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\What do you like to do outside of science? et

Bike trips Hang out with dogs Writing proposals

camping, walking, outdoor sports Canoe Surfing! Reading science fiction! Coffee on Sunday
mornings.

Scuba diving Climbing
Boating
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Lecture Motivation

The potential to extract information from hyperspectral optical & ocean
color measurements (in situ and remote sensing) receives a great deal of
attention. Technology advances mean that hyperspectral data will
become more and more ubiquitous. Understanding what has been done,
current limitations, and the opportunities will help us move forward as
effectively as possible.

Slide content inspired by and with info from Heidi Dierssen (UConn), Patrick Gray (Duke), & many
papers (see references at the end)



Lecture outline & key topics

Current capabilities of hyperspectral optics & remote sensing

Approaches to extracting information from hyperspectral
measurements

Applications to the coastal & complex aquatic ecosystem community
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Current capabilities of hyperspectral optics & remote sensing



History of hyperspectral optics

1970s - Foundational work for much of today’s ocean color remote sensing research

Assessment of Aquatic Environments by Remote Sensing (Adams et al., 1977)
- Laboratory reflectance measurements; “fingerprints” of different algal types

From Morel and Prieur, 1977:

“If we attempt to distinguish between more than two absorbing agents, such as different chlorophyll forms, pheopigments,
or yellow substance, etc., the above conclusion remains valid according to the available results for their specific absorption
spectra. The fact that, whatever the wavelength, several absorbers come into play does not prevent solution of the problem,
at least from a theoretical point of view. Multispectral measurements in relative units at N+ 1 wavelengths allow the
inference of concentration of N absorbing compounds...Further efforts are required to develop such a catalogue of spectral
signatures.”

Hydrolight software (Mobley, 1994)
- Radiative transfer-based simulations of spectral reflectance, used in many types of studies



Ocean color remote sensing: the motivation & the challenge

radiometry
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In situ instrumentation & laboratory measurements

ac-s (absorption and attenuation in the visible wavelengths)
Bench-top spectrophotometers

HyperBB (backscattering)

ALFA spectral fluorescence

Radiometric measurements (e.g., hyperPro, hyperSAS, TriOS, Triaxus)




Spectral absorption & attenuation from underway ac-s deployments

Tara Oceans
® Tara Polar Circle
NAAMES
® SABOR
Line P
e Tara Mediterranean
e PEACETIME

ac-S




Hyperspectral R.((A) measured in situ

South Atlantic Ocean Amazon River Plume
. Irradiance
S =

Normalized R,(A)

450 500 550 600 650

Wavelength (nm)

R, = remote-sensing reflectance
L, = water-leaving radiance
L,=upwelling radiance

E,=downwelling irradiance
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Flourescence

Hyperspectral fluorescence emission & spectral deconvolution
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Figure 2.4 General characteristics of fluorescence excitation (Ex) and emission
(Em) spectra for various groups of phytoplankton. Phytoplankton taxa with phy-
cobiliproteins (cyanobacteria, cryptomonads) have distinctive emission peaks
compared to other groups. Excitation spectra exhibit more subtle variations
according to photosynthetic accessory pigment composition. Modified from
Yentsch and Phinney (1985).

PE1

Tara Polar Circle,
“ 2013




Trade-offs for spatial and temporal resolution - how can we scale
up to regional and global views?

Discrete Ship-board continuous Satellite remote
samples measurements sensing
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Spatial Resolution Temporal Range
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Drones address an observational blind spot for
biological oceanography

Patrick Clifton Gray*, Gregory D Larsen, and David W Johnston
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Drones address an observational blind spot for
biological oceanography

Patrick Clifton Gray*, Gregory D Larsen, and David W Johnston
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Ocean Color measurements made from UAVs (a.k.a. drones)

- Well suited for coastal and estuarine areas (perhaps less so for open ocean work)

- Point spectrometer measurements are simpler and may provide better data in some cases
compared to imagery

- Multispectral cameras are currently much cheaper and can be sufficient in many cases

- Challenges arise from viewing angle geometries and subsequent variability of sea and sky
radiance across an image

- Insitu measurements can be used to accurately remove reflected skylight during calculations of
R, (Gray et al., 2022 L&O Methods)

- Longer flight times from large, gas-powered drones would improve the limited coverage of a
typical drone flight

- RGB imagery can be used to visualize complex regions



Airborne Imaging Spectrometry

High-resolution airborne hyperspectral sensors: AVIRIS, AISA, HyMAP, PRISM, APEX,
OMIS, PHI, PHILLS
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Badola et al., 2021

- Good for water quality algorithm development and applications in inland and coastal waters

