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Preface

Since the initial content went online in 2007, the Ocean Optics Web Book beginning at

https://www.oceanopticsbook.info/ has become a widely used resource for information on

optical oceanography and ocean color remote sensing. A number of Web Book users have

asked for a PDF version of the entire web site. Ask and ye shall receive.

History

The idea for a web book grew out of the 2004 Summer Course in Optical Oceanography

and Ocean Color Remote Sensing, which was taught at the University of Maine Darling

Marine Center. Funding to develop the website software and initial content was generously

provided by the Ocean Biology and Biogeochemistry Program of the National Aeronautics

and Space Administration. The first year of that work involved developing sophisticated

content-management software (called SiteTurbine, developed by Rainstorm Consulting)

that could convert LaTeX files into web pages. LaTeX was (and remains) the standard

software for creating printed documents with complicated mathematics. However, at the

start of the work, there was no software to conveniently convert a LaTeX file into web

pages that would display the mathematics on any computer system or browser. SiteTurbine

converted any symbol (such as a Greek letter) or equation into a PNG image, so that the

symbol or equation displayed properly on any web browser. The initial content (version

1.0) went online in time for use during the 2007 Summer Course at the University of Maine.

Many more pages were added over the next decade.

After a decade of use, SiteTurbine was showing its age. In particular, it did not sat-

isfy modern standards for web security and was no longer supported, and RainStorm

Consulting had sold its web development work of this type to Sozo Technologies. The

content-management software underlying the web site was therefore completely redone in

2019 and 2020 by Sozo Technologies. The present web book, which can be thought of as

the Web Book version 2.0, uses the Concrete5 content-management software and MathJax

for conversion of LaTeX files to web pages. Both of these are open-source software and

bring the web book up to modern standards.

Porting the Web Book content from its original host and software to the new platform

gave me the opportunity to review all of the content. I did that during 2020 and early 2021,

cleaning up archaic LaTeX code, bringing uniformity of notation to web pages written at
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different times (and sometimes by different authors), resizing figures as needed for viewing

on most monitors, and adding many new pages. Once that task was complete, the obvious

next step was to combine the new Web Book 2.0 content into the single PDF file that you

have before you.

The Ocean Optics Web Book is organized into topical chapters, with Level 1, 2, and

3 material within each chapter. The Level 1 web pages cover introductory and basic

material for the chapter topic. The intended audience is people new to the field and those

who want just a summary presentation of the subject matter. Level 2 provides an in-depth

examination of the Level 1 material at the level of texts such as Light and Water (Mobley,

1994) and Light and Photosynthesis in Aquatic Ecosystems (Kirk, 1994). The Level 3 pages

contain ancillary material such as links to the websites of commercial instrument makers,

tabulated numerical data, and software to be used for data processing.

This Level 1, 2, 3 format works well for a web site, but not for a printed text. I have

therefore in a few cases rearranged the order of the web pages when creating a PDF book

chapter, and I have omitted a few of the Level 3 Web Book pages. However, for the most

part, the chapters of the PDF book correspond to the chapters of the Web Book, and the

web pages within a Web Book chapter appear as sections within the PDF chapters.

Although this PDF book contains essentially the same material as the Web Book, some

features cannot be reproduced. In particular, some Web Book pages have animations or

video clips, or links to download data files or computer programs. In the PDF book, a

frame of an animation or video is used along with a note to see the online Web Book for

the animation or video, or a note to go online to download files.

Overview

Hydrologic optics is the quantitative study of the interactions of light with the Earth’s

oceans, lakes, rivers and other water bodies. Most of the scientific interest (and funding!)

in hydrologic optics is directed towards understanding light in the ocean, but the general

theory to be developed in this book is applicable to any water body, and in many cases

is applicable to any medium—a water body, the atmosphere, a sea of liquid methane on

Saturn’s moon Titan, or human tissue.

The development of the general theory requires many different concepts: radiometric

variables, inherent optical properties (IOPs), apparent optical properties (AOPs), and the

mathematical relations connecting them. The radiometric variables are various measures

of the light itself (how much light energy is present, what direction it is traveling, what

wavelengths are present). The IOPs describe the optical properties of the medium through

which the light propagates. In particular, IOPs describe how light is absorbed (light

energy is converted to other forms, such as heat or the energy in a chemical bond) and

scattered (how it changes direction and, perhaps, wavelength) when it interacts with the

medium. The equations of radiative transfer theory connect the various pieces and enable

the prediction of light propagation through a medium given the properties of the medium

and the light incident onto the medium.
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Figure 1 shows an “organization chart” with the most commonly used IOPs, AOPs,

radiometric variables, and their relationships. This chart serves as a road map for the

initial chapters of this book, which work through the various boxes in the figure until all of

the terms have been defined and illustrated by examples. The later chapters of the book

discuss applications of the basic concepts to problems such as remote sensing of the oceans

from satellites or the prediction of underwater visibility.

The 16 chapters develop the standard material of optical oceanography and remote

sensing of the oceans at visible wavelengths: radiometry, inherent and apparent optical

properties, absorption, elastic and inelastic scattering, the optical properties of sea water

constituents and of surfaces, radiative transfer and electromagnetic theory, remote sensing

and the associated atmospheric correction, and visibility. This is the material presented

in the famous summer classes in optical oceanography and ocean color remote sensing,

which I have helped teach since 1995. The 7 appendices contain more advanced and more

mathematical topics: Fourier transforms and their use in modeling sea surfaces given a

wave energy variance spectrum or autocovariance function, Monte Carlo simulation as a

way to compute radiances and irradiances, and the prediction of the appearance of an

object as seen through an absorbing and scattering medium like water. It can be argued

that some of these appendices cover material that is outside the domain of optics and

would be better placed in a text on physical oceanography. That may be true, but I had

to learn this material in order to carry out optical calculations such as the prediction of

reflectance and transmission of light by wind-blown sea surfaces, and the prediction of

underwater image degradation due to absorption and scattering. The existing literature

never—absolutely never—gave me enough detail to allow the writing of computer programs

to implement the general theory and, consequently, in some cases it took me of months

of frustration to get everything working exactly correctly in my computer programs. My

appendices present the relevant theory and in addition give the many details needed for

correct numerical calculations. I am unaware of any other publication that covers some

of these details. Believe me, if you ever have to write computer programs to model sea

surfaces or predict the appearance of an underwater object, you will be thanking me from

the bottom of your heart for including this material here.

The contents of the chapters and appendices are briefly summarized as follows:

Chapter 1, Light and Radiometry, defines the geometric and radiometric concepts

needed to describe light itself.

Chapter 2, Light Fields in Nature, illustrates radiometric variables and describes light

from blackbodies, the Sun, and bioluminescence.

Chapter 3, Inherent Optical Properties, defines and illustrates the inherent optical

properties, which describe the optical properties of the medium through which the

light propagates.

Chapter 4, Apparent Optical Properties, defines and illustrates apparent optical prop-

erties, which are hybrids of the inherent optical properties and the radiometric vari-

ables, and which also can be used to describe the medium.
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Chapter 5, Absorption, discusses the physics of absorption and how it is measured.

Chapter 6, Elastic Scattering, discusses the physics of scattering of light, and surveys

empirical data and models for scattering by particles, surfaces, and turbulence.

Chapter 7, Inelastic Scattering, discusses inelastic scattering processes in the ocean,

in particular Raman scattering by water and fluorescence by chlorophyll and colored

dissolved organic matter.

Chapter 8, Optical Constituents of the Ocean, surveys the optical properties of the

most important constituents of oceanic waters: the water itself, phytoplankton, dis-

solved organic matter, mineral particles, and air bubbles. Develops bio-optical models

for absorption and scattering, and discusses particle size distributions.

Chapter 9, Radiative Transfer Theory, derives the equations the govern light prop-

agation in the ocean.

Chapter 10, Radiative Transfer Solutions, derives several approximate analytical so-

lutions of the scalar radiative transfer equation.

Chapter 11, Maxwell’s Equations, discusses light as an electromagnetic phenomenon

governed by Maxwell’s equations. Wave propagation and dispersion are discussed in

detail.

Chapter 12, Mie Theory, describes Mie’s solution of Maxwell’s equations for light inci-

dent onto a homogeneous sphere. Example output and approximations to the exact

solution are presented.

Chapter 13, Surfaces, describes reflection and refraction by level and wind-blown sea

surfaces. Defines the bidirectional reflectance distribution function (BRDF).

Chapter 14, Ocean Color Remote Sensing, defines the basic concepts used in remote

sensing of the oceans at visible wavelengths.

Chapter 15, Atmospheric Correction, describes in detail the algorithms currently used

by NASA for atmospheric correction of radiances measured by satellite-borne sensors.

Chapter 16, Photometry and Visibility, describes the basic concepts of photometry,

human vision, and how visibility is predicted.

Appendix A, Fourier Transforms, collects the results from Fourier transform theory

needed for the appendices on sea surface modeling and image prediction.

Appendix B, Wave Variance Spectra, collects the results from the theory of wave

variance spectra for wind-blown sea surfaces as needed for the appendices on sea

surface modeling.

Appendix C, Modeling Sea Surfaces: Wave Variance Spectra Techniques, shows

how sea surfaces are modeled using wave variance spectra and Fourier transforms.

Appendix D, Modeling Sea Surfaces: Autocovariance Techniques, shows how sea

surfaces are modeled using autocovariance functions and Fourier transforms.
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Appendix E, Monte Carlo Simulation, reviews basic probability theory and its use

in Monte Carlo ray tracing to solve the radiative transfer equation.

Appendix F, Monte Carlo Ray Tracing, develops the mathematical techniques needed

for Monte Carlo ray tracing, including backward Monte Carlo techniques.

Appendix G, Image Prediction, develops the Fourier transform techniques needed for

the prediction of images seen through absorbing and scattering media.

Usage

It is intended that this book be viewed using a PDF viewer such as Adobe Acrobat.

However, the pages are formatted so that they can be printed double sided on 8.5 x 11

inch paper with extra space at the left margin for binding and with a layout typical of

printed texts. When viewed as a PDF, the equations, tables, and figures are numbered

and reference to them is displayed in blue. Bibliographic references are displayed in maroon.

If you place your cursor over a colored equation, table, or bibliographic reference, or on an

item in the table of contents or in the index, and click, the viewer will take you to the page

where the selected equation, table, figure, bibliographic reference, or index entry appears.

To return to the original position in the text, use “Alt” + the “left arrow” if you are using

Adobe Acrobat on a Windows system. (There is some variation here so your computer

may be different. Some computers require only the left arrow to return. On the MacOS

operating system use “command” + “left arrow” in Acrobat and “command” + “[” in the

Mac application Preview). Links to external websites are in green; clicking on a green link

opens the website.

Since this PDF book is created from almost the same LaTeX code as the Web Book

pages, it is my intention to update the PDF book occasionally as new web pages are added.

However, this PDF book is a retirement project for an old man who would rather spend his

last few good years sea kayaking or trekking in some distant land, so I make no guarantees

about future updates. However, please do send comments, corrections, and suggestions for

additional sections to curtis.mobley@gmail.com.

Curtis Mobley

The Computorium

Sammamish, Washington

Felix, qui potuit rerem cognoscere causas

(Happy is the person who understands the causes of things)

—Publius Vergilius Maro (Virgil) in Georgics, book 2, verse 490

mailto:curtis.mobley@gmail.com


Notation and Conventions

Vectors in 3-D space are denoted by bold face, e. g. x or E. Unit vectors in 3-D space

are given a “hat”, e.g., ẑ or ξ̂. Initial or unscattered directions are primed and final or

scattered directions are unprimed, e.g., initial direction ξ̂′ is scattered into final direction

ξ̂. The LaTeX “blackboard” font is used for 4× 1 and 4× 4 matrices, e.g., the 4× 1 Stokes

vector S and the associated 4×4 rotation (R) and Mueller (M) matrices. Latin letters that

are mathematical variables are italicized; unitalicized letters are abbreviations. Thus ξ̂i
is one of possibly many vectors, ξ̂i, i = 1, ...N , whereas ξ̂i might stand for an incident

direction onto a surface. Exceptions to this formatting follow standard mathematical

typesetting conventions, e.g. dy/dx for a derivative, rather than dy/dx, because dx and

dy can be viewed as differentials that represent single mathematical quantities. Likewise,

the x component of ξ̂ is written as ξx and not ξx because ξx represents a single variable.

Physical constants like the speed of light c and Planck’s constant h are by convention

italicized. I use the symbol , to denote “is defined as.”

Tables 1 to 3 list the symbols used throughout the book. The Reference column links

to the location of the definition, first usage, or where the term is discussed in detail. For

multiple uses of the same symbol, context should make the intended usage clear, e.g., c

for the speed of light versus c for the beam attenuation coefficient. Symbols used only

within one section are not shown. For additional symbols and historical usage, see Tables

1.4, 3.1, 4.1, 11.1, 15.1, A.1, and B.1. Table 4 lists the abbreviations and acronyms used

throughout the book.
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Symbol Definition Reference

a absorption coefficient §3.0.1

b subscript for backward (e.g., bb) §3.1.2

b scattering coefficient §3.0.1

bb backscattering coefficient §3.1.2

b̃b backscattering fraction (same as B) §3.1.2

c – beam attenuation coefficient §3.0.1

– speed of light in vacuo Tab. 1.1

d subscript for downward (e.g., Ed, Kd) §1.4.1.1

f temporal frequency §1.5.9

g asymmetry parameter of a phase function §3.1.3

h Planck constant Tab. 1.1

k angular wavenumber or spatial frequency §1.5.9

n̂ unit normal to a surface §13.1.1

n – real index of refraction §8.2.1.1

– number size distribution §8.12

p subscript for particles (e.g., ap, bp) §8.1

r geometric path length in direction of light propagation §E.2

r the value of a normally distributed random variable §F.3

u subscript for upward (e.g., Eu, Lu) §1.4.1.1

u the value of a uniformly distributed random variable §E.1

v – subscript for viewing direction (e.g., θv, φv) §1.4.1.1

– subscript for visual (e.g., Lv, Edv) §16.2

w subscript for water (e.g., aw, Lw) §3.4

w weight of a ray in Monte Carlo simulations §E.4

z – geometric depth §1.4.1.1

– sea surface elevation §C
ẑ Fourier transform of z §C
ẑ unit vector in the +z direction §1.4.1.1

Table 1: Lower case Latin letters used throughout the book. The Reference column gives

the location of first usage or of detailed discussion.
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Symbol Definition Reference

A absorptance §3.0.1

B backscattering fraction (same as b̃b) §3.1.2

Chl chlorophyll concentration §8.3

D discrete Fourier transform §A.3

E – irradiance §1.5.2

– electric field magnitude §1.6.2

E irradiance (in sections using E for the electric field) §11.3

E electric field vector §11.1, 1.6

F continuous Fourier transform §A.2

I – intensity §1.5.6

– first element of Stokes vector (same as L) §1.6.2

K diffuse attenuation function (e.g., Kd, KLu) §4.1

L radiance §1.5.1

M Mueller matrix §1.7.2

N a normal probability distribution function §E
Q – efficiency factor (e.g., Qa, Qb) §12.2

– energy §1.5.8

– second element of Stokes vector §1.6.2

R subscript for Rayleigh (e.g., LR) §12.5.1

R irradiance reflectance §4.2.1

R (4× 4) rotation (transformation) matrix §1.7.2

Rrs remote-sensing reflectance §4.2.2

S Stokes vector §1.6.2

T – temporal wave period §1.5.9

– temperature §2.3

U – wind speed §13.4

– third element of Stokes vector §1.6.2

U a uniform probability distribution function §E.1

V fourth element of Stokes vector §1.6.2

Table 2: Upper case Latin letters used throughout the book.
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Symbol Definition Reference

α azimuthal scattering angle in a local coordinate system §1.4.1.2, E.3, Fig. 1.21

β volume scattering function §3.1

β̃ scattering phase function §3.1.3

γ – instrument field-of-view half angle §1.5.1

– emission polar angle in Monte Carlo simulations §F.6

ζ optical depth in water §1.4.1.1

θ polar angle in a global (ocean) coordinate system §1.4.1.1

κ̃ complex wavenumber: κ̃ = κ′ + iκ′′ §11.3

λ wavelength of light in vacuo §1.3

µ – µ = cos θ §1.4.1.1

– slope parameter in particle size distributions §6.7

µ̄ average (mean) cosine of a radiance distribution (e.g., µ̄d) §4.3

ν spatial frequency, wavenumber §1.5.9

φ azimuthal angle in a global (ocean) coordinate system §1.4.1.1

ψ polar scattering angle in a local coordinate system §1.4.1.2, Eq. (9.3)

[ρw(λ)]ex
N exact normalized water-leaving reflectance §15.3

τ – optical path length in direction of light travel §E.2

– optical depth in the atmosphere §15.4

ξ̂ unit direction vector §1.4.1.1

ω angular temporal frequency 1.5.9

ωo albedo of single scattering §3.0.1

Ω solid angle §1.4.2

Table 3: Greek letters used throughout the book.
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Abbreviation Meaning Reference

AOP apparent optical property §4, Table 4.1

BMC backward Monte Carlo §E.7

BRDF bidirectional reflectance distribution function §13.6

BSF beam spread function §9.5.1

CDF cumulative distribution function §E.1

CDOM colored dissolved organic matter 8.4

CIE Commission Internationale de l’Eclairage 16.3

CZCS Coastal Zone Color Scanner §14

det subscript for detritus (e.g., adet) §8.1, 8.5.1

DFT discrete Fourier transform §A.3

FOV field of view §1.5.1

FFT fast Fourier transform §A.3

FWHM full width at half maximum §1.5.1

IOCCG International Ocean Color Coordinating Group §14

IOP inherent optical property §3
IR infrared §2.4.2

Lamb subscript for Lambertian (e.g., BRDFLamb) §13.7

lidar light detection and ranging §9.6

min subscript for mineral (e.g., amin) §8.5

MODIS MODerate-resolution Imaging Spectroradiometer §14

MODTRAN MODerate resolution atmospheric TRANsmission §15.1

NAP non-algal particles §8.1, 8.5

NASA National Aeronautics and Space Administration §15

NIR near-infrared §15.5

NIST National Institute of Standards and Technology §1.3

NOMAD NASA bio-Optical Marine Algorithm Dataset §4.1

OPBG Ocean Biology Processing Group §15

PAR photosynthetically available radiation §1.5.7

PDF probability distribution function §E.1

phy subscript for phytoplankton (e.g., aphy) §8.3

PSD particle size distribution §8.12

PSF point spread function §9.5.2

QSSA quasi-single scattering approximation §10.3

RGB red-green-blue §16.1

RSR remote-sensing ratio §13.8

RTE radiative transfer equation §9
SeaWiFS Sea-viewing Wide Field-of-view Sensor §14

SD subscript for Secchi depth (zSD) §16.7

SOS successive order of scattering §10.2.1

SRTE scalar radiative transfer equation §9.4

SSA single-scattering approximation §10.2

TOA top of the atmosphere §14.3.2, 15

UV ultraviolet §2.4.2

VIIRS Visible Infrared Imaging Radiometer Suite §15.3.2

VRTE vector radiative transfer equation §9.2.3

VSF volume scattering function §3.1

Table 4: Abbreviations and acronyms used throughout the book.
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CHAPTER 1

Light and Radiometry

This chapter begins the study of the radiometric variables section of the organization chart
of Fig. 1. The chapter opens with a brief history of how the nature of light has been
understood (or, more often, misunderstood) from ancient times until the present. The
following sections then develop the concepts of radiometry, the science of the quantitative
measurement and description of light. This requires discussion of how the direction of light
propagation is specified. Then the concepts of radiance and irradiance are developed, first
for unpolarized light, and then for polarized light. The next chapter will show examples of
the radiances and irradiances defined in this chapter.

1.1 A Brief History of Light

Writing this section is a no-win effort. No matter what I say about the “nature of light” or
the question “What is a photon?”, there will be those who tell me (quite correctly!) that
I am wrong. However, the question “What is light?” is perfectly legitimate and deserves
discussion, even if, as will be seen, there is no answer in everyday, human, classical physics
terms.

This section is structured as a chronological “history of light” organized around the
debate about whether light is a particle or a wave. Some of the milestones in our under-
standing of light warrant just a sentence or two; others will be discussed in some detail.

Ancient Egypt: Light is “ocular fire” from the eye of the Sun God Ra.

Ancient Greece: Democritus (c. 500 BCE) speculated that everything, light
and the soul included, is made of particles, which he called atoms. Other
Greeks thought that light was rays that emanate from the eyes and return with
information. I haven’t seen any explanation of how they explained why everyone’s
eyes quit emanating rays when the Sun went down, or when a person entered a
dark cave. Somewhat later, Aristotle thought that “light is the activity of what is
transparent.” In his view, light is a “form,” not a “substance.” I don’t know if he
thought that things became nontransparent when it got dark at night.

1
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Ancient China: Mo Zi (c. 468 - c 391 BCE) discovers basic rules of optics. At
about the same time as Democritus, the Chinese scholar Mo Zi worked out many
of the basic concepts of optics including the rectilinear propagation of light; how
plane, concave, and convex mirrors reflect light; and how a pinhole camera creates
an image, as seen in Fig. 1.1. Unfortunately, much of his writing in the Book of Mo
Zi (compiled by his disciples) is fragmentary and he is almost unknown in the West.
Wu et al. (2015) give a brief history of optics in ancient China.

Figure 1.1: Pinhole camera as understood
by Mo Zi. The characters mean Sun. Fig-
ure reproduced from Wu et al. (2015).

c. 1000 CE: Ibn al-Haytham: Light is rays that travel in straight lines. Lit-
tle known today in the West, Ibn al-Haytham (965-1039; Latinized as Alhazen) was
something of an Arab Isaac Newton. He wrote a seven-volume Book of Optics (as well
as many other works on astronomy, mathematics, medicine, philosophy, and theol-
ogy). He clearly understood the “scientific method” and he based his conclusions on
observation and clever experiments, rather than on abstract reasoning. He disproved
the Greek idea that light emanates from eyes, and he showed that light travels in
straight lines.

Late 1600s: Newton: Light is particles. Isaac Newton conducted a series of exper-
iments in the late 1600’s which, among other things, showed that white light is a
mixture of all colors. This directly contradicted Aristotle, who claimed that “pure”
light (like the light from the Sun) is fundamentally colorless. Because he was able to
separate while light into colors with a prism, and because light did not seem to travel
around corners (as do sound waves), Newton concluded that light must be made
of particles, which he called “corpuscles.” He published his results in his treatise
Opticks in 1704. Newton’s particle explanation of refraction required light to travel
faster in water than in air, and his explanation of “Newton’s rings” (easily explained
by wave interference) was rather incoherent (pun intended). In spite of a few errors
like these, Newton was a pretty good scientist and Opticks is one of the seminal books
of science.

1676: Ole Rømer measured speed of light by timing eclipses of Jupiter’s moon Io.

1678: Christiaan Huygens published the first credible wave theory of light. Part
of his theory says that at each moment each point of an advancing wave front serves as
a point source of secondary spherical waves emanating from that point. The position
of the wave front at a later time is then the tangent surface of the secondary waves
from each of the point sources. This known as Huygen’s principle.

1803: Young: Light is waves. In 1803 Thomas Young conducted a classic experiment
(published in 1807) in which coherent light was incident onto two narrow parallel
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slits in an opaque screen as illustrated in Fig. 1.2. According to Huygen’s principle,
each slit is the source of secondary waves, which then interfere with each other as
they propagate further. The light that passed through the slits formed an inter-
ference pattern on a viewing screen, just as do water waves passing through holes
in a board. This is easily explained by assuming that light is a wave phenomenon.
Young’s double-slit experiment was taken as conclusive proof that light is a wave and
that Newton was wrong. As will be seen below, this conceptually simple double-slit
experiment will reveal one of the most profound mysteries of light.

Figure 1.2: The essence of Young’s double-slit experiment. Coherent means that the
monochromatic incident light has the wave crests “in step.” The blue lines show the points
along which the crests of the red light waves add together to create bright bands on the
viewing screen.

1819: Poisson, Fresnel, and Arago: Light is waves. In 1818, Augustin-Jean Fresnel
presented a new theory of diffraction. Siméon Poisson, who favored Newton’s cor-
puscular theory of light, analyzed Fresnel’s equations and concluded that if they were
correct, then the shadow of a sphere illuminated by a point light source would show
a spot of light at the center of the shadow. Poisson considered this an absurd result,
thereby disproving Fresnel’s assumption of the wave nature of light. However, when
Dominique Arago did the experiment, the spot was there just as predicted, as seen
in Fig. 1.3. Poisson conceded. This point of light is now known as Fresnel’s spot,
Arago’s spot, or—no doubt to his chagrin—Poisson’s spot. Again, as in Young’s
experiment, light must be understood as a wave.

1865: Maxwell: Light is electric and magnetic fields propagating as a wave. In
1865 James Clerk Maxwell published A Dynamical Theory of the Electromagnetic
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Figure 1.3: Fresnel’s Spot at the center of
the shadow of a 2 mm diameter sphere at a
distance of 1 m from the sphere. The sphere
was illuminated by a 633 nm laser. Image
from Wikipedia

Field in which he tied together electric and magnetic fields via his famous equations.
He then showed that each component of the electric and magnetic fields obeys a
wave equation with a speed of propagation numerically equal to that of light. He
concluded “This velocity is so nearly that of light that it seems we have strong rea-
son to conclude that light itself (including radiant heat and other radiations) is an
electromagnetic disturbance in the form of waves propagated through the electromag-
netic field according to electromagnetic laws.” (This has to be one of the greatest
sentences ever written.) Maxwell’s equations are discussed in Chapter 11.

late 1880s: Hertz: Discovery of radio waves. Between 1886 and 1889 Heinrich Hertz
conducted a series of experiments designed to test Maxwell’s predictions of propa-
gating electromagnetic waves. In these experiments Hertz discovered what are now
called radio waves, and he also discovered the photoelectric effect.

Young’s double-slit experiment, Arago’s confirmation of the Fresnel diffraction pre-
dictions, and Hertz’s confirmation of Maxwell’s predictions of propagating electro-
magnetic waves were sufficient to convince everyone that light is a wave. Newton was
clearly wrong, and the matter seemed settled once and for all.

late 1800s: Blackbody radiation. One of the final problems of late nineteenth century
physics was to explain the spectral distribution of energy emitted by a “blackbody.”
Attempts to do this using Maxwell’s concept of electromagnetic radiation led to the
prediction that a blackbody would emit an infinite amount of energy as the frequency
increased. This unphysical result was called “the ultraviolet catastrophe.”

1901: Planck: The idea that light is quantized. Max Planck was able to derive the
formula for the blackbody radiation spectrum 2.3, but only if he assumed that light
comes in discrete packages, or “quanta.” He had to assume that the energy E of each
light quantum is proportional to its frequency f or wavelength λ according to

E = hf =
hc

λ
.

https://en.wikipedia.org/wiki/Arago_spot#cite_note-fresnel1868-11
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The proportionality constant h, which occurs both in this equation and in Planck’s
formula for the energy distribution of blackbody radiation, was a free parameter that
was adjusted so that Planck’s blackbody spectrum would fit the measurements. The
parameter h is now called Planck’s constant and is one of the fundamental physical
constants. Planck himself could not say why the radiation in the blackbody cavity
should come in discrete pieces and, at the time, he thought that this assumption
was perhaps just “a mathematical artifice.” Planck received the 1918 Nobel Prize in
Physics for this work; the Nobel citation credits him with the “discovery of energy
quanta.” His discovery was the beginning of modern physics.

1905: Einstein: showed that light really is quantized and is absorbed in discrete
amounts. The photoelectric effect discovered by Hertz can not be explained if light
comes in continuous waves as proposed by Maxwell. Albert Einstein was able to
explain the photoelectric effect by assuming that light does indeed come in discrete
packages as hypothesized by Planck and that these quanta are absorbed (or emitted)
“all at once,” rather than being “soaked up” bit by bit as a continuous light wave
arrives at the surface of the photoelectric material. In other words, Einstein claimed
that energy quanta were real physical quantities, and not just a mathematical trick.
As he worded it in his 1905 paper, “Energy, during the propagation of a ray of light,
is not continuously distributed over steadily increasing spaces, but it consists of a
finite number of energy quanta localized at points in space, moving without dividing
and capable of being absorbed or generated only as entities.”

Einstein’s claim that light comes in discrete packets was not well received at the time
because the wave theory of light was so well established and had been so successful
in most applications—blackbody radiation and the photoelectric effect being the
exceptions. In the same year, Einstein also published his famous paper presenting
the special theory of relativity; an explanation of Brownian motion, which helped
established the reality of atoms at a time when many scientists still did not accept
their existence; and a paper presenting the equivalence of mass and energy via his
most famous equation, E = mc2. His claims of light as particles, the mixing of
time and space, matter as particles, and the equivalence of matter and energy would
have relegated Einstein to the realm of crackpots had his radical ideas not been so
successful in explaining so many physical phenomena. When he received the Nobel
Prize in 1921 special relativity was still so controversial that the award was given to
him for “his discovery of the law of the photoelectric effect.”

1923: Compton scattering: light is a particle. In 1923 Arthur Compton did an
experiment in which he bombarded electrons with x-rays. Figure 1.4 shows the basic
idea. Compton found that the incident x-ray wavelength λ′ and the wavelength λ
of the scattered x-ray were related to the mass of the electron m and the angle θ
of the scattered x-ray from the initial direction by the formula seen in the figure.
This formula is derived by assuming that the x-ray is a particle of zero rest mass
and energy given by Planck’s formula E = hf , and then applying the equations for
relativistic conservation of energy and momentum.

Compton scattering cannot be explained by a wave theory of light. This result there-
fore was taken to be direct experimental evidence that light is a particle. Compton
received the 1929 Nobel Prize in Physics for this work.
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Figure 1.4: Compton scattering. The left panel shows an x-ray quantum approaching a
stationary electron (the blue dot). The right panel shows the scattered x-ray and electron.

1926: The name “photon” was coined by the chemist G. N. Lewis to describe a
hypothetical particle that transmitted energy from one atom to another. The word
caught on as a name for Einstein’s quantum of energy, although that is not what
Lewis intended.

The 1910s to 1930s: The development of quantum mechanics. These decades
were a time of great excitement (and confusion!) in physics. On the one hand,
there were convincing experiments showing that light is a wave: Young’s double-slit
experiment, Fresnel’s spot, and Hertz’ discovery of electromagnetic waves just as
predicted by Maxwell’s wave theory of light. On the other hand, there were equally
convincing experiments showing that light must be a particle of some kind: the pho-
toelectric effect, Compton scattering, and the need to assume light quantization in
order to explain blackbody radiation.

The physics vocabulary now began to include phrases such as “the wave-particle
duality of light” (and, indeed, of all matter). The idea is that light has both wave
and particle properties and that you detect one or the other depending on the type
of measurement being made. That is, if you set up an experiment that is designed
to detect wave properties (e.g., a double-slit apparatus), then you will detect light
as a wave. But if you set up an experiment that absorbs or emits light (e.g., the
photoelectric effect), then you will detect it as discrete quanta or particles. You will
also see statements such as

• Light behaves as a wave at macroscopic scales (e.g., in a laboratory interference
experiment), but it behaves as a particle at atomic scales (e.g., in Compton
scattering).

• Light behaves as a wave at low energies (no radio engineer ever talks about
radio photons, just radio waves), but it behaves as a particle at high energies
(those working with gamma rays always talk about gamma-ray photons, never
gamma-ray waves).

• Light propagates as a wave (according to Maxwell’s equations), but it inter-
acts with matter as a particle (e.g, in the photoelectric effect or in Compton
scattering).

There is an element of truth to all of these statements, but they also all oversimplify
the true nature of light by forcing it to fit into classical categories of wave or particle.
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During these decades the great physicists Bohr, Schrödinger, Heisenberg, Pauli, Dirac
and many others developed an entirely new kind of physics—quantum mechanics—
to describe the internal workings of atoms. This quantum mechanics is a theory of
how matter behaves at the atomic scale. Energy levels in atoms and molecules are
quantized, and atoms and molecules therefore absorb and emit energy only at specific
frequencies determined by differences in the quantized energy levels of each kind of
atom or molecule. Electromagnetic radiation was thus absorbed or emitted only at
the discrete frequencies determined by the quantized energy levels of matter, but the
radiation itself did not need to be treated as inherently quantized. A good layman’s
history of this era is Thirty Years that Shook Physics (Gamow, 1985).

1946: An unexpected result in the Hydrogen spectrum. Willis Lamb and Robert
Retherford measured an extremely small difference in the energies of the 2S1/2 and
2P1/2 states of the Hydrogen atom (see the the Physics of Absorption, Section 5.3
for a discussion of energy levels and this notation). This energy difference corre-
sponds to a wavelength of about 30 cm, which is in the microwave region of the
electromagnetic spectrum. Now known as “the Lamb shift,” this difference in en-
ergy levels could not be explained either by the non-relativistic quantum mechanics
of Schrödinger and Heisenberg, or by the relativistic quantum mechanics developed
by Dirac. This experiment was one of the driving forces behind the development of
quantum electrodynamics. Lamb received the Nobel Prize in 1955 “for his discoveries
concerning the fine structure of the hydrogen spectrum.”

late 1940s: The development of Quantum Electrodynamics (QED). In QED, light
is particles, but very strange particles they are. In part to explain the Lamb shift,
Richard Feynman, Julian Schwinger, Shinichiro Tomonaga, and several others devel-
oped what is now known as Quantum Electrodynamics or QED. Feynman, Schwinger,
and Tomonaga shared the 1965 Nobel Prize in Physics for their development of QED.
In this theory, the electromagnetic field itself is quantized. Moreover, in QED the
electric field of an electron, for example, is caused by the electron spontaneously
emitting and reabsorbing enormous numbers of energy quanta, which are called vir-
tual photons. These photons are called virtual photons because they are associated
with undetectable energy states of the electron-photon system.

The Heisenberg uncertainty principle can be written as ∆t∆E ≥ h/(4π). To detect an
energy change of size ∆E, you must observe the system for a time ∆t that is greater
than h/(4π∆E). The emission of a virtual photon of energy ∆E by an electron
violates conservation of energy, but this is allowed by the Heisenberg uncertainty
principle so long as the virtual photon is reabsorbed within a time of ∆t < h/(4π∆E).
That is, you can violate conservation of energy so long as you don’t do it long enough
to get caught. Or in another view, you are not really violating conservation of
energy if the violation isn’t observable. A photon can travel a distance c∆t before
it is reabsorbed by the electron. Thus low energy virtual photons with a small ∆E
can live longer and “reach out” farther from the electron before reabsorption than
can higher energy virtual photons, which exist for a shorter time. This gives rise
to the 1/distance2 strength of the classical electrical field as seen in Coulomb’s law.
Similarly, a photon can turn into an electron-positron pair so long as the electron and
positron reunite before the time limit imposed by Heisenberg’s relation. Note that the
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emission of virtual photons is a different process than the emission of photons when
an atom changes energy levels and emits a photon with energy equal to the difference
of the atomic energy levels. In that case, there is no energy violation, Heisenberg’s
relation does not come into play, and the emitted photon can live forever (or until it
is absorbed by a different atom somewhere else).

In QED, a charged particle is surrounded by a cloud of virtual photons, which are
constantly flickering into and out of existence. When two charged particles approach
each other, some of these virtual photons are exchanged between the particles, which
is what gives the repulsive or attractive force of between the particles. The electric
force is said to be “mediated” (i.e., transmitted) by the exchange of virtual photons.
(In modern physics, all “action at a distance” forces (except perhaps gravity) are
mediated by some type of particle. For electric forces the particles are photons.)
Indeed, even “empty space” is seething with virtual particles that come into existence
and then promptly disappear.

QED is able to explain the Lamb shift because the 2S1/2 and 2P1/2 states interact
slightly differently with the cloud of virtual photons surrounding the hydrogen nucleus
and electron. This quantitative explanation of the Lamb shift was one of the first
tests of QED. There have been many more since, and some of QED’s predictions
agree with experiment to within about one part in 1012. QED is therefore considered
the most successful and well tested theory in physics, and it is the starting point for
all of elementary particle physics.

late 20th century: The Fundamental Mystery: single-photon interference in
a double-slit experiment. The interference patterns seen in Young’s double-
slit experiment can be understood in terms of classical wave theory when the in-
cident light is a coherent wave. But what happens if only one photon at a time
is incident onto the double-slit screen? Amazingly, you still get the same inter-
ference pattern! It takes longer to build up the pattern one photon at a time,
but after many photons have been detected (e.g., on a CCD array), the pattern
becomes obvious. There is an excellent video of an 1981 verification of this per-
formed at Hamamatsu Photonics K.K., a company that makes optical sensors and
instruments. This video is on the Hamamatsu web site and also on Youtube at
https://www.youtube.com/watch?v=I9Ab8BLW3kA. This video is well worth ten
minutes of your time. It also shows how the experiment was actually conducted. (I
don’t know who first did an experiment like the one on the Hamamatsu web site.
However, in 1909 G. I. Taylor conducted an experiment in which he showed that a
very faint light source, equivalent to “a candle burning at a distance slightly exceeding
a mile,” gave interference fringes.)

Figure 1.5 shows four frames from the Hamamatsu video. In Fig. 1.5(a), photons
have been collected one at a time for 3 minutes. Only about two dozen photons have
been detected, and the pattern of dots, showing where each photon was detected on
the detector screen (as illustrated in Fig. 1.2) appears to be random. A few minutes
later (panel b) more photons have been detected, but no pattern is yet obvious.
However, after 25 minutes (panel c) enough photons have been detected that an
interference pattern is taking shape. After 6 hours, the pattern of individual photon
detection locations clearly shows exactly the same interference pattern as is obtained

https://www.hamamatsu.com/us/en/our-company/history/index.html
https://www.youtube.com/watch?v=I9Ab8BLW3kA
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for a bright source of coherent monochromatic light.

Figure 1.5: Locations of photon detections on the observing screen of a double-slit appa-
ratus showing the build-up of an interference pattern by single photons. Frames captured
from the Hamamatsu video.

In classical wave theory (such as in Young’s original experiment), part of the incident
wave passes through each slit, and each slit then becomes a point source for waves that
propagate further (Huygen’s principle) and interfere with each other as illustrated
in Fig. 1.2. The fact that single photons also show interference patterns
after enough are collected implies that the individual photons must also
simultaneously pass through both slits and then interfere with themselves!
Indeed, if you modify the experiment so that the photon can pass through just one
slit, or that you can in some way even know which slit it went through, then the
interference pattern disappears. The fact that single photons show an interference
pattern is so surprising and incomprehensible from the viewpoint of classical physics
that the great physicist and teacher Richard Feynman called this “The Fundamental
Mystery” (of quantum mechanics). There is no explanation for this other than to
say “this is just how photons behave.”

There are two utterly profound consequences of single-photon interference:

• We are forced to abandon the idea that photons are localized particles
in the classical sense of having a well-defined (even small) size. A localized
particle could not pass through both slits at the same time and then interfere
with itself.

• We are forced to abandon the idea that photons take a particular path
from one point to another. In QED calculations (using so-called Feynman

https://www.hamamatsu.com/us/en/our-company/history/index.html
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path integrals), a photon simultaneously takes all possible paths from one point
to another. Only after all of the calculations are done for all possible paths and
the results for the different paths are combined does the final result look like
the classical idea of a light ray traveling from one point to the next by a single
path.

For a photon, concepts like size, position, and path are undefined and meaningless.
All you can say is that a photon was created at point A (e.g., at a spot on the surface
of a tungsten filament in a light bulb) and it was detected at point B (e.g., at a
particular pixel of a CCD array). You can nothing about the path it took from A
to B. (In quantum mechanics, there is no position operator for photons, as there is
for material particles like electrons. Instead, photons have creation and annihilation
operators, which create and destroy them.)

To make matters even more mysterious, material particles such as electrons and
atoms also display the same interference behavior as light in a double slit apparatus.
Single-electron interference was first demonstrated in 1989 (Tonomura et al., 1989).
The interference patterns in their experiment look exactly like the ones in Fig. 1.5,
except that the points show where the individual electrons were detected rather than
where individual photons were detected. This experiment has since been repeated
with molecules of more than 800 atoms and molecular weights greater than 104

amu (Eibenberger et al., 2013). These experiments are strong verifications of the
correctness of quantum mechanics as currently formulated.

Feynman wrote a delightful and highly recommended book, QED: The Strange Story
of Light and Matter (Feynman, 1985). This book explains, as only Feynman can,
the fundamental ideas of QED without the math. He clearly considers light to be
particles. For example, (on page 15 of my edition) he states “It is very important to
know that light behaves like particles, especially for those of you who have gone to
school, where you were probably told something about light behaving like waves. I’m
telling you the way it does behave—like particles.” However, he also shows that these
mysterious particles actually do take all possible paths from one point to another.
Thus a photon goes through both slits because each slit is a possible path from the
point of the photon’s creation to the point where it is detected. (If you want to see
the mathematical horrors of how QED calculations are performed, the best book I’ve
found is Introduction to Elementary Particles (Griffiths, 2008). However, that book
presumes you have spent some serious years in physics and math classes.) In 1979
Feynman also delivered a series of non-technical lectures on QED at the University of
Auckland, which were the origin of his QED book. These are well worth viewing and
are on-line in various places, e.g., at http://www.vega.org.uk/video/programme/45.

Most physicists today seem quite happy talking about photons as one member of the
pantheon of “elementary particles.” In their language, photons are zero-rest-mass,
stable, spin-one bosons, which always travel at the speed of light and have energy
q = hc/λ, momentum of magnitude p = h/λ, and angular momentum of magnitude
` = h/(2π).

However, some people view things differently. Willis Lamb, of Lamb shift fame, wrote
a paper “Anti-photon” (Lamb, 1995) in which he states “In his [the author Lamb’s]
view, there is no such thing as a photon. Only a comedy of errors and historical

http://www.vega.org.uk/video/programme/45
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accidents led to its popularity among physicists and optical scientists. There are
good substitute words for ‘photon’, (e.g., ‘radiation’ or ‘light’)....” In closing he
says, “It is high time to give up the use of the word ‘photon’, and of a bad concept
which will shortly be a century old. Radiation does not consist of particles, and
the classical, i.e., non-quantum, limit of QTR [the quantum theory of radiation, or
QED] is described by Maxwell’s equations for the electromagnetic fields, which do
not involve particles.”

Lamb’s paper is worth reading, and he makes some valid points. However, I’m afraid
his battle to banish the word “photon” is lost. It is just too convenient. Biologists
are going to continue to measure the light available for photosynthesis in units of
photons per square meter per second. One einstein is going to retain its definition as
“one mole of photons.” Optica (previously called The Optical Society of America)
is going to continue to publish Optics & Photonics. (Indeed, that magazine devoted
the entire issue of October 2003 to six articles on the topic of “What is a Photon?”)
It certainly would have been fun to get Lamb and Feynman together in a room and
watch them argue about the reality or non-reality of photons. Perhaps the greatest
danger inherent in the use of the word “photon” is that it makes it easy to think
of light as little balls of energy behaving like particles in the every-day sense, which
simply is not correct, as we have seen above.

My own concession to Lamb and to the inability to say that a photon takes a par-
ticular path from point A to point B is that my Monte Carlo codes no longer “trace
photons;” they now “trace rays.” The concept of a light ray is well accepted in the
limit of geometrical optics, and all camera lenses are designed with sophisticated ray
tracing codes that give perfectly good predictions of what light does, as do my Monte
Carlo codes. My Monte Carlo calculations remain unchanged, I’m just more careful
in describing what they do.

The present day: Enough has been said. The above discussion has reviewed the long
and confused history of ideas about the nature of light. Our understanding of light
has gone through “It’s a particle.”; “No, it’s a wave.”; “No, it’s simultaneously both
a particle and a wave.”; and finally “It’s neither a particle nor a wave; it’s some-
thing much more mysterious.” This whole business reminds me of Nargarjuna’s
Tetralemma in Buddhist philosophy. In Western philosophy we think of a statement
as being either true or false. But the Buddhist philosopher Nargarjuna (c. 100 CE)
posited the tetralemma that a statement can be true, or it can be false, or it can be
both true and false at the same time, or it can be neither true nor false.

Planck at the close of his 1918 Nobel Prize lecture raised a fundamental question:

“What becomes of the energy of a photon after complete emission? Does
it spread out in all directions with further propagation in the sense of
Huygens’ wave theory, so constantly taking up more space, in boundless
progressive attenuation? Or does it fly out like a projectile in one direction
in the sense of Newton’s emanation theory? In the first case, the quantum
would no longer be in the position to concentrate energy upon a single
point in space in such a way as to release an electron from its atomic
bond, and in the second case, the main triumph of the Maxwell theory

https://www.nobelprize.org/prizes/physics/1918/planck/lecture/
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— the continuity between the static and the dynamic fields and, with
it, the complete understanding we have enjoyed, until now, of the fully
investigated interference phenomena — would have to be sacrificed, both
being very unhappy consequences for today‘s theoreticians.

Be that as it may, in any case no doubt can arise that science will master the
dilemma, serious as it is, and that which appears today so unsatisfactory
will in fact eventually, seen from a higher vantage point, be distinguished
by its special harmony and simplicity. Until this aim is achieved, the
problem of the quantum of action will not cease to inspire research and
fructify it, and the greater the difficulties which oppose its solution, the
more significant it finally will show itself to be for the broadening and
deepening of our whole knowledge in physics.”

As Planck predicted, science has learned much more about the nature of light and
the role it plays in the universe, and the mystery of how photons behave continues to
deepen (just Google “photon entanglement”). The word “photon” has itself evolved
to mean different things to different people, as reviewed by Kidd et al. (1989). In
any case, we still cannot say what light or a photon is in everyday language. We
can only describe what it does. This situation is really no different from that of the
electron. No one has any idea or model of what an electron “really is,” but that does
not prevent electrical engineers from using the known properties of electrons to light
our homes and run our computers.

I’ll close this review with two quotes

“All the fifty years of conscious brooding have brought me no closer to the
answer to the question: What are light quanta? Of course today every
rascal thinks he knows the answer, but he is deluding himself.” —Albert
Einstein, quoted in Zajonc (2003)

“No one knows what a photon is, and it’s best not to think about it.”
—Attributed to Richard Feynman

1.2 Measuring Radiant Energy

The normal human eye is a sensitive detector of radiant energy, and it has an extremely
wide dynamic range (the ratio of maximum to minimum detectable signal). However,
the precise work of hydrologic optics requires a more objective means of measuring the
flow of radiant energy. Two main classes of light detectors have been developed to detect
and measure radiant energy: thermal and quantum detectors. Thermal detectors measure
the energy of the detected photons. In thermal detectors, radiant energy is absorbed
and converted into heat energy, and the detector responds to the consequent change in
temperature of the absorbing medium. Thermal detectors include ordinary thermometers,
thermocouples, bolometers, and pyranometers. Quantum detectors respond to the number
of incident photons, rather than to the cumulative energy carried by the photons, although
the photon energy generally affects detector performance. Quantum detectors include
photographic film and various photovoltaic, photoemissive, and photoconductive detectors.
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A brief description of the latter three detectors, collectively called photoelectric devices, is
worthwhile.

A. E. Becquerel discovered the photovoltaic effect in 1839 in a liquid electrolyte contain-
ing two immersed electrodes connected through a galvanometer. When one of the electrodes
was irradiated by sunlight, a current flowed through the circuit. This arrangement is now
called a photovoltaic cell, and the current is measured by a current meter included in the
circuit. When no light is incident on the electrode, no current flows. Generally, the greater
the number of photons incident on the electrode element of the cell, the greater is the
ensuing current in the circuit, which is the foundation for using a photovoltaic cell as a
light meter.

The photoemissive effect (often called the photoelectric effect) was discovered in crude
form in 1887 by Hertz in the very same experiment in which he verified the existence
of electromagnetic waves. The basic photoemissive cell consists of an evacuated tube
containing a negatively charged electrode (the photocathode, usually made of an alkali
metal such as cesium, sodium, or potassium) and a positively charged electrode (the anode).
When light is incident on the photocathode, the photons dislodge electrons from the surface
of the electrode. These photoelectrons are drawn across a gap to the anode, thus generating
a current in a series circuit containing the cell, a current meter, and a seat of electromotive
force, which replenishes the supply of electrons on the photocathode and maintains the
potential difference across the electrodes. In principle, no current would flow if no light
were incident on the photocathode, but in practice a small dark current flows because of
electrons spontaneously emitted by random thermal motions in the cathode.

A photomultiplier tube (PMT) is a specialized photoemissive cell. Rather than having
only one photocathode and one anode, a PMT has a series of anodes (called dynodes), each
of which is held at higher positive voltage that the previous one. The electrons liberated
from the photocathode by the incident light are attracted to the first dynode. When these
original electrons strike the first dynode, they knock loose additional electrons, which are
then attracted to the second dynode. The electrons striking the second dynode liberate
still more electrons, which are attracted to the third dynode, and so on. This electron
cascade enables a PMT to greatly amplify (typically by a factor of one million) the current
which would result from the photoelectrons alone. Commercially available PMT’s have
up to 15 dynodes and are extremely sensitive light detectors. However, PMT response is
very sensitive to temperature, the response is not stable with time (owing to changes in
the dynodes caused by electron bombardment), and stable high-voltage power supplies are
required for operation. For these and other reasons, PMT’s have been supplanted in many
oceanographic instruments by solid-state detectors.

It was found experimentally in 1873 that the electrical conductivity of the metal sele-
nium increases when light falls upon it. This effect can be exploited for measuring radiant
energy by constructing a series electrical circuit consisting of the selenium (or a similarly
behaving substance), a seat of electromotive force (e.g. a battery), and a current meter.
The greater the number of photons falling on the photoconductive cell containing the se-
lenium, the greater is the cell’s conductivity, hence the greater is the current flowing in
the circuit. Some dark current flows even if no light is incident on the cell, since the
photoconductive substance has a nonzero conductivity even in the absence of light.

Semiconductor diodes can serve as light detectors, in which case they are called pho-
todiodes. For example, in a typical pn-junction silicon photodiode, light incident on the
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junction frees electrons from the silicon atoms (but does not eject the electrons from the
diode). The resulting positively charged silicon ions are held fixed in position by the crystal
lattice, whereas the free electrons can move in response to an applied electromotive force.
These electrons thus generate a current when the photodiode is included on a series circuit
with a seat of electromotive force and a current meter. The diode thus functions as a
photoconductive cell. Note that a photodiode does not amplify the photocurrent as does
a PMT, and consequently photodiodes are much less sensitive detectors than are PMTs.
However, photodiodes have good stability, are easy to calibrate, require little power, and
are quite rugged and inexpensive.

When operated as light detectors, diode junctions have the external electromotive force
applied so as to separate the photoelectrons and their parent ions, thus generating the
measured current. However, if the electrons are allowed to recombine with the ions, then
photons are emitted from the junction. These photons have the same energy as the pho-
tons required to liberate electrons from the semiconductor atoms. When operated in this
fashion, the diode is called a light-emitting diode (LED). LED’s have the same general
characteristics (stability, low cost, etc.) as photodiodes, and are often employed as light
sources in oceanographic instruments (such as beam transmissometers) that require an
internal light source.

Another type of photoelectric detector is the charge-coupled device (CCD), which is the
heart of modern electro-optic cameras (digital cameras and camcorders). CCD’s consist
of linear or area arrays of small (of order 10 µm diameter) spots of silicon. When light
is incident on the array, electrons are released from each silicon spot in proportion to the
radiant energy falling on the spot. The charge released by each spot is measured. Since the
location of the silicon spots is accurately known, the pattern of released charge provides a
map of the energy falling on the CCD array. When coupled with a standard camera lens,
a CCD array (replacing the normal film) can record an image of the scene seen by the
camera.

Theoretical understanding of the photoemissive effect came from Einstein in 1905 in
a revolutionary paper (translated in Arons and Peppard, 1969) in which he introduced
the concept of a quantum of light along with its energy equation q = hf . This work
was a major milestone in the history of physics, and it was for his explanation of the
photoemissive effect that Einstein received the Nobel Prize in 1921 “for his services to
Theoretical Physics, and especially for his discovery of the law of the photoelectric effect1”.
Full understanding of the photovoltaic and photoconductive effects requires the quantum
theory of the structure of matter. The photoconductive effect, for example, occurs when
photons transfer electrons into the conduction band of the semiconductor, rather than
completely ejecting the electrons from the material.

A thorough discussion of the physics and engineering of all types of radiation detectors
can be found in various chapters of Bass [Ed.] (1995) and in the texts by Budde (1983)
and Dereniak and Crowe (1984).

1Einstein was passed over for the Nobel for many years because of the prejudices of the times; this sordid
tale is told in Friedman (2001). The theory of relativity was still too controversial for the Nobel Committee
to mention it by name, so the committee finally awarded him the prize for the photoelectric effect.
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1.3 Units

Almost any human endeavor from subsistence farming to modern science requires an
agreed-upon set of standards for measuring things as diverse as the amount of grain har-
vested or the wavelength of a particular color of light. Over the centuries many different
measurement standards have been used. These standards were often arbitrary and impre-
cise. The English inch, for example, was defined in 1324 by King Edward II of England
to be “three grains of barley, dry and round, placed end to end, lengthwise.” The metric
system was proposed in 1790 with the goal to be “for all times, for all people” because
the measurement units would be related to natural physical quantities. Thus the unit of
distance, the meter, was defined to be one ten-millionth of the distance from the Earth’s
north pole to the equator, measured along a great circle. Such a definition was adequate
for a century or so, but is too imprecise for modern needs.

Modern science uses the International System of Units, or SI units, from the French
Système International d’Unités. These units for the commonly needed measures of distance,
time, electrical charge, etc. are now all defined in terms of fundamental physical constants
such as the speed of light and the charge of the electron.

1.3.1 The Fundamental Physical Constants

In 2018, after many years of careful measurement and discussion, representatives of 60
nations unanimously agreed on values for seven fundamental physical constants, from which
seven SI base units can be defined. Table 1.1 shows these seven fundamental physical
constants. Note that the numerical values shown in the table are by definition exact.

Most of the quantities in Table 1.1 should be familiar from introductory physics and
chemistry, but a couple warrant comment. The hyperfine transition frequency of the
cesium-133 atom refers to the frequency of microwave radiation that corresponds to an
electron jump between two closely spaced energy levels of a neutral cesium-133 atom (in
“field-free space,” that is, in the absence of gravitational, electrical, or magnetic fields,
which can change the atom’s internal energy levels). The value of ∆νCs gives a fundamen-
tal standard for specifying frequency, measured in Hertz, which is cycles (or periods) per
second. The strangest of these constants is the luminous efficacy Kcd, which is a measure
of how well a light source using a given power (in Watts) produces visible light (as seen
by a normal human eye), measured in lumens. Kcd is defined to be the luminous efficacy
of monochromatic radiation of frequency 540 · 1012 Hertz, which is green light. Exact defi-
nitions of these quantities and further discussion can be found in the National Institute of
Standards and Technology (NIST2) Special Publication 330.

1.3.2 The SI Base Units

The seven fundamental physical constants seen in Table 1.1 can be used to define seven
SI base units, which are more convenient for practical applications. Thus one second is
defined via the fundamental ∆νCs as the duration of 9 192 631 770 periods of the radiation

2Founded in 1901 as the National Bureau of Standards, the Bureau was renamed the National Institute of
Standards and Technology in 1988. Their mission centers on “...advancing measurement science, standards,
and technology....”. To date, five NIST employees have received Nobel Prizes, and NIST has been associated
with many others, including providing calibrated radium samples to Marie Curie.

https://doi.org/10.6028/NIST.SP.330-2019
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Physical Constant Symbol Numerical Value Unit

speed of light in vacuo c 299 792 458 m s−1

Planck constant h 6.626 070 15 · 10−34 J Hz−1

elementary electrical charge e 1.602 176 634 · 10−19 C

Boltzman constant k 1.380 649 · 10−23 J K−1

Avagadro constant NA 6.022 140 76 · 1023 mol−1

hyperfine transition frequency of 133Cs ∆νCs 9 192 631 770 Hz

luminous efficacy Kcd 683 lm W−1

Table 1.1: The seven fundamental physical constants used to define the SI base units. The
numerical values are by definition exact.

corresponding to the transition between the two hyperfine levels of the ground state of the
cesium-133 atom, or

1 second ,
9 192 631 770

∆νCs
.

Similarly, the meter is defined3 using the speed of light and the fundamental frequency by

1 meter ,
9 192 631 770

299 792 458

c

∆νCs
.

The Planck constant h has units of J s or kg m−2 s. Thus the kilogram can be defined using
h and the definitions of the meter and second:

1 kg ,
(299 792 458)2

(6.626 070 15 · 10−34)(9 192 631 770)

h∆νCs

c2
.

The definitions of the remaining base units are defined in similar ways as given in NIST
Special Publication 330, cited above.

Table 1.2 shows the seven SI base units, plus two supplementary units that are con-
venient for measurement of plane and solid angle. All other quantities are derivable from
these units. With the exception of the candela, which is needed only for the discussion
of photometry, the reader should be familiar with these SI units from basic physics and
chemistry.

The nomenclature and symbols most widely used today in optical oceanography follow
the recommendations of the Committee on Radiant Energy in the Sea of the International
Association of Physical Sciences of the Ocean (IAPSO; see Morel and Smith, 1982). How-
ever, neither the SI units nor the recommended IAPSO notation are entirely satisfactory.
In particular, they are sometimes inconvenient for measurements and mathematical ma-
nipulations; consequently occasional minor deviations from the IAPSO recommendations
will be made. Several derived units that we shall need are shown in Table 1.3.

Unless specifically noted otherwise, the wavelength of light, denoted by λ, always refers
to the wavelength in vacuo. The wavelength in a medium like water will be less by a factor

3Suppose, for the sake of argument, that the speed of light changes with time as the universe ages. Since
the second is fixed by the value of the fundamental constant ∆νCs, a change in c would result in a change
in the length of the meter, so that the speed of light will remain 299 792 458 m s−1, now and forever.
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Physical quantity Base Unit Symbol

length meter m

mass kilogram kg

time second s

electric current ampere A

temperature kelvin K

amount of substance mole mol

luminous intensity candela cd

Supplementary units

plane angle radian rad

solid angle steradian sr

Table 1.2: SI base units.

Physical quantity Derived Unit Symbol Definition

wavelength of light nanometer nm 10−9 m

energy joule J 1 kg m2 s−2

power watt W 1 kg m2 s−3

number of photons einstein einst 1 mole of photons

Table 1.3: Derived units useful in radiative transfer studies.

of the real index of refraction of the medium, nmedium: λmedium = λvacuum/nmedium. Thus
light of wavelength 550 nm in vacuo will have a wavelength of about 550/1.34 = 410 nm
in water, but it is still referred to for convenience as 550 nm light.

There are other non-SI units that are commonly used and acceptable. These include
minutes, hours, and days, which are multiples of the second; the liter, which is one-
thousandth of a cubic meter; degrees, minutes, and seconds of angles, which are fractions
of a radian; and so on. Again, it is assumed that the reader is familiar with these units4.

4The United States is one of only three countries that do not use the SI system (the other two are
Myanmar and Liberia). If you live in the USA, you have to learn, for example, that there are 5280 feet in
a mile. Where does such a number come from? In England, a (statute) mile was originally defined as 8
furlongs. A furlong (a furrow long) was defined as the distance a team of oxen could plow without resting.
A furlong was divided into 40 rods, and a rod was 16.5 feet, where a foot was defined as the average length
of the left feet of 16 men chosen at random as they left church on Sunday. Seriously, you can’t make this
stuff up! So a mile is 8 x 40 x 16.5 = 5280 feet. No wonder the rest of the world makes fun of Americans
for not converting to metric units. Fortunately, American scientists have enough sense to use SI units, even
if the average American does not.
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1.3.3 The Fundamental Photon Properties

As was noted in Section 1.1, most physicists view photons as elementary particles whose
energy q, linear momentum p, and angular momentum ` are given by

q =
hc

λ

[
kg m2

s2
or

J

photon

]
(1.1)

p =
h

λ

[
kg m

s

]
(1.2)

` =
h

2π

[
kg m2

s

]
, (1.3)

where h is Planck’s constant, c is the speed of light, and λ is the wavelength.

It is instructive to consider the number of photons needed to generate typical irra-
diances and the environmental effects of these irradiances. Equation (1.1) shows that a
single photon carries an energy of q = hc/λ. A typical clear-sky solar irradiance is about
400 W m−2, i.e., Q = 400 J on each square meter each second (Table 2.2). If we use
λ = 550 nm for the average wavelength of the solar irradiance, this irradiance corresponds
to

N =
Q

q
=
Qλ

hc
=

(400 J)(550 · 10−9 m)

(6.63 · 10−34 Js)(3.00 · 108 m/s
≈ 1021

photons per second on every square meter of surface. Even the irradiance from the faintest
star corresponds to tens of millions of photons per second per square meter.

The heating rate of the water due to absorbed irradiance is (Eq. (10.35) from the
Gershun’s law Section 10.7)

∆T

∆t
=

1

cvρ

∆E

∆z

[
deg C

sec

]
,

where

• T is the temperature in deg C

• t is the time in seconds

• cv = 3900 J (kg deg C)−1 is the specific heat of sea water at constant volume

• ρ = 1025 kg m−3 is the density of sea water

If this 400 W m−2 irradiance is absorbed by the upper one meter of water (as can be
the case in very turbid water), then the heating rate within that 1 m layer of water is

∆T

∆t
=

1

(1025 kg m−3)(3900 J (kg deg C)−1)

400 W m−2

1 m
≈ 1 · 10−4 deg C

sec
.

A 10 hour day at this heating rate gives an increase of 3.6 deg C, which is very large.

The linear momentum imparted to the 1 m layer of water by absorption of these photons
is, by Eq. (1.2),

p = N
h

λ
=

(1021)(6.63 · 10−34 J s)

550 · 10−9 m
≈ 10−6 kg m

s
.
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This is comparable to the linear momentum of only 1 cubic millimeter of water moving
at a speed of 1 m s−1. Thus the linear momentum transported to the ocean by incident
sunlight is completely negligible compared to that transported by wind and other process
that drive ocean currents.

Equation (1.3) gives the maximum angular momentum that can be carried by these
photons:

` = N
h

2π
=

(1021)(6.63 · 10−34 J s)

2π
≈ 10−13 kg m2

s
.

This is comparable to the angular momentum of a small sand grain rotating at one rev-
olution per second. This angular momentum is much less than that of even the smallest
turbulent eddies generated by current shears or breaking waves. Moreover, the maximum
angular momentum computed here is transferred only of all photons are in the same an-
gular momentum state, i.e., only if the light is 100% circularly polarized. For unpolarized
light, the net transfer of angular momentum is zero (Hecht, 1989).

This we see that the physical importance of the sunlight incident on the upper ocean
lies in its energy transport and not in its momentum transport. This is consistent with
everyday experience: sunlight heats us up, but it does not push us around.

1.4 Geometry

This section develops the mathematical tools needed to specify directions and angles in
three-dimensional space. These mathematical concepts are fundamental to the specification
of how much light there is and what direction it is traveling.

1.4.1 Coordinate Systems and Directions

Locations and directions are specified with reference to particular coordinate systems cho-
sen to be convenient for the problem at hand. These coordinate systems can be “global”
or “ocean” systems that are fixed once and for all in their spatial orientation, or they can
be “local” systems determined by the instantaneous direction of light propagation.

1.4.1.1 Global coordinate systems

The most common ocean system is defined as follows. Let let x̂, ŷ and ẑ be three mutually
perpendicular unit vectors that define a right-handed Cartesian coordinate system. Let the
depth z be measured positive downward from 0 at the mean sea surface, as is customary in
oceanography. The unit direction vector ẑ thus points downward. For problems involving
sea surface waves it is convenient to resolve the waves into “along-wind” and “cross-wind”
components (see Section 13.4 and Appendix C). This is most easily done if x̂ is chosen to
be in the direction that the wind is blowing over the ocean surface, i.e. x̂ points downwind.
The cross-wind direction is then given by the cross (or vector) product ŷ = ẑ × x̂. This
defines the “wind-based” coordinate system used in the HydroLight radiative transfer code
(Section 10.6). If the problem at hand required the analysis of Sun glint on the sea surface
as seen from an airplane, then it would be convenient to use a “Sun-based” system with x̂
pointing towards or away from the Sun and ẑ pointing upward, away from the mean sea
surface (see Fig. 13.11). No matter how chosen, the (x̂, ŷ, ẑ) directions remain fixed in
space for the given problem.
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Given a global coordinate system, a direction in space is specified as follows. Let ξ̂
denote a unit vector pointing in the desired direction. The vector ξ̂ has components ξx, ξy
and ξz in the x̂, ŷ and ẑ directions, respectively. We can therefore write

ξ̂ = ξxx̂ + ξyŷ + ξzẑ ,

or just ξ̂ = (ξx, ξy, ξz) for notational convenience. Note that because ξ̂ is of unit length, its
components satisfy ξ2

x + ξ2
y + ξ2

z = 1.

An alternative description of ξ̂ is given by the angles θ and φ, defined as shown in Fig.
1.6. The polar angle θ is measured from the direction of ẑ, and the azimuthal angle φ is
measured positive counterclockwise from x̂, when looking toward the origin along ẑ (i.e.
when looking in the −ẑ direction). For downward directions (the red arrow in the figure),
θ < π/2; for upward directions (the green arrow in Panel (b)), θ > π/2. The connection
between ξ̂ = (ξx, ξy, ξz) and ξ̂ = (θ, φ) is obtained by inspection of Panel (a) of Fig. 1.6:

ξx = sin θ cosφ

ξy = sin θ sinφ (1.4)

ξz = cos θ ,

where θ and φ lie in the ranges 0 ≤ θ ≤ π and 0 ≤ φ < 2π. The inverse transformation is

θ = cos−1(ξz)

φ = tan−1

(
ξy
ξx

)
. (1.5)

The polar coordinate form of ξ̂ could be written as ξ̂ = (r, θ, φ), but since the length of r
is 1, we can drop the radial coordinate for brevity.

In radiative transfer theory, the direction ξ̂ = (θ, φ) always denotes the direction the
light is traveling. However, experimentalists often use the viewing direction, which is the
direction an instrument points in order to measure the light propagating in the opposite
direction. Likewise, it is often convenient to use the viewing direction to plot functions of
direction. The viewing direction ξ̂v = (θv, φv), where the subscript v denotes “viewing”,
can be written as

ξ̂v = − ξ̂
= (θv, φv) (1.6)

= (π − θ, φ+ π) .

Another useful description of ξ̂ is obtained using the cosine parameter

µ , cos θ = ξz. (1.7)

The components of ξ̂ = (ξx, ξy, ξz) and ξ̂ = (µ, φ) are related by

ξx =
√

1− µ2 cosφ

ξy =
√

1− µ2 sinφ (1.8)

ξz = µ,
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Figure 1.6: A global, ocean coordinate system. Panel (a) shows a unit direction vector ξ̂
heading downward into the ocean (red arrow) and the corresponding Cartesian components
(ξx, ξy, ξz) and angular coordinates (θ, φ). In panel (b), the blue cone represents an element
of solid angle ∆Ω(ξ̂) centered on direction ξ̂ of Panel (a). The green arrow shows an upward
directed unit vector and the corresponding (θ, φ).

with µ and φ in the ranges −1 ≤ µ ≤ 1 and 0 ≤ φ < 2π. Hence a direction ξ̂ can be
represented in three equivalent ways: as (ξx, ξy, ξz) in Cartesian coordinates, and as (θ, φ)
or (µ, φ) in polar coordinates.

The scalar (or dot) product between two direction vectors ξ̂′ and ξ̂ can be written as

ξ̂′ · ξ̂ = |ξ̂′| |ξ̂| cosψ = cosψ,

where ψ is the angle between directions ξ̂′ and ξ̂, and |ξ̂| denotes the (unit) length of vector
ξ̂. The scalar product expressed in Cartesian-component form is

ξ̂′ · ξ̂ = ξ′xξx + ξ′yξy + ξ′zξz.

Equating these representations of ξ̂′ · ξ̂ and recalling Eqs. (1.4) and (1.8) leads to

cosψ = ξ′xξx + ξ′yξy + ξ′zξz

= cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ) (1.9)

= µ′µ+

√
1− µ′2

√
1− µ2 cos(φ′ − φ) .

Equation (1.9) gives very useful connections between the various coordinate representations
of ξ̂′ and ξ̂, and the included angle ψ. In particular, this equation allows us to compute the
scattering angle ψ when light is scattered from an incident direction ξ̂′ to a final direction
ξ̂.

The set of all directions ξ̂ is called the unit sphere of directions, which is denoted by Ξ.
Referring to polar coordinates, Ξ therefore represents all (θ, φ) values such that 0 ≤ θ ≤ π
and 0 ≤ φ < 2π. Two subsets of Ξ frequently employed in optical oceanography are the
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downward (subscript d) and upward (subscript u) hemispheres of directions, Ξd and Ξu,
defined by

Ξd , all (θ, φ) such that 0 ≤ θ ≤ π/2 and 0 ≤ φ < 2π,

Ξu , all (θ, φ) such that π/2 < θ ≤ π and 0 ≤ φ < 2π.

As shown in Fig. 1.6, it is common to measure depth as positive downward from zero
at the mean sea surface. For oceanographers, it is convenient to measure depth as physical
depth z in meters5. However, the relevant depth for computations of light attenuation is
the optical depth ζ, which is computed as

ζ(z, λ) =

∫ z

0
c(z′, λ)dz′ , (1.10)

where c(z, λ) is the beam attenuation coefficient, which is in general a function of depth
and wavelength. Beam attenuation has units of m−1, so ζ is nondimensional. The beam
attenuation coefficient is defined in Section 3.0.1, and the role of optical depth in radiative
transfer calculations is seen in Sections 9.1.2 and E.2. Note that the optical depth corre-
sponding to a given physical depth depends on wavelength. This is another way of saying
that light of different wavelengths attenuates with physical depth at different rates. For
directions not perpendicular to the sea surface, the nondimensional distance traveled by a
collimated beam of light is usually called the optical distance or the optical path length,
denoted by τ . (Atmospheric optics uses τ to denote the optical depth or optical thickness
of the atmosphere measured normal to the Earth’s surface; see Section 15.4.)

1.4.1.2 Local coordinate systems

In Monte Carlo ray tracing calculations, for example, it is necessary to specify the polar and
azimuthal scattering angles of a scattered ray relative to the direction of the unscattered
ray (see Section F.4). This requires defining a local (at the end point of the unscattered
ray) Cartesian system “centered” on the direction of the unscattered ray, rather than on a
fixed ẑ direction. A local system that meets the needs of Monte Carlo ray tracing can be
defined as follows.

Referring to Fig. 1.7, let R′ = R′ ξ̂′ denote a light ray with starting point r1 =
(x1, y1, z1) and ending point r2 = (x2, y2, z2) in a global coordinate system. R′ is the
length of the vector R′, which is traveling in direction ξ̂′ = (θ′, φ′) in the global system.
Now suppose that this ray scatters at point r2 to create a new ray R, which ends at
poinr r3. To describe that scattering, it is necessary to define a local (at the point of
scattering r2) coordinate system for the scattering calculations. The scattering angles
ψ and α (computed as described in Section E.3) will then be applied in this system to
determine the direction of the scattered ray R relative to the unscattered ray R′.

