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Current areas of research

1. Algorithms for remote sensing observation of 
phytoplankton community composition 

2. Open-source tools for plankton image classification using 
deep learning networks

3. Observing & exploring phytoplankton at the 
(sub)mesoscale using continuous optics & 
imaging systems

4. Phytoplankton communiNes and 
environmental parameters in the Puget Sound







Lecture Motivation

The potential to extract information from hyperspectral optical & ocean 
color measurements (in situ and remote sensing) receives a great deal of 
attention. Technology advances mean that hyperspectral data will 
become more and more ubiquitous. Understanding what has been done, 
current limitations, and the opportunities will help us move forward as 
effectively as possible.  

Slide content inspired by and with info from Heidi Dierssen (UConn), Patrick Gray (Duke), & many 
papers (see references at the end)
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1970s – Foundational work for much of today’s ocean color remote sensing research

Assessment of Aquatic Environments by Remote Sensing  (Adams et al., 1977)
- Laboratory reflectance measurements; “fingerprints” of different algal types

From Morel and Prieur, 1977:
“If we attempt to distinguish between more than two absorbing agents, such as different chlorophyll forms, pheopigments, 
or yellow substance, etc., the above conclusion remains valid according to the available results for their specific absorption 
spectra. The fact that, whatever the wavelength, several absorbers come into play does not prevent solution of the problem, 
at least from a theoretical point of view. Multispectral measurements in relative units at N+ 1 wavelengths allow the 
inference of concentration of N absorbing compounds…Further efforts are required to develop such a catalogue of spectral 
signatures.”

Hydrolight software (Mobley, 1994)
- Radiative transfer-based simulations of spectral reflectance, used in many types of studies

History of hyperspectral optics 
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In situ instrumentation & laboratory measurements
- ac-s (absorption and attenuation in the visible wavelengths)
- Bench-top spectrophotometers 
- HyperBB (backscattering) 
- ALFA spectral fluorescence
- Radiometric measurements (e.g., hyperPro, hyperSAS, TriOS, Triaxus)

ac-s

HyperBB



Tara Oceans
Tara Polar Circle
NAAMES
SABOR
Line P
Tara Mediterranean
PEACETIME

Spectral absorption & attenuation from underway ac-s deployments

ac-s



Hyperspectral Rrs(λ) measured in situ
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Chekalyuk and Hafez, 2013

Hyperspectral fluorescence emission & spectral deconvolution

Tara Polar Circle, 
2013



Trade-offs for spatial and temporal resolution – how can we scale 
up to regional and global views?

Discrete 
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Ship-board continuous 
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Satellite remote 
sensing

North Atlantic 
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Gray et al., 2022 L&O Methods



Gray et al., 2022 Front Ecol Environ
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Ocean Color measurements made from UAVs (a.k.a. drones)

- Well suited for coastal and estuarine areas (perhaps less so for open ocean work)

- Point spectrometer measurements are simpler and may provide better data in some cases 
compared to imagery

- Multispectral cameras are currently much cheaper and can be sufficient in many cases

- Challenges arise from viewing angle geometries and subsequent variability of sea and sky 
radiance across an image

- In situ measurements can be used to accurately remove reflected skylight during calculations of 
Rrs (Gray et al., 2022 L&O Methods)

- Longer flight times from large, gas-powered drones would improve the limited coverage of a 
typical drone flight

- RGB imagery can be used to visualize complex regions



Airborne Imaging Spectrometry 

Giardino et al., 2019

High-resolution airborne hyperspectral sensors: AVIRIS, AISA, HyMAP, PRISM, APEX, 
OMIS, PHI, PHILLS

- Good for water quality algorithm development and applications in inland and coastal waters
- “Medium-scale” surveys of macrophytes (e.g., kelp, seagrasses), coral reefs, water contaminants
- Useful for design tests for satellite-based systems, and/or test atmospheric correction procedures
- Limited in spatial coverage and revisit time
- Some challenges with relatively low signal-to-noise ratio (SNR) and a limited dynamic range

