Phytoplankton community composition derived from
optics and remote sensing: Approaches, challenges, and
next steps

Ali Chase, Applied Physics Laboratory — University of Washington, USA
IOCCG Summer Lecture Series, 26 July 2022, Villefranche-sur-Mer, France

Contact: alichase@uw.edu



Why Phytoplankton Community Composition?
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* bloom dynamics
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¢ phytoplankton community composition
e nutrient cycling
e export of particles

e rates of primary production

e nitrogen fixers, DMS producers, silicifiers,
calcifiers

e trophic dynamics & food web efficiency

* hypoxia
® eutrophication
¢ informed monitoring and assessment

* meeting thresholds
® species composition
¢ detecting anomalies

e detection and tracking of harmful algal
blooms

® assessing storm impacts
* monitoring oil spill extent and cleanup

efinding pelagic and benthic habitats for
fisheries

elocations/monitoring for aquaculture
efood safety & toxin production

Dierssen et al., 2021



Lecture motivation...
From the NASA PACE website homepage:

Our ocean teems with life, supporting many of Earth’s economies.

PACE will reveal the diversity of organisms fueling marine food webs
and how ecosystems respond to environmental change.

...& inspiration

Slide content inspired by and borrowed from Jeremy Werdell (NASA), Julia Uitz (LOV), Dylan Catlett (WHOI), &
many papers (see tables & references)



Lecture outline & key points

-> Previous studies to estimate phytoplankton community
composition from optics & remote sensing

- Recent work and expansion to include new approaches and data
types

-> Where do we go from here? (hint: you tell me!)



Go to www.menti.com and use the code 8534 4169

“ Mentimeter

\What comes to mind when you hear "Phytoplankton
Community Composition™?



Phytoplankton Community Composition (PCC) - some definitions

PSC = Phytoplankton Size Classes (note: also Photosynthetic Carotenoids...)
- pico, nano, and micro (what should the size cutoffs be?)

PG = Phytoplankton Groups
- a catch-all terms for species and size classes?

PFT = Phytoplankton Functional Types
- biogeochemical function?

Beware: The meanings of all of these terms may change based on the user

Bottom line: we want to define the phytoplankton present in the water by some

metric that differs/moves beyond total biomass (most commonly approximated
via estimates of chlorophyll a concentration)



And what about units???

Absolute

- Concentrations (cells/L)

- Biovolume (mg/m3)

- Biomass, carbon (mg/m?3)

- Chla (micrograms/L, mg/m?3)

Relative

- Fraction (%) of total Chl a

- Fraction (%) of total biovolume

- Fraction of some subset of the total community (e.g., % of all microplankton)
- “Dominant” group (in what units?)

Probability of occurrence (at some threshold?)



Lecture outline & key points

-> Previous studies to estimate phytoplankton community
composition from optics & remote sensing



Science is an incremental continuum; we build and grow from
past efforts. We should think critically about both what has
been done, and what we are currently doing (and why)



Previously developed algorithms: two main categories

Abundance-based Spectral-based

Reflectance Reflectance
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IOCCG Report Number 15, 2014

Phytoplankton Functional Types
from Space

Edited by:
Shubha Sathyendranath (Plymouth Marine Laboratory)

Report of an IOCCG working group on Phytoplankton Functional Types, chaired by :
: : ; : Phytoplankton Functional
Shubha Sathyendranath and based on contributions from (in alphabetical order): Types from Space

Reports of the

Jim Aiken, Séverine Alvain, Ray Barlow, Heather Bouman, Astrid Bracher, Robert J. W. intematinal Ocean-Colour
Brewin, Annick Bricaud, Christopher W. Brown, Aurea M. Ciotti, Lesley Clementson, T

Susanne E. Craig, Emmanuel Devred, Nick Hardman-Mountford, Takafumi Hirata, REPORT NUMBER 15

Chuanmin Hu, Tihomir S. Kostadinov, Samantha Lavender, Hubert Loisel, Tim S. ‘ CCG
An Affiliated Program of SCOR

Moore, Jesus Morales, Cyril Moulin, Colleen B. Mouw, Anitha Nair, Dionysios Raitsos, An Associate Member of GEOS ¥,
Collin Roesler, Shubha Sathyendranath, Jamie D. Shutler, Heidi M. Sosik, Inia Soto, : R
Venetia Stuart, Ajit Subramaniam and Julia Uitz.