In the ocean system, ray R′ has components (R′x, R
′
y, R

′
z):

R′ = R′x x̂ +R′y ŷ +R′z ẑ

5An in-water instrument normally measures pressure, which is then converted to physical depth us-
ing a salinity- and temperature-dependent equation of state for sea water; see Saunders (1981). As an
approximation accurate to a few percent, one decibar of pressure is equivalent to one meter of depth in
water.
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Figure 1.7: A local coordinate system used to describe the scattering of an in-water ray.
The initial or unscattered ray is R′; the scattered ray R is in red. The ocean coordinate
system and angles measured in this system are in black, the local coordinate system is in
blue, and angles measured in the local system are in red. The blue dotted lines are lines
of constant θ′ and constant φ′; φ̂ and θ̂ are respectively tangent to these lines at point r2.

= R′ sin θ′ cosφ′ x̂ +R′ sin θ′ sinφ′ ŷ +R′ cos θ′ ẑ , (1.11)

where the Cartesian components R′x etc., in terms of spherical coordinates come from Eq
(1.4).

A convenient local coordinate system (θ̂, φ̂, r̂) for scattered rays is constructed as fol-
lows. The radial unit vector

r̂ =
R′

R′
=
r2 − r1
|r2 − r1|

is in the same direction as the initial ray R′. The azimuthal unit vector φ̂ is defined by
the cross product of the ocean coordinate system ẑ and the incident vector’s direction:

φ̂ =
ẑ× r̂
|ẑ× r̂|

.

This vector points in the direction of increasing φ′ values. (If the unscattered vector is
in the same direction as ẑ, the direction of φ̂ can be chosen at random.) The polar unit
vector is then given by

θ̂ = φ̂× r̂ .

This vector points in the direction of increasing θ′ values. (If you think of point r2 as
being on the surface of the Earth, then θ̂ points south, φ̂ points east, and r̂ is straight up.)
The (θ̂, φ̂, r̂) system is then an orthogonal system of coordinates in which the scattering
angles ψ and α can be applied to define the direction of the scattered ray. However, these
directions are not fixed in the ocean system; they depend on the direction of the unscattered
ray R′.



24 CHAPTER 1. LIGHT AND RADIOMETRY

After the direction of the scattered ray has been determined in the local (θ̂, φ̂, r̂) system,
the scattered ray direction must be specified in terms of (θ′, φ′) in the global system, so that
the scattering process can be repeated. This transformation is not trivial; it is described
in Section F.4.

Similarly, in calculations involving polarization, a local Cartesian system is needed to
resolve the components of the polarization relative to some reference plane. This reference
plane can be either the meridian plane, which is the plane containing ẑ and the direction
of propagation; or the scattering plane, which is the plane containing the incident and final
directions of the scattered light (see Figs. 1.20 and 1.21). Again, the appropriate local
coordinate system depends on the direction of propagation of the light.

1.4.2 Solid Angle

Closely related to the specification of directions in three-dimensional space is the concept
of solid angle, which is an extension of two-dimensional plane angle measurement. As
illustrated in the left panel of Fig. 1.8, the plane angle θ between two radii of a circle of
radius r is

θ ,
arc length

radius
=
`

r
(rad).

The angular measure of a full circle is therefore 2π rad. In the right panel of Fig. 1.8,
a patch of area A is shown on the surface of a sphere of radius r. The boundary of A is
traced out by a set of directions ξ̂. The solid angle Ω of the set of directions defining the
patch A is by definition

Ω ,
area

radius squared
=
A

r2
(sr).

Figure 1.8: Geometry associ-
ated with the definition of plane
angle (left) and solid angle
(right).

Since the area of a sphere is 4πr2, the solid angle measure of the set of all directions
is Ω(Ξ) = 4π sr. Note that both plane angle and solid angle are independent of the radii
of the respective circle and sphere. Both plane and solid angle are dimensionless numbers.
However, they are given “units” of radians and steradians, respectively, to remind us that
they are measures of angle.

Consider a simple application of the definition of solid angle and the observation that a
full sphere has 4π sr. The area of Brazil is 8.5 · 106 km2 and the area of the earth’s surface
is 5.1 · 108 km2. The solid angle subtended by Brazil as seen from the center of the earth
is then 4π 8.5 · 106/5.1 · 108 = 0.21 sr.
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Figure 1.9: Geometry used to obtain an ele-
ment of solid angle in spherical coordinates.

The definition of solid angle as area on the surface of a sphere divided by radius of the
sphere squared gives us a convenient form for a differential element of solid angle, as needed
for computations. The blue patch shown in Fig. 1.9 represents a differential element of
area dA on the surface of a sphere of radius r. Simple trigonometry shows that this area is
dA = (r sin θ dφ)(r dθ). Thus the element of solid angle dΩ(ξ̂) about the direction ξ̂ = (θ, φ)
is given in polar coordinate form by6

dΩ(ξ̂) =
dA

r2
=

(r sin θ dφ)(r dθ)

r2
= sin θ dθ dφ = dµ dφ (sr). (1.12)

To illustrate the use of Eq. (1.12), let us compute the solid angle of a “polar cap” of
half angle θ, i.e. all (θ′, φ′) such that 0 ≤ θ′ ≤ θ and 0 ≤ φ′ < 2π. Integrating the element
of solid angle over this range of (θ′, φ′) gives

Ωcap =

∫ 2π

φ′=0

∫ θ

θ′=0
sin θ′ dθ′ dφ′ = 2π(1− cos θ), (1.13)

or

Ωcap =

∫ 2π

φ′=0

∫ 1

µ′=µ
dµ′ dφ′ = 2π(1− µ). (1.14)

Note that Ξd and Ξu are special cases of a spherical cap (having θ = π/2), and that
Ω(Ξd) = Ω(Ξu) = 2π sr.

1.4.3 Dirac Delta Functions

It is sometimes convenient to specify directions using the Dirac delta function, δ(ξ̂ − ξ̂o).
This peculiar mathematical construction is defined (for our purposes) by

δ(ξ̂ − ξ̂o) , 0 if ξ̂ 6= ξ̂o, (1.15)

6This equation is correct even though dµ = d cos θ = − sin θ dθ. When the differential element is used
in an integral and variables are changed from (θ, φ) to (µ, φ), the Jacobian of the transformation involves
an absolute value.
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and ∫
Ξ
f(ξ̂)δ(ξ̂ − ξ̂o)dΩ(ξ̂) , f(ξ̂o). (1.16)

Here f(ξ̂) is any function of direction. Note that δ(ξ̂− ξ̂o) simply “picks out” the particular
direction ξ̂o from all directions in Ξ. Note also in Eq. (1.16) that because the element
of solid dΩ(ξ̂) has units of steradians, it follows that δ(ξ̂ − ξ̂o) must have units of inverse
steradians.

Equations (1.15) and (1.16) are a symbolic definition of δ. The mathematical represen-
tation of δ(ξ̂ − ξ̂o) in spherical coordinates (θ, φ) is

δ(ξ̂ − ξ̂o) =
δ(θ − θo)δ(φ− φo)

sin θ
(sr−1), (1.17)

where ξ̂ = (θ, φ), ξ̂o = (θo, φo), and∫ π

0
f(θ)δ(θ − θo)dθ , f(θo)∫ 2π

0
f(φ)δ(φ− φo)dφ , f(φo).

Note that the sin θ in the denominator of Eq. (1.17) is necessary to cancel the sin θ factor
in the element of solid angle when integrating in polar coordinates. Thus∫

Ξ
f(ξ̂)δ(ξ̂ − ξ̂o)dΩ(ξ̂) =∫ 2π

0

∫ π

0
f(θ, φ)

δ(θ − θo)δ(φ− φo)

sin θ
sin θdθdφ =

f(θo, φo) = f(ξ̂o).

Likewise, we can write

δ(ξ̂ − ξ̂o) = δ(µ− µo)δ(φ− φo) (sr−1), (1.18)

where

∫ 1

−1
f(µ)δ(µ− µo)dµ , f(µo).

Although Dirac delta functions entered the present discussion as a way to select direc-
tions, they can be formulated for almost any variable. For example, if f(x) is a function
of location x, then δ(x− xo) picks out the value of f(xo) via∫ ∞

−∞
f(x) δ(x− xo) dx = f(xo) .

If x is measured in meters, then δ(x− xo) has units of 1/meters.
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1.5 Geometrical Radiometry

[Curtis Mobley and Kenneth Voss contributed to this section.]

By housing one or more radiant energy detectors in watertight assemblies and by ap-
propriately channeling the direction of the radiant energy arriving at the detector, we can
measure the flow of radiant energy as a function of direction at any location within a water
body. By adding appropriate filters to the instrument, we can also measure the wavelength
dependence and state of polarization of the light field. From such measurements we can
develop precise descriptions of light propagation in natural waters. Thus we are led to the
science of geometrical radiometry, the union of Euclidean geometry and radiometry.

We first define radiance, the fundamental quantity that describes light in radiometric
terms. We then define various irradiances and other quantities that are derivable from
the radiance, and which are often easier to measure and of more relevance to a particular
problem.

1.5.1 Radiance

Figure 1.10 shows the design of a Gershun tube radiometer . A circular hole at one end of
the housing or collecting tube and a system of internal light baffles allows the detection of
light that enters the hole only at angles of γ or less (measured from the axis of the tube).
Angle γ is the field of view (FOV) half angle. The blue arrow ξ̂ in the figure represents
light entering the tube within the field of view. Light entering the tube at angles larger
than γ, represented by the red arrow ξ̂′ in the figure, is blocked by the baffles or absorbed
by the inner walls of the tube and is not detected. In most instruments, γ is around 5 deg
(at most 10 deg). The solid angle seen by the detector is ∆Ω = 2π(1− cos γ).

If the state of polarization is of interest, a polarizing filter is placed in the tube so that
the light passes first through the polarizer. This filter will be chosen to measure the desired
component of the polarization, e.g, horizontal or vertical plane polarization, or left or right
circular polarization. In practice, a sequence of measurements must be made to determine
the four components of the Stokes vector; see Sections 1.6 and 1.6 on polarization for
further discussion.

A wavelength filter is normally used to select a narrow band of wavelengths. In modern
instruments this is usually an interference filter that passes light of some bandwidth ∆λ
centered at the nominal wavelength λ. The bandwidth is usually specified by the full-
width at half maximum (FWHM) of the filter transmission function. In the early days of
optical oceanography, the filter was often a gelatin filter that passed certain wavelengths
and absorbed others. In most instruments ∆λ is around 10 nm (at most, 20 nm), but can
be only a few nanometers for hyperspectral instruments.

Finally, the light, which is still well collimated after passing through the polarizer and
wavelength filter, passes through a translucent diffuser of collection area ∆A. The diffuser
makes the light field spatially homogeneous in the region near the detector, so that it is
necessary to sample only a part of the internal light field in order to measure the total
energy entering the instrument. To the accuracy with which cos γ = 1, the solid angle ∆Ω
of the hole as seen by any point on the diffuser surface is the same.

In order to measure an entire spectrum, an instrument may have a rotating wheel
holding many different wavelength filters, or it may use a prism to spread the different
wavelengths out along a CCD array. Similarly, an instrument may have a rotating wheel
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holding different polarization filters, so as to obtain all components of the Stokes vector by
a sequence of measurements as the wheel rotates. These engineering details do not concern
us in the present discussion, but they are of great importance in the construction of actual
instruments.

Figure 1.10: Conceptual design of a Gershun tube radiometer.

The instrument design of Fig. 1.10 traces back to the Russian physicist and pioneer of
optical oceanography A. A. Gershun in the 1930s. Instruments implementing variants of his
design are still in production. Figure 1.11 shows a more modern design that uses lenses and
a pinhole in a diaphragm to select the directions of light propagation that can be detected.
As shown, an objective lens focuses the incoming light onto an opaque diaphragm, which
contains a small hole on the optical axis. Light propagating in a narrow range of directions
(the FOV) will pass through the pinhole and be detected. This is illustrated by the blue
arrow ξ̂ and the bluish shading in the figure. Light propagating in directions outside the
FOV will not pass through the pinhole. This light is illustrated by the red arrow ξ̂′ and
the reddish shading. The light that does pass through the pinhole is then collimated by
a relay lens and directed towards a detector with detecting area ∆A. Again, polarizers or
wavelength filters can be part of the design. As drawn, the polarizer is placed after the
two lenses. This layout is acceptable for glass lenses, which do not significantly affect the
state of polarization. If the lenses are made of plastic or another material that alters the
state of polarization, then the polarizer needs to be in front of the objective lens. The FOV
and corresponding solid angle seen by the detector are determined by the lens and pinhole
geometry.

The designs of both Figs. 1.10 and 1.11 are termed “well collimated radiometers”
because they detect light propagating in only a narrow set of nearly collimated directions.

If the instrument is pointing in the −ξ̂ direction, it collects light traveling in a set of
directions of solid angle ∆Ω centered on direction ξ̂. We assume that the instrument is
small compared to the scale of spatial (positional) changes in the light field, so that we can
think of the instrument as being located at a point x = (x, y, z) = xx̂ + yŷ + zẑ within a
water body. Suitable calibration of the current or voltage output of the detector gives the
amount of radiant energy ∆Q entering the instrument during a time interval ∆t centered
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Figure 1.11: Modern design of a well collimated radiometer. Figure based on Mishchenko
(2014, Fig. 12(e)).

on the time t. For simplicity, consider the total radiance without regard for the state of
polarization (that is, remove the polarizer in either of the instrument designs); this is the
first component of the Stokes vector and is commonly called the radiance. An operational
definition7 of the unpolarized spectral radiance is then

L(x, t, ξ̂, λ) ,
∆Q

∆t∆A∆Ω ∆λ
(J s−1 m−2 sr−1 nm−1) . (1.19)

In practice the intervals ∆t, ∆A, ∆Ω, and ∆λ are taken small enough to get a useful
resolution of L over the various parameter domains, but not so small as to encounter
diffraction effects or fluctuations from photon shot noise at low light levels. Typical values
are ∆t ≈ 10−2 to 102 s (depending on whether one wishes an “instantaneous” measurement
or wishes to average out sea surface wave effects), ∆A ≈ 10−4 m2, ∆Ω ≈ 0.01 to 0.1 sr,
and ∆λ ≈ 1 to 10 nm.

Since sampling times ∆t are generally long compared to the time (≈ 10−6 s) required
for the light field in a water body to reach steady state after a change in the environment,
time-independent radiative transfer theory is usually sufficient for hydrologic optics studies.
In this case, the time is implicitly understood and the argument t can be omitted. A
notable exception to the use of time-independent radiative transfer theory occurs with the
use of pulsed lasers to determine water depth or to detect underwater objects. In this
application, the laser pulses last only for nanoseconds and time-dependent theory must be
used. In addition, time-averaged (over seconds to minutes) horizontal variations (on a scale
of meters to kilometers) in the environment and in the optical properties of natural water
bodies illuminated by the Sun are usually much less than vertical variations. In that case,
underwater light fields depend spatially only on the depth x3 = z to a good approximation.
Thus, for example, we often can refer to just “the radiance L(z, θ, φ, λ)” without generating
confusion. An important exception of this situation occurs with artificial light sources,
such as an underwater light or a laser being used for bathymetric mapping. In these cases
the horizontal variations in the radiance can be large, and the three-dimensional spatial
variations of the light field must be considered.

In the conceptual limit of infinitesimal parameter intervals, the spectral radiance is

7An operational definition of something is a definition in terms of quantities or procedures that can be
implemented by an instrument.
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given by

L(x, t, ξ̂, λ) =
∂4Q

∂t ∂A∂Ω ∂λ
. (1.20)

This definition of radiance is convenient for the mathematical development of radiative
transfer theory. The operational definition is what is used for actual measurements.

Spectral radiance is the fundamental radiometric quantity of interest in
hydrologic optics because all other radiometric quantities can be derived from
the radiance. It specifies the spatial (x), temporal (t), directional (ξ̂), and wavelength
(λ) structure of the light field. In radiative transfer theory, the direction ξ̂ = (θ, φ) always
denotes the direction of propagation of the radiance. The viewing direction ξ̂v, defined in
Eq. , is the direction an instrument is pointed to detect L(x, t, ξ̂, λ).

Although radiance is an extremely useful concept and is adequate for most needs of
optical oceanography, it is an approximation to the exact description of light in terms of
electric and magnetic fields. We therefore anticipate that there are situations for which
radiance fails to give an adequate description of the light field. When that happens, we must
resort to Maxwell’s Equations (Chapter 11) and compute the electric and magnetic fields
themselves. Some of the limitations of radiance are discussed in Section 1.8. Moreover,
both because of instrumental difficulties and because such detailed directional information
often is not needed for specific applications, the most commonly measured radiometric
quantities are various irradiances.

1.5.2 Plane Irradiance

If the collecting tube is removed from the instrument of Fig. 1.10, then light from an
entire hemisphere of directions can reach the detector, as illustrated in Fig. 1.12. Such an
instrument, when pointed “straight up” (in the −ẑ direction) so as to detect light headed
downward (all ξ̂ in Ξd) measures the spectral downwelling plane irradiance Ed:

Ed(x, t, λ) ,
∆Q

∆t∆A∆λ
(W m−2 nm−1). (1.21)

Implicit in this definition is the assumption that each point of the collector surface
is equally sensitive to light incident onto the surface from any angle. If this is the case,
however, the collector as a whole is not equally sensitive to light headed in all downward
directions. Imagine a collimated beam of light headed straight downward (e.g. from the
Sun straight overhead). This beam, assumed to be larger than the collector surface, sees
the full area ∆A of the collector surface. However, the same large beam traveling at an
angle θ relative to the instrument axis sees a collector surface of effective area ∆A| cos θ|
(the area ∆A as projected onto a plane perpendicular to the beam direction). Otherwise
identical collimated light beams therefore generate detector responses that are proportional
to the cosines of the incident directions. Such instruments are called cosine collectors.

The cosine law for irradiance is simply the statement that a collimated beam of light
intercepting a plane surface produces an irradiance that is proportional to the cosine of
the angle between the incident directions and the normal to the collector surface.

There are subtleties in the construction of instruments that require a cosine response.
No real material used for the collector actually obeys the requirement that every point of
the material surface be equally efficient at collecting energy from any direction. In practice,
surfaces often look a bit “shiny” near grazing angles (θ near 90 deg). Thus more of the
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Figure 1.12: Schematic design of an instru-
ment for measuring spectral plane irradi-
ance.

incident energy is reflected by the collector surface at large θ values. To correct for this
less efficient energy collection at large θ, the collector itself often extends a small distance
above the instrument housing, as seen in Fig. 1.12. The vertical walls of this “button”
then receive the light at more nearly normal directions to the vertical edge of the collector.
However, that vertical collector side would collect light propagating at θ = 90 deg, which
should give no response according to the cosine law. To block light incident when θ is
within a few degrees of 90, the rim of the housing has a low “wall” that blocks light at
very nearly 90 deg. An actual implementation of this idea is seen in Fig. 1.13. Modern
instruments with similar designs achieve an in-water cosine response to within a percent
or two.

Figure 1.13: Design of the plane irradiance sensor head constructed by J. E. Tyler and R.
C. Smith at the Scripps Institution of Oceanography in the 1960s. From Tyler and Smith
(1970).

Another very important issue with the construction an in-water cosine collector is that
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the reflective properties of collector materials such as glass, plastic, or Spectralon are much
different in water than in air. This is because of the differences in the collector-air and
collector-water indices of refraction. For example, Spectralon, which is often used in optical
instruments, has a refractive index of 1.35. This is very close to that of water, which is
about 1.33 (with some wavelength variation in each). Air has a refractive index of almost
exactly 1. At normal incidence the reflectance of an air-Spectralon surface is

rF =

(
1.35− 1.00

1.35 + 1.00

)2

≈ 0.022

For a water-Spectralon surface the corresponding reflectance is only 0.00006. Thus more
light gets “into” the collector made of Spectralon when the instrument is in water than
when it is in air. Conversely, more of the collected light can escape “back out” from the
Spectralon collector in water than in air. Therefore different fractions of the incident energy
are collected and reach the detector for the same instrument when used in air and in water.
This difference is called the immersion effect.

The consequence of these observations is that if a sensor is to be used in water, the
design (such as seen in Fig. 1.13 ) must be such that the sensor has a cosine response in
water, and the sensor calibration must account for the immersion effect. These matters
are crucial to the design of irradiance sensors, but the details can be left to the optical
engineers.

Since the instrument of Fig. 1.12 collects light traveling in all downward directions,
but with detector’s surface area weighted by the cosine of the light’s incident angle θ,
the instrument is in essence integrating L(x, t, ξ̂, λ)| cos θ| over all incident directions in
the hemisphere seen by the sensor. The spectral downwelling plane irradiance is therefore
related to the spectral radiance by

Ed(x, t, λ) =

∫
ξ̂∈Ξd

L(x, t, ξ̂, λ)| cos θ| dΩ(ξ̂)

=

∫ 2π

φ=0

∫ π/2

θ=0
L(x, t, θ, φ, λ)| cos θ| sin θdθ dφ . (1.22)

If the same instrument is oriented downward, so as to detect light heading upward, then
the quantity being measured is the spectral upwelling plane irradiance Eu:

Eu(x, t, λ) =

∫ 2π

φ=0

∫ π

θ=π/2
L(x, t, θ, φ, λ)| cos θ| sin θdθ dφ (1.23)

Note that it is necessary to take the absolute value of cos θ in Eq. (1.23) because, with
our choice of coordinates, cos θ < 0 for ξ̂ in Ξu. The absolute value is superfluous in Eq.
(1.22).

1.5.3 Scalar Irradiance

Now consider an instrument that is designed to be equally sensitive to all light headed in
the downward direction. Such an instrument is shown in Fig. 1.14. The spherical shape
of the collector and diffuser insures that the instrument is equally sensitive to light from
any direction. If each point on the diffuser surface behaves like a cosine collector, then
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the effective area of the collector is ∆A = πr2, where r is the radius of the diffuser. In
addition, the radiance distribution in the hollow interior of the collector is isotropic, so
that only a small part of the interior light field needs to be measured. The large shield
blocks upward-traveling light. In principle, this shield extends to infinity in all directions,
but in reality may be only a few centimeters in diameter. The upper surface of the shield is
assumed to be completely absorbing, so that it cannot reflect downward traveling light back
upward onto the collector. These cases are illustrated by the red arrows in the figure. This
instrument, when oriented upward as shown in Fig. 1.14, measures the spectral downwelling
scalar irradiance Eod, which is related to the spectral radiance by

Eod(x, t, λ) =

∫
ξ̂∈Ξd

L(x, t, ξ̂, λ)dΩ(ξ̂)

=

∫ 2π

φ=0

∫ π/2

θ=0
L(x, t, θ, φ, λ) sin θdθ dφ (1.24)

Figure 1.14: Schematic design of an instrument for measuring spectral hemispherical scalar
irradiance.

If the instrument of Fig. 1.14 is inverted, so as to collect only upward traveling light,
then it measures the spectral upwelling scalar irradiance Eou. If this shield is removed,
light traveling in all directions is collected. The quantity then measured is the spectral
total scalar irradiance Eo, which is related to the radiance by

Eo(x, t, λ) =

∫
ξ̂∈Ξ

L(x, t, ξ̂, λ)dΩ(ξ̂)

= Eod(x, t, λ) + Eou(x, t, λ). (1.25)

Other possible instrument designs are discussed in Højerslev (1975). However, the
three basic types shown above are sufficient for most of the needs of hydrologic optics.
Such instruments are commercially available.
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1.5.4 Vector Irradiance

The spectral vector irradiance ~E is defined as

~E(x, t, λ) =

∫
ξ̂∈Ξ

L(x, t, ξ̂, λ) ξ̂ dΩ(ξ̂) . (1.26)

Recalling that the vertical component of ξ̂ is just ẑ · ξ̂ = cos θ, we can write the vertical
component of the vector irradiance as

( ~E)z = ẑ · ~E

=

∫
Ξ
L(x, t, ξ̂, λ) cos θ dΩ(ξ̂)

= Ed − Eu (1.27)

In developing Eq. (1.27), we have noted that cos θ > 0 in Ξd and cos θ < 0 in Ξu. The quan-
tity Ed −Eu is called the net downward irradiance. This net downward irradiance often is
often called the “vector” irradiance, although strictly speaking it is only the vertical com-
ponent of the vector irradiance. If the radiance distribution is horizontally homogeneous,
the horizontal components of the vector irradiance are zero.

1.5.5 Example: Irradiances of an Isotropic Radiance Distribution

Consider an isotropic, or directionally uniform, radiance distribution: L(x, t, ξ̂, λ) = Lo(x, t, λ)
for all ξ̂ in Ξ. Then by Eq. (1.22), the downward plane irradiance is

Ed(x, t, λ) =

∫ 2π

φ=0

∫ π/2

θ=0
Lo(x, t, λ)| cos θ| sin θdθ dφ

= πLo(x, t, λ) .

In the last equation, π carries units of steradian from the integration over solid angle; thus
Ed has units of irradiance when Lo has units of radiance. Likewise, Eu = πLo, so that the
net downward irradiance is zero. The scalar irradiance Eod is given by Eq. 1.24

Eod(x, t, λ) =

∫ 2π

φ=0

∫ π/2

θ=0
Lo(x, t, λ) sin θdθ dφ

=2πLo(x, t, λ)

In the same manner we find Eou = 2πLo, so that the total scalar irradiance Eo = 4πLo.

1.5.6 Intensity

Another family of radiometric quantities can be defined from the measurements employed
in the operational definition of radiance. The spectral intensity I is defined as

I(x, t, ξ̂, λ) ,
∆Q

∆t∆Ω ∆λ
(W sr−1 nm−1) , (1.28)

or

I(x, t, ξ̂, λ) =

∫
∆A

L(x, t, ξ̂, λ) dA .



1.5. GEOMETRICAL RADIOMETRY 35

In Eq. (1.28), ∆A is the surface of the collector that sees the solid angle ∆Ω, and dA is an
element of area. The concept of intensity is useful in the radiometry of point light sources.
We will use it in the definition of the volume scattering function 3.1.1.

Note that in radiometry “intensity” has the specific meaning of power per steradian.
The word “intensity” should not be used as a synonym for magnitude, brightness, or
irradiance. Such misuse has even prompted a publication (Palmer, 1993), the abstract of
which begins “The misuse of the term intensity in physics and optics is deplored.”

1.5.7 Photosynthetically Available Radiation

Photosynthesis is a quantum process. That is to say, it is the number of photons absorbed
rather than their total energy that is relevant to the chemical transformations. This is
because a photon of, say, wavelength 400 nm, if absorbed by a chlorophyll molecule, induces
the same chemical change as does a less energetic photon of wavelength 500 nm. (However,
photons of different wavelengths are not equally likely to be absorbed.) Only a part of
the photon’s energy goes into photosynthesis; the excess appears as heat or is re-radiated.
Moreover, chlorophyll is equally able to absorb light regardless of the light’s direction of
travel.

Now recall that the spectral total scalar irradiance Eo(x, λ) is the total radiant power
per square meter at wavelength λ coursing through point x owing to light traveling in
all directions. The number of photons generating Eo(x, λ) is Eo(x, λ)λ/hc. Therefore,
in studies of phytoplankton biology, a useful measure of the underwater light field is the
photosynthetically available radiation, PAR or EPAR, which is defined by

PAR(x) ,
∫ 700nm

400nm
Eo(x, λ)

λ

hc
dλ (quanta s−1 m−2) . (1.29)

Note that PAR is by definition a broadband quantity. Bio-optical literature often states
PAR values in units of mol quanta s−1 m−2 or einst s−1 m−2. Recall from the table of derived
units 1.3 units that one einstein is one mole of photons (6.023 · 1023 photons).

Morel and Smith (1974) found that over a wide variety of water types from very clear
to turbid, the conversion factor for energy to photons varies by only ±10% about the value

2.5 · 1018 quanta s−1 W−1 = 4.2µeinst s−1 W−1 .

PAR is usually estimated using only the visible wavelengths, 400-700 nm, although
some investigators include near-ultraviolet wavelengths in the integral of Eq. (1.29). PAR
is also sometimes estimated using Ed rather than Eo. This usually underestimates PAR
by 30% or more because Ed is always less than Eo.

Instruments for the direct measurement of PAR, often called quanta meters, can be
constructed along the lines of Fig. 1.14 by the incorporation of broadband wavelength
filters. Such instruments are commercially available. Engineering details can be found in
Jerlov and Nygard (1969) and in Kirk (1994), which also discusses PAR and photosynthesis
in great detail.

Although PAR has a venerable history as a simple parameterization of available light
in phytoplankton growth models, it should be noted that PAR is an imperfect measure of
how light contributes to photosynthesis. This is because different species of phytoplankton,
or even the same species under different environmental conditions, have different suites of
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pigments. Phytoplankton with different pigments absorb light differently as a function of
wavelength. Thus phytoplankton with different pigments use the same Eo(λ) with different
efficiencies, thus giving one an advantage over the other. Recent ecosystem models therefore
replace PAR by spectral scalar irradiance Eo(λ) and also account for different pigments in
different functional classes of phytoplankton. Such models can better simulate how light
is utilized by different components of the ecosystem (e.g., Bissett et al., 1999; Fujii et al.,
2007).

1.5.8 Terminology and Notation

The adjective “spectral,” as in spectral radiance, as commonly used can mean either “as
a function of wavelength” or “per unit wavelength interval.” Committees on international
standards recommend an argument λ, e.g. L(λ), for the first meaning and a subscript
λ, e.g. Lλ, for the second meaning (Meyer-Arendt, 1968). Thus Lλ(λ) would denote
the spectral radiance as a function of wavelength. However, this subscript convention is
seldom used in optical oceanography, perhaps because the symbols already are cluttered
with subscripts. Most authors seem to write L(λ) and consider it to mean radiance per
unit wavelength interval, as a function of wavelength. The adjective spectral and argument
λ are often omitted for brevity, although strictly speaking, a term without the adjective
“spectral” refers to a quantity integrated or measured over a finite band of wavelengths,
as in the computation of PAR in Eq. (1.29). Most radiative transfer theory assumes the
energy to be monochromatic, i.e., radiance per unit wavelength interval at a particular
wavelength. However, most measurements are made over a wavelength band of 1 to 20 nm,
which complicates the comparison of theory and observation.

Although this book uses the terminology and notation commonly seen in the current
optical oceanography literature, much published work uses a different nomenclature. The
recommended (modern) notation came into use the late 1970s and is employed, for example,
in Jerlov (1976) and further refined in Morel and Smith (1982). Prior to then, different
symbols were often employed for the radiometric concepts just defined. This historical
notation is seen, for example, in the monumental treatise Hydrologic Optics (Preisendor-
fer, 1976). Table 1.4 gives a comparison of historical and modern notation. Additional
discussion of units and conversions is given in Palmer (2000).

Much of the radiative transfer work in atmospheric, astrophysical, and biomedical op-
tics, and in neutron transport theory, is relevant to hydrologic optics. However, to a consid-
erable extent, these fields have developed independently and each has its own nomenclature.
For example, in atmospheric and astrophysical optics, radiance is often called “intensity”
or “specific intensity” and is given the symbol I; this use of “intensity” is not be confused
with intensity as defined above. The classic text Light Scattering by Small Particles by van
de Hulst (1957) uses “intensity” for irradiance. The letter “I” often is used as the symbol
for irradiance. The word “flux” is sometimes used to mean irradiance and is sometimes
used to mean power. Those who use “flux” for power generally use “flux density” for
irradiance. The ambiguity associated with “flux” can be avoided simply by using “power”
or “irradiance,” as is appropriate. Matters are further complicated by the occasional mis-
use of photometric terms such as “brightness” and “luminance” for radiometric quantities;
these matters are discussed in Chapter 16 on Photometry and Visibility.

It is occasionally convenient to distinguish conceptually between light leaving a surface
and light arriving at a surface. In radiative transfer theory, field radiance L− refers to the
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Quantity SI Units Recommended Historic

Symbol Symbol

radiant energy J Q U

radiant power W Φ P

radiant intensity W sr−1 I J

radiance W m−2 sr−1 L N

plane irradiance W m−2 E H

downward plane irradiance W m−2 Ed H(−)

upward plane irradiance W m−2 Eu H(+)

scalar irradiance W m−2 Eo h

downward scalar irradiance W m−2 Eod h(−)

upward scalar irradiance W m−2 Eou h(+)

vector irradiance W m−2 ~E ~H

vertical net irradiance W m−2 Ed − Eu —

emittance W m−2 M W

photosynthetically available radiation photons s−1 m−2 PAR or EPAR —

Table 1.4: Terms, units, and symbols for radiometric quantities commonly used in hy-
drologic optics. The quantities as shown represent broadband measurements. For narrow
band (monochromatic) measurements, add the adjective “spectral” to the term, add nm−1

to the units, and add a wavelength index λ to the symbol, e.g., spectral radiance, Lλ or
L(λ), with units of W m−2 sr−1 nm−1. PAR is inherently broadband.

radiance of light arriving at a surface; this is the quantity measured by a radiance meter.
Surface radiance L+ is the radiance attributed to a real or imaginary surface emitting
light. Irradiance E refers to light incident onto a surface; the corresponding measure of
light leaving a surface is denoted by radiant exitance or emittance M . Likewise, intensity
can be subdivided into field intensity I− and surface intensity I+. Figure 1.15 summarizes
this hierarchy of radiometric concepts.

1.5.9 Spectral Quantities Expressed per Unit Frequency Interval

The spectral radiance and irradiances were defined above in terms of a unit wavelength
interval, i.e., “per nanometer.” This is certainly convenient for instrument design because
wavelength filters can select a narrow wavelength range of the incident light. However,
it is sometimes convenient to express spectral radiometric variables in terms of a unit
frequency interval rather than a unit wavelength interval, which brings us to our first crisis
of notation. Depending on the problem—electromagnetic wave propagation, sea surface
wave generation, image analysis, etc.—“frequency” may refer to either a temporal or a
spatial frequency. We will encounter both meanings in this book, so care will be taken
to specify either temporal or spatial frequency as needed. Depending on the scientific
field—quantum physics, chemistry, astronomy, atmospheric optics, optical oceanography,
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Figure 1.15: The hierarchy of radiometric concepts.

physical oceanography, etc.—one symbol or another will be used. You find the same
symbol used for two different concepts, and different symbols used for the same concept.
The notation used in this book is as follows.

• Let λ be the spatial wavelength in meters. This could be the wavelength of light, say
500 · 100−9 m, or the wavelength of a water wave on the sea surface, say 50 m.

• Let T be the temporal period of the wave in seconds. This might be the period of
one wavelength of light, say 10−14 s, or the period of a water wave on the sea surface,
say 7 s.

• f , 1/T is the temporal frequency (units of cycles per second or Hertz), often called
just the frequency. Some authors use f and some use ν or σ′ for temporal frequency.

• ω , 2π/T = 2πf is the angular temporal frequency (units of radians per second),
usually called the angular frequency. Some authors use σ rather than ω.

• ν , 1/λ is the spatial frequency or wavenumber (cycles per meter). Some authors
use κ, κ′, κ, ν̃, or σ, rather than ν.

• k , 2π/λ = 2πν is the angular spatial frequency or angular wavenumber (radians per
meter). Some authors use κ rather than k, and some call ν the wavenumber and k
the spatial frequency.

Temporal frequency f is expressed in in units of s−1 or Hertz; one Hertz is one cycle
per second. Angular frequency ω is expressed in radians per second. One cycle of a wave
is 2π radians, so 1 Hz = 2π rad s−1. Spatial frequency is in cycles per meter, or m−1.
However, in image analysis, the spatial frequency is often expressed in lines per millimeter
(or something similar) as a measure of the spatial frequency that can be resolved in an
image.

There is no uniformity in the literature. The books in my library have examples of each
of the above notations. When a paper refers to “frequency,” it usually means temporal
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frequency, but it is often left to the reader to figure out from the context if f or ω is
meant; and “wavenumber” or “spatial frequency” may mean either ν or k. Older physics
books seem to use ν for temporal frequency and write the energy of a photon (Eq. 1.1) as
E = hν; newer texts tend to use f for temporal frequency8 and write E = hf or E = }ω,
where } = h/(2π) is the “reduced” Planck constant. The whole business of terminology
and notation for frequencies is a confusing mess, and you just have to figure it out on a
case-by-case basis.

Suppose we wish to express the spectral radiance, defined above as power per unit
area per unit solid angle per unit wavelength interval (units of W m−2 sr−1 nm−1) , as
radiance per unit spatial frequency, i.e., power per unit area per unit solid angle per unit
spatial frequency interval. To establish the conversion, consider the radiant energy Q(λ)dλ
contained in a wavelength interval dλ. The same amount of energy is contained in a
corresponding spatial frequency interval Q(ν)dν. Since an increase in wavelength (dλ > 0)
implies a decrease in spatial frequency (dν < 0), and vice versa, we can write

Q(λ)dλ = −Q(ν)dν.

Using λ = 1/ν we then get

Q(ν) = −Q(λ)
dλ

dν
=

1

ν2
Q(λ = 1/ν) = λ2Q(λ),

which is the desired connection between Q(λ) and Q(ν), or between any other radiometric
quantities. A wavelength interval dλ therefore corresponds to a spatial frequency interval
dν of size

dν =
1

λ2
dλ.

If Q(ν) is radiance, the units are now W m−2 sr−1 (1/nm)−1 if λ is measured in nanometers.

To convert radiance per unit wavelength to radiance per unit temporal angular fre-
quency, the same process, starting with λ = c/f = 2πc/ω, where c is the speed of light,
gives

Q(ω) = −Q(λ)
dλ

dω
=

2πc

ω2
Q(λ = 2πc/ω) =

λ2

2πc
Q(λ) .

If Q(ω) is radiance, the units are now W m−2 sr−1 (rad/s)−1.

1.6 Polarization: Stokes Vectors

The preceding sections have discussed unpolarized or “natural” light. The prime example of
interest in oceanography is unscattered light from the Sun. However, unpolarized sunlight
scattered by atmospheric molecules is partially polarized, with the degree of polarization
depending on the direction of the scattering. Similarly, reflection by and transmission
through the air-water surface generates polarized light even if the incident light is unpolar-
ized. Therefore, light in the atmosphere and oceans is usually partially polarized. Although
the state of polarization may be irrelevant for processes such as photosynthesis for heating
of the water, the state of polarization carries information and is increasingly being used in

8The use of ν versus f in older versus newer texts may be an erroneous conclusion due to the high
uncertainty in small-sample statistics; I have only a few dozen physics books in my office.
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Figure 1.16: Illustration of the behavior of the electric field E(t) = Eo cos(2πt/T ) for
linearly polarized light. See the Web Book for an animation.

remote sensing and other applications. It is therefore worthwhile to discuss polarization
before proceeding with other topics.

Light consists of propagating electric and magnetic fields, which are described by
Maxwell’s Equations (Chapter 11). If the time- and space-dependent electric field vector
E(x, t) is known, then the magnetic field vector B(x, t) can be computed from Maxwell’s
equations, and vice versa. It is thus sufficient to discuss just one of these fields, which is
customarily chosen to be the electric field vector. Polarization then refers to the plane in
which the electric field vector is oscillating.

1.6.1 What is Polarization?

Suppose you are looking toward a light source, or “into the beam.” In the simplest case,
called linear (or plane) polarization, the electric field E(x, t) lies in, or oscillates in, a fixed
plane. Figure 1.16 illustrates how the electric field varies with time as the light wave passes
through a fixed reference plane normal to the direction of propagation. See the Web Book
for an animation. For visible wavelengths, these oscillations are at a frequency of around
1014 times per second and cannot be directly measured because of instrumentation limits.

However, the plane in which the electric field lies may also rotate with time as the
beam of light passes. This is called circular polarization if the maximum value of E(x, t)
is independent of time but the orientation of the plane rotates. There is an intermediate
state, elliptical polarization, in which the plane rotates and the amplitude of E(x, t) also
changes as the plane rotates, so that the maximum value of E(x, t) traces out an ellipse.
The final possibility is that, as you observe E(x, t), the plane of oscillation changes rapidly
(on the order of the frequency of the light) and randomly. This is random polarization,
which is often called “unpolarized” or “natural” light.

Circular or elliptical polarization is called “right” or “left” depending on the direction
the plane of the electric field rotates as the wave passes a fixed reference plane, but under-
standing the exact meaning these terms as they relate to light can be confusing. Figure
1.17 makes an analogy to a common “right-hand-twist” drill bit used to cut holes in wood.
The edges of this bit form right-handed helices as commonly defined. As this bit bores into
the wood, the cutting tips trace out right-handed helices. Now think of the outer edge of
the bit as being the tip of the electric field vector of circularly polarized light. The light
is propagating upward in the figure, in the direction the drill goes into the wood. The
reddish plane labeled z = 0 is held fixed in space as the light propagates past this reference
plane. The red arrow labeled t = 0 indicates the electric field vector lying in the reference
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plane at time zero. Now think of moving the drill bit upward without rotating it. At some
time t = ∆t > 0 later the drill bit/light wave will have moved upward, and the red arrow
labeled t = ∆t will lie in the reference plane. The t = ∆t vector will have rotated from
the direction of the t = 0 vector. At time t = 2∆t the light wave will have moved further
upward, and the t = 2∆t vector will now be crossing the reference plane at z = 0. As time
progresses, the direction of the electric field vectors in the reference plane will appear to
rotate in a clockwise direction as viewed looking into the beam (or counterclockwise when
looking along the beam). This is the electric field rotation direction for right-circularly
polarized (RCP) light. If the electric field rotates in a counterclockwise direction when
looking into the beam (or clockwise looking along the beam), the light is left-circularly
polarized (LCP).

Figure 1.17: A right-hand-twist drill bit as an analogy to right-circular polarization. The
edges of the bit are right-handed helices, and as the bit cuts into material, each cutting
tip traces out a right-handed helix. If the bit is moved upward, without rotation, through
the plane at z = 0, the intersection of the cutting edge and the plane at z = 0 appears to
rotate clockwise when viewed looking into the beam.

Note that the description of the electric field as rotating clockwise or counterclockwise
depends on whether you are looking into the beam or along the beam. However, the concept
of right-handed versus left-handed helices is independent of the viewing perspective. The
definition just described—RCP corresponds to clockwise electric field rotation in a reference
plane when looking into the beam as the light propagates through the plane, and to the
pattern of electric field vectors lying along a right-hand helix in space—is what is used by
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Figure 1.18: A single frame from an animation of a RCP electric field propagating from
left to right. See the Web Book for the animation. (From https://en.wikipedia.org/

wiki/Circular_polarization)

Bohren and Huffman (1983) and Hecht (1989). I personally like that convention because
I can remember the analogy with the moving right-hand-helix drill bit. However, others,
e.g., Kattawar (1994) and Jackson (1962), use the opposite convention of RCP meaning
that the electric field appears to rotate counterclockwise with looking into the beam (or
clockwise looking along the beam); in this choice LCP corresponds to a right-handed helix.
The convention for how to define RCP vs LCP often seems to depend on the field of the
user—physics versus astronomy versus chemistry, etc. Fortunately it does not matter which
one you use, so long as you make a choice and stick with it during the solution of your
problem. Problems arise only if you compare your results with someone else’s results, in
which case different descriptors like parallel versus perpendicular and right versus left may
be referring to the same thing by different names.

Figure 1.18 shows a single frame of an animation of a propagating electric field of RCP
light as defined here, at one instant of time, but the animator calls it LCP, which was the
choice for the creator of that Wikipedia page.

1.6.2 Stokes Vectors

We now need a quantitative way to specify the state of polarization of light. This is given
by the Stokes vector, which is an array of four real numbers usually written as

S =


I

Q

U

V

 .

Note that S is just an array with four elements; it is not a vector in the geometric sense.
To define the Stokes vector, first pick an (x̂, ŷ, ẑ) coordinate system that is convenient

for your problem. In a laboratory setting, this system might have x̂ parallel to an optical

https://en.wikipedia.org/wiki/Circular_polarization
https://en.wikipedia.org/wiki/Circular_polarization


1.6. POLARIZATION: STOKES VECTORS 43

bench top, ŷ perpendicular to the bench top, and ẑ = x̂× ŷ in the direction of propagation.
In this lab setting, x̂ might then be called the “parallel” (to the bench top) direction, and ŷ
would then be the “perpendicular” direction. Or x̂ and ŷ might be called “horizontal” and
“vertical”, respectively. The next section on scattering of polarized light shows another
coordinate system commonly used in oceanography.

The electric field vector in this coordinate system is resolved into x and y components
as E = Exx̂ + Eyŷ, where the components Ex and Ey depend on position and time. For
light propagating in a vacuum, the electric field is transverse to the direction of travel, so
the z component of E is zero. If the light is linearly polarized in the x plane, then Ex 6= 0
and Ey = 0. For linear polarization in the y plane, Ex = 0 and Ey 6= 0.

At optical frequencies instruments cannot measure the instantaneous value of the fluc-
tuating electric field E(t) itself, but they can make time-averaged (over many wave periods)
measurements of the corresponding irradiance E . Here E is used for irradiance to avoid
confusion with the electric field magnitude E. As discussed in detail in Section 11.3, it
is convenient for intermediate calculations to write sinusoidal functions as complex expo-
nentials; the real part is then taken to recover the sinusoid. The time-averaged irradiance
corresponding to E(z, t) = cos(kz − ωt) = <{Eo exp(ikz − iωt)} is (Eq. 11.42)

E =
1

2

√
εm/µm |Eo|2 . (1.30)

Here εm is the electrical permittivity of the medium, which has units of Farad m−1 or
C2 N−1 m−2 or A2 s4 kg−1 m−3. µm is the magnetic permeability of the medium, which has
units of Henry m−1 or N A−2 or kg m s−2 A−2. Electric fields have units of N C−1 or V m−1

or kg m s−2 C−1. Thus E has units of kg s−3 or Watt m−2, i.e. of irradiance. The factor of
1
2 comes from the average of the sinusoidal dependence of |E(t)|2 over a wave period (i.e.,
1

2π

∫ 2π
0 cos2 x dx = 1

2). We therefore base the definition and actual measurements of Stokes
vectors on the measurable time-averaged irradiances if we are working with a collimated
monochromatic beam of light.

The Q Stokes parameter is then defined follows. Let Ex be the time averaged irradiance
measured with a linear polarizing filter placed in the beam and oriented in the x (or parallel
or horizontal in the lab setting) direction. Let Ey be the time average measured with the
linear polarizer oriented in the y (or perpendicular or vertical) direction. Then Q is defined
as

Q , Ex − Ey .

Thus Q > 0 if the polarization lies in the x plane, and Q < 0 if it lies in the y plane.

This choice of x̂ and ŷ can distinguish between linear polarization lying in the x or
y planes. But suppose that the plane of polarization is intermediate between the x or y
planes, as illustrated by the either of the red arrows in the left panel of Fig. 1.19. These
are different states of polarization, but both have the same projections onto the x and y
planes, hence the same Q value. Thus the Q parameter cannot distinguish between the
solid and dashed planes of polarization seen in the left panel of the figure.

The state of linear polarization can be uniquely specified by the choice of a second set
of axes, (x̂′, ŷ′), chosen at a 45 deg angle to the (x̂, ŷ) axes, as shown in the right panel of
Fig. 1.19. The solid and dashed red arrows have different projections on the (x̂′, ŷ′) axes
and are thus distinguished. The Stokes U parameter is non-zero for planes of polarization
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Figure 1.19: Coordinate systems for
specification of the state of linear po-
larization. The red arrows represent
two possible planes of linear polar-
ization.

like the red arrows in the figures and is defined by

U , Ex′ − Ey′ ,

where Ex′ and Ey′ are the time averages of the irradiances measured with the linear polarizer
oriented in the x′ and y′ planes. Thus if the plane of polarization lies at 45 deg to the x
plane, parallel to x̂′, U > 0 and Q = 0. For polarization in the plane at -45 deg to the x
plane, parallel to ŷ′, U < 0 and Q = 0. For planes of linear polarization not lying in either
the x,y or x′, y′ planes (as illustrated by the red arrows in Fig. 1.19), both Q and U will be
non-zero and either positive or negative, depending on the inclination of the polarization
plane to these two sets of axes.

The Stokes parameters Q and U together specify the state of polarization if the light
is linearly polarized. Another parameter, V , is needed to specify the state of circular
polarization. The time-averaged amounts of right and left circularly polarized irradiance,
call them ER and EL respectively, can be measured by use of circular polarizers. The V
component is then defined as their difference:

V , ER − EL .

Thus V > 0 for right circular polarization, and V < 0 for left circular polarization.
Finally, consider the case of randomly polarized light. All of the above time averages

will be equal because of the rapid fluctuations of the electric fields with all directions and
helicities, in which case Q = U = V = 0. To account for this case, let I be the total
irradiance without regard for the state of polarization. This is measured without the use
of any polarization filters in the beam. This is also given in terms of the time averages by

I = Ex + Ey = Ex′ + Ey′ = ER + EL .

I is always positive and equal to the total irradiance.
It is important to note that the values of the Q and U parameters depend on the

choice of the (x̂, ŷ) axes, but the values of I and V are independent of this choice. In
the coordinate system described above, the x̂ axis is parallel to the horizontal laboratory
bench top, and ŷ is perpendicular to the bench top. As noted, it is common to refer to
the corresponding polarizations as being “parallel” or “horizontal” and “perpendicular” or
“vertical”, respectively. Terms like parallel and perpendicular or horizontal and vertical
always refer to some reference plane—the bench top in this case. However, a different
choice of the reference plane changes the meaning of these terms. One person’s parallel
polarization can be another person’s perpendicular polarization. You have to figure out
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the meanings on a case by case basis for whatever reference coordinate system is being
used.

If the beam is perfectly polarized (in whatever state of polarization), then

I2 = Q2 + U2 + V 2 .

If the beam is unpolarized, or is a mixture of polarized and unpolarized light, then this
relation becomes an inequality:

I2 > Q2 + U2 + V 2 .

The degree of polarization, expressed in percent, is defined by

DoP = 100

√
Q2 + U2 + V 2

I
.

The degree of linear polarization is defined by

DoLP = 100

√
Q2 + U2

I
,

and the degree of circular polarization is defined by

DoCP = 100
V

I
.

DoCP is positive for RCP and negative for LCP. These measures of the degree of polar-
ization do not depend on the choice of coordinate system.

The definitions of Q,U , and V above were made in terms of measurable irradiances.
There is much more that can be said, in particular about the theoretical formulation of the
Stokes vector in terms of the solution of Maxwell’s equations for a propagating wave. An
excellent and entertaining presentation of those details is given in Bohren and Clothiaux
(2006, Chapter 7). Suffice it to say that in discussions of Stokes vectors you may see them
defined by equations such as

S =


I

Q

U

V

 =


E‖ + E⊥
E‖ − E⊥
E+45 − E−45

ER − EL

 (1.31)

=

√
εm
µm


〈E‖(t)E∗‖(t) + E∗⊥(t)E∗⊥(t)〉

〈E‖(t)E∗‖(t)− E
∗
⊥(t)E∗⊥(t)〉

〈E‖(t)E∗⊥(t) + E∗⊥(t)E∗‖(t)〉

i〈[E‖(t)E∗⊥(t)− E∗⊥(t)E∗‖(t)]〉

 (1.32)

=
1

2

√
εm
µm


Eo‖E

∗
o‖ + Eo⊥E

∗
o⊥

Eo‖E
∗
o‖ − Eo⊥E

∗
o⊥

Eo‖E
∗
o⊥ + Eo⊥E

∗
o‖

i[Eo‖E
∗
o⊥ − Eo⊥E

∗
o‖]

 =
1

2

√
εm
µm


|Eo‖|2 + |Eo⊥|2

|Eo‖|2 − |Eo⊥|2

−2<{Eo‖E
∗
o⊥}

2={Eo⊥E
∗
o‖}

 (1.33)
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=
1

2

√
ε

µ


EoθE

∗
oθ + EoφE

∗
oφ

EoθE
∗
oθ − EoφE

∗
oφ

−EoθE
∗
oφ − EoφE

∗
oθ

i(EoφE
∗
oθ − EoθE

∗
oφ)

 =
1

2

√
ε

µ


|Eoθ|2 + |Eoφ|2

|Eoθ|2 − |Eoφ|2

−2Re{EoθE
∗
oφ}

2Im{EoθE
∗
oφ}

 . (1.34)

The first form of definition is in terms of measurable irradiances as discussed above, with
an obvious change in notation to show the orientations of the polarizing filters in the chosen
coordinate system. The second form is written in terms of the complex, time-dependent,
electric field vectors after describing the light beam in terms of a plane-wave solution to
Maxwell’s equations. Thus E‖(t) = Eo‖ exp(−iωt), etc. The 〈...〉 notation indicates the
time average of the argument. After the time averages are taken, the magnitudes Eo‖
etc. are left, and there is an additional factor of 1

2 resulting from the average of products
of the sinusoidal electric fields over a wave period. The version in terms of Eoθ and Eoφ

refer to the electric field components in the ϑ̂ and ϕ̂ directions seen in Fig. 1.20. The
forms showing absolute values and real and imaginary parts make clear that the Stokes
parameters are real numbers. The discussion of Eq. (1.30) shows that the definitions in
terms of electric fields still have units of irradiance. The irradiance form is what you will
use in the lab; the electric-field forms are what you will use for theory.

Table 1.5 shows the pattern of Stokes parameters for various states of polarization.
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Table 1.5: Patterns of Stokes vectors for various polarization states.

1.7 Polarization: Scattering Geometry

This section discusses the geometrical considerations underlying computations of the scat-
tering of polarized light using Stokes vectors.
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As is shown in the preceding section, the state of polarization of a light field is specified
by the four-component Stokes vector, whose elements are related to the complex amplitudes
of the electric field vector E resolved into directions that are parallel (E‖) and perpendicular
(E⊥) to a conveniently chosen reference plane.

However, there are two versions of the Stokes vector seen in the literature, and these two
versions have different units and refer to different physical quantities. The coherent Stokes
vector describes a quasi-monochromatic plane wave propagating in one exact direction,
and the vector components have units of power per unit area (i.e., irradiance) on a surface
perpendicular to the direction of propagation. To be specific, the coherent Stokes vector
can be defined as shown in Eq. (1.33) (e.g., Mishchenko et al., 2002):
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 =
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2

√
εm
µm


Eo‖E

∗
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∗
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∗
o‖

i[Eo‖E
∗
o⊥ − Eo⊥E

∗
o‖]

 . (1.35)

Here E∗ denotes complex conjugate, hence the components of the Stokes vector are real
numbers.

The diffuse Stokes vector is defined as in Eq. (1.35) but describes light propagating in
a small set of directions surrounding a particular direction and has units of power per unit
area per unit solid angle (i.e., radiance). It is the diffuse Stokes vector that appears in the
general Vector Radiative Transfer Equation discussed in Section 9.14. The differences in
coherent and diffuse Stokes vectors are rigorously presented in Mishchenko (2008b).

Authors often omit the 1
2

√
εm/µm factor seen in Eq. (1.35) because they are interested

only in relative values such as the degree of polarization, not in absolute magnitudes, but
this omission is both confusing and physically incorrect. Units and magnitudes matter!
The different units of coherent and diffuse Stokes vectors, and whether or not the 1

2

√
ε/µm

factor is included in the definition of the Stokes vector, have subtle but very important
consequences in how light propagation across a dielectric interface such as the air-water
surface is formulated. The paper by Zhai et al. (2012) gives a definitive discussion of these
matters.

1.7.1 Coordinate Systems

To describe the scattering of polarized light, we must first choose coordinate systems and
show in detail how to resolve Stokes vectors in these coordinate systems as needed for
scattering calculations.

Figure 1.20 shows the coordinate systems commonly used to resolve Stokes vectors as
needed for geophysical scattering calculations. In oceanography, depth and direction are
defined in a 3-D Cartesian coordinate system with depth measured positive downward
from 0 at the mean sea surface. Polar angle θ is defined from 0 in the +ẑ (or downwelling
direction) to π in the −ẑ (upwelling) direction. +x̂ is chosen for convenience, e.g., pointing
toward the Sun or pointing in the downwind direction (in which case ±ŷ is the cross-wind
direction. As shown in Mobley (2014), using a wind-centered coordinate system makes
it easier to model a random sea surface with different along-wind and cross-wind slope
statistics.) Azimuthal angle φ is measured counterclockwise from +x̂ when looking in the
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−ẑ direction. If the Sun is placed in the +x̂ azimuthal direction at φSun = 0, unscattered
rays from the Sun are then traveling in the −x̂ direction at φ = 180 deg.

Figure 1.20: Coordinate system for Stokes vectors. The left panel shows an (x̂, ŷ, ẑ) Carte-
sian system, which is fixed in space and used to define a spherical (r, θ, φ) coordinate
system. The right panel shows a direction of light propagation ξ̂′ whose Stokes vector is
S′. The ĥ′-v̂′-ξ̂′ system is a local system (changing with θ′, φ′) for resolving Stokes vectors
in directions that are perpendicular and parallel to the incident meridian plane, part of
which is shaded in blue. In the oceanographic setting, this figure can be turned “upside
down”, with the x–y plane being the mean sea surface, x̂ chosen for convenience (e.g.
pointing downwind or east or in the Sun’s direction), and ẑ pointing downward into the
water. The blue arrows indicate light that is polarized parallel to the meridian plane.

The unit vectors in the directions of increasing (r, θ, φ) are

r̂ = sin θ cosφ x̂ + sin θ sinφ ŷ + cos θ ẑ , (1.36a)

ϑ̂ = cos θ cosφ x̂ + cos θ sinφ ŷ − sin θ ẑ , (1.36b)

ϕ̂ =− sinφ x̂ + cosφ ŷ . (1.36c)

Let ξ̂ denote a unit vector pointing in the direction of light propagation, as given by angles
(θ, φ). (In Fig. 1.20, ξ̂′ = r̂.) The components of ξ̂ are given by

ξ̂ = ξxx̂ + ξyŷ + ξzẑ = (ξx, ξy, ξz) (1.37)

where

ξx = sin θ cosφ , (1.38)

ξy = sin θ sinφ , (1.39)

ξz = cos θ . (1.40)

There is frequent need to resolve Stokes vectors in directions perpendicular and parallel
to a given plane, which can be a meridian9 plane, a scattering plane in the water volume,

9The name “meridian” comes from the Latin for “mid-day.” The Sun crosses the astronomical meridian
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or the plane of incident, reflected, and transmitted light for light incident onto an air-water
or bottom surface. The following conventions define these unit vectors. Vector p̂ denotes a
unit vector parallel to a plane, and ŝ denotes a unit vector perpendicular to a plane (“s” for
senkrecht, German for perpendicular). The perpendicular vector ŝ is chosen to be in the
direction given by the vector cross product of the incident direction crossed with the final
direction. The parallel vector p̂ is then defined as the direction of propagation cross the
perpendicular direction. Thus the perpendicular cross parallel directions give the direction
of light propagation: ŝ× p̂ = ξ̂, where × denotes the vector cross product.

For an incident direction ξ̂′ and the associated Stokes vector S′ specified in the inci-
dent meridian plane, the first vector is taken to be ẑ and the second is the direction of
propagation. Thus ĥ′ , ẑ × ξ̂′/|ẑ × ξ̂′| as seen in the right panel of Fig. 1.20. In this

case |ẑ × ξ̂′| = sin θ′, and ĥ′ = ϕ̂′. Similarly, v̂′ , ξ̂′ × ĥ′ = −ϑ̂′, and ĥ′ × v̂′ = ξ̂′.
Meridian planes are perpendicular to the mean sea surface. The ĥ′ vector as just defined
is therefore parallel to the mean sea surface and therefore is often referred to as the “hor-
izontal” direction; v̂′ lies in a vertical plane and is correspondingly called the “vertical”
direction. For a final direction ξ̂ and its Stokes vector S in the final meridian plane, the
first vector is the direction ξ̂ and the second is ẑ. This vector cross product algorithm
for specifying perpendicular and parallel directions will be convenient for sea surface re-
flectance and transmission calculations in which light can propagate from one tilted wave
facet to another without reference to meridian planes, except for the incident and final
directions when a photon enters or leaves the region of the sea surface.

The Q and U components of a Stokes vector describe linear polarization with the plane
of polarization specified relative to a particular coordinate system. The I component is the
total radiance, and V describes circular polarization; these quantities do not depend on the
coordinate system and are invariant under a rotation of the coordinate system. The blue
arrows in Fig. 1.20 represent the plane of oscillation of the electric field vector E parallel
to the meridian plane, i.e. for vertical plane polarization.

1.7.2 Scattering Geometry

The elements of input and output Stokes vectors are defined relative to meridian planes, as
described above. However, scattering from an incident direction ξ̂′ to a final direction ξ̂ is
defined in terms of the included scattering angle ψ and the scattering plane, as illustrated
in Fig. 1.21. Using Eqs. (1.37)-(1.40) to express the incident direction ξ̂′ and scattered
direction ξ̂ in terms of the incident and scattered polar and azimuthal angles gives the
scattering angle ψ:

cosψ = ξ̂′ · ξ̂ = cos θ′ cos θ + sin θ′ sin θ cos(φ− φ′) . (1.41)

Consider an incident beam of light propagating in direction ξ̂′ = r̂ as in Fig. 1.20.
Direction ξ̂′ is specified by polar and azimuthal directions (θ′, φ′). The ẑ axis and the
direction of light propagation ξ̂′ define the incident meridian plane, part of which is shaded
in blue in the right panel of Fig. 1.20. The 4×1 (diffuse) Stokes vector S′ = [I ′, Q′, U ′, V ′]T

for this beam of light is described with reference to “horizontal” and “vertical” directions,

plane and is highest in the sky half way between sunrise and sunset. This is the origin of A.M. (ante-
meridiem, before mid-day) and P.M. (post-meridiem, after mid-day) used in specifying time with a 12-hour
clock system.
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Figure 1.21: The scattering plane and the incident and final meridian planes showing the
coordinate systems and rotations used to specify the scattering of polarized light. The
scattering plane is partly shaded in red. (Unit vectors in this figure do not have hats.)

+ĥ′ and +v̂′ respectively, which were defined above; the superscript T denotes transpose.
Note that the horizontal unit vector +h′ is perpendicular to the meridian plane, and the
vertical vector +v̂′ is parallel to the meridian plane.

To compute how an incident Stokes vector S′ is scattered to a final vector S, the horizon-
tal and vertical components of S′ in the incident meridian plane must first be transformed
(“rotated”) into components parallel and perpendicular to the scattering plane. The co-
ordinate system after rotation of v̂′ and ĥ′ about the ξ̂′ axis is labeled p̂′ (parallel to the
scattering plane) and ŝ′ (perpendicular to the scattering plane). Note that ŝ′ × p̂′ still
gives the direction of propagation ξ̂′. As shown in Fig. 1.21, rotation angle α′ takes v̂′

into p̂′ (and ĥ′ into ŝ′). In the present discussion, rotation angles are defined as positive
for counterclockwise rotations when looking “into the beam,” e.g. in the −ξ̂′ direction.
This is similar to rotations about the ẑ axis of Fig. 1.20 having positive angles φ for
counterclockwise rotations when looking in the −ẑ direction.

When computing single scattering with both ξ̂′ and ξ̂ being expressed in their respective
meridian planes, the rotation angles can be obtained from spherical trigonometry applied
to the triangle defined by ẑ, ξ̂′, and ξ̂, which is shown in the inset in Fig. 1.21. Given
θ′, φ′, θ, φ, spherical trigonometry gives the rotation angles α′ and α as (e.g, van de Hulst
(1980, Vol. 2, page 499) or Mishchenko et al. (2002, page 90))

cosα′ = (cos θ − cos θ′ cosψ)/(sinψ sin θ′) (1.42)

or
sinα′ = − sin θ sin(φ− φ′)/ sinψ . (1.43)
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Figure 1.22: Computation of rotation angles for various orientations of initial v1 and final
v2 vectors.

and
cosα = (cos θ′ − cos θ cosψ)/(sinψ sin θ) (1.44)

or
sinα = − sin θ′ sin(φ− φ′)/ sinψ (1.45)

for ψ 6= 0 or π and for 0 ≤ φ − φ′ ≤ π. If π < φ − φ′ < 2π, then α′ and α are given
by the negatives of these equations. The scattering angle ψ is given by Eq. (9.3). The
rotation and scattering angles depend only on the difference in azimuthal angles via φ−φ′.
Special cases are required when θ′, θ, or ψ are zero. For ψ = 0, set α′ = α = 0 since
φ′ = φ =⇒ sin(φ−φ′) = 0. For ψ = π, set α′ = α = 0 since φ = φ′+π =⇒ sin(φ−φ′) = 0.
If sin θ′ = 0, replace Eqs. (1.42) and (1.44) with (Hu et al., 2001)

cosα′ = − cos θ′ cos(φ− φ′) (1.46)

cosα = cos θ′ . (1.47)

If sin θ = 0, replace Eqs. (1.42) and (1.44) with

cosα′ = cos θ (1.48)

cosα = − cos θ cos(φ− φ′) . (1.49)

When doing calculations of multiple scattering between sea surface wave facets, a light
ray can reflect from one wave facet to another several times before the incident ray finally
leaves the surface region and needs to be rotated into the final meridian plane. In this case,
it is more convenient to obtain the rotation angles from the perpendicular (or parallel) axes
as determined for the incident ray direction onto a facet and the normal to the tilted wave
facet. The details of these calculations are given in Mobley (2015) and will not be repeated
here because they are not of general interest. However, it can be seen from Fig. 1.21 that
the rotation angles can be obtained from cos−1(v̂′ · p̂′) and cos−1(p̂ · v̂), where the dot
denotes the vector dot or inner product. Figure 1.22 illustrates this for general initial v1

and final v2 vectors.
Once the incident Stokes vector is specified in the scattering plane, the scattering

matrix is applied to obtain the final Stokes vector, which is then expressed in the ŝ-p̂-ξ̂
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scattering plane coordinate system defined for the final direction: ŝ × p̂ = ξ̂. Finally,
the parallel and perpendicular components of the final Stokes vector must be expressed
as horizontal and vertical components in the final meridian plane as specified by the ĥ-
v̂-ξ̂ system. As illustrated in Fig. 1.21, this requires a counterclockwise rotation through
an angle of α, where α is the “interior” angle of the spherical triangle illustrated in the
figure. If R(γ) represents a counterclockwise (positive) rotation through angle γ and M(ψ)
represents scattering through scattering angle ψ, then this scattering process is symbolically
represented by

S = R(α)M(ψ)R(α′)S′ . (1.50)

For the choice of a positive rotation being counterclockwise when looking into the beam,
the Stokes vector rotation matrix is (e.g., Mishchenko et al., 2002, page 25)

R(γ) =


1 0 0 0

0 cos 2γ − sin 2γ 0

0 sin 2γ cos 2γ 0

0 0 0 1

 . (1.51)

These rotation matrices have several obvious but important properties:

R(π) = I , (1.52)

R(π + γ) = R(γ) , (1.53)

R(π − γ) = R(−γ) , (1.54)

R(−γ) = R−1(γ) = RT(γ) , (1.55)

R(γ1)R(γ2) = R(γ1 + γ2) . (1.56)

Equation (1.52) shows that rotating a coordinate system through an angle of π, which turns
ŝ and p̂ into -̂s and -p̂ leaves the Stokes vector unchanged, consistent with the previous
remark about directions −ŝ, −p̂ being equivalent to ŝ, p̂ as regards Stokes vectors. That
is, Stokes vectors are referred to a plane, not to a particular direction in that plane.

Although not needed here, it is noted for completeness that a rotation in 3-D space by
angle γ about an axis specified by unit vector û = uxx̂ + uyŷ + uzẑ = (ux, uy, ux) is

R3−D(û, γ) =
cos γ + u2

x(1− cos γ) uxuy(1− cos γ)− uz sin γ uxuz(1− cos γ) + uy sin γ

uyux(1− cos γ) + uz sin γ cos γ + u2
y(1− cos γ) uyuz(1− cos γ)− ux sin γ

uzux(1− cos γ)− uy sin γ uzuy(1− cos γ) + ux sin γ cos γ + u2
z(1− cos γ)


(1.57)

for a counterclockwise rotation when looking in the −û direction. This matrix can be used
to check quantities determined by other means. For example, ŝ′ = R3−D(ξ̂′, α′)ĥ′ as seen
in Fig. 1.21.

The choice of coordinate systems and rotation angles is not unique. Kattawar and
Adams (1989), Kattawar (1994), Zhai et al. (2012), and Mishchenko et al. (2002) all choose
the reference plane to the be meridian plane. (These authors use somewhat different
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notation; our ĥ and v̂ are Kattawar’s r and l, respectively. Mishchenko et al. (2002,
page 16) on the other hand use the spherical coordinate system unit vectors ϑ̂ and ϕ̂ for
the vertical and horizontal axes.) Thus in the ocean setting they regard the “horizontal”
direction (parallel to the mean sea surface) as being the “perpendicular” direction (relative
to the meridian plane), and “vertical” to the mean sea surface as being the “parallel”
direction. Note in Eq. (1.35) that if the parallel component of the electric field is zero,
then the second element of the Stokes vector is proportional to −E⊥E∗⊥ = −E2

⊥, which is
a negative number. A Stokes vector for light reflected from the sea surface with horizontal
linear polarization is therefore proportional to S = [1,−1, 0, 0]T , which they refer to as
perpendicular polarization. Their choice of the reference plane means that the scattering
(Mueller) matrix that transmits only horizontally polarized light has the form

M̃h =


1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

 . (1.58)

However, Bohren and Huffman (1983) and Hecht (1989) choose their “parallel” direction
to be parallel to a horizontal direction, such as a laboratory bench top or the mean sea
surface, and their vertical direction is perpendicular to the bench top or mean sea surface.
Thus their Stokes vector for horizontal polarization (parallel to the mean sea surface) is
S = [1, 1, 0, 0]T and their Mueller matrix that transmits only horizontally polarized light
has the form

M̃h =


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 .
The difference choices arise perhaps from the viewpoints of describing polarization in a
convenient way for a laboratory experiment with reference to a table top, versus modeling
light incident onto the sea surface with reference to meridian planes.

The forms of scattering matrices as commonly used to model scattering within the
ocean and atmosphere are discussed in Section 9.3.

Similar confusion is found in the choice of rotation angles. Kattawar (and his students in
their papers) and Bohren and Huffman (1983) define a positive rotation as being clockwise
when looking into the beam. Since a clockwise rotation through angle γ is the same as
a counterclockwise rotation through −γ, Kattawar’s rotation matrix is the transpose of
the one in Eq. (1.51) (see Eq. 1.55). Thus Kattawar (e.g., Kattawar and Adams, 1989,
Eq. 10) writes Eq. (1.50) as S = R(−α)M(ψ)R(−α′)S′ (again, with minor differences in
notation; α′ here is Kattawar’s Φ, etc.). Others often write a rotation as R(π − α) rather
than R(−α); these are equivalent because by Eq. (1.51) shows that R(π − α) = R(−α).
Chandrasekhar (1960) also defines a positive rotation as being clockwise when looking into
the beam. However, he uses a different definition for the Stokes vector for which only
the fourth component is independent of coordinate system, so his rotation matrix is more
complicated. Mishchenko defines a positive rotation as being clockwise when looking in
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the direction of propagation. This is equivalent to counterclockwise when looking into the
beam as used here; thus his rotation matrix is the same as that in Eq. (1.51). van de Hulst
(1980) also uses the same rotation convention as is used here. All of this is considered
“well known,” so the details are often omitted in publications, with confusing apparent
differences being the price of brevity. Fortunately, the only real requirement for Stokes
vectors, coordinate systems, and rotations is consistency in usage once a choice has been
made10.