- “Medium-scale” surveys of macrophytes (e.g., kelp, seagrasses), coral reefs, water contaminants

- Useful for design tests for satellite-based systems, and/or test atmospheric correction procedures
- Limited in spatial coverage and revisit time

- Some challenges with relatively low signal-to-noise ratio (SNR) and a limited dynamic range

Giardino et al., 2019



Spectral, spatial, and temporal resolution of ocean color missions
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HICO - Hyperspectral Imager for the Coastal Ocean

- 2009-2014 on the ISS
- 3.6 nm spectral resolution across 400-900 nm in the visible

- ~90 m spatial resolution
- User-selected target (~2000 images per year)

Chlorophyll (ug L™ FLHWm2um™'sr)  ARPHWm™?um™" sr™)
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Image of Monterey Bay,
CA, USAinfall 2011

ARPH = adaptive
reflectance peak height

Ryan et al., 2014



PACE - Plankton, Aerosol, Cloud, ocean Ecosystem

Hyperspectral OCI (Ocean Color Instrument) and two polarimeters
5 nm resolution from 320 - 890 nm, also 7 SWIR bands

1 km spatial resolution

Anticipated launch in January 2024
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GLIMR - Geostationary Littoral Imaging and Monitoring Radiometer

- Planned launch in 2026, geostationary over the Gulf of Mexico w/views of North &

South America
- Hyperspectral imager for 340-1040 nm
- 300 m spatial resolution at nadir, ~hourly measurements

- Two main science goals:
1. Understand the processes contributing to rapid changes in phytoplankton growth rate and community

composition.
2. Quantify how high frequency fluxes of sediments, organic matter, and other materials between and within

coastal ecosystems regulate the productivity and health of coastal ecosystems.
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CHIME - Copernicus Hyperspectral Imaging Mission for the Environment

- Planned launch around 2029

- Lake and coastal ecosystem monitoring

- AVIRIS images and coincident ground
measurements to aid with instrument
development

- Additional coordination with PRISMA and
DESIS

https://www.esa.int/Applications/Observing_the Earth/Copernicus/Going_hyperspectral_for CHIME



Lecture outline & key topics

Approaches to extracting information from hyperspectral
measurements



Living up to the Hype of Hyperspectral
Aquatic Remote Sensing: Science,

Resources and Outlook Data Transformations

Heidi M. Dierssen'*, Steven G. Ackleson?, Karen E. Joyce3, Erin L. Hestir* 2 N
5 6 7 . e Band Math
Alexandre Castagna®, Samantha Lavender® and Margaret A. McManus an d

Spectra subject to one or ¢ Derivative Analysis
more transformations e Coordinate
Transformations

Retrieval Approaches

e Hue Angle
Spectra as Descriptors e Cluster Analysis
used as indices or categories ¢ Object Based Image
Analysis

N
- e Parametric Regression

Spectra as Predictors
e Neural Networks

used as independent variables to

predict system properties - Decision Trees
- |
: N
Spectra as References e Optimization Algorithms
used as a reference against e Linear Matrix Inversion

modeled or measured spectra

4 Dierssen et al., 2021




Approaches to extract information from hyperspectral data

Approach Input measurements Result/product Target/validation data Reference

Direct use of optical as(N) & 4™ derivative of
measurements: spectra

Similarity Index, EOF,
and/or clustering analysis

% contribution of G. breve G. breve field and culture data Millie et al. 1997

CHEMTAX diatom Chl a Isada et al. 2015

Kirkpatrick et al. 2000

2" derivative of as(A) Diatom contribution to Chl a

ap(A) Cell counts and Chl a fraction of G. breve G. breve field and culture data

Microscopic identification of

I~ Lubac et al. 2008

2" derivative of Rrs(A) Detection of Phaeocystis blooms

4™ derivative of ag(\) Differentiation of phytoplankton groups; cyanobacteria Cultures, Hydrolight simulations, field

and Ris(A)

Derivatives of ap(A)
or ag(A)
Rrs()\)

as(A) and Ris(A), and
derivatives

Lu(A)

ag(A) and Rs(A), and
ae(A) derivatives

Rrs(A)

dominance in inland waters

Pigment
assemblages or concentrations

Pigment concentrations
Bio-optical water categories
Relative phycoerythrin concentrations

K. brevis relative bloom strength

Apparent Visible Wavelength

Res(A) measurements

HPLC pigments or
Chl a concentration from fluorescence

HPLC pigments
HPLC pigments
PE concentration

K. brevis absorption spectrum

Xi et al. 2015; 2017

Catlett and Siegel 2018;
Shaju et al. 2015; Torrecilla et al. 2011

Bracher et al. 2015; Kramer et al. 2022
Uitz et al. 2015
Taylor et al. 2013

Craig et al. 2006

Vandermuelen et al. 2020; Dierssen et
al. 2022

Methods of spectral inversion:
Spectral inversion and Gaussian

decomposition

ap(A) or ag(M)