https://ioccg.org/wp-content/uploads/2018/09/ioccg_report_15_2014.pdf
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A Consumer’s Guide to Satellite
Remote Sensing of Multiple
Phytoplankton Groups in the Global
Ocean

Colleen B. Mouw *, Nick J. Hardman-Mountford?, Séverine Alvain?, Astrid Bracher*?,

Robert J. W. Brewin®’, Annick Bricaud®, Aurea M. Ciotti®, Emmanuel Devred ', Phytoplankton FunCthHal Types
Amane Fujiwara', Takafumi Hirata'?'®, Toru Hirawake ", Tihomir S. Kostadinov ™,
Shovonlal Roy " and Julia Uitz®
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FIGURE 1 | Schematic of various phytoplankton functional type (PFT) algorithms grouped according to their output classification (PTC, PSC, or PSD)
and algorithm development types (abundance-, radiance-, absorption-, and scattering-based). Color indicates the output classification of phytoplankton
taxonomic class (PTC, green), phytoplankton size class (PSC, yellow) or particle size distribution (PSD, blue).



TABLE 2 | Summary of satellite inputs and outputs.

L E— L

Type

Algorithm references

Algorithm
abbreviation

Development inputs Satellite inputs Satellite Outputs

nLw/Rrs [Chl] app acagm bpp S HPLC  nLw/Rrs [Chl] at app acgm bpp Micro Nano Pico Hapto Dino Cyano Diatom Phaeo
pigments (cocco) (Pro/Syn)
Abundance Brewin et al., 2010 BR10 X X X X X X
Brewin R. J. et al., 2011 BR10 X X X X X X X
Hirata et al., 2011 OC-PFT X X X X X X X X X X
Uitz et al., 2006 ulTZ06 X X X X X
Radiance  Alvain et al., 2005, 2008 PHYSAT X X X X X X X X X X
Lietal., 2013 LI13 X X X X X X
Absorption Bracher et al., 2009 PhytoDOAS X X X X
Sadeghi et al., 2012a PhytoDOAS X X X X X X
Ciotti and Bricaud, 2006; CBO06 X X X X X X X (x) X
Bricaud et al., 2012
Devred et al., 2011 DSSP11 X X X X X X X X X X X
Fujiwara et al., 2011 FUJIT1 X X X X X X X x)
Hirata et al., 2008 HIRATAO8 X X X X X X X
Mouw and Yoder, 2010a MY10 X X X X X X X X X X x)
Roy et al., 2013 ROY13 X X X X X X X X
Scattering Kostadinov et al., 2009, KSMO09 X X X X X X X

2010

The four algorithm types are indicated by color: abundance (green), radiance (red), absorption (yellow), scattering (blue). The development inputs, satellite inputs, and satellite outputs are indicated with “x” for each algorithm. Instances
where other size classes could be inferred but are not directly retrieved are indicated with “(x)”. Notation for column headers can be found in Table 1.

Inputs # Outputs is a fundamental algorithm limitation Mouw et al,, 2017



Obtaining Phytoplankton Diversity
from Ocean Color: A Scientific * Gap 1: Information Mismatch between Satellite-Derived Phytoplankton

Roadmap for Future Deve|opment Composition Products and User Group Target Variables
* Gap 2: Lack of Traceability of Uncertainties in PG Algorithms
Astrid Bracher®?*, Heather A. Bouman?, Robert J. W. Brewin*5, Annick Bricaud® 7,

GanaEiotiss Mimes W Gl sl Dlesisiisont® EanelDeviod, * Gap 3: Missing Capabilities of Current Ocean Color Satellite Measurements

Annalisa Di Cicco 2, Stephanie Dutkiewicz, Nick J. Hardman-Mountford ', ° Gap 4: Lack Of Re iona| Ca ab|||t Of PG Al orithms
Anna E. Hickman ', Martin Hieronymi'®, Takafumi Hirata'” '8, Svetlana N. Losa’, p ) g p y g

Colleen B. Mouw "°, Emanuele Organelli*, Dionysios E. Raitsos*, Julia Uitz®’, Meike Vogt?°
and Aleksandra Wolanin 22!