1.8 The Limitations of Radiance

There are both philosophical and numerical problems with the use of radiance. These
problems are often related to the fundamental limitations of the concept of radiance. This
section briefly addresses those limitations.

First, recall the operational definition (1.19) of radiance:

L(x, t, ξ̂, λ) ,
∆Q

∆t∆A∆Ω ∆λ
.

There is nothing wrong with this definition, although the value of the measured radiance
will depend on the sizes of the time interval, area, solid angle, and wavelength band being
considered. The problems arise if this definition is squeezed too hard, e.g., by taking
the limit as the solid angle goes to zero. The situation is analogous to the operational
definition of the mass density of a substance as being ∆M/∆V , where ∆M is the mass of
substance in a volume ∆V . You cannot let the volume ∆V go to zero because, physically,
the volume eventually becomes smaller than even a single molecule of the material and the
ratio becomes meaningless. The trick, in practice, is not to let ∆V be so small that the
∆M/∆V ratio begins to fluctuate because the number of molecules in ∆V is noticeably
affected by random thermal fluctuations, or even becomes less that one. If you keep in
mind that ∆V can be “small” but not go to zero, the concept of density is very useful, as
is that of radiance.

A question then arises: “What is the radiance of a collimated beam?” The answer is
that the radiance of a perfectly collimated beam is not defined because ∆Ω would be zero
while the energy in the beam, ∆Q, remains finite. (Or, if you wish, the radiance becomes
mathematically a Dirac delta function, but Dirac delta functions are not measurable phys-
ical quantities.) You can define (and measure) the radiance of a beam of light only if it
has some divergence in direction.

Likewise, you cannot define the radiance emitted by the surface of a point source
because ∆A becomes zero even though the point source is emitting a finite amount of
energy. (Here ∆A is the area of the surface emitting the energy. See Section 1.5.8 for the
distinction between surface radiance for radiance emitted by a surface and field radiance
for radiance incident onto a surface.) That is why point sources are described by their
intensity, which is power emitted per unit solid angle.

When doing Monte Carlo calculations you always have to deal with finite solid angles
and finite surface areas when collecting the simulated “photons” or rays as they bounce

10I’ll be the first to admit that this discussion of Stoke’s vector rotations is complicated and confusing.
However, if you think it is bad reading about this business, just wait until you have to write a computer
program to do these calculations.
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around. You cannot tally the number of rays hitting a point or traveling within a solid
angle of size zero. (However, the backward Monte Carlo techniques discussed in Section
E.7 can allow you to simulate point detectors and collimated detectors under certain cir-
cumstances.)

If you are a hard-core physicist, radiance does not exist. Peruse, for example, standard
texts like Introduction to Electrodynamics by Griffiths (1981), Absorption and Scattering of
Light by Small Particles by Bohren and Huffman (1983), or Optics by Hecht (1989) and you
will find no mention of either radiance or solid angle. This is because what exists in nature
is not radiance but electric and magnetic fields, which are described by Maxwell’s equations
(Chapter 11). Quantities of practical interest, such as the electromagnetic energy crossing a
surface or scattered by a particle, can be computed using Maxwell‘s equations and derived
quantities such as the Poynting vector. Philosophically speaking, any problem solved by
thinking about radiance can be solved with better accuracy and without fundamental
limitations by working with electromagnetic fields.

Why, then, do people use radiance? The reason is simple: It is usually exceedingly
difficult if not impossible to compute the electromagnetic fields for situations of practical
interest. The electric and magnetic fields are vector quantities, and solving Maxwell’s equa-
tions with appropriate sources and boundary conditions for natural water bodies is almost
always beyond the realm of reasonable computation. Moreover, much of the information
contained in the electric and magnetic field vectors, such as the phases of the fields, is not
needed unless diffraction or coherent scattering are of interest.

You can, however, get a good-enough answer for most (but not all) practical problems
by working with the rather contrived but simpler concept of radiance. You just have to
remember, for example, not to let solid angles or detector areas go to zero. Likewise,
you have to remember that radiance cannot be used for solving problems that depend
on the phase of electromagnetic waves, e.g., for problems such as diffraction or coherent
backscatter. (However, effects such as diffraction and coherent backscatter can be included
within radiance-based calculations to the extent that they can be parameterized by the
volume scattering function.) It is also wise to remember that radiance is defined within
the conceptual framework of geometric optics. You can solve a lot of, but not all, optics
problems using geometric optics and ray tracing, but now and then geometric optics is
inadequate for the task at hand. Whenever geometric optics or radiative transfer theory
fail, you have to get out Maxwell’s equations and start calculating electric and magnetic
fields, keeping track of both phases and amplitudes, and that is not easy.



56 CHAPTER 1. LIGHT AND RADIOMETRY



CHAPTER 2

Light Fields in Nature

The previous chapter defined several abstract quantities used to describe light—radiance
and various irradiances in particular. This chapter now illustrates those concepts with
measurements and numerical calculations. The first section shows examples of measured
irradiances for the range of very clear to very turbid waters typically encountered in na-
ture. The next section begins with examples of measured radiances. Radiance is always
hard to display graphically because it depends, at a minimum, on depth, polar angle, az-
imuthal angle, and wavelength. Section 2.2.1 therefore also shows different ways radiance is
commonly visualized. The following section discusses blackbody radiation, which although
not of interest in most optical oceanography is nevertheless important for understanding
light from the Sun. A section on the difference in point and density functions follows
because these differences are needed to understand spectral functions such as the solar
radiance. The chapter finishes with sections on two internal sources of light in the ocean:
bioluminescence and Cherenkov radiation.

2.1 Irradiances

Of the radiometric variables, plane irradiance is the most commonly measured and the
easiest to visualize, so we will begin with irradiance.

The first person to put a spectrograph in the ocean was likely R. Bertel in 1911.
Although his instrument is preserved in the Musée Océanographique in Monaco, his report
(Bertel, 1912) cannot be found online. In 1933, H. A. Erikson used a quartz prism to
disperse light onto photographic film, which he then analyzed to get semi-quantitative
values of the “intensity” of light as a function of depth and wavelength (Erikson, 1933).
An example of his photographic data from Gunflint Lake, Minnesota, USA is shown in Fig.
2.1. About this figure, he says “It is there seen how the spectrum shortens at both ends,
showing a marked absorption by the water of the longer and shorter wave-lengths. It is
also seen that at a depth of 46.5 ft. only the portion in the yellow regions of the visible part
of the spectrum is present with sufficient intensity to perceptibly affect the photographic
plate in the 30 sec. of exposure.” That is a good description of how the spectrum of light
changes with depth in productive waters. He was able to convert the degree of exposure of
the film to numerical values and thereby plot curves of intensity versus depth for different
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wavelengths, and values of intensity versus wavelength at selected depths, which are correct
in all ways, except for the accurate calibration of magnitudes and exact specification of the
wavelengths.

Figure 2.1: Figure 1 from Erikson
(1933) showing strips of film as ex-
posed in his instrument. Red is at the
left and blue is at the right of each
strip of film.

The first measurements of spectral irradiances underwater that meet modern standards
for optical instrument design and radiometric calibration were made in the 1960s by J. E.
Tyler and R. C. Smith at the Scripps Institution of Oceanography Visibility Laboratory.
Their instrument was optically and mechanically complex, but it was very carefully tested
and characterized regarding matters such as stray light sensitivity, electronic stability,
and cosine response (the cosine collector of this instrument is shown in Fig. 1.13). It
was radiometrically calibrated using lamps traceable to the National Bureau of Standards
(now NIST). The radiometer measured from 362 to 736 nm with a bandwidth (full width
at half maximum) of 5.3 to 5.9 nm. Measurement of one spectrum (either Ed or Eu at all
wavelengths for a given depth) typically required about 25 minutes. Although a modern
instrument would be smaller by a factor of 100, would require only a laptop computer,
and could measure in minutes what they could measure in hours, it is unlikely than any
modern instrument could obtain data significantly better that what was measured by these
two founding fathers of optical oceanography. Their measurements were so important that
an entire book, Tyler and Smith (1970), was written to describe the instrument and to
show data collected from nine different water bodies. Good data have a long half life, and
their measurements are still useful half a century later.

Crater Lake, Oregon, USA is a deep (almost 600 m) lake in the caldera of a dormant
volcano. Its only water supply comes from rain and snow, so there is almost no input of
nutrients. The water is is famous for its deep blue color and is considered to be as close to
optically pure water as can be found in nature. Secchi depths (Section 16.7) are typically
30 to 40 meters. Figure 2.2 shows downwelling and upwelling spectral irradiances measured
in Crater Lake1 on 5 August 1966. The sky was clear.

1Ray Smith tells me that he had nightmares about the boat sinking during this field work. The small
boat that was available had only 5 cm of freeboard when all of the gear was on board. He figured out a
way to keep all of the heavy cable in the water, which increased the freeboard to 10 cm. Even the smallest
wave would have swamped the boat and sent everything to the bottom of the deepest lake in the United
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Depth z = 0 is in the water, just below the surface. Note that as the depth increases,
absorption by water itself rapidly removes the downwelling light for wavelengths longer
than about 600 nm. At blue wavelengths around 450 nm, Ed decreases by less than one
half between the surface and 25 m, but it decreases by over four orders of magnitude at
700 nm. The upwelling irradiance has its maximum value near 410 nm, consistent with
the visual appearance of the water as deep blue. (The visual appearance of the lake is
best based on upward radiance in air for the given viewing direction, but that could not
be measured by this instrument. Eu at 5 m depth is a reasonable proxy for the inherent
color of the water.)

Figure 2.2: Spectral downwelling and upwelling irradiances measured in Crater Lake, Ore-
gon, USA. Plotted from data tabulated in Tyler and Smith (1970).

San Vicente Reservoir, California, USA is a man-made lake whose primary purpose is
to supply drinking water to San Diego, California. Its primary water supply comes from
water taken from the Colorado River and delivered to the reservoir by an aqueduct. Surface
chlorophyll values are typically 5 to 20 mg m−3, but can go over 100 in bloom conditions.
Secchi depths are typically 1 to 5 m. This reservoir is an example of turbid, highly pro-
ductive waters, but it is by no means an extreme limit of what can be found in nature.
Figure 2.3 shows irradiance spectra at selected depths measured in San Vicente Reservoir
on 20 January 1967. No chlorophyll concentration or other water-quality parameters were
measured at the time of the optical measurements. In these waters, at green wavelengths
around 550 to 600 nm, the downwelling irradiance decreases by two orders of magnitude
between the surface an 10 m depth. The red wavelengths are removed by pure water ab-
sorption, just as for Crater Lake. Now, however, blue wavelengths are also removed just

States.



60 CHAPTER 2. LIGHT FIELDS IN NATURE

as strongly, almost certainly by high concentrations of colored dissolved organic matter in
the water. In Crater Lake, at the wavelengths where the water is clearest, one half of the
surface Ed remains at 25 m; in San Vicente Reservoir, one half of the surface irradiance is
gone by just 1 m in depth, even at the clearest wavelengths. In San Vicente, the upwelling
irradiance at 1 m is greatest in the 530 to 580 nm band, which is yellowish green to greenish
yellow. Visually, San Vicente would appear as a turbid greenish yellow color.

Figure 2.3: Spectral downwelling and upwelling irradiances measured in San Vicente Reser-
voir, California, USA. Plotted from data tabulated in Tyler and Smith (1970).

These two data sets illustrate the range of irradiance depth and wavelength behaviors
commonly encountered in natural waters. There are almost no natural water bodies clearer
than Crater Lake, but waters with very heavy sediment loads (sections of the Amazon river,
for example) can have Secchi depths of centimeters, not meters, and highly eutrophic lakes
can have chlorophyll concentrations in excess of 100 mg m−3 and similarly low visibility.

We will use these spectra again in Chapter 4 to illustrate diffuse attenuation functions
and reflectances, after those quantities are defined.

2.2 Radiances

Although A. Gershun gets credit for the invention of the Gershun tube radiometer (Fig.
1.10), I can find no papers that show data taken by him with such an instrument. Per-
haps the first measurements of radiances underwater were made by Johnson and Liljequist
(1938), who2 made measurements using red, green, and blue filters for broadband wave-

2N. G. Johnson later became known as N. G. Jerlov, whose name was honored by the Office of Naval
Research when they established The Jerlov Award, which is bestowed every two years to recognize scientists
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length selection. They measured the radiance at selected polar angles (0, 10, 20, 30, 45,
60, 90, and 180 deg relative to the zenith) and at azimuthal angles of 0, 45, 90, and 180
deg relative to the Sun. They presented their results as polar plots, an example of which
is seen in Fig. 2.4. Note that as the depth increases, the direction of maximum radiance
shifts toward the zenith.

Figure 2.4: Spectral radiances measured
in the plane of the Sun by Johnson and
Liljequist (1938). Note the shift of the di-
rection of the maximum radiance toward
the zenith as the depth increases. Also
note that the values at 15 and 30 m are
rescaled by factors of 2 and 10, respec-
tively, compared to the values at 5 m.

The first underwater measurements of a full radiance distribution were made by J.
E. Tyler and colleagues at the Scripps Visibility Laboratory in the late 1950s. Tyler, S.
Q. Duntley, R. W. Austin, and several others developed a submersible radiance meter
over a six-year timespan with the goal of obtaining radiance distributions that could be
used for testing models of underwater light fields, which were being developed by R. W.
Preisendorfer and others. The instrument is shown in Fig. 2.5. The two “radiance tubes”
seen at the right are Gershun tubes with a field of view of 6.6 deg; the two tubes point in
opposite directions. The head on which the tubes are mounted rotates so that the tubes
cover the full range of polar angles. The fin and propeller at the other end of the instrument
were used to hold the instrument at the desired azimuthal angle while the radiance sensors
rotated. The Gershun tubes are each 0.5 m long, so the entire instrument was about 1.5
m long (fin tip to radiance head). The details of the instrument design were presented at
a conference (Duntley et al., 1955), but unfortunately I can find no written record of the
instrument specifications and operation. However, a photograph of the “control panel and
power supply” shows that the control panel was the size of a large kitchen refrigerator (say a
meter wide and two meters tall). The control panel shows “space for strip chart recorders,”
so data apparently were recorded on paper strip charts. The data report comments that the
original data “...are very nearly linearly proportional of the log of the radiance....” Each
Gershun tube passed its light to a separate photomultiplier tube. Wratten #45 gelatin
filters gave a wavelength response centered at 480 nm with a 64 nm FWHM bandwidth.
Neutral density filters could be rotated into the beam to control the dynamic range as
needed for different depths.

who make significant contributions to oceanic optics.
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Figure 2.5: The radiometer used to obtain the radiances seen in Figs. 2.6 and 2.7. Photo-
graph from Tyler (1960).

This instrument was deployed in Lake Pend Oreille, Idaho, USA in 1957. Somewhat
surprisingly, this lake in the mountains of northern Idaho, 500 km from the nearest salt
water, has been the home of a U. S. Navy facility since 1942. The lake is ideal for acoustic
experiments because the underwater environment is very quite (no singing whales!). The
lake equally well met Tyler’s need for homogeneous, optically deep water, along with the
Navy’s large barge with a crane for instrument deployment. The data report (Tyler, 1960)
tabulates measured radiance distributions for both clear and overcast sky conditions at
7 depths from 4.24 to 66.1 m for the clear day and 5 depths from 6.1 to 55.0 m for the
overcast day. The polar angle resolution was 10 deg from θv = 0 (nadir viewing) to 180 deg
(zenith viewing), and azimuthal angles at 20 deg resolution from φv = 0 (looking toward
the Sun) to 180 deg (looking opposite to the Sun). Data acquisition for the sunny day
began at 08:52 and ended at 14:41 local time. During these five hours, the Sun’s zenith
angle varied from 49 deg to 34.5 at noon to 45 at the end. The data were all normalized to
values from a vertical profile of zenith and nadir radiances taken within a few minutes of
noon. (By comparison, the NURADS system of Voss and Chapin (2005) has a fisheye lens
that captures the radiance for an entire hemisphere on a CCD with an angular resolution
of less than 0.5 deg, and at six wavelengths. One measurement including all wavelengths
requires about 2 minutes.) In spite of improved instrumentation, the Tyler data set is still
useful and serves the purpose of this section.

Figure 2.6 shows profiles at three depths taken on 28 April 1957, a day that was very
clear and with a glassy calm water surface. The radiances in this plot are shows as functions
of the viewing directions (θv, φv) defined in Eq. (1.6). Remember that θ is measured from
0 in the +ẑ or nadir direction. Thus θv = 0 is looking straight down at the nadir radiance
traveling toward the zenith; θv = 180 is looking straight up at the zenith radiance, which
is heading straight down. Azimuthal angle φv = 0 is looking toward the Sun, and φv = 180
is looking away from the Sun.
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The red dots in the figure are in the azimuthal plane of the Sun; the green dots are
almost at a right angle to the Sun’s azimuthal direction (the 20 deg φ resolution had one
Gershun tube pointing at φ = 80 deg when the other was at 100 deg). All values are
normalized to 1 at the nadir-viewing direction for a depth of 4.2 m. Tyler estimated that
the Sun’s maximum radiance would have been at least twice the largest measured value if
the instrument had allowed for better angular resolution. The green dots from the polar
angle sweep at (nearly) right angles to the Sun do not “see” the Sun’s direct beam, so the
maximum at 4.2 m is only 3% of the maximum when looking at the Sun. Note that as the
depth increases, the polar angle of maximum radiance shifts from about 30 deg off-zenith
(θv ≈ 150 as plotted) to the zenith for the measurement in the plane of the Sun. The
radiances for both azimuthal orientations are almost identical at 66.1 m. This was hard
evidence that the radiance approaches an asymptotic shape at great depths, as predicted
by Preisendorfer (1959) and others. The asymptotic radiance distribution depends only in
the inherent optical properties of the water body, as will be seen in Section 10.4.

Figure 2.6: Radiance distributions for the clear day in the plane of the Sun (red) and at
nearly right angles to the Sun (green). Plotted from data tabulated in Tyler (1960).

Figure 2.7 compares Tyler’s measurements made on the clear day of Fig. 2.6 with data
taken on an overcast day (16 March 1957). The clear-day data are the same as in the
previous figure at 4.2 m depth; the overcast-day data are at a depth of 6.1 m at a time
when the solar zenith angle was 50 deg. All curves in the plot have been normalized to 1
for the nadir-viewing direction so as to compare the shapes of the radiance distributions
for clear versus overcast conditions. It is seen that the radiance on the overcast day does
not vary much for θv within about 40 deg of the zenith-viewing direction. This is the
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angular region where Snell’s law maps the entire sky hemisphere into a cone of half-angle
48 deg—the so-called “optical manhole.” This angular region thus sees the fairly uniform
sky radiance, so the radiance distribution is fairly uniform in the manhole. Tyler describes
the day as “overcast,” but there is still some difference in the curves in the plane of the
Sun versus at right angles to the Sun, so the location of the Sun may have been faintly
visible.

Figure 2.7: Radiance distributions for the clear day (at depth 4.2 m; solid dots) and for
the overcast day (at 6.1 m; open boxes) in the plane of the Sun (red) and at nearly right
angles to the Sun (green). Plotted from data tabulated in Tyler (1960).

2.2.1 Visualizing Radiances

Figures 2.6 and2.7 show one way to plot a radiance distribution: as a function of polar
angle for a given wavelength, given azimuthal plane, and at selected depths.

Even in the simplest case of horizontally homogeneous water and time independence,
the radiance distribution is a function of four variables: depth z, polar angle θ, azimuthal
angle φ, and wavelength λ. This makes it hard to display radiances graphically and to
understand the wealth of information contained in L(z, θ, φ, λ) for given environmental
conditions. The following figures show some of the ways commonly used to present radiance
distributions. These figures also give us another chance to study the nature of oceanic
radiance distributions.

To obtain a complete radiance distribution for these figures, the HydroLight numerical
model (Section 10.6) was run for very simple conditions:
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• A bio-optical model for homogeneous Case 1 water was used with a chlorophyll value
of 0.5 mg m−2 (a typical value for open-ocean water) to generate the absorption and
scattering properties of the water.

• The Sun was placed at a solar zenith angle of 40 deg in a clear sky with typical values
for marine atmospheric conditions.

• The sea surface was flat (wind speed of 0).

• The water was infinitely deep.

• Fluorescence by chlorophyll and colored dissolved organic matter (CDOM), and Ra-
man scatter by water, were included.

• Radiances were computed on a 10 by 15 deg θ–φ angular grid; the computed radiances
are thus the average radiances over each 10 by 15 degree angular “window.”

• Radiances were computed at 10 nm wavelength resolution between 350 and 700 nm;
computed radiances are thus the averages over 10 nm bands from 350 to 360 nm, etc.

Figure 2.8 shows how this HydroLight-computed radiance distribution in air just above
the sea surface depends on polar viewing direction and wavelength, in the azimuthal plane
containing the Sun. This figure requires explanation. In HydroLight the polar angle is
measured from 0 in the +z or downward direction to 180 deg in the −z or upward direction.
Thus light heading straight down has a polar angle of θ = 0. This plot uses the viewing
direction (θv,φv), which is the direction an instrument would point when measuring the
radiance. Thus the polar viewing angle of θv = 0 means looking straight down (nadir-
viewing) and seeing the radiance heading straight up (the upwelling radiance Lu; i.e., light
traveling upward in the θ = 180 deg direction). The Sun is located at φv = 0 (solar photons
travel in the φ = 180 deg direction). This figure shows the full range of polar angles in
the φ = 0–180 deg plane of the Sun. The plotting convention is that positive polar angles
(θv > 0 are looking toward the Sun (the φv = 0 half plane) and negative polar angles
(θv < 0) are looking away from the Sun (the φv = 180 deg half plane) Thus θv = +90 deg
corresponds to looking horizontally towards the Sun, and θv = −90 deg corresponds to
looking horizontally away from the Sun. The range of θv values between 0 and +90 and
between 0 and -90 correspond to looking downward. The range of θv values from 90 to 180
to -90 on the θv plot axis correspond to looking upward. The thin black lines show the
θ–λ computational grid. The colors correspond roughly to the visual colors of the various
wavelengths. Note that the radiance values are plotted on a logarithmic scale.

The Sun’s radiance is the large spike at θv = 140 deg, which corresponds to looking
upward at a zenith angle of 40 deg in the φv = 0 azimuthal direction, where the Sun was
located in this simulation. The smaller spike at θv = 40 deg is the Sun’s specular reflection,
seen looking downward and towards the Sun. The ratio of the Sun’s specular reflectance at
355 nm (0.2586W m−2 sr−1 nm−1), obtained from the radiance values tabulated in the data
file) to the Sun’s direct beam (9.9546 W m−2 sr−1 nm−1) is 0.026, which is consistent with
the Fresnel reflectance for this incidence angle and water index of refraction (n = 1.34).
The broader radiance peak near θv = −90 deg is the relatively bright near-horizon sky
radiance and its reflection by the sea surface, seen looking away from the Sun.

Figure 2.9 shows the radiance in the water at depth 0, i.e., just below the level sea
surface. The plotting conventions are the same as for Fig. 2.8. Note that the large spike
of the Sun’s direct beam has shifted to a smaller zenith angle near 30 deg (i.e., a larger θv,
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Figure 2.8: Radiance as a function of polar viewing direction and wavelength, in the
azimuthal plane of the Sun, in air just above the level sea surface.

now near 150 deg) underwater, in accordance with Snell’s law for refraction across a level
air-water surface. The specular reflectance spike in the plot has of course disappeared.

Figure 2.9: Radiance as a function of polar viewing direction and wavelength, in the
azimuthal plane of the Sun, at depth 0 just below the level sea surface.
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Figure 2.10 shows the radiance at a depth of 10 m. The radiance distribution is now
“smoothing out” because of the effects of scattering, which redirects the original directions
of the rays. However, the direction of the Sun’s direct beam is still obvious. The effect
of chlorophyll fluorescence on the upwelling radiance near 685 nm is quite obvious as the
“bump” in the values near θv = 0 and λ = 685 nm. The contribution of fluorescence to
the downwelling radiance near 685 nm is not as obvious because much of the downwelling
radiance is still from sunlight that has penetrated to this depth.

Figure 2.10: Radiance as a function of polar viewing direction and wavelength, in the
azimuthal plane of the Sun, at depth 10 m.

Figure 2.11 shows the radiance at a depth of 50 m. Now multiple scattering has removed
almost all information about the Sun’s zenith angle. This radiance is close to the asymptotic
radiance distribution (Section 10.4), which is determined only by the water’s absorption and
scattering properties, and not by the boundary conditions (the solar location in particular)
at the sea surface. Chlorophyll fluorescence is now responsible for almost all of the red
light near 685 nm in all directions, since the Sun’s beam does not penetrate this deep at
red wavelengths because of absorption by water.

The information seen in Figs. 2.8-2.11 does not show the azimuthal dependence of the
radiance, except in the plane containing the Sun. Figure 2.12 illustrates both the polar
and azimuthal dependence of the radiance at one depth, in air, and one wavelength, 555
nm. To interpret this plot, imagine that you are at the center of the sphere. The solid
black line around the “equator” is looking horizontally (θv = 90 deg). The solid black
line drawn from “pole to pole” is the φv = 0 azimuthal direction. The dotted lines show
the HydroLight θ–φ computational grid. The radiances computed as averages over each
dotted-line θ−φ window have been spline interpolated to a 5x5 degree grid for generation
of the contours in this figure. Values of log10 of the radiance in W m−2 sr−1 nm−1 are
contoured and color-coded for display as a function of θv and φv. The colors now represent
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Figure 2.11: Radiance as a function of polar viewing direction and wavelength, in the
azimuthal plane of the Sun, at depth 50 m.

Figure 2.12: Radiance as a function of polar and azimuthal viewing directions, just above
the sea surface and at wavelength 555 nm.

the magnitude of the log10 (radiance), with violet being lowest magnitude and red highest.

In this figure the “northern hemisphere” represents looking upward toward the sky, and
the “southern hemisphere” represents looking downward toward the sea surface. Thus the
Sun is the red spot seen looking upward at a zenith angle of 40 deg in the φv = 0 direction.
(The Sun is centered in the θ computational window that extends from 35 to 45 deg in
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zenith angle, and in a 15 deg wide φ window centered on φ = 0.) The corresponding green
spot “below the equator” at φv = 0 is the Sun’s specular reflectance seen looking toward
the Sun but downward at a nadir angle of 40 deg.

The detailed directional information seen in Figs. 2.8-2.12 is seldom necessary in optical
oceanography. It is often sufficient to display the radiance in a few selected directions as a
function of depth and wavelength, as in the next two figures.

Figure 2.13 shows the radiance in five directions: upwelling or nadir-viewing, Lu; down-
welling or zenith-viewing, Ld; and horizontal directions Lh looking at azimuthal angles
toward, at a right angle to, and away from the Sun’s azimuthal direction. These radi-
ances are plotted as functions of depth at one wavelength, 555 nm. Although radiances
and irradiances are generally thought of as decreasing with depth, this is true only away
from the surface. Note that several of these radiances actually increase with depth in the
upper few meters of the water column, below which they then decrease. This increase is
caused by scattering (path radiance) into the direction being plotted, as the Sun’s direct
(unscattered) beam is redirected by scattering within the water.

Figure 2.13: Radiances in selected directions as a function of depth, at wavelength 555 nm.

Figure 2.14 shows the downwelling or zenith-viewing radiance Ld plotted as a function
of wavelength for selected depths. The downwelling radiance in air, which is the zenith
sky radiance, is plotted in black. The in-water curves are plotted in color using the same
wavelength coding as in Figs. 2.8-2.10. Note that the downwelling radiance in water at
depth z = 0 is greater than the downwelling radiance in air just above the sea surface. This
may seem counterintuitive, since some of the downwelling radiance in air is lost to surface
reflection when passing into the water. This increase in Ld when going from air to water
is a consequence of the “n2 law for radiance” (Section 13.1.2). This law, also called “the
fundamental theorem of radiometry,” states that the radiance divided by the square of the
index of refraction, L/n2, remains constant as light travels through regions of different n,
to the extent that absorption and scattering can be neglected. Because of Snell’s law of
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refraction, a given solid angle in air, ∆Ω, becomes ∆Ω/n2 in water. Although about 2.6%
of the downwelling photons from the sky are Fresnel-reflected back upward for n = 1.34,
most enter the water. Those transmitted rays then travel in a smaller solid angle, and
thus the associated underwater radiance is greater by a factor of roughly n2. Some of the
downwelling radiance at z = 0 is also due to upwelling radiance Lu being reflected back
downward by the sea surface, but this contribution to Ld is small since Lu is typically one
to two orders of magnitude less than Ld. Note that Ld at 10 m is greater than the vaules
a z = 0 for blue to green wavelengths. This is the same behavior as was seen at 555 nm in
Fig. 2.13.

Figure 2.14: Downwelling radiance Ld as a function of wavelength at selected depths

By 200 m depth the blue-green downwelling radiance has decreased by 5 orders of
magnitude from the surface value, and other wavelengths have decreased even more. The
dominant wavelength is near 500 nm. To get a rough feeling for how this would ap-
pear visually, assume that the radiance distribution is isotropic and of magnitude L =
10−6 W m−2 sr−1 nm−1 over the 50 nm band from 475 to 525 nm, with other wavelengths
being negligible. The corresponding plane irradiance is then E ≈ 50π 10−6 ≈ 10−4 W m−2.
As seen in Table 2.3, this is comparable to a moonlit night. Thus the available light at 200
m in this simulated ocean would appear as a very faint bluish green. This is reminiscent
of what explorer William Beebe reported during his pioneering bathysphere dives in the
1930’s. In one dive near Bermuda (in water that was likely lower in chlorophyll than the
0.5 used here, hence bluer and more transparent) he reported (Beebe, 1934)

“The green faded imperceptibly as we went down, and at 200 feet [61 m] it
was impossible to say whether the water was greenish-blue or bluish-green....At
600 feet [183 m] the color appeared to be a dark, luminous blue, and this
contradiction shows the difficulty of description. As in former dives, it seemed
bright, but was so lacking in actual power that it was useless for reading and
writing.”
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If you wish to explore this radiance distribution more, you can download the data file
VisualingRadiances.zip and the IDL plot programs used to create the figures above from
the Visualizing Radiances page of the Web Book.

2.3 Blackbody Radiation

The birth date of modern physics can be regarded as December 14, 1900, when Max Planck
presented his derivation of the spectral distribution of radiant energy in thermodynamic
equilibrium with matter at a given temperature. The derivation of this distribution is both
conceptually and mathematically subtle, and Max well deserved his subsequent Nobel
Prize. Planck’s function is commonly called the blackbody radiation spectrum.

As derived in most physics books, e.g., Liboff (1980, Eq. 2.3) or Eisberg and Resnick
(1985, Chapter 1), Planck’s function is expressed as a spectral energy density3:

UE(f) =
8πhf3

c3

1

ehf/kT − 1
, (2.1)

where f is temporal frequency in s−1, h is Planck’s constant, c the speed of light in vacuo,
k is Boltzmann’s constant, and T is the temperature in Kelvin. (See Table 1.1 for the
values of h, c, and k.) UE(f) thus has units of J/(m3 s−1) = J/(m3 Hz), or energy per unit
volume per unit temporal frequency interval (with temporal frequency measured in Hertz
= cycles per second).

For ease of comparison with the Sun’s irradiance, or with the irradiance measured at
the entrance of a blackbody cavity, Eq. (2.1) can be converted to spectral plane irradiance
as a function of wavelength. Proceeding as in Section 1.5.9, the energy contained in a unit
frequency interval df must equal the energy contained in the corresponding wavelength
interval dλ, i.e.,

UE(f)|df | = UE(λ)|dλ| .

Recalling that f = c/λ gives df = −(c/λ2)dλ, and Eq. (2.1) becomes

UE(λ) = UE(f)

∣∣∣∣ dfdλ
∣∣∣∣ =

8πhc

λ5

1

ehc/λkT − 1
, (2.2)

which has units of has units of J/(m3 m), or energy per unit volume per unit wavelength
interval (with wavelength measured in meters).

The scalar irradiance Eo is related to the energy density by Eo = Uc. One way to see
this is to think of the many photons making up the energy density. How many photons “hit”
a small spherical detector per unit time, there to be recorded as scalar irradiance, equals
how many photons there are times how fast they are moving, i.e. Eo = Uc. Radiation in
thermodynamic equilibrium is isotropic and unpolarized. For isotropic radiance, Eo = 4Ed,
where Ed is the plane irradiance. Thus Eq. (2.2) can be converted to spectral plane
irradiance by a factor of c/4:

Ed(λ) =
c

4
UE(λ) =

2πhc2

λ5

1

ehc/λkT − 1
. (2.3)

This is the form of Planck’s law seen, for example, in Leighton (1959, page 65).

3Note that both of these texts use ν for temporal frequency in Hertz.
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Two final transformations of Eq. (2.3) are needed for comparison with the Sun’s solar
irradiance as measured at the top of the earth’s atmosphere, as seen Section 2.4. First,
in accordance with the r2 law for irradiance, the irradiance emitted at the Sun’s sur-
face (presumed to be a blackbody in the present discussion) is reduced by a factor of
(RSun/REarth)2 to obtain the irradiance at the mean distance of the earth’s orbit. Here
REarth = 1.496 · 108 km is the radius of the Earth’s orbit, and RSun = 6.95 · 105 km is the
Sun’s radius. Finally, a factor of 10−9 is applied to Eq. (2.3) to convert the wavelength
spectral interval from meters to nanometers. The resulting equation is

Ed(λ) =

(
RSun

REarth

)2 2πhc2

λ5

1

ehc/λkT − 1
10−9 , (2.4)

where Ed(λ) is now in W m−2 nm−1, although the wavelength is still measured in meters
on the right-hand side of the equation for consistency with the SI units for h, c and k.

Integrating Eq. (2.3) over all wavelengths gives the total plane irradiance emitted by a
black body:

Ed = σT 4 , (2.5)

where σ = (2π5k4)/(15h3c2) = 5.6703 ·10−8 W m−2 K−4 is the Stefan-Boltzmann constant.
The Sun’s total (over all wavelengths) irradiance as measured at the top of the atmosphere
is approximately 1368 W m−2. Carrying this value back to the Sun’s surface via a factor
of (REarth/RSun)2 and inserting the result into Eq. (2.5) gives a corresponding black body
temperature of T = 5, 782 K. That is, a black body at this temperature emits the same
total irradiance as does the Sun. This temperature is then used in Eq. (2.4) to generate
the blackbody spectra seen in the figures of Section 2.4.

Other forms of the blackbody spectrum are sometimes useful. As already noted, black-
body radiation is isotropic. For isotropic radiance Lo, Ed = πLo, where π has units
of steradian. Thus formula (2.3) for plane irradiance can be converted to a formula for
blackbody radiance LBB by dividing by π:

LBB(λ) =
2hc2

λ5

1

ehc/λkT − 1
. (2.6)

For some applications it is useful to know the photon density or photon irradiance. The
photon density UQ is obtained from the energy density by dividing the energy density UE

by the energy hf of a single photon. Thus Eq. (2.1) gives

UQ(f) =
8πf2

c3

1

ehf/kT − 1
, (2.7)

where UQ has units of photons/(m3 Hz). Similarly, Eq. (2.3) can be divided by the energy
per photon in wavelength units, hc/λ, to obtain the photon plane irradiance

Qd(λ) =
2πc

λ4

1

ehc/λkT − 1
, (2.8)

where Qd has units of photons/(s m2 m). Integrating this equation over all wavelengths
gives the total number of photons emitted per second per unit area by a blackbody:

Qd = σQT
3 , (2.9)
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where σQ = (4.808πk3)/(h3c2) = 1.520 · 1015 photons s−1 m−2 K−3 is the photon equiva-
lent of the Stefan-Boltzmann constant. Thus the total energy emitted by a blackbody is
proportional to T 4, but the total number of photons emitted is proportional to T 3. As the
temperature increases, the blackbody spectrum shifts toward the blue, and relatively fewer
but more-energetic short-wavelength photons are needed to keep up with the increasing
energy output.

It is also common to use the spatial frequency or wavenumber ν = 1/λ as the spectral
variable. A change of variables based on UE(ν)|dν| = UE(λ)|dλ| and dλ/dν = −λ2 then
gives

UE(ν) = UE(λ)

∣∣∣∣dλdν
∣∣∣∣ = 8πhcν3 1

ehcν/kT − 1
,

which has units of J/(m3 m−1), or energy per unit volume per unit wavenumber interval
(with wavenumber measured in 1/meters). Other formulas in terms of wavenumber are
obtained as before.

Table 2.1 summarizes various formulas for blackbody radiation. These cover everything
needed for optical oceanography. However, the Spectral Calculations website has much
additional information about blackbody radiation, including such esoterica as how the
spectrum shifts if the blackbody source is moving at relativistic speeds.

Figure 2.15 shows the energy and photon densities, and energy and photon irradiances,
for a temperature of T = 5782 K, corresponding approximately to the Sun’s surface tem-
perature. These curves were computed using the first four formulas in Table 2.1. It should
be noted that the energy spectra have their maxima at about 500 nm for this temperature,
whereas the photon spectra have their maxima at about 635 nm. That is, where the Sun’s
output is a maximum depends on what measure of the output is used, as well as on which
variable is used for the spectral density. This important matter is discussed below Section
2.5.

http://www.spectralcalc.com/blackbody/blackbody.html
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Quantity Spectral Variable Units Formula

Energy density wavelength J
m3 m

UE(λ) = 8πhc
λ5

(
1

ehc/λkT−1

)
Photon density wavelength photons

m3 m
UQ(λ) = 8π

λ4

(
1

ehc/λkT−1

)
Energy irradiance wavelength W

m2 m
Ed(λ) = 2πhc2

λ5

(
1

ehc/λkT−1

)
Photon irradiance wavelength photons

s m2 m
Qd(λ) = 2πc

λ4

(
1

ehc/λkT−1

)
Energy density temporal frequency J

m3 Hz
UE(f) = 8πhf3

c3

(
1

ehf/kT−1

)
Photon density temporal frequency photons

m3 Hz
UQ(f) = 8πf2

c3

(
1

ehf/kT−1

)
Energy irradiance temporal frequency W

m2 Hz
Ed(f) = 2πhf3

c2

(
1

ehf/kT−1

)
Photon irradiance temporal frequency photons

s m2 Hz
Qd(f) = 2πf2

c2

(
1

ehf/kT−1

)
Energy density wavenumber J

m3 m−1 UE(ν) = 8πhcν3
(

1
ehcν/kT−1

)
Photon density wavenumber photons

m3 m−1 UQ(ν) = 8πν2
(

1
ehcν/kT−1

)
Energy irradiance wavenumber W

m2 m−1 Ed(ν) = 2πhc2ν3
(

1
ehcν/kT−1

)
Photon irradiance wavenumber photons

s m2 m−1 Qd(ν) = 2πcν2
(

1
ehcν/kT−1

)
Table 2.1: Blackbody radiation formulas for energy and photon density and for energy
and photon plane irradiance, in spectral units of wavelength λ, temporal frequency f ,
and wavenumber ν. Formulas require wavelength in meters and wavenumber in 1/meters.
Divide the Ed and Qd formulas by π to obtain formulas for blackbody radiances.
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Figure 2.15: Blackbody radiation spectra for energy and photon densities, and for energy
and photon irradiances, for a temperature of 5782 K. The inset values give the totals over
all wavelengths.
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2.4 Light from the Sun

This section briefly surveys how light is produced by the Sun, and characterizes the sunlight
reaching the Earth.

2.4.1 The Proton-Proton Cycle

Since most of the light falling upon the earth originates in the Sun, it is worthwhile to start
with a brief look at how this light is generated deep within the Sun in a process known as
the proton-proton cycle. The core of the Sun is primarily a mixture of completely ionized
hydrogen and helium. At the center the temperature is approximately 1.5 · 107 K, and the
density is about 150 times that of water. Under these extreme conditions the hydrogen
nuclei, or protons, occasionally collide with sufficient energy to overcome their electrostatic
repulsion and fuse together according to the reaction

proton + proton→ {proton + neutron}+ positron + neutrino. (2.10)

This reaction releases energy, which is carried off by the created particles. The bound
state of a proton and a neutron, indicated by the {...} is called a deuteron. The positron
is identical to an electron except for its electric charge, which is positive. The neutrino is
an uncharged, nearly massless packet of energy that is in some ways similar to a photon.
(There is now experimental evidence that neutrinos, once thought to be massless, do have
a very small mass on the order of about 0.1 eV, which is less than one-millionth of the
electron mass.) The deuterons are able to undergo further fusion with protons to form an
isotope of helium:

deuteron + proton→ {2protons + neutron}+ photon. (2.11)

This reaction also creates a photon, or particle of light, which carries off most of the
energy released in the reaction. The bound state of 2 protons and 1 neutron is a Helium3

nucleus. Helium3 nuclei are in turn able to fuse with each other in the final step of the
proton-proton cycle:

Helium3 + Helium3 → {2protons + 2neutrons}+ 2protons. (2.12)

The bound state of 2 protons and 2 neutrons is a Helium4 nucleus (an alpha particle).
In order to create the two Helium3 nuclei needed in step (2.12), there must be two each
of reactions (2.10) and (2.11). Thus if we tally the total input, we find that six protons
have been converted to a total output of one Helium4 nucleus, two protons, two positrons,
two neutrinos and two photons. The positrons each soon encounter electrons and undergo
mutual annihilation to create two or more photons:

positron + electron→ photons.

Therefore the net result of the proton-proton cycle is the conversion of four hydrogen
atoms into one helium atom plus energy in the form of photons and neutrinos. The mass of
one Helium nucleus is about 0.7% less than the mass of the four Hydrogen nuclei (protons);
the mass difference is the energy of the photons and neutrines according to the famous
relation E = mc2 between energy and mass. The Sun emits about 3.85 · 1026 W, which
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corresponds to a conversion of 4.26 · 109 kg s−1 of mass into energy. This corresponds to
the mass about 70 large aircraft carriers being converted to energy every second!

Neutrinos interact only very weakly with matter, and they escape from the Sun im-
mediately after their creation in step (2.10). The various photons created in the above
reactions are all extremely energetic (in the gamma ray region of the electromagnetic spec-
trum). They also interact strongly with matter, and therefore the gamma rays undergo
repeated scattering, absorption and re-emission by the solar matter as they work their way
toward the surface of the Sun. The photons lose energy in these interactions, so that they
are predominantly in the visible and infrared parts of the spectrum by the time they arrive
at the Sun’s surface and escape into space.

There are exothermic stellar nuclear reactions other than the ones just described. How-
ever, the proton-proton cycle is responsible for about 98% of the energy generation within
our own star.

2.4.2 The Solar Spectrum

At the mean distance of the earth from the Sun, the solar irradiance from photons of all
wavelengths, Es, is

Es = 1368± 5 W m−2

Although Es is historically called the solar constant, its value varies by a fraction of
a percent on time scales of minutes to decades. A better term is therefore the total solar
irradiance. Moreover, the total solar irradiance received by the earth varies from about
1322 to 1413 W m−2 over the course of a year, owing to the ellipticity of the Earth’s orbit
about the Sun.

As seen in Eq. (1.1), the energy of a photon is inversely proportional to its wavelength.
Furthermore, the number of solar photons per wavelength interval is not uniform over the
electromagnetic spectrum. Figure 2.16 shows the measured wavelength dependence of the
solar spectral irradiance Es(λ). The sharp dips in the Es(λ) curve are Fraunhofer lines,
which are due to selective absorption of solar radiation by elements in the Sun’s outer
atmosphere. These lines are typically less than 0.1 nm wide, and they are much “deeper”
(the irradiances within the lines are much less) than indicated in Fig. 2.16, which gives
Es(λ) values averaged over much wider bands. The resolution of Fig. 2.16 is 1 nm below
630 nm, 2 nm between 630 and 2,500 nm, and 20 nm beyond 2,500 nm. For example, the
prominent line centered at λ = 486.13 nm decreases to 0.2 of the Es(λ) values just outside
the line at λ = 486.05 and 486.25; the line depth is thus said to be 0.2.

The blue curve in Fig. 2.16 shows the blackbody irradiance for a temperature of 5,782
K. As shown in Section 2.3 on blackbody radiation, this is the temperature for which a
perfect absorber and emitter, or blackbody, emits the same total irradiance as the total solar
irradiance of 1368 W m−2. The blackbody spectrum is a reasonably good approximation
for the Sun’s spectral irradiance at infrared (IR) wavelengths, where the solar spectrum
is never more than 25% different from the blackbody curve. However, the solar spectrum
differs greatly from the black body curve at ultraviolet (UV) and visible wavelengths.
Solids and liquids emit radiation that is well approximated by the blackbody curve at the
appropriate temperature. Gases, however, show selective absorption and emission over
very narrow wavelength ranges, as seen for the Fraunhofer lines. The gases in the solar
atmosphere thus do not absorb and emit like a blackbody.
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Figure 2.16: The extraterrestrial solar spectrum. Plotted values (red) are the 2000 Ameri-
can Society of Testing and Materials (ASTM) E-490 Air Mass 0 spectrum, which is available
from the ASTM. The blue curve is the blackbody spectrum for a temperature of 5,782 K.

Figure 2.17 shows Es(λ) over the wavelength range of most interest in optical oceanog-
raphy and ocean color remote sensing. The elements in the Sun’s atmosphere causing the
most prominent Fraunhofer lines are identified. The Fraunhofer line at 587.5 nm is the line
that was originally used in 1868 to deduce the existence of a new element, named Helium
(after Helios, the Greek god who personified the Sun), in the Sun’s atmosphere 30 years
before it was discovered on earth.

It is seldom necessary for optical oceanographers to concern themselves with the de-
tailed wavelength dependence of Es(λ) seen in Fig. 2.17. It is usually sufficient to deal
with Es(λ) values averaged over bandwidths of size ∆λ ≈ 5 to 20 nm, which correspond
to the bandwidths of the optical instruments routinely used in underwater measurements
and remote sensing. Table 2.2 gives the distribution of Es in several broad wavelength
bands. About two thirds of the Sun’s energy is in the near-ultraviolet to near-infrared
bands relevant to optical oceanography.

It is not the solar irradiance at the top of the atmosphere, but rather the sunlight that
actually reaches the sea surface, that is relevant to oceanography. The magnitude and
spectral dependence of the solar radiation reaching the earth’s surface are highly variable
functions of the solar angle from the zenith (i.e., of the time of day, date, and latitude)
and of atmospheric conditions (cloud cover, humidity, aerosols, ozone concentration, etc.).
Figure 2.18 illustrates the variability in how much of the total solar irradiance reaches
the sea surface. The red curve in that figure is the extraterrestrial solar irradiance Es

averaged over 10 nm bands. The other curves show the total (diffuse plus direct) sea-level
downwelling plane irradiance Ed for a range of Sun and sky conditions, also averaged over
10 nm bands. These curves were computed using an the RADTRAN atmospheric radiative
transfer model (Gregg and Carder, 1990, as extended to 300 and 1000 nm).

http://rredc.nrel.gov/solar/spectra/am0/ASTM2000.html
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Figure 2.17: Expanded view of Fig. 2.16 for the wavelengths of greatest interest in optical
oceanography. The most prominent Fraunhofer lines are labeled by the elements causing
them.

Band Wavelength Irradiance Fraction of Es

Interval (nm) (W m−2) (percent)

ultraviolet and beyond < 350 62 4.5

near ultraviolet 350-400 57 4.2

visible 400-700 522 38.2

near infrared 700-1000 309 22.6

infrared and beyond > 1000 417 30.5

totals 1367 100.0

Table 2.2: Distribution of the total solar irradiance in various wavelength bands.

The Ed(0, clear) curve in Fig. 2.18 is for the Sun at the zenith and a clear marine
atmosphere (marine aerosols, sea-level relative humidity 80%, horizontal sea-level visibility
15 km, etc.). Rarely would this much of the solar irradiance actually reach the earth’s
surface. The Ed(60, clear) curve is for the same atmospheric conditions, but with the Sun
at a 60 deg zenith angle. The reduction in the surface irradiance is due primarily to the
increased path length through the atmosphere. The Ed(60,hazy) curve shows the effect
of going from a clear atmosphere to a cloud-free atmosphere but with increased humidity
(95%) and aerosol concentration (mixed marine and continental aerosols), leading to a hazy
atmosphere with reduced visibility (5 km). The green curve is for a heavy overcast, for
which no Sun is visible.
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Figure 2.18: Total sea-level plane irradiances Ed for four combinations of solar zenith
angle and atmospheric conditions, averaged over 10 nm bands. The red curve is the band-
averaged solar irradiance Es for comparison.

The sea-level irradiances seen in Fig. 2.18 also show the effects of absorption by gases
in the earth’s atmosphere. Ozone (which was 300 Dobson units in these computations)
greatly reduces the irradiance reaching the surface near 300 nm. The prominent dip near
765 nm is due to oxygen, and the broad dip starting near 930 nm is due to water vapor.

Table 2.3 shows typical sea-level irradiances over the visible wavelength band from 400
to 700 nm. These values can show considerable variability depending on cloudiness and
atmospheric conditions.

2.4.3 The Lunar Spectrum

It might be supposed that the spectrum of moonlight has the same shape as that of sunlight
because moonlight is just sunlight reflected by the lunar surface. That is not the case
because the reflectance of the lunar surface depends on wavelength. The left panel of Fig.
2.19 shows that the irradiance of a full Moon is about six orders of magnitude less bright
than sunlight, consistent with the typical values seen in Table 2.3. The right panel shows
that the moonlight spectrum is shifted towards the red because the lunar surface material
absorbs somewhat more blue light than red.

Suppose that you point a telescope at a small, very dark patch of nighttime sky where
no nearby stars are in the field of view. As seen in the left panel of Fig. 2.19, there is still
a small amount of light present, which comes from starlight scattered by interstellar gas
and dust. What is the spectrum of that diffuse background starlight? Since it comes from
the light of millions of stars, and the stars you see on a dark night look more or less white,
one might expect that the background sky spectrum is also roughly white. That is not
the case, as seen in the right panel of Fig. 2.19: the spectrum increases from blue to red.
Although it is true that this light is scattered starlight, around 75% of all stars are faint
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Environment Irradiance (W m−2)

solar irradiance above the atmosphere (for comparison) 522

very clear atmosphere, Sun at the zenith 500

clear atmosphere, Sun at 60 deg 250

hazy atmosphere, Sun at 60 deg 175

hazy atmosphere, Sun near the horizon 50

heavy overcast, Sun at the zenith 125

heavy overcast, Sun near the horizon 10

clear atmosphere, full moon near the zenith 1 · 10−3

clear atmosphere, starlight only 3 · 10−6

cloudy night 3 · 10−7

clear atmosphere, light from a single, bright star 3 · 10−9

clear atmosphere, light from a single, barely visible star 3 · 10−11

Table 2.3: Typical total (direct plus diffuse) irradiances at sea level in the visible wavelength
band (400-700 nm).

red dwarf stars, which are much smaller and cooler than the Sun. Not a single red dwarf
is visible to the naked eye, and their prevalence was not realized until infrared-sensitive
telescopes could be placed above the Earth’s atmosphere. These stars emit most of their
energy in the infrared, and the visible part of their spectra is very red. Thus much of the
scattered starlight is at reddish wavelengths. If you compute the visual color of the starlight
spectrum of Fig. 2.19 as described in Section 16.3, the color is reddish-orange, somewhat
like a pumpkin. The prominent spikes in the stellar spectrum are due to airglow in the
Earth’s upper atmosphere. Airglow results from recombination of atoms which were ionized
by sunlight during the day, or which are excited by cosmic rays at night. In the figure,
the airglow emission line at 558 nm is due to excited oxygen atoms about 100 km above
the Earth’s surface; the emission at 589 nm is due to sodium. When observing deep-space
objects, astronomers routinely subtract the background starlight spectrum from measured
spectra to obtain the spectrum of the object being observed.
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Figure 2.19: Measured sea-level irradiances Ed for the Sun, a full Moon, and the background
nighttime sky.

2.5 A Common Misconception

One sometimes sees statements like “The human eye has evolved to take advantage of the
Sun’s maximum output at visible wavelengths,” or “Most plants are green because the Sun’s
maximum output is at green wavelengths.” At first glance, this idea seems plausible given
the plots of solar irradiance in the preceding section, which show that the Sun’s spectral
irradiance peaks near 500 nm when the irradiance is plotted as a function of wavelength.
However, these speculations about the relation between eye or plant evolution and solar
output are simply wrong.

2.5.1 Point Functions and and Density Functions

Suppose that we have measured the temperature at one-minute intervals over the course
of a day. We then have a point function: given a point in time to the nearest minute, the
function returns the temperature at that time. If you ask, “When was the hottest part of
the day?”, you can answer the question simply by plotting the function and seeing where
it is a maximum, say at 3:35 PM. It doesn’t matter if you measured the temperature in
Celsius, Fahrenheit, or Kelvin, the time of the temperature maximum will still be 3:35 PM.

Now consider the question, “Where is the maximum of the Sun’s output?” The answer
is not so simple, because the Sun’s spectral output, or that of a blackbody, is not a point
function. Spectra are density functions or distributions. That is, they show the distribution
of energy or photon numbers per unit wavelength, temporal frequency, or wavenumber
interval. If you change the “per unit” spectral variable, you change the overall shape of
the function so that it will have its maximum at a different location.

Figure 2.20 shows plots of blackbody energy and quantum irradiances (the red curves)
as functions of wavelength λ, temporal frequency f , and wavenumber ν. The spectra are
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for a temperature of 5782 K, reduced by the distance of the Earth from the Sun as in Eq.
(2.4); the formulas come from Table 2.1. The blue lines are the solar irradiances at the
top of the atmosphere. These spectra are the ASTM spectrum of Fig 2.16, converted to
photon radiances and to temporal frequency or wavenumber. There is a fairly good overall
fit between the Sun’s irradiance and a blackbody spectrum T 5782 K, at least if you ignore
the Fraunhofer absorption lines in the solar spectrum and do not look too closely in the
ultraviolet.

As seen in the upper left plot, for energy irradiance per unit of wavelength, Ed(λ),
the peak of the blackbody spectrum is at λmax = 501 nm for a temperature of 5782 K.
However, the upper right plot for the quantum irradiance Qd(λ) has its maximum at
635 nm. Thus the Sun’s energy “maximum” is at a different wavelength than its peak
output of the number of photons. The middle row of plots shows the energy and quantum
spectra with temporal frequency f as the variable. The energy spectrum Ed(f) peaks at
fmax = 3.4 · 1014 Hz, which corresponds to a wavelength of λmax = c fmax = 882 nm. The
photon spectrum Qd(f) in the right plot of the middle row has fmax = 1.92 ·1014 Hz, which
corresponds to a wavelength of λmax = 1563 nm. Thus we get still other wavelengths of
“maximum” output if we use temporal frequency as the spectral variable. The bottom row
of the figure shows the corresponding plots for wavenumber ν as the spectral variable. The
difference in f and ν is just a rescaling by a factor of c, so the corresponding values of λmax

are the same as for temporal frequency f .
In other words, for T = 5782 K, when plotted as a function of wavelength, the energy

irradiance is a maximum near 501 nm, in the visible, whereas the maximum is at 882 nm,
in the near infrared, when the spectrum is plotted as a function of frequency or wavenumber.
This occurs because the relationship between wavelength and frequency is not linear, so
that a unit wavelength interval corresponds to a different size of frequency interval for each
wavelength: |df | = |c/λ2dλ|. The wavelength maximum of the photon irradiance is at 635
nm for wavelength as the spectral variable, and at 1563 nm when temporal frequency or
wavenumber is the spectral variable.

Thus the answer to the question, “Where is the Sun’s output a maximum?” is, without
much exaggeration, “Wherever you would like it to be: just pick whether you want to
measure output as energy or numbers of photons and pick an appropriate spectral variable.”
Density functions in general do not have unique maxima.

There are no doubt good evolutionary reasons why eyes see best at visible wavelengths
and why plants are green. However, those reasons are most likely related to wavelengths
where water is most transparent (a point function, as is the response function of the
human eye), and to the thermodynamic instability of molecules that could be used as
receptors for infrared radiation in either eyes or plants. The apparent correlation between
the wavelengths where we see best and solar maximum output is a false one resulting
simply from a choice of spectral variable for how most people plot solar spectral irradiance.
Interestingly, no one seems to argue that eyes should have evolved to take advantage of
the maximum of solar photon irradiance in the infrared when plotted as a function of
frequency, even though eye pigments absorb individual photons based on the frequencies
corresponding to transitions between molecular energy levels.

The delightful paper by Soffer and Lynch (1999) goes into more detail on these matters
and cites various papers that have misunderstood the nature of spectral density functions
in the context of vision and evolution.
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Figure 2.20: Solar energy and photon irradiances at the top of the atmosphere as func-
tions of wavelength, temporal frequency, and wavenumber (blue curves). The red curves
are the corresponding “best-fit” blackbody spectra for T = 5782 K. The insets give the
maxima of the blackbody curves, and the corresponding wavelengths for the frequency and
wavenumber spectra.
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2.6 Bioluminescence

Sunlight is obviously the main source of light in the upper ocean, but there is no sunlight
at night or below the 1000 meter limit of the “twilight zone.” However, fish that live in
even the deepest parts of the ocean have eyes, and often very sophisticated ones. This
suggests that there must be as least some light in the deepest parts of the ocean, even if
the light is too faint to be seen by human eyes. And indeed there is. This light comes from
two sources: light emitted by living organisms and visible radiation emitted by the decay
of naturally occurring potassium.

This section discusses bioluminescence, which refers to the ability of an organism to
generate light by chemical reactions. The next section discusses Cherenkov radiation, which
is light generated by radioactive decay.

Deep in terrestrial caves, where sunlight never reaches, there are species of animals
that have completely lost their sight, even to the point of having no eyes at all. These
include fish, salamanders, arthropods, and crustaceans4. Eyes are energetically expensive
to grow and image processing can require a considerable part of an animal’s brain, so it
is not surprising that animals that live in lightless environments have lost their eyes over
countless generations and have evolved to use other senses.

On the other hand, light-emitting marine organisms are ubiquitous in the world’s
oceans. They range in size from bacteria to fish, and they are found from the sea sur-
face to its bottom and from polar waters to the equator. The many possible ecologi-
cal roles for self-emitted light include communication for courtship or schooling, attrac-
tion of prey, escape from predators, and camouflage by counterillumination. See https:

//biolum.eemb.ucsb.edu/functions.html and Haddock et al. (2010) for a discussion of
the possible roles of bioluminescence in the ocean.

Bioluminescence also occurs in terrestrial organisms from fungi to fireflies, but is known
to occur in only one freshwater species (Latia neritoides, a mollusk found only on the North
Island of New Zealand). There does not appear to be any species that spends its entire life
in terrestrial caves that bioluminesces. The famous “glowworms” found in some caves are
the larval stage of several types of fungus gnats, which leave the caves as adults. It thus
seems that the true cave dwellers have gone the route of having no eyes at all, whereas the
denizens of the deep ocean have evolved to generate their own light. It is estimated that 75%
of all marine organisms can generate light. Several reviews have surveyed the biological,
chemical, and ecological aspects of marine bioluminescence (Widder, 2010; Haddock et al.,
2010; Widder, 2002). Widder (2006) gives a short history of research on bioluminescence.

Widder et al. (1983) examined the shapes of of the emission spectra for 70 marine species
ranging from bacteria to fish. Figure 2.21 illustrates the range of shapes of encountered
in their study. Their instrument counted photons detected by a linear CCD array for
1024 wavelength bins. These spectra thus describe the distribution of numbers of photons
emitted. For each photon spectrum there is an associated energy spectrum as discussed
in in Section 2.6.1. The wavelengths of maximum emission, λmax, and the full-width at

4A few examples from around the world are as follows. Fish: the Mexican Blind Cave Fish, Astyanax
mexicanus. Salamanders: the Slovenian olm, Proteus anguinus; and the Texas Blind Salamander, Eurycea
rathbuni. Arthropods: the Kauai Cave Wolf Spider, Adelocosa anopsthe; the Narrow-necked Blind Cave
Beetle, Leptodirus hochenwartii, also found in Slovenia; and Trechinae beetles of the genus Dongodytes in
China. Crustaceans: the Blind Albino Cave Crab, Munidopsis polymorpha, of the Canary Islands; and the
venomous, centipede-like remipedes of the globally distributed Class Remipedia.

https://biolum.eemb.ucsb.edu/functions.html
https://biolum.eemb.ucsb.edu/functions.html
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half-maximum of the emission band, ∆λFWHM, are indicated in the figure caption. The
range of λmax was 439 nm to 574 nm, with an average λmax over all species of 483 nm.
The ∆λFWHM bandwidths ranged from 26 nm to 100 nm, with an average of about 75 nm.
Not surprisingly, these wavelength bands usually coincide with the wavelengths where sea
water is most transparent.

Figure 2.21: Normalized shapes S̃p(λ) of bioluminescence photon spectra for selected ma-
rine organisms: Aa, the arthropod Scine rattrayi, λmax = 439 nm, ∆λFWHM = 70 nm;
Ba, the dinoflagellate Pyrocystis noctiluca, λmax = 472 nm, ∆λFWHM= 35 nm; Ac, the fish
Argyropelecus affinis, λmax = 487 nm, ∆λFWHM= 26 nm; F, the brittle star Ophiopholis
longispina, λmax = 512 nm, ∆λFWHM = 102 nm; Cb, the bacterium Vibrio fischeri Y-1
strain, λmax = 540 nm, ∆λFWHM = 81 nm. The dashed line for curve Cb shows the shape
of the corresponding energy spectrum. [Photon spectra are redrawn from Fig 4 of Widder
et al. (1983); the spectrum labels correspond to that figure.]

The magnitude of emission shows more variability than its spectral shape. We first
note that most bioluminescent organisms emit light only when they are disturbed. The
most common light-inducing disturbance is mechanical stimulation, as when an organism
is entrained into a ship’s turbulent wake or feels a pressure wave caused, perhaps, by an
approaching fish. Flashing lights, electrical fields, earthquakes, and chemical irritants have
been known to induce bioluminescence. Lapota et al. (1986) give an interesting description
of bioluminescence induced by an ordinary flashlight. When disturbed, organisms emit a
flash of light that may last from tens of milliseconds to several seconds. The exception to
this statement is certain bacteria, which are able to emit light continuously.

A common measure of the strength of bioluminescence is is the number of photons
emitted per second by a disturbed organism. Typical values are 104 photons s−1 cell−1 for
bacteria, and 109 to 1011 photons s−1 cell−1 for dinoflagellates; Bachelder and Swift (1989)
give an average value of 5·1010 photons s−1 cell−1 for the dinoflagellate Pyrocistis noctiluca.
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See Lynch III (1978) for a tabulation of emission strength for 58 marine species.

A quick calculation gives a feeling for the light levels that are possible. For the di-
noflagellate spectrum Ba of Fig. 2.21, the average wavelength is

〈λ〉 =

∫∞
0 λSp(λ) dλ∫∞
0 Sp(λ) dλ

= 487 nm . (2.13)

Assuming a typical concentration of 2000 cells m−3 for a bioluminescent dinoflagellate,
with each cell emitting 5 · 1010 photons s−1, with an average wavelength of 487 nm, and
converting the photon count to energy units via Eq. (1.1), gives

So = (2 · 103 m−3)(5 · 1010 s−1)
(6.63 · 10−34 J s)(3 · 108 m s−1)

487 · 10−9 m
= 4.1 · 10−5 W m−3 .

If this power is generated in a sphere of volume 1 m3 (for example, in a turbulent eddy),
then the surface of the sphere receives an irradiance of order 10−5 W m−2. Reference to
Table 2.3 shows this broad-band irradiance to be greater than that of a clear, starry night,
but much less than that of a bright, moonlit night.

2.6.1 Modeling Bioluminescence in Radiative Transfer Calculations

Although disturbed organisms can provide enchanting light shows, some of the most spec-
tacular displays are caused by bacteria near the sea surface. The large numbers of bacteria
and their ability to emit light continuously more than make up for their low photon emit-
tance per cell. The Indian Ocean and Arabian Sea are known for their horizon-to-horizon
displays of luminous “milky seas,” which can generate enough light for reading on the deck
of an otherwise dark ship. Mariners’ logs contain many such reports; see Kelly and Tett
(1978) for examples. Lapota et al. (1988) give quantitative observations of a milky sea
event. Milky seas can cover as much as 100, 000 km2 and have even been detected from
space (Miller et al., 2005, 2021).

Horizontally uniform milky seas are a one-dimensional geometry, so they can be sim-
ulated using HydroLight. A simulation is worthwhile as an example of constructing an
internal source term for the radiative transfer equation.

Bioluminescence is included in the scalar radiative transfer equation (9.21) via a source
term S(z, θ, φ, λ), which has units of W m−3 sr−1 nm−1. This function gives the strength
of the bioluminescence as a function of depth, direction, and wavelength. Small organisms
such as bacteria or dinoflagellates can be assumed to emit light isotropically, in which case
S can be written as

S(z, θ, φ, λ) =
So(z, λ)

4π
, (2.14)

where So(z, λ) gives the emitted spectral power in units of W m−3 nm−1.

As noted above, the spectra of Fig. 2.21 are for the number of photons emitted, denoted
by S̃p (subscript “p” for photon). By Eq. (1.1), the energy of a photon of wavelength λ is
hc/λ. Thus the corresponding energy spectrum is given by

So(λ) = Sp(λ)
hc

λ
. (2.15)
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We can write Sp as the product of a maximum value and a normalized spectral shape:

Sp(z, λ) = Smax(z)S̃p(λ) .

Lapota et al. (1988) measured values of 1–5 · 1014 photons s−1 m−3 during periods of high
bioluminescence in the Arabian Sea. Let us take the high value to set the magnitude and
use the spectral shape of curve Cb in Fig. 2.21 for S̃p(λ). The integral of this S̃p(λ) is∫ ∞

0
S̃p(λ)dλ = 98 nm .

Dividing 5 · 1014 photons s−1 m−3 by 98 nm sets the magnitude:

Smax =
5 · 1014

98
= 5.1 · 1012

[
photons

s m3 nm

]
.

The resulting Sp(λ) = 5.1 · 1012S̃(λ) then integrates to give back 5 · 1014 photons s−1 m−3

as required to describe the number of photons emitted over all wavelengths.
The corresponding energy spectrum as computed by Eq. (2.15) is plotted in Fig. 2.22.

The dashed curve in Fig. 2.21 shows the shape of this So(λ) compared to the shape of
the photon spectrum S̃p(λ) . Because photons with shorter wavelengths carry more energy
than those with longer wavelengths, the energy spectrum is shifted towards the blue. In
the present case, the normalized photon and energy spectral shapes differ by as much as
31% (near 700 nm).

Figure 2.22: The en-
ergy spectrum So(λ)
of the bacterium
Vibrio fischeri Y-1
strain, modeled as
described in the text.

This energy spectrum is now used in Eq. (2.14) to define the source function. For the
present simulation, it is assumed that the water column is homogeneous5. The satellite

5There is very little in situ data on milky seas. The value of of 5 · 1014 photons s−1 m−3 measured
by Lapota et al. (1988) came from an intake below the ship’s hull at 3 m below the sea surface. Miller
et al. (2021) point out “...many mariner accounts of the uniform glow persisting under wind-roughened seas
(where slicks would break up), light emanating from below the surface even as bucket samples of water were
drawn, and the lack of a dark ship wake (which would disrupt a slick).” Thus, for the present simulation,
the source term is taken to be constant with depth.
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observations in Miller et al. (2021) are in waters with chlorophyll concentrations of 0.5 to
1.5 mg Chl m−3, so a value of 1.0 mg Chl m−3 was used in HydroLight’s “new Case 1” IOP
model. The sky was totally black, so the only light source was the bioluminescence. The
resulting HydroLight simulation gives an in-air illuminance of Euv = 0.12 lux. Table 16.2
shows this to be almost as large as the illuminance of a full moon in a clear sky. Thus, just
as the mariners claim, you can indeed read by the light of a milky sea.

2.7 Cherenkov Radiation

Cherenkov radiation (Cherenkov, 1934) is electromagnetic radiation emitted by charged
particles traveling faster than the phase speed of light in a dielectric medium such as
water6. It can be qualitatively thought of as the optical equivalent of the acoustic shock
wave (“sonic boom”) generated by an airplane flying faster than the speed of sound in
air. Cherenkov radiation is the cause of the beautiful blue glow around the core of a
water-cooled nuclear reactor as shown in Fig. 2.23 .

Figure 2.23: Photograph of
Cherenkov radiation in a nuclear
reactor core. [Public domain
photograph from the U. S. Nu-
clear Regulatory Commission]

Bradner et al. (1987) examined physical sources of light in the ocean. They estimated
that near the sea surface, Cherenkov radiation from cosmic rays generates a photon irradi-
ance of order 107 photons s−1 m−2; this value decreases exponentially with depth with an
e-folding distance of about 1 km. However, another source of Cherenkov radiation is due
to the decay of radioactive potassium-40, which is distributed uniformly throughout the
oceans as part of the dissolved salts that make up salinity.

The Earth’s crust contains potassium at a concentration of about 2.6% by mass. This
potassium occurs as three isotopes: stable 39K (93.2581%) and 41K (6.7302%), and ra-
dioactive 40K (0.0117%). 40K decays 89.1% of the time to 40Ca by emission of an electron
and an electron anti-neutrino (beta decay), and 10.9% of the time to 40Ar by capture of

6The emission of light by a charged particle moving faster than the speed of light in a medium was first
predicted by Oliver Heavyside in a series of papers starting in 1888. Arnold Sommerfeld independently
predicted the effect in 1904, and Marie Curie observed the glow of light in radium solutions. However, these
earlier results were unappreciated and forgotten until Cherenkov’s observations in the 1930s.
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an inner-shell electron, followed by emission of a gamma ray and a neutrino7. The half-life
of 40K is 1.25 Gy.

When 40K decays to 40Ca, the emitted electron and anti-neutrino carry a combined
kinetic energy of 1.31 MeV or 2.1 · 10−13 J. There is a continuous distribution of the
electron kinetic energy8 ranging from 0 to a maximum of 1.31 MeV, with the peak at
about 0.55 MeV (Kelly et al., 1959). The associated speed of the electron for a given
kinetic energy can be obtained from the formula for relativistic kinetic energy (Halliday
and Resnick, 1988, Section 42-14):

KE = moc
2

(
1√

1− (v/c)2
− 1

)
,

where mo is the rest mass of the particle, c is the speed of light, and v is the speed of
the particle. In relativity theory, it is customary to let β = v/c be the speed of a particle
relative to the speed of light in a vacuum. Solving this equation for β2 = (v/c)2 gives

β2 = 1−
(
KE

moc2
+ 1

)−2

. (2.16)

Using the values in Table 2.4 gives β2 = 0.918, or v = 0.958c, for a 1.31 MeV electron. The
phase speed of light in water is c/n, which is approximately 0.75c at visible wavelengths.
Thus the emitted electron is traveling faster than the speed of light in water and will
therefore emit Cherenkov radiation until the electron slows down to less than c/n through
loss of radiated energy and other interactions with the water.