Rrs(A)

Res(A)

Rrs(A)

Pigment concentrations or absorption

Contribution of phytoplankton groups to absorption

Pigment concentrations

as(A) and Chl a concentrations

HPLC pigments

Microscopic cell counts

HPLC pigments

In situ Rrs(A)

Aguirre-Gomez et al. 2001; Chase et al.
2013;

Hoepffner and Sathyendranath 1991,
1993; Liu et al. 2019;

Lohrenz et al. 2003;

Ye et al. 2019

Roesler et al. 2004
Chase et al. 2017; Wang et al. 2016

Pahlevan et al., 2020; Pahlevan et al.,
2021




Data Transformations

- Band math, derivative analysis, coordinate transformations (e.g., PCA, PLSR)
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Band ratios, wl correlations, lineheight methods
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Retrieval Algorithms
- Spectra as descriptors: optical indices, cluster analyses
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Applying Mixture Density Networks (MDN) to hyperspectral R,
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Retrieval Algorithms

- Spectra as references: optimization algorithms, linear matrix inversion

-> Semi-analytical algorithms
-> Definitions of basis vectors using either a library of spectra, or simulated
spectra/functions

For references categorized by the type of semi-analytic solution, see Table 4 in:

Review Progress in Oceanography 160 (2018) 186-212

An overview of approaches and challenges for retrieving marine inherent
optical properties from ocean color remote sensing

P. Jeremy Werdell™*, Lachlan I.W. McKinna®”, Emmanuel Boss®, Steven G. Ackleson®,
Susanne E. Craig™®', Watson W. Gregg', Zhongping Lee?, Stéphane Maritorena”,
Collin S. Roesler!, Cécile S. Rousseaux™"?, Dariusz Stramski’, James M. Sullivan,
Michael S. Twardowski®, Maria Tzortziou"™, Xiaodong Zhang"



Phytoplankton pigments drive spectral absorption features

Chlorophyll ¢
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But does the inversion problem become ill-posed?

.
a

normalized absorption

——Chl a
——Chl b

Chl ¢
——PSC
——PPC
——— PEB-rich PE
——PUB-rich PE

VvVi =21, 1.2, 0.85, 0.51, 0.37, 0.25, 0.11

400 1
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normalized absorption

VVi = 3.3, 1.3, 0.89, 0.55, 0.34, 0.16, 0.13, 0.11,
0.054, 0.041, 0.013, 0.0087, 0.0062, 0.0037
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Phytoplankton pigments estimated from ac-s absorption spectra
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Relative pigment values vary spatially

Chlorophyll b : Chlorophyll a
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Incorporating Gaussian functions into R, (A) inversion

u(i) = (1) + by (7).
u= umeas
rs(2)=g1u(A)+gau()*. g1 =0.0949 and g2 = 0.0794

(Gordon et al. 1988)

bop (1) +bpw (1)
ag (/L) +Aacpom (}.) +GNAp(;t) +aw().) + bbp ()) +bpw ()),

Umod().) .

> io: (Umeas (/li) = Umod(/l,')> 2 60 wavelengths

= Rs(4) L= U (A) between 400-600 nm
7 0.524+1.7R.(4) i=1 std \ /i

Lee et al. 2002 Chaseetal. 2017



Normalized R(A)

Pigments estimated from R.(A) spectra measured in situ
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But most pigments are correlated with Chla...
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Considerations of error, & going beyond Chl a

From Cael et al. (2020):

- Erroris the difference between having four to five DoF rather than >60, and the difference between
being able to meaningfully invert for four spectra versus 44

- Some errors such as random electronic noise can be reduced by averaging many measurements in
time or space. Others, such a bias in calibration, cannot.

- While all of the optical variation in the water cannot be said to fall along a single axis, it does appear
that much of the variation in the surface covaries with [Chl]. Thus, the interest in going “beyond
chlorophyll” can be considered an interest in deviations from this axis.

- Polarization will help better separate oceanic and atmospheric contributions to the total signal, and
UV will help better separate CDOM, NAP, and phytoplankton contributions to the oceanic signal.
These deviations are by definition second order—though we note emphatically that this does not
make them unimportant or uninteresting!