Badola et al., 2021



Dierssen et al., 2021
Modified from Hestir et al., 2015

Spectral, spatial, and temporal resolution of ocean color missions

Also:
SCHIMACHY
GOCI
GLIMR
AHSI



HICO – Hyperspectral Imager for the Coastal Ocean

- 2009-2014 on the ISS
- 3.6 nm spectral resolution across 400-900 nm in the visible
- ~90 m spatial resolution
- User-selected target (~2000 images per year)

Image of Monterey Bay, 
CA, USA in fall 2011

ARPH = adaptive 
reflectance peak height

Ryan et al., 2014



PACE - Plankton, Aerosol, Cloud, ocean Ecosystem

PACE simulation https://pace.gsfc.nasa.gov/

NASA Satellite 
ocean color 
missions

- Hyperspectral OCI (Ocean Color Instrument) and two polarimeters
- 5 nm resolution from 320 – 890 nm, also 7 SWIR bands
- 1 km spatial resolution
- Anticipated launch in January 2024



GLIMR – Geostationary Littoral Imaging and Monitoring Radiometer

- Planned launch in 2026, geostationary over the Gulf of Mexico w/views of North & 
South America

- Hyperspectral imager for 340-1040 nm
- 300 m spatial resolution at nadir, ~hourly measurements
- Two main science goals:

1. Understand the processes contributing to rapid changes in phytoplankton growth rate and community    
composition.

2.    Quantify how high frequency fluxes of sediments, organic matter, and other materials between and within 
coastal ecosystems regulate the productivity and health of coastal ecosystems.

https://eos.unh.edu/glimr



h"ps://www.esa.int/Applica1ons/Observing_the_Earth/Copernicus/Going_hyperspectral_for_CHIME

CHIME - Copernicus Hyperspectral Imaging Mission for the Environment

- Planned launch around 2029
- Lake and coastal ecosystem monitoring
- AVIRIS images and coincident ground 

measurements to aid with instrument 
development

- Additional  coordination with PRISMA and 
DESIS
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Approach Input measurements Result/product Target/validation data Reference

Direct use of optical 
measurements:
Similarity Index, EOF,
and/or clustering analysis

aφ(λ) & 4th derivative of 
spectra % contribution of G. breve G. breve field and culture data Millie et al. 1997

2nd derivative of aφ(λ) Diatom contribution to Chl a CHEMTAX diatom Chl a Isada et al. 2015

ap(λ) Cell counts and Chl a fraction of G. breve G. breve field and culture data Kirkpatrick et al. 2000

2nd derivative of Rrs(λ) Detection of Phaeocystis blooms Microscopic identification of 
phytoplankton Lubac et al. 2008

4th derivative of aφ(λ) 
and Rrs(λ)

Differentiation of phytoplankton groups; cyanobacteria 
dominance in inland waters

Cultures, Hydrolight simulations, field 
Rrs(λ) measurements Xi et al. 2015; 2017

Derivatives of ap(λ)
or aφ(λ)

Pigment
assemblages or concentrations

HPLC pigments or
Chl a concentration from fluorescence

Catlett and Siegel 2018;
Shaju et al. 2015; Torrecilla et al. 2011

Rrs(λ) Pigment concentrations HPLC pigments Bracher et al. 2015; Kramer et al. 2022

aφ(λ) and Rrs(λ), and 
derivatives Bio-optical water categories HPLC pigments Uitz et al. 2015 

Lu(λ) Relative phycoerythrin concentrations PE concentration Taylor et al. 2013
aφ(λ) and Rrs(λ), and 
aφ(λ) derivatives K. brevis relative bloom strength K. brevis absorption spectrum Craig et al. 2006

Rrs(λ) Apparent Visible Wavelength Vandermuelen et al. 2020; Dierssen et 
al. 2022

Methods of spectral inversion: 
Spectral inversion and Gaussian 
decomposition ap(λ) or aφ(λ) Pigment concentrations or absorption HPLC pigments