Symbol Quantity Value

mo rest mass of the electron 9.109 · 10−31 kg

e charge of the electron 1.602 · 10−19 C

c speed of light in vacuo 2.998 · 108 m s−1

h Planck constant 6.626 · 10−34 J s

µo magnetic permeability of free space 1.2566 · 10−6 N s2 C−2

KE kinetic energy of emitted electron ≤ 1.31 MeV = 2.099 · 10−13 J

n real index of refraction of water see Fig. 2.24

Table 2.4: Quantities needed for Cherenkov radiation calculations of 40K decay.

The energy radiated by a single 40K electron per unit of distance traveled (x, in meters)
and per unit angular frequency (ω, in radians per second) of the emitted light is given by

7Earth’s atmosphere is 0.94% argon, of which 99.6% is 40Ar . Spectroscopy shows that the argon in stars
is 85% 36Ar, which is created by fusion of two alpha particles (Helium nuclei) with one silicon-32 nucleus
during supernova explosions, and 15% is 38Ar . It is thus thought that the argon in Earth’s atmosphere
has accumulated up over billions of years from the decay of 40K.

8It is a characteristic of beta decay that the emitted electrons have a continuous spectrum of energies
from 0 to some maximum. This contrasts with alpha decay, in which the emitted alpha particles have a
single energy determined by the quantized energy levels of the decaying nucleus.
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the celebrated formula9 of Frank and Tamm (1937):

∂2E

∂x ∂ω
=

1

4π
e2µw(ω)ω

(
1− 1

β2n2(ω)

) [
J

m s−1

]
. (2.17)

Here µw(ω) is the frequency-dependent magnetic permeability of the medium. Using ω =
2πc/λ to convert the Frank and Tamm formula to energy emitted per unit distance per
unit wavelength gives

∂2E

∂x ∂λ
= πc2e2µw(λ)

1

λ3

(
1− 1

β2n2(λ)

) [
J

m m

]
. (2.18)

Converting this formula from energy emitted to number N of photons emitted via E =
Nhc/λ gives

∂2N

∂x ∂λ
=
πc

h
e2µw(λ)

1

λ2

(
1− 1

β2n2(λ)

) [
photons

m m

]
. (2.19)

The magnetic permeability µw is a function of frequency (or wavelength), but for water its
value equals that of a vacuum, µo, the permeability of free space, to within a 8 parts per
million. Therefore we can replace µw with µo in these equations with a negligible error.
The observant reader will then note that

α =
c e2 µo

2πh
= 0.007297 ≈ 1

137

is the dimensionless fine-structure constant of quantum theory. The last equation therefore
can be succinctly written as

∂2N

∂x ∂λ
= 2πα

1

λ2

(
1− 1

β2n2(λ)

)
. (2.20)

In these formulas, x and λ are in meters.
These formulas show a remarkable feature of Cherenkov radiation, namely that the

emission is broad-band and increases rapidly going from visible to ultraviolet (UV) wave-
lengths. As seen in Fig. 2.24, the real index of refraction of water decreases rapidly between
130 nm, where n ≈ 1.63, and 71 nm, where n drops to less than 110. This gives a sharp
radiation cut-off at wavelengths less than about 100 nm because as n approaches 1, the
speed of light in water approaches the speed in vacuo, in which case the electron is always
traveling slower than light in the water, and there is no emitted radiation. For infrared and
longer wavelengths, the emission is small and goes to zero as the wavelength increases. The
red curves in Fig. 2.25 show Eqs. (2.18) and (2.20) using the wavelength-dependent n(λ)
seen in Fig. 2.24 for the initial electron energy of 1.31 MeV. For wavelengths in the visible
range, Table 8.2 shows that n ≈ 1.36 even for the extreme case of cold (0 deg C), saline (35
PSU), deep-ocean (depth of 10,000 m) water, compared to about 1.34 for pure water at
atmospheric pressure. This difference would have only a small effect on the spectra plotted
in Fig. 2.25, so these curves for pure water are representative of all parts of the ocean.

9Although the end result is simple, the derivation of Eq. (2.17) starting from Maxwell’s equations is
quite difficult (e.g. Jackson, 1962, Sections 13.4 and 14.9). Pavel Cherenkov, Ilya Frank, and Igor Tamm
shared the 1958 Nobel Prize in Physics “for the discovery and the interpretation of the Cherenkov effect.”

10The discussion in Section 11.4.3 explains that that although n < 1 gives the phase speed c/n greater
than the speed of light in vacuo, this is not a violation of special relativity
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Figure 2.24: The real index
of refraction of pure water for
wavelengths between 0 and 700
nm (redrawn from Fig. 8.4).

Figure 2.25: Cherenkov radiation spectra for a single 40K electron in optically pure water.
The left panel shows the emitted energy per centimeter of travel and per nanometer of
wavelength. The right panel shows the corresponding spectra for the number of emitted
photons. The red curves are for the initial electron with an energy of 1.31 MeV. The blue
curves are for an energy of 0.27 MeV, below which there is no more emission at wavelengths
longer than 300 nm. The green curves are for an energy of 0.17 MeV, v2/c2 = 0.434, for
which there is only a small amount of emission at the ultraviolet wavelengths where the
index of refraction greater than 1.52.
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Numerically integrating Eq. (2.18) over wavelength, for a given value of β, gives the
energy emitted over all wavelengths per unit distance traveled. Further integrating over
distance gives the total energy emitted. Corresponding integrations of Eq. (2.20) give the
numbers of emitted photons. As the electron travels through the water, its kinetic energy
decreases. When the kinetic energy decreases to a value such that the electron’s speed,
given by Eq. (2.16), results in v = c/n(λ), photon emission ceases for that wavelength.
After the kinetic energy has decreased to 0.24 MeV, β2 = 0.533. This gives v < c/n(λ) for
n(λ) ≤ 1.37. There is thus no more radiation for wavelengths greater than 300 nm, where
n ≤ 1.37. The spectra at this energy are shown in blue in Fig. 2.25. The green curves in the
figure are for an energy of 0.17 MeV, β2 = 0.434, for which there is only a small amount of
emission at the ultraviolet wavelengths where the index of refraction greater than 1.52. To
compute the total amount of Cherenkov radiation, the above integrations over wavelength
and distance must be repeated for each energy of the distribution of energies of the emitted
electrons; thus there is a triple integration over energy, wavelength, and distance.

Equations (2.17)-(2.20) are correct in that they give the energy or number of photons
emitted as Cherenkov radiation for a given electron energy. What they do not tell you is
that less than one percent of the kinetic energy of of an electron emitted by a 40K nucleus
results in Cherenkov radiation. Almost all of the electron’s energy goes into ionizing water
molecules as the electron travels through the water. This loss of energy to ionization is
given by an equation known as the Bethe-Bloch formula11 Discussion of that calculation
takes us beyond the needs of optical oceanography and will not be given here because
the end result has been calculated by the physicists who use Cherenkov radiation for the
detection of neutrinos in the deep ocean.

When a neutrino interacts with matter (which is extremely rare), the result can be a
charged particle such as an electron or muon traveling in almost the same direction as the
neutrino. Those charged particles also cause Cherenkov radiation, which can be detected
as a function of time and direction and used to determine the direction and energy of
the initial neutrino. Several neutrino detectors based on this idea have been built at
the bottom of the ocean and deep within the ice at the geographic South Pole12. These
detectors are arrays of thousands of photomultiplier tubes (PMTs), occupying as much as
a cubic kilometer of space, that track the movement of the Cherenkov “light cone” as the
particle travels through the detector. In deep-ocean measurements, Cherenkov radiation
from 40K decay is background noise imposed on the signal of interest. The magnitude of
this Cherenkov background therefore has been carefully calculated and measured as part
of the deep-ocean neutrino detector designs.

Use of the above formulas to compute the number of Cherenkov photons per square
meter per second in the ocean must account for number of decaying 40K atoms per cubic
meter (about 12000 m−3 s−1, of which 89.1% result in electron emission) and the clarity
of the water (usually close to that of pure water in the deep ocean). Calculations predict

11For a derivation and discussion see Arya (1966, Chapter VII, Section 5). The Bethe-Bloch formula
involves two additional parameters: the energy required to ionize a water molecule and the density of
electrons in water (the number of water-molecule electrons per cubic meter). My evaluation of the Bethe-
Bloch formula shows that for a 1.31 MeV electron, the energy lost to ionization is 153 times that lost to
Cherenkov radiation.

12To learn more, the keywords to search for are DUMAND (Deep Underwater Muon and Neutrino
Detector; 1976-1995) and ANTARES (Astronomy with a Neutrino Telescope and Abyss environmental
RESearch project; operational since 2008) in the ocean. AMANDA (Antarctic Muon And Neutrino Detector
Array) and IceCube Neutrino Observatory are at the South Pole.
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about 1.2 · 106 photons m−2 s−1 at visible wavelengths (400-700 nm) in clear ocean water
(Learned, 1981; Bradner et al., 1987). Nighttime measurements to depths of 4300 m in
clear waters near Hawaii showed a typical background “glow” of order 107photons m−2 s−1,
which includes bioluminescence as well as Cherenkov radiation. Aoki et al. (1986) report
2.18+9%

−28% ·106 photons m−2 s−1 at the same location. Tamburini et al. (2013) recorded a 2.5
year times series of light at 2,500 m depth in the Mediterranean Sea. Each of their pho-
tomultiplier tubes (PMTs) recorded a steady background of 37, 000± 3000 photons s−1 at-
tributable to 40K decay, plus another 40, 000±3000photons s−1 attributable to background
bioluminescence. During periods of strong currents, which triggered bioluminescence in the
wakes of the PMTs, the bioluminescence signal increased by as much as a factor of 100;
Fig. 2.26 shows some of their data. Their PMTs13 had a collection area of 0.038 m2, so
37, 000 photons s−1 received by a PMT corresponds to about 106 photons m−2 s−1, consis-
tent with the predictions in the other papers. The measured total of 67, 000 photons s−1

for Cherenkov and background bioluminescence corresponds to 1.8 · 106 photons m−2 s−1.
Thus it is never completely dark at even the greatest depths, even though no solar photons
are present.

Most vertebrates, humans in particular, see only black-and-white in dim light using the
rod cells in their retinas. (Cone cells are used for color vision in bright light; see Section
16.1.) The optically sensitive part of these rod cells is a single kind of photopigment known
as an opsin (generally rhodopsin-1). A recent genetic study of 101 species of deep-sea fish
(Musilova et al., 2019) found that some fish express genes for coding multiple types of
opsins, as many as 2 cone and 38 rod opsins in one species. The peaks of the wavelength
sensitivities of these multiple opsins cover a range of blue to near-UV wavelengths. Thus it
is hypothesized that some fish may be able to “see color” even in the dimmest light of the
deep ocean. Giant squid have the largest eyes of any animal, around 30 cm in diameter.
It is thought that they may be able to detect bioluminescence generated by their arch-
enemies the sperm whales and know it’s time to leave. It may be that squid and other
deep-ocean animals just see blobs of light or shadows against the faint background. If they
see a small blob of light/shadow, eat it; if it’s a big blob/shadow, flee. In addition, Frank
and Widder (1996) found that the eyes of certain deep-sea crustaceans are equally sensitive
to near-UV and blue-to-green visible wavelengths. Their paper discussed the penetration
of near-UV solar radiation to depth. However, it can be speculated that these animals may
have evolved eyes capable of seeing the low level of Cherenkov ultraviolet light. Assuming
an average wavelength of 420 nm, the deep-ocean measurements of 1.8·106photons m−2 s−1

(Tamburini et al., 2013) and 2.2 · 106 photons m−2 s−1 (Aoki et al., 1986) correspond to an
irradiance of approximately 10−12 W m−2, which is the threshold sensitivity of the eyes of
some deep-sea fish as estimated from comparative anatomy studies (Denton and Warren,
1957). This is probably not a coincidence.

13The PMTs were Hamamatsu model R7081-20. The data sheet gives a “minimum effective area” of 220
mm. Taking this as the diameter of the PMT collector gives a collector area of 0.038 m2. The PMT was
sensitive to wavelengths from 300 to 650 nm with peak sensitivity at 420 nm.
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Figure 2.26: Measured bioluminescence and Cherenkov radiation photon counts in the
Mediterranean Sea at 2500 m depth. Top panel: the photon counts in thousands per
second for one PMT over a time of 15 minutes. Bottom panel: median photon counts from
one particular PMT (red) and the average of the median rates for the 885 detectors in
the array (blue) over a period of 3 months. Reproduced from Fig. S2 of Tamburini et al.
(2013) under a Creative Commons Attribution License.
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CHAPTER 3

Inherent Optical Properties

The Light and Radiometry chapter 1 explains how to describe light quantitatively. This
chapter now explains how to describe and measure the optical properties of the material
through which the light propagates. This is accomplished by the variables in the inherent
optical properties box of Fig. 1.

Natural waters, both fresh and saline, are a witch’s brew of dissolved and particulate
matter. These solutes and particles are both optically significant and highly variable in
kind and concentration. Consequently, the optical properties of natural waters show large
temporal and spatial variations and seldom resemble those of pure water.

The great variability in the optical properties of natural waters is the bane of those who
desire precise and easily tabulated data or simple models. However, the coupling between
constituent physical properties (e.g., particle size, shape, index of refraction, and concen-
tration) and optical properties suggests that optical measurements can be used to deduce
information about the constituents of aquatic ecosystems. Indeed, it is the connections
between the optical properties and the biological, chemical and geological constituents of
natural waters that define the critical role of optics in aquatic research. For just as optical
oceanography utilizes results from the biological, chemical, geological, and physical sub-
disciplines of limnology and oceanography, so do those subdisciplines incorporate optics.
This synergism is seen in such areas as biological oceanography, marine photochemistry,
mixed-layer thermodynamics, lidar bathymetry, underwater visibility, and “ocean color”
remote sensing of biological productivity, sediment load, pollutants, or bathymetry and
bottom type.

The goal of this chapter is to define the bulk inherent optical properties of natural
waters. These are the absorption coefficient, the volume scattering function, and various
quantities derived from these two. The chapter closes with an overview of various schemes
for classifying natural waters. The reasons why the various optical properties have their
observed values are discussed in later chapters. However, the unseverable connections
between optics and biology, chemistry, and geology will still be obvious.

When light interacts with matter one of three things can happen. The light can disap-
pear, with its energy being converted to another form such as heat or the energy contained
in a chemical bond. This process is called absorption. The light can also change its direc-
tion without a change of wavelength, and the light can change its wavelength, usually also

97
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with a change of direction. Either of these processes is called scattering.

The absorption and scattering properties of a medium such as sea water are described
by its inherent optical properties, or IOPs. IOPs are optical properties of the medium
and do not depend on the ambient light field. That is, a volume of water has well
defined absorption and scattering properties whether or not there is any light there to be
absorbed or scattered. This means that IOPs can be measured in the laboratory on a water
sample, as well as in situ in the ocean.

3.0.1 Conceptual Definitions of IOPs

The absorption coefficient is the fundamental IOP that describes how a medium absorbs
light. The volume scattering function likewise describes how the medium scatters light. If
you know these two IOPs, then you know everything there is to know about the medium
interacts with unpolarized light. Other IOPs are sometimes convenient, and they can be
defined in terms of the absorption coefficient and the volume scattering function. Figure
3.1 is the key to defining the IOPs.

Figure 3.1: Geometry used to define in-
herent optical properties.

Consider a small volume ∆V of water, of thickness ∆r, illuminated by a collimated
beam of monochromatic light of spectral radiant power at some wavelength λ, Φi(λ) in
W nm−1, as illustrated in Fig. 3.1. Some part Φa(λ) of the incident power Φi(λ) is absorbed
within the volume of water. Some part Φs(λ, ψ) is scattered out of the beam at an angle
ψ, and the remaining power Φt(λ) is transmitted through the volume with no change in
direction. Let Φs(λ) be the total power that is scattered into all directions. Furthermore,
assume that the light does not undergo a change in wavelength during the scattering
process. Then by conservation of energy,

Φi(λ) = Φa(λ) + Φs(λ) + Φt(λ) .

The absorptance A(λ) is the fraction of incident power that is absorbed within the
volume:

A(λ) ,
Φa(λ)

Φi(λ)
. (3.1)

Likewise, the scatterance B(λ) is the fractional part of the incident power that is scattered
out of the beam into all directions,

B(λ) ,
Φs(λ)

Φi(λ)
, (3.2)
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and the transmittance T (λ), the fraction of the incident power that passes through the
volume without interacting with the medium, is

T (λ) ,
Φt(λ)

Φi(λ)
. (3.3)

Clearly, A(λ) +B(λ) + T (λ) = 1.
The inherent optical properties usually employed in optical oceanography are the ab-

sorption and scattering coefficients, which are respectively the absorptance and scatterance
per unit distance in the medium. In the geometry of Fig. 3.1, let the thickness ∆r approach
zero, in which case only a decreasingly small fraction ∆A(λ) of the incident power is ab-
sorbed. The absorption coefficient a(λ) is then defined as

a(λ) , lim
∆r→0

∆A(λ)

∆r
=
dA(λ)

dr
(m−1) . (3.4)

Likewise the scattering coefficient b(λ) is defined as

b(λ) , lim
∆r→0

∆B(λ)

∆r
=
dB(λ)

dr
(m−1) , (3.5)

where ∆B(λ) is the fraction of scattered power.
The beam attenuation coefficient c(λ) is defined as

c(λ) , a(λ) + b(λ) (m−1) . (3.6)

Another commonly used IOP is the single-scattering albedo ωo(λ), defined by

ωo(λ) ,
b(λ)

c(λ)
. (3.7)

In waters and at wavelengths where the beam attenuation is due primarily to scattering,
ωo is near one. For waters and wavelengths where the beam attenuation is due primarily
to absorption, ωo is near zero. As we shall see elsewhere, the single-scattering albedo
is the probability that a light ray will be scattered (rather than absorbed) in any given
interaction, hence ωo(λ) is also known as the probability of photon survival in any given
interaction between a ray or photon and matter.

Equations (3.4) and (3.5) are conceptual, mathematical definitions in terms of limits.
These definitions are not suitable for implementation in measurement instruments, which
always have a finite path length r and finite A and B. Section 3.3 on measuring IOPs shows
how to recast the conceptual definitions into forms suitable for making measurements.

The IOPs depend on the composition, morphology, and concentration of the particulate
and dissolved substances in the ocean. Composition refers to what materials make up the
particle or dissolved substance, in particular to the index of refraction of that material
relative to that of the surrounding water. Morphology refers to the sizes and shapes of
particles. Concentration refers the number of particles in a given volume of water, which
is described by the particle size distribution, or to the amount of a dissolved substance
in the water. As we will see, different materials absorb much differently as a function of
wavelength. Particles with different shapes scatter light differently, even if the particles
have the same volume. Particles with different volumes scatter light differently even if they



100 CHAPTER 3. INHERENT OPTICAL PROPERTIES

have the same shape. Consider, for example, atmospheric visibility through rain or fog.
Even if the total water content per cubic meter of air is the same, you can “see through”
a few large raindrops, whereas many small fog droplets greatly reduce visibility.

Because the physical characteristics of the dissolved and particulate substances in the
ocean vary by orders of magnitude, so do the IOPs. For example, both the absorption and
scattering coefficients of pure water are less that 0.01 1/m at 440 nm. However, in turbid
coastal waters with high concentrations of phytoplankton, mineral particles, and dissolved
organic matter, the absorption and scattering coefficients can be four orders of magnitude
larger. The volume scattering function (at a given scattering angle and wavelength) can also
vary by orders of magnitude between open ocean and coastal waters. Understanding how
variability in IOPs is determined by the various constituents of the ocean is a fundamental
problem of optical oceanography.

3.0.2 Historical IOP Notation

Just as with the radiometric quantities, there is an “historical” set of symbols in addition
to the IAPSO recommended symbols used above. Table 3.1 summarizes the IOP’s as they
are commonly employed in optical oceanography.

Quantity SI Units Recommended Historical

Symbol Symbol

absorption coefficient m−1 a a

scattering coefficient m−1 b s

backward scattering coefficient m−1 bb b

forward scattering coefficient m−1 bf f

beam attenuation coefficient m−1 c α

volume scattering function m−1 sr−1 β p

scattering phase function sr−1 β̃ σ

single-scattering albedo dimensionless ωo ρ, ω̃

Table 3.1: Terms, units, and symbols for inherent optical properties.

3.1 The Volume Scattering Function (VSF)

We now take into account the angular distribution of the scattered power, with two as-
sumptions. We first assume that the medium is isotropic, i.e., its influence on light is the
same in all directions at a given point. This is a reasonable assumption for natural waters
in which the particles are randomly oriented by turbulence. We also assume that the in-
cident light is unpolarized. If these two assumptions are true, then the scattering process
is azimuthally symmetric. This means that the scattering depends only on the scattering
angle ψ, which is measured from the direction of the unscattered beam as shown in Fig.
3.2. Clearly 0 ≤ ψ ≤ π.
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Figure 3.2: Geometry used to define the volume scattering function. Φi(λ) is the incident
power onto an area ∆A. An amount ∆Φa(λ) of the incident power is absorbed in distance
∆r, and ∆2Φs(ψ, λ) is the power scattered into the annular ring of solid angle ∆Ω. ∆Φt(λ)
is the transmitted power.

3.1.1 Conceptual Definition of the Volume Scattering Function

With these two assumptions, the fraction of incident power scattered out of the beam
through an angle ψ into a solid angle ∆Ω centered on ψ, is ∆2Φs(ψ, λ)/Φi(λ). The notation
∆2Φs(ψ, λ) is adopted from Gordon (1994a) to indicate that ∆2Φs(ψ, λ) is a second-order
small quantity, that is, it is small because both ∆r and ∆Ω are small. The solid angle ∆Ω
now includes all directions within the two red rings shown in the figure, corresponding to
all directions between scattering angles ψ and ψ + ∆ψ. The volume scattering function
β(ψ, λ) is defined as the limit of this fraction as ∆r → 0 and ∆Ω→ 0:

β(ψ, λ) , lim
∆r→0

lim
∆Ω→0

∆2Φs(ψ, λ)

Φi(λ) ∆r∆Ω
=

1

Φi(λ)

∂2Φs(ψ, λ)

∂r∂Ω
(m−1 sr−1) . (3.8)

Recalling the definition of spectral radiant intensity 1.5.6 as scattered power per unit
solid angle, the corresponding intensity scattered into the given solid angle ∆Ω is ∆Is(ψ, λ) =
∆2Φs(ψ, λ)/∆Ω. Moreover, if the incident power Φi(λ) falls on an area ∆A, then the cor-
responding incident irradiance is Ei(λ) = Φi(λ)/∆A. Noting that ∆V = ∆r∆A is the
volume of water that is illuminated by the incident beam allows Eq. (3.8) to be rewritten
as

β(ψ, λ) = lim
∆V→0

∆Is(ψ, λ)

Ei(λ) ∆V
=

1

Ei(λ)

∂Is(ψ, λ)

∂V
. (3.9)

This form of β(ψ, λ) suggests the name volume scattering function (commonly abbre-
viated as VSF) and the physical interpretation of scattered intensity per unit incident
irradiance per unit volume of water. In the language of physics, the VSF also can be
interpreted as the differential scattering cross section per unit volume.

The forms of Eqs. (3.8) and (3.9) involving partial derivatives are conceptual definitions.
Instruments that measure the VSF always have to deal with finite path lengths ∆r and
finite solid angles ∆Ω. The transition from a definition as a derivative to an instrument
design is discussed on Section 3.3 on measuring IOPs.
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3.1.2 Scattering Coefficients

Integrating β(ψ, λ) over all directions (solid angles) gives the total scattered power per unit
incident irradiance and unit volume of water, in other words the scattering coefficient:

b(λ) =

∫
Ξ
β(ψ, λ) dΩ = 2π

∫ π

0
β(ψ, λ) sinψ dψ . (3.10)

The 2π in the last equation follows from our assumption that the scattering is az-
imuthally symmetric about the incident direction. This integration is often divided into
forward scattering, 0 ≤ ψ < π/2, and backward scattering, π/2 ≤ ψ ≤ π, parts. The
corresponding forward and backward1 scattering coefficients are, respectively,

bf(λ) , 2π

∫ π/2

0
β(ψ, λ) sinψ dψ (3.11)

bb(λ) , 2π

∫ π

π/2
β(ψ, λ) sinψ dψ . (3.12)

The backscattering fraction, defined by

B(λ) , b̃b(λ) ,
bb(λ)

b(λ)
, (3.13)

gives the fraction of scattered light that is deflected through scattering angles greater than
90 deg. This quantity is fundamental to remote sensing because most of the light leaving the
ocean in an upward direction comes from sunlight that was originally heading downward,
but which was backscattered into upward directions.

3.1.3 The Scattering Phase Function

The volume scattering phase function2, β̃(ψ, λ), is defined by

β̃(ψ, λ) ,
β(ψ, λ)

b(λ)
(sr−1) . (3.14)

Writing the VSF β(ψ, λ) as the product of the scattering coefficient b(λ) times the
phase function β̃(ψ, λ) partitions β(ψ, λ) into a factor giving the magnitude of the total
scattering, b(λ) with units of m−1, and a factor giving the angular distribution of the

1It would be hard to design worse notation than bb, in which the same letter“b” stands for both “scat-
tering” and “backward” in the same term. However, we’re stuck with this for historical reasons.

2The term “phase function” has its historical origins in astronomy, where the phase angle is the angle
between the directions of the light incident onto and reflected from an object. In the case of sunlight being
reflected by the Moon and seen on Earth, this angle depends on the phase of the Moon—hence the name
phase function for the function that gives the phase angle as a function of time. In our terminology, the
lunar phase angle is π minus the scattering angle. The term phase function is rather misleading because the
phase function β̃(ψ, λ) defined here has nothing whatsoever to do with the phase of an electromagnetic wave
or with its historical origin tied to the phase of the Moon. The Russian literature calls β̃ the “scattering
diagram,” which is more descriptive of what it really is. You also see the term “indicatrix.” Neither of
these terms is commonly used in the English-language literature.
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scattered light, β̃(ψ, λ), with units of sr−1. Combining Eqs. (3.10) and (3.14) gives the
normalization condition for the phase function:

2π

∫ π

0
β̃(ψ, λ) sinψ dψ = 1 . (3.15)

This normalization implies that the backscattering fraction can be computed from

B(λ) = 2π

∫ π

π/2
β̃(ψ, λ) sinψ dψ . (3.16)

The asymmetry parameter g of the phase function is the average over all scattering
directions of the cosine of the scattering angle ψ, namely

g , 〈cosψ〉 = 2π

∫ π

0
β̃(ψ) cosψ sinψ dψ . (3.17)

The asymmetry parameter is a convenient measure of the “shape” of the phase function.
For example, if β̃(ψ) is very large for small ψ, then g is near one. If β̃(ψ) is symmetric
about ψ = 90 degrees , then g = 0. Typical ocean waters have g values in the range of 0.8
to 0.95.

We have assumed above that the scattering is azimuthally symmetric, so that the
directional pattern or angular shape of the VSF depends only on the scattering angle ψ.
This is not the case for polarized incident light, even if the medium is isotropic. Thus
a linearly polarized laser beam will scatter differently for different azimuthal directions
(measured relative to the plane of polarization), even if the medium is isotropic. Description
of polarized light requires the Stokes vector formalism of Section 1.6 and a more complicated
description of scattering as described in Section 1.7.

If the medium contains non-spherical particles that are not randomly oriented, even
unpolarized light will scatter differently for different azimuthal directions. This is some-
times the case, for example, in cirrus clouds and ice fogs, which can have non-spherical
ice crystals that become oriented in a particular way as the crystals fall through a calm
atmosphere. The atmosphere is then an optically anisotropic medium, and scattering is
not azimuthally symmetric. Scattering of sunlight in such an atmosphere gives rise to
phenomena such as “Sun dogs” or parhelia, which are bright spots to either side of the
Sun.

3.2 Visualizing VSFs

Oceanic volume scattering functions typically vary by 5 or 6 orders of magnitude over the
range of very small to large scattering angles. Figure 3.3 illustrates the range of VSFs that
can be found in various oceanic waters. Each of these VSFs varies by over five orders of
magnitude between a scattering angle of ψ = 0.1 deg and their minima at large angles.
The different VSFs vary by over two orders of magnitude at a given scattering angle.

The phase functions computed from these three VSFs are plotted in Fig. 3.4. The left
panel shows the backscatter fractions and asymmetry parameters for each phase function.
Although these phase functions appear similar in shape, at least when plotted with a
logarithmic ordinate, there are significant differences. Note in particular that they vary

http://en.wikipedia.org/wiki/Sun_dog
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by almost an order of magnitude at large scattering angles, and their backscatter fractions
vary by over a factor of two. Thus the different shapes of these phase functions would give
factor-of-two or greater differences in upwelling radiances as measured by remote-sensing
instruments. The actual differences in upwelling radiances would be even larger because
of the magnitude differences in the VSFs.

Figure 3.3: Example volume scattering functions. The blue curve was measured in clear,
open ocean water; the wavelength was 514 nm. The green curve was measured in a harbor
(514 nm), and the red curve in very productive coastal waters (530 nm). The corresponding
scattering coefficients b are shown in the left panel.

Figure 3.4: Example scattering phase functions. The color coding is the same as for Fig. 3.3

VSFs and phase functions are usually plotted as functions of the scattering angle ψ,
as seen in the preceding figures. The ordinate is almost always logarithmic because of the
wide ranges of VSF and phase function magnitudes. The abscissa can be linear (as in
the left panels) or logarithmic (right panels); a logarithmic abscissa highlights the smallest
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scattering angles. However, it should be remembered that scattering is an inherently three-
dimensional process involving both polar and azimuthal scattering angles relative to the
direction of the unscattered light.

Another typical oceanic phase function is displayed in four different ways in Fig. 3.5,
which is worthy of some discussion. This particular phase function has an asymmetry
parameter or average cosine of g = 0.9255 and a backscatter fraction of B = 0.0183. (This
phase function was generated using the equations for the Fournier-Forand phase function,
which is discussed in Section 6.7. The parameter values were n = 1.1 and µ = 3.5835, which
give a good fit to the Petzold average-particle phase function of Section 9.5.2.) In the upper
two plots, the magnitude of the phase function has been color coded for comparison with
the three-dimensional displays seen in the lower panels of the figure.

Figure 3.5: A typical oceanic phase function viewed in various ways. The magnitude is
color coded the same in all plots. The lower right figure shows the near-forward scattering
region: the inner black ring is ψ = 5 deg, and the outer ring is ψ = 10 deg.
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The lower-left panel gives a 3-D perspective of the phase function, with the “north pole”
of the sphere being the direction of the unscattered light. This point is colored dark red to
indicate the large magnitude of the phase function, corresponding to the color scheme of
the line drawings. The polar angle or “latitude” of the sphere is the scattering angle, and
the ”longitude” is the azimuthal angle of the scattering. Because we have assumed that
the scattering is independent of the azimuthal angle, there is no azimuthal dependence in
this 3-D plot. The black circle in the green region near the pole is ψ = 10 deg scattering
angle; the dark red circle at the “equator” is ψ = 90 deg. The dark purple color in the
backscatter directions at the bottom of the sphere indicates the low magnitudes of the
phase function as seen in the line plots.

The lower-right plot is an expanded view of the scattering angles from 0 to 10 deg, as
contained within the black circle of the lower-left sphere plot. The view is looking “into
the beam,” or toward the light source. The inner black circle is ψ = 1 deg., the next black
circle is ψ = 5 deg, and the outer black circle is the ψ = 10 deg value seen in the sphere
plot.

These four plots display the same information in different ways. The two plots on
the left are linear in the scattering angle, and the two plots on the right emphasize the
small-angle scattering. The top two plots are the usual way of showing VSFs or phase
functions when the scattering is azimuthally symmetric; the bottom two plots illustrate
the 3-D character of the scattering process.

Figure 3.6 shows the phase function for pure water, which is given by the simple formula
(see Eq. 6.7)

β̃w(ψ) = 0.0608 (1 + 0.925 cos2 ψ) . (3.18)

The pure water phase function has only a small range of magnitudes and is symmetric
about the ψ = 90 deg scattering angle. Therefore the asymmetry parameter or average
cosine of this phase function is g = 0, and the backscatter fraction is B = 0.5.

In the discussion of IOPs in the previous sections, we assumed that the medium, i.e.
the water, was isotropic. Note that an isotropic medium does not have isotropic scattering,
which would be a VSF that is independent of the scattering angle. Isotropic scattering is
an idealization that does not exist in nature. Scattering by pure water is the closest you
can come to isotropic scattering in the ocean.

3.3 Measuring IOPs

The definitions of the absorption and scattering coefficients in Section 3.0.1 were in terms of
an infinitesimally thin slab of water. We now must reformulate those conceptual definitions
so that they can be applied to actual measurements on finite thickness of water in a
measuring instrument.

3.3.1 Measuring The Beam Attenuation Coefficient

Just as was done for the absorption and scattering coefficients (recall Eqs. 3.4 and 3.5),
we can define the beam attenuation coefficient c as

c(λ) =
dC(λ)

dr
(m−1) , (3.19)
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Figure 3.6: The phase function for pure water.

where dC(λ) = dA(λ)+dB(λ) is the attenuance, or fraction of power absorbed or scattered
as light passes through the slab of infinitesimal thickness dr. However, any instrument must
make its measurements on a slab of some finite thickness R, which is typically between
0.01 and 1 m.

Figure 3.7 shows a finitely thick slab of water with an incident power Φi and transmitted
power Φt, where the wavelength argument has been omitted for brevity. Within the slab
the power has magnitude Φ after passing through a thickness r of material. In going from
thickness r to r + dr, the power changes from Φ to Φ + dΦ, where dΦ < 0 because the
transmitted power decreases as the thickness traversed increases.

Recalling that the attenuance is the fractional change in power, we can rewrite Eq.
(3.19) as

c =
dC

dr
=
−dΦ

Φ

dr
,
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Figure 3.7: Geometry for measure-
ment of beam attenuation c.

or

c dr = −dΦ

Φ
, (3.20)

where the minus sign accounts for dΦ being negative, whereas all other quantities are
positive. Assuming that the medium within the slab is uniform, so that c is independent
of r, we can integrate Eq. 3.20 from r = 0 to r = R, which corresponds respectively to
powers Φi and Φt. This gives∫ R

0
c dr = cR = −

∫ Φt

Φi

dΦ

Φ
= − ln

(
Φt

Φi

)
,

which can be rewritten as

c = − 1

R
ln

(
Φt

Φi

)
. (3.21)

This equation gives the beam attenuation coefficient in terms of the measurable incident
and transmitted powers and the finite thickness of the slab.

Equation (3.21) is the key to measuring the beam attenuation. However, there are
additional subtleties in this measurement related to the instrument design, which is shown
in more detail in Fig. 3.8. The development above implicitly assumed that the incident
light was perfectly collimated (all light rays travel in exactly the same direction) and that
the detector omits all scattered light. Neither requirement can be fully satisfied in a real
instrument. Even a laser beam has some divergence, and any detector has a finite field
of view (FOV) or acceptance angle. If the detector FOV is 1 deg, for example, then the
detector will detect rays that have been scattered by 1 deg or less, as well as unscattered
light. This undesired detection of scattered light will make the transmitted power too

Figure 3.8: Schematic instrument design for measurement of the beam attenuation coef-
ficient c. Φs represents the power scattered into all directions, as indicated by the red
arrows.
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large, and thus c too small. The magnitude of this error depends both on the detector
FOV and on the volume scattering function of the water, which determines how much
light is scattered through angles smaller than the FOV. Although these errors in beam
attenuation measurements have been studied in many papers (see, most recently, Boss
et al. (2009b) and references therein), it is difficult to correct for the error in a particular
measurement because the VSF is usually unknown, especially at very small scattering
angles. Unfortunately, as Boss et al. show, the differences in c values as measured by
different instruments can be tens of percent. Indeed, Boss et al. end their paper with
the comment, “We conclude that more work needs to be done with the oldest (in terms
of availability of commercial in-situ instruments) and simplest (so we thought...) optical
property, the beam attenuation.”

3.3.2 Measuring The Absorption Coefficient

If there were no scattering, then the instrument design used to measure beam attenuation
would give the absorption coefficient a. However, at least some scattering is always present
in sea water, which requires modification of the instrument design shown in Fig. 3.8. When
measuring a, any light lost from the beam because of scattering will be attributed to a loss
of light due to absorption. Thus it is desirable that the detector collect as much scattered
light as possible. Because most scattering is through small angles, a common instrument
design is to use as large a detector as possible at the end of the measurement chamber to
collect forward scattered light. Such an instrument is shown schematically in Fig. 3.9.

Figure 3.9: Schematic instrument design for measurement of the absorption coefficient a.
Φs(>FOV ) represents the power lost to the detector by scattering into angles greater than
the detector field of view.

An instrument of this design typically collects light forward scattered through angles
of a few tens of degrees (depending on the design of the particular instrument), which
does account for most of the scattered light. However, some light is still lost “out the
side” of the instrument by scattering though larger angles, as represented by Φs(>FOV )
in the figure. To get an accurate absorption measurement, it is necessary to perform
a scattering correction, i.e., to estimate Φs(>FOV ) and to account for this loss when
computing a. The equation for computation of a then becomes

a = − 1

R
ln

(
Φt + Φs(>FOV )

Φi

)
. (3.22)
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In this equation, Φt now includes the measured transmitted power due both to un-
scattered light and to light scattered through angles less than the detector FOV. The
Φs(>FOV ) term adds back the unmeasured loss of power due to scattering through angles
larger than the FOV. Estimating the value of Φs(>FOV ) is of course difficult because
the amount of scattering at angles greater than the instrument field of view depends on
the (usually unknown) volume scattering function. Techniques for doing this scattering
correction are given in Zaneveld et al. (1994).

In spite of the fundamental difficulties associated with the instrument designs of Figs. 3.8
and 3.9, the problems are not insurmountable and instruments based on these designs are
commercially available. For example, the pioneering and widely used ac-9 instrument (and
its successor, the ac-s) uses these designs for measurement of a and c. In the ac-9, the
detector for measurement of c has an acceptance angle of about 1 deg, and the detector
for measurement of a has an acceptance angle of about 40 deg.

Another way to account for scattering in absorption measurements is to place the entire
measurement chamber inside an integrating sphere. An integrating sphere is a hollow sphere
coated on the inside with a highly reflective white material (usually Spectralon, which has
a reflectance greater than 99% at visible wavelengths and is a diffuse reflector). The inner
surface of the sphere reflects incident light into all directions, which after many reflections
makes the interior light field homogeneous and isotropic. Thus it is possible to measure the
power at only one location within the sphere in order to compute the total power within
the sphere. Integrating spheres are commonly used in laboratory spectrophotometers to
collect the scattered light, and flow-through integrating-cavity absorption meters are now
commercially available (e.g., PSICAM).

Equation 3.22 is often rewritten as

a = − 1

R
ln

(
Φt + Φs(>FOV )

Φi

)
− 1

R
ln

(
Φi − Φa

Φi

)
= − 1

R
ln (1−A) ,

after recalling the definition of the absorptance A. Using loge x = log10 x/ log10 e to convert
from natural (base e) to common (base 10) logarithms gives

a = −2.303

R
log10 (1−A) =

2.303Abs

R
, (3.23)

where Abs = − log10(1−A) is called the absorbance or optical density3 Spectrophotometers
usually output their measurements as a value of Abs, from which a can be computed by
Eq. (3.23) for the given thickness R of the sample volume.

3Older literature often writes D = − log10(1 − A) and calls D the “optical density.” The term optical
density is now considered obsolete and its use is discouraged by the International Union of Pure and Applied
Chemistry; see https://goldbook.iupac.org/terms/view/O04306. Some authors use the term absorbance
if the measurement does not include scattering, and optical density if the measurement includes scattering,
but this is nonstandard. In the spectrophotometer literature, you will sometimes see the absorbance defined
as − log10(T ), where T is the transmittance. This is equivalent only if there is no scattering in the sample.
That is the case for chemists working with pure solutions, but it is seldom so for oceanographers whose
samples usually contain scattering particles such as phytoplankton. Many authors used A for absorbance;
this book uses A for absorptance and Abs for absorbance.

http://https://www.seabird.com/
http://www.labsphere.com
https://sunstonesci.com/product/psicam
https://goldbook.iupac.org/terms/view/O04306
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3.3.3 Measuring The Scattering Coefficient

It is possible to measure the scattering coefficient b, for example by collecting all scattered
power in an integrating cavity and then using

b = − 1

R
ln

(
Φs

Φi

)
.

It is also possible to measure the volume scattering function and then obtain b by
integration of the VSF over all scattering angles. However, neither of these paths to b
is often taken. The scattering coefficient b is usually obtained from measurements of the
beam attenuation c and absorption coefficient a, and the definition of c:

b = c− a .

Note, however, that there is a philosophical problem here, even if the practical difficulties
in measuring a and c can be overcome well enough to obtain usefully accurate values. The
philosophical problem is that to obtain good values of a and c, you need to know the VSF
in order to correct for the finite-FOV errors in c and to perform the scattering correction
for the a measurement. Because the VSF is seldom measured, you must make assumptions
about the scattering in order to obtain values for a and c, in order to obtain a value for the
scattering b. Thus the value obtained for the scattering coefficient depends on the a priori
assumptions made about scattering in the water being studied. This circular reasoning is
tolerated in optical oceanography simply because of the difficulties of designing instruments
to make accurate measurements of each IOP independent of assumptions about the other
IOPs.

Measurement of the backscattering coefficient bb is discussed in Section 6.4.

3.3.4 Measuring The Volume Scattering Function

As with the measurement of beam attenuation, measurement of the volume scattering
function employs a narrow collimated beam and a narrow-field-of-view detector. Now,
however, the detector views the incident beam at a given scattering angle. The basic
geometry is shown in Fig. 3.10.

The intersection of the incident beam and the detector FOV define a volume of water
∆V in which the scattering from the incident direction ξ̂′ into the scattered direction ξ̂
takes place. The scattering angle ψ is defined as shown by the angle between ξ̂′ and ξ̂
(recall Eq. (1.9)). The incident power Φi traveling in direction ξ̂ into volume ∆V generates
scattered power ∆2Φs(ψ) in the detector FOV of solid angle ∆Ω centered on direction ξ̂′

over a path length of ∆r. The definitions of the VSF in Section 3.1.1 give an operational
formula for the VSF in terms of measurable quantities:

β(ψ) =
∆2Φs(ψ)

Φi ∆r∆Ω
, (3.24)

which as previously noted is equivalent to

β(ψ) =
∆Is(ψ)

Ei ∆V
. (3.25)
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Figure 3.10: Geometry for measurement of the volume scattering function.

As always, there are implicit assumptions and subtleties involved with these equations.
It is assumed that the scattering volume ∆V is small enough that only single scattering
takes place within the volume, but large enough to contain a representative sample of
scattering particles. It is necessary to correct for attenuation of the incident and scattered
beams along the entire path from the source to the scattering volume to the sensor, which
presumes knowledge of the beam attenuation coefficient c. (Note again our problem: to
measure the VSF we need to know c, but we need to know the VSF in order to make the
FOV correction for the measurement of c.) In the pioneering General Angle Scattering
Meter (GASM) developed by Petzold (1972), it was difficult to accurately determine the
scattering volume ∆V , which changes with scattering angle, because of the difficulty of
maintaining mechanical alignment of the moving parts as they swept the detector through
the full range of scattering angles. The calculations and engineering considerations needed
to implement Eqs. 3.24 or 3.25 in GASM are given in Petzold’s classic report.

More recent instruments have used other designs to avoid various problems. For ex-
ample, the Volume Scattering Meter (VSM) of Lee and Lewis (2003) used a novel design
based on a rotating periscope to scan through scattering angles from 0.6 to 177.3 deg. A
more recent in situ instrument, the LISST-VSF can measure the VSF at 515 nm in the
range of ψ = 0.094 to 150 deg, along with the scattering coefficient and beam attenuation

https://www.sequoiasci.com/product/lisst-vsf
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and selected components of the Mueller matrix for polarized light scattering. See Slade
et al. (2013).

In sea water both absorption and scattering are always important. Depending on the
water constituents and the wavelength, one process can dominate the other, but neither can
be ignored. Thus one IOP cannot be measured independently of the others. Clearly, there
is need for continued development of IOP instruments with novel designs that minimize
the measurement problems mentioned above.

3.4 Additivity of IOPs

In natural waters many different dissolved and particulate substances contribute to the
total IOPs of the water body. As will be seen in Chapter 9 on radiative transfer theory,
is it the total absorption and total VSF due to all water components that determine light
propagation in a water body. Fortunately, the total IOPs are the sum of the IOPs of the
individual components. Thus the total absorption is the sum of the absorption by water
(subscript w), by the various species of phytoplankon (phy), by CDOM, by minerals, by
pollutants, and so on. If the water body contains N different components, then

atotal =

N∑
i=1

ai , (3.26)

where i labels the individual components. When modeling IOPs (e.g. Section 8.8) it is
common to consider three or four components: the water itself; a generic phytoplankon,
often parameterized by the chlorophyll concentration; dissolved organic matter (CDOM);
and perhaps mineral particles. In this case (3.26) can be written

atotal = aw + aphy + aCDOM + amin . (3.27)

Of course, each component absorption will vary with wavelength, and all but water gener-
ally vary with location and time as well.

The same partitioning of totals into sums of component contributions holds for the
volume scattering function:

βtotal =

N∑
i=1

βi . (3.28)

This implies (by integration over scattering angle) that

btotal =
N∑
i=1

bi , (3.29)

and

bb,total =

N∑
i=1

bb,i . (3.30)

Note, however, that the scattering phase functions are not directly additive; they must
be weighted by the relative amount of scattering for each component. Recall from Eq.
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(3.14) that the VSF β can be written as the product of the scattering phase function β̃
and the scattering coefficient b. Applying this to each component VSF gives

β̃total btotal =

N∑
i=1

β̃i bi

or

β̃total =
N∑
i=1

(
bi

btotal

)
β̃i .

Note that if the phase function of each component obeys the normalization condition (3.15),
then so does the total.

It is usually assumed when modeling the total IOPs that the component phase functions
are determined by the type of component, and the spatial variabilty is contained in the
scattering coefficient via the depth-dependent concentration of the component. In that
case, the last equation can be written as

β̃total(ψ, z, λ) =

(
bwater(λ)

btotal(z, λ)

)
β̃water(λ) +

N∑
i=2

(
bi(z, λ)

btotal(z, λ)

)
β̃i(λ)

It is also common practice to regard the water contribution as a known quantity and
to remove the water contribution from measured absorption and scattering coefficients.
However, when doing radiative transfer calculations, the water contribution must always
be included.

3.5 Absorption and Scattering Are Equally Important

For a particular problem, knowing just the absorption coefficient or the volume scattering
function may be sufficient to solve the problem. For example, phytoplankton photosyn-
thesis depends only on the light (number of photons) absorbed by chlorophyll molecules,
which begins the exceedingly complex process of photosynthesis. Light scattered by a cell
is unavailable to drive photosynthesis and is irrelevant to the process. For this reason,
phytoplankton biologists have made countless measurements of absorption spectra with-
out making accompanying measurements of scattering. On the other hand, only light
scattered by the sea surface contributes to the Sun’s glitter pattern seen from above the
surface, which can be used to deduce the wave state of the surface. Light absorbed by
the ocean cannot contribute to the glitter pattern and is irrelevant to remote sensing of
surface conditions. Consequently, Fresnel’s equations for reflectance (Sections 13.2 and
13.3) are sufficient to understand angular pattern of the surface-reflected radiance, and no
knowledge of absorption is needed.

However, as will be seen in Chapter 9, you must know both the absorption coefficient
and the volume scattering function in order to solve the radiative transfer equation and
predict the in-water radiance distribution. Moreover, knowing just one of a or β gives you
no information about the other; both must be measured or modeled. A given parcel of
water will have certain absorption and scattering properties. If you add CDOM to the
water, you can greatly increase the absorption without any effect on the scattering. If you
add non-absorbing quartz or calcite particles to the water, you can greatly increase the
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scattering without any increase in absorption. However, the two processes do affect the
importance of each other. If there is a lot of scattering, the path traveled by a beam of
light between one depth and another in the water increases, so there is more opportunity
for the light to be absorbed. If there is more absorption, there is less light available to be
scattered.

For many problems, both absorption and scattering simultaneously determine the an-
swer. For example, both processes affect visibility in ways that will be discussed in Chapter
16. Absorption removes light from a beam and thus makes a distant image darker. Scat-
tering through small angles by particles blurs the edges of an image, and and scattering by
turbulence causes twinkling or mirages. Thus the visual appearance of a distance object
is determined by the relative amounts of absorption and scattering, and even by what
processes cause the scattering. The effects of absorption and scattering on an image are
illustrated in illustrated in Fig. 3.11. Wavelength-dependent absorption also alters the
color of a distant image, as seen in Fig. G.21.

Clearly, both absorption and scattering are equally important to the prediction
and understanding of light propagation.

Figure 3.11: Illustration of absorption and scattering by particles and by turbulence on
visibility. Absorption and scattering (or distance from the object) increase from top to
bottom in each column.
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CHAPTER 4

Apparent Optical Properties

One of the primary goals of optical oceanography is to learn something about a water
body, e.g., its chlorophyll or sediment concentration, from optical measurements. Ideally
one would measure the absorption coefficient and the volume scattering function, which
tell us everything there is to know about the bulk optical properties of a water body, Those
IOPs do indeed tell us a lot about the types and concentration of the water constituents.
However, in the early days of optical oceanography, it was difficult to measure in situ IOPs
other than the beam attenuation coefficient. Indeed, there were no commercial instruments
for measuring absorption and scattering coefficients in situ until the 1990s.

On the other hand, it was relatively easy to measure radiometric variables such as
the upwelling and downwelling plane irradiances. This led to the use of apparent optical
properties (AOPs) rather than IOPs to describe the bulk optical properties of water bodies.
As will be seen, a “good” AOP will give useful information about a water body, e.g., the
types and concentrations of the water constituents, from easily made measurements of
the light field. This chapter defines and illustrates the AOPs commonly used in optical
oceanography. The chapter closes with a section of optical classifications for water bodies.

Apparent optical properties are those properties that

1. depend both on the medium (the IOPs) and on the geometric (directional) structure
of the radiance distribution, and that

2. display enough regular features and stability to be useful descriptors of a water body.

Figure 4.1 helps understand the idea of an AOP. This figure shows depth profiles of
Ed and Eu for selected solar zenith angles and clear versus overcast sky conditions. These
irradiances were computed by HydroLight for Case 1 water with a chlorophyll concentra-
tion of 1 mg m−3. Note first that each of these irradiances varies by an order of magnitude
for the range of solar zenith angles and sky conditions. Irradiances do not satisfy con-
dition (2) above because of this strong dependence on sky conditions and are therefore
not AOPs. An irradiance profile does not give much information about the water IOPs
because it is difficult to separate the effects of IOPs from the effects of the external envi-
ronment on the value of the irradiance. A measurement of spectral Ed might show that
the water is blue and thus perhaps low in chlorophyll, versus green and thus perhaps high

117
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in chlorophyll. However, we cannot expect to deduce the chlorophyll concentration from a
measurement of Ed because of its sensitivity to external environmental effects. Radiances
and irradiances themselves are not AOPs.

Note, however, that the slopes of the irradiance profiles are very similar and almost
independent of the Sun and sky conditions. This suggest that the depth derivative (slope)
of Ed(z) and Eu(z) (or of radiances in particular directions) might be almost independent
of sky conditions but still be dependent on the IOPs. This is the idea behind K functions.
Note also that the ratio of Eu(z) to Ed(z) looks to be about the same for each particular
solar zenith angle or cloudiness. This suggests that ratios of irradiances (or of radiances)
might be almost independent of the external environment but still be dependent on the
IOPs. This is the idea behind reflectances.

Figure 4.1: HydroLight-computed depth profiles of Ed and Eu for selected solar zenith
angles and clear versus overcast sky conditions.

Building on the above ideas, the normalized or logarithmic depth derivative of Ed,

Kd(z, λ) , − 1

Ed(z, λ)

dEd(z, λ)

dz
= −d lnEd(z, λ)

dz
(m−1) , (4.1)

is a candidate AOP. Kd(z, λ) is called the diffuse attenuation coefficient for downwelling
plane irradiance. If Ed changes suddenly, the first form of the derivative shows that the
change in magnitude of Ed will cancel out, leaving the value of Kd unchanged. Kd thus
satisfies the stability requirement for an AOP. Kd should also depend on the IOPs because
changing them will change now rapidly the irradiance changes with depth. The diffuse
attenuation function Kd is thus a candidate worthy of consideration as an AOP.

Now consider the ratio of upwelling to downwelling plane irradiances,

R(z, λ) =
Eu(z, λ)

Ed(z, λ)
,
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which is called the irradiance reflectance. If Ed changes because of a change in Sun location,
cloud cover, or surface waves, Eu will change proportionately because Eu arises mostly from
upward scattering of the same downwelling radiance that determines Ed. Thus the Eu/Ed

ratio should be much less influenced by changes in the external environment than are
Eu and Ed individually. The reflectance R is thus worthy of further investigation as a
descriptor of the water body itself. However, we still expect at least a small change in
Eu/Ed as Sun zenith angle changes, for example, because different parts of the VSF will
contribute to the upward scattering of downwelling radiance.

It is easy to think of other such ratios and depth derivatives that can be formed from
radiometric variables: Lu/Ed, Lu/Ld, −d lnEu/dz, −d lnLu/dz, and so on. Each of these
candidate AOPs must be investigated to see which ones provide the most useful informa-
tion about water bodies and which ones are least influenced by external environmental
conditions such as Sun location or sky conditions. Table 4.1 lists the most commonly used
AOP’s. These will be examined in the following sections.

AOP name Symbol Definition Units

diffuse attenuation coefficients

(K functions)

of radiance in any direction L(θ, φ) K(θ, φ) −d lnL(θ, φ)/dz m−1

of upwelling radiance Lu KLu −d lnLu/dz m−1

of downwelling irradiance Ed Kd −d lnEd/dz m−1

of upwelling irradiance Eu Ku −d lnEu/dz m−1

of scalar irradiance Eo Ko −d lnEo/dz m−1

of PAR KPAR −d lnPAR/dz m−1

reflectances

irradiance reflectance R Eu/Ed nondim

remote-sensing reflectance Rrs Lw(in air)/Ed(in air) sr−1

remote-sensing ratio RSR Lu/Ed sr−1

average cosines

of the radiance distribution µ (Ed − Eu)/Eo nondim

of the downwelling radiance µd Ed/Eod nondim

of the upwelling radiance µu Eu/Eou nondim

Table 4.1: Commonly used apparent optical properties. Rrs is a function of wavelength
only; KPAR is a function of depth only; all other AOPs are functions of both depth and
wavelength.
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4.1 Diffuse Attenuation Coefficients (K Functions)

This section further examines the diffuse attenuation coefficients, which are commonly
called “K functions.” Recall, for example, the definition (4.1) of the diffuse attenuation
coefficient for downwelling plane irradiance:

Kd(z, λ) , −d lnEd(z, λ)

dz
.

Solving this for the irradiance Ed gives

Ed(z, λ) = Ed(0, λ) exp

[
−
∫ z

0
Kd(z′, λ) dz′

]
. (4.2)

This equation is exact. If Kd(z, λ) were independent of depth—which it never is, as will
be seen below—the last equation would reduce to

Ed(z, λ) = Ed(0, λ) exp [−Kd(λ) z] . (4.3)

This equation is always an approximation.
Corresponding equations can be written for all other radiometric variables and their

corresponding K functions. For example, we can define a K function for upwelling radiance
as as seen in Table 4.1,

KLu(z, λ) , −d lnLu(z, λ)

dz
.

and then write

Lu(z, λ) = Lu(0, λ) exp

[
−
∫ z

0
KLu(z′, λ) dz′

]
.

Under typical oceanic conditions, for which the incident lighting is provided by the Sun
and sky, and in homogeneous water, when far enough below the surface (and far enough
above the bottom, in optically shallow water) to be free of boundary effects, the K functions
approach a common value (i.e., Kd ≈ Ku ≈ KLu, etc.) and do become almost independent
of depth, in which case the various radiances and irradiances all decrease approximately
exponentially with depth. The assumption of an exponential decrease of the light field with
depth is often good enough for a back-of-the-envelope estimation, but it must always be
remembered that reality is more complicated. The the value of the common K function and
the rate of approach of K functions to a common asymptotic value in deep, homogeneous
water depends on the IOPs. This is discussed in detail in Section 10.4.

4.1.1 Dependence of K Functions on IOPs and
Environmental Conditions

As explained in the previous section, in order to be useful for relating light measurements
to water properties, the K functions should depend strongly on the water IOPs but only
weakly on external environmental conditions like Sun location, sky condition, or surface
waves.

As an initial illustration of the dependence of K functions on water IOPs, recall the
irradiances in Crater Lake and San Vicente Reservoir, which were used in Section 2.1 to
illustrate downwelling and upwelling radiances in very clear and in very turbid waters. The
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irradiance spectra of Fig. 2.2 were used to compute the average Kd and Ku between depths
5 and 25 m in Crater Lake via

Kd(5-25) = − ln[Ed(25)/Ed(5)]

25− 5
,

with a corresponding equation for Ku(5−25). These K spectra are plotted in the left panel
of Fig. 4.2. The green curves are the corresponding K spectra for optically pure water as
computed by HydroLight, including the ever-present Raman scattering, which is discussed
in Section 7.2. As Tyler and Smith (1970) comment, Crater Lake is as close to pure water
as you can find in nature, and the closeness of the Kd spectra support this qualitative
statement. The right panel of the figure shows the K spectra for the turbid San Vicente
reservoir; these are tabulated in Tyler and Smith (1970, page 96) with the comment that
the spectra are an “average for all depths.” The San Vicente Kd functions are over 100
times larger than the Crater Lake values at wavelengths less than 415 nm, and 10 to 100
times larger at wavelengths between 415 and 525 nm. These differences are no doubt due
to the exponentially increasing absorption by CDOM going from green to blue to near-UV
wavelengths. At red wavelengths, the water itself is the dominant absorber, and the San
Vicente values are only twice the Crater Lake values. It is clear that the values of Kd and
Ku are strongly determined by the water IOPs, as is desired of an AOP.

Figure 4.2: The red curve in the left panel is the average Kd between 5 and 25 m in Crater
Lake; the blue curve is the average Ku between 5 and 25 m. The green curves are for
optically pure water, including Raman scattering effects. The right panel shows Kd and
Ku for San Vicente Reservoir.

To further illustrate these dependencies, various K functions were numerically com-
puted using the HydroLight radiative transfer numerical model (Section 10.6). In many
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situations it is preferable to work with real data. However, use of this model gives us the
ability to simulate different environmental conditions at will and to control things that
cannot be controlled in nature, such placing the Sun at various zenith angles while all else
is held the same, or turning chlorophyll fluorescence on or off to see its effect. This can be
very useful for understanding the interdependence of various quantities.

HydroLight simulations were first performed at one wavelength for homogeneous ideal-
ized water bodies dominated by either scattering or absorption. For the “highly scattering”
water, the absorption coefficient was set to a = 0.2 m−1, and the scattering coefficient was
b = 0.8 m−1, so that the albedo of single scattering was ωo = b/(a + b) = 0.8. These
values correspond roughly to what might be found at blue or green wavelengths in Case
1 water with a chlorophyll concentration of 5 mg m−3. An “average-particle” scattering
phase function was used, the Sun was placed in a clear sky, and the water was infinitely
deep. Note that since a + b = c = 1 m−1, the nondimensional optical depth ζ = cz is
numerically equal to the geometric depth z in meters.

Figure 4.3 shows various K functions as a function of depth for the highly scattering
water when the Sun was placed at a zenith angle of 40 degrees and the surface was level
(wind speed of U = 0). As is conventional in radiative transfer theory, the K(θ, φ) curves
are for radiance propagating in the (θ, φ) direction. HydroLight measures depth positive
downward from the mean sea surface, and polar angle θ is measured from the +ẑ or nadir
direction. Thus θ = 0 refers to light heading straight down into the water (corresponding
to KLd), θ = 180 refers to light heading straight up (corresponding to KLu), and θ = 90
refers to light traveling horizontally through the water. Azimuthal angle φ = 0 refers to
light heading towards the Sun, which was placed at φ = 0; φ = 180 thus refers to light
heading away from the Sun. In this simulation, KSun(30, 180) corresponds to looking into
the Sun’s refracted beam underwater, which is light heading downward and away from the
Sun.

Figure 4.3: Computed K functions for “highly scattering” water. The Sun was at a zenith
angle of 40 deg and the sea surface was level. The optical depth is numerically equal to
the geometric depth.
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There are several important features to note in Fig. 4.3:

• The various K functions can differ greatly near the sea surface. This is due to bound-
ary effects on the solution of the radiative transfer equation. The surface boundary
affects radiances in different directions in different ways depending on the relative
location of the Sun. The large near-surface values of KSun(30, 180) indicate that the
Sun’s direct beam is decreasing rapidly with depth due to absorption and scattering
out of the beam. On the other hand, KLu, which is looking straight downward at
radiance propagating upward, is almost constant with depth.

• K functions can be positive or negative near boundaries. A negative K means that
the radiometric variable is increasing with depth. KLd, which is looking in the zenith
direction at radiance propagating downward, is negative in the first few meters below
the surface. At depth 0 just below the sea surface, the downwelling radiance Ld

comes mostly from the zenith sky radiance transmitted through the level surface.
Going deeper into the water, Ld increases with depth as scattering from the Sun’s
strong direct beam contributes more path radiance to Ld than is lost by absorption
and scattering out of the downward beam. Eventually the Sun’s direct beam becomes
weak enough that the path radiance contribution to Ld is less than the attenuation
due to absorption and scattering out of the beam, and KLd becomes positive. The
same effect is seen less dramatically in Kh(90, 180), which corresponds to looking
horizontally toward the Sun.

• K functions are not constant with depth even in homogeneous water. Again, this
is a manifestation of the surface boundary effects. If the water IOPs depend on
depth, then the K functions also vary with depth, even far from a boundary. Thus
radiometric variables never decrease exactly exponentially with depth, although this
is often a good approximation for homogeneous water.

• Far from boundaries (i.e., very deep in the ocean and very far from the bottom), all
K functions approach a common value, the “asymptotic K value” K∞, that depends
only on the IOPs. Its value for the IOPs of this simulation was K∞ = 0.3082 m−1.
Thus at depths great enough for boundary effects to be negligible, all K functions are
the same and these AOPs become an IOP. In the present simulation, the K functions
are all the same to within 3% by 30 m depth; Kd is within 0.2% of K∞ by 30 m
depth. The asymptotic radiance distribution and the associated asymptotic AOPs
are discussed in Section 10.4.

Figure 4.4 shows the K functions corresponding to the same conditions as Fig. 4.3,
except that the wind speed was U = 15 m s−1. We see that there is very little difference
between Figs. 4.3 and 4.4. Thus, as hoped, the K functions are almost unaffected by the
surface waves.

Figure 4.5 shows the K functions for a level surface and the Sun at the zenith, rather
than at 40 deg. Again, the irradiance K functions are almost unchanged. However, the
radiance KLd function now corresponds to looking straight upward into the Sun’s direct
beam. Thus KLd now looks very similar to KSun(30, 180) in the previous figures. Similarly,
K(30, 180) now looks much like KLd in the previous figures. This is because moving the
Sun from 40 deg in air (28 deg in water) to the zenith gives K(30, 180) almost the same
scattering angle relation to the Sun’s direct beam as KLd had in the previous figures.
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Figure 4.4: Computed K functions for “highly scattering” water. The conditions were the
same as for Fig. 4.3, except that the wind speed was 15 m s−1, so that the sea surface was
not level.

Figure 4.5: Computed K functions for “highly scattering” water. The conditions were the
same as for Fig. 4.3, except that the Sun was at the zenith.
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Figure 4.6 shows K functions for “highly absorbing” water: the absorption coefficient
was a = 0.8 m−1, and the scattering coefficient was b = 0.2 m−1, so that the albedo of
single scattering was ωo = b/(a+ b) = 0.2. These values correspond roughly to what might
be found at red wavelengths, where absorption by the water itself usually dominates the
IOPs. Other conditions were the same as for Fig. 4.3.

Figure 4.6: Computed K functions for “highly absorbing” water. The Sun was at a zenith
angle of 40 deg and the sea surface was level. The optical depth is numerically equal to
the geometric depth.

Comparing Figs. 4.3 and 4.6, we note that The rate of approach to the asymptotic
value depends on the IOPs. In highly scattering water, the approach to K∞ is much faster
than in highly absorbing water. This is because the near-surface radiance distribution
must be “redistributed” by multiple scattering into the shape of the asymptotic radiance
distribution L∞ in order for the K ’s to approach K∞. The more scattering, the faster the
initial ray directions are changed by multiple scattering into their asymptotic distribution,
which depends only in the IOPs.

Comparing Figs. 4.3 and 4.6 also shows that the K ’s have changed greatly because of
the change in IOPs, which is what is desired in any AOP. For the highly absorbing water,
K∞ = 0.8681 m−1.

4.1.2 Beam Attenuation versus Diffuse Attenuation

The distinction between beam and diffuse attenuation is important. The beam attenuation
coefficient c is defined in terms of the radiant power lost from a collimated beam of light.
The downwelling diffuse attenuation function Kd(z, λ), for example, is defined in terms
of the decrease with depth of the downwelling irradiance Ed(z, λ), which comprises light
heading in all downward directions (a diffuse, or uncollimated, radiance distribution). In
the above simulations, c = a + b = 1.0 m−1 at all depths, but all K functions except the
near-surface KSun(30, 180) in the high absorption case are less than c. Radiative transfer
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theory shows (e.g., Mobley, 1994, Eq. 5.71) that in general a ≤ Kd µd ≤ c, where µd is
the average cosine of the downwelling radiance (Section 4.3). These inequalities are seen
to hold true in the above simulations.

The left panel of Fig. 4.7 illustrates two different radiance distributions. The first,
shown in blue, is directed more toward the nadir, and the second, shown in red, has a greater
angle from the nadir. Even if the downwelling plane irradiances from both distributions
are equal at depth z1, Ed1(z1) = Ed2(z1), they will not be equal at depth z2. The reason is
that the red rays travel a greater distance in going from depth z1 to z2. More energy will
be lost to absorption from the red rays than from the blue rays because the path length
of the red rays through the water is greater. Thus Ed1(z2) > Ed2(z2), which is equivalent
to Kd1(z1) < Kd2(z1). In both cases, the beam attenuation c is the same and does not
depend on the depth if the water is homogeneous. Beam c is an IOP and does not depend
on the radiance distribution, whereas the AOP Kd depends on the angular distribution of
the radiance.

Figure 4.7: Illustration of the difference in beam attenuation c and diffuse attenuation Kd

The right panel of the Figure shows why beam attenuation c is always greater than
diffuse attenuation Kd. The blue arrows represent the rays of a collimated radiance in
the nadir direction (Ld). As the light propagates downward, some of the radiance will
be scattered out of the beam at a particular horizontal location, as illustrated by the
red arrows. A narrow-field-of-view radiance meter looking upward (measuring Lu(z2)) will
detect the radiance that is transmitted from depth z1 to z2 with only small-angle scattering
(scattering at angles less that the FOV; there will also be some loss to absorption). This
detector will not detect radiance scattered from “neighboring” beams, which is illustrated
by the dotted red arrows, because these rays are in directions outside the instrument FOV.
The difference in Ld(z1) and Ld(z2) determines the beam attenuation averaged over the
water column from z1 to z2 via

c = − 1

z2 − z1
ln
Ld(z2)

Ld(z1)
.

Now consider a plane irradiance detector measuring Ed(z2). This detector receives light
from the beam directly above it, as did the Ld(z2) detector, but it also receives some of
the light scattered out of neighboring beams that would otherwise miss the detector. That
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is to say, part of the energy lost from one beam can be replaced by light scattered from
nearby beams if the detector has a wide FOV. Thus the decrease in Ed going from depth
z1 to z2, which determines Kd, will be relatively less than the change in the radiances Ld

over the same distance, which determine c. In other words, c > Kd. c = Kd only in the
idealized case of a perfectly collimated downward radiance (such as the Sun at the zenith
in a black sky) in water with no scattering and no internal sources.

As seen in these figures, radiative transfer theory shows that K functions are very “ab-
sorption like,” meaning that the K functions are strongly correlated with the total absorption
coefficient when inelastic scatter effects are negligible. For Kd, the approximate relation
Kd ≈ a/µd gives close agreement between the exact (computed by HydroLight) Kd and
the value estimated from the absorption coefficient and the downwelling average cosine µd

of the radiance distribution, which was also obtained from the HydroLight simulation.
These few simulations are enough to establish the salient features of diffuse attenuation

functions. Their use has a venerable history in optical oceanography. Smith and Baker
(1978) listed some of their virtues:

• The K s are defined as normalized depth derivatives and therefore do not require
absolute radiometric measurements.

• The K s are strongly correlated with phytoplankton chlorophyll concentration (via
the absorption coefficient) in Case 1 waters. Thus they provide a connection between
biology and optics.

• About 90% of the diffusely reflected light from a water body comes from a surface
layer of water of depth 1/Kd, which is called the “penetration depth.” Thus Kd

has implications for remote sensing (Gordon and McCluney, 1975). (Note that the
penetration depth depends on wavelength.)

• Radiative transfer theory provides several useful relations between the K s and other
quantities of interest, such as the absorption and beam attenuation coefficients and
other AOP’s.

4.1.3 Gordon’s Normalization of Kd

As seen above, Kd does have some dependence on the Sun location and sky conditions,
even though the dependence is weak. Gordon (1989) developed a simple way to normalize
measured Kd values. His normalization for all practical purposes removes the effects of
the sea state and incident sky radiance distribution from Kd, so that the normalized Kd

can be regarded as an IOP. The theory behind the normalization is given in his paper; the
mechanics of the normalizing process are as follows.

Let Ed(Sun) be the irradiance incident onto the sea surface due to the Sun’s direct
beam, and let Ed(sky) be the irradiance due to diffuse background sky radiance. Then the
fraction f of the direct sunlight in the incident irradiance that is transmitted through the
surface into the water is

f =
t(Sun)Ed(Sun)

t(Sun)Ed(Sun) + t(sky)Ed(sky)
.

Here t(Sun) and t(sky) are respectively the fractions of the direct beam and of the diffuse
irradiance transmitted through the surface; these quantities can be computed using meth-
ods described in Mobley (1994, Chapter 4, where they are denoted by t(a,w)) . However,
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if the solar zenith angle in air, θsa, is less than 45 degrees , then t(Sun) ≈ 0.97. If the
sky radiance distribution is roughly uniform (as it is for a clear sky), then t(sky) ≈ 0.94.
In this case, we can accurately estimate f from measurements made just above the sea
surface:

f ≈ Ed(Sun)

Ed(Sun) + Ed(sky)
.