TABLE 2 | A compilation of global algorithms to retrieve phytoplankton composition from satellite data.

And regional
Approach Phytoplankton composition product References
Soppa et al. 2014
ABUNDANCE Size classes Uitz et al., 2006; Brewin et al., 2010, 2015 Losa et al. 2017 (combined
Size classes and multiple taxa Hirata et al., 2011 abundance and spectral)
Chase et al. 2022 (diatom carbon)
SPECTRAL REFLECTANCE Multiple taxa Alvain et al., 2005, 2008; Li et al., 2013; Ben Mustapha et al.,
2014 Réve-Lamarche et al. 2017; Xi et al. 2020
, ) Sathyendranath et al. 2004
Single taxon Coccolithophores Brown and Yoder, 1994; Moore et al., 2012
Kramer et al. 2018
Trichodesmium Subramaniam et al., 2002; Westberry et al., 2005
ABSORPTION Size index Ciotti and Bricaud, 2006; Mouw and Yoder, 2010; Bricaud
etal., 2012
Size classes Devred et al., 2006, 2011; Hirata et al., 2008; Fujiwara et al.,
2011; Roy et al., 2013
Multiple taxa Bracher et al., 2009; Sadeghi et al., 2012a; Werdell et al.,
2014
BACK-SCATTERING Size classes Kostadinov et al., 2009, 2016; Fujiwara et al., 2011
ECOLOGICAL Taxonomic groups Palacz et al., 2013

Raitsos et al., 2008



Lecture outline & key points

- Recent work and expansion to include new approaches and data
types



How is phytoplankton community composition defined in situ?

Microscopy

- Pigments

- Flow cytometry

- Automated imagery
- Merged size spectra
- Genetic information




Phytoplankton pigments attributed to different groups

Pigments from discrete water samples
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CHEMTAX method applied using pigments concentrations
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Figure S2. a) Phytoplankton group contribution to Chl a from CHEMTAX analysis with
inputs from Swan et al. 2016. b) Phytoplankton group contribution to Chl a from
CHEMTAX analysis with Inputs from van de Poll et al. 2013.
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The assumption: biomarker pigment concentration
changes reflect changes in PCC

Pigment concentrations
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‘ = diatom biomarker (Fuco)
O = chlorophyte biomarker (MVChlb)

' = dinoflagellate biomarker (Perid)
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Slide credit: D. Catlett



Problem 1: Phytoplankton physiological responses to
environmental changes

Pigment concentrations

@ 1
N

S

*Other stimuli that impact pigment
‘ - expression include nutrient
availability, temperature, others.
Responses to specific stimuli vary
/ across species and groups

Slide credit: D. Catlett

‘ = diatom biomarker (Fuco)
O = chlorophyte biomarker (MVChlb)
' = dinoflagellate biomarker (Perid)
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Problem 2: Many biomarker pigments lack specificity to
a single phytoplankton group

Pigment concentrations

!

-
—
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=

‘ = diatom biomarker (Fuco)
O = chlorophyte biomarker (MVChlb)
' = dinoflagellate biomarker (Perid)

*Other sources of inter- and intra-
group variability in biomarker
pigment expression are known
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Slide credit: D. Catlett



Globally Consistent Quantitative
Observations of Planktonic
Ecosystems

Fabien Lombard"?*, Emmanuel Boss®*, Anya M. Waite*, Meike Vogt?, Julia Uitz’,
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FIGURE 1 | Comparison of the total size range of plankton (in equivalent spherical diameter; ESD) that available optical and imaging methods can sample. Dashed
lines represent the total operational size range from commercial information while the red line represent the practical size range which is efficient to obtain quantitative
information, for an example see Figure 2. Drawings by Justine Courboules.



