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Light and matter

Emission - birth of a photon
Absorption - death of a photon

Scattering - life of a photon



Emission of Light

Thermal radiation

light emission is related to the temperature of
an object with all molecules, atoms, and
subatomic particles involved in thermal motion

Luminescence

light emission is related to the specific changes
in the energy levels of specific molecules



Collisional and radiative processes involved in the
energy changes of a two level atom
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Collisional Radiative absorption
Excitation & Quenching

Emission
Spontaneous

(but can also be
stimulated, e.qg.
by an incident
photon)



Light and Atoms

Excitation of the ground state

De-excitation with emission of a photon

<> Ground state ~10-9 - 108 sec later

Hecht 1994



A blackbody — a standard concept for thermal radiation

An idealized physical body that absorbs all incident electromagnetic
radiation, regardless of frequency/wavelength or angle of incidence.

An approximate realization of a blackbody is a small hole in the wall of a large
insulated chamber (or cavity) with walls that are opaque to the radiation.

All radiant energy entering the blackbody is
absorbed at the internal surfaces. In reverse,
an aperture of a heated blackbody
(temperature T > 0° K) is a source of thermal
radiation emitted by blackbody. For an ideal
blackbody in thermal equilibrium (i.e., at a
constant temperature T) the emitted energy
equals the absorbed energy.

An ideal blackbody in thermal equilibrium has two notable properties:
(1) It is an ideal emitter: at every frequency/wavelength, it emits as much or more thermal
radiative energy as any other body at the same temperature.

(2) It is a diffuse emitter. measured per unit area perpendicular to the direction, the energy is
radiated isotropically, independent of direction.



Kirchhoff’'s Radiation Law

Gustav Kirchhoff stated in 1860 that “at thermal equilibrium, the
power radiated by an object must be equal to the power absorbed.”
This leads to the observation that if an object absorbs 100 percent
of the radiation incident upon it, it must reradiate (emit) the same
amount of radiant energy. As already stated, this is the definition of

Gustav Kirchhoff a blackbody radiator.
(1824 - 1887)

The absorptivity (or absorptance), a, is the fraction of incident radiant power that is
absorbed by the body/surface. The emissivity ¢ of the body/surface is the ratio of
the emitted radiant power to the radiant power emitted by a blackbody at the same
temperature. In the most general form of the theorem, the power must be integrated
over all wavelengths and angles (direction) of radiation. The emissivity and
absorptivity can, however, be defined as dependent on wavelength and angle.

At thermal equilibrium, the emissivity of a
body/surface equals its absorptivity, € = a.
For a perfect blackbody € = o = 1

Blackbody (&= 1)

Selective Radiator (£ = { (A, T))

Most radiation sources are not blackbodies.
Some of the energy incident upon them may

be reflected or transmitted. i
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Planck’s Radiation Law

This law governs the intensity of radiation emitted by unit surface
area into a fixed direction (solid angle) from the blackbody as a
function of wavelength for a fixed temperature.
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Stefan-Boltzmann Law

The Stefan-Boltzmann law states that a blackbody
emits electromagnetic radiation with a total energy
flux proportional to the fourth power of the Kelvin
temperature T of the object

Emitted irradiance or exitance (energy/ ( tlme area)

E =0T

where (O (sigma) = 5.67 x 10°8 Wm-< K4

Joseph Stefan Ludvig Boltzmann

(1835 - 1893) and | is the temperature in Kelvin (1844 - 1906)




Wien's Displacement Law

Wien's displacement law states that dominant
wavelength at which a blackbody emits electromagnetic
radiation is inversely proportional to the Kelvin
temperature of the object

, _ 0.0029 K m

‘max
I

= wavelength of maximum emission of the object
(in meters)

"“’m.l X

T = temperature of the object (in kelvins)

For example

— The Sun, A, = 500 nm > T = 5800 K

— Human body at 37 degrees Celsius or 310 Kelvin =2 A =
9.35 um = 9350 nm

— Earthat 15°C or 288 K = A .= 10 um = 10000 nm

Wilhelm Wien (1864 - 1928)
Nobel Prize 1911
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Interaction of Light and Matter

Scattering (life of photon) — change of direction of propagation

Sunlight
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Ocean optics is concerned primarily with
the study of relatively narrow range of
electromagnetic spectrum from near-UVv
through visible to near-IR
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Spectrum of solar radiation
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Solar spectral irradiance outside the Earths’s atmosphere
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Distribution of the solar constant in various

wavelength bands

Band Wavelength Irradiance Fraction of £,
interval (nm) (W m™) (percent)’
ultraviolet and beyond <350 62 4.5
near ultraviolet 350-400 57 4.2
visible 400-700 522 38.2
near infrared '700-1000 309 22.6
infrared and beyond > 1000 417 30.5
totals 1367 100.0

a. Percentages computed from data in Thekaekara (1976)

Solar constant varies by a fraction of a percent on time scales of minutes to
decades. In addition, the solar irradiance reaching the Earth varies about
the mean solar constant by almost 50 W m-2 over the course of the year,
owing to the ellipticity of the Earth’s orbit around the sun.