The Sun and sky irradiances are easily obtained from an instrument on the deck of a
ship. When both direct and diffuse light fall onto the instrument, it records Ed(Sun) +
Ed(sky). When the direct solar beam is blocked, the instrument records Ed(sky). (Ad-
vanced technology is not required here: just hold your hat so that its shadow falls on the
instrument.)

Next compute the nadir angle of the transmitted solar beam in water, θsw, using Snell’s
law (Eq. 13.2):

θsw = sin−1

(
sin θsa

1.34

)
.

Finally, compute the quantity

Do =
f

cos θsw
+ 1.197(1− f) .

This value of Do is valid for flat or rough sea surfaces as long as θsa ≤ 50 deg. For larger
values of θsa, or for an overcast sky, a correction must be applied to Do to account for
surface wave effects on the transmitted light; the correction factors are given in Gordon
(1989, his Fig. 6). Gordon’s normalization then consists simply of dividing the measured
Kd by Do:

Kd(normalized) =
Kd(measured)

Do
.

Physically, Do is a function (essentially 1/µd) that reduces Kd values to the values that
would be measured if the Sun were at the zenith, if the sea surface were level, and if the
sky were black (i.e., if there were no atmosphere). The zenith-Sun, level-surface, black-sky
case is the only physical situation for which Do = 1. In other words, normalization by Do

removes the influence of incident lighting and sea state on Kd. The same normalization
can be applied to depth-averaged values of Kd.

It is recommended that experimentalists routinely make the simple measurements nec-
essary to determine Do, because normalization of Kd enhances its value in the recovery of
IOP’s from irradiance measurements.

4.1.4 Models for Kd

Because Ed is defined as a logarithmic derivative with depth, it can be computed from a
profile of Ed(z, λ) measurements, and any overall calibration factor for the Ed instrument
cancels out (Eq. 4.1). This calibration-independence was a important consideration in the
early days of optical oceanography when there were no well-calibrated commercial instru-
ments available. Researchers made their own instruments, and sophisticated radiometric
calibration facilities were available at only the largest laboratories. This was the situation
until the 1960s. Even in the 1960s, spectral Ed(z, λ) measurements were so difficult to
make that an entire book (Tyler and Smith, 1970) was devoted to describing a spectral
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irradiance instrument made at Scripps Institution of Oceanography in the 1960s and show-
ing some of the irradiance data collected by this instrument in a variety of waters. Some
of these data were shown in Section 2.1.

Historically, the value of Kd lay in Eqs. (4.2) and (4.3). If a measurement or model of
Kd were available along with a solar spectrum at the sea surface, then the irradiance within
the water could be computed. Thus there was an early interest in developing models of
Kd(λ) parameterized by either the chlorophyll concentration or a value of Kd(λo) at some
reference wavelength.

After the invention of the Argon-ion laser (emitting at 488 nm) and the Nd:YAG laser
(emitting at 532 nm when frequency doubled), both in 1964, it did not take long for their
application to oceanographic military problems. These first two of these applications were
detection of submarines via airborne lidar bathymetry and communication with submarines
using airborne or spaceborne lasers. For clear open-ocean waters, 488 nm was the wave-
length of choice; for greener coastal waters, 532 nm gave deeper penetration. The same
wavelengths are used today for lidar bottom bathymetry and for numerous other uses,
especially in medicine, including surgery.

An accurate prediction of the return power from a laser pulse requires knowledge of
several quantities, including the VSF at 180 deg (β(ψ = π), Section 6.4.4) and the beam
spread function (Section 9.5.2). However, before there were instruments for measurement
of those quantities, a rough estimate of the depth the laser light would penetrate could be
obtained from 1/Kd. For a 488 nm laser, one thus needs the value of Kd(488) for the water
body under consideration. By good fortune, the Wratten #75 gelatin filter has a spectral
transmission that peaks at 490 nm, as seen in Fig. 4.8. An instrument with this filter gives
an approximation of Kd centered on 490 nm with a FWHM of about 20 nm. This was
close enough to 488 for the lidar applications, so “Kd490” became a standard AOP to be
measured or modeled.

Figure 4.8: Spectral response of the Wrat-
ten #75 filter at 10 nm resolution. Data
from Eastman Kodak Co. (1920).

As soon as the Coastal Zone Color Scanner was launched in 1978 (Chapter 14), there
was interest in developing an algorithm to retrieve Kd490 from space. Austin and Pet-
zold (1981) used the CZCS bands at 443 and 550 nm to develop an empirical band-ratio
algorithm,

Kd(490) = 0.0883

[
Lu(443)

Lu(550

]−1.491

+ 0.022 [m−1] . (4.4)
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Here the 0.022 is the value of Kd(490) for pure water. Figure 4.9 shows the 88 data points
used to develop Eq. (4.4) and the values predicted by the model. They also developed
an algorithm of the same form for Kd(520); only the values of the best-fit coefficients are
different.

Figure 4.9: Dependence of measured
Kd(490) values on the ratio of Lu(443) to
Lu(550). The red line is Eq. (4.4). Re-
drawn from Austin and Petzold (1981, Fig.
1).

Austin and Petzold (1986) presented a model for Kd(λ) at any wavelength between 350
and 700 nm, given the value at a reference wavelength λo:

Kd(λ) =
M(λ)

M(λo)
[Kd(λo)−Kw(λo)] +Kw(λ) . (4.5)

The values of M(λ) and Kw(λ) are tabulated for 350(5)700 nm in their paper. They
comment that this model is applicable for “oceanic or moderately clear coastal water, for
example Jerlov type I through III oceanic or type 1 coastal, or if Kd(490) < 0.16 m−1.”
Picking λo = 490 nm, a satellite-derived value of Kd490 (initially obtained from the CZCS
algorithm 4.4) enables mapping of Kd(λ) for the global ocean.

Morel (1988) developed a model ofKd(λ) in Case 1 water as a function of the chlorophyll
concentration:

Kd(λ) = χ(λ) Chle(λ) +Kw(λ) . (4.6)

Here Kd is in m−1 when Chl is in mg m−3. The values of the fitting coefficients χ(λ)
and e(λ) are tabulated in his paper for 400(5)700 nm. Figure 4.10 gives examples of the
performance of Eq. (4.6) when compared with measured data.

At 490 nm, the Morel model gives

Kd(490) = 0.0690 Chl0.702 + 0.0217 . (4.7)

Morel did not study the depth dependence of Kd as given by Eq. (4.6) when the
chlorophyll concentration is depth-dependent. However, he did develop a formula for KPAR

averaged over the depth of the euphotic zone, zeu. If taken to be the 1% PAR level, Morel
found that the depth of the euphotic zone is

zeu = 38.0 Chl−0.428 . (4.8)



4.1. DIFFUSE ATTENUATION COEFFICIENTS (K FUNCTIONS) 131

Figure 4.10: Comparison of Eq. (4.6) with measurements. The red arrows are the values
of Kw. Figures extracted from Morel et al. (2007, Fig. 1) and reproduced by a Creative
Commons license.

This in turn implies that
〈KPAR〉 = 0.212 Chl0.428 , (4.9)

where 〈...〉 indicates an average from depth 0 to zeu. It must be remembered that Morel’s
models are valid only for Case 1 waters (Section 4.4.3).

Lee et al. (2013) developed a model for Kd as a function of the absorption and backscat-
tering coefficients and the solar zenith angle:

Kd(λ) = (1 +m0θSun)a(λ) +m1

[
1− γ bbw

bb

] [
1−m2e

−m3a(λ)
]
bb

= (1 + 1.005θSun)a(λ) + 4.259

[
1− 0.265

bbw

bb

] [
1− 0.52e−10.8a(λ)

]
. (4.10)

The values of the five model coefficients γ and m0 to m3 were determined by finding the
best fit of the model to a large database of HydroLight-generated Kd spectra. The model
was then tested by application to global data sets of measured IOPs and Kd profiles. Figure
4.11 shows example results.

Kd490 retains its importance as a key parameter for understanding the state of the
ocean ecosystem, and it is a standard output in NASA’s suite of ocean color products.
Just as for CZCS with Eq. (4.4), the estimation of Kd490 still uses a ratio of blue to green
wavelengths. The current NASA Kd490 algorithm has the form (NASA Kd490 algorithm)

log10(Kbio(490)) = a0 +
4∑
i=1

ai

[
log10

(
Rrs(λblue)

Rrs(λgreen)

)]i
Kd(490) = Kbio(490) + 0.0166 .

The exact wavelengths used and the values of the five fitting coefficients ai depend on the
particular sensor. Their values are given on the NASA website.

https://oceancolor.gsfc.nasa.gov/atbd/kd_490/
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Figure 4.11: Comparison of Eq. (4.10) with measurements from the NOMAD data set
(NASA bio-Optical Marine Algorithm Dataset). The abscissa is the value of Kd from the
dataset, and the ordinate is the value predicted by Eq. (4.10). Figures extracted from Lee
et al. (2013, Fig. 5).

4.2 Reflectances

Various reflectances are probably the most commonly used apparent optical properties
because they are fundamental to remote sensing of the oceans. In the early days of ocean
color remote sensing, algorithms were developed to relate the irradiance reflectance R to
quantities such as absorption and backscatter coefficients and chlorophyll concentrations
(e.g., Morel and Prieur, 1977; Gordon and Morel, 1983). More recently, the remote-sensing
reflectance Rrs has become the AOP of choice for remote sensing of ocean properties (e.g.,
O’Reilly et al., 1998; Mobley et al., 2005). This section considers each of these reflectances.

4.2.1 The Irradiance Reflectance R

The spectral irradiance reflectance (or irradiance ratio), R(z, λ), is defined as the ratio of
spectral upwelling to downwelling plane irradiances:

R(z, λ) ,
Eu(z, λ)

Ed(z, λ)
.

R(z, λ) is thus a measure of how much of the radiance traveling in all downward directions
is reflected upward into any direction, as measured by a cosine collector. This is illustrated
in Fig. 4.12. Depth z can be any depth within the water column, or in the air just above
the sea surface.

Figure 4.12: Illustration of light rays
contributing to the irradiance re-
flectance R.

https://seabass.gsfc.nasa.gov/wiki/NOMAD
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Irradiance reflectance has the virtue that it can be measured by a single, uncalibrated,
plane irradiance detector. The downwelling irradiance Ed can be measured, and then
the detector can be turned “upside down” to measure Eu. The calibration factor needed
to convert from detector units (voltage, current, or digital counts) to irradiance units
(W m−2 nm−1) cancels out.

The irradiance measurements of Tyler and Smith (1970) give good examples of irra-
diance reflectances. Figure 4.13 shows R at 5 m depth computed from the Crater Lake
irradiances of Fig. 2.2, R at 1 m depth computed from the San Vicente Reservoir data of
Fig. 2.3, and the HydroLight-computed R at 5 m for optically pure water. The Crater
Lake spectrum is largest near 400 nm and greater than 0.1, which indicates that this water
is a very “bright” and deep blue. Again, we see that Crater Lake is similar to optically pure
water. The San Vicente reflectance peaks near 590 nm, where the magnitude is only about
0.03. Thus this water appears as a dark yellowish green. The San Vicente reflectance is low
at blue wavelengths because of the high absorption by colored dissolved organic matter.

Figure 4.13: Irradiance reflectances for Crater Lake at 5 m depth (red), for San Vicente
Reservoir at 1 m (blue), and for optically pure water at 5 m (green) as computed by
HydroLight. The Crater Lake and San Vicente spectra are computed from the irradiances
in Tyler and Smith (1970).

It is clear from Fig. 4.13 that the irradiance reflectance depends on the water IOPs. One
of the pioneering papers on the use of R spectra to obtain IOPs is Roesler and Perry (1995).
They first developed a model for R(λ) ∝ bb/a, where bb and a are the total backscatter and
absorption coefficients. These IOPs were then written as sums of contributions by water,
phytoplankton, dissolved substances, and non-living particles. The resulting model was
then forced to fit measured R spectra, whereby the best fit determined the concentrations
of the various components.
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4.2.2 The Remote-Sensing Reflectance Rrs

The spectral remote-sensing reflectance Rrs is defined as

Rrs(θ, φ, λ) ,
Lw(in air, θ, φ, λ)

Ed(in air, λ)
(sr−1) .

Here the depth argument of “in air” indicates that Rrs is evaluated just above the water
surface using the water-leaving radiance Lw and Ed in the air. Water-leaving radiance
refers to downwelling light that has entered the water body from the air, been scattered
into upward directions within the water, and then been transmitted through the water
surface back into the air. The remote-sensing reflectance is thus a measure of how much
of the downwelling radiance that is incident onto the water surface in any direction (as
measured by a plane irradiance sensor) is eventually returned through the surface into a
small solid angle ∆Ω centered on a particular direction (θ, φ), as illustrated in Fig. 4.14.

Figure 4.14: Illustration of light rays con-
tributing to the remote-sensing reflectance
Rrs.

Although Rrs is often computed for nadir-viewing directions only, in actual remote
sensing it is usually an off-nadir direction that is being observed by an airborne or satellite
remote sensor. As shown next, Rrs has the virtue that it is less sensitive than R to
environmental conditions such as Sun zenith angle or sky conditions. This is the reason
that Rrs has replaced R for remote sensing. However, determination of Rrs is more difficult
than R. First, the measurements of Lu and Ed require different sensors, which must be
accurately calibrated. Second, the water leaving radiance Lw cannot be measured directly.
Only the total upwelling radiance Lu above the surface can be measured. This Lu is the
sum of the water-leaving radiance Lw and the downward Sun and sky radiance that is
reflected upward by the sea surface, Lr, as illustrated in Fig. 4.15. Lw therefore must be
estimated either from a measurement of the total upwelling radiance Lu made above the
sea surface, or from a measurement of Lu made at some distance below the sea surface
and extrapolated upward through the surface. Each of these estimation methodologies has
arguments for and against its use (e.g., Mobley, 1999; Toole et al., 2000)).
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Figure 4.15: Illustration of light rays con-
tributing to Lu as measured above the sea
surface.

4.2.3 Dependence of R and Rrs on IOPs and Environmental Conditions

As a first illustration of the dependence of R on IOPs and sky conditions, the HydroLight
(Section 10.6) radiative transfer numerical model was run using an IOP model for homo-
geneous Case 1 waters with chlorophyll concentrations of Chl = 1, and 5 mg m−3. For
each chlorophyll concentration, runs were made for solar zenith angles of 0, 30, and 60
deg in a clear sky, and for a heavily overcast sky. Figure 4.16 shows the resulting depth
profiles. The R(z) profiles for the different chlorophyll concentrations are well separated.
Near the sea surface, there is a weaker dependence of R on sky conditions. However, those
differences disappear as the depth increases and multiple scattering “erases” the effects of
different Sun locations or of the background sky. Just as for the K functions, at great
depth the R values for the different sky conditions approach an asymptotic value, R∞,
which is determined only by the IOPs.

Figure 4.16: Illustration of the depth dependence of R on IOPs and sky conditions.



136 CHAPTER 4. APPARENT OPTICAL PROPERTIES

To illustrate the dependence of near-surface R and Rrs on IOPs and external envi-
ronmental conditions, HydroLight was run using an IOP model for Case 1 waters with
chlorophyll concentrations of Chl = 0.1, 1.0, and 10.0 mg m−3. For each chlorophyll con-
centration, runs were made for three sets of sky conditions: (1) a level sea surface (wind-
speed U = 0) and the Sun at the zenith (Sun = 0) in a clear sky; (2) a rough sea surface
with a wind speed of U = 10 m s−1 and the Sun at a 50 deg zenith angle (Sun = 50) in a
clear sky; (3) a wind speed of 10 m s−1 and a heavily overcast sky (overcast) for which the
Sun’s location cannot be discerned.

Figure 4.17 shows the resulting R spectra at depth z = 0, which is in the water just
below the mean sea surface. This is the quantity most often used to develop remote-sensing
algorithms relating R to IOPs or chlorophyll concentrations. The curves for the different
chlorophyll concentrations group together, showing that the shapes of the R spectra are
determined primarily by the different IOPs associated with the different chlorophyll con-
centrations. However, there is a significant effect of the sky conditions on the R spectra
within each of the three chlorophyll groups, as was seen in Fig. 4.16 just below the surface.

Figure 4.17: Dependence of R on chlorophyll concentration, sky condition, and wind speed
for selected conditions in Case 1 water.

Figure 4.18 shows the nadir-viewing Rrs spectra for the same set of HydroLight runs.
The three chlorophyll groups are similar in shape to the corresponding R spectra, but there
is much less variability in the Rrs spectra due to the external environmental conditions.
Rrs is thus a better AOP than is R, because Rrs is less sensitive to the sky conditions while
remaining very sensitive to the different IOPs corresponding to the different chlorophyll
concentrations.
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Figure 4.18: Dependence of Rrs on chlorophyll concentration, sky condition, and wind
speed for selected conditions in Case 1 water.

Figure 4.19: Dependence of Rrs on chlorophyll concentration in Case 1 water and viewing
direction, for a wind speed of 10 m s−1 and a solar zenith angle of 50 deg.

Figure 4.19 shows the Rrs spectra for nadir (θv = 0) and various off-nadir (θv, φv)
viewing directions. Azimuthal angle φv = 90 deg corresponds to looking at right angles to
the Sun’s azimuthal direction, and φv = 135 deg is looking half-way between normal to the
Sun and away from the Sun. This range of φv values is what is usually observed in remote
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sensing to avoid Sun glint from the sea surface. At the lowest chlorophyll concentration,
there is not much difference in the spectra for the different viewing directions. However,
the differences increase with increasing chlorophyll concentration, and are quite significant
for the (θv = 60) curves when Chl = 10 mg m−3. These differences in off-nadir directions
for different chlorophyll values are a consequence of the changes in shape and relative
importance of the scattering phase functions for the small and large chlorophyll-bearing
particles versus that of water as the chlorophyll concentration increases.

As Figs. 4.18 and 4.19 show, Rrs is much more sensitive to water IOPs than to external
environmental conditions and viewing direction. However, Rrs still does depend somewhat
on solar zenith angle (Fig. 4.18) and viewing direction (Fig. 4.19). An even better AOP
would be obtained if these remaining dependencies can be removed. The resulting AOP is
called the exact normalized water-leaving reflectance, denoted by [ρw(λ)]ex

N . This reflectance
is based on the concept of the normalized water-leaving radiance, which is defined to be
“...the radiance that could be measured by a nadir-viewing instrument, if the Sun were at
the zenith in the absence of any atmospheric loss, and when the Earth is at its mean distance
from the Sun” (Morel and Gentili, 1996, page 4852). (Earlier papers often used phrases like
“in the absence of an atmosphere,” implying that the atmosphere is completely removed.
This was found to be too extreme, so the current definition and calculations are based
on a standard but non-attenuating atmosphere.) The computation and interpretation of
[ρw(λ)]ex

N can be rather subtle. These matters are discussed in detail in Section 15.3 on
normalized reflectances.

When processing satellite ocean color imagery, measured top-of-the-atmosphere radi-
ances are converted by the process of atmospheric correction to [ρw(λ)]ex

N spectra, which
can then be used in algorithms to retrieve geophysical quantities such as the chlorophyll
concentration. However, when running HydroLight, [ρw(λ)]ex

N can be obtained by putting
the Sun at the zenith, in which case [ρw(λ)]ex

N is π times the nadir-viewing Rrs:

[ρw(λ)]ex
N = πRrs(HydroLight; θs = 0, θv = 0) . (4.11)

The remote-sensing reflectance reported by NASA as a standard output for sensors such
as MODIS or VIIRS is sometimes described as [ρw(λ)]ex

N /π, which is equivalent to the
HydroLight-computed Rrs(θs = 0, θv = 0).

[ρw(λ)]ex
N or its equivalent Rrs are now used for most remote sensing. However, there

are many other measures of reflectance, which have other applications. These are discussed
in Sections 13.6 on the BRDF and 13.8 on Other Measures of Reflectance.

4.3 Average Cosines of the Radiance Distribution

A third family of AOPs (after K functions and reflectances) is the average cosines of the
radiance distribution, also called the mean cosines. The average cosine of the downwelling
radiance distribution is the average of the cosine of the polar angle θ weighted by the
radiance in direction θ. This is computed as as

µ̄d ,

∫ 2π
0

∫ π/2
0 L(θ, φ) cos θ sin θ dθ dφ∫ 2π

0

∫ π/2
0 L(θ, φ) sin θ dθ dφ

=
Ed

Eod
. (4.12)

The second form follows from the definitions of Ed and Eod seen in Eqs. (1.22) and (1.24),
respectively. A corresponding equation with the θ integration from π/2 to π leads to
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µ̄u = Eu/Eou, the mean cosine of the upwelling radiance distribution. The mean cosine of
the entire radiance distribution is defined by

µ̄ ,

∫ 2π
0

∫ π
0 L(θ, φ) cos θ sin θ dθ dφ∫ 2π

0

∫ π
0 L(θ, φ) sin θ dθ dφ

=
Ed − Eu

Eo
. (4.13)

The minus sign on Eu arises because cos θ < 0 for upwelling directions, π/2 < θ ≤ π. Note
that although Eo = Eod + Eou, µ̄ 6= µ̄d + µ̄u.

The average cosines of the radiance distribution give a crude measure of the directional
nature of the radiance distribution, as illustrated in Fig. 4.20. It is easy to see that the
distribution function Dd , 1/µ̄d is the average increase in the distance rays travel in going
from one depth to another. A large µ̄d indicates that the radiance is heading mostly in
the nadir direction and will therefore penetrate more deeply than a radiance with a small
µ̄d, for which more of the radiance is in off-nadir directions. Older models for irradiance
penetration into the ocean sometimes used approximations such as (Sathyendranath and
Platt, 1988)

Kd ≈
a+ bb
µ̄d

to compute in-water irradiances for use in ecosystem models. There was thus interest
in modeling µ̄d as a function of the IOPs (Sathyendranath and Platt, 1991). However,
the average cosines are seldom used today, given the ease of numerically computing in-
water light fields, e.g., with the EcoLight-S numerical model, which is designed for use in
ecosystem models (Mobley, 2011).

Figure 4.20: Illustration of average cosines as a measure of the directional nature of the
radiance distribution.

Figure 4.21 gives an example of the dependence of the average cosines on depth for
given chlorophyll concentrations in Case 1 water and on solar zenith angle. These profiles
are from the same HydroLight runs that generated Fig. 4.16. Just as was seen for K
functions and the irradiance reflectance R, the average cosines approach asymptotic values
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at large depths. As a very rough rule, for deep waters and typical sky conditions, µ̄d is
usually in the range of 0.6 to 0.8, and µ̄u is in the range of 0.3 to 0.4. However, values
outside these ranges can occur. Consider, for example, shallow water with a Lambertian
bottom (Section 13.7), for which the bottom-reflected, upwelling radiance is isotropic. In
this case, µ̄u = 0.5 very near the bottom.

Figure 4.21: Illustration of the depth dependence of the average cosines of the radiance
distribution on chlorophyll concentration in Case 1 water and on solar zenith angle.

4.4 Optical Classification of Water Types

[Emmanuel Boss and Curtis Mobley contributed to this section.]
The classification of natural waters into optical water types, as with many other tax-

onomies, is done in order to generalize and systematize the science of ocean color. Arnone
et al. (2004), in a review paper on water mass classification, credits the Secchi disk (Sec-
tion 16.7), invented around 1865, as being the first quantitative optical instrument used
to measure water transparency and hence provide the ability to differentiate water masses
based on their optical properties. Classification schemes that are based on water color
are primarily based on absorption (scattering contributes to the overall brightness of the
water, but less to its color). The most common classification schemes for water types are
based on

• The human eye: visually compare the water color to the color of a standard color
sample (Forel-Ule color scale)

• Analysis of AOP spectra (Jerlov water types)

• The relative importance of Chlorophyll in determining the optical properties of the
water (Case 1 versus Case 2)
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• Analysis of inherent optical properties (ternary diagrams)

4.4.1 The Forel-Ule Color Classification

The Forel-Ule Scale classifies water bodies based on the visual color of the water as seen
by a normal human eye.

Different inorganic compounds with standard formulas are used to produce a color
palette with twenty one fluid vials ranging from blue to green to brown. The analysis
consists of finding the vial whose color best matches the color of the water body; the
result is an index from 1 to 21. The method is often used in conjunction with the Secchi
disk and is included in data bases such as NOAA’s World Ocean Database. The method
was developed in the 1890s by Francois-Alphonse Forel and William Ule. Although now
replaced by instruments for quantitative work, the Forel-Ule color measurements are still
of interest because of the ease of making measurements and the large database of historical
observations, which has value for studies of long-term changes in ocean ecosystems (e.g.,
Wernand, 2011). There is now even a smart-phone app for making Forel-Ule measurements.
Figure 4.22 shows the use of a Forel-Ule color scale to determine the color of the ocean by
visually determining the closest match of the water color to one of the 21 Forel-Ule colors.

Figure 4.22: Using a Forel-Ule color scale to determine the color of the ocean. Photo from
ICBM Uni. Oldenburg.

Figure 4.23 shows the locations of the 21 Forel-Ule colors on a CIE chromaticity diagram
(Section 16.3). The open circle is the white point. The open diamond is the CIE color
of the remote-sensing reflectance Rrs as calculated by HydroLight using the “new Case
1” IOP model (Section 8.9) with a chlorophyll concentration of 5 mg m−3. The closest
Forel-Ule value is 6.

https://www.nodc.noaa.gov/
http://www.citclops.eu/techniques/the-making-of-the-app
https://icbm-auf-see.uni-oldenburg.de/en/die-farbe-des-pazifiks-2
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Figure 4.23: The locations of the 21 Forel-Ule colors on a CIE chromaticity diagram
(black squares). The open diamond is the color of Rrs as calculated by HydroLight for a
chlorophyll concentration of 5 mg m−3.

Another comparative scale is the Hazen Platin-Cobalt-Scale, adopted as the American
Public Health Association (APHA) color scale (described in ASTM D1209,“Standard Test
Method for Color of Clear Liquids (Platinum Cobalt Scale)”). It is based on diluting
a standard stock solution (500ppm of PtCo) and finding the dilution whose color best
matches the fluid compared.

4.4.2 The Jerlov Classification

The Jerlov scheme classifies water bodies based on the shape of AOP spectra, most com-
monly the shape of Kd(λ).

Jerlov (1968) introduced a classification of water bodies based on the the transmittance
per meter of downwelling spectral plane irradiance in surface waters. This is equivalent
to using the shape of the spectral diffuse attenuation Kd(λ) averaged over some depth
interval. Since ocean color is proportional to 1/a ∝ 1/Kd these spectra are linked to the
color observed. Jerlov discretized his observations into a set of five typical open-ocean
spectra, labeled I, IA, IB, II, and III, and nine typical coastal spectra, labeled 1 to 9 (e.g.,
Tables XXVI and XXVII in Jerlov (1968); a spreadsheet of these data can be downloaded
from the Web Book.). The left panel of Fig. 4.24 shows the spectra defining the Jerlov
types in terms of the irradiance transmission through 1 m of water. The right panel shows
the corresponding spectra as the averages of Kd over depths 0 to 10 m.

Morel (1988) gives a very approximate correspondence between the open-ocean Jerlov
types and the chlorophyll concentration, which is seen in Table 4.2.

https://www.astm.org/d1209-05r19.html
https://www.astm.org/d1209-05r19.html
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Figure 4.24: Jerlov’s water mass classification based on transmittance through 1 m of sea
water (left pane) or based on the average of Kd over depths 0 to 10 m. Data from Jerlov
(1976, Tables XXVI and XXVII).

Chlorophyll (mg m−3) 0-0.01 0.05 0.1 0.5 1.5-2.0

jerlov water type I IA IB II III

Table 4.2: Approximate correspondence between the chlorophyll concentration and the
Jerlov open-ocean water type.

Solonenko and Mobley (2015) give tables relating the Jerlov water types to a consistent
set of absorption and scattering coefficients (consistent in the sense that the IOPs, when
used in HydroLight, generate Kd spectra that correspond to the different Jerlov water
types).

4.4.3 Case 1 versus Case 2 Water Types

The Case 1 vs Case 2 classification is based on the importance of chlorophyll versus other
components in determining the optical properties of the water.

Morel and Prieur (1977) described the spectral shape of R = Eu/Ed and its changes
as separating two types of waters. They found that “...two extreme cases can be identified
and separated. Case 1 is that of a concentration of phytoplankton high compared to
other particles. In contrast, the inorganic particles are dominant in Case 2. In both cases
dissolved yellow substance is present in variable amounts. An ideal Case 1 would be a pure
culture of phytoplankton and an ideal Case 2 a suspension of nonliving material with a
zero concentration of pigments.”

Morel and Prieur emphasized that these ideal cases are not encountered in nature,
and they suggested the use of high or low values of the ratio of pigment concentration to
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scattering coefficient as a basis for discriminating between Case 1 and Case 2 waters.
The definitions of Case1 and Case 2 have evolved over the years into the ones commonly

used today (Gordon and Morel, 1983; Morel, 1988):

• Case 1 waters are those waters whose optical properties are determined primarily by
phytoplankton and co-varying colored dissolved organic matter (CDOM) and detritus
degradation products.

• Case 2 waters are everything else, namely waters whose optical properties are sig-
nificantly influenced by other constituents such as mineral particles, CDOM, or mi-
crobubbles, whose concentrations do not covary with the phytoplankton concentra-
tion.

In Case 1 waters, several changes occur as the pigment concentration increases:

• The R values in the blue-violet region decrease progressively and a minimum is formed
around 440 nm, which corresponds to the maximum absorption of chlorophyll. The
maximum shifts toward 565-570 nm, which is the wavelength where simultaneously
the absorption due to pigments is at its minimum and the absorption due to the
water itself rapidly increases.

• The second maximum of absorption by chlorophyll a in vivo creates an R minimum
near 665 nm. This minimum is only slightly marked because the increase in absorp-
tion due to the presence of chlorophyll remains weak compared with the absorption
due to water itself.

• At 685 nm a second reflectance maximum appears due to fluorescence by chlorophyll
superimposed on absorption/scattering interaction near the 676 nm absorption band.

• A hinge point in R values in the 560-640 nm band is observed with relatively little
change as chlorophyll varies.

In Case 2 waters inorganic particles are relatively more dominant than phytoplankton.
As the turbidity increases the following modifications appear:

• The reflectance values are generally higher than for Case 1 throughout the spectrum
and of a different shape. There is no longer, as in Case 1, a minimum at 440 nm.
On the contrary, the curves become convex between 400 and 560 nm (inverted “U”
shape rather than inverted “V”). The maximum is flatter than in Case 1, but located
at the same wavelength, 560 nm.

• R values become higher as turbidity increases. This is opposite of what was observed
in Case 1, particularly for wavelengths above 550 nm.

• As a result of the flat shape of the R curves, the dominant wavelength does not
shift beyond 510 nm. These waters are blue-green or green with a bright and milky
appearance due to the combined effects of high irradiance values and of low purity
values.

Although the Case 1 versus Case 2 distinction has proven very useful, it can also be
misleading. It must be understood that natural waters are not simply either Case 1 or Case
2; there is a continuous gradation of water optical properties (whether IOPs or AOPs) and
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their dependence on chlorophyll and other water constituents. It must also be remembered
that “Case 1” and “Case 2” are not synonyms for “open ocean” and “coastal” waters.

Mobley et al. (2004) have even suggested that it is perhaps time to drop this type of
binary classification because it sometimes obfuscates more than it helps. For example,
the same water can be Case 1 for absorption but Case 2 for scattering (e.g., if the water
contains non-absorbing but highly scattering mineral particles), or it can be Case 2 for
absorption and Case 1 for scattering (e.g., if the water contains a high concentration of
highly absorbing terrigenous CDOM, which does not covary with the chlorophyll, and
which does not affect the scattering). Of course, water in the same area may be Case 1
during some time of the year and Case 2 in other times. Waters with similar chlorophyll
concentrations may have large variations in ocean color in open ocean environment (e.g.
Eastern Mediterranean versus South Pacific gyre).

4.4.4 Ternary Diagrams

Ternary diagrams are a way to show the relative contributions of 3 variables to a total
value using a 2-D plot. In biological oceanography they are often used to show the relative
contributions of absorption by phytoplankton, colored dissolved organic matter (CDOM),
and non-algal particles (NAP) to the total absorption at a given wavelength (after sub-
tracting out the water contribution). Figure 4.25 shows the layout of a ternary diagram
to be used for this purpose. In that figure, the red triangle at the lower left represents all
of the absorption being due to CDOM. The blue triangle at the lower right is the point
for all absorption being due to NAP, and the green triangle at the top represents all ab-
sorption being due to phytoplankton. The red dotted lines are lines of constant CDOM
contribution. That is, moving back and forth along one of the red lines leaves the CDOM
contribution constant while the relative contributions of phytoplankton and NAP vary.
Similarly, the green lines are lines of constant phytoplankon contribution, and the blue
lines are “contours” of constant NAP contribution. To determine the three contributions
for a plotted point, follow lines parallel to the dotted lines of constant contributions back
to the respective axes. The black triangle and the colored arrows show a point with relative
concentrations of phytoplankton as 0.65, CDOM as 0.2, and NAP as 0.15 of the total value.
(Of course, which side of the triangle corresponds to which component does not matter,
nor does the “counterclockwise” versus “clockwise” direction of increasing values on each
of the three axes.)

Figure 4.26 shows an example of ternary plots used to show the relative importance
of CDOM, NAP, and phytoplankton to absorption at two wavelengths. At 380 nm, most
points are in the “CDOM corner” at the lower left because of the high absorption by
CDOM at near-UV wavelengths. At 665 nm, phytoplankton dominate the absorption
as a consequence of the exponential decrease of absorption by CDOM and NAP as the
wavelength increases.
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Figure 4.25: Example layout of a ternary diagram for displaying the relative contributions
of phytoplankton, CDOM, and NAP to the total absorption.

Figure 4.26: Ternary diagrams showing the relative concentrations of phytoplankton,
CDOM, and NAP to the total absorption coefficient at 380 and 665 nm. Figures extracted
from Fig. 16 of Babin et al. (2003b), which shows plots for 10 wavelengths.



4.4. OPTICAL CLASSIFICATION OF WATER TYPES 147

4.4.5 Other Classification Schemes

The preceding discussion has outlined the most commonly used classification schemes for
natural waters. However, a number of other classifications have been developed and used
for various applications. Representative schemes have been based on

• Cluster Analysis of Rrs spectra: Eleveld et al. (2017); Melin and Vantrepotte (2015);
Prasad and Agarwal (2016); Wei et al. (2016)

• Fuzzy Logic Classification of Rrs spectra: Moore et al. (2001, 2009, 2014)

• Principle Component Analysis/Empirical Orthogonal Functions: Lubac and Loisel
(2007); Avouris and Ortiz (2019)

• Maximum wavelength of Rrs spectra: Ye et al. (2016)

• Weighted means of Rrs spectra: Vandermeulen et al. (2020)

• Trophic classification based on surface chlorophyll values: Uitz et al. (2006)
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CHAPTER 5

Absorption

When light interacts with matter one of three things can occur:

Absorption: The light can disappear, with its radiant energy being converted into other
forms such as the energy of a chemical bond or heat.

Elastic Scattering: The light can change direction without a change of wavelength.

Inelastic Scattering: The light can undergo a change of wavelength, usually to a longer
wavelength, and usually also with a change in direction.

This chapter begins the discussion of the first of these processes. Elastic and inelastic
scattering are described in the next two chapters. Absorption by particular substances is
discussed in Chapter 8.

5.1 Why is Absorption Important?

If you are interested in phytoplankton physiology, absorbed light is what matters. Light
absorbed by phytoplankton provides the energy that drives photosynthesis; light elastically
scattered by phytoplankton has no effect on photosynthesis and is of less interest to a
plankton biologist. Therefore many more papers have been published on absorption by
phytoplankton than on scattering by phytoplankton.

Phytoplankton absorption spectra (Section 8.3.2) are determined by the pigments in
phytoplankton, hence measurement of phytoplankton absorption spectra gives information
about what pigments are present and in what amounts. Thus absorption is fundamental
to under standing phytoplankton physiology. Similarly, measurement of total absorption
can be used to extract the amounts of phytoplankton, colored dissolved organic matter
(CDOM), non-algal particles, or pollutants (if present) in the water column.

Some optical quantities are determined almost entirely by absorption. For exam-
ple, the diffuse attenuation coefficient for downwelling plane irradiance, Kd(λ), is a very
“absorption-like” apparent optical property. The depth dependence of the downwelling
plane irradiance, Ed(z, λ), can be written as

Ed(z, λ) = Ed(0, λ) exp[−〈Kd(λ)〉z] ,

149
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where 〈Kd(λ)〉 is the average of Kd(z, λ) over depths 0 to z. To first order,

Kd(z, λ) ≈ a(z, λ) + bb(z, λ)

µd(z, λ)
≈ a(z, λ)

cos θsw
.

Here bb is the backscatter coefficient and µd is the average cosine of the downwelling
radiance distribution. In most waters, bb << a; and near the sea surface the average cosine
can be approximated by the cosine of the Sun’s direct beam angle, θsw, as transmitted
through a level sea surface. Thus a measured profile of the absorption coefficient a(z, λ)
allows for an approximate computation of Ed(z, λ), which in turn is directly related to the
heating rate of the upper ocean by Gershun’s Law (Section 10.7).

Although ocean-color remote sensing measures scattered light leaving the oceans, the
goal of that remote sensing is often to deduce how absorption in the water column changed
sunlight into the scattered light that was measured. Knowing the effect of absorption gives
a wealth of information about the ecological state of the water column.

5.2 Absorption by Oceanic Components

[Collin Roesler wrote this section.]

Absorption by most oceanic constituents depends strongly on wavelength. The overall
magnitude and spectral features of oceanic absorption depend upon the concentration and
composition of the particulate and dissolved constituents and water itself. The inherent
optical properties (IOPs) are conservative properties, and the magnitude of the absorption
coefficient varies linearly with the concentration of the absorbing material. Theoretically,
the absorption coefficient can be expressed as the sum of the absorption coefficients of each
component:

a(λ) =

N∑
i=1

ai(λ) , (5.1)

where N is the total number of components and ai indicates the ith component, and all
absorption is spectral, indicated by (λ).

Practically, however, it is not possible to measure the absorption properties of each
individual absorbing component and thus the individual components can be grouped into
similarly absorbing constituents based upon similarity in their optical properties and/or
analytically-based groupings:

a(λ) = aw(λ) + aphy(λ) + aNAP(λ) + aCDOM(λ) (5.2)

where subscripts w, phy, NAP and CDOM indicate water, phytoplankton, non-algal par-
ticles, and colored dissolved organic matter, respectively.

This section gives only a brief introduction to the absorption properties of these ocean
constituents. The absorption and scattering properties of individual components are dis-
cussed in detail in Chapter 8.

Absorption by water (Fig. 5.1) is weak in the blue and strong in the red and varies
somewhat with temperature and salinity. See Section 8.2 on water for further discussion.

Absorption by particles is separated into phytoplankton and non-algal particles (NAP)
using spectrophotometry and an extractive technique. Phytoplankton absorption (Fig. 5.2)
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Figure 5.1: Absorption spectrum for pure water (data from Pope and Fry (1997)).

demonstrates the most spectral variations of any of the components due to the individual
pigment absorption spectra. In general aphy(λ) exhibits peaks in the blue and red regions
of the spectrum due to the ubiquitous presence of chlorophyll a. See Section 8.3 for further
discussion.

Figure 5.2: Generic phytoplankton absorption spectrum for mixed algal composition (mod-
ified from Roesler et al. (1989)).

Non-algal particle absorption (Fig. 5.3) is strongest in the blue, decreasing approxi-
mately exponentially to the red. This component, operationally-defined, includes living
zooplankton and bacteria, as well as the non-pigmented parts of phytoplankton (cell walls,
membranes etc), and detrital material as well as inorganic particles. See Section 8.5 on
non-algal particles for further discussion.
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Figure 5.3: Generic non-algal particle absorption spectrum for mixed composition.

Colored dissolved organic matter (CDOM) absorption (Fig. 5.4) is very similar to
that of NAP due in part to the similarity in composition (organic material), but generally
exhibits a steeper exponential slope. This material is operationally separated from NAP
by filtration; CDOM is measured on the filtrate passing through 0.2mm or 0.7 mm nominal
pore sized filters. See Section 8.4 on CDOM for further discussion.

Figure 5.4: Generic colored dissolved organic matter (CDOM) absorption spectrum for
mixed composition.

For oligotrophic environments with very low concentrations of suspended and dissolved
material, the absorption coefficient is dominated by water (Fig. 5.5A) and the wavelength
of minimum absorption is in the blue, hence the blue color of the seawater. For eutrophic
and/or coastal environments with high concentrations of suspended and dissolved material
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(Fig. 5.5B), the absorption coefficient is dominated by that material and the wavelength
of minimum absorption shifts to the green, lending green color to that environment.

Figure 5.5: Component and total absorption spectra for clear open ocean waters where
water dominates the absorption (panel A) and for eutrophic coastal waters where partic-
ulate and dissolved organic matter dominate the blue and green portions of the spectrum
(panel B).

5.3 The Physics of Absorption

[Curtis Mobley and Collin Roesler contributed to this section]

This section introduces the physical processes that lead to absorption of light by an
atom or molecule. Beginning with a few basic concepts from quantum mechanics, we
qualitatively show why a molecule like chlorophyll has an absorption spectrum that is
unique to that molecule.

5.3.1 Quantum Mechanics Terminology

The terminology of quantum mechanics can be confusing. Physicists tend to speak of
quantum numbers (principle, azimuthal, magnetic, and spin); chemists talk about orbitals
and shells and subshells. Both groups are describing the same thing in ways that best fit
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their respective needs. There are also various graphical ways to represent the arrangement
and energies of electrons in an atom or molecule.

An electron orbital refers to the size and shape of the three-dimensional spatial region
where an electron is likely to be found, say with ≥ 90% probability, at any moment. The
term emphatically does not imply that electrons buzz around nuclei in well defined orbits
like planets going around the Sun. Such an image from classical physics is completely
wrong as a way to visualize atoms. If an analogy is needed, it is perhaps permissible to
think of “orbital” as loosely corresponding to “energy level.” However, in many cases,
different orbitals correspond to the same energy, in which case the energy levels are said
to be “degenerate.”

The principal quantum number n = 1, 2, 3, ... describes the overall physical size of the
orbital; i.e., the average distance of an electron from the nucleus. The azimuthal or angular
quantum number l = 0, 1, ..., n−1 describes the shape of the orbital. The magnetic quantum
number m = −l,−l+ 1, ..., 0, 1, ..., l describes orbital’s orientation in space (originally with
respect to an externally applied magnetic field, hence the name). The spin quantum number
s can have values of +1/2 or −1/2 and defines the direction (usually called “up” or “down”)
of the component of an electron’s intrinsic angular momentum (spin) along the direction of
an external field. Nature does not allow two electrons in the same atom to have the same
set of quantum numbers n, l,m, s, which is known as the Pauli exclusion principle.

Orbitals with the same value for the principal quantum number form a shell. Shells
are often labeled with letters starting at K (for historical reasons rooted in spectroscopy).
Electrons with a principal quantum number of n = 1 are in the K shell; electrons with
n = 2 are in the L shell; those with n = 3 are M-shell electrons, and so on. Subshells are
orbitals in the same shell that have the same magnetic quantum number. Subshells are
labeled s for l = 0, p for l = 1, d for l = 2, and so on for f, g, h,... in that order (again,
these letters arose in spectroscopy and stood for “sharp,” “principal,” and “diffuse” spectral
lines). Thus an electron with quantum numbers n = 1, l = 0 is said to be in a 1s orbital
(spoken as “one ess”); an electron in a 2p (two pee) orbital has n = 2, l = 1. All s orbitals
are spherically symmetrical. The three p orbitals consist of 2 lobes. Four of the five d
orbitals are four-lobed somewhat like a clover leaf, and one is lobed with a torus around
its “equator.” There is no spatial orientation for spherically symmetric s orbitals, but p
orbitals can have their lobes oriented along the x, y, or z axes of some coordinate system,
and so on for the other non-spherical orbitals. Figure 5.6 shows a qualitative visualization
of orbital shapes for s, p, d, and f orbitals.

Because of the attraction between a negative electron and the positive nucleus, the
physically smallest, spherically symmetric orbital, which on average over time has the
electron closest to the nucleus, has its electron most tightly bound to the nucleus. This is
the 1s orbital. The corresponding ground state energy is represented as a negative value
(usually in units of electron volts, eV; 1 eV ≈ 1.60 × 10−19 J). To remove a ground-state
electron from the molecule requires this amount of energy to “raise” the electron to 0
binding energy, i.e., no binding to the nucleus. Moving an electron from the ground state
to an orbital with n > 1 moves the electron further from the nucleus and therefore requires
energy to overcome the electrical attraction. Similarly, an electron in a 2p orbital will have
more energy than one in a 2s orbital, because a 2p electron spends more time further from
the nucleus that does a 2s electron. Finally, a particular orbital can hold at most two
electrons, with spin quantum numbers of s = ±1/2 (the Pauli exclusion principle). Note
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Figure 5.6: Electron orbital shapes. The surfaces drawn can be thought of as surfaces of
constant probability of finding an electron at that location. From WikiMedia

that the s orbital label is not to be confused with the s spin quantum number.

The allowed electron energy levels in an atom or molecule are often displayed on a
diagram with binding energy on the y axis and the quantum numbers on the x axis. Such
diagrams are sometimes called Jablonski diagrams. Figure 5.7 shows the conceptual layout
of an energy level diagram with electron quantum numbers and orbitals labeled. The exact
values of the energy levels for a given atom or molecule can be computed from the laws
of quantum mechanics. Figure 5.8 shows another common way to display electron energy
levels.

The previous discussion refers to the quantum numbers for individual electrons in an
atom or molecule. In multi-electron atoms it is also common to write quantum numbers for
the total quantum state of all electrons in the atom or molecule. That is, each electron in the
molecule has an azimuthal quantum number, which represents its angular momentum with
respect to the nucleus. Angular momentum is a vector, so the total angular momentum of
all electrons is the vector sum of the angular momentum vectors of the individual electrons,
computed using the quantum mechanical rules for adding quantized angular momenta. The
resulting total angular momentum quantum number is denoted by a capital letter L with
values of L = 0, 1, 2, .... Likewise, the vector sum of the spin angular momenta of the
individual electrons gives the spin quantum number for the whole atom or molecule, which
is denoted by S. For atoms with an even number of electrons, the resulting possible values
for S are 0, 1, 2,.... For atoms with an odd number of electrons, the resulting S values can
be 1/2, 3/2, 5/2, .... In the same way, the total orbital and total spin angular momentum
vectors can be combined to obtain a total angular momentum, described by a new quantum
number J , whose values are either integral (for an even number of electrons) or half-integral
(an odd number of electrons) from |L−S| to L+S. The z component of the total angular
momentum is specified by quantum number M , which can have either integral (if J is

http://commons.wikimedia.org/wiki/File:Single_electron_orbitals.jpg
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Figure 5.7: Conceptual layout of a Jablonski energy level diagram. The short horizontal
lines show the allowed energy levels. The energy levels are not to scale for any actual atom
or molecule. The n = 4 shell also has seven f orbitals, which are not shown, and so on for
the higher shells.

integral) or half-integral (if J is half-integral) values from −J to +J . This gives four total
or “spectroscopic” quantum numbers L, S, J,M .

When the L quantum number is 0, 1, 2, 3,..., the atomic or molecular quantum state
is labeled with letters S, P, D, F,..., in analogy with s, p, d, f,... for electron states with
l = 0, 1, 2, 3, .... The value of 2S + 1 is written as a preceding superscript, and the J value
as a following subscript: 2S+1LJ , e.g 1S0, 2P1/2, 3P0, and so on (read as “singlet ess zero”,
“doublet pee one half”, “triplet pee zero”, and so on). Again note the difference in the S
state labeling the value of the quantum number L versus the total spin quantum number
S. The value of quantum numbers L and M are not to be confused with the L and M
electron shells corresponding to electron principal quantum numbers n = 2 and n = 3.
Note also that a 3p electron state is different from a 3P atomic or molecular state. As was
said, the notation can be confusing.

Fortunately this is already more that we need to know for the following qualitative
discussion of absorption spectra. However, this material will be needed later, for example
in understanding fluorescence (Section 7.3). In any case, the basics of quantum-mechanical
terminology are outlined here in hopes of minimizing confusion when the lower-case and
upper-case notations are seen elsewhere. The excellent ChemWiki and the atomic spec-
troscopy chapter of J. B. Tatum’s online Stellar Atmospheres give more detailed but
still qualitative presentations of these matters, which are treated in their full quantum-
mechanical glory in texts on quantum physics and chemistry.

http://chemwiki.ucdavis.edu
http://astrowww.phys.uvic.ca/~tatum/
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Figure 5.8: Another way to show electron energy levels. This display makes it easy to
see the order of the subshell energy levels, which overlap between the higher shells. This
figure is complete through all subshells of the n = 5 shell, and the order of the subshells is
complete through the 6g subshell. The spacing of the energy levels is not to scale.

5.3.2 Quantum Mechanics of Absorption

For the present, it is sufficient to know that the electrons in an atom or molecule have very
specific energies—that is, the allowed electron energies are quantized. This physical reality
is reflected mathematically in the discrete (integer or half-integer) values of the quantum
numbers introduced above.

Recall that light is a propagating electromagnetic field. For the moment, we can think
(rather naively) of a photon as a region of space with a propagating and rapidly fluctuating
electric field. If the electric field is oscillating with a temporal frequency f (units of Hertz,
i.e. cycles per second or s−1), then the photon has energy

E = hf =
hc

λ
,

where h is Planck’s constant, c is the speed of light, and λ is the wavelength (in a vacuum).
As a photon approaches an atom or molecule, the electrons in the atom or molecule

begin to “feel” the photon’s electric field. Let E1 be the energy of an electron in one of the
subshells, and let E2 be the higher energy of one of the subshells that does not contain an
electron. If the photon frequency corresponds to the energy difference between these two
energy levels, i.e., if

f =
E2 − E1

h
,
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then there is a chance that the electron will absorb the photon and use the photon’s energy
to “jump” from its current subshell with energy E1 to the vacant higher-energy subshell
with energy E2 = E1 + hf . The atom or molecule is then said to be in an excited energy
state. The time scale for this absorption-excitation process is about 10−15 s. This is the
fundamental way that matter absorbs light. If the photon frequency does not correspond
to any of the subshell energy differences, then the light cannot be absorbed and the photon
continues on its way.

Figure 5.9 illustrates three electron energy levels of a molecule. Which shells or subshells
these levels correspond to in a particular molecule is irrelevant for the present discussion.
The usual situation for a molecule is that the lower-energy subshells are all occupied by
electrons. It is then likely that visible light will raise one of the outermost (highest energy)
electrons to an unoccupied energy level. (Raising an electron from the 1s shell to a higher
shell typically requires ultraviolet light.) The red and blue arrows in the left panel of the
figure represent electrons absorbing blue- and red-wavelength photons and jumping from
a low energy level to higher ones. The right panel of the plot shows the corresponding
absorption lines in the absorption spectrum of the molecule.

The probabilities for photon absorption are generally different for different transitions.
Thus some absorption lines will be “stronger” than others. This is represented by a higher
magnitude of the blue absorption line in the right-hand plot. In emission—the reverse
of absorption—a photon is emitted when an electron falls from an excited state to an
unoccupied lower energy level. In that case, some emission lines will be “brighter” than
others. The visual nature of these emission lines was the origin of the spectroscopic labels
of “sharp,” “principle,” “diffuse,” and “fine,” which were later related to the quantum
numbers and orbitals as described above.

Figure 5.9: Illustration of three electron energy levels in a molecule and absorption of blue
and red light.

The situation of Fig. 5.9 is typical of atoms and simple molecules in near isolation (e.g.,
in gases). However, the situation becomes more complicated for molecules containing many
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atoms. In addition to the electron energy levels, molecules also have vibrational modes, as
illustrated in Fig. 5.10. This figure is a frame grab from animations, which can be seen
on the Physics of Absorption page of the Web Book. The blue spheres represent atoms
attached to the side of a larger molecule. These vibrational modes also have quantized
energy levels. That is, the molecules can vibrate only at specific frequencies, which are
determined by the molecule’s structure and the atoms involved.

Figure 5.10: Molecular vibration modes. These figures are frame grabs from WikiMedia
animations, e.g. symmetrical stretching. See the Web Book page Physics of Absorption
for animations.

It usually requires less energy to excite a vibrational mode than to excite an electron
from one subshell to another. The spacing between the quantized vibrational energy levels
is thus less than between electron orbitals. A quick calculation is instructive. Molecular
vibrational frequencies fall in the 1012 to 1014 s−1 range. For f = 1013 s−1, λ = c/f gives a
wavelength of 30µm, which is in the mid-infrared. Thus infrared light can excite a molecule
from one vibrational mode to another (with no change in the electronic energy level). The
corresponding vibrational energy difference is ∆Ev = hf = hc/λ = 0.04 eV. (A useful
relation for these sorts of calculations is hc ≈ 1.24 eV µm.)

Now suppose that we are interested in an electronic transition corresponding to a
blue wavelength of 440 nm = 0.440 µm. The corresponding electronic energy shift is
∆Ee = hf = 2.82 eV. If the vibrational modes now allow energy levels that are equal to
the electronic transition ± a vibrational level, the energy shift can be ∆Ee ± ∆Ev. The
corresponding wavelengths are then λ = hc/(∆Ee ±∆Ev), which in the current example
gives λ = 0.434 and 0.446 µm, or a wavelength shift of 6 nm to either side of the 440 nm
electronic transition line.

The thin horizontal lines in the left panel of Fig. 5.11 represent the additional molec-
ular energy levels when both electronic and vibrational levels are included in the energy

https://oceanopticsbook.info/view/absorption/physics-of-absorption
http://en.wikipedia.org/wiki/File:Symmetrical_stretching.gif
https://www.oceanopticsbook.info/view/absorption/physics-of-absorption
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diagram. The thin blue and red arrows in the left panel illustrate how the presence of vi-
brational modes allows for more possible electronic transitions to occur in the wavelength
neighborhoods of the electronic transitions between subshells. These transitions add more
spectral lines to the absorption spectrum, as shown by the thin lines in the right-hand
panel.

Figure 5.11: Illustration of electronic and vibrational energy levels in a molecule. The
thin horizontal lines in the left panel represent the vibrational energy levels within each
electronic subshell. The thin arrows represent excitations between energy levels that include
both electronic and vibrational excitations.

In addition to the vibrational modes, molecules also have rotational modes. That is, the
entire molecule can rotate about an axis with some frequency, which is again quantized. Ex-
citing a molecule from one rotational mode to another typically requires very little energy
(in the 10−3 to 10−6 eV range), so that microwave radiation1 (λ in the millimeter to meter
range) is adequate. When the additional quantized energy states associated with rotational
modes are included in the energy diagram, the allowed energy levels become very closely
spaced, as illustrated by the dashed lines in the left panel of Fig. 5.12. The corresponding
changes in absorption line wavelengths are in the sub-nanometer range when compared to
electronic or electronic-vibrational transitions. The net result of having electronic, vibra-
tional, and rotational modes is that the resulting molecular absorption spectrum is such a
dense collection of absorption lines that it appears as a continuous function of wavelength
when measured by instruments with spectral responses greater than a nanometer.

We have now seen in a qualitative way how absorption spectra like those of chlorophyll
arise. The final comment to make is that the absorption spectrum of chlorophyll a, for
example, will be slightly different when measured in vivo (in a living cell) versus in vitro
(literally “in glass,” i.e. after extraction from a cell). The reason is that the environment of

1Microwave ovens operate at a frequency of 2.45GHz, which is a wavelength of 12.23 cm. Most foods are
65-90% water, and it is absorption of this wavelength by water molecules that heats the food. See Vollmer
(2004) for the details.



5.4. MEASUREMENT OF ABSORPTION: FROM THEORY TO REALITY 161

Figure 5.12: Illustration of electronic, vibrational, and rotational energy levels in a
molecule. The dashed lines in the left panel represent the closely spaced rotational levels.
The thin vertical lines represent excitations between energy levels that include both elec-
tronic, vibrational, and rotational excitations. The resulting absorption spectrum appears
continuous at the resolution of most instruments.

the chlorophyll molecule effects how it can vibrate and rotate. Thus different environments
change the allowed energy bands somewhat, and thus change the shape of the absorption
curve.

5.4 Measurement of Absorption: From Theory to Reality

[This section was written by Collin Roesler.]
Consider a scenario where the goal is to measure the absorption spectrum of a thin

layer of material (Figure 5.13A). The incident radiant power is given by Φo, in the form
of a collimated beam. The radiant power transmitted through the layer,Φt, is detected. If
Φt = Φo, there is no loss of radiant power and therefore no attenuation. If however the
medium absorbs some quantity of radiant power, Φa, then Φt < Φo, and Φo = Φt + Φa

(Figure 5.13B). In the case of material that both absorbs and scatters (Figure 5.13C), the
scattered radiant power is given by Φb, and Φo = Φt + Φa + Φb.

To quantify the absorbed radiant power only, it is necessary to measure both the trans-
mitted and scattered radiant power. This is a requirement for an absorption meter. Con-
sider first a nonscattering material. Recalling the definitions of Section 3.0.1, the measured
dimensionless transmittance, T , is the fraction of incident power transmitted through the
layer:

T =
Φt

Φo
.



162 CHAPTER 5. ABSORPTION

Figure 5.13: Illustration of theoretical attenuation by a thin layers of non-attenuating
(panel A), absorbing (panel B), and absorbing and scattering (panel C) material. The
thickness of the layer is given by ∆x.

The absorptance, A, is the fraction of incident radiant power that is absorbed (1− T ):

A =
Φa

Φo
=

Φo − Φt

Φo
.

The absorption coefficient a (with units of m−1) is the absorptance per unit distance

a =
A

∆x
,

which for an infinitesimally thin layer can be expressed as

a =
∆Φ
Φ

∆x
=

∆Φ

Φ∆x
.

Rearranging this expression and taking the limit as ∆x→ 0 yields

a∆x = lim
∆x→0

(
∆Φ

Φ

)
.

Assuming that the absorption coefficient is constant over the layer of thickness x and
integrating gives ∫ x

0
a dx′ =−

∫ Φt

Φo

dΦ

Φ

ax′|x0 =− ln Φ|Φt
Φo

ax =− [ln(Φt)− ln(Φo)] = − ln

(
Φt

Φo

)
a =− 1

x
ln

(
Φt

Φo

)
.

This equation provides a guide toward designing instruments to accurately measure absorp-
tion. The next sections give the specifics on techniques to measure absorption by dissolved
and particulate constituents in seawater.
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5.5 Benchtop Spectrophotometry

[This section was written by Collin Roesler.]
The benchtop spectrophotometer was invented by Arnold Beckman and his colleagues

at the National Technologies Laboratories in 1940. Beckman, a professor at California Insti-
tute of Technology, started NTL in the 1930s, dedicated to designing, producing and selling
sophisticated scientific instruments. NTL would later become Beckman Instruments. The
development of the earliest model spectrophotometer, the DU, was led by project leader
Howard Cary. The invention of the spectrophotometer has been described as one of the
most significant in the biosciences. Cary, with two colleagues, later started the Applied
Physics Corporation, renamed Cary Instruments (subsequently purchased by Varian As-
sociates). They are also a major supplier of benchtop spectrophotometers. This section
shows how these spectrophotometers can be used to measure absorption by dissolved and
particulate material.

5.5.1 Benchtop Spectrophotometry of Solutions in Transmission Mode
(T-mode)

Designs of spectrophotometers vary between manufacturers and the differences can impact
the accuracy of the derived absorption due to variability in the measurements of Φo and
Φt. Because these instruments were developed for non-scattering solutions, users make
modifications to optimize scattering collection and to correct for scattering not detected.
Spectrophotometers come in single beam- and dual-beam models (Figure 5.14). The inci-
dent radiant power, generated by a lamp, passes through a monochrometer (not shown) so
that light within a narrow spectral band enters the sampling chamber. In the single-beam
mode, the incident and transmitted radiant power are determined from two separate scans,
the first with a reference material in the sample chamber (e.g., pure water) and the second
with the sample in the sample chamber (e.g., filtered seawater). In the dual-beam mode,
the incident and transmitted radiant power are measured nearly simultaneously using a
beam splitter between the diffraction monochrometer and the sample chamber. Similarly
in the dual beam model, there is a mirror system to direct the incident and transmitted
beams to the detector in an alternating fashion as the instrument scans.

Figure 5.14: Schematic diagram of single- (panel A) and dual-beam (panel B) spectropho-
tometers showing the configuration of incident and transmitted radiant power. The shaded
rectangle indicates a cuvette of some geometric pathlength ` filled with sample. The dashed
rectangle represents a cuvette with reference material.
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Spectrophotometers output their signal as absorbance Abs, from which the absorption
coefficient can be determined by Eq. (3.23):

a =
2.303Abs

`
, (5.3)

where ` is the geometric pathlength of the cuvette in units of meters. In order to maintain
the adherence to Beer’s Law so that the absorptance is linearly related to both the con-
centration of the absorbing material and to the geometric pathlength (i.e., there is no self
shading), it is recommended that the absorptance from the spectrophotometer be main-
tained within the range 0.1 to 0.4. This is equivalent to transmittances of approximately
80% and 40%, respectively.

The best practice for spectrophotometry of solutions is the employ a dual beam model
to minimize uncertainty in the lamp intensity (Φo, Fig. 5.14B). When running multiple
samples, the material in the reference cuvette can undergo changes such as increases in
temperature due to the lamp relative to the sample. Rather than changing the reference
material with every sample, which comes with its own set of handling uncertainties, it is
recommended to run the dual beam mode without a cuvette in the reference path (i.e.,
remove the dashed line cuvette in Fig. 5.14B) and follow either:

1. Automatic baseline correction, which consists of the following scan order:

1.1. Baseline scan with nothing in the reference beam and reference material in the
sample cuvette (most spectrophotometers will subtract this automatically from
the sample scans)

1.2. Without opening the sample compartment, immediately scan again as a sample;
this is essentially running the baseline against itself (a zero scan). The expec-
tation is that the result is close to zero (± the uncertainty of the instrument,
0.0001) and spectrally flat.

1.3. Make 3-5 blank scans (again with nothing in the reference beam and with new
reference material in the sample cuvette).

1.4. Alternate between sets of 5-6 sample scans and a blank scan.

2. Post processing baseline correction, which consists of the following scan order:

2.1. Make 3-5 blank scans, each with new reference material in the sample cuvette.

2.2. Alternate between sets of 5-6 sample scans and a blank scan.

The upside of method (1) is the ability to easily view the variability in the sample
scans without having to visually remove the baseline in real time. Additionally, it allows
for quantification of the instrument resolution with the zero scan. The downside is that
a single scan is used as a baseline, and the average of the 3-5 initial blank scans provides
the uncertainty in that baseline. The upside of method (2) is that the mean blank is used
as the baseline correction but the downside is that it can be difficult to visually analyze
the sample scans as they contain the blank signal in them. Regardless of method, the
time series of blank scans is used to quantify the drift of the instrument. If significant, the
time course of the blank signal must be removed from the samples as part of the complete
baseline correction.
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5.5.2 Benchtop Spectrophotometry of Suspended Particulate
Matter Measured in Internally-mounted Cuvettes inside an
Integrating Sphere (IS-mode)

Measuring absorption of suspended particulate matter in benchtop spectrophotometers is
much more challenging because they are not optimized to collect the scattered radiant
power. Thus the measured transmitted radiant power is reduced by the amount of scat-
tering, which is incorrectly attributed to absorption. The absorption coefficients therefore
will be overestimated. For this approach an integrating sphere is employed. Interestingly,
the history of the integrating sphere precedes that of the spectrophotometer by about 50
years. Integrating spheres are hollow spherical cavities coated with highly scattering in-
terior surfaces designed to scatter light in a diffuse pattern (equal in all directions) while
minimally absorbing light. Thus the result is to remove the effect of the directionality of the
incident light so that transmitted radiant power can be measured from any small portion
of the sphere (Fig. 5.15) and extrapolated to all of the light using geometric relationships.
Scattered radiant power has the same likelihood of detection as transmitted radiant power;
the only loss is due to absorption.

The challenge of the integrating sphere is to measure only the loss of incident radiant
power that goes through the sample (thick arrows in Fig. 5.15A, called the sample beam)
and not of the radiant power that has reflected from the sphere and re-enters the sample
(thin arrows). This is achieve by slightly offsetting the sample cuvette from the refer-
ence beam (large arrows in Fig. 5.15B). In this way the reference beam and the sample
beam generate identical light fields within the sphere with the exception of the directly
transmitted sample beam. Thus by difference, the contribution to the loss of the sample
beam due to multiple scattering through the sample is removed (as it shows up in both
the transmitted reference and transmitted sample beams).

Similar to the protocol for transmission mode measurements of non-scattering solutions,
either a baseline scan is collected with reference material in the cuvette, a zero scan is
collected, followed by 3-5 blank scans for automatic baseline correction, or the 3-5 blank
scans are first collected and the samples are corrected in post processing. In either case,
the alternating sequence of 5-6 sample scans and a blank scan are collected. Absorption
coefficients are computed as before.

5.5.3 Benchtop Spectrophotometry of Particulate Matter Collected on
Glass Fiber Filters (the Quantitative Filter Technique) Measured
Internally-mounted in the Integrating Sphere (the QFT in
IS-mode)

The size and shape of commercially available integrating spheres limits the geometric path-
length of cuvettes that can be internally mounted. Thus to obtain a strong signal to noise
ratio, the concentration of suspended matter in a 1-cm cuvette has to be much higher than
is generally observed in aquatic systems. For this reason, discrete water samples are filtered
onto glass fiber filters (Whatman GF/F) and the absorbance of the filters is measured. The
protocol is identical to that outlined previously with the exception that the baseline/blank
scans are performed with a blank filter through which a comparable volume of pure water
has been filtered (to flatten the fibers in a manner comparable to that of the sample filter).
The filter is placed in the sample holder (same location as the cuvette), perpendicular to
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Figure 5.15: Schematic diagram of a center-mounted integrating sphere from the top view
(the detector typically lies at the bottom of the sphere and is not shown here) showing
the pathways of the A. sample and B. reference beams (large arrows) and the diffuse
reflected beams off the integrating sphere (small solid arrows), multiply reflected beams
(dashed lines) and multiply reflected beams that pass though the sample (dotted lines) and
scattered beam from the sample (dash-dot arrow).

the sample beam with the top of the filter (particle side) facing the incoming sample beam.
Thus the sample beam interacts with the particles prior to interacting with the filter. The
computation of absorption is

a = 2.303
Abs

`
,

where the geometric pathlength ` is computed from the measured sample volume filtered
(ml), and the effective area of the filter (cm2). The geometric pathlength can be thought of
as a cylinder of water of cross section equal to the effective filter area and length ` sufficient
to account for the volume filtered (Fig. 5.16). The geometric pathlength of the sample on
the filter is equivalent to the length of the cylinder of the original suspension.

Comparisons between samples measured in cuvettes with those measured on filter pads
indicate that there is an amplification of the mean light ray path through the filter in the
original sample beam over that of the geometric path. This is called pathlength ampli-
fication. It arises as light rays scatter within the filter and particles before exiting into
the sphere. It is not accounted for by the reference beam. Careful and extensive paired
measurements have demonstrated that the amplification is not negligible (Fig. 5.17).

The pathlength amplification must be corrected before the computation of absorption.
The correction, derived empirically from the data in Fig. 5.17A, is

Abss = 0.323Abs1.0867
f ,

where Abss is the absorbance measured in suspension and Absf is the absorbance measured
on the filter pad. The absorption coefficient is computed from the absorbance measured
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Figure 5.16: Diagrammatic representation of the geometric pathlength of the filtered sam-
ple. Vfilt is the filtered volume, deff is the diameter of the circular distribution of particles
on the filter, and is used to compute the effective area, areaeff . The volume filtered can
be expressed as a cylinder of area areaeff and length, `. The geometric pathlength of the
sample is `.

Figure 5.17: Relationship between paired samples measured in suspension in a cuvette
mounted inside the integrating sphere (ODs) versus that measured on the filter pad: A.
mounted inside the integrating sphere (ODf ), B. measured in transmission mode. From
Stramski et al. (2015). C. Relationship between filters measured in transmission mode
compared to filters measured inside the integrating sphere (C. Roesler, unpub. data).

on the filter pad:

a = 2.303
0.323Abs1.0867

f
Vfilt

πr2
eff

.

Historically, the QFT was employed measuring the filters in transmission mode (as
in Fig. 5.14, with the cuvette replaced by the filter). In addition to the pathlength
amplification within the filter, there was an additional error associated with the loss of
nearly half the incident radiant power scattering in the backward direction (away from
the detector). The correction for both the scattering loss and pathlength amplification
are determined from paired suspension measurements in internally-mounted cuvettes in
the integrating sphere and filtered particles on filtered configured in transmission mode,



168 CHAPTER 5. ABSORPTION

Absf−T (Fig. 5.17B):
Abss = 0.679Abs1.2804

f−T .

A simple linear relationship has been found relating the absorption measured on filters in
transmission mode, Absf−T, to that measured in the integrating sphere, Absf−IS:

Absf−IS = 1.29Absf−T + 0.00205 .

The linearity is only found for absorbance values less than 0.35 in the transmission mode,
and 0.45 in integrating sphere mode (Fig. 5.17C). Beyond that range, the relationship
becomes non-linear.

While measuring the absorption by particles on the filter pad comes with measurement
challenges and increased uncertainty, it does allow absorption to be determined on optically
dilute samples. In addition, the particulate matter can be extracted with methanol (Kishino
et al., 1985) to remove the extractable phytoplankton pigments from the particulate matter.
The scan of the extracted filter yields the absorbance by the non-algal particle fraction.
After computing the absorption spectra for the particulate scan and the non-algal particle
scan, the absorption by in vivo phytoplankton pigments (as they were, bound to proteins
in the light harvesting complexes in the chloroplasts) can be computed by difference.



CHAPTER 6

Elastic Scattering

As listed in the Absorption Chapter 5, three things can occur when light interacts with
matter: absorption, elastic scattering, and inelastic scattering. This chapter discusses the
second of these processes, elastic scattering, which refers to any change of direction of the
light without a change of wavelength.

Any interaction of light with matter can cause a change in direction. It does not matter
whether the change in direction comes from reflection or refraction by a surface (such as
sunlight reflected or transmitted by the sea surface), from reflection or refraction by a
particle that is much larger than the wavelength of light, or from the light’s propagating
electric field causing electrons in an atom or molecule to oscillate and radiate light into all
directions. Although you will sometimes see terms like “surface scattering” (for reflection
by a surface) or “volume scattering” (for interactions within a volume of water), these
process are all scattering and are all caused by essentially the same underlying physics, as
will be discussed in Section 6.2

This chapter begins with an overview of the role scattering plays in determining the
optical environment. The following sections first discuss the physical cause of scattering,
namely a spatial change in the real index of refraction. Scattering by air-water surfaces,
by particles, and by turbulence are then discussed. Data and models for volume scattering
functions and the associated phase functions are then surveyed. Backscattering is given
special attention because of its importance to remote sensing.

Mie theory, which describes elastic scattering by homogeneous spheres of any size, is a
solution of Maxwell’s equations. It is therefore discussed in Chapter 12, after Chapter 11
on Maxwell’s Equations.