Aguirre-Gomez et al. 2001; Chase et al. 
2013;
Hoepffner and Sathyendranath 1991, 
1993; Liu et al. 2019;
Lohrenz et al. 2003;
Ye et al. 2019

Rrs(λ) Contribution of phytoplankton groups to absorption Microscopic cell counts Roesler et al. 2004

Rrs(λ) Pigment concentrations HPLC pigments Chase et al. 2017; Wang et al. 2016

Rrs(λ) aφ(λ) and Chl a concentrations In situ Rrs(λ) Pahlevan et al., 2020; Pahlevan et al., 
2021

Approaches to extract information from hyperspectral data



Data Transformations

- Band math, derivative analysis, coordinate transformations (e.g., PCA, PLSR)

O’Reilly and Werdell, 2019

Band ratios, wl correlations, lineheight methods

Organelli et al., 2013



Retrieval Algorithms
- Spectra as descriptors: optical indices, cluster analyses

Vandermuelen et al., 2020



Applying Mixture Density Networks (MDN) to hyperspectral Rrs

Pahlevan et al., 2021



Applying Mixture Density Networks (MDN) to hyperspectral Rrs

Pahlevan et al., 2020



Retrieval Algorithms

- Spectra as references: optimization algorithms, linear matrix inversion

àSemi-analytical algorithms
àDefinitions of basis vectors using either a library of spectra, or simulated 

spectra/functions

For references categorized by the type of semi-analytic solution, see Table 4 in:



Phytoplankton pigments drive spectral absorption features

data from Bidigare et al. 1990

Chlorophyll b

Photoprotective
Carotenoids (PPC)

Chlorophyll c



Cael et al. 2020

But does the inversion problem become ill-posed?



Chl c
Chl b

Chl a

ac-s

Phytoplankton pigments estimated from ac-s absorption spectra

Chase et al., 2013



Relative pigment values vary spatially

Chlorophyll b : Chlorophyll a Chlorophyll c : Chlorophyll a



Incorporating Gaussian functions into Rrs(λ) inversion

Rrs(λ) measured in situ

Lee et al. 2002

u = umeas
g1 = 0.0949 and g2 = 0.0794 

(Gordon et al. 1988)

60 wavelengths 
between 400-600 nm 

Chase et al. 2017
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Pigments estimated from Rrs(λ) spectra measured in situ



Chase et al., 2017

Kramer et al., 2019

But most pigments are correlated with Chl a… 



How can we move beyond what is extractable from correlations with Chl a?



Considerations of error, & going beyond Chl a

From Cael et al. (2020):

- Error is the difference between having four to five DoF rather than >60, and the difference between 
being able to meaningfully invert for four spectra versus 44

- Some errors such as random electronic noise can be reduced by averaging many measurements in 
time or space. Others, such a bias in calibration, cannot.

- While all of the optical variation in the water cannot be said to fall along a single axis, it does appear 
that much of the variation in the surface covaries with [Chl]. Thus, the interest in going “beyond 
chlorophyll” can be considered an interest in deviations from this axis. 

- Polarization will help better separate oceanic and atmospheric contributions to the total signal, and 
UV will help better separate CDOM, NAP, and phytoplankton contributions to the oceanic signal. 
These deviations are by definition second order—though we note emphatically that this does not 
make them unimportant or uninteresting!

- Take home: Judicious use of available DoF; use basis vectors that are specific to your needs in the 
case of a regional or tuned algorithm
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Smith and Bernard, 2020







Take-home messages:

The question is not as simple as “how much information can we 
extract from hyperspectral measurements?”, but rather, 

“which approaches and methods that take advantage of the added 
information in hyperspectral measurements are relevant to my 
research question(s)?”

With limited degrees of freedom in hyperspectral measurements 
alone, consider the incorporation of other types of optical and/or 
environmental data during algorithm development and application, 
as well as spatial and temporal resolution requirements.



Insights from John Cullen, Professor Emeritus, Dalhousie University, Canada







https://www.ukcoaching.org/resources/topics/diagram-
infographic/understanding-unconscious-bias



Thank you!
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