Plankton imagery used to determine community composition of
cells ~8-150 um
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~5 million IFCB images spanning four seasons
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High spatial resolution measurements of phytoplankton
taxonomic groups

| | Diatoms
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Variability in diatom carbon across chlorophyll a
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Merged cytometry-based phytoplankton size distributions
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Haéntjens et al., 2022
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DNA meta-barcoding

3. PCR-amplify 4. Sequence 5a. Sequence

%code genes Composition
\
, \ N

1. Filter seawater 2. Extract DNA

5b. Taxonomy

* DNA meta-barcoding “measures” the relative Predictions
sequence abundances of amplicon sequence
variants (ASVs = species)

* Compare ASVs to reference seqs with known
origin to assign taxonomy, get relative

abundances of species/groups Slide credit: D. Catlett



Phytoplankton group comparisons

Compositions
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Shallow neural networks trained using plankton imagery data
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Merging satellite products from multiple platforms

69°W W

66°W 63°W 6
Daily MODIS Aqua Chla Daily MUR SST product
q>A4 a) —a8— ’//’/// 616 C)' //// //”
E r*‘wél" 7 &,14 L ,”/ 36 | e) ,//’
o o
£3; cxi 9 S e @ e 335 I L
© ' g //':"‘ E 12 T ro} HH 1 E - sl P @
= TR e g x * ) 5 i
52 ey B 210/ . s P 34 oa T2
O @iy o 'F HH '
g 1 ._%:% 5 5 8 » > | | %
Q| & e p=0.69 S & p=091 @
RMSE = 0.65 S 6f .- RMSE = 0.72 | < f=0T
0 ; , : : s, A ‘ ‘ A 7 | . 'RMSE = 0.81
0 1 2 3 < 6 8 10 12 14 16 32 33 34 35 36
in situ Temperature (°C) in situ Salinity

in situ Chl a (mg m™)

Chase et al., 2022



Comparison of satellite-based estimates of diatom carbon

Cdiat_Pigments (E q. 295)

Previous Chl a-based
Diatoms defined by

—_— method (Hirata et al.,
pigment proxy 2011)
100
s
en
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1 Q
Diatoms defined by g
plankton imagery 'E
0.1

Neural network-
based method

Chase et al., 2022



Uncertainty calculations are necessary!

Cell biovolume )
Diatom ID accuracy

estimate \

Uncgaa = v0.172 + 0.182 + 0.12 + 0.292 = 0. 39,

f \

Statistical counting Chl a uncertainty
error

Neural network
Uncgata uncertainty

\ /

Uncyy = 1/0.392 + 0.522 = 0.65,

At low estimated diatom carbon values, the absolute error dominates

over the relative error, and thus Uncw = max(1.05 mg m-3, 65%)



Machine learning techniques to characterize functional traits of
plankton from image data

Eric C. Orenstein," Sakina-Dorothée Ayata,"2* Frédéric Maps,>* Erica C. Becker,® Fabio Benedetti,®
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Fig. 1. Plankton functional traits that can be estimated from images, following the unified typology of Martini et al. (2021). Trait types along the y-axis
follow the order of the “Plankton traits from images” section. Measured traits, ones that can be quantified solely from images, are in capital letters.
Inferred traits, which require additional information beyond raw pixels, are written in bold text.
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- 9 of 20 manuscripts related to various types of plankton imaging



Define and train a convolutional neural network (CNN) model

- Define and compile the layers of the CNN model
- Train the model and save the history object

def create_cnn_model_Al(width, height, depth, filters=(32, 16, 64, 32, 128, 128, 64, 256, 256, 128),
regress=False):

inputShape = (height, width, depth)

chanDim = -1

inputs = Input(shape=inputShape)

for (i, f) in enumerate(filters):

if 1 == 0:
X = inputs - :
x = Conv2D(f, (3, 3), padding="same") (x)| H = model. fit(
x = Activation("relu")(x) trainGen,
x = BatchNormalization(axis=chanDim) (x) . .
if i dn [1, 3, 6, 91: steps_per_epoch=totalTrain // batch_size,
X =(')4?X')’°°11n920<p°°1-size=(3v 3))(x) validation_data=validationGen,
x = Flatten()(x . . - .
x = Dense(512) (x) validation_steps=totalval // batch_size,
x = Activation("relu") (x) #epochs=2
X = BatchNormalization(axis=chanDim) (x) /
x = Dropout(rate=0.2) (x) epochs=10,
X = Dense(1000) (x) callbacks=[tensorboard_callback])
X = Activation("relu") (x)
if regress:

x = Dense(1, activation="linear") (x)
model = Model(inputs, x)
return model



Considerations for model runs in plankton image classification

Preprocessing

Data augmentation, rotations, replicates

- Preserve the length/width ratio when data are prepared?