- Take home: Judicious use of available DoF; use basis vectors that are specific to your needs in the
case of a regional or tuned algorithm
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FIGURE 4 | Linear regression analysis between maximum line height and total cell counts (left) and between maximum line height and [Chl-a] (right); all data were
log-transformed before analysis. The black line represents the regression line with the corresponding equation, coefficient of determination (R?) and the sample size
(N). Samples with more than 50% Pseudo-nitzschia, diatoms, or dinoflagellates are shown in red, green, and blue, respectively. The shaded areas represent cell
counts and [Chl-a] associated with MLH below 0.0019, 0.0027, and 0.0038, respectively. .
Smith and Bernard, 2020
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How do/could you use hyperspectral measurements *"

in your research?

To study the spectral signature of different
optically active substance in estuarine and its
coastal region of different water bodies in Indian
region.

Derive phytoplankton taxa from a drone- improve
HAB monitoring/ inform aquaculture.

For an improved optical classification of
transitional waters, by providing more information
about the water types.

Above water radiometer (trios) for Atmospheric
correction and distinguishing phyto groups!

| would use hyperspectral measurements to
determine different phytoplankton functional
types - in order to link phytoplankton phenology to
phytoplankton type

To resample hyperspectral reflectance to satellite
wavelength settings (SRF) to do the match-up;

Resolving phytoplankton pigment signatures

To identify narrow spectral features;

Try and get rid of the Chl-a absorption
interference in phycocyanin absorption spectrum

Pe ©




Take-home messages:

The question is not as simple as “how much information can we
extract from hyperspectral measurements?”, but rather,

“which approaches and methods that take advantage of the added
information in hyperspectral measurements are relevant to my
research question(s)?”

With limited degrees of freedom in hyperspectral measurements
alone, consider the incorporation of other types of optical and/or
environmental data during algorithm development and application,
as well as spatial and temporal resolution requirements.
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Box 1. Satellite Sensors

AVIRIS: Airborne Visible/Infrared Imaging Spectrometer developed by
NASA’s Jet Propulsion Laboratory

CHIME: Copernicus Hyperspectral Imaging Mission for the Environment

CHRIS: Compact High Resolution Imaging Spectrometer aboard the European Space
Agency’s PROBA-1 satellite

DESIS: DLR (German Aerospace Center) Earth Sensing Imaging Spectrometer,
a hyperspectral sensor developed and operated collaboratively by the DLR and
Teledyne Brown Engineering

EnMAP: Environmental Mapping and Analysis Program, a German hyperspectral
satellite mission

HICO: Hyperspectral Imager for the Coastal Ocean, an imaging spectrometer that was
housed on the International Space Station

MODIS: Moderate Resolution Imaging Spectroradiometer, a key instrument aboard
NASA’s Terra and Aqua satellites

PACE: NASA's Plankton, Aerosol, Cloud, ocean Ecosystem mission

PRISM: Picosatellite for Remote-sensing and Innovative Space Missions, a technology
pathfinder mission of the Intelligent Space Systems Laboratory at the University of
Tokyo, Japan

PRISMA: Hyperspectral Precursor and Application Mission, a medium-resolution
hyperspectral imaging mission of the Italian Space Agency

SCIAMACHY: An ESA imaging spectrometer whose primary mission was to perform
global measurements of trace gases in the troposphere and stratosphere

SBG: NASA's Surface Biology and Geology mission (formerly HyspIRI)

TROPOMI: TROPOspheric Monitoring Instrument onboard the ESA Copernicus
Sentinel-5 Precursor satellite

Dierssen et al., 2020
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Figure 2. Bottom effects in shallow coastal waters may lead to inaccurate remote
sensing retrievals of bottom depth if limited spectral bands are utilized for analysis.
This figure shows modeled hyperspectral (solid lines) and multispectral (SeaWiFS
wavebands; circles) spectra for two water types, generated by the Hydrolight radia-
tive transfer model (Mobley, 1994). Water 1 (blue) is 6.5 m deep and has low chlo-
rophyll-a and CDOM concentrations with a bottom type of a mixture of soft coral
and Sargassum, while Water 2 (green) is 13 m deep, “pure water” with a flat green
sponge bottom type. By inspection of the hyperspectral spectra, the difference be-
tween the two curves is obvious in the 500-600 nm range. However, spectra for the
two water types produced using only the SeaWiFS wavebands appear almost iden-
tical. (SeaWiFS spectra in this figure were derived by applying the SeaWiFS spectral

response function to the hyperspectral signatures).
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FIGURE 3 | Narrowband features like chlorophyll fluorescence can be inaccurately estimated when using multi-spectral bands that are distant from the feature,
such as the blue bands used in the normalized fluorescence line height (nflh). Examples of (A) water-leaving Reflectance (Rw) spectrum with a typical chlorophyll
fluorescence feature and (B) a spectrum representative of high sediment water with no observable chlorophyll fluorescence leads to an erroneously high nflh.