6.1 Why is Scattering Important?

Ocean-color remote sensing measures light leaving the oceans to determine how absorption
in the water column changed sunlight in what was measured. The measured light comes
from scattering within the water column—from either backscattering of downwelling sun-
light at angles greater than 90 degrees or from multiple forward scattering at angles of a
few tens of degrees or greater. Without scattering there would be no remote sensing of
the oceans to understand how absorption has modified the in-water light field. To be more

169
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specific, without elastic scattering, downwelling sunlight would continue to head downward
into the ocean depths, eventually to be absorbed. The ocean would appear a dim red color
due to chlorophyll fluorescence (Section 7.4). Without inelastic scatter, the ocean would
be black because there would be no Raman scatter or fluorescence to create even a small
amount of upwelling light.

Scattering also enhances the effect of absorption. If light is scattered many times, the
distance traveled by a light ray in going from depth z1 to depth z2 is greater than just the
straight-line geometric distance that would be traveled by the initial ray. This gives the
light a greater chance of being absorbed before reaching z2. Hence the saying, “A little bit
of absorption goes a long ways if you have a lot of scattering.”

The left panel of Fig. 6.1 shows what the world looks like with scattering. The bright
light near the Sun (the Sun’s aureole) results from small-angle scattering by atmospheric
particles. The halo is caused by light being refracted through hexagonal ice crystals in
the cirrus clouds. The blue sky comes from light being scattered through large angles by
atmospheric gases (mostly nitrogen and oxygen molecules). The view of the land comes
from sunlight being reflected by the surfaces of the rock and ice. The right panel of the
figure shows what the same scene would look like without scattering. Without scattering,
the only light seen would be the Sun’s unscattered direct beam reduced by a small amount
of atmospheric absorption.

Figure 6.1: Left panel: A spectacular scene taken from Annapurna South Base Camp in
Nepal showing a 22-deg halo around the Sun. Right panel: what the same scene would
look like without scattering. Photo by Anton Yankovyi from Wikimedia, reproduced under
the Wikimedia Commons license.

https://commons.wikimedia.org/wiki/File:Halo_in_the_Himalayas.jpg


6.1. WHY IS SCATTERING IMPORTANT? 171

6.1.1 Review of Definitions

For completeness of this chapter, we begin with a quick review of the quantities commonly
used to describe scattering. For additional discussion, see the Inherent Optical Properties
Chapter 3.

The volume scattering function (VSF) at a particular location x and wavelength λ,
β(x, ξ̂′ → ξ̂, λ), describes the angular distribution of unpolarized light scattered from its
initial direction ξ̂′ into direction ξ̂. In many of the following equations, the location x and
wavelength λ arguments will be omitted for brevity. However, it must be remembered that
all IOPs generally depend on location and wavelength. The VSF can be defined as the
radiant intensity, dI(ψ, α)[W sr−1 nm−1], emanating in direction (ψ, α) centered on ξ̂′, from
an infinitesimal volume element dV [m3], for a given incident irradiance, E(0)[W m2 nm−1]
(recall Eq. 3.9 of the VSF section):

β(ψ, α) =
1

E(0)

∂I(ψ, α)

∂V
[m−1 sr−1] .

The polar (ψ) and azimuthal (α) scattering angles are defined relative to the unscattered
direction ξ̂′ in a local coordinate system like that of Fig. 1.7.

A measure of the overall magnitude of the scattered light, without regard to its angular
distribution, is given by the scattering coefficient, b [m−1], which is the integral of the VSF
over all scattered directions (4π sr) for a given incident direction:

b(ξ̂′) ,
∫

4π
β(ξ̂′ → ξ̂)dΩ(ξ̂) =

∫ 2π

0

∫ π

0
β(ψ, α) sinψ dψ dα,

where dΩ(ξ̂) is an element of solid angle centered on direction ξ̂. If the medium is isotropic,
the scattering does not depend on the incident direction and the scattered light is az-
imuthally symmetric about the incident direction. Then b is independent of direction
and the scattering depends only on the polar angle ψ between the incident (ξ̂′) and final
(ξ̂) directions. The assumption of azimuthal symmetry is valid for spherical particles or
randomly oriented non-spherical particles, if the incident irradiance is unpolarized. This
assumption is almost always valid for the turbulent aquatic environment with sunlight as
the light source. In this case, the previous equation reduces to

b = 2π

∫ π

0
β(ψ) sinψ dψ .

(Keep in mind that if the light source is a linearly polarized laser, then the scattering
depends on the azimuthal angle relative to the plane of polarization.)

Scattering is often described by the phase function, which is the VSF normalized to
the total scattering. The phase function provides information on the shape of the VSF
regardless of the magnitude of the intensity of the scattered light:

β̃(ψ) ,
β(ψ)

b
.

Other parameters that define the scattered light include the backscattering coefficient,
bb, which is defined as the total light scattered into the hemisphere from which light has
originated (i.e., scattered in the backward hemisphere of directions, denoted by 2πb):

bb ,
∫

2πb

β(ξ̂)dΩ(ξ̂) = 2π

∫ π

π/2
β(ψ) sinψ dψ ,
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and the backscattering ratio, which is defined as

B = b̃ ,
bb
b
.

6.2 The Physics of Scattering

This section describes the physics of elastic scattering. Chapter 7 on inelastic scattering
discusses the physics of the inelastic processes of Raman scattering and fluorescence.

To say that light undergoes elastic scattering simply means that it changes direction
from its initial direction of propagation. This can happen in many seemingly different
ways, but fundamentally, elastic scattering occurs when there is a change in the
real part of the index of refraction from one spatial location to another .

6.2.1 The Index of Refraction

As shown in Section 11.3 on Maxwell’s equations in matter, the phase speed of light in a
medium is given by v = 1/

√
µε, where µ is the magnetic permeability and ε is the electric

permittivity of the medium. The real index of refraction n is the ratio of the speed of light
in a vacuum to the speed in a medium:

n =
c

v
=

√
µε

µoεo
,

where µo and εo are the values in a vacuum. (See Table 11.1 for their values and Section
11.1 for further discussion.) For a dielectric like water, µ = µo. The nondimensional ratio
K = ε/εo is called the dielectric constant even though the value of K depends on frequency
and thus is not really a constant. Thus n and K are equivalent via n =

√
K. (A dielectric is

a material that conducts electricity poorly; examples are air, water, and glass. Dielectrics
are in contrast to conductors like metals, which conduct electricity well. Phase and group
speeds are discussed in Section 11.4.)

Pay attention to the frequency dependence when comparing n and K values. If you look
up the values of n and K for water in a freshman physics text, it will probably show the
values as n ≈ 1.33 (e.g., Halliday and Resnick (1988, page 867)) and K ≈ 78.5 (ibid. page
627). Figure 8.4 shows the index of refraction of pure water as a function of wavelength.
At the long wavelength/low frequency end of the spectrum, n → 8.85 corresponding to
K = 78.3, which is the value for room temperature water. (The value of K is temperature
dependent and K at low frequencies decreases from about 88 at 0 C to about 56 at 100 C.)
At visible wavelengths, K is around 1.77 and n is around 1.33, consistent with n =

√
K.

There are small temperature, salinity, and pressure effects on n at the visible wavelengths
of interest here; see Section 8.2 for formulas and tables.
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Figure 6.2: The real index of refraction of pure water at room temperature. The blue band
shows the visible wavelengths from 400 to 700 nm. Data from Segelstein (1981).

6.3 Models for Scattering

As explained in the previous section, elastic scattering occurs when light travels from a
region with one index of refraction into a region with a different index of refraction. In
this sense, all scattering is the same. However, there are many ways in which the index of
refraction can change, which leads to many ways to model the resulting scattering. You will
sometimes see terms like “surface scattering” or “volume scattering.” Surface scattering
refers to scattering caused by a change in index of refraction at the boundary between two
media, such as at the air-water interface. Volume scattering refers to scattering caused by
a change in index of refraction within a medium, such as a water body. Volume scattering
can be caused by the presence of discrete particles embedded in the medium, by thermal
fluctuations in density, or by turbulent mixing of fluids with different physical properties.
Those classifications can be useful, but they also can be misleading because they make
it seem like there are many unrelated types of scattering, when in reality the terms just
describe different ways to change the index of refraction.

6.3.1 Reflection and Refraction: Snell’s Law

The easiest scattering to model is reflection and refraction at a dielectric interface, such
as a level air-water surface. At the level of freshman physics, this is usually explained in
terms of a plane wave incident onto a boundary between two dielectrics with indices of
refraction n1 and n2 as illustrated in Fig. 6.3. The red lines in the figure represent lines
of constant wave phase, and the red arrow shows the direction of light propagation. The
light in medium 1 propagates at a phase speed of v1 = c/n1, where c is the speed of light
in a vacuum; in medium 2 the propagation speed is v2 = c/n2. If n2 > n1, the wave slows
down as the incident wave front enters medium 2. This causes the wave front to change
direction as it enters medium 2, as shown by the green lines and arrow. The frequency
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Figure 6.3: Illustration of Snell’s law and
the law of reflection for an incident plane
wave (red) and transmitted (green) and re-
flected (blue) waves. The lines perpendic-
ular to the arrows represent lines of con-
stant wave phase.

of the wave remains unchanged as the wave passes from medium 1 to 2. Therefore, the
wavelength in medium 2 must be less than the wavelength in medium 1: λ2 = n1

n2
λ1.

The relationship between the indices of refraction and the angles of incidence, θi, and
refraction or transmission, θt, is given by Snell’s law1:

n1 sin θ1 = n2 sin θ2 . (6.1)

The surface also reflects some of the incident light back into medium 1, as shown by the
blue lines and arrow in Fig. 6.3. For reflection,

θr = θi , (6.2)

which is known as the law of reflection. A more detailed development of these equations
is given in Section 13.1.1.

Snell’s law can be derived from fundamental physics at various levels of understanding.
One derivation follows from Fermat’s Principle of Least Time, which says that light trav-
eling from point A to point B will follow the path that takes the least time. Applied to
the geometry of Fig.6.3, this gives the ray path that obey’s Snell’s law2.

Snell’s law can be rigorously derived from Maxwell’s equations by solving the equations
for a plane wave incident onto a dielectric interface. This problem is formulated in terms of
the electric fields of the incident, reflected, and transmitted plane waves, and full account
is made of the state of polarization of the plane waves. That is a nasty bit of physics
and mathematics (e.g., Griffiths (1981, §8.2.5) or Feynman et al. (1964, Chapter 33)).

1This law was empirically discovered by the Persian Abu Ibn Sahl who reported his discovery in a book
On Burning Mirrors and Lenses published in Bagdhad in 984 CE. Ibn Sahl even used his discovery to design
the shapes of lenses that would focus parallel light rays without abberation. The same result was rediscov-
ered in 1621 by Willebrord Snel van Royen (1580-1626; note the spelling of his name). Unfortunately, Ibn
Sahl’s book was unknown in the west until its rediscovery in the 1930s, so the law became known as Snell’s
law, although the Ibn Sahl-Snel law would be a more appropriate name. Snel published in Latin under
the name Snellius. After Latin was replaced first by German and then English as the common language of
western science, Snellius became Snell. There is a move to restore Snel’s name to its proper spelling, which
I fully support. However, after having been told several times by reviewers that I had misspelled Snell’s
name, I decided this is a battle not worth fighting at my age.

2To be honest, Fermat cooked up his principle as a way to explain Snell’s law, but the principle turns
out to have greater applicability. I will refrain from discussing the question of how does the light leaving
point A know which path to take to arrive at point B as quickly as possible.
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However, the effort required to solve Maxwell’s equations pays off well because the solution
gives not just Snell’s law, which gives only the directions of light propagation, but also
Fresnel’s equations (Sections 13.2 and 13.3), which give the magnitudes of the reflected
and transmitted fields (i.e., of the irradiances) accounting for the state of polarization of
the incident light. This solution also shows that the incident, reflected, and transmitted
rays must lie in the same plane. The three results of (1) Snell’s law, (2) the law of reflection,
and (3) the coplanar geometry of the rays are the essence of geometric or ray-tracing optics,
which is used in fields such as lens design and Monte Carlo solution of the radiative transfer
equation (see Appendix E).

The index of refraction is a bulk material property that parameterizes the accumulated
effects of how light interacts with the individual atoms that make up the material. For the
most fundamental understanding, Feynman (1985) outlines how Snell’s law arises from the
properties of individual photons and atoms interacting according to the laws of Quantum
Electrodynamics.

Fortunately, for oceanographic purposes, we can just accept Eqs. (6.1) and (6.2) and
Fresnel’s equations as given and carry on with their applications such as predicting the
reflectance and transmittance of wind-blown sea surfaces, as described in Chapter 13 on
surfaces.

6.3.2 Scattering by Homogeneous Spheres: Mie Theory

Another way to change the index of refraction is to embed a particle of some index of
refraction within a medium with a different index of refraction. If the imbedded particle is
a homogeneous sphere, the solution of Maxwell’s Equations for a plane wave incident onto
the sphere is called Mie theory. The problem is formulated as follows.

• We have given a single, homogeneous sphere of radius ρ, whose material has a complex
index of refraction ms = ns + iks. Here ns is the real index of refraction, and ks is the
complex index of refraction. The complex index is related to the absorption coefficient
as of the sphere material by as(λ) = 4πks(λ)/λ, where λ is the wavelength in vacuo
corresponding to the frequency f of an electromagnetic wave (Section 11.3.2).

• The sphere is imbedded in a non-absorbing, homogeneous, infinite medium whose
real index of refraction is mm = nm.

• A plane electromagnetic wave of frequency f is incident onto the sphere. The wave-
length on the incident light in the medium is thus λm = c/(nmf) = λ/nm, which
corresponds to a wavelength in vacuo of λ = c/f .

• We wish to find the electric field within the sphere and throughout the surrounding
medium. That is, we wish to determine how the incident light is absorbed and
scattered by the sphere, including the angular distribution of the scattered light and
its state of polarization.

Mie’s solution to this problem is discussed in detail in Chapter 12.
Mie theory is exact and valid for all sizes of spheres, indices of refraction,

and wavelengths. Unfortunately, the solution is in the form of infinite series of com-
plicated mathematical functions (Eq. 12.7). The terms in these series depend on a size
parameter x,

x ,
2πρ

λm
=

2πρnm

λ
, (6.3)
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and on the complex refractive index of the sphere relative to that of the surrounding
medium,

m =
ns

nm
+

ks

nm
. (6.4)

The size parameter x is a measure of the sphere’s size relative to the wavelength of the
incident light in the surrounding medium. This parameter shows why oceanographers tend
to use wavelength rather than frequency as the measure of light’s oscillations: it is particle
size relative to wavelength that is important for scattering (whether or not the particle is
spherical). Note that the real part of the relative refractive index m can be less than 1, for
example if the spherical particle is an air bubble (ns ≈ 1) in water (nm ≈ 1.33).

Because of its computational complexity, Mie’s solution was of little use until computers
became readily available in the 1960s. However, once it became possible to compute the
sums of the infinite series with good accuracy, Mie theory found applications in all fields
where scattering by particles is important. One of the first of computer codes, and still
perhaps the most widely used, is the BHMIE (Bohren and Huffman Mie) code given in
Appendix A of Bohren and Huffman (1983). There are now programs available in all
commonly used scientific computer languages (Fortran, C, MATLAB, IDL, and Python).
See, for example, the websites at SCATTERLIB and Codes for Electromagnetic Scattering
by Spheres. There are also online Mie calculators that are useful if you only want to obtain
a few solutions for small size parameters. See for example Scott Prahl’s Mie Scattering
Calculator, which is an excellent place to explore Mie Theory. If you need to get serious
about doing lots of Mie calculations, download one of the Fortran codes. As Prahl notes
on his website, “Let me state that the best Mie codes are in Fortran. Period.”

The output of Mie codes is usually given as various absorption and scattering effi-
ciencies. The absorption efficiency Qa, for example, gives the fraction of radiant energy
incident on the sphere that is absorbed by the sphere. The term “energy incident on the
sphere,” means the energy of the incident plane wave passing through an area equal to
the cross-sectional (projected, or “shadow”) area of the sphere, As = πρ2. Likewise, the
total scattering efficiency Qb gives the fraction of incident energy that is scattered into all
directions. Other efficiencies can be defined: Qc = Qa +Qb for total attenuation, Qbb for
backscattering, and so on.

Mie solutions also can be presented in terms of absorption and scattering cross sections.
The physical interpretation of these cross sections is simple. The absorption cross section
σa, for example, is the cross sectional area of the incident plane wave that has energy equal
to the energy absorbed by the sphere. The absorption and scattering cross sections are
therefore related to the corresponding efficiencies by the geometrical cross section of the
sphere. Thus

σa = QaAs = Qaπρ
2 (m2) .

Likewise, σb = QbAs, and similarly for σc and σbb.

Mie codes also output the scattering phase function β̃(ψ). However, Mie codes usually
output unnormalized phase functions, so you must always integrate a phase function to
verify its normalization. Keep in mind that a phase function must satisfy the normalization
2π
∫
β̃(ψ) sinψ dψ = 1 before it can be used in radiative transfer calculations. This is

discussed in more detail in Section 12.4.

http://scatterlib.wikidot.com/
https://en.wikipedia.org/wiki/Codes_for_electromagnetic_scattering_by_spheres
https://en.wikipedia.org/wiki/Codes_for_electromagnetic_scattering_by_spheres
https://omlc.org/calc/mie_calc.html
https://omlc.org/calc/mie_calc.html
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Understanding the Mie output sometimes involves the nondimensional phase-shift pa-
rameter

δ = 2x(
ns

nm
− 1) ,

and the nondimensional absorption thickness

δa = 2ρ as .

It is important to note, when computing the absorption thickness or the imaginary part
of the index of refraction, that as is the absorption coefficient of the sphere material,
not the bulk absorption coefficient of the medium (e.g., of seawater plus phytoplankton).
Phytoplankton cells typically have as values of 104-105 m−1 at visible wavelengths. (Think
of the highly absorbing chlorophyll in a phytoplankton cell as the chlorophyll in a can
of chopped spinach; you do not see very far through solid spinach.) As an example of
the Mie parameter values, consider a phytoplankton cell with ρ = 4 µm, ns = 1.4, and
as = 4 · 105 m−1. If the cell is floating in water with nm = 1.34, and if the incident light
has λ = 500 nm in vacuo, then x = 67.3,m = 1.045 + i0.0159, δ = 6.3, and δa = 3.2.

It must be emphasized that Mie’s solution assumes that the scattering particle is spher-
ical and homogeneous. Very few particles in nature meet those criteria (an example would
be fog droplets in the atmosphere, which are small enough for surface tension to keep the
droplet spherical). Most natural particles—phytoplankton, mineral particles, ice crystals,
aggregates of spherical particles—are nonspherical and are often also inhomogeneous due
to internal structures like chloroplasts or cell walls. The applicability of Mie theory to
such particles is always questionable even if numerical results from Mie’s equations are
within some acceptable error of the correct value, which depends on the problem and the
level of accuracy needed. The differences between Mie and reality are often greatest for a
computation of interest to oceanographers, namely the computation of backscattered light.
Bohren and Singham (1991) have given an excellent review of the inapplicability of Mie
theory to backscattering by nonspherical particles.

6.3.3 Scattering by Irregular Particles

Strictly speaking, Mie theory is applicable only to homogeneous spherical particles. That
of course does not keep it from being misapplied to non-spherical and/or non-homogeneous
particles. Such particles are common in nature: chain-forming or non-spherical diatoms,
ice crystals in cirrus clouds, atmospheric dust, and resuspended sediments in water. For-
tunately, Mie theory often gives a useful approximate solutions to scattering by irregular
particles so long as the particles are close to spherical, such as prolate or oblate spheroids.
There are many applications where people use Mie theory with an “equivalent” spherical
particle, where the equivalent particle is given the same volume (or cross sectional area) as
the irregular particle of interest. For equivalent-volume, roughly spherical particles, Mie
may work well. However, for very irregular particles, Mie predictions may disagree greatly
with measurements made on such particles. The differences in phase functions between
spherical and non-spherical particles are often greatest at backscattering directions, which
are of great interest for remote sensing.

In one sense, every spherical particle is geometrically the same; the spheres differ only
in size and index of refraction. Thus Mie theory requires only the size parameter x and
the relative index of refraction m as inputs. However, irregular particles can have any
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imaginable shape and composition. This makes it impossible to have a solution technique
for Maxwell’s equations that requires only simple inputs.

Many numerical techniques have been developed to compute scattering by irregular
particles, all of which are exceedingly mathematical; see Computational Electromagnetics
for an introduction. The two most widely used techniques are probably the T-matrix
Method (e.g., Mishchenko et al., 2002, Chapter 5) and the Discrete Dipole Approximation
(Purcell and Pennypacker, 1973). Although computer codes are available to perform the
calculations (e.g., from SCATTERLIB), they are not trivial to use. In particular, you
must first build in the geometry of the particle shape of interest, which in itself can be a
major undertaking. For a collection of randomly oriented particles, scattering must first
be computed for each possible particle orientation, and then the results must be averaged
over all possible particle orientations.

If the irregular particle is much larger than the wavelength of light (e.g., an ice crystal
in a cirrus cloud or a large sand grain in the ocean), then geometric optics and ray tracing
can be used as the core of Monte Carlo simulations of many rays incident onto randomly
oriented particles. As always, you must first program the logic defining the particle shape
and how to determine when a ray intersects the surface of the particle. In principle,
determining where a ray intersects a particle just amounts to finding the intersection of a
line and a surface. However, this is tedious analytical geometry at best and is non-trivial
even for simple particle shapes like cubes. But after that logic is programmed, it is just a
matter of computer time until enough rays have been traced to give good statistical results.

Enough has now been said about scattering by particles for this overview. The point to
be remembered is that a particle is just a discontinuity in a medium’s index of refraction.
If you insert a relative index of refraction of m = 1 into Mie or T-matrix theory, you get no
scattering because the particle’s properties then match those of the surrounding medium.
A non-absorbing particle becomes invisible if its index of refraction matches that of the
surrounding medium.

6.3.4 Scattering by Pure Water: Einstein-Smoluchowski Theory

When computing scattering by particles, the surrounding medium is viewed as a continuous,
homogeneous medium that itself does not scatter. However, even the purest of water has
some scattering. This is because, at the atomic level, pure water is composed of particles,
namely water molecules. In water at room temperature, viewed microscopically, the water
molecules are moving on average at about 600 m s−1 and are continually bumping into
each other and flying apart in random directions. These molecular motions are continually
creating microscopically small volumes of water that for a very short time have more
or fewer molecules in a small volume of space than on average. These fluctuations in the
number density of water molecules create small-scale fluctuations in the index of refraction.

The phenomenon of critical opalescence refers to a transparent gas or liquid becoming
foggy and opaque near a continuous (second-order) phase transition (such when a gas
and liquid can coexist at sufficiently high temperature and pressure). An explanation of
this phenomenon was lacking until the papers of v. Smoluchowski (1908) and Einstein
(1910). They showed that large thermodynamic fluctuations in the material’s density,
hence in the index of refraction, are responsible for the optical scattering that makes
the substance become cloudy. Their explanation required a sophisticated combination of
thermodynamics, statistical mechanics, and electromagnetic theory (Maxwell’s equations).

https://en.wikipedia.org/wiki/Computational_electromagnetics
http://scatterlib.wikidot.com/
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See Morel and Smith (1974) for a discussion of the Einstein-Smoluchowski development.
The same process applies to ordinary scattering by water molecules, for which the

density fluctuations are much smaller but still non-zero. In this case, the Einstein and
Smoluchowski formula for the volume scattering function, with later modifications to ac-
count for polarization effects, is

β(ψ) =
2π2 k T

λ4 βT
n2

(
∂n

∂P

)2

T

6 + 6ρ

6− 7ρ

(
1 +

1− ρ
1 + ρ

cos2 ψ

)
(6.5)

= β(90)

(
1 +

1− ρ
1 + ρ

cos2 ψ

)
.

The terms in this equation are as follows, with values shown for a temperature of 20 C,
pressure of one atmosphere, and wavelength of 546 nm, as obtained from the formulas of
Buiteveld et al. (1994):

k Boltzman’s constant; k = 1.3806 · 10−23 J K−1

T Temperature; T = 293.15 K

n Index of refraction; n = 1.33477

βT Isothermal compressibility of water: 4.5893 · 10−10 Pa−1(
∂n
∂P

)
T

Isothermal pressure derivative of the index of refraction; 1.5127 · 10−10 Pa−1

ρ depolarization ratio; 0.039 (from Zhang et al. (2019))

λ wavelength; 546 nm = 5.46 · 10−7 m

P pressure; 1 atm = 1.01325 · 105 Pa

ψ polar scattering angle

Further discussion of the best values for the various inputs to Eq.(6.5) is given in Zhang
and Hu (2009) and Zhang et al. (2019).

The temperature-dependent fluctuations in the index of refraction appear in Eq. (6.5)
via the various thermodynamic quantities. The equation shows that scattering will be
stronger for a higher temperature; this is because the random molecular motions are then
greater, and consequently the density fluctuations are larger. The more compressible a
fluid is, the greater the density fluctuations, and the greater the scattering. In particular,
if the index of refraction did not depend on the pressure,

(
∂n
∂P

)
T

would be zero and there
would be no scattering. The scattering is strongly dependent on wavelength, with shorter
wavelengths scattering much more strongly than long wavelengths. The 1/λ4 wavelength
dependence seen in (6.5) is the same as for Rayleigh scattering, which describes scattering
by spheres that are much smaller than the wavelength of light (and which can be obtained
from Mie theory when the particle size is much less than the wavelength of the light). The
same wavelength dependence occurs here because in ordinary water the spatial size of the
density fluctuations is much less than the wavelength of visible light.

Inserting the values just listed into Eq. (6.5) gives, for a scattering angle of ψ = 90deg,

β(90, 546 nm) = 8.69 · 10−5 m−1 sr−1 .
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Writing f(ρ) = (1− ρ)/(1 + ρ) = 0.925, the phase function for pure water is

β̃(ψ, 546 nm) =
1

4π[1 + f(ρ)/3]
[1 + f(ρ) cos2 ψ] (6.6)

= 0.0608[1 + 0.925 cos2 ψ] . (6.7)

Finally, it must be pointed out that scattering by pure water (or pure sea water if
salinity effects are included in the index of refraction) is one of the few IOPs that can be
computed from fundamental physics. (Another such IOP is scattering by a homogeneous
sphere, computed using Mie theory.) Other IOPs, absorption coefficients in particular, are
obtained from measurements and not from fundamental physics.

6.3.5 Scattering by Turbulence

Yet another way to change the index of refraction is via turbulence-induced fluctuations
in temperature and salinity, with the water being viewed as a continuous but slightly
inhomogeneous medium. The temperature and salinity fluctuations generate small-scale
but spatially continuous changes in the index of refraction, which in turn cause small-angle
deviations in the direction of light propagation. Such deviations cause “beam wander” in
laser beams and can degrade visibility, which is affected by small-angle scattering. Such
effects are often called “optical turbulence.” In the atmosphere, optical turbulence is
responsible for the twinking of stars or the shimmering image of a distant object viewed
on a hot day.

We can get an order-of-magnitude estimate of the size of the turbulence-induced fluc-
tuations in the real index of refraction n as follows. Hold the wavelength λ and pressure
P constant, so that n is a function only of the temperature T and salinity S. (Water is
almost incompressible, which makes the pressure dependence of n much less than that of
temperature and salinity.) Then taking differentials of n(T, S) gives

∆n =

(
∂n

∂T

)
S

∆T +

(
∂n

∂S

)
T

∆S ,

where ∆T and ∆S are small fluctuations in T and S, and ∆n is the corresponding change
in n. If we square this equation, average it over many turbulent fluctuations, and assume
that the fluctuations in temperature and salinity are uncorrelated, we obtain

〈(∆n)2〉 =

(
∂n

∂T

)2

S

〈(∆T )2〉+

(
∂n

∂S

)2

T

〈(∆S)2〉 . (6.8)

Here 〈...〉 represents the average of the enclosed quantity. The root-mean-square (rms)
value of the index-of-refraction fluctuations is then

√
〈(∆n)2〉. The derivatives ∂n/∂T and

∂n/∂S must be evaluated at particular values of T, S, λ and P . We can estimate typical
values from from the tabulated data in Austin and Halikas (1976). (Some of their data are
shown in Table 8.2.) Let us take T = 20 C, S = 35 PSU, λ = 546 nm, and P = 1 atm. Then
from the tabulated data of Austin and Halikas (1976, page A-6)(

∂n

∂T

)
S=35

=
1.34179− 1.34442

30− 0
= −8.8 · 10−5 C−1
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∂n

∂S

)
T=20

=
1.33643− 1.34295

0− 35
= 1.9 · 10−4 PSU−1

Now let us suppose that the temperature and salinity fluctuations are of magnitude
∆T ≈ 0.005 C and ∆S ≈ 0.005 PSU. Then Eq. (6.8) gives√

〈(∆n)2〉 =
[
(−8.8 · 10−5)2 (0.005)2 + (1.9 · 10−4)2 (0.005)2

]1/2 ≈ 1 · 10−6 .

The turbulence-induced fluctuations in the index of refraction are therefore on the order
of parts per million.

Such small changes in n are negligible compared to the 3% “fluctuation” in n when light
encounters a plankton cell with n = 1.03 (relative to the water). However, in the case of
particle scattering, we envision the light traveling in straight lines between the occasional
encounter with a particle, at which time there may be a large change in direction. In the
case of turbulence, we envision many turbulent blobs of water, of many sizes, with the light
slightly but continuously changing direction as it passes through water with a continuously
varying index of refraction. It is then possible for the cumulative effect of the turbulent
fluctuations to change a light’s direction by a fraction of a degree. These turbulence-
induced deviations manifest themselves in time-averaged scattering measurements as large
values of the VSF β(ψ) at very small scattering angles.

Turbulence-induced scatter can significantly degrade the quality of underwater images.
The effects of turbulence are especially noticeable in video photography, since the time
dependence of the random fluctuations is then apparent, just as it is with the twinkling
of stars caused by atmospheric turbulence. Near the boundary between distinctly differ-
ent water masses, the fluctuations in T and S can be much larger than those assumed
above, and even still images can be badly degraded. Fluctuations in T and S can be very
large—∆T of many degrees and ∆S of many PSU—when cold and/or fresh water mixes
with warm and/or salty water. This can occur when rain falls on the sea surface, where
rivers enter the ocean, and near hydrothermal vents at the sea floor. In these extreme cases,
optical turbulence near the boundary of the two mixing water masses can cause striking
visual effects such as shimmering of objects see through the water mass boundary. Figure
6.4 shows and example of this. The fluid being expelled by a hydrothermal vent can be as
hot as 350 C, in which case the turbulence-induced fluctuation in n is comparable to the
change in n caused by a phytoplankton.

Turbulence effects on optics have been intensively studied by the atmospheric optics
community, but less studied by the hydrologic optics community. This is often justified
because the turbulence-induced changes in n within water bodies usually are very small and
do not significantly effect the distribution of radiant energy within the water. The exception
is found in the community of researchers interested in high-resolution underwater visibility
and imaging, and in the behavior of coherent light beams. Because the time-averaged
effects of turbulence are included in measured volume scattering functions, we can assume
that those effects are accounted for in the highly peaked VSFs used for oceanic radiative
transfer modeling.
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Figure 6.4: Image of rocks and shrimp seen through clear cold water and through a hy-
drothermal vent of clear very hot water. Frame grab from Life on a Vent; original video
from NOAA National Ocean Service.

6.4 Backscattering

As seen in the organization chart of Fig. 1, the absorption coefficient and the volume
scattering function are the two fundamental inherent optical properties from which all
other IOPs can be obtained. However, for many purposes, the two most important IOPs
are the absorption (a) and backscattering (bb) coefficients. This is because the quasi-single-
scattering approximation (QSSA; Gordon (1994a) or Section 10.3) shows that to first order
the remote-sensing reflectance (Rrs) and the near-surface downwelling diffuse attenuation
(Kd) depend on a and bb as

Rrs ∝
bb

a+ bb
Kd ∝ a+ bb .

These two apparent optical properties are the basis for most ocean-color remote sensing
and parameterization of in-water light fields for ecosystem modeling.

In addition, as pointed out in Stramski et al. (2004a) and Boss et al. (2004b), the
backscattering coefficient gives insight into many ocean ecosystem processes. However,
there is both bad and good news. The bad news is that although bb is to first order
determined by the mass of suspended particles in the water, it is also strongly affected
by particle size, shape, index of refraction (i.e., composition; organic or inorganic), and

https://www.youtube.com/watch?v=ktJi6RjIBpI
https://oceanservice.noaa.gov
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internal structure. This makes it very hard to model bb with just a single parameter such
as the chlorophyll or particulate organic carbon concentration. The good news is that
because bb depends on particle size, shape, index of refraction, and structure, it may be
possible to extract information about those parameters from measurements of bb. The
connections between backscattering and other quantities of interest has led to a great
deal of research on ways to measure backscattering, either in-situ or remotely by active
(lidar) or passive (ocean color) remote sensing; see, for example, Sauzède et al. (2016)
and Bisson et al. (2021). Stramski et al. (2004a) give an in-depth review (citing over
180 papers on backscattering) of the contributions to backscattering made by different
types of oceanic particles, including colloids, bacteria, phytoplankton, biogenic detritus,
minerogenic particles, and bubbles.

6.4.1 Measurement of the Backscattering Coefficient

In principle the backscattering coefficient is obtained by integration of the volume scattering
function β(ψ) over scattering angles ψ from π/2 to π (90 to 180 deg):

bb = 2π

∫ π

π/2
β(ψ) sinψ dψ .

In practice this is seldom done because only a few instruments exist for in-situ measurement
of the VSF over a sufficient range of scattering angles, and even then usually at just one
wavelength.

In the early 1980s a series of backscatter instruments was developed at SRI International
(Moore et al., 1984, and references therein) and deployed as part of an underwater lidar
experiment known as LIDEX. These instruments and their history are reviewed in Maffione
and Dana (1997). The SRI instruments used the basic design seen in the left panel of Fig.
6.5. The first instruments used an LED light source centered at 880 nm because sufficiently
bright, visible-wavelength LEDs were not available. When bright, visible-wavelength LEDs
became available, the optics and electronics were redesigned and multi-wavelength proto-
type instruments were made in the early 1990s. At about the same time, Oishi (1990)
used Mie theory to investigate the optimum scattering angle for use in estimating bb from
a measurement of the VSF at one scattering angle.

The first commercial instrument based on the SRI design was the HydroScat-6 (HO-
BILabs), followed shortly thereafter by the BB series (initially at 3 wavelengths, now at
9; Sea-Bird Scientific, Inc.), and most recently by the Hyper-bb (hyperspectral; Sequoia
Scientific, Inc.) and the SC6 (6 wavelengths; In-Situ Marine Optics).

For each of the instruments just mentioned, a light source sends light into the water in
a narrow range of angles about some central direction, which is shown by the red arrow
in panel (a) of Fig. 6.5. The detector has a field of view that intersects the cone of
emitted light, creating a volume (shaded) where light can be scattered through a nominal
scattering angle ψ into the detector, as shown by the blue arrow. The instrument is actually
measuring the volume scattering function β(ψ) over a narrow range of scattering angles as
weighted by the ψ-dependent scattering volume. This measurement is then converted to
an estimate of the total (water plus particles) backscattering coefficient via

bb = 2πχ(ψ)βmeas(ψ) (6.9)

= 2πχp(ψ)[βmeas(ψ)− βwater(ψ)] + bbw . (6.10)

https://www.hobilabs.com/cms/index.cfm/37/152/1253/1254/index.html
https://www.hobilabs.com/cms/index.cfm/37/152/1253/1254/index.html
https://www.seabird.com/eco-scattering-sensor/product?id=60762467719
https://www.sequoiasci.com/product/hyperbb/
https://www.sequoiasci.com/product/hyperbb/
https://insitumarineoptics.com/
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Figure 6.5: Backscattering sensor design. The left panel shows the generic sensor design.
The right panel shows the implementation in the HydroScat instruments. (Panel (b) figure
reproduced from Maffione and Dana (1997) under Optica’s Fair Use License.)

Here χ is a conversion factor that converts a measurement of the volume scattering function
at one wavelength into an estimate of the backscattering coefficient.

The choice of an optimum scattering angle and associated χ value has been the subject
of several studies. Oishi (1990) found, based on Mie calculations for assumed particle
size distributions, that a scattering angle near 120 deg gave the most data points (94%)
within ±10% of the correct value, although 140 deg gave the smallest maximum error
(17.7%). Maffione and Dana (1997) argued that measurement at ψ ≈ 140 deg is optimum
because there is less variability in χ for various volume scattering functions. Boss and
Pegau (2001) argue that ψ ≈ 120 deg is optimum because then χ for water is the same
as the χ for particle phase functions, in which case the total bb can be determined by Eq.
(6.9) without the need to explicitly remove the water contribution as seen in Eq. (6.10).
A recent study by Zhang et al. (2021) also finds ψ ≈ 120 deg to be optimum, and they
find that χp is independent of wavelength (as was prediced by Oishi). Zhang et al. (2017)
provide a physical understanding of why a scattering angle near 120 deg shows minimum
variance in χp. In principle, the optimum scattering angle and the corresponding value of
χ depend on the shape of the particle phase function. However, measurements for many
VSFs in both open-ocean and coastal waters show that, for a given ψ, χ(ψ) varies by only
a few percent, so the choice is not critical; see Sullivan et al. (2013) for further discussion
and additional references. The HydroScat instruments have a nominal scattering angle of
ψ = 140 deg; the bb-9 instrument uses ψ = 117 deg; the Hyper-bb uses ψ = 135 deg, and
the SC6 uses ψ = 120 deg. Figure 6.6 shows the values of χ(ψ) for pure water and for
particle phase functions.

Other instrument designs have been proposed. The ECO-VSF 3 instrument uses the
same generic design but measures the VSF at 3 angles, ψ = 104, 130 and 150 deg, and at
3 wavelengths. The values for the three scattering angles are fit with a function, which
is then integrated from 90 to 180 deg to get the backscattering coefficient. An entirely
different instrument design is described in Haubrich et al. (2011), but this design has not
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Figure 6.6: Conversion factors χ(ψ). Green: χw(ψ) for pure water. Red: Data from
Sullivan and Twardowski (2009, Table 3). Blue: Data from Boss and Pegau (2001, Table
1). Similar curves are found in the papers by Zhang et al. (2017) and Zhang et al. (2021).

been commercialized.

The path lengths of these instruments are at most a few tens of centimeters, and conse-
quently the backscattering signal is very small: typically about 10−8 of the emitted power
is scattered into the detector. Sensitivity, stability, and dynamic range in the electronics
are therefore critical, as is the instrument calibration. There are three ways to calibrate
these instruments. The first is to measure backscattering in a liquid with known backscat-
tering properties; this is sometimes used for laboratory instruments. The second way is to
measure the reflectance of a plaque of known reflectance; the details are given in Maffione
and Dana (1997). The third way is to measure backscattering in a solution containing
spherical beads of known properties; the details are given in Sullivan et al. (2013).

6.4.2 Models for the Particle Backscattering Coefficient

A number of early investigations used Mie theory (Chapter 12) to study the effects of
particle size distributions (PSDs; Section 8.12) and indices of refraction on backscattering
(e.g., Brown and Gordon, 1974; Morel and Bricaud, 1981b; Bricaud and Morel, 1986; Ahn
et al., 1992; Ulloa et al., 1994). These calculations gave great insight into particle optical
properties as determined by particle index of refraction and size distribution. However,
the Mie-predicted backscattering was generally lower than measurements. For example,
Brown and Gordon (1974) used oceanic PSDs measured with a Coulter counter down
to a particle diameter of 0.65 µm combined with a range of particle complex indices of
refraction to compute particle volume scattering functions (VSFs) and absorption and
scattering coefficients. The Mie-computed IOPs were compared with absorption and beam
attenuation coefficients and VSFs measured simultaneously with the PSDs. As stated in
Brown and Gordon (1974, page 2875), “The model fits the data poorly for θ & 10◦ and
in fact is almost 2 orders of magnitude too low for θ & 90◦. We attempted to increase
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the backscattering by adding particles smaller than 0.65 µm and found that when the
backscattering became the same order as the observations, the forward scattering was
about an order of magnitude too large.” [“The model” is Mie theory and θ is the scattering
angle.] They then experimented with various combinations of high (mineral) and low
(organic) indices of refraction in various size ranges, but they were unable to get agreement
between Mie and observations over all scattering angles and wavelengths simultaneously.
They concluded that there must be large numbers of very small particles, which were
not measured by the Coulter counter but which could increase the amount of predicted
backscattering if included in the Mie calculation input. They concluded (page 2881), “The
prediction of the existence of vast quantities of small organic particles cannot be verified
at this time, since little is known about seawater organics in these small sizes.” This
disagreement between Mie and measurement became known as the “missing backscatter
problem.”

Brown and Gordon’s prediction of large numbers of particles less than 0.65 µm in size
turned out to be correct (e.g. the photosynthetic bacteria Prochlorococcus, discovered in
1986 by Chisholm et al. (1988), and sub-micrometer particles measured by Koike et al.
(1990)). However, such particles were not the cause of the missing backscatter in Mie
calculations. It was soon recognized that Mie theory underestimates backscattering for
particles that are nonspherical and/or inhomogeneous. Indeed, Bohren and Singham (1991)
even wrote a delightful review article on the inapplicability of Mie theory for backscattering
calculations.

The next step in modeling realism was the use of a “coated sphere” (describing, for
example, a cell wall and interior cytoplasm, or a microbubble with an organic film on its
surface) or a “three-layer” particle geometry. Bricaud et al. (1992) used a three-layer model
of coccolithorphorids as a high-index (n = 1.22, non-absorbing) calcite shell, an intermedi-
ate absorbing layer representing chloroplasts, and a low-index (n = 1.015, non-absorbing)
cytoplasm core. They found that “While the internal structures induce insignificant mod-
ification in absorption and only weak modifications in total scattering, they appear to be
able to increase the backscattering efficiency by a factor as high as 50, depending mainly
on the calcite shell thickness. The internal structures also induce spectral changes in
backscattering.” Kitchen and Zaneveld (1992) used a three-layer model to study backscat-
tering by generic phytoplankton and likewise found increased backscattering compared to
a homogeneous sphere. It is now recognized (e.g., Organelli et al., 2018) that there never
was any “missing backscattering.” What was missing was the use of models capable of
parameterizing the morphological complexity of oceanic particles.

As seen in Section 8.9 (e.g., Fig. 8.30), the phytoplankton absorption coefficient cor-
relates fairly well with the chlorophyll concentration in Case 1 waters; this is the basis
for bio-optical models of absorption as a function of the chlorophyll concentration. How-
ever, the backscattering coefficient does not correlate nearly so well with the chlorophyll
concentration because of the effects of particle shape and internal structure. Figure 6.7
shows the particle backscattering coefficient bbp at 700 nm as a function of the chlorophyll
concentration (Chl) for both surface and euphotic zone waters. For a given chlorophyll
value, there is an order-of-magnitude spread of bbp(700) values. In that figure, bkbp is the
background value of NAP backscattering that does not covary with Chl. The blue line in
the plots is the best fit model of the form of Eq. (6.11).
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Figure 6.7: Particle backscattering coefficient at 700 nm as a function of the chlorophyll
concentration from a global Biogeochemical-Argo dataset. Panel (a), data from only within
the surface layer; panel (b), data from the entire euphotic zone. The blue line is the best
fit from Eq. (6.11). bkbp is the background value of NAP backscattering. (Reproduced from
Fig. 2 of Bellacicco et al. (2019) under AGU’s reproduction policy.)

Given data like those of Fig. 6.7, one can fit functions of various forms. Power-law
functions of the form

bbp(λ) = A(λ)ChlB(λ)

are often used for such modeling. For example, Huot et al. (2008, Eq. 8) uses this form
with A(λ) = A1 +A2(λ− 550) and B(λ) = B1 +B2(λ− 550). This leaves four parameters
(A1, A2, B1, B2) to be determined by an error minimization to get the best fit for a given
data set.

Brewin et al. (2012) modeled backscattering as a sum of three terms representing pico-,
nano-, and microphytoplankton (subscripts 1, 2, 3, respectively, in the following equations).
Analysis of their data justified combing the pico- and nanoplankton terms and adding a
constant (independent of chlorophyll) background term. Their model then took the form

bbp(λ) = Cm
1,2[b∗bp,1,2(λ)− b∗bp,3(λ)][1− exp(−S1,2 Chl)] + b∗bp,3(λ)Chl + bkbp(λ) .

In this equation, subscript 1,2 indicates the combined values for pico- and nanoplankton.
Cm

1,2 and Cm
3 are the maximum possible values of the chlorophyll concentrations for these

components; these were determined from independent data and are held fixed in the model.
The slope parameter S1,2 is also held fixed. They then modeled the wavelength-dependent
parameters as power-law functions. After further analysis (e.g., the wavelength dependence
of b∗bp,3(λ) is not statistically significant), they eventually obtained (Brewin et al., 2012,
Eq. 22)
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bbp(λ) = b∗bp,1,2(λo)

(
λ

λo

)−γ1,2

Cm
1,2[1− exp(−S1,2 Chl)]

+ b∗bp,3(λo)[Chl − Cm
1,2[1− exp(−S1,2 Chl)] (6.11)

+ bkbp(λo)

(
λ

λo

)−γk

.

This leaves five parameters to be determined for a given data set: b∗bp,1,2(λo), b∗bp,3(λo),

bkbp(λo), γ1,2 and γk.
Figure 6.8 shows the wavelength dependence of bbp for low to high chlorophyll values

and the chlorophyll dependence for blue to red wavelengths, as computed by Eq. (6.11)
and typical values of the model parameters (b∗bp,1,2 = 0.003, b∗bp,3 = 0.0003, bkbp = 0.0005,

γ1,2 = 1.05, γk = 2.7, Cm
1,2 = 0.780mg m−3, Cm

3 = 0.147mg m−3, S1,2 = 1.14, and λo = 700;
see the tables in Brewin et al. (2012)).

The model of Eq. (6.11) is based on sound biology and it does a good job on average
of fitting the swarm of data points seen in Fig. 6.7. However, it must be noted that, for a
given chlorophyll value, the actual data can differ from the model value by a factor of 2 or
more. Such bio-optical models can give good results on average, and they do give insight
into the ecosystem behavior. However, in any particular instance, the model-predicted
backscattering coefficient may differ from a measured value by a large amount.

Figure 6.8: Left panel: particle backscattering coefficients as functions of wavelength for
selected chlorophyll concentrations from Eq. (6.11) and typical values of the best-fit pa-
rameters. Right panel: as functions of chlorophyll for selected wavelengths.

Zhang et al. (2020) studied backscattering in the oligotrophic North Pacific partitioned
by size classes for particles less than 0.2 µm, less than 0.7 µm (both as determined by
what passes through filters of a given size), and bulk (all sizes of particles). They found
that for Chl < 0.1 mg m−3, sub-micrometer-sized particles contribute as much as one-half
of the total backscattering. They found that the smallest size class gave a chlorophyll-
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independent background contribution to bbp, similar to the constant background term in
the Brewin model.

There is a somewhat better correlation between bbp and particulate organic carbon
(POC) than with chlorophyll. An example is seen in Fig. 6.9. Such correlations have led
to a number of studies to develop algorithms to retrieve POC from remotely-sensed bbp

values (e.g. Stramski et al., 1999). However, as seen by the various best-fit curves in the
figure, data-derived algorithms relating POC to bbp are often specific to particular regions
of the global ocean. bbp correlates best with total suspended particulate matter (SPM)
(e.g. Boss et al., 2009c). Reynolds et al. (2016) found, for data from Arctic waters, that
the Chl-bbp(550) relation had R2 = 0.37, POC-bbp(550) had R2 = 0.60, and SPM-bbp(550)
had R2 = 0.88.

Figure 6.9: Particle backscattering at 700 nm as a function of particulate organic carbon
for North Atlantic waters. The labeled curves are the values predicted by various models
for POC(bbp) in other areas of the global ocean. Reproduced from Fig. 6B of Cetinić et al.
(2012) under Wyley’s license for non-commercial uses.

6.4.3 Models for the Particle Backscattering Fraction

The particle backscattering fraction

b̃bp =
bbp

bp

is frequently used in bio-optical models of scattering. If b̃bp is known, then the backscatter-
ing coefficient can be determined from easily made measurements of bp = cp − ap. Mobley
et al. (2002) showed that using a phase function with the correct backscattering fraction is
crucial in obtaining agreement between modeled and measured in-water light fields. Twar-
dowski et al. (2001) and Boss et al. (2004a) showed how the backscattering fraction can be
used in studies of particle composition.

Unfortunately, b̃bp is almost uncorrelated with the chlorophyll concentration, even in
Case 1 waters. This can be expected because both bbp and bp are, to first order, determined
by the concentration of material in the water. Therefore, their ratio is roughly independent
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of concentration, which means that particle size, shape, and composition play a greater role
in determining the value of b̃bp than for either of its components. Figure 6.10 shows shows
over 9,000 values of b̃bp(555 nm) as determined from HydroScat-6 measurements of the
backscattering coefficient and ac-9 measurements of the scattering coefficient (computed
from attenuation minus absorption) versus the corresponding chlorophyll values determined
from measured chlorophyll fluorescence. Clearly, there is very little correlation between
b̃bp(555 nm) and Chl, even in Case 1 waters.

Figure 6.10: Particle backscattering fraction at 555 nm as a function of the chlorophyll
concentration. The labeled curves are the values predicted by various models for b̃bp(Chl).
Reproduced from Fig. 5 of Whitmire et al. (2007) under Optica’s Fair Use License.

Mie theory shows that for homogeneous spherical particles with a Junge size distribu-
tion and a wavelength-independent index of refraction, the scattering and backscattering
coefficients have the same wavelength dependence (Ulloa et al., 1994). This will not hold
true for particles in general, however the wavelength dependence of b̃bp is not strong. Fig-
ure 6.11 shows the spectral dependence of the data shown in Fig. 6.10. Although some
situations such as a high mineral particle load may give a significant wavelength depen-
dence of the backscattering fraction, in most cases the error bars are consistent with the
assumption of a wavelength-independent backscattering fraction.

6.4.4 Backscattering at 180 degrees

There is yet another measure of backscattering that is fundamental to one particular ap-
plication: lidar remote sensing. Lidar can be used to remotely sense in-water properties
such as the depth of a scattering layer (e.g., Hoge et al., 1988). Monostatic lidar refers to a
configuration in which the transmitting and receiving optics (often a telescope) are at the
same spatial location. (In a bistatic system, the transmitter and receiver are different opti-
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Figure 6.11: Particle backscattering fraction as a function of wavelength for the data of
Fig. 6.10. The labeled panels refer to various data sets. The error bars are one standard
deviation of the measured values. Reproduced from Fig. 4 of Whitmire et al. (2007) under
Optica’s Fair Use License

cal components at fixed but different locations.) In a time-gated, monostatic lidar system,
a pulse of light is sent out, and the light scattered by the water column returns directly
back to the lidar instrument, where it is measured at a later time. As seen in Eq. (9.26) of
Section 9.6, the volume scattering function at exactly (or very nearly) ψ = 180 deg is one
of the parameters needed to predict the return signal in a monostatic configuration.

Enhanced backscatter refers to coherent backscatter when light travels back and forth
along the same path through a medium. It can be caused by several different processes
(Barabanenkov et al., 1991), but the end result is that, if it is present, the VSF will
show a sharp peak very near ψ = 180 deg. In the early days of lidar remote sensing of
the oceans, there was speculation that enhanced backscatter might explain a factor of
2 or 3 difference in predicted and measured lidar return signals. Existing instruments
for measurement of the VSF (e.g., as used by Petzold to obtain the VSF measurements
seen in the next section) did not make measurements beyond about 170 deg and therefore
could not test this hypothesis. A novel instrument, called Beta Pi for its measurement of
β(ψ = π), was therefore developed at SRI International by the same group that developed
the backscattering instruments described above (Maffione and Honey, 1992; Maffione, 1996;
Maffione and Dana, 1996). The Beta Pi instrument measured the VSF from ψ = 178.8 to
180 deg with a resolution of 0.02 deg. Figure 6.12 shows an example of data taken by Beta
Pi.

Beta Pi measurements in a variety of ocean waters showed that there was no factor-
of-two enhancement of the VSF near 180 deg. There was consequently little interest in
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Figure 6.12: Measurements of the VSF near ψ = 180 deg made by the Beta Pi instrument.
The red oval shows the location of the small amount of enhanced backscattering observed
in ocean water. Annotated from Maffione (1996, Fig. 3.5).

further measurements, funding dried up, and the unique Beta Pi instrument, developed at
great cost, was eventually taken to the scrap yard.

Enhanced backscattering remains a topic of active research in atmospheric optics, rel-
evant for example to lidar measurements of atmospheric particles or radar detection of
raindrops. The “backscattering cross section” σb that is a standard output of Mie codes
(Section 12.4) is proportional to β(ψ = π). The Mie σb is often called the radar cross sec-
tion; see Bohren and Huffman (1983, Section 4.6) for discussion. Hu et al. (2020) studied
the relation between the particle VSF βp(ψ = π) and the particle backscattering coefficient
bbp as a function of particle shape. The conversion factor χp(ψ) = bbp/(2πβp(ψ = π) was
found to depend on particle shape and internal structure, but was almost independent of
wavelength.

6.5 Petzold’s VSF Measurements

Several early researchers in optical oceanography built instruments to measure the volume
scattering function (VSF) of oceanic waters. (See Jerlov (1976) for data and references for
early measurements.) The most carefully made and widely cited scattering measurements
are found in the classic technical report of Petzold (1972) (summarized in Petzold, 1977).
He combined two instruments, one for VSF measurements at very small angles (ψ =
0.172, 0.344, and 0.688 deg) and one for angles between 10 and 170 degrees, to obtain
VSF measurements over almost the whole range of scattering angles. Petzold’s report
describes his instruments, their calibration and validation, and tabulates data from very
clear (Bahamas), productive coastal (California), and turbid harbor (San Diego, California)
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waters. The Petzold VSFs and phase functions plotted here can be downloaded from the
corresponding Web Book page.

Figure 6.13 shows three of Petzold’s VSF curves displayed on a log-log plot to emphasize
the forward scattering angles. The same data are displayed on log-linear axes in Fig. 6.14,
which emphasizes large scattering angles. The instruments he used had a spectral response
centered at λ = 514nm with a bandwidth of 75 nm (full width at half maximum). In these
figures the top (red) curve was obtained in the very turbid water of San Diego Harbor,
California; the center (green) curve comes from near-shore coastal water in San Pedro
Channel, California; and the bottom (blue) curve is from very clear water in the Tongue
of the Ocean, Bahama Islands. The striking feature of these volume scattering functions
from very different waters is the similarity of their shapes.

Figure 6.13: Log-log plots of Petzold’s measured volume scattering functions from three
different waters, as labeled.

Although the scattering coefficients b of the curves in Figs. 6.13 and 6.14 vary by a
factor of 50, the uniform shapes suggest that it may be reasonable to define a “typical”
particle phase function β̃p(ψ). This has been done with three sets of Petzold’s data from
waters with a high particulate load (one set being the top curve of Figs. 6.13 and 6.14),
as follows (Mobley et al., 1993):

1. Subtract the pure sea water VSF at 514 nm from each curve to get three particle
volume scattering functions βip(ψ), i = 1, 2, 3.

2. Obtain the corresponding particle scattering coefficients from bip = bi − bwater;

3. Compute three particle phase functions via β̃ip(ψ) = βip(ψ)/bip;

4. Average the three particle phase functions at each scattering angle to define the
“average particle” phase function.

The three phase functions so obtained and the average-particle phase function are shown
in Figs. 6.15 and 6.16. This average-particle phase function satisfies the normalization
condition 2π

∫ π
0 β̃p(ψ) sinψdψ = 1 if a behavior of β̃p ∝ ψ−m is assumed for ψ < 0.1 deg
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Figure 6.14: Log-linear plots of Petzold’s measured volume scattering functions from three
different waters, as labeled.

and a trapezoidal-rule integration is used for ψ ≥ 0.1 deg, with linear interpolation in
log β̃p(ψ) versus logψ used between the tabulated values. Here m = 1.346 is the negative
of the slope of log β̃p versus logψ, as determined from the two smallest measured scattering
angles.

Figure 6.15: Log-log plots of the phase functions for the VSFs of Figs. 6.13 and 6.14 ,
along with the average particle phase function.

This “Petzold average-particle” phase function has been widely used in radiative trans-
fer calculations and is one of the standard phase functions available in HydroLight (Section
10.6). However, it must be remembered that this phase function is based on very limited
data from turbid harbor waters at one wavelength and likely corresponds to a mixture
of phytoplankton and mineral particles as might be found in harbor waters. This phase
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Figure 6.16: Log-linear plots of the phase functions for the VSFs of Figs. 6.13 and 6.14 ,
along with the average particle phase function.

Figure 6.17: 62 phase functions measured in coastal waters at 530 nm (green curves). The
red curve is the Petzold average-particle phase function of Figs. 6.15 and 6.16.

function thus corresponds closely to the turbid harbor phase function seen in Figs. 6.15
and 6.16.

Figure 6.17 compares the Petzold average-phase function with 62 phase functions mea-
sured in coastal waters at 530 nm using the more recently developed VSM (volume scat-
tering meter) instrument of Lee and Lewis (2003). The Petzold average-particle phase
function does indeed give a good average for these phase functions. However, it is impor-
tant to note that there is an order-of-magnitude variability in the VSM phase functions at
backscattering angles. The large variability in the measured phase functions of Fig. 6.17
will give corresponding variability in the remote-sensing reflectance, for example.
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Thus, as is always the case with a simple model, the average-particle phase function
may be satisfactory on average, but may be very wrong in a simulation of a particular
water body. When attempting to model a particular water body, it is always best to use
a VSF or phase function measured at the particular time and place being modeled, rather
than relying on a “generic” phase function or analytic model. Examples of this are given
in Mobley et al. (2002).

6.6 The Henyey-Greenstein Phase Function

In pre-computer days it was necessary to have a simple phase function for use in pencil-
and-paper radiative transfer calculations. A number of such functions can be found in
the literature, and some are still occasionally used in numerical calculations. The most
important and long-lived of these phase functions is that of Henyey and Greenstein (1941):

β̃HG(g, ψ) ,
1

4π

1− g2

(1 + g2 − 2g cosψ)3/2
, (6.12)

The Henyey-Greenstein (HG) phase function was proposed (without a single word of jus-
tification) for studies of scattering by interstellar dust (Note: interstellar dust, not phyto-
plankton!). The parameter g can be adjusted to control the relative amounts of forward
and backward scattering in β̃HG: g = 0 corresponds to isotropic scattering, and g → 1 gives
highly peaked forward scattering. Note that β̃HG satisfies the normalization condition

2π

∫ 1

−1
β̃HG(g, ψ) d cosψ = 1 for any g.

The physical interpretation of g comes from noting that

2π

∫ 1

−1
β̃HG(g, ψ) cosψ d cosψ = g .

Thus the Henyey-Greenstein parameter g is just the average of the cosine of the scattering
angle for β̃HG.

Equation (6.12) can be integrated over ψ from π/2 to π to obtain the backscatter
fraction:

BHG =
1− g

2g

[
1 + g√
1 + g2

− 1

]
.

Because of its mathematical simplicity, the HG phase function has been widely used
in many fields, including oceanography. However, we can anticipate discrepancies between
β̃HG and measured oceanic phase functions because oceanic particles are quite different in
their physical properties (size, shape, composition) from interstellar dust.

The average of cosψ for the Petzold average-particle phase function β̃p is 0.924. Using
g = 0.924 in Eq. (6.12) thus gives the Henyey-Greenstein phase function corresponding to
the particle phase function β̃p, in the sense that each phase function then has the same
average cosine. Figures 6.18 and 6.19 compare β̃HG(g = 0.924, ψ) and β̃p. β̃HG is also shown
for g = 0.7 and 0.99. Note that the best-fit β̃HG differs noticeably from β̃p at scattering
angles greater than ψ ≈ 150 deg and less than 20 deg, and that β̃HG is much too small
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at angles of less than a few degrees. The small-angle behavior of Eq. (6.12) is inherently
incompatible with β̃p because β̃HG always levels off as ψ → 0, whereas β̃p continues to rise.
Even for g = 0.99, β̃HG is nearly constant for ψ < 0.5 deg. For g = 0.924, β̃HG = 0.0170,
compared to the backscatter fraction of 0.0183 for the Petzold phase function.

Figure 6.18: Log-log comparison of the Petzold average-particle phase function β̃p (black
line) with β̃HG(g, ψ) of Eq. (6.12) for three values of g.

Equation (6.12) depends on only one free parameter, the average cosine g, so this equa-
tion is often called the One-Term Henyey-Greenstein (OTHG) phase function. Because
of the poor fits of the OTHG phase function to measurements at small and large scatter-
ing angles, a linear combination of Henyey-Greenstein phase functions is sometimes used
to improve the fit at small and large angles. The so-called two-term Henyey-Greenstein
(TTHG) phase function is

β̃TTHG(γ, g1, g2, ψ) , γ β̃HG(g1, ψ) + (1− γ)β̃HG(g2, ψ) . (6.13)

Enhanced small-angle scattering is obtained by choosing g1 near one, and enhanced backscat-
ter is obtained by making g2 negative; γ is a weighting factor between zero and one. Kat-
tawar (1975) shows how to determine best-fit values of γ, g1, and g2 for a given phase
function. Reasonable fits can be obtained with the TTHG function for phase functions
that are not highly peaked, for example atmospheric haze phase functions (see Kattawar’s
paper for example fits). However, the fit of β̃TTHG to highly peaked oceanic phase func-
tions such as β̃p always remains unsatisfactory at very small angles, for the reason already
noted.
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Figure 6.19: Log-linear comparison of the Petzold average-particle phase function β̃p (black
line) with β̃HG(g, ψ) of Eq. (6.12) for three values of g.

6.6.1 The Reynolds-McCormick Phase Function

The Reynolds-McCormick phase function (Reynolds and McCormick, 1980) is a general-
ization of the Henyey-Greenstein phase function:

β̃RM(g, ψ) ,
1

π

αg(1− g2)2α

[(1 + g)2α − (1− g)2α] [1 + g2 − 2g cosψ]α+1 , (6.14)

The RM phase function reduces to the HG phase function when α = 0.5. The RM phase
function has two parameters, α and g, which can be adjusted to give a better fit to measured
phase functions than can the one-parameter OTHG. However, g no longer equals the aver-
age cosine of the scattering angle, which is now a function of both g and α (Reynolds and
McCormick, 1980, Eqs. 16 and 17). Harmel et al. (2021) defined two-term Fourier-Forand
(TTFF) and Reynolds-McCormick (TTRM) phase functions in analogy to the two-term
Henyey-Greenstein phase function (TTHG) of Eq. (6.13). Comparisons of the one- and
two-term FF and RM phase functions with measurements showed that the TTRM phase
function gave fits to data that in most cases were better than the FF or TTFF phase
functions. This is not surprising because the TTRM phase function has five free param-
eters, which were determined by a non-linear optimization. The disadvantage of such a
phase function is that there are no simple connections between these fitting parameters
and easily measured or understood quantities such as the average cosine of the scattering
angle, the backscatter fraction, the particle index of refraction, or the slope of the particle
size distribution. This makes it difficult to use this phase function in bio-geo-optical IOP
models that define the scattering properties in terms of chlorophyll or mineral particle
concentrations and physical properties such as index of refraction or size distribution.
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6.7 The Fournier-Forand Phase Function

A much more realistic—and mathematically much more complicated—analytic phase func-
tion was developed by Fournier and Forand (1994). They derived an approximate analytic
form for the phase function of an ensemble of particles that have a power-law (Junge-type)
particle size distribution (PSD), with each particle scattering according to the anomalous
diffraction approximation to the exact Mie theory. [For a power-law cumulative size dis-
tribution, the number N(r) of particles per unit volume with size greater than r (volume-
equivalent spherical radius) is proportional to r−µ, so that −µ is the slope of the size
distribution when logN(r) is plotted versus log r. Oceanic particle size distributions typi-
cally have µ values between 3 and 5. See Section 8.12 for a detailed discussion of particle
size distributions.]

In its latest form (Fournier and Jonasz, 1999) this phase function is given by

β̃FF(ψ) =
1

4π(1− δ)2δν

[
ν (1− δ)− (1− δν) + [δ(1− δν)− ν(1− δ)] sin−2

(
ψ

2

)]
(6.15)

+
1− δν180

16π(δ180 − 1)δν180

(3 cos2 ψ − 1) ,

where

ν =
3− µ

2
and δ =

4

3(n− 1)2
sin2

(
ψ

2

)
. (6.16)

Here n is the real index of refraction of the particles relative to the surrounding medium, µ
is the slope parameter of the hyperbolic distribution, and δ180 is δ evaluated at ψ = 180deg.
Equation (6.15) can be integrated to obtain the backscatter fraction,

B =
bb
b

= 1− 1− δν+1
90 − 0.5(1− δν90)

(1− δ90)δν90

, (6.17)

where δ90 is δ evaluated at ψ = 90 deg. Although Eq. (6.16) uses only the real part of the
index of refraction, the addition of moderate amounts of absorption does not significantly
change the shape of the phase functions generated by Eq. (6.15).

Figures 6.20 and 6.21 show Fournier-Forand phase functions for a wide range of B val-
ues; each curve is labeled by its backscatter fraction. Most oceanic particles have backscat-
ter fractions between B = 0.001 (e.g., very large phytoplankton) and 0.1 (e.g., very small
mineral particles). Table 6.1 shows the n and µ values used in Eqs. (6.15) and (6.16) to
obtain these curves.

Fournier (2011) cautions that the Fournier-Forand equations should be used only for
parameter values in the ranges 3 ≤ µ ≤ 5 and 1 < n ≤ 1.33. The values seen in Table 6.1
are within those ranges. In the same paper, Fournier derives an exact but rather messy
formula for the mean cosine g of the Fournier-Forand phase function. Fortunately, the
exact equation can be approximated as

g ≈ 1− 23(n− 1)5/2

1− 7.5(n− 1)5/2
. (6.18)

Given the value of g, the ν and δ parameters of Eq. (6.15), which are needed to generate
a phase function, are given at the same level of approximation by

ν = − 3

(
1− g

23− 7.5(1− g)

)2/5

(6.19)
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Figure 6.20: Log-log plot of Fournier-Forand phase functions for selected backscatter frac-
tions B. The green curve is the pure sea water phase function, which has B = 0.5.

Figure 6.21: Log-linear plot of Fournier-Forand phase functions for selected backscatter
fractions B. The green curve is the pure sea water phase function, which has B = 0.5.

δ =
16 sin2(ψ/2)

3

(
1− g

23− 7.5(1− g)

)−4/5

. (6.20)

Figures 6.22 and 6.23 show how well the Fournier-Forand phase function can reproduce
the shapes of measured phase functions for the types of particles found in ocean water. In
those figures, the blue curves are three phase functions measured by the Volume Scattering
Meter (VSM) of Lee and Lewis (2003), and the green curve is the Petzold average-particle
phase function. The red curves show the Fournier-Forand phase functions with the same
backscatter fractions as the measured phase functions. Each pair of measured and FF



6.7. THE FOURNIER-FORAND PHASE FUNCTION 201

index of Junge backscatter

refraction n slope µ fraction B

1.021 3.0742 0.0001

1.040 3.2010 0.001

1.08 3.483 0.01

1.175 4.065 0.1

1.15 4.874 0.4

Table 6.1: The n and µ values used in Eqs. (6.15) and (6.16) to generate the Fournier-
Forand phase functions of Figs. 6.20 and 6.21.

phase functions is labeled by the backscatter fraction B in Fig. 6.23.

Figure 6.22: Log-log plot of 4 measured phase functions (blue and green curves), and the
Fournier-Forand phase functions with the same backscatter fractions (red curves).

As seen in Figs. 6.22 and 6.23, the Fournier-Forand analytical model does a much
better job of reproducing the shapes of ocean phase functions than does the historical
Henyey-Greenstein phase function defined in the previous section, especially at very small
and large scattering angles. There is considerable discrepancy between the measured and
modeled VSM data at wavelengths near 180 deg, but it is not known how much of this may
be due to instrumental error. In any case, Fournier-Forand phase functions are adequate
for most radiative transfer calculations, and they are now commonly used in numerical
simulations of oceanic light fields (e.g., in HydroLight). The light fields resulting from
the use of Fournier-Forand and several other measured and modeled phase functions in
numerical simulations are compared in Mobley et al. (2002).

The relation between n, µ, and B is not unique. Figure 6.24 shows selected backscatter
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Figure 6.23: Log-linear plot of 4 measured phase functions (blue and green curves), and
the Fournier-Forand phase functions with the same backscatter fractions (red curves).

values given by Eq. (6.17) as a function of n and µ. The red dot on the B = 0.0183 curve
shows the values of n = 1.10 and µ = 3.5835 for which Eq. (6.15) gives the best fit to
the Petzold average-particle phase function, as seen in Figs. 6.22 and 6.23. However, any
pair of n and µ values lying on a curve of constant B in Fig. 6.24 will generate a slightly
different phase function having the given B value. The phase functions corresponding to
the two red squares and the red dot on the B = 0.0183 contour give the phase functions
shown in Figs. 6.25 and 6.26. These functions have somewhat different shapes, but any is
still a reasonable approximation to the Petzold average particle phase function shown in
red in those figures. Thus the exact n and µ values used to generate a Fournier-Forand
phase function with a given backscattering fraction are not critical for most applications.

Given that the exact (n, µ) values used to generate a phase function are not critical,
Mobley et al. (2002) proposed a way to generate Fournier-Forand phase functions given
the backscattering fraction B. The green curve in Fig. 6.24 shows the line

n = 1.01 + 0.1542(µ− 3) . (6.21)

This function connects the point at (n, µ) = (1.01, 3.0) with the best-fit point for the
Petzold average-particle phase function (the red dot in Fig. 6.24). This function is sim-
ply a crude conceptual approximation of (n, µ) values progressing from low-index, low-
backscatter biological particles to high-index, high-backscatter mineral particles. Given a
desired backscatter fraction, the intersection of the green curve and the backscatter curve
as seen in Fig. 6.24 determine the n and µ values to be used to generate a phase function
with the given B value. (This is how the three blue diamonds in the figure were obtained
for given B values.) Although no measured data were used to construct the n(µ) function,
it works well in practice and has been used in many studies. This technique is used in
HydroLight to generate phase functions when the backscatter value is an input.

Thus there are three ways to generate a Fournier-Forand phase function in practice: (1)
choose values of n an µ for use in Eq. (6.16); (2) use a desired mean cosine g in Eqs. (6.19)
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and (6.20); and (3) use a desired backscatter fraction B to obtain the the corresponding n
and µ as in Fig. 6.24. The Fournier-Forand phase function clearly does a much better job
of reproducing measured oceanic phase functions than does the Henyey-Greenstein phase
function of the previous section (recall Figs. 6.18 and 6.19 ). For this reason, Fournier-
Forand phase functions have replaced earlier approximations like Henyey-Greenstein in
most numerical radiative transfer calculations.

