.670720046		0.0026198	0.909090899	1							- 0.005	Mq.
27	443	0.0058				0.536064923	0.0025693	0.902934526	1	ō 0.5		large par	ticles			5.005	2
28	444	0.0061		0.452937605		0.528347681	0.0025199	0.900900788	1	0.25		water				- 0.0025	
29	446	0.0065		0.436922258		0.513246009	0.0024716	0.896860975	1	0.25					-	0.0025	
30	448	0.0071			0.618783392	0.498575623	0.0024245	0.892857131	1	_						0	
31	450	0.0078			0.60653066	0.484324569	0.0023785	0.888888877	1	0			i		1	U	
	- F	OC4_chl e	igenvectors	Blue_water_e	x Green_wa	ter_ex Vello	ow_water_ex	(+)	h								

Worksheet 3 = Blue water example (NE Pacific gyre off Oregon coast)

- Estimated chlorophyll concentration for R_{measured} and R_{modeled} spectra
- Place to add your estimated eigenvalues (scalars)
- Computed rms between measured and modeled reflectance spectra
- Resulting estimates of IOPs

Use this worksheet to test other IOP models

- Example: diffuse attenuation
 - Make a copy one of the example worksheets
 - Paste measured wavelength and K spectrum into columns A and B, rows 10 through whatever your wavelength range is
 - Define the K to IOP algorithm in column C
 - $K_e = \frac{a}{\overline{\mu}}$ (Gershun's equation), let $a(\lambda) = \sum_{i=1}^n a_i(\lambda)$
 - $K_d = \frac{1}{\mu_o} \sqrt{(a^2 + G(\mu_o) \times a \times b_b)}$ (Kirk 1991)
 - Use the eigenvectors that are appropriate for your scenario and then modify their magnitudes

See who can get the lowest rms

• Have fun