- Model tests to evaluate impact of image augmentation

- Background color and normalization to one shade of gray (concerns of varying instruments
and users)

- Adjust darkness as a form of augmentation

- Position of image within the field of view

Mouw Lab, URI Sosik Lab, WHOI Kudela Lab, UCSC



Lecture outline & key points

-> Where do we go from here? (hint: you tell me!)



Go to www.menti.com and use the code 8534 4169

In your opinion, rate the impact and effort of four facets of “"
PCC algorithm development

° Absolute (vs relative) quantities
Broad applicability

Closure w/independent
methods/models

4 Enduserneeds

Impact

Effort
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How can we navigate the push-pull of untapped potential in PCC
algorithms, and the inherent challenges?

Different questions will have different data needs. Consider when a
given data product is applicable, and when it is not. What do you

want to know, and why?

—> Consider scales of spatial and temporal variability
- Remember that uncertainties “complete the data”



Overcoming the Challenges of Ocean Data
Uncertainty

In oceanography, as in any scientific field, the goal is not to eliminate uncertainty in data, but instead to better quantify and clearly
communicate its size and nature.

By Shane Elipot, Kyla Drushka, Aneesh Subramanian, and Mike Patterson 12 January 2022 \

14

An ocean data set may otherwise be of
the highest scientific quality, but if
quantified uncertainties do not
accompany it, it will not be useful to
scientists or other stakeholders.

14

Some concepts that are applicable to

bench measurements are difficult to

This view from the International Space Station shows sea ice floes and eddy currents near the coast of Russia’s Kamchatka Peninsula. Credit: NASA
b
translate to the oceanographer’s JSC Earth Science and Remote Sensing Unit

laboratory—the ocean—because the
ocean and the climate system in which it
is embedded are constantly changing.

https://eos.org/opinions/overcoming-the-challenges-of-ocean-data-uncertainty



From Orenstein et al., 2022:

“...we would like to advocate for two goals that we should pursue as a
community: (1) more open and efficient sharing of trait-annotated
datasets, and (2) development of educational programs at the interface
of computer science and ecology.”
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data sets across O graphy disciplines
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Cloud Computing Platforms

/ A Microsoft Azure

LT u
wwamazon |

' webservices /

Microsoft Planetary

Computer ’
Microsoft Data
Science Virtual

Machine (DSVM)
Google Cloud

- Many have free resources for students/academic users



A few favorite resources for GitHub, python, and machine learning

Git — the simple guide:
https://rogerdudler.github.io/git-guide/

Data Analysis in python for oceanographers:
https://currents.soest.hawaii.edu/ocn data analysis/index.html

Recommendation from Patrick:
https://www.pythonlikeyoumeanit.com/

Tools for satellite data analysis designed by Patrick:
https://github.com/patrickcgray/open-geo-tutorial

Set of four videos that explain neural networks and deep/shallow learning:
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1 67000Dx ZCJB-3pi

This website lets you play around with number of layers and neurons in a neural network and visualize the effects:
https://playground.tensorflow.org

General resource for clear explanations of math terms and concepts:
https://betterexplained.com/



https://rogerdudler.github.io/git-guide/
https://currents.soest.hawaii.edu/ocn_data_analysis/index.html
https://www.pythonlikeyoumeanit.com/
https://github.com/patrickcgray/open-geo-tutorial
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://playground.tensorflow.org/
https://betterexplained.com/

What are the major challenges in PCC algorithm work?

Sensitivity of methods to the uncertainties in measured products and/or
intermediate derived products

Target variables (PCC groups) are often defined by proxy, ultimately limiting
algorithm refinement

Sufficient datasets for model development and testing are not trivial to collect

Linking what is needed by end users (e.g., climate & ecosystem modelers, water
quality management & HAB detection)



What are the exciting opportunities in PCC algorithm work?

Advancements in data collection technology for assessing in situ PCC

Hyperspectral satellite remote sensing & UAV data

Increased application of machine learning and computing power
advancements

Incorporation of additional/ancillary data, both in situ and via combing data
from multiple satellite platforms

Improved models and data collection that in turn provide insights into finer
spatial and temporal scale properties of ocean dynamics



Thank you!
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