Figure 6.24: The Fournier-Forand backscattering fraction as a function of index of refrac-
tion and Junge slope. The red dot shows the value of n and µ that gives the best fit to
the Petzold average-particle phase function. The red dot and the two red squares show the
values used to generate the three phase functions with B = 0.0183 shown in Figs. 6.25 and
6.26. The red dot and blue diamonds give the n and µ values used to generate the four
phase functions of Figs. 6.22 and 6.23. The green line is Eq. (6.21).
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Figure 6.25: Log-log plots of Fournier-Forand phase functions having the same backscat-
tering fraction B = 0.0183 as the Petzold average-particle phase function, but generated
by the three n, µ pairs shown by the red symbols in Fig. 6.24. The Petzold average-particle
phase function is shown in red.

Figure 6.26: Log-linear plots of Fournier-Forand phase functions having the same backscat-
ter fraction B = 0.0183 but generated by the three n, µ pairs shown by the red symbols in
Fig. 6.24. The Petzold average-particle phase function is shown in red.
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6.8 Effect of Particle Shape on Optical Properties

[Emmanuel Boss and Curtis Mobley contributed to this section.]

A sphere is not likely to be a good representative of the shape of the average aquatic
particle for two main reasons: (1) the majority of marine particles are not spherical, and
(2) of all the convex shapes a sphere is rather an extreme shape: for a given particle
volume it has the smallest surface-area-to-volume ratio. Only a limited number of studies
have examined the IOPs of non-spherical marine particles, but results indicate a strong
dependence of optical properties, in particular scattering, on shape. See, for example, Kirk
(1976), Voss and Fry (1984), Volten et al. (1998), Gordon and Du (2001), MacCallum et al.
(2004), Quirantes and Bernard (2004), Quirantes and Bernard (2006), and Gordon (2006).

Methodical evaluation of shape effects on IOPs are presented in two non-peer-reviewed
publications, Aas (1984) and Herring (2002); a short book chapter, Jonasz (1987); and in
a review by Clavano et al. (2007). Considerably more research has been done on aerosol
particles, which are often irregularly shaped mineral particles with high indices of refraction
relative to air. Many of those results are pertinent to oceanic particles.

It has been shown in many studies that non-sphericity has its greatest effect in backscat-
ter directions. It is these directions that contribute to the water-leaving radiance, which
is the foundation of ocean-color remote sensing. Figure 6.27 shows a comparison between
measured phase functions and those computed by Mie theory for a polydispersion (particle
size distribution) of “equivalent” spheres of the same volume. The feature to note in the
phase functions is that Mie theory gives values that differ by as much as a factor of three
in backscatter directions.

Figure 6.28 shows phase functions for non-spherical particles and for spheres with the
same surface areas, as computed by the T-matrix technique. The left panel compares
phase functions for prolate (“football” shaped) and oblate (“pancake” shaped) spheroids
with aspect ratios ranging from 1.2 to 2.4, averaged over all orientations. The particle
size distributions corresponded to dust-like tropospheric aerosols with a complex index of
refraction of 1.53+0.0085i. The right panel shows the a similar comparison but for effective
particle size parameters of 14, 16, and 18; the non-spheres are a mixture of prolate and
oblate spheroids. This paper by Mishchenko et al. (1997) performed many such comparisons
for other wavelengths and effective particle sizes. Some of the conclusions from their study
was that spheres and non-spheres have similar phase functions only in the scattering angle
range from ψ = 0 to 10 deg. For 90 deg . ψ . 150 deg, the phase functions for the
non-spheres are much greater than for spheres, and for 150 deg . ψ . 180 deg, the sphere
phase functions are much greater than the non-spheres. However, for the absorption and
scattering cross sections, the sphere versus non-sphere values are often within 15% of
each other for small size parameters, and approached the same values at large sizes (the
geometric optics regime). Although these particular simulations are for atmospheric dust
in air, and not for particles in water, the general conclusions are the same: non-sphericity
can make factor-of-two differences in phase functions at backscatter directions, which are
critical for ocean color remote sensing. Asano and Yamamoto (1975) present similar results
for aspect ratios from 1 (a sphere) to 5.
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Figure 6.27: Measured and Mie-computed phase functions (top) and degree of linear po-
larization (bottom) for three mineral particles in air. Annotated Fig. 2 from Curtis et al.
(2008).

Figure 6.28: Computed phase functions for prolate and oblate spheroids versus area-
equivalent spheres. The left panel is for a polydispersion of particles corresponding to
tropospheric aerosols. The right panel is for three effective size parameters; spheres are
solid curves, non-spheres are dotted. Figures extracted from Plates 3 and 5 of Mishchenko
et al. (1997), which shows many more results for other wavelengths and effective sizes.
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Figure 6.29 shows orientation-averaged extinction cross sections (Cext) normalized by
the particle area computed using the radius rv of the volume-equivalent sphere, as a func-
tion of the size parameter computed using rv. For small particles, the shape has minimal
effect, but for size parameters of order 10, there is a factor-of-two difference in the normal-
ized extinction cross sections.

Figure 6.29: Normalized extinction cross sections for various prolate and oblate spheroids
compared to volume-equivalent spheres. Redrawn from Fig. 2 of Asano and Sato (1980).

One of the applications of in-water optical measurements is the inversion of measured
volume scattering functions (VSFs) to obtain particle size distributions. The underlying
physics is that diffraction accounts for much of the light scattered through small angles,
ψ . 10 or 20 deg. To first order, the amount of diffracted power is proportional to the cross
sectional area of the particle “seen” by the incident beam and is fairly insensitive to the
particle composition or index of refraction. Small particles scatter (diffract) more power
into large scattering angles; large particles diffract more power into very small angles. Thus
a measurement of the VSF between, ψ ≈ 0.1 deg and 10 or 20 deg can be inverted to get
an estimate of the particle area size distribution of the scattering particles. Converting the
area PSD to a volume PSD requires an assumption about the shape of the particles in the
form of a median diameter for the particles in each region of the area PSD. For details see
Agrawal and Pottsmith (2000) or the November 1991 issue of Applied Optics (Vol. 30, No.
33), which was a special issue on optical particle sizing.
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The bottom panel of Fig. 6.30 shows a PSD retrieved from a culture of the dynoflag-
ellate Ceratium longipes using the LISST-100 instrument (Sequoia Scientific, Inc.). From
just the PSD, it would be reasonable to conclude that the culture contained a mixture of
small, ∼ 10 µm; medium, ∼ 50 µm; and large, ∼ 150 µm sized particles. The top panel
of the figure shows a photograph of an actual Ceratium longipes. It is seen that there is
a central body with long, narrow spines. The LISST was “seeing” the narrow spines, the
central body, and the overall size of the phytoplankton. This is actually a quite remarkable
retrieval and shows the power of the instrument for resolving objects of various sizes. This
figure should be sufficient to convinced you of the futility of trying to define an “equivalent
spherical particle” for use in Mie theory when a particle has such a complex shape.

Figure 6.30: Top panel: Photograph of a Ceratium longipes dynoflagellate. Bottom panel:
LISST-retrieved particle size distribution obtained on a culture of Ceratium longipes. Top
image modified from PhycoKey. LISST data courtesy of Lee Karp-Boss.

The preceding figures are sufficient to make the point that non-spherical particles can
have much different scattering properties than spheres, and that using a volume- or area-
equivalent sphere in Mie calculations can give results much different from the actual non-

https://www.sequoiasci.com/
http://cfb.unh.edu/phycokey/phycokey.htm
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spherical particles. It is difficult to generalize about the optical properties of non-spherical
particles because their shapes can be so different: spheroids, long-chain diatoms, plate-like
mineral liths, fractal aggregates, etc. In addition to shape effects defined by the boundary
of the particle, phytoplankton have shape effects due to their non-homogeneous internal
structure as defined by chloroplasts, gas vacuoles, and cell walls.

However, a few results can be summarized as follows:

• For particles much smaller than the wavelength of light, the inherent optical proper-
ties of non-spherical particles are similar to those of spheres with the same volume.

• For randomly oriented convex particles much larger than the wavelength of light (the
geometric optics limit) the absorption, scattering and attenuation are similar to those
of spheres with a similar average cross-sectional areas.

• In general, however, about the only safe thing to say is that non-spherical particles
often have IOPs, especially scattering phase functions, that differ by a factor of two,
and sometimes by a factor of ten, from what would be obtained by Mie theory using
equivalent-volume or equivalent-area spheres.

There exist numerical techniques for computation of the optical properties of non-
spherical particles. The two most commonly used are the T-matrix method and the Dis-
crete Dipole Approximation (DDA). These techniques are extremely mathematical and
computationally intensive, and can require extensive effort just to define the problem.
The DDA, for example, divides the particle into many very small volume elements, each
of which then scatters as a dipole when the incident electromagnetic radiation induces a
dipole moment in the volume element. However, you must first define the size and shape
of the particle. Publicly available codes for these techniques may come with a gallery of
pre-defined shapes such as spheroids, disks, or cylinders, but for more irregular shapes, you
must first “build in” the particle shape, which can be a laborious process. In addition, the
computatioins may be limited in the range of size parameters that can be computed. The
best source for finding such codes, in a variety of computer languages, is SCATTERLIB.

http://scatterlib.wikidot.com/start
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CHAPTER 7

Inelastic Scattering

This chapter discusses the last of the three process—absorption, elastic scattering, and
inelastic scattering—that can occur when light interacts with matter. There are various
types of inelastic scattering, which are due to different physical processes. The opening
section of this book mentioned Compton scattering, which is inelastic scattering of X-rays
by electrons. The next section discusses Raman scattering, which is a type of inelastic
scattering of light by molecules. The following sections then discuss fluorescense by chloro-
phyll and CDOM. The time scales of both elastic and Raman scattering are on the order
of 10−13 s and are properly termed “scattering.” As will be seen, fluorescence results from
the absorption of a photon followed by the emission of a new photon, typically on a time
scale of 10−12 to 10−9 s, which is quite a long time by atomic standards. However, the time
scales for each of these processes is very short on the scale at which most radiometric mea-
surements are made, and each process can be treated by the same general mathematical
formalism in the time-independent radiative transfer equation. Therefore Raman scatter-
ing and fluorescence will both be called scattering and regarded as essentially instantaneous
for the purposes of this chapter.

In all of these cases, we are interested in light at some wavelength λ, and the inelastic
process takes radiant energy from wavelengths λ′ < λ and “creates” light at wavelength λ.
This is modeled in the radiative transfer equation by a source term that must be formulated
for each particular process. Bioluminescence is a true source of light at λ, in which the light
is created from non-thermal chemical reactions. Bioluminescence is a true emission process
and has nothing whatsoever to do with scattering. However, the creation of new light by
bioluminescence can be modeled by a mathematical formalism similar to that for inelastic
scattering for the purpose of formulating a bioluminescence source term for inclusion in
the radiative transfer equation.

7.1 General Formalism for Inelastic Scattering

The general formalism for inclusion of inelastic scattering effects into time-independent
radiative transfer calculations (e.g. in HydroLight) in involves the following:

211
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• A scattering coefficient b(λ′) with units of m−1, which quantifies how strongly the
incident or excitation light at wavelength λ′ interacts with the scattering substance.
That is, b(λ′) tells how much of the irradiance at the excitation wavelength λ′ scatters
into all emission wavelengths λ > λ′, per unit of distance traveled by the excitation
irradiance.

• A wavelength redistribution function f(λ′, λ) with units of nm−1, which relates
the excitation and emission wavelengths. That is, f(λ′, λ) specifies what wavelengths
λ receive the scattered spectral irradiance for a given excitation wavelength λ′ per unit
of emission wavelength, or, conversely, what wavelengths λ′ excite a given emission
wavelength λ. The term “wavelength redistribution function” is non-standard, but
descriptive, so that is what was used in Light and Water Mobley (1994) and again
here.

• A scattering phase function β̃(ψ) with units of sr−1, which gives the angular
distribution of the scattered or emitted light relative to the direction of the incident
or exciting light.

The next sections develop the exact forms of these three quantities as needed for Raman
scattering and chlorophyll and CDOM fluorescence. One each of these terms has been
defined for a particular inelastic scattering process, their product gives the corresponding
volume inelastic scattering function, βI(ξ̂

′ → ξ̂;λ′ → λ), where ξ̂′ and ξ̂ represent the
incident and final directions of the light:

βI(ξ̂
′ → ξ̂;λ′ → λ) = βI(θ

′, φ′ → θ, φ;λ′ → λ)

= b(λ′) f(λ′, λ) β̃(ψ) (m−1 nm−1 sr−1) . (7.1)

The scattering angle ψ is given by ψ = cos−1(ξ̂′ · ξ̂), which can be computed from θ′, φ′, θ, φ
via Eq. (1.9). The subscript I on βI is used to distinguish the VSF for inelastic scattering,
βI(θ

′, φ′ → θ, φ;λ′ → λ), from the VSF for elastic scattering, β(θ′, φ′ → θ, φ). The I will be
replaced below by R, C, Y, or B for Raman scatter, chlorophyll fluorescence, yellow-matter
(CDOM) fluorescence, or bioluminescence.

The scalar radiative transfer equation (SRTE) as developed in Sections 9.1 and 9.4 is

cos θ
dL(z, θ, φ, λ)

dz
=− c(z, λ)L(z, θ, φ, λ) (7.2)

+

∫ 2π

0

∫ π

0
β(z; θ′, φ′ → θ, φ;λ)L(z, θ′, φ′, λ) sin θ′dθ′dφ′

+

∫ λ

0

∫ 2π

0

∫ π

0
βI(θ

′, φ′ → θ, φ;λ′ → λ)L(z, θ′, φ′, λ′) sin θ′dθ′dφ′ dλ′ .

Inelastic scattering is then incorporated into unpolarized radiative transfer calculations by
using the inelastic VSF of Eq. (7.1) in the last integral of this equation. Note that this
formidable equation cannot be solved at just the emission wavelength λ of interest; it must
be solved at all wavelengths λ′ < λ that contribute inelastically scattered radiance to the
radiance at λ.
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7.2 Raman Scattering

First of all, the pronunciation is RAman, not raMAN. Upon learning of Compton’s dis-
covery of inelastic scattering of X-rays by electrons (for which Compton received the 1928
Nobel Prize in Physics), C. V. Raman1 thought there should be a similar effect at visible
wavelengths and set out to find it. He succeeded and subsequently received the 1930 Nobel
Prize in Physics for the discovery and explanation of what is now called Raman scattering
or the Raman effect.

The quantum-level physics of Raman scattering is quite complicated, but it can be con-
ceptualized as following. Incident light can excite a molecule in its ground state to a higher
“virtual” energy level, which then immediately decays back to a lower level accompanied
by the emission of light. If the decay returns the molecule to its initial state, the scattering
is elastic and is called Rayleigh scattering. If the decay is to a molecular vibrational level
above the ground state, then then emitted light has a longer wavelength (lower energy)
than the incident light: this is Raman scattering. (See the Physics of Absorption Sec-
tion 5.3 for a description of electronic, vibrational, and rotational energy levels.) Raman
scattering is widely used in chemistry as a way to study the vibrational energy levels of
molecules; this application is often called Raman spectroscopy. In those applications, the
incident light usually comes from a laser. In the ocean, the molecule of interest is water,
and the exciting light can come either from the Sun or a laser.

The wavelength shift for Raman scatter by water is exceptionally large, corresponding
to a wavenumber (1/wavelength) shift of about 3400 cm−1, which at visible wavelengths is
many tens to more than a hundred nanometers.

In accordance with the general formulation for inelastic effects of the previous Section
7.1, the quantities needed to compute Raman scattering contributions to the radiance are

• the Raman scattering coefficient bR(λ′), with units of m−1

• the Raman wavelength redistribution function fR(λ′, λ), with units of nm−1

• the Raman scattering phase function beta β̃R(ψ), with units of sr−1

The next sections discuss each of these quantities in turn.

7.2.1 The Raman Scattering Coefficient

The Raman scattering coefficient bR(λ′) tells how much of the irradiance at the excitation
wavelength λ′ scatters into all emission wavelengths λ > λ′, per unit of distance traveled
by the excitation irradiance. The most recently published values of bR(488 nm) for water
are (2.7 ± 0.2) × 10−4 m−1 (Bartlett et al., 1998) and 2.4 × 10−4 m−1 (Desiderio, 2000).
(The current version 6.0 of the HydroLight radiative transfer model (Section 10.6) uses
bR(488 nm) = 2.6× 10−4 m−1 as the default value.)

Various values for the wavelength dependence of bR can be found in the literature.
Bartlett et al. (1998) reviewed the wavelength dependence of the Raman scattering co-
efficient in detail and found, based on their measurements, a wavelength dependence of

1Raman received his bachelor’s degree in physics at 16, graduating at the head of his class, and he
published his first paper at 18. The Raman family produced a number of scientists, including Raman’s
nephew Subrahmanyan Chandrasekhar, who received the physics Nobel in 1983. The family seems to have
had good genes for science.
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λ−4.8±0.3 for calculations performed in energy units (as in HydroLight). In terms of the
excitation wavelength, Bartlett et al. found bR(λ′) = bR(488)(488/λ′)5.5±0.4 for energy
computations. (The current version of HydroLight uses bR(λ′) = bR(488)(488/λ′)5.5 as the
default.) For calculations in terms of photon numbers (as in a Monte Carlo simulation),
Bartlett et al. found wavelength dependencies of (λ′)−5.3±0.3 or (λ)−4.6±0.3.

7.2.2 The Raman Wavelength Redistribution Function

The Raman wavelength distribution function fR(λ′, λ) relates the excitation and emission
wavelengths, i.e., what wavelengths λ receive the Raman-scattered spectral irradiance for a
given excitation wavelength λ′ or, conversely, what wavelengths λ′ excite a given emission
wavelength λ. The function fR(λ′, λ) is most conveniently described in terms of the cor-
responding wavenumber distribution function fR(ν ′′), where ν ′′ is the wavenumber shift,
expressed in units of cm−1. This follows because the Raman-scattered light undergoes
a frequency shift that is determined by the type of molecule and is independent of the
incident frequency. The wavenumber ν in cm−1 is related to the wavelength λ in nm by
ν = 107/λ, and to the frequency f by ν = f/c, where c is the speed of light. (The 107

factor converts nanometers to centimeters.)
According to Walrafen (1967), the shape of fR(ν ′′) for water is given by a sum of four

Gaussian functions:

fR(ν ′′) =

[( π

4 ln 2

) 1
2

4∑
i=1

Ai

]−1 4∑
j=1

Aj
1

∆νj
exp

[
−4 ln 2

(ν ′′ − νj)2

∆ν2
j

]
(cm) , (7.3)

where

• ν ′′ is the wavenumber shift of the Raman-scattered light, relative to the wavenumber
ν ′ of the incident light, in cm−1

• νj is the center of the jth Gaussian function, in cm−1

• ∆νj is the full width at half maximum of the jth Gaussian function, in cm−1

• Aj is the nondimensional weight of the jth Gaussian function.

The values of Aj , νj , and ∆νj for pure water at a temperature of 25 deg C are given
in Table 7.1. Figure 7.1 shows fR(ν ′′) evaluated for the water parameter values of Table
7.1. The function shows a peak and a shoulder, which result from the sums of the four
Gaussians seen in Eq. (7.3). For water, the wavenumber shift is roughly 3400 cm−1.

Consider, for example, incident light with λ′ = 500 nm, which corresponds to ν ′ =
20000cm−1. Figure 7.1 shows that this light, if Raman scattered, will be shifted by roughly
3400 cm−1 to ν = 16600 cm−1, which corresponds to λ ≈ 602 nm.

The function fR(ν ′′) can be interpreted as a probability density function giving the
probability that a light of any incident wavenumber ν ′ = 107/λ′, if Raman scattered, will
be scattered to a wavenumber

ν = ν ′ − ν ′′ . (7.4)

The function fR(ν ′′) satisfies the normalization condition∫ ν′

0
fR(ν ′′)dν ′′ = 1 , (7.5)
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j Aj νj cm−1 ∆νj cm−1

1 0.41 3250 210

2 0.39 3425 175

3 0.10 3530 140

4 0.10 3625 140

Table 7.1: Parameter values for the Raman wavenumber redistribution function fR(ν ′′) of
Eq. (7.3), for pure water at a temperature of 25 C. Data from Walrafen (1967).

Figure 7.1: The fR(ν ′′) function of Eq. (7.3) for pure water at 25 C.

as is required of any probability distribution function. The integration limits above come
from observing that as λ→∞ then the wavenumber ν ′′ → ν ′, and as λ→ λ′ then ν ′′ → 0.
A change of variables from ν ′′ to λ in Eq. (7.5) leads to the corresponding wavelength
redistribution function fR(λ′ → λ). Thus∫ ν′

0
fR(ν ′′)dν ′′ =

∫ ∞
λ′

fR

(
107

λ′′

)
dν ′′

dλ
dλ =

∫ ∞
λ′

fR

[
107

(
1

λ′
− 1

λ

)]
107

λ2
dλ

≡
∫ ∞
λ′

fR(λ′ → λ)dλ = 1 ,

where the wavelengths are in nanometers. In the last equation, we have identified the
function

fR(λ′, λ) ≡


107

λ2 fR

(
107

λ′′

)
= 107

λ2 fR

[
107

(
1
λ′ −

1
λ

)]
if λ′ < λ

0 if λ′ ≥ λ
(7.6)

as being the desired Raman wavelength redistribution function, with units of nm−1.
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In fR(λ′, λ) we can fix the incident wavelength λ′ and plot the corresponding emission
wavelengths. We can also fix the emission wavelength λ and use the function to see where
the light emitted at λ comes from. Both options are seen in Fig. 7.2.

Figure 7.2: Raman emission function for excitation at 488 nm (red), and excitation function
for emission at 583 nm (blue). Compare with similar figures in Ge et al. (1993, Fig. 3)
and Kattawar and Xu (1992, Fig. 2).

Figure 7.3 shows fR(λ′, λ) for four values of the incident wavelength λ′. These plots
show that as the incident wavelength λ′ increases, the emission band becomes broader and
the shift from λ′ to λ becomes larger. Excitation at 400 nm gives emission centered at
roughly 463 nm, a shift of 63 nm, but excitation at 550 nm gives emission centered at
round 677 nm, a shift of 127 nm.

Equation (7.4) can be rewritten as

λ =
107

107

λ′ − 3400

and used to compute the approximate center of the emission wavelength band for a given
excitation wavelength. Figure 7.4 shows the result.

7.2.3 The Raman Phase Function

The Raman phase function β̃R(ψ) gives the angular distribution of the Raman scattered
radiance. This function (averaging over all polarization states) is given by

β̃R(ψ) =
3

16π

1 + 3ρ

1 + 2ρ

[
1 +

(
1− ρ
1 + 3ρ

)
cos2 ψ

]
,

where ψ is the scattering angle between the direction of the incident and scattered radiance,
and ρ is the depolarization factor. The value of ρ depends on the wavenumber shift ν ′′ (Ge
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Figure 7.3: The Raman emission functions for four excitation wavelengths, as computed
from Eq. (7.6).

Figure 7.4: Approximate center λ of the Raman emission band for a given excitation
wavelength λ′.

et al., 1993, Fig. 2). For a value of ν ′′ = 3400 cm−1, ρ ≈ 0.18, in which case the phase
function is

β̃R(ψ) = 0.068 (1 + 0.53 cos2 ψ) .

This phase function is similar in shape to the phase function for elastic scattering by pure
water.
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7.2.4 Incorporation of Raman Scattering into Radiative
Transfer Calculations

We now have have the pieces needed to define the volume scattering function for Raman
scattering, βR(ξ̂′ → ξ̂;λ′ → λ), where ξ̂′ and ξ̂ represent the incident and final directions of
the light. This VSF specifies the strength of the Raman scattering via the Raman scattering
coefficient bR(λ′), the wavelength distribution of the scattered light via the wavelength
redistribution function fR(λ′, λ), and its angular distribution relative to the direction of
the incident light via the Raman phase function β̃R(ψ). Thus we have a specific instance
of the general form (7.1):

βR(ξ̂′ → ξ̂;λ′ → λ) = bR(λ′) fR(λ′, λ) β̃R(ψ) (m−1 nm−1 sr−1) . (7.7)

This inelastic VSF is then used in the radiative transfer equation (7.2).

7.2.5 Interpretation of Raman emission profiles

An interesting example of the contribution of Raman scattering to in-water radiances is
seen in Fig. 7.5. This plot shows the downwelling (zenith-viewing) radiance generated
from a HydroLight run using its option for simulating lidar illumination at one wavelength
in an otherwise black sky. The inputs were as follows:

• The incident (lidar) irradiance was Ed(direct beam) = 1 W m−2 at 488 nm; the sky
was otherwise black.

• The chlorophyll concentration was Chl = 0.05 mg m−3 for Case 1 water.

• The water was infinitely deep water with Eq. (7.2) solved down to 50 m.

• The output was at 560 to 610 nm at 1 nm resolution.

The curves in Fig. 7.5 are explained as follows. At depth 0, just below the sea surface,
the only contribution to Ld(0, λ) is upwelling radiance that is reflected back downward by
the sea surface. By 5 m depth, there is now enough water above the simulated measurement
instrument that the water column is generating significant downwelling radiance. Note that
the shape of the emission has the same shape as the emission function seen in Fig. 7.2,
namely a peak near 585 nm with a shoulder at about 580 nm. As the depth increases
to 10 and then 20 m, the magnitude of Ld(z, λ) increases, but the shape of the emission
begins to flatten between 580 and 585. By 30 m, the magnitude of Ld(z, λ) has decreased
because of the decrease in the radiance penetrating to this depth from the water between
the surface and 30 m, and the magnitude continues to decrease as the depth becomes
greater. However, the shape of the emission at 30 m shows almost the same magnitudes at
580 and 585 nm, and at 40 and 50 m, the peak emission is actually greater at 580 than at
585 nm. This may seem strange because the shape of the Raman emission function seen
in Fig. 7.2 is the same for all depths.

This “reversal” of the “peak-shoulder” shape of the emission is a consequence of the
difference in absorption across the emission wavelengths. The total absorption (water plus
phytoplankton) increases by a factor of three (from 0.071 to 0.221 m−1) between 570 and
600 nm, and by 22% (from 0.091 to 0.111 m−1) between 580 and 585 nm. These rapidly
increasing absorption values change the shape of the local (at each depth) emission function
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Figure 7.5: Downwelling Raman-scattered radiance Ld(z, λ) as a function of depth and
wavelength over the Raman emission band for 488 nm excitation. The wavelength shape of
the Ld(z, λ) emission band depends on depth because of wavelength-dependent absorption.

when integrated over depth to obtain the total Ld(z, λ), which has contributions from all
depths. Simply stated, the higher absorption at the 585 nm peak lets relatively less of the
radiance emitted above a given depth reach the measurement depth than for the shoulder
at 580 nm, so the 585 nm peak appears smaller relative to the shoulder than what is seen
for the emission function of Fig. 7.2.

The claim that the change in shape with depth of the Raman emission is due to
wavelength-dependent absorption can be verified as follows. An “artificial water” IOP
data file was created with the IOP values between 570 and 600 nm having the values at
570 nm. The water IOPs are then the same over the entire range of emission wavelengths
seen in Fig. 7.5. The resulting Raman Ld(z, λ) spectra are seen in Fig. 7.6. Now, without
the wavelength-dependent absorption, the shape of Ld(z, λ) does not change with depth
and, indeed, looks exactly like the shape of the emission function seen in Fig. 7.2. The
magnitude of the Ld(z, λ) curves is greater than before because the absorption is less. Of
course, if the HydroLight run had been made at 5 or 10 nm resolution, then the shape
of the emission band would not have been resolved. However, the total Raman-scattered
power would have been the same, but spread over the wider bands.

These simulations show that the interpretation of Raman-scattered spectra can be
complicated because of IOP effects at both the excitation and emission wavelengths, even
in the simplest possible case of excitation at one wavelength in an otherwise black sky. The
situation becomes even more complicated for solar-stimulated Raman scatter because many
excitation wavelengths can contribute to a range of emission wavelengths, and everything
blurs together in a non-obvious fashion.
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Figure 7.6: Downwelling Raman-scattered radiance as a function of depth for the case of
artificial water IOPs having the same values from 570 to 600 nm. The shape of Ld(z, λ) is
now independent of depth and is the same as the Raman-emission function of Fig. 7.2.

7.2.6 Temperature and Salinity Dependence of Raman Scattering

The Walrafen data presented in Table 7.1 were determined on pure water at a temperature
of 25 deg C. There is, however, a small but significant dependence on temperature and
salinity of the shape of the emission curve seen in Fig. 7.1. This dependence is shown in Fig.
7.7. The upper panel shows the shape of the emission curve as a function of temperature
for a salinity of 15 PSU, and the lower curve shows the dependence on salinity for a
temperature of 25 deg C. Artlett and Pask (2017) have shown in laboratory measurements
that these differences can be used to simultaneously determine temperature and salinity
with an RMS errors of ±0.7 deg C and ±1.4 PSU, and they present the design for a three-
channel Raman spectrometer that excites at 532 nm and measures the emission at three
bands. The emission bands would be used to form band ratios, from which temperature
and salinity can be extracted.

Because Raman scattering is determined by the water itself, its contributions to the
light field can be computed exactly. It can therefore be used as a “known reference” for
calibration a lidar system as the signal leaving the ocean is proportional to the intensity
of the source; e.g. Hoge et al. (1988).
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Figure 7.7: Dependence of the Raman wavelength redistribution function on temperature
and salinity. (Figure 2 from Artlett and Pask (2017), reproduced by permission of Optica
under their Fair Use policy)

7.3 Theory of Fluorescence and Phosphorescence

Luminescence refers to the emission of light by processes other than thermal emission,
which is called incandescence. There are many types of luminescence: fluorescence, phos-
phorescence, chemiluminescence, triboluminescence, radioluminescence, and so on. The
luminescence processes that are of primary interest in oceanography are fluorescence (by
chlorophyll, CDOM, or pollutants), chemiluminescence (bioluminescence), and radiolumi-
nescence (Cherenkov radiation).

When light is absorbed by a molecule, one of three things can happen:

1. the energy is used for photochemisty, e.g. for photosynthesis in a chlorophyll molecule;

2. the energy goes into vibrational modes of the molecule, i.e. into heat; or

3. the energy is re-emitted as light via fluorescence of phosphorescence.

This section develops the general theory needed to include fluorescence by chlorophyll
and colored dissolved organic matter (CDOM) in radiative transfer calculations. Specific
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implementations of the general theory for chlorophyll and CDOM fluorescence are given
on the next two sections.

7.3.1 The Physics of Fluorescence and Phosphorescence

The Pauli Exclusion Principle is one of the foundations of quantum mechanics. It states
that no two fermions in an atom or molecule can have the same set of quantum numbers.
Fermions are particles with an intrinsic angular momentum or “spin” that is a half-integer
multiple of ~ = h/2π, where h is Planck’s constant. Electrons are fermions with an angular
momentum of ~/2 and are called “spin 1/2” fermions. Thus for our purposes, the Pauli
Exclusion Principle says that two electrons in the same atomic or molecular orbital must
have opposite spins, which are called “up” and “down.” (The labels “up” and “down”
historically referred to orientations of the angular momentum vector relative the direction
of an external magnetic field. “Up” and “down” correspond to spin quantum numbers of
s = +1/2 and -1/2. For more on the terminology of quantum numbers, orbitals, etc. see
the Physics of Absorption Section 5.3.)

A singlet state of a molecule is one in which all electrons are paired in up and down
pairs. A triplet state is one in which one set of two electrons in different orbitals have
the same orientation, up-up or down-down. Figure 7.8 illustrates the idea. (Again, the
terminology is historical and relates to the number of lines seen in a spectrum for molecules
that are not spherically symmetric or when when a molecule is placed in a magnetic field,
which splits the energy states. There is also a doublet state corresponding to one un-paired
electron, but it does not concern us here.)

Figure 7.8: Illustration of singlet and triplet states. The black lines are energy levels and
the gold dots are electrons; the arrows represent up and down angular momentum states.

Figure 7.9 is a Jablonski2 diagram of energy states in a molecule. Such diagrams group
the energy levels vertically and the spin states horizontally. The black lines represents the
energy levels; the thick lines labeled S0 and S1 are the electronic levels, and the thinner
lines are vibrational levels. The gold dots with arrows represent electrons in either up or
down angular momentum states.

2The guy’s name is properly spelled Jab loński. The Polish “J” is like the English “Y”; the L with a line
through it is like the “W” in water, and the accented N is like the Cyrillic “H” in the Russian word“HeT,”
or Nyet in English. So Jab loński is pronounced something like YabWoNYski with English spelling; the
accent is on the second syllable. He is one of those unfortunate souls who, like Khrushchev and Gengis
Kahn, are forever doomed to have their names mispronounced by English speakers.
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Figure 7.9: Jablonski diagram illustrating the fundamental processes of fluorescence and
phosphorescence.

Now suppose that one of the electrons of an electron pair, say the down electron, in
the ground state of a molecule absorbs a photon. The energy of the photon excites the
electron to a higher energy level as shown by the upward green arrow. The time scale for
this excitation is on the order of 10−15s. The electron spin is still down in the excited energy
level. One thing that can happen is that the electron almost immediately drops back to the
ground state with emission of a photon with the same wavelength as the excitation photon.
This is elastic scattering and is represented by the green downward arrow in the figure.
This process is so fast that the excited electron “remembers” the direction of the incident
photon, and the direction of the emitted/scattered photon depends on the direction of the
incident photon; i.e., the scattering is not isotropic.

Another thing that can happen is that part of the energy of the excited electron is given
up to other vibrational modes (i.e., to heat), so that the electron drops to a lower energy
level of the excited state. This is indicated by the blue wiggly line labeled “vibrational
relaxation” in Fig. 7.9. This loss of energy is called a “radiationless transition” because
it does not involve the emission of a photon. The time scale for vibrational relaxation is
10−12-10−10 s. The electron may stay in the excited S1 state for a while, but if the electron
is still in the down state, i.e. it is in a singlet state, it can drop back to the ground level by
emission of a photon of lower energy (longer wavelength) than the exciting photon. The
time scale for this is of order 10−10-10−7 s. The ground state then once again contains
an up-down pair of electrons. This is fluorescence and is shown by the red downward
arrow in the figure. The processes of vibrational relaxation and fluorescence emission take
so long that the electron has “forgotten” the direction of the incident photon, and the
emitted photon is equally likely to be in any direction; i.e., the emission of fluoresced light
is isotropic.

An electron cannot just simply “flip” from a down to an up state, which would violate
the law of conservation of angular momentum. Such a flip is therefore a “forbidden tran-



224 CHAPTER 7. INELASTIC SCATTERING

sition” in quantum mechanics terminology. However, in quantum mechanics, “forbidden”
does not mean “do not ever do something,” just “do not do it vary often.” So a third thing
that can happen is that the down electron sitting in the S1 state can exchange some angular
momentum with the orbital angular momentum of the molecule via what is called “spin-
orbit coupling.” The electron can then flip to an up state. This is another radiationless
transition and is called an “intersystem crossing” and is shown in purple in Fig. 7.9. The
time scale for intersystem crossing is on the order of 10−10-10−8 s. The electron can also
undergo further vibrational relaxation in the triplet state. This up electron is no longer
paired with the up electron that was left in the ground state; it is in an excited triplet
state, which is labeled by T1 in figure. The energy level of the first excited triplet state T1

is usually lower than for the first excited singlet state S1 because the electrons are further
apart, which makes their Coulomb repulsion less. This up electron cannot drop back to
the ground state because the result would give two up electrons in the ground state, which
violates the Pauli Exclusion Principle; this is another forbidden transition. Therefore the
up electron in the T1 state must wait for another chance for spin-orbit coupling, which
can flip its spin to down. This takes a long time (on the atomic scale), so the T1 state is
called “metastable.” That down electron can then drop into the down-electron spot in the
ground level, which is again paired with the up electron in the ground state. This process
is phosphorescence and can take from 10−6 to as long as 10 s. The emitted light is again
isotropic because of the long time between absorption and re-emission.

In summary, fluorescence is a transition from an excited singlet state to the ground
singlet state, and phosphorescence is a transition from an excited triplet state to the ground
singlet state. There are other pathways to fluorescence. For example, the original absorbed
photon could excite the ground state electron to the S2 state (second excited singlet state),
which might then do a radiationless transfer of energy to an overlapping vibrational level
of the S1 orbital; this is called “internal conversion” (internal within a singlet state), and
the time scale is 10−11-10−9 s. The electron can then vibrationally relax to the S1 level, and
then fluoresce, and so on. It should also be noted that there are many vibrational energy
levels in each of the electronic levels illustrated in Fig. 7.9, and transitions can occur
between any of these. This gives a spread of energies of the emitted emitted photons, i.e,
a spread of wavelengths. See the related discussion in Section 5.3.

As previously noted, time scales of elastic scattering, and of Raman Scattering, are so
short, 10−13 s or less, that they are called “scattering.” However, as just seen, fluorescence
and phosphorescence are clearly absorption followed much later by the emission of a new
photon that is uncorrelated with the absorbed photon. However, for solution of the time-
independent radiative transfer equation, fluorescence and phosphorescence can be regarded
as “inelastic scattering” and treated with the same mathematical formalism as that used
for Raman scattering. This is the case for “solar-stimulated” chlorophyll and CDOM
fluorescence.

However, measuring the time dependence of fluorescence emission at time scales of
10−12 to 10−9 s gives information about the internal details of the energy transfers within
the molecule. Indeed, the quantum efficiency ΦC of chlorophyll fluorescence is determined
by measuring the decay of chlorophyll fluorescence (on a time scale of order 10 ns) ex-
cited by an extremely short light pulse (or order 1 ns). Thus time-resolved measurements
of chlorophyll fluorescence give information about the photosystems responsible for pho-
tosynthesis and the effect of environmental stresses (pH, light adaptation, etc) on those
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systems. That requires a much more complicated modeling of fluorescence than what is
discussed here. See Falkowski et al. (2016) for an overview of time-resolved chlorophyll
fluorescence measurements.

7.3.2 Incorporation of Fluorescence into Time-independent
Radiative Transfer Theory

Just as for any inelastic process, the quantities needed to compute fluorescence contribu-
tions to the radiance are

• the fluorescence scattering coefficient bF(z, λ′), with units of m−1,

• the fluorescence wavelength redistribution function fF(λ′, λ), with units of nm−1, and

• the fluorescence scattering phase function β̃F(ψ), with units of sr−1.

The subscript “F” indicates fluorescence; it will be replaced on the next sections by
“C” for chlorophyll or “Y” for yellow matter (and it was “R” in the discussion of Raman
scatter, which uses the same mathematical formalism). The scattering coefficient bF(z, λ′)
in general depends on the depth because amount of fluorescing material, e.g. the amount of
chlorophyll or CDOM, depends on depth, whereas the wavelength redistribution function
is determined only by the type of fluorescing material. The phase function is isotropic.
It is thus reasonable to place the depth dependence of the fluorescence in the scattering
coefficient.

Multiplied together, these functions give the volume inelastic scattering function for
fluorescence βF(z; θ′, φ′ → θ, φ;λ′ → λ) = βF(z, ψ, λ′, λ):

βF(z, ψ, λ′, λ) = bF(z, λ′) fF(λ′, λ) β̃F(ψ) [m−1 sr−1 nm−1] . (7.8)

This function is used as a source function in the scalar radiative transfer equation (7.2).
This is conceptually the same set of quantities required in the previous section to describe
Raman scatter. Of course, the functional forms and magnitudes of these quantities will be
different for Raman scatter, chlorophyll fluorescence, and CDOM fluorescence.

It must be remembered that radiative transfer theory is formulated in terms of energy.
For fluorescence, the quantity of interest in computing radiance via Eq. (7.2) is how much
energy is emitted by fluorescence compared to how much energy is absorbed. However, the
folks who study fluorescence usually work in quantum units, i.e., how many photons are
emitted as fluorescence compared to how many photons are absorbed. Accordingly, the
spectral fluorescence quantum efficiency function is defined as

ηF(λ′, λ) =
the number of photons emitted at λ,per unit wavelength interval

the number of photons absorbed at λ′
[nm−1] .

The numerator of this function must be multiplied by hc/λ, and the denominator by hc/λ′,
to convert the photon counts to energy. The result is that

fF(λ′, λ) = ηF(λ′, λ)
λ′

λ
[nm−1] . (7.9)

Another quantity often seen in the literature is the non-dimensional quantum efficiency
(or quantum yield) of fluorescence, which is defined by

ΦF(λ′) =
the number of photons emitted at all wavelengths λ

the number of photons absorbed at λ′
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ΦF(λ′) is obtained from ηF(λ′, λ) by

ΦF(λ′) =

∫ ∞
λ′

ηF(λ′, λ) dλ . (7.10)

A paper on chlorophyll fluorescence may discuss other quantum efficiencies, namely a
quantum efficiency for photosynthesis Φph and a quantum efficiency for heating ΦH. The
quantum efficiency for photosynthesis is the ratio of photons whose energy goes into pho-
tosynthesis to the number of photons absorbed, and similarly for the number whose energy
stays in vibrational modes (i.e., heat). From the opening comments of this section it follows
that ΦF + Φph + ΦH = 1. Typical upper-ocean numbers as measured by Falkowski et al.
(2016) are ΦF = 0.07, Φph = 0.35, and ΦH = 0.58.

7.3.3 Comments on Terminology

It might appear that fF(λ′, λ) or ηF(λ′, λ) is the fluorescence “excitation-emission” (Ex-Em)
function or matrix that is commonly seen in papers (e.g., Fig. 7.16 of Section 7.5). However,
these are different quantities. ηF(λ′, λ) is a fluorescence efficiency that measures how many
quanta are emitted per quanta absorbed. Ex-Em functions are measurements of the number
of emitted quanta (e.g., as counts per second) without regard for how many quanta are
absorbed. In addition, the factor of λ′/λ that converts ηF(λ′, λ) to fF(λ′, λ) shifts the
location of maxima in the functions because different wavelengths correspond to different
numbers of quanta for the same energy. Thus fF(λ′, λ) and Ex-Em spectra are qualitatively
similar in appearance, but quantitative comparison is difficult. In addition, Ex-Em spectra
are often presented as normalized values, which makes quantitative comparison impossible.
Relative excitation and emission values have many uses, but the radiative transfer equation
requires a calibrated function in units of 1/nm.

I have called ηF(λ′, λ) the “spectral fluorescence quantum efficiency function”, which
comes from Hawes (1992). This Master’s Thesis is the only study I have found that
measures this function (for CDOM fluorescence) in a calibrated form suitable for radiative
transfer theory3. I called the energy equivalent fF(λ′, λ) the “wavelength redistribution
function” in Light and Water because it tells how energy at the excitation wavelengths
λ′ is redistributed to the emission wavelengths λ, but maybe the “spectral fluorescence
energy efficiency function” would be a better name. Gordon (1979) calls a nondimensional
function equivalent to ηF(λ′, λ)∆λ the “quantum efficiency.” Gordon calls my “volume
inelastic scattering function for fluorescence” β the “volume fluorescence function,” and he
calls

Φ(λ′, λ) =

∫
4π
β(ψ)dΩ m−1 nm−1

the “coefficient of fluorescence.” I will leave it at that and define quantities as needed; I
hope that my definitions are clear, even if the terminology is sometimes non-standard.

3I have talked to a couple of researchers in fluorescence about the need for calibrated excitation-emission
functions in radiative transfer theory, i.e. my fF(λ′, λ) or ηF(λ′, λ), but the response has been that they do
not need calibrated functions for their applications, so they do not attempt to measure them.
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7.4 Chlorophyll Fluorescence

This section now tailors the general fluorescence theory of the previous section to the case
of fluorescence by chlorophyll in living phytoplankton. The goal is to develop the quantities
needed for prediction of chlorophyll fluorescence contributions to oceanic light fields using
a radiative transfer model like HydroLight. For convenience of reference, it is recalled that
the quantities needed are

• the chlorophyll fluorescence scattering coefficient bC(z, λ′), with units of m−1,

• the chlorophyll fluorescence wavelength redistribution function fC(λ′, λ), with units
of nm−1, and

• the chlorophyll fluorescence scattering phase function β̃C(ψ), with units of sr−1.

These quantities are then combined to create the volume inelastic scattering function for
chlorophyll fluorescence,

βC(z, ψ, λ′, λ) = bC(z, λ′) fC(λ′, λ) β̃C(ψ) [m−1 sr−1 nm−1] . (7.11)

The subscript C indicates chlorophyll.

7.4.1 The Chlorophyll Fluorescence Scattering Coefficient

For chlorophyll fluorescence, the inelastic “scattering” coefficient in the formalism of treat-
ing the fluorescence as inelastic scattering is just the absorption coefficient for chlorophyll.
In other words, what matters is how much energy is absorbed by chlorophyll at the excita-
tion wavelength λ′, which is then available for possible re-emission at a longer wavelength
λ. Note that it is only energy absorbed by the chlorophyll molecule that matters for chloro-
phyll fluorescence. Energy absorbed by other pigments may (or may not) fluoresce, but
that is not chlorophyll fluorescence. Thus the needed chlorophyll scattering coefficient is
commonly modeled as

bC(z, λ′) = Chl(z) a∗Chl(λ
′) [m−1] ,

where Chl(z) is the chlorophyll profile in mg Chl m−3 and a∗Chl(λ
′) is the chlorophyll-

specific absorption spectrum in units of m2 (mg Chl)−1. Examples of these spectra are seen
in Section 8.3. (The elastic scattering coefficient for chlorophyll-bearing phytoplankton is
often modeled as a power law, as described in the New Case I IOPs, Section 8.9.)

7.4.2 The Chlorophyll Fluorescence Wavelength Redistribution Function

Figure 7.10 shows a typical chlorophyll fluorescence emission spectrum.
Other than the general shape, the important feature of this emission spectrum is that

it is independent of the excitation wavelength. The chlorophyll absorption spectrum peaks
in the blue and is a minimum in the green, so a 435 nm photon is much more likely to
be absorbed by a chlorophyll molecule than is a 570 nm photon. However, either photon,
if absorbed, leads to the same fluorescence. Wavelengths in the range of 370 to 690 nm
can, if absorbed, can lead to fluorescence. Given these observations, it is customary (e.g.,
Gordon, 1979) to factor the chlorophyll fC(λ′, λ) into a product of functions:

fC(λ′, λ) = ηC(λ′, λ)
λ′

λ
= ΦC gC(λ′)hC(λ)

λ′

λ
[nm−1] , (7.12)
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Figure 7.10: Measured chlorophyll fluorescence emission spectra for four excitation wave-
lengths for the chlorophyte Chlorella sorokiniana. Figure extracted from Fig. 3 of Santabar-
bara et al. (2020) under a Creative Commons License.

where

ΦC is the quantum efficiency for chlorophyll fluorescence,

gC(λ′) is a nondimensional function that specifies the interval over which light is able to
excite chlorophyll fluorescence, and

hC(λ) is the chlorophyll fluorescence wavelength emission function, with units of nm−1.

The following sections describe how each of these terms can be modeled.

7.4.3 The Quantum Efficiency of Chlorophyll Fluorescence

The first factor on the right-hand side of Eq. (7.12), the quantum efficiency ΦC, is just
a number, but it is the most difficult to model. This is because its value depends on the
type and physiological state of the phytoplankton, and the physiological state is affected
by the available light and nutrients, the temperature, and other factors.

Figure 7.11 shows three depth profiles of ΦC determined as described in Maritorena
et al. (2000). The locations were in oligotrophic areas of the equatorial Pacific where
the chlorophyll values were between 0.035 and 0.29 mg Chl m−3. The inset shows the
fluorescence signal, which is proportional to the chlorophyll concentration and thus shows
the shape of the Chl(z) profiles. The arrows labeled Ze are the depths of the euphotic zone,
which was defined as the depth where the irradiance has decreased to 1% of its surface
value. The irradiance decreases approximately exponentially with depth, so the ordinate
axis roughly corresponds to a log-scale plot of irradiance level. In the high-irradiance,
near-surface region, the quantum efficiency is between 0.005 and 0.01. However, in the
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Figure 7.11: Depth profiles of ΦC for three locations. From Maritorena et al. (2000, Fig.
7) and reproduced under Optica’s Fair Use policy.

lower-irradiance regions below 50 m depth, ΦC is as large as 0.07. Very similar profiles can
be seen in Fig. 8 of Morrison (2003).

Several models have been developed to predict ΦC as a function of the variables that
affect it. Understanding these models requires a cellular-level understanding of the pro-
cesses involved in photosynthesis, which is far beyond the level of this section. See, for
example, Kirk (1994) for a general discussion of photosynthesis and Kiefer and Reynolds
(1992) for discussion of the factors determining ΦC. In addition to PAR, these models
depend on quantities such as the fraction of open photosystem II (PSII) reaction centers.
An example model is that of Morrison (2003, Eq. 18), which has the form

ΦC =
[
r + (1− r) qI e

−PARo/PART

]
[φminA+ φmax(1−A)] , (7.13)

where

• r = 0.04 is the fraction of PSII reaction centers that are unaffected by nonphoto-
chemical quenching.

• qI is related to nonphotochemical quenching and ranges between 0 (maximum quench-
ing) and 1 (minimal quenching).

• PARo is the ambient scalar irradiance PAR in units of µmol quanta m−2 s−1

• PART = 350µmol quanta m−2 s−1 is the saturation PAR value for energy dependent
nonphotochemical quenching.

• φmin = 0.03 and φmax = 0.09.

• PARk = 55 µmol quanta m−2 s−1 is the saturation PAR value for photosynthesis.
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• A = exp(−PARo/PARk) is the fraction of open PSII reaction centers.

Quenching refers to any process that reduces the amount of fluorescence. These pro-
cesses include the use of the absorbed energy for the chemical processes of photosynthe-
sis (photochemical quenching) and the transfer of energy into heat (nonphotochemical
quenching). Nonphotochemical quenching is common in phytoplankton as a way to pro-
tect themselves from the harmful effects of high irradiance levels. Quenching of whatever
type reduces the energy available for re-emission as fluorescence and therefore reduces the
quantum efficiency of fluorescence (with corresponding increases in the quantum efficiency
of photosynthesis or of heating).

Figure 7.12 shows three curves for ΦC as a function of the ambient PARo, for values of
qI = 0.2, 0.4, and 1.0, which include the range of observed values seen in Morrison (2003,
Fig. 8). Note the similarity to the profiles seen in Fig. 7.11: values of ΦC less than 0.01
at high PAR values (i.e., near the surface), a maximum of around 0.06 at medium PAR
values, and then decreasing for very low PAR values.

Figure 7.12: ΦC as a function of PAR predicted by Eq. (7.13) for values of qI = 0.2 (bottom
curve), 0.4, and 1.0 (top curve).

A more sophisticated model, including the effects of temperature and the surface chloro-
phyll concentration, is developed in Ostrovska (2012). That model gives curves qualita-
tively similar to those in Fig. 7.12, but with a maximum values up to 0.1 for some values
of the temperature and surface chlorophyll concentration.

Thus measurements of ΦC (e.g., Fig. 7.11) and recent models (e.g., Eq. (7.13)) are
in reasonable agreement. However, a model for ΦC in terms of PAR cannot be used
in a radiative transfer model like HydroLight for the simple reason that the purpose of
HydroLight is to predict the radiance and derived quantities, including PAR, by solving
the radiative transfer equation (RTE), so the PARo values needed in Eq. 7.13 and similar
models are not known until after the RTE has been solved. At best, HydroLight could
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be run once to compute the PAR profile without fluorescence, and then run again with
that PAR profile used in Eq. (7.13) to compute the chlorophyll fluorescence contribution
(which conceptually leads to an iteration of solutions).

For this reason, the value of ΦC to be used in a HydroLight simulation is left as a user
input to be chosen at run time. The default value in the current version 6 is ΦC = 0.02. This
is a mid-range value for moderate-irradiance, upper-ocean conditions, although Falkowski
et al. (2016) report an average value of ΦC = 0.07 in surface waters for 200,000 profiles
taken in a wide variety of locations.

7.4.4 The Chlorophyll Excitation Function

As previously noted, wavelengths in the range of 370 to 690 nm, if absorbed, are equally
likely to excite chlorophyll fluorescence. Therefore, gC(λ′) is modeled by

gC(λ′) =

 1 if 370 ≤ λ′ ≤ 690 nm,

0 otherwise.

7.4.5 The Chlorophyll Emission Function

The emission function hC(λ) is commonly (e.g., Gordon, 1979) approximated as a Gaussian:

hC(λ) =
1√

2πσC

exp

[
−1

2

(
λ− λC

σC

)2
]

=

√
4 ln 2

π

1

FWHM
exp

[
−4 ln 2

(
λ− λC

FWHM

)2
]

[nm−1] (7.14)

where
λC = 685 nm is the wavelength of maximum emission, and
σC = 10.6 nm is the standard deviation of the Gaussian; 10.6 nm corresponds to a

full width at half maximum of FWHM = 2
√

2 ln 2σC = 25 nm, as seen in the equivalent
second form of the function.

It should be noted that this hC(λ), when used in the ηC(λ′, λ) defined in Eq. (7.12)
and integrated over λ as in Eq. (7.15) of the preceding theory section,

ΦF(λ′) =

∫ ∞
λ′

ηF(λ′, λ) dλ for 370 ≤ λ′ ≤ 690 nm, . (7.15)

gives the quantum efficiency ΦC as required.
Figure 7.10 shows that this Gaussian captures only the main peak of the emission

function. A better model for hC(λ) is a weighted sum of two Gaussians, one centered at
685 with a FWHM of 25 nm and one centered at 730 or 740 with a FWHM of 50 nm:

hC(λ) = W

√
4 ln 2

π

1

25
exp

[
−4 ln 2

(
λ− 685

25

)2
]

+ (1−W )

√
4 ln 2

π

1

50
exp

[
−4 ln 2

(
λ− 730

50

)2
]

[nm−1] , (7.16)
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where W and 1−W are the weights of the Gaussians at these wavelengths. These weights
correspond to the fractions of the total quantum efficiency contributed by each Gaussian.
Setting W = 0.75 gives the peak height of the second Gaussian as 0.2 of the first, consistent
with Fig. 7.10. Using (7.16) in (7.12) and (7.15) then again recovers ΦC.

The exact shape of the fluorescence emission seen in Fig. 7.10 and the corresponding
best-fit parameters—heights and widths of the Gaussians and their center wavelengths—do
vary somewhat with plankton species, pigment content and ratios, photoadaptation, nutri-
ent conditions, stage of growth. and other parameters. This is, after all, why fluorescence
gives information about the physiological state of phytoplankton.

7.4.6 The Chlorophyll Fluorescence Phase Function

As previously noted, fluorescence emission is isotropic. Therefore the phase function is
simply

β̃C(ψ) =
1

4π
[sr−1] .

The models seen above give everything needed to construct the volume inelastic scatter-
ing function of Eq. (7.11) for chlorophyll fluorescence, βC(z, ψ, λ′, λ), which is then ready
for use in the radiative transfer equation as seen in Eq. (7.2).

7.5 CDOM Fluorescence

This section tailors the general fluorescence theory to the case of fluorescence by colored
dissolved organic matter (CDOM). The goal is to develop the quantities needed for predic-
tion of CDOM fluorescence contributions to oceanic light fields using a radiative transfer
model. For convenience of reference, it is recalled from the theory section that the quanti-
ties needed are

• the CDOM fluorescence scattering coefficient bY(z, λ′), with units of m−1,

• the CDOM fluorescence wavelength redistribution function fY(λ′, λ), with units of
nm−1, and

• the CDOM fluorescence scattering phase function β̃Y(ψ), with units of sr−1.

These quantities are then combined to create the volume inelastic scattering function for
CDOM fluorescence

βY(z, ψ, λ′, λ) = bY(z, λ′) fY(λ′, λ) β̃Y(ψ) [m−1 sr−1 nm−1] . (7.17)

The subscript Y indicates yellow matter, i.e. CDOM.

7.5.1 The CDOM Fluorescence Scattering Coefficient

For CDOM fluorescence, the inelastic “scattering” coefficient in the formalism of treating
fluorescence as inelastic scattering is just the absorption coefficient for CDOM. In other
words, what matters is how much energy is absorbed by CDOM at the excitation wave-
length λ′, which is then available for possible re-emission at a longer wavelength λ. Note
that it is only energy absorbed by CDOM molecules that matters for CDOM fluorescence.
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Energy absorbed by chlorophyll in phytoplankton or pollutants such as oil may (or may
not) fluoresce, but that is not CDOM fluorescence. Thus the needed CDOM fluorescence
scattering coefficient is commonly modeled as

bY(z, λ′) = aY(z, λo) exp[−SY (λ′ − λo)] [m−1] , (7.18)

where aY(z, λo) is the absorption by CDOM at a reference wavelength λo, which is usually
taken to be 400 or 440 nm, and SY is a spectral slope parameter. SY is usually in the
range of 0.016 to 0.018 nm−1, but can vary from 0.007 to 0.026. See Fig. 8.16 and Section
8.4 for further discussion of the distribution of SY values . (As noted in Section 8.4, the
elastic scattering coefficient for CDOM is usually assumed to be zero.)

7.5.2 The CDOM Fluorescence Wavelength Redistribution Function

Figure 7.13 shows a measured spectral fluorescence quantum efficiency function for CDOM,
ηY(λ′, λ), as measured by Hawes (1992) on a sample of water from the Gulf of Mexico on
the West Florida Shelf (his station FA7). Other measurements in the Gulf of Mexico, Peru
upwelling, and North Atlantic showed similar shapes, although with different magnitudes
and some variability in the details.

Figure 7.13: The spectral fluorescence quantum efficiency function ηY(λ′, λ) for a sample
of water from the Gulf of Mexico (Hawes, 1992, Station FA7).

Hawes was able to fit his measurements to a function of the form (his Eq. 10)

ηY(λ′, λ) = A0(λ′) exp

−( 1
λ −

A1
λ′ −B1

0.6(A2
λ′ +B2)

)2
 . (7.19)

Here A0(λ′) has units of nm−1, A1 and A2 are dimensionless, and B1 and B2 have units of
nm−1. The values of these model parameters are determined by a best fit of the model to
the measured data. For the data of Fig. 7.13, the best-fit values are shown in Table 7.2.
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λ′ A0

310 5.81× 10−5

330 6.34

350 8.00

370 9.89

390 9.39

410 10.48

430 12.59

450 13.48

470 13.61

490 9.24× 10−5

A1 0.470

B1 8.077× 10−4

A2 0.407

B2 −4.57× 10−4

Table 7.2: Best-fit parameter values of Eq. (7.19) for the data of Fig. 7.13. All values of
A0 are times 10−5. The r2 value is 0.987. Data from Hawes (1992, Table 3).

The left panel of Fig. 7.14 shows the best-fit A0(λ′) values of Table 7.2 as solid dots.
The open dots are values extended to other wavelengths for use in HydroLight. The
corresponding quantum efficiencies ΦY(λ′) are obtained by integration of ηY(λ′, λ) over λ:

ΦY(λ′) =

∫ ∞
λ′

ηY(λ′, λ) dλ . (7.20)

The right panel of Fig. 7.14 shows the dependence of ΦY on the excitation wavelength
λ′ for the parameter values of Table 7.2 as extended and used in Eq. (7.19). Unlike
the quantum efficiency for chlorophyll fluorescence, the quantum efficiency for CDOM
fluorescence depends on the excitation wavelength.

Figure 7.15 shows ηY(λ′, λ) as computed by Eq. (7.19) for the parameter values of
Table 7.2 as extended.

As seen in Fig. 8.15 of the CDOM section and as modeled by Eq. (7.18), absorption
by CDOM continues to rise rapidly in the ultraviolet (UV). As seen in Fig. 7.13, CDOM
fluorescence is excited by UV wavelengths even below 300 nm, and CDOM emission occurs
at wavelengths from the excitation wavelength into the blue and green. Thus CDOM is
optically important both because of its strong absorption at blue and UV wavelengths, and
because it can fluoresce at UV to blue and green wavelengths.

As noted on the theory section, the CDOM fluorescence wavelength redistribution func-
tion fY(λ′, λ) is obtained from ηY(λ′, λ) via

fY(λ′, λ) = ηY(λ′, λ)
λ′

λ
[nm−1] . (7.21)

The excellent Master’s Thesis by Hawes remains, three decades later, the one and only
publication I can find that presents measurements and a model for calibrated spectral flu-
orescence quantum efficiency functions ηY(λ′, λ) for CDOM (or for any other substance).
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Figure 7.14: Left panel: Values of the fitting parameter A0(λ′) as determined for the
measured data of Fig. 7.13 (solid dots) and as extended to other excitation wavelengths
for use in HydroLight (open circles). Right panel: the corresponding CDOM quantum
efficiency ΦY(λ′) as obtained from Eqs. (7.19) and (7.20).

Figure 7.15: The spectral fluorescence quantum efficiency function ηY(λ′, λ) as computed
by Eq. (7.19) using the parameter values of Table 7.2 (as extended for A0).

His functional form (7.19) is used in HydroLight to model CDOM fluorescence. The pa-
rameter values seen above are the defaults in HydroLight. Although the results of his thesis
research were presented at the Ocean Optics XI conference (Hawes et al., 1992), they were
never published in the refereed literature. The thesis itself cannot be found online, but a
photocopy can be downloaded from the Web Book.
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Figure 7.16 shows excitation-emission functions as commonly seen in the literature.
Such measurements are used to identify the presence (or absence) of various types of fluo-
rescing compounds in the water. The original figure does not comment on the measurement
units, which are often counts per second or something similar. In any case, these excitation-
emission plots display relative values and are not the equivalent of the calibrated spectral
fluorescence quantum efficiency functions ηY(λ′, λ) discussed above and seen in Figs. 7.13
and 7.15.

Figure 7.16: Two fluorescence excitation-emission functions from different source materials.
Left, a peat soil leachate. Peaks A and C are the highest intensity, and represent high
concentrations of humic acid, a primary organic component of soil. Right, a fresh plant
leachate. Peaks T and B are the highest and represent high concentrations of fresh dissolved
organic compounds like proteins and lignins that fluoresce in this region (Credit: Angela
Hansen, U.S. Geological Survey. Public domain image from USGS.)

7.5.3 The CDOM Fluorescence Phase Function

As previously noted, fluorescence emission is isotropic. Therefore the phase function is
simply

β̃Y(ψ) =
1

4π
[sr−1] .

The models seen above give everything needed to construct the volume inelastic scat-
tering function of Eq. (7.17) for CDOM fluoresecence, βY(z, ψ, λ′, λ), which is then ready
for use in the radiative transfer equation.

7.6 Examples of Inelastic Scattering Effects

Now that the general theory of Raman scattering and of chlorophyll and CDOM fluores-
cence has been developed, the inelastic scattering VSFs can be used in radiative transfer
codes like HydroLight to predict the effects of various inelastic scattering processes on radi-
ances, irradiances, reflectances, K -functions, and the like. This section presents a number
of HydroLight-generated examples of light fields computed with and without inelastic scat-
tering effects included in the simulations.

https://www.usgs.gov/media/images/two-fluorescence-eems-different-source-materials
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7.6.1 Effect of Raman Scattering on Rrs

Figure 7.17 shows the effect of Raman scattered radiance on the remote-sensing reflectance
for chlorophyll values of Chl = 0.02 and 2 mg m−3 as simulated by HydroLight. The
HydroLight runs used a bio-optical model for Case 1 water for which the absorption and
scattering properties of the water are determined only by the chlorophyll concentration.
The water was homogeneous and infinitely deep. The Sun was at a 30 deg zenith angle in a
clear sky; the wind speed was 5 m s−1. Identical runs were made with and without Raman
scattering included in the runs. It is seen that for the very clear water with Chl = 0.02,
Rrs is as much as 22% higher, but for the water with Chl = 2, Raman increases Rrs by
at most 5%. The Raman effect decreases but still can be significant in higher chlorophyll
waters or in turbid Case 2 waters. Although difficult to see in Fig. 7.17, the Raman effect
does not “turn on” until about 340 nm even though the HydroLight run started at 300
nm. This is because the start of the emission band for excitation near 300 nm is around
340 nm (recall Fig. 7.4).

Figure 7.17: Effect of Raman scattering on remote-sensing reflectance Rrs. The red curves
included Raman scattering and the blue curves did not.

7.6.2 Effect of Raman Scattering on Upwelling Plane Irradiance

Although Raman scattering does not have a large effect on Rrs except in the clearest water,
it can be the dominant source of light at red wavelengths at depths where absorption
by water has removed most of the incoming sunlight. This is illustrated in Fig. 7.18.
HydroLight was run for Case 1 water with a chlorophyll concentration of Chl = 0.5mg m−3,
which is typical of open ocean water. The Sun was at a 30 deg zenith angle in a clear
sky. The run started at 300 nm, so that Raman effects would be present at wavelengths
greater than 340 nm. At 400 and 500 nm, the contribution by Raman scattered light
to the upwelling irradiance is almost unnoticeable. This is because at these wavelengths
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elastically scattered solar radiance is the main contributor to the upwelling irradiance. At
580 nm, water absorption (aw(580) = 0.09 m−1) is beginning to filter out enough of the
solar radiance that the Raman contribution, which comes from wavelengths around 485 nm
(see Fig.7.4), where the light penetrates well to depth, is becoming the main contribution
to Eu(z, 580). At 600 nm, water absorption (aw(600) = 0.22 m−1) has removed almost
all of the solar light below about 20 m. Below 20 m, almost all of Eu(z, 600) comes from
Raman scattered light that originates from wavelengths around 500 nm, where sunlight
penetrates well to depth. It should be noted that below about 40 m, the depth rate of
decay of Eu(z, 600) (i.e., Ku(z, 600)) is almost the same as the rate of decay the irradiance
at 500 nm. This is because the light at 500 nm is the source of the light at 600 nm.

It was the measurement of unexpected upwelling irradiance Eu(z, λ) at depths below
50 m and wavelengths greater than 520 nm that led Sugihara et al. (1984) to suggest
that the unexpected upwelling irradiance came from downwelling irradiance at blue-green
wavelengths being Raman scattered. A number of subsequent studies (e.g. Stavin and
Weidemann, 1988; Marshall and Smith, 1990) confirmed this hypothesis. Many studies
since have studied Raman effects on ocean light fields. For example, Kattawar and Xu
(1992) and Ge et al. (1993) studied the filling in of Fraunhofer lines in underwater light by
Raman scattering.

Figure 7.18: HydroLight simulations of Eu(z, λ) with and without Raman scattering.

7.6.3 Effect of Chlorophyll Fluorescence on Downwelling Plane
Irradiance

This section uses HydroLight (Section 10.6) to illustrate the effects of various chlorophyll
fluorescence input parameters.

To see the effect of the shape of the chlorophyll emission function, a series of four
HydroLight runs was done with the following inputs:
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• A chlorophyll concentration of Chl = 10mg Chl m−3 for Case 1 water (using the New
Case 1 IOP model of Section 8.9 in HydroLight); the water was homogeneous and
infinitely deep.

• A chlorophyll quantum efficiency of ΦC = 0.06.

• A chlorophyll emission function given by either Eq. (7.14) or (7.16) .

• Sun at a zenith angle of 30 deg in a clear sky, wind speed of 5 m s−1.

• The run was from 400 to 750 nm by 5 nm.

• Output was saved at 5 m intervals from 0 to 50 m.

• Four sets of inelastic effects were simulated: (1) no inelastic effects at all, (2) Raman
scatter only, (3) Raman scatter plus chlorophyll fluorescence with a single Gaussian
emission function, and (4) Raman scatter plus chlorophyll fluorescence with a double
Gaussian emission function.

Figure 7.19 shows the the two Gaussian chlorophyll emission functions of Eqs. (7.14)
and (7.16) (upper left panel); the resulting remote-sensing reflectance Rrs in the region of
the chlorophyll emission (upper right panel); and the depth profiles of downwelling plane
irradiance at 710 nm, Ed(710) (lower left); and at 730 nm, Ed(730) (lower right).

Some of the features to note in Fig. 7.19 are as follows:

• The peak Rrs values near 685 nm are larger for the single Gaussian than for the
double Gaussian. This is because both emission functions, when integrated as in Eq.
(7.15), correspond to the same quantum efficiency ΦC = 0.06. Thus, as seen in the
upper left panel, the 685 peak of the double Gaussian is lower than for the single
Gaussian because part of the energy is going into the second Gaussian centered at
730 nm.

• There is no fluorescence contribution to Rrs for the single Gaussian beyond about
720 nm, but the double Gaussian gives a noticeable increase in Rrs even beyond 750
nm. This corresponds to the magnitudes of the two emission functions. However,
magnitude of Rrs is quite small in the near infrared relative to the peak emission
values and Rrs at shorter wavelengths (not shown) even for the high chlorophyll
value of Chl = 10mg Chl m−3 and the high efficiency of ΦC = 0.06 used here because
of the high absorption by water itself beyond 700 nm; water absorption at 720 nm is
aw(720) = 1.17 m−1 and rises to 2.47 m−1 at 750 nm.

• The Ed(z, 710) profiles are similar down to about 5 m. For shallower depths, solar
radiance at 710 nm penetrates the water column well enough to dominate the value of
Ed(z, 710). Inelastic scatter contributions to the near-surface light field are minimal
at 710 nm for these IOPs.

• Below about 10 m, the simulation without any inelastic scattering is greatly different
from the curves with Raman or Raman plus fluorescence. Essentially the only light at
710 nm at depths below about 15 m comes from light at blue and green wavelengths,
which do penetrate to depths below 15 m, that is inelastically scattered into 710 nm.
As expected from the shapes of the emission functions, the double Gaussian “injects”
more light into 710 nm than does the single Gaussian.
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Figure 7.19: HydroLight-simulated fluorescence effects for Case 1 water with a high chloro-
phyll concentration of Chl = 10 mg Chl m−3 and a high quantum efficiency for chlorophyll
fluorescence of ΦC = 0.06. See the text for discussion.

• At 730 nm, the Raman-only and Raman-plus-single-Gaussian emission are essentially
identical because the single Gaussian is almost zero at 730. However, the double-
Gaussian emission function still adds a significant amount of light into the deep
water column.

In summary, for wavelengths greater than about 700 nm there is a significant fractional
difference in Rrs and in the irradiances at depth for the two chlorophyll emission func-
tions. However, these differences are likely to be unimportant for practical oceanographic
problems. It is hard to imagine applications where accurate predictions of irradiances are
required in the near infrared at large depths.
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7.6.4 Effect of Chlorophyll Fluorescence Quantum Efficiency on Rrs

Figure 7.20 shows HydroLight simulations of Rrs in the chlorophyll fluorescence emission
region for a value of Chl = 0.5 mg Chl m−3, typical of open-ocean waters, and for three
values of the quantum efficiency. The emission function is the double Gaussian. Other
run inputs were the same as for Fig. 7.19. These curves include both Raman scatter
and chlorophyll fluorescence. Curves for Raman only, and for elastic scatter only are also
shown. Relative to the baseline of Raman only, the chlorophyll fluorescence curves are in
direction proportion to the quantum efficiency values, all else being the same, as should be
expected.

On the other hand, the height of the “Raman corrected” peak of the ΦC = 0.06, double-
Gaussian curve of the upper right panel of Fig. 7.19 is only about 6 times the height of the
corresponding curve in Fig. 7.20, even though the chlorophyll concentration is 20 times
higher for Fig 7.19. This is because absorption and scattering do not depend linearly on the
chlorophyll concentration. For an order-of-magnitude understanding of this, note that it is
absorption that removes light that might otherwise contribute to Rrs. The new Case 1 IOP
model used for these runs models phytoplankton absorption by a formula that depends on
ChlE(λ). In the 400-680 nm range relevant to the chlorophyll fluorescence, E(λ) ranges
from 0.6 to 0.8. For a difference in chlorophyll values of 20, 200.7 ≈ 0.8, which is close
to the differences in the heights of the emission peaks. Absorption by CDOM will further
reduce the light available for fluorescence.

Figure 7.20: Effect of chlorophyll quantum efficiency ΦC on the chlorophyll emission band
for a chlorophyll concentration of Chl = 0.5 mg Chl m−3.

7.6.5 Effect of CDOM Fluorescence on Rrs

To see the effect of the CDOM fluorescence on the remote sensing reflectance Rrs, a series
of HydroLight runs was done with the following inputs:



242 CHAPTER 7. INELASTIC SCATTERING

• A chlorophyll concentration of Chl = 0.5 mg Chl m−3 for Case 1 water (using the
new Case 1 IOP model in HydroLight); the water was homogeneous and infinitely
deep.

• Low and high values of CDOM absorption was included as either .

– CDOM absorption at 440 nm was 20% of the chlorophyll absorption at 440 nm,
i.e. aY(440) = 0.2aC(440). This is a common model for Case 1 water.

– CDOM absorption at 440 nm was 5 times the chlorophyll absorption at 440 nm,
i.e. aY(440) = 5.0aC(440). This represents a very a high concentration of extra
CDOM as could result from river input into coastal water or by the decay of
benthos such as sea grass, which gives Case II water.

• CDOM fluorescence was modeled using the parameter values shown above for the
Hawes Station FA7.

• Sun at a zenith angle of 30 deg in a clear sky, wind speed of 5 m s−1.

• The run was from 300 to 750 nm by 5 nm.

• Four sets of inelastic effects were simulated: (1) no inelastic effects at all, (2) Raman
scatter only, (3) CDOM fluorescence only, and (4) Raman scatter plus CDOM and
chlorophyll fluorescence.

Figure 7.21 shows the results of these simulations. The top panel is for the Case 1
water with aY(440) = 0.2aC(440). The bottom panel is for the high-CDOM Case 2 water
with aY(440) = 5.0aC(440). For the low-CDOM, Case 1 water, the simulation with CDOM
fluorescence increases Rrs by less than 2% over the elastic-only case. Raman scatter gives
up to an 8% increase over elastic only. For the high-CDOM Case 2 water, Raman gives
up to a 7% increase, but CDOM fluorescence gives up to a 27% increase in Rrs. Thus,
it is possible for CDOM fluorescence to have a significant effect on Rrs, but it takes a
very high CDOM concentration to do so. In low-to-medium CDOM waters, typical of the
open ocean where CDOM covaries with chlorophyll, CDOM fluorescence affects Rrs by at
most a few percent. If these Rrs spectra are used in band-ratio algorithms for retrieval
of environmental variables such as the chlorophyll concentration, the CDOM-fluorescence
enhancement to Rrs should have even less affect on the retrieved values. This conclusion
is consistent with the findings in Hawes (1992). Note also that CDOM fluorescence has a
minimal effect in the chlorophyll-fluorescence band near 685 nm.

7.6.6 Effect of Inelastic Scattering on K Functions

HydroLight was next used to simulate a homogeneous Case 1 water body with a chlorophyll
concentration of Chl = 1 mg m−3. As for Figs. 4.3 and 4.6, the Sun was at 40 deg and
the surface was level. Figure 7.22 plots several quantities as a function of wavelength
at 10 m depth for this simulation. We see that between 300 and about 600 nm, the
various K(10 m, λ) functions are very similar and proportional to the total (including
water) absorption coefficient a(10 m, λ). However, beyond 600 nm the K functions differ
from each other, and they are all much different from a. The reason for this behavior is
inelastic scattering.

At the near-UV to blue to green wavelengths below 600 nm, most of the radiance at
10 m depth (for these IOPs) comes from sunlight being transmitted through the upper 10
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Figure 7.21: Effects of CDOM fluorescence on the remote-sensing reflectance Rrs. Top
panel: low-CDOM water; bottom panel: high-CDOM water. See text for discussion.

m of the water column. Above about 600 nm, absorption by the water itself has removed
most of the sunlight. For example, at 700 nm where aw = 0.65 m−1, we expect roughly
exp(−az) ≈ 0.001 of the surface light to reach 10 m. However, Raman scatter and CDOM
fluorescence inelastically scatter light from shorter wavelengths, where sunlight is present,
into the red wavelengths, and thus create additional red light at 10 m. Thus, beyond
600 nm, the various radiances and irradiances no longer decrease with depth in a simple
exponential fashion. Note that Kd tracks a longer than do Ku and KLu. This is because
Ed continues to collect whatever downwelling sunlight remains, and thus the inelastic
contribution to Kd is not noticeable until the chlorophyll fluorescence contribution begins
near 670 nm. Ku and KLu on the other hand have only a small amount of backscattered
sunlight, so that the inelastic contribution becomes significant sooner, at around 600 nm.
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Figure 7.22: K at 10 m depth for Case 1 water with Chl = 1 mg m−3. The HydroLight
run included Raman scattering by the water, and chlorophyll and CDOM fluorescence.

It is easy to verify that the peculiar behavior of the K functions beyond 600 nm is due
to inelastic scatter. The HydroLight run was repeated with Raman scatter and CDOM and
chlorophyll fluorescence “turned off.” Figure 7.23 shows the results. Now, the K functions
all track the absorption nicely at all wavelengths.

Figure 7.23: K at 10 m depth for Case 1 water with Chl = 1 mg m−3 as in Fig. 7.22,
except that inelastic scattering was turned off in the HydroLight run.

The behavior seen in Fig. 7.22 is not just of academic interest. Figure 7.24 shows
absorption coefficient spectra a(λ) at selected depths as measured by an ac-9 instrument
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and as determined by Gershun’s law, Eq. (10.33),

a(z, λ) = − 1

Eo(z, λ)

d[Ed(z, λ)− Eu(z, λ)]

dz
, (7.22)

using measurements of the plane and scalar irradiances. The figure shows that for wave-
lengths less than about 580 nm, the directly measured and computed absorption spectra
are in good agreement. For wavelengths longer than 580 nm, the irradiances are increas-
ingly affected by inelastic scatter from shorter wavelengths as the depth increases, and the
retrieved absorption spectra are much less than the measured spectra. This figure and the
simulations of Figs. 7.22 and 7.23 show that care must be taken when interpreting or using
in-water radiance or irradiance measurements at wavelengths longer than about 580 nm,
when inelastic effects can become dominant at depth.

Figure 7.24: Absorption coefficient spectra a(λ) at selected depths as measured by an ac-9
instrument and as determined by Gershun’s law using measured irradiances. Figure 14(a)
from Li et al. (2018), reproduced under the Applied Sciences Creative Commons license.
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CHAPTER 8

Optical Constituents of the Ocean

Now that we have laid the foundations of radiometry, defined IOPs and AOPs, and exam-
ined the processes of absorption and scattering, this chapter surveys the most important
constituents of the ocean that determine its optical properties. The first few sections
discuss the optical properties of specific constituents, beginning with water itself. Then
commonly used models for the absorption and scattering as functions of the chlorophyll,
colored dissolved organic matter, and mineral concentrations of the water body are pre-
sented. The chapter then finishes with a discussion of particle size distributions, which
are a non-optical physical property of particles that is very important in determining the
scattering properties of a water body.

8.1 Classifying the Optically Important Marine Particles

[Collin Roesler, Emmanuel Boss, and Curtis Mobley contributed to this section.]

The in-water constituents that affect aquatic optical properties are traditionally lumped
into the following categories:

• Sea water (water + inorganic dissolved materials)

• Colored (or chromophoric) dissolved organic material (CDOM)

• Phytoplankton

• Non-phytoplankton organic particles

• Inorganic particles

• Bubbles

The constituents are identified operationally based upon how we measure their optical
properties and are often are grouped by like optical properties. For example, the distinction
between particulate and dissolved is operationally defined by the filter type or pore size,
often a filter pore size of 0.2 µm. It is essential to remember that (1) the strict chemical
definition is quite different, (2) filter pore size varies from author to author, and (3) it is
important to keep track of filter pore sizes to ensure closure (i.e., don’t define dissolved
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organic matter by the filtrate of a 0.2 µm pore size filter and then measure particulates on
a 0.7 µm pore size GF/F filter). Similarly, often all of the non-phytoplankton particles are
lumped into a single compartment because their optical properties can be quite similar.
Sometimes all of the particulate material is lumped together into suspended particulate
material (SPM), or part of it into particulate organic material (POM). This is often done
when studying a specific bio-geochemical property using optics.

The differentiation between dissolved and particulate materials (using a filter) does not
imply that the dissolved material is organic, though this is most often the assumption.
For example, inorganic dissolved substances such as iron oxides (rust) could contribute in
certain cases.

A more detailed classification of optically important particles is as follows:

• Biogeochemical classification

Particulate Organic Material (POC): Includes all living or once-living particu-
late matter such as phytoplankton and detritus.

Particulate Inorganic Material (PIC): Includes all lithogenic and mineralic par-
ticulate matter such as sand and calcium carbonate shells, also called tripton.

Particulate Material (PM): The total organic and inorganic, animate and inan-
imate particles, also called seston.

• Biological classification

Algae: Aquatic photosynthetic organisms that can range in size from microscopic
(phytoplankton) to tens of meters (giant kelp)

Phytoplankton: Microscopic, single-celled (some form colonies or chains), free-
floating, aerobic (live in an oxygenated environment), oxygenic (produce oxygen
during photosynthesis) organisms that possess chlorophyll-a and photosynthe-
size. Some may be mixotrophic (photosynthetic and heterotrophic). Includes
prokaryotes (cyanobacteria) and eukaryotes (diatoms, dinoflagellates, coccol-
ithophorids, and many others).

Bacterioplankton: Microscopic, single-celled (some may form colonies or chains)
prokaryotic (no membrane-bound organelles) organisms, can be phototrophic
(cyanobacteria) or heterotrophic.

Zooplankton: Single- or multi-cellular free-floating heterotrophic organisms that
may consume photosynthetic organism or other heterotrophic organisms. They
range in size from microscopic to macroscopic (visible by eye). While some are
locomotive, they are advected in ocean currents and therefore planktonic.

Detritus Non-living particulate organic matter, including dead bacterial, phyto-
plankton and zooplankton cells, fragments of cells left from zooplankton grazing,
fecal pellets, shells, and marine snow aggregates.
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• Size classification

Biological:

Picoplankton: The fraction of plankton between 0.2 µm and 2 µm. Typically phy-
toplankton.

Nanoplankton: The fraction of plankton between 2µm and 20µm. Typically phy-
toplankton and single-celled zooplankton.

Microplankton: The fraction of plankton between 20 µm and 200 µm (0.2 mm).
Typically phytoplankton and single-celled zooplankton.

Mesoplankton: The fraction of plankton between 0.2 mm and 20 mm. Typically
multicellular zooplankton, may include large single celled zooplankton and phy-
toplankton.

Geological:

Clay: The fraction of typically lithogenic or mineralic particles that are less than
2 µm (0.002 mm).

Silt: The fraction of typically lithogenic or mineralic particles between 2 µm and
63 µm (0.002 mm and 0.063 mm). Includes subdivisions fine, medium and
coarse.

Sand: The fraction of typically lithogenic or mineralic particles between 0.063 mm
(63 µm) and 2 mm. Includes subdivisions fine, medium and coarse.

• Operational Classification

Particulate: All matter captured by filtration onto a filter of defined nominal pore
size. The two most common pore sizes used to identify particles are 0.2µm (e.g.,
nucleopore filters) or 0.7 µm (e.g., glass fiber filters).

Dissolved: All matter that passes through the filter of identified nominal pore size,
i.e., filtrate. May include some particulate matter such as very small picoplank-
ton, viruses, and colloids. Optically classified as colored dissolved organic matter
(CDOM). Chemists classify colloids as particles in the 1 nm to 1µm size range.
Marine viruses are typically in the 20-300 nm range.

Phytoplankton: All particulate matter pigmented by phytoplankton-derived pig-
ments, including detrital pigments. Defined by extractive methods using sol-
vents such as acetone and methanol for most pigments and phosphate buffers
for phycobilipigments.

Non-algal particles (NAP): The fraction of particulate matter that is not ex-
tractable (not a phytoplankton pigment). Includes all living and detrital organic
matter such as the non-pigmented portion of phytoplankton cells, detritus, het-
erotrophic bacteria, and viruses. May also include inorganic mineral particles
of both biogenic (e.g., calcite liths and shells) and terrestrial origin (e.g., clay,
silt, and sand).

Particulate Inorganic Matter: The fraction of particulate matter that is not or-
ganic and therefore remains on the filter after combustion, also called dry ash.
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Figure 8.1: Approximate size ranges for different components of natural waters. Redrawn
from Stramski et al. (2004a), with some additions.

Figure 8.1 shows the size ranges commonly associated with the different components
of natural waters. Figure 8.2 shows how many of different types of biological particles
typically occur in marine waters, expressed as a particle size distribution (PSD) n(D). D
is the diameter of an equivalent-volume sphere, and n(D) gives the number of particles per
cubic meter, per unit of size range. It must be remembered that such a size distribution
may be a good average, but may be quite incorrect for a given time and location. For
example, if a phytoplankton bloom is underway, there there will be many more particles of
a certain size range, which will put a “bump” in the PSD. In open ocean water, there may
be almost no mineral particles. In coastal waters, river inputs or sediment resuspension
may make minerals the optically dominant particles. The same can be true in open-ocean
water if coccolithophores are shedding their calcite liths. The blue line shows a power
law size distribution with an exponent of -4, i.e., n(D) ∼ D−S with S = 4. A power law
distribution with an exponent of -4 is also known as a Junge distribution. Figure 8.3 shows
three sets of PSDs measured in coastal waters. The red lines are Junge size distributions.
It is seen that the Junge distribution gives a reasonably good fit over the measured size
range, but there are significant deviations from a power law distribution for some of the
measurements, and in many cases an power law with a different exponent than -4 gives a
better fit. Particle size distributions are discussed in detail in Section 8.12.

As just seen from their many ways of classification, marine particles are extremely
complex and varied in their composition, pigmentation, shape, internal structure, and
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Figure 8.2: Approximate size distribution of biological particles in the ocean. The blue
line is a power law distribution with an exponent of -4 centered on the picoplankton point.
Data courtesy of D. Stramski.

Figure 8.3: Measured particle size distributions in coastal waters. The red lines are Junge
size distributions, n(D) ∼ D−4. Redrawn from Reynolds et al. (2010, with modifications).

packaging. In order to understand their interaction with light some idealizations have to
be made. Because it is impractical to study or model each individual particle (there are
more than a billion bacteria in one milliliter of seawater), particles are lumped into groups
of particles having similar properties.

In order to model the optical properties of particles (that is, to derive analytical or
numerical descriptions of these properties) we need empirical data providing the necessary
inputs (size, shape, index of refraction, internal structure, and packaging). Some of these
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data can be obtained from microscopy while others need to be deduced from other measure-
ments. For example, to obtain information on the index of refraction of a sediment grain
one could immerse it in oils of different known indexes and microscopically observe when
the least optical contrast (scattering) is observed. Most often an inverse optical approach
is used. That is, an optical model (such as Mie theory) is used to fit empirical data, and
the values of the index of refraction that provide the best match with the observations are
chosen to be those of the suspension.

Aas (1996, Table 1) provides a compilation for data on the real part of index of refraction
of marine particles and the different methodologies used to obtain them. He also shows how
the estimates for phytoplankton are consistent with a model of the index of refraction that
is based on their composition. He found that the bulk real index of refraction is related
to the volume fraction of water in the phytoplankton cell, Vw; Vw = 0.8 means that the
cell is 80% water and 20% other substances (proteins, carbohydrates, fats, pigments). His
formula Aas (1996, Eq. 48),

n ≈ 1.533− 0.194Vw (relative to air) , (8.1)

gives n ≈ 1.38 ± 0.02 for Vw = 0.8 ± 0.1 (1.03 ± 0.02 relative to water), or 1.42 ± 0.04
(1.06± 0.04 relative to water) for Vw = 0.6± 0.2. These indices are consistent with those
found by others.

Specific models for the optical properties of different types particles are provided in their
own sections. They vary in methodology used to obtain them; some are based strictly on
observations, either in the lab or in the field. Others are based on numerical calculations
(e.g. using Mie theory) with observation-based inputs. The latter are particularly useful
when observations are lacking due to the complexity associated with the measurements
(e.g. the volume scattering function). It is particularly satisfying when independent obser-
vations and models agree (referred to as optical closure, Section 10.9) as it provides mutual
validation for the approaches.

When reading the bio-optical literature it is important to keep in mind what kind of
particle is being considered. For example, Bricaud et al. (1995) develops models for the
absorption by phytoplankton, aphi, as a function of the chlorophyll concentration; and
Bricaud et al. (1998) develops models for the absorption by particles, ap, where particles
refers to phytoplankton plus co-varying detritus.

8.2 Water

Water contributes to both absorption and scattering in natural waters. In clear ocean
waters, the effect of water on ocean color in the visible cannot be neglected and must
be taken into account. In the near infrared, water almost always dominates absorption.
Temperature and salinity affect both absorption and scattering by water and hence need
to be taken into account when the optical properties of water are computed.

8.2.1 The Index of Refraction of Water

In the study of light propagation through water using Maxwell’s equations (Section 11.3),
the index of refraction is usually written as a complex number,

m = n+ ik ,
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where n is the real part and k is the imaginary part. Both n and k are positive numbers, and
both depend on wavelength or frequency. Their magnitudes and wavelength dependence
depend on the material.

It is not obvious at the moment why the real the index of refraction is written as
a complex number. As was discussed in the Physics of Scattering, Section 6.2, spatial
variation in the real index of refraction n governs the elastic scattering of light. As will
be seen in Section 11.3, the imaginary index of refraction k determines the absorption of
energy in propagating light, which in oceanography is usually expressed via the absorption
coefficient a of the material. These are related by (Eq. 11.43 or Bohren and Huffman
(1983, Eq. 2.52))

a =
4πk

λ
.

Using a complex index of refraction will be found in Section 11.3 to be convenient when
solving Maxwell’s Equations for a plane wave propagating in a dielectric, where the relation
between a and k will be derived. It might seem that absorption (i.e., the complex index of
refraction) and scattering (i.e., the real index of refraction) should be entirely independent
phenomena. However, it will be seen in Section 11.6 that absorption and scattering are
intimately related.

8.2.1.1 The real part of the index of refraction

Figure 8.4 shows the real index of refraction of pure water over the wavelength range of 10
nm to 10 m. For wavelengths less than 10 nm the value remains at 1, and for wavelengths
longer than 10 m the value remains at about 8.85.

Figure 8.4: The real index of refraction of pure water at room temperature. The blue
shading is the visible wavelengths. Data from Segelstein (1981).
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Figure 8.4 is for pure water at room temperature. There are small temperature and
salinity effects in the visible region, which are not seen in Fig. 8.4. In the 200 to 1100 nm
region of interest in optical oceanography, the real part of the index of refraction of water
relative to air, n, as given by Quan and Fry (1995) is

n(S, T, λ) = n0 + (n1 + n2T + n3T
2)S + n4T

2 +
n5 + n6S + n7T

λ
+
n8

λ2
+
n9

λ3
, (8.2)

where T is temperature in Celsius, S is salinity in PSU, and λ is the wavelength in nanome-
ters. [PSU is equivalent to parts per thousand mass of dissolved salts to mass of pure water,
or g/kg.] Table 8.1 gives the values of the coefficients ni, which were determined by fitting
Eq. (8.2) to the measurements of Austin and Halikas (1976).

coefficient value

n0 1.31405

n1 1.779× 10−4

n2 −1.05× 10−6

n3 1.6× 10−8

n4 −2.02× 10−6

n5 15.868

n6 0.01155

n7 −0.00423

n8 −4382

n9 1.1455× 106

Table 8.1: The best-fit coefficients for use in Eq. (8.2).

For pure (fresh) water (S = 0), Eq. (8.2) reduces to

n(T, λ) = 1.31405− 2.02× 10−6T 2 +
15.868− 0.00423T

λ
− 4382

λ2
+

1.1455× 106

λ3
. (8.3)

Although developed from data in the 400-700 nm range, Zhang and Hu (2009) find that
Eq. 8.3 fits data from 200-1100nm with an average error of 1.5 × 10−5. Huibers (1997)
reached a similar conclusion about the excellent performance of Eq. 8.3.

There is also some pressure effect on n; however, this effect is small because water
in very incompressible. Table 8.2 shows values of n for the extreme ranges of pressure,
temperature, salinity, and wavelength relevant to optical oceanography. For near-surface
waters, n falls in the range of 1.33 to 1.35. Even including the extreme depth values, n varies
by less than 3% over the entire parameter range. For comparison, living phytoplankton
typically have “low” indices of refraction, in the range 1.01 to 1.09 relative to the index of
refraction of pure seawater. Detritus and inorganic particles generally have “high” indices,
in the range of 1.15 to 1.20 relative to seawater.

Harvey et al. (1998) give additional tables of n at selected wavelengths, including tem-
peratures up to 500 C and pressures up to 108 Pa.
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p [Pa] T [C] S [PSU] λ [nm] n

1.01× 105 0 0 400 1.344186

1.01 0 0 700 1.331084

1.01 0 35 400 1.351415

1.01 0 35 700 1.337906

1.01 30 0 400 1.342081

1.01 30 0 700 1.329128

1.01 30 35 400 1.348752

1.01 30 35 700 1.335316

1.08× 108 0 0 400 1.360076

1.08 0 0 700 1.346604

1.08 0 35 400 1.366885

1.08 0 35 700 1.352956

1.08 30 0 400 1.356281

1.08 30 0 700 1.342958

1.08 30 35 400 1.362842

1.08 30 35 700 1.348986

Table 8.2: Index of refraction of water, n, for the extreme values of pressure p, tempera-
ture T , salinity S, and wavelength λ encountered in oceanography. A pressure of 105 Pa
corresponds to a depth of about 10 m; 108 Pa corresponds to a depth of about 10,000 m.
Values extracted from Austin and Halikas (1976).

8.2.1.2 The imaginary part of the index of refraction

The imaginary part of the index of refraction for pure water is shown as a function of
wavelength in vacuo by the red line in Fig. 8.5. The corresponding absorption coefficient
a = 4π k/λ is shown in green. Starting at the small-wavelength (X ray) end of the spectrum,
the absorption rises as Compton scattering and then the photoelectric effect (see Section
1.1) come into play, removing energy from the incident light. The peak near 100 nm is
due to the collective excitation of all of the electrons in the water molecule. Going into
the near-ultraviolet, there is an extremely rapid decrease in a with wavelength when the
photon energy is no longer able to excite electron transitions of the water molecule. The
minimum value is at blue wavelengths in the visible part of the spectrum, which is shown
by the light blue band in the figure. Absorption then rises again going into the infrared.
In gaseous water, near-infrared wavelengths excite rotational modes of water molecules.
However, these modes are quenched in liquid water because the molecules cannot freely
rotate. In liquid water, the individual peaks between the visible and about 10 µm are
caused by O-H stretching modes of the water molecule being excited. Going further into
the microwave region, absorption by pure water remains much higher than in the visible
but decreases as the longer and longer wavelengths have less and less energy for exciting
vibrational states. Finally, when the wavelength is around 10 m, far into the radio region
of the spectrum, the absorption is again comparable to that at blue wavelengths.
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The green dashed line in the figure for λ > 10 cm shows the absorption for sea water,
which is a conductor because of the salt ions. The absorption for radio waves is then
much higher than for pure water. The extrapolation of the salt-water curve to longer
wavelengths is supported by theoretical considerations, which show that the absorption
should be proportional to 1/

√
λ (Jackson, 1975, §7.5). If this is done, the absorption

by sea water again becomes comparable to that at visible wavelengths for wavelengths of
order 1000 km. This part of the spectrum is called “extremely low frequency,” or ELF,
and has frequencies of 100 Hz or less. The “clarity” of seawater at ELF frequencies has not
escaped the attention of the world’s navies. Several countries have built transmitters that
operate at ELF frequencies to communicate with submerged submarines; see, for example,
Communication with Submarines and Project Sanguine. The downside of communication
at ELF frequencies is that the antennas must be very large, of order 100 km in size, and
the data transmission rates are as low as only a few bytes per second.

Figure 8.5: The imaginary index of refraction k of pure liquid water (red, left ordinate axis)
and the corresponding absorption coefficient a (green, right ordinate axis). The light blue
band is the visible wavelengths from 400 to 700 nm. The blue curve from 200 to 800 nm
shows the values commonly used today. Dashed curves for λ < 10 nm are from Zoloratev
and Demin (1977). Solid curves are from Segelstein (1981). The blue curve from 200 to
800 nm is from Smith and Baker (1978) and Pope and Fry (1997). The sea water curve is
from Jackson (1975).

8.2.2 Absorption by Water

Absorption by water has a rich structure due to the the excitation of the different vibra-
tional modes of the water molecule. Water absorption can be computed using empirical

https://en.wikipedia.org/wiki/Communication_with_submarines
https://en.wikipedia.org/wiki/Project_Sanguine
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functions of the water temperature T and salinity S. Figure 8.6 shows the dependence of
the water absorption coefficient on T for S = 35 PSU, and on S for T = 20 deg C. These
curves were computed using the semiempirical equations of Roettgers et al. (2014). The
temperature effect on absorption is largest in the regions around 740 and 800 nm (and in
several bands beyond 800 nm, not seen in this figure). The figure shows that salinity has
much less effect on absorption than does temperature.

Figure 8.6: Dependence of the water absorption coefficient on temperature and salinity
according to Roettgers et al. (2014).

The Optical Absorption of Water Compendium gives access to historical publications
on water absorption going back to 1929.

8.2.3 Elastic Scattering by Water

According to Einstein-Smoluchowski theory (Section 6.3.4), the elastic scattering of light by
water is due to spatial inhomogeneities in the dielectric constant caused by random motion
of molecules (see Zhang and Hu (2009) and Zhang et al. (2009) for recent reviews). Elastic
scattering by water has similarities in angular shape and spectral behavior to Rayleigh
scattering (scattering by spherical particles that are much smaller than the wavelength of
the light; Section 12.5.1), however with important differences. For example, the VSF is

β(ψ) = β(90)

(
1 +

1− δ
1 + δ

cos2 ψ

)
, (8.4)

where ψ is the scattering angle and δ is the depolarization ratio. Several depolarization
ratios have been suggested, with δ = 0.039 providing the best fit to data (Zhang et al.,
2009).

The elastic scattering coefficient of sea water depends on salinity (∼ 30% increase for
range of salinities normally observed in the oceans), much less so of temperature (∼ 4%
between 0 and 26 ◦C), and still less for pressure (∼ 1.3% for an increase in P of 100 bar).
Figure 8.7 shows the dependence of the water scattering coefficient on T and S according
to the model of Zhang et al. (2009).

http://omlc.ogi.edu/spectra/water/abs/


258 CHAPTER 8. OPTICAL CONSTITUENTS OF THE OCEAN

Figure 8.7: Dependence of the water scattering coefficient on temperature and salinity
according to Zhang et al. (2009).

Rather than repeat the derivations from Zhang and Hu (2009) and Zhang et al. (2009),
the corresponding Web Book page on water provides a link to a MATLAB function that
provides their results and computes the scattering coefficient and the VSF of water at 90
degrees for a given wavelength, salinity and temperature. Figure 8.8 shows example plots
computed using the MATLAB code of Zhang.

Figure 8.8: Comparison of the data of Morel (1968) and the model of Zhang et al. (2009)
for scattering by pure water and pure sea water. Assumed T = 20 ◦C.

Raman scattering by water is discussed in detail in Section 7.2.

https://oceanopticsbook.info/view/optical-constituents-of-the-ocean/water
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8.3 Phytoplankton

[Ivona Cetinić and Curtis Mobley contributed to this section.]

Phytoplankton combines the Greek words phyto meaning plant and planktos meaning
wanderer of drifter, i.e., drifting plants. Phytoplankton are one of the primary reasons for
studying the ocean. These microscopic, single cell, free-floating organisms have a major
effect on ocean color and influence the heating of near-surface water. Additionally, they
possess chlorophyll, a pigment that allows them to harvest sunlight and, through the
process of photosynthesis, produce energy-rich organic material, while releasing the oxygen.
That makes them the most important primary producers in the ocean, the base of the
oceanic food web, and an important component of the global carbon cycle (Falkowski
and Raven, 2007). Phytoplankton, through photosynthesis, contribute about one-half of
the Earth’s annual oxygen production, with the other half coming from photosynthetic
terrestrial plants. For all of these reasons and many more, it is of a great importance to
understand phytoplankton abundance and dynamics.

There are many ways to quantify “how much” phytoplankton is in the water. You can
count their number per unit volume of water using a microscope or particle sizing instru-
ments such as a flow cytometer or diffraction-based optical instruments. You can measure
their biomass or carbon content. All phytoplankton contain chlorophyll, a molecule that
is the basis of photosynthesis. There are several types of chlorophyll, denoted by of chloro-
phyll a, chlorophyll b, chlorophyll c1, etc., but all phytoplankton chlorophyll a. Therefore,
the most common measure of phytoplankton concentration or abundance is the concentra-
tion of chlorophyll a, usually by Chla or usually just Chl, given in units of milligrams of
chlorophyll per cubic meter (numerically equal to micrograms per liter).

Phytoplankton are a taxonomically diverse group comprising more than 10,000 species
and taxa (Jeffrey and Vesk, 1997). By number, the most important groups of phytoplank-
ton include diatoms, dinoflagellates, and coccolithophorids, although many other types of
algae are part of the phytoplankton. Additionally, an important group from the realm
of bacteria, cyanobacteria, is part of the phytoplankton. They come in different sizes
(from 0.2 µm to > 1000 µm), shapes (spheroids, cylinders, prolate spheroids and many
more), builds (cellulose, silicate or calcium-carbonate cell walls), and with many different
physiologies.

Phytoplankton contain a large number of different pigments1, which are substances
that absorb specific wavelengths of light, the most important of which is chlorophyll a.
Depending on group or taxa, varying concentrations of other pigments will be present in
the cell—other chlorophylls, carotenoids, and billiproteins (Jeffrey and Vesk, 1997). All
the specifics of phytoplankton make-up mentioned above impact phytoplankton optical
properties, and consequently allow us to study their ecology and evolution in time by
measuring their optical properties. Phytoplankton absorbing and scattering properties,
and chlorophyll fluorescence, are surveyed in this section; detailed treatments are given in
other sections.

1Pigments are generally insoluble (or nearly so) in water. Dyes, on the other hand, are typically soluble
in water.
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8.3.1 Pigment Packaging

In order to understand absorption by phytoplankton, it is first necessary to understand
pigment packaging. The pigment packaging effect refers to the “flattening” of mass-specific
absorption spectra that occurs when the absorbing material is “packaged” into discrete
particles rather than being uniformly distributed throughout a cell. This qualitative idea
is as follows.

Consider an absorbing substance, e.g. chlorophyll, distributed molecule by molecule
throughout a medium (water or cell cytoplasm). The absorbing material is then considered
to be dissolved or in solution. When light shines into this solution, some amount will be
absorbed. Moreover, each molecule has a roughly “equal chance” to receive and absorb
some of the light. This is illustrated in the left panel of Fig. 8.9, which shows absorbing
molecules (the blue dots) dispersed throughout a medium. Light rays (the arrows) can
reach almost any molecule and be absorbed. When the absorbing molecules are grouped
together into larger particles as seen in the right panel of the figure, some of the molecules
are “shaded” by others and have less chance of absorbing some of the incident light. Thus
less light will be absorbed when the absorbing molecules are packaged than when they are
dissolved (or are in smaller packages), even though the amount of the absorbing material is
the same in each case. In other words, the mass-specific absorption decreases as packaging
increases.

Figure 8.9: The qualitative idea of pigment packaging. The left panel shows absorbing
molecules (the blue dots) dispersed throughout a medium. Light rays (the arrows) can
reach almost any molecule and be absorbed. The right panel shows the absorbing molecules
packaged together into larger particles. Some of the absorbing molecules are now shaded
by others and therefore absorb less light.

Figure 8.10 shows the effect of pigment packaging on absorbance spectra for a particular
species of phytoplankton, the flagellate Euglena gracilis, which is 20 to 100 µm in size.
(Recall from Eq. (3.23) that the absorption coefficient a is related to the absorbance Abs
by a = 2.303Abs/R, where R is the path length through the sample.) The red spectrum is
for intact cells. The blue spectrum is for cells that have been broken up by ultrasonication
so that the chlorophyll is dispersed throughout the water. The inset photo of a Euglena
gracilis cell shows the green chloroplasts and other internal structures.

There are two ways that the effects of pigment packaging can be enhanced. First, for
a given package size, increasing the absorption efficiency of the pigment molecule will give
a larger packaging effect because the molecules first receiving the light will absorb more
of the incident light, leaving less light for the molecules that are shaded. Second, for a
given pigment molecule, making the packages larger will allow less light to penetrate to
the “back” of the package and, again, the shaded molecules will absorb less.



8.3. PHYTOPLANKTON 261

Figure 8.10: The effect of pigment packaging on absorbance spectra for in vivo (red) and
sonicated (blue) cells. Spectra redrawn from Kirk (1994, Fig. 9.1). Inset photo by E.
O’Neill from https://en.wikipedia.org/wiki/Euglena_gracilis, reproduced by the
Creative Commons license.

The first of these situations leads to the flattening of absorption spectra. Chlorophyll
absorbs more strongly at 440 nm, for example, than at 550 nm. Thus the chlorophyll-
specific absorption will be relatively less at 440 than at 550, and the chlorophyll-specific
absorption spectrum will have a smaller difference in the value at 440 compared to 550 as
packaging increases. This is what is seen in the red curve of Fig. 8.10.

The second situation gives flatter spectra for large phytoplankon than for small ones
because large cells can contain larger packages than can small cells. Large cells contain
more chlorophyll than small cells, so the effect of packaging correlates with the chlorophyll
concentration. This correlation between the chlorophyll concentration and spectral flatten-
ing is seen in Fig. 8.11. The left panel shows the absorption coefficient for particles (living
phytoplankton plus detritus and non-algal particles) in Case 1 water. The spectra are color
coded by the range of chlorophyll concentration. As expected, on average, the absorption
coefficient ap is larger when the chlorophyll concentration is larger. The right panel shows
the corresponding chlorophyll-specific absorption spectra, a∗p = ap/Chl. It is seen that the
highest chlorophyll values correspond to the “flattest” spectra (which are almost buried
under the blue and purple spectra in the figure), and the lowest-chlorophyll values have
the spectra with the most structure. This shows the effect of pigment packaging.

For a more detailed discussion of pigment packaging, see Duysens (1956), who origi-
nally recognized the importance of packaging and developed a mathematical model of the
effect. Kirk (1976, Section 9.2) repeats Duysens’ development. Morel and Bricaud (1981a);
Johnsen et al. (1994) and many others have built on Duysens’ original model of pigment
packaging to understand and model absorption by phytoplankton.

https://en.wikipedia.org/wiki/Euglena_gracilis
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Figure 8.11: Particulate absorption spectra for Case 1 water color coded by the range of
chlorophyll values. Left panel: particulate absorption spectra; right panel: the correspond-
ing chlorophyll-specific absorption spectra. Data courtesy of A. Bricaud; for discussion of
these spectra, see Bricaud et al. (1998).

8.3.2 Absorption by Phytoplankton

Phytoplankton absorb sunlight and use this energy to produce energy-rich organic material
through the process of photosynthesis. Chlorophylls, present in all phytoplankton cells,
cause two dominant peaks in absorption spectra, a primary peak in the blue (centered
near 440 nm) and a secondary peak in red part of the spectrum (near 675 nm). The
presence of other pigments (depending on species and taxa) causes a broadening of blue
peak and the appearance of additional absorption maxima. These taxa-specific absorption
peaks have been used as an optical detection tool in situ (Kirkpatrick et al., 2000) as well
for development of remote sensing algorithms (e.g., Subramaniam et al., 2002; Tomlinson
et al., 2009; Wang and Moisan, 2021). Jeffrey et al. (2012) give a detailed review of the
pigments found in different microalgal classes.

However, absorption by phytoplankton is not a simple sum of absorption coefficients of
individual pigments. Spectra of phytoplankton absorption, aphy(λ), vary in magnitude and
shape due to the different cellular pigment composition and pigment packaging (Bidigare
et al., 1990; Bricaud and Stramski, 1990; Hoepffner and Sathyendranath, 1991; Ciotti
et al., 2002; Bricaud et al., 2004). Specific pigment-protein complexes present in the cell
will cause changes in absorption spectra and magnitudes . Furthermore, the increase in
cellular pigment concentration and cell size, i.e. the packaging effect, will flatten the specific
absorption spectra as explained above.

For theoretical calculations of phytoplankton absorption and inversion of measured
absorption spectra, we need measurements of in vivo pigment spectra. Figure 8.12 shows
two such databases that are based on absorption in solvents, with the absorption spectra
shifted to match those observed in-vivo.

Figure 8.13 shows examples of absorption spectra of phytoplankton normalized by
chlorophyll and showcases the variability in pigments, packaging (flattening of the peak
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Figure 8.12: Mass-normalized absorption of phytoplankton pigments based on studies by
Bidigare et al. (1990) (left) and Bricaud et al. (2004) (right). These data can be downloaded
in spreadsheet format on the Web Book page on phytoplankton.

where absorption is high) and differences between large and small cells.

Figure 8.13: Chlorophyll-normalized phytoplankton absorption based on Bricaud et al.
(1995) and Ciotti et al. (2002). These data can be downloaded in spreadsheet format on
the Web Book page on phytoplankton.

8.3.3 Scattering by Phytoplankton

The scattering properties of phytoplankton are important since they are directly related to
remote-sensing reflectance calculations (via the backscattering to absorption ratio). Scat-
tering and backscattering coefficients of phytoplankton as well as the volume scattering
function are derived from either theoretical models (e.g., Mie theory) or direct mea-
surements of the above mentioned properties (Bricaud et al., 1983; Volten et al., 1998;

https://oceanopticsbook.info/view/optical-constituents-of-the-ocean/phytoplankton
https://oceanopticsbook.info/view/optical-constituents-of-the-ocean/phytoplankton
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Witkowski et al., 1998; Vaillancourt et al., 2004; Sullivan and Twardowski, 2009). They
strongly depend on the size, shape and refractive index of all components of the phyto-
plankton cell (e.g., Volten et al., 1998; Witkowski et al., 1998; Jonasz and Fournier, 2007;
Sullivan and Twardowski, 2009). Values of phytoplankton scattering coefficients, when
compared to other kinds of the oceanic particles, are relatively low because of their high
water content and strong absorptive properties (Aas, 1984). An exception to this rule is
coccolithophores—phytoplankton that produce small calcium carbonate scales that make
them very effective scatterers, which allows the detection of coccolithophorid blooms from
space (Balch et al., 1996). Discriminating phytoplankton based on their angular scattering
properties was suggested by Wyatt and Jackson (1989).

Our knowledge about the angular distribution of scattering for phytoplankton is scarce
due to the small number of experimental datasets (Petzold, 1972; Morel and Bricaud, 1986;
Volten et al., 1998; Witkowski et al., 1998; Vaillancourt et al., 2004; Lotsberg et al., 2007).
In general, phytoplankton forward scattering dominates scattering in backward direction
as seen in Fig. 8.14, consistent with their large size-to-wavelength ratio. Such angular
distribution of scattering causes low backscattering ratios observed for phytoplankton pop-
ulations in situ (Twardowski et al., 2001).

Figure 8.14: Scattering by different phytoplankton species in comparison with the San-
Diego Harbor VSF of Petzold (1972). Data from Volten et al. (1998). These data and
their uncertainties can be downloaded as a spreadsheet from the Web Book page on phy-
toplankton.

Following the formula that scattering is the difference between attenuation of the light
and absorption (b = c−a), and the rather featureless attenuation spectra of phytoplankton,

https://oceanopticsbook.info/view/optical-constituents-of-the-ocean/phytoplankton
https://oceanopticsbook.info/view/optical-constituents-of-the-ocean/phytoplankton
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one can assume that the absorptive properties of the cell influence the shape of the spectral
scattering (Bricaud et al., 1983). The scattering spectra will be, roughly speaking, an
inverse picture of absorption spectra of the same species; a photon absorbed is not scattered.
Similar patterns are also observed in backscattering (Stramski et al., 2001; Gordon et al.,
2009). The phenomena of anomalous dispersion, which explains the shape of scattering
spectra in the region of strong absorption bands, is treated in detail in Section 11.5.

8.3.4 Fluorescence by Phytoplankton

The general theory of fluorescence as used in time-independent radiative transfer theory was
developed in Section 7.3 and applied to chlorophyll fluorescence in Section 7.4. However,
a mathematically simpler formulation, as outlined here, is usually seen in the biological
literature.

A portion of the light absorbed by a phytoplankton cell can be emitted at another,
longer wavelength; a process referred to as fluorescence. Several phytoplankton pigments
(chlorophylls, pheopigments, and phycobilins) fluoresce, with chlorophyll a fluorescence
being the most significant. Although fluorescence is only a form of energy dissipation of
the absorbed light, secondary to photosynthesis, it is still significant enough to be observed
from space (Neville and Gower, 1977; Huot et al., 2005). Fluorescence is important for the
study of ocean primary production (Yentsch, 1994).

Fluorescence from phytoplankton chlorophyll is often expressed expressed by this sim-
plified formula (Falkowski and Kiefer, 1985; Babin, 2008):

F = PAR [Chla] ā∗phy φF . (8.5)

Here PAR is the is the measure of light impinging on the cell [photons s−1 m−2], [Chla] is
chlorophyll a concentration [mg m−3], ā∗phy is the wavelength-averaged chlorophyll-specific

phytoplankton absorption coefficient as weighted by the scalar irradiance spectrum [m2 mg−1],
and φF is the nondimensional quantum yield of fluorescence—the emission efficiency of the
cell defined as the number of photons emitted divided by the number of photons absorbed
by the chlorophyll. The resulting F is then photons emitted per second per cubic meter.

If the spectral scalar irradiance Eo(λ) is in energy units [W m−2 nm−1], then ā∗phy is
given by

ā∗phy =

∫ 700
400 a

∗
phy(λ)Eo(λ) λ

hc dλ∫ 700
400 Eo(λ) λ

hc dλ
.

The factor of λ/(hc) has units of photons per joule and converts energy units to quantum
units (number of photons). The denominator of the previous equation is by definition PAR
(Eq. 1.29). Thus Eq. (8.5) says that the number of photons fluoresced (F ) is the product
of how much light is available (PAR) times how much chlorophyll is present to absorb
the light ([Chla]) times how efficiently the chlorophyll absorbs the light (ā∗phy) times how
efficiently the light absorbed by the chlorophyll is re-emitted as fluoresced photons. That
does not sound complicated.

The complications to Eq.(8.5) lie in the fact that phytoplankton fluorescence depends
(via the quantum yield of fluorescence φF and the chlorophyll-specific phytoplankton ab-
sorption spectrum a∗phy(λ)) on numerous factors: taxonomic position of the algae, pigment
content and ratios, photoadaptation, physiological state of the phytoplankton, nutrient
conditions, and stage of growth (Prezelin and Alberte, 1978; Falkowski and Owens, 1980;
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Babin, 2008; Cullen, 2008). All of that makes fluorescence a very complicated phenomenon.
Measuring in-situ chlorophyll fluorescence is the most frequent method for describing the
chlorophyll and phytoplankton distribution in the ocean (Cullen, 2008), but the above men-
tioned drivers of chlorophyll fluorescence variability make interpretation of the chlorophyll
fluorescence data anything but straightforward. Refer to Babin (2008) for a comprehensive
treatment of this important topic.

8.4 Colored Dissolved Organic Matter (CDOM)

Colored or Chromophoric Dissolved Organic Matter (CDOM) is an important optical con-
stituent in water, often dominating absorption in the blue. The quantification of the
amount of CDOM present in the water is based on the absorption or fluorescence by ma-
terial passing through a given filter (most often with pore size of 0.2µm). As such, it is an
absorption (or fluorescence)-weighted sum of the different dissolved materials in the water.
Note that most of the material comprising dissolved organic matter (DOM) does not ab-
sorb or fluoresce and that there exist inorganic dissolved materials that also absorb (e.g.
iron oxides, nitrate), though it is believed that fluorescence is due solely to organic materi-
als. From this discussion it follows that CDOM is not necessarily a good proxy for DOM,
particularly in the open ocean. Nevertheless CDOM has been found to be a useful tracer
of water masses, as well as an indicator of different biogeochemical processes. Coble (2007)
gives a review on the link between the optical and chemical properties of DOM. Sample
preparation and methodology of measurement are important in order to obtain accurate
CDOM measurements. See Nelson and Coble (2009) for an analysis of methodology.

In the United States, colored dissolved organic matter is usually called CDOM. How-
ever, you will also see the terms “yellow matter,” “Gelbstoff” (German for “yellow matter”),
or “gilvin.” The name gilvin, from a Latin word meaning pale yellow, was proposed by
Kirk (1994) but is not widely used. Absorption by CDOM is commonly denoted by aCDOM,
ag, or sometimes ay.

8.4.1 Absorption by CDOM

Figure 8.15 shows several measurements of CDOM absorption. For wavelengths greater
than 300 nm, aCDOM decreases roughly exponentially with increasing wavelength. Below
300 nm there is a change in slope and a rapid increase in CDOM absorption with decreasing
wavelength.

For wavelengths greater than 300 nm, which are the ones relevant to most optical
oceanography, it is common to model CDOM absorption with an exponential function
(e.g. Jerlov (1968)):

aCDOM(λ) = aCDOM(λo) exp−SCDOM(λ−λo) [m−1], (8.6)

where SCDOM is referred to as the spectral slope parameter and λo is a reference wavelength,
which is often taken to be 440 nm. A theoretical explanation for this shape has been
hypothesized by Shifrin (1988) as arising from a superposition of resonances of different
molecular π-bonds in the long organic molecules comprising CDOM. Single bonds, which
are most abundant, will absorb short wavelength radiation while resonances of multiple
bonds, less abundant, absorb longer wavelength radiation. Since numerically there are
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Figure 8.15: CDOM absorption spectra from five locations in Florida waters (greenish
curves). The red line is Eq. (8.6) and the blue line is Eq. (8.7). For both models, the
parameter values were determined from the average values of the five spectra at 300 and
440 nm. Data courtesy of L. Ayoub.

many more short bonds, the absorption is higher at shorter wavelengths. This explanation
is consistent with the observation that small values of the spectral slope of CDOM, SCDOM,
are associated with higher molecular weight materials (e.g., Carder et al., 1989; Yacobi
et al., 2003).

For visible wavelengths the most commonly used values of SCDOM are near 0.014 nm−1,
based on measurements by Bricaud et al. (1981) and others. However, the value of SCDOM

varies in the visible from 0.007 to 0.026 nm−1 (e.g., Twardowski et al., 2004, Table 1).
Figure 8.16 shows the distribution of SCDOM values observed by Babin et al. (2003b).
Their data show a mean of SCDOM = 0.0176 nm−1 with a standard deviation of 0.0020.

While (8.6) is the most frequent model of CDOM absorption, other models have been
suggested and may provide a better fit to data (even when taking into account that fits
improve as more free parameters are available in the fit, (e.g., Twardowski et al., 2004). In
particular, a constant is often added to the exponential fit:
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Figure 8.16: Distribution of the spectral slope parameter SCDOM measured on 346 samples
in European waters. From Babin et al. (2003b, Figure 4(a)), reproduced by permission of
the American Geophysical Union.

aCDOM(λ) = aCDOM(λo) exp−SCDOM(λ−λo) + Constant [m−1].

What this constant represents is not clear. In some cases it is supposed to account for
scattering by the dissolved component, however there is no reason to believe that such
scattering would be spectrally flat (see Bricaud et al. (1981) for an in-depth discussion).
It may account for bubbles in the sample.

Another model that has been found to work even better than the exponential model is
a power-law model (e.g., Twardowski et al., 2004):

aCDOM(λ) = aCDOM(λo)

(
λ

λo

)−S
[m−1]. (8.7)

Given that molecular absorption is often a symmetric function for a given chromophore,
frequency domain fits have been suggested (e.g., Schwarz et al., 2002). Those are based
on Gaussian or Lorentzian functions with the visible domain being the tail end of the
distribution. Trying to fit together UV and visible bands is complicated by the absorption
of UV light by dissolved salts which are not part of DOC.

8.4.2 Elastic Scattering by CDOM

The CDOM contribution to scattering by seawater is somewhat controversial. By def-
inition colloids are dissolved organic matter and, if abundant enough, could contribute
significantly to scattering by sea water (particularly to backscattering, see Stramski and
Wozniak, 2005). However, there is no observational evidence that CDOM contributes
significantly to scattering (see Dall’Olmo et al. (2009) for recent measurements). Thus,
currently, CDOM contribution to scattering is most often neglected.
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8.4.3 Inelastic Scattering by CDOM

One of the primary methods to quantify CDOM is through fluorescence. Since not all
dissolved material that absorbs also fluoresces, this material is often denoted as fluorescent
dissolved organic material (FDOM). In general absorption and fluorescence covary, however
their ratio can vary by orders of magnitude between different locations. The measurement
of CDOM fluorescence in the field is often limited to a single excitation/emission band
pair. With laboratory instrumentation, two-dimensional excitation-emission spectra can
be measured and used to characterize the FDOM based on the size and presence of known
excitation-emission peaks (see, for example, Coble, 2007, Table 1). This is discussed in
more detail in the Section 7.5.

8.5 Non-algal Particles

As noted in the first section of this chapter, the term non-algal particles (NAPs) refers to
particulate matter that does not have extractable (via solvents such as acetone or methanol)
pigments. This includes all living and detrital organic matter such as the non-pigmented
portion of phytoplankton cells, detritus, heterotrophic bacteria, and viruses. Many authors
also include inorganic mineral particles of both biogenic (e.g., calcite liths and shells) and
terrestrial origin (e.g., clay, silt, and sand). Detritus is a catch-all term for non-living
particulate organic matter, including dead bacterial, phytoplankton and zooplankton cells,
fragments of cells left from zooplankton grazing, fecal pellets, shells, and marine snow
aggregates. Detritus both absorbs and scatters and can constitute an important fraction
of the total IOPs of a water body.

8.5.1 Absorption by Non-algal Particles

There have been many measurements of the absorption spectra of detritus and NAPs.
Figure 8.17 shows an example of mass-specific absorption by detritus and NAPs. These
measurements include both biogenic detritus and mineral particles (including resuspended
sediments). The curves show a generally exponential decay with increasing wavelength. It
is thus common (e.g., Yentsch, 1962; Kirk, 1980; Roesler et al., 1989; Bricaud et al., 1998)
to model absorption by detritus or NAPs via

aNAP(λ) = aNAP(λo) exp−SNAP(λ−λo) [m−1] , (8.8)

where λo is a reference wavelength and SNAP the spectral slope parameter. The mean value
of SNAP used to model NAP absorption is 0.011 nm−1 (e.g., Roesler et al., 1989; Bricaud
et al., 1998). However, as always with data-derived parameters, there is variability in SNAP.
Figure 8.18 shows the distribution of SNAP values observed by Babin et al. (2003b). Their
data show a mean of SNAP = 0.0123 nm−1 with a standard deviation of 0.0013.

The absorption model of Eq. (8.8) has the same functional form as that for absorption
by CDOM, although the average spectral slope parameter SNAP ≈ 0.011 nm−1 differs
somewhat from the average parameter for CDOM, SCDOM ≈ 0.018 nm−1.

8.5.2 Scattering by Non-algal Particles

Although CDOM and NAPs have similar absorption spectra, they differ greatly in their
scattering properties: CDOM has negligible scattering, but NAPs can be strongly scat-
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Figure 8.17: Measurements of mass-specific detritus and NAP absorption spectra from
both fresh river water and coastal ocean water. Data courtesy of M. L. Estapa; see Estapa
et al. (2012) for discussion of these data.

Figure 8.18: Distribution of the spectral slope parameter SNAP measured on 348 samples
in European waters. From Babin et al. (2003b, Fig. 41(a)), reproduced by permission of
the American Geophysical Union.

tering. There is much less data on NAP scattering than for absorption, but Fig. 8.19
shows data from Great Lake (Taihu), China taken by Sun et al. (2010). The bNAP(λ)
spectra in this dataset show a rather featureless dependence on wavelength, which is well
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fit (R2 = 0.989) by a power law:

bNAP(λ) = bNAP(550)

(
λ

550

)−0.938

[m−1] . (8.9)

Sun et al. (2010) show that the IOPs of this lake are dominated by NAP, with phytoplank-
ton usually contributing less that 10% of the total scattering. (The same dataset had NAP
absorption spectra that were well fit by Eq. (8.8), but with a spectral slope parameter of
SNAP = 0.0052± 0.0010 nm−1, which is about one-half of typical ocean values.)

Figure 8.19: Scattering coefficient spectra bNAP(λ) from Great Lake (Taihu), China. Data
from Sun et al. (2010, Fig. 1(B)) provided courtesy of D. Sun.

8.5.3 Absorption by Minerals

Mineral particles can enter the ocean from river discharge, erosion of coastal cliffs, sediment
resuspension, and deposition of atmospheric dust, which is often carried long distances
by winds. The optical properties of such particles are just as varied, and often just as
important, as the properties of biological particles. In spite of their importance, relatively
few studies have investigated the absorption and scattering properties of minerals per
se. These include Ahn (1999); Stramski et al. (2004b); Babin and Stramski (2004), and
Stramski et al. (2007).

Figure 8.20 shows mass-specific absorption coefficients a∗(λ) (units of m2 g−1) for four
types of minerals. Figure 8.21 shows the same for several types of mineral dust suspended
in sea water; some of the curves are the same mineral type but with different particle size
distributions. The imaginary indices of refraction for these particles varied by an order
of magnitude, from about 0.003 to 0.03, depending on wavelength and mineral type. See
Stramski et al. (2007) for a full discussion. These (and other) data sets are in qualitative
agreement: absorption by minerals can range from highly absorbing in the blue with a
roughly exponential decrease with increasing wavelength, to almost non-absorbing and
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spectrally flat. Thus, to first order, absorption by minerals can be modeled by either an
exponential,

amin(λ) = amin(λo) exp[−Smin(λ− λo)] [m−1] ,

or a power law,

amin(λ) = amin(λo)

(
λ

λo

)−mmin

[m−1] ,

where λo is a reference wavelength. The parameters Smin and mmin can be adjusted as
needed to fit a particular mineral type.

Figure 8.20: Measured mass-specific absorption coefficients a∗(λ) for four types of minerals.
From Ahn (1999, data courtesy of A. Morel).

8.5.4 Scattering by Minerals

Figures 8.22 and 8.23 show the mass-specific scattering coefficients b∗(λ) for the same two
data sets of Figs. 8.20 and 8.21. As for absorption, the scattering coefficients show a
decrease from blue to red, although with a couple of exceptions that have their maximum
values at green wavelengths. Many of these scattering coefficients could be modeled with
an exponential or power law function. However, in all cases, use of a measured spectrum
for radiative transfer calculations is preferable.

Stramski et al. (2001) used complex indices of refraction for detritus and mineral parti-
cles, a power law particle size distribution with a slope parameter of -4 (a Junge distribu-
tion), and Mie theory to compute absorption, scattering, and backscattering cross sections
for detritus and minerals. Their results are shown in Table 8.3. It is interesting to note how
closely the wavelength exponents for the scattering cross sections agree with the best-fit
values for the NAP-dominated waters of Fig. 8.19 as seen in Eq. (8.9).
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Figure 8.21: Measured mass-specific absorption coefficients a∗(λ) for various types of min-
eral dust suspended in sea water. The highest magnitude curves are red soils rich in iron
oxides, the lowest curves are calcite and quartz. Redrawn from Stramski et al. (2007, Fig.
3) with data provided courtesy of D. Stramski.

Figure 8.22: Measured mass-specific scattering coefficients b∗(λ) for four types of minerals.
From Ahn (1999, data courtesy of A. Morel).
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Figure 8.23: Measured mass-specific scattering coefficients b∗(λ) for the same samples of
mineral dust suspended in sea water as in Fig. 8.21. Redrawn from Stramski et al. (2007,
Fig. 6) with data provided courtesy of D. Stramski.

Detritus Minerals

Absorption σa, det = 8.79× 10−16 e−0.00847λ σa, min = 1.01× 10−15 e−0.00846λ

Scattering σb, det = 1.43× 10−13λ−0.9445 σb, min = 7.71× 10−13λ−0.9764

Backscattering σbb, det = 5.88× 10−16λ−0.8997 σbb, min = 1.79× 10−14λ−0.9140

Table 8.3: Absorption, scattering, and backscattering cross sections for detritus and min-
erals. All have units of m2 per particle. Multiplication by the number of particles per cubic
meter gives a, b, and bb in units of m−1. Data from Stramski et al. (2001, Table 2).

8.6 Air Bubbles

[ Xiaodong Zhang wrote this section.]

Bubbles in the upper ocean are generated primarily by breaking waves (Lamarre and
Melville, 1991; Thorpe and Humphries, 1980). When wind speed exceeds 7 m s−1, field
observations have shown that a stratus layer of bubbles forms under the sea surface and
persists as a result of continuous supply of bubbles by frequent wave breaking and the
subsequent advection by turbulence (Crawford and Farmer, 1987; Thorpe, 1982, 1986). As
the wind subsides, bubbles that have been injected will evolve under the effects of buoyancy
and gas diffusion, and merge into the background population on time scales of minutes to
hours (Johnson, 1986). When wind speeds are lower than 3m s−1, few waves break (Thorpe,
1982; Thorpe and Hall, 1983). In quiescent conditions, the presence of bubbles has also been
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Figure 8.24: Schematic drawing of light
incident on and scattered by a bubble with
a coating (the shaded area).

detected (Medwin, 1977; O’Hern. et al., 1988), and the sources of these bubbles have been
attributed to the pre-existing cavitation nuclei (O’Hern, 1987), remnant of bubbles injected
by breaking waves (Johnson, 1986), sediment outgasing (Mulhearn, 1981), phytoplankton
photosynthesis (Waaland and Branton, 1969), or zooplankton respiration (Ling and Pao,
1988).

Once formed, bubbles are coated with surfactant material almost instantaneously, and
the accumulation of organic films onto their surfaces provides a stabilizing mechanism
against surface tension pressure and gas diffusion (Fox and Herzfeld, 1954; Yount, 1979).
These stabilized bubbles, acting as cavitation nuclei, explain the tensile strength (Apfel,
1972) and cavitation pressure (Holl, 1970) observed for natural water with magnitudes that
are much lower than theoretical predictions for pure water.

The first study of optical properties of an air bubble in water probably was carried out
by Davis (1955), who used the geometric optics approximation to study the angular distri-
bution of intensity of light scattered by an air bubble in water. Later, the most intensive
studies of single-bubble optics were undertaken by Marston and co-workers (Arnott and
Marston, 1998, 1991, 1988; Kingsbury and Marston, 1981; Marston, 1979; Marston et al.,
1988; Marston and Kingsbury, 1981; Marston et al., 1982). They examined the light scat-
tering pattern near the critical angle (82.8◦), Brewster angle (106.2◦), and glory (180◦).
As shown in Fig. 8.24, a bubble (large compared to the wavelength of incident light)
suspended in water can be regarded as a local water-to-air interface. When the incident
angle θi is equal to or greater than 48.6◦ (= sin−1(na/nw)), the light experiences total
reflectance with a scattering angle of 82.8◦ or larger. Similarly when the incident angle θi
is 36.9◦ (= tan−1(na/nw)), the parallel polarized light has a null reflectance according to
Fresnel’s law, and the light at scattering angle of 106.2◦ is entirely perpendicularly polar-
ized. Analogous to the optical glory of a drop but with different mechanism, light scattered
from bubbles in water manifests an enhancement in the backward direction (180◦). The
viewable enhancement is within a circle of radius of about 2◦.

For rising bubbles, their shape will become oblate due to drag, which in turn depends
on the bubble size, surfactant, and water kinematic viscosity. By observing the glory
pattern exhibited by freely rising bubbles, Arnott and Marston (1988) found that for
bubbles with radius < 150 µm, the shape is sufficiently spherical for Mie theory to be
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valid. Also photographs show that bubbles with adsorbed monolayers of surface-active
material remain spherical (Johnson and Cooke, 1981). For practical purpose, bubbles in
the ocean are assumed to be spherical and the errors introduced by non-spherical larger
bubbles are not expected to be significant for the estimate of bulk optical properties because
their number density is very small as compared to the smaller bubbles. Let m denote the
relative index of a particle (including bubble) in the ocean. For practical purpose in the
visible wavelengths, m = 0.75, which is estimated for an air bubble in pure water at 25◦C at
550nm wavelength. The variations of m with temperature, salinity, and pressure are < 1%
in the visible domain and have a negligible effect on the calculation of optical properties
of bubbles. The comparison of scattering and backscattering efficiencies of clean bubbles
with those of soft (m = 1.05) and hard particles (m = 1.20) (Fig. 8.25a) as a function of
the sizes shows that for r < 0.5 µm, the scattering by a bubble is very similar to that of
a hard particle, and both scatter about an order of magnitude more than an soft particle
of equivalent size. All three achieve asymptotic value in scattering when r > 10 µm. For
r < 0.1 µm, the bubble is the strongest in backscattering efficiency, whereas hard particles
display the highest backscattering efficiency when r > 0.5 µm. The asymptotic values for
backscattering efficiency factor for bubbles, hard particles and soft particles are 0.02, 0.04
and 0.002 respectively. The backscattering ratio (Fig. 8.25b) decreases sharply as particle
size > 0.1 µm, and it diverges among various particles. The backscattering ratio for a
bubble asymptotically oscillates around 0.01.

Figure 8.25: Mie scattering calculation (λ = 550 nm) of the scattering and backscattering
efficiency (a) and backscattering ratio (b) for clean bubbles and for particles with relative
refractive index = 1.05 and 1.20, respectively.

The coating of organic film on the surface of bubbles significantly affects the backscat-
tering with little effect on the total scattering (Zhang et al., 1998). Scattering by bubbles
coated with organic film does not change very much from those by clean bubbles of sizes
> 1µm, but the backscattering increases with the thickness of the film, up to a factor of 4,
as seen in Fig. 8.26. For bubbles of smaller sizes (< 0.5 µm), the coating seems to reduce
both scattering and backscattering efficiency as compared to clean bubbles. There are few
data on the absorption properties of films coated onto the bubble surface. Calculations as-
suming an imaginary part of the refractive index of values 0.001 to 0.006 showed that only
when the bubble sizes reach approximately 100µm, and with an extremely high absorption
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coefficient (imaginary index = 0.006), does absorption significantly reduce the scattering
and backscattering from the case with no absorption. It is safe to say that the normally
absorbing organic films exert a small influence on the scattering and backscattering of
bubbles (Zhang et al., 1998).

Figure 8.26: Mie scattering calculation (λ = 550 nm) of the scattering and backscattering
efficiency for clean bubbles versus bubbles coated with an organic film of different thickness.
The film is assumed to a protein with an index = 1.2.

The bulk optical properties of bubble populations can be easily estimated once the
particle size distribution (PSD) of the bubbles is known. Let

Qj =

∫ rmax

rmin
Qj(r)PSD(r)πr2dr∫ rmax

rmin
PSD(r)πr2dr

, (8.10)

and

S =

∫ rmax

rmin

PSD(r)πr2dr.

Then

j = N0QjS (8.11)

where Qj , S and N0 are, respectively, the mean optical efficiency factors, the mean ge-
ometric cross-sectional areas, the number density of the size distribution of the bubble
population; and j = b or bb, denoting the total scattering or total backscattering coeffi-
cient.

Many studies attempting to characterize the size spectra of bubble populations under
various stages after wave breaking have been conducted and their results are summarized
in Fig. 8.27a. Immediately after wave breaking, the newly created bubbles are typically of
sizes 0.1 - 10 mm (Deane, 1997; Haines and Johnson, 1995; Phelps et al., 1997; Zhang et al.,
2002). Once bubble creation processes cease, the newly formed bubble plume evolves under
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the influence of turbulent diffusion, advection, buoyant degassing and dissolution, leaving
behind a diffuse cloud of microbubbles (Baldy, 1988; Baldy and Bourguel, 1985; Breitz
and Medwin, 1989; Cartmill and Su, 1993; Johnson and Cooke, 1979; Kolovayev, 1976;
Leeuw and Cohen, 1995; Phelps and Leighton, 1998; Su and Cartmil, 1994; Su et al., 1988;
Terrill et al., 2001; Vagle and Farmer, 1992, 1998; Walsh and Mulhearn, 1987). Copious
amounts of bubbles have also been observed in quiescent seas (Fig. 8.27b), sometimes with
a concentration even higher than in rough water (Huffman and Zveare, 1974; Ling and
Pao, 1988; Medwin, 1977; O’Hern. et al., 1988; Shen et al., 1986).

Figure 8.27: The size distributions of bubble populations measured under breaking waves
(a, left) and in quiescent seas (b, right). Different colors represent different studies. Solid
lines denote the methods that are based on optics and the dashed lines for acoustics. The
vertical line at 30 µm denotes a size around which disagreements occur and the line at
10 µm denotes the size below which few observations are available.

Various bubble-sensing techniques have been developed and the technology can be
categorized into two groups: optics and acoustics. Optics-based methods (solid lines in Fig.
8.27) include photography (Deane, 1997; Johnson and Cooke, 1979; Kolovayev, 1976; Leeuw
and Cohen, 1995; Walsh and Mulhearn, 1987), light scattering and reflection (Baldy, 1988;
Baldy and Bourguel, 1985; Ling and Pao, 1988; Su et al., 1988), and holography (O’Hern.
et al., 1988). Bubbles pulsate under sound pressure and the intrinsic frequency is inversely
proportional to the sizes. Bubbles of sizes that are in resonant with the acoustical frequency
can significantly alter the sound propagation speed and exert an attenuation cross-section
up to 100 times than those non-resonant bubbles or solid particles. The acoustics-based
methods (dashed lines in Fig. 8.27) include resonator (Cartmill and Su, 1993; Medwin,
1970; Su and Cartmil, 1994; Terrill and Melville, 2000; Vagle and Farmer, 1998), sound
speed dispersion (Huffman and Zveare, 1974), backscatter (Vagle and Farmer, 1992, 1998),
and nonlinear interaction (Phelps and Leighton, 1998; Phelps et al., 1997).

Despite various techniques being developed and used, few studies have been able to
detect bubbles of sizes < 10 µm (the vertical lines at 10 µm in Fig. 1). We believe this
limit, hardly of any natural origin, is artificial and imposed by technology being used. For
acoustic frequencies greater than 200 KHz, which resonates with bubbles of 16 µm, the
off-resonant contribution from larger bubbles is very large and it is difficult to separate
resonant signal from off-resonant noises. On the other hand, the size limit in photography
is about 30-40 µm.
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For bubbles of sizes > 10µm, the mean optical efficiency factors Qj are almost constant
for both scattering and backscattering (Figs. 8.25 and 8.26); therefore the bulk scattering
and backscattering coefficients (Eq. 8.11) are determined by the size distributions. Based
on the bubble size spectra shown in Fig. 8.27a, the natural bubble populations account for
a large portion of observed backscattering (Terrill et al., 2001; Zhang et al., 1998) or even
completely dominate the scattering process in roughened seas (Stramski and Tegowski,
2001). In clear waters, the presence of bubbles shifts the color of the ocean towards green
(Zhang et al., 1998).

The volume scattering functions of bubble populations were measured by a prototype
volume scattering meter (Lee and Lewis, 2003) in the laboratory, and the results confirmed
the elevated scattering at the critical angle and the enhanced backscattering by surfactant-
coated bubbles relative to the clean bubbles (Fig. 8.28).

Figure 8.28: Two phase functions measured for bubble populations produced in clean sea-
water (solid line) and in surfactant-contaminated seawater (dotted line) are compared with
the theoretical phase function calculated for clean bubbles (dashed line). The bubble dis-
tribution followed a normal distribution, with a mean radius of 25µm. Because the reliable
angular range of the measurement was from 10◦ to 170◦, the measured data were scaled
such that the integrations of the phase function between 10◦ and 170◦ for the measurements
are the same as that of the theoretical calculation. The inset is in linear scale for angles
from 90◦ to 170◦. Copied from Zhang et al. (2002, Fig. 4) with permission.

It is impossible to directly measure the volume scattering that is due to bubble popu-
lations alone in nature. However, the scattering by oceanic bubbles can be inferred from
field measurement of the total VSF (Zhang et al., 2002), even though the solution might
not be unique, depending directly on how well the nature of scattering by other particles
and the size distribution of all particles are represented.

Because little is known about small bubbles of sizes < 10 µm in nature, the optical
properties of oceanic bubble populations in their entirety are still elusive. If the bubble
concentration decreases at smaller sizes, then theoretical calculations and laboratory ob-
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servations of the VSF for bubbles as shown in Fig. 8.28 are applicable to natural bubble
populations; however, if the distribution is characterized by a continuous increase in the
number density as size decreases (although clearly this must be bounded), then this could
change the VSF in a way dependent on the size distribution of the small bubbles.

The injection of bubbles beyond the background population could significantly alter
the light field both below and above the bubble layer. Being an efficient source of diffuse
radiance, bubble layers contribute to a rapid transition to the diffuse asymptotic regime
(Flatau et al., 1999) and enhance and modify the spectral reflectance above the surface
(Flatau et al., 2000; Piskozub et al., 2009). Because of this, the typical ocean color al-
gorithms for atmospheric correction (in particular, the black pixel assumption, Section
15.11.2) and for retrieval of the oceanic parameters (through band ratios) may no longer
apply in the presence of additional bubbles (Yan et al., 2002; Zhang et al., 2004).

8.7 Aggregates

[Emmanuel Boss and Curtis Mobley wrote this section.]

Flocculation is the packaging of small particles into larger aggregated particles. The
flocculation process is governed by a balance between particles colliding and sticking to-
gether and being torn apart by small-scale turbulence. The resulting aggregates (often
called flocs or marine snow) are delicate aquatic particles composed of primary particles
held together by polymers. They are often amorphous or “fluffy” and have sizes > 100µm.
A large fraction of an aggregate is often water (> 90% by volume) and hence its physical
(e.g., settling speed) and optical properties (especially scattering) can be significantly dif-
ferent from the constituent particles. When mechanically disturbed (e.g., due to pumping
through an instrument, sampling through the spigot of a Niskin bottle, or in the wake of
a rosette) fragile aggregates may break apart, which often results in large changes in the
optical properties of the water column.

Aggregation converts small particles into larger particles, which gives relatively fewer
small particles and more large particles and thereby decreases the overall slope of the
particle size distribution (PSD). Scattering depends strongly on the PSD (Eq. 8.10 above
or Section 12.3), so aggregation can