Mobley 1994



Overlap of “window” in atmospheric transmittance with minimum
of water absorption in the visible band
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Spectra of Solar
Irradiance
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Interaction of light and matter

Scattering - life of photon

Refractiofi—a

Absorption - death of photon
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https://www.youtube.com/watch?v=OQwTcl9TeUM
https://www.youtube.com/watch?v=uO-sFqoSsPg

Chlorophyll-a has two electronic states associated with the
energy equivalent to blue (~440 nm) and red (~675 nm) photons

The absorption of light relates to electron excitation states
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Relative absorption (percent)
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Absorption spectra of plant pigments
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Absorption mechanism |
associated with water | 1
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Absorption (1/m)

Absorption spectrum of water molecules
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Absorption spectra of atmospheric molecu
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Scattering of light by inhomogeneity of the medium
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Electromagnetic radiation of an oscillating dipole:

charges @

distance d

Dipole moment (p = q d)
is a separation of positive
and negative charges

Polarizability («) is the
relative tendency of a
charge distribution, like
the electron cloud of a
molecule, to be distorted
from its normal shape by
an external electric field,
like the one in an
electromagnetic wave

Mechanism of light scattering

Induced dipole

Electron
cloud
+] B +( -q

Electron
e
cloud B

_ Dipole moment induced
pinduced =ak by an electric field E

Dipole light scattering

Electric
field

Scattered



Electromagnetic radiation of an oscillating dipole:
Mechanism of light scattering

_ Oscillating dipole moment induced by
p(t)induced =« E(t) varying electric field E



Elastic and inelastic scattering

Vibrational
Energy
States

IR absorption I
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Elastic scattering and inelastic processes of
Raman (Stokes) scattering and fluorescence
are all relevant to ocean optics
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Small and large
particle in the
electric field of the
electromagnetic
wave
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A single particle subdivided into oscillating dipoles
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Coherent scattering (separation between dipoles is small and nonrandom):
Scattered wavelets have nonrandom relative phases in the direction of interest. The
total scattered intensity is obtained by the superposition of scattered wavelets

where phase differences are accounted for.



Computations of light scattering:
From Rayleigh and Mie theory to geometric ray tracing

Particle size < A

Rayleigh scattering approximation: the elastic
scattering of light or other electromagnetic radiation by
particles much smaller than the wavelength of the radiation.
Rayleigh scattering results from the electric polarizability of
very small particles which may be individual atoms or
molecules. The oscillating electric field of a light wave acts on
John William Strutt the charges within a particle, causing them to move at the
rord Ravlegh (1542 19190 same frequency. The particle, therefore, becomes a small
radiating dipole whose radiation we see as scattered light.

Arbitrary size of spherical particles

Mie theory: A complete analytical solution of Maxwell's
equations for the scattering of electromagnetic radiation by
spherical homogenous particles (arbitrary size and refractive
index). Theoretical extensions exist for more complex shapes
such as coated and layered spheres, cylinders, and spheroids.

Gustav Mie (1868 - 1957)



Discrete Dipole Approximation (DDA):
A method for computing scattering by particles of arbitrary shape

In the discrete dipole approximation, an object of arbitrary shape
(e.qg., a particle) is approximated in terms of a finite array of small
electric dipoles. These dipoles acquire dipole moments in response
to the local (incident) electric field and produce scattered field.



Geometrical optics approximation for light scattering

1 4 Particle size » A

Light rays
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0 Exterior Diffraction

1 External Reflection

2 Two Refractions

3 One Internal Reflection

4 Two Internal Reflections



There are many regimes of particle scattering, depending on the

particle size, the refractive index, and the light wavelength.
As a result, there are countless observable effects of light scattering

although all scattering phenomena are fundamentally the same.

Particle size/wavelength Particle size parameter

nD/ A

where ris particle radius
and D particle diameter

1

Rayleigh scattering
approximation

o < 1

Refractive index

Geometrical optics
approximation

a > 1

Large




Particle size
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Very small particles Rayleigh Scattering Molecular scattering
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Larger particles (still smaller than the light wavelength)

Incident
beam

Size: approximately one—fourth the wavelength of light
Description: scattering concentrated in forward direction

Very large particles (larger than the light wavelength)
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Size: larger than the wavelength of light

Description: extreme concentration of scattering in forward direction;
development of maxima and minima of scattering at
wider angles



The angular distribution of light intensity scattered by a particle
for a given size parameter x (= o)
(results derived from Mie theory for spherical particles)
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Relotive intensity ——e

Molecular scattering as a function of light wavelength
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Percent Scattering of Direct Sunlight
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The change of sky color at sunset (red nearest the sun, blue furthest away) is
caused by Rayleigh (molecular) scattering by atmospheric gas particles, which
are much smaller than the wavelengths of visible light. The grey/white color of
the clouds is caused by scattering by water droplets, which are of a comparable
size or larger than the wavelength of visible light, resulting in a weak or no
dependence of scattering on light wavelength.




"In the opinion of the writer, it would make for progress...
to recognize that the observed colour of the sea is
primarily due to the water itself, and that suspended
matter, if present at all in appreciable quantity is to be
regarded as a disturbing factor, of which the effect
requires to be assessed in each individual case”

Chandrasekhara
Venkata Raman Raman, C.V. 1922, "On the molecular scattering of light in water
(1988 -1970) and the colour of the sea", Proc. R. Soc. London A, 101: 64-80

Nobel Prize 1930




Scattering by a collection of particles
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Incoherent (independent) scattering (separation between particles is large and
random): Scattered wavelets have random relative phases in the direction of interest.
The total scattered intensity is the sum of intensities scattered by individual particles

(the addition of intensities without regard to phases).



Multiple light scattering by a collection of particles

Scattered light

/N

Figure 1.5 Multiple scattering process involving first (P), second (Q), and third (R) order scattering
in the direction denoted by d.

(Liou 2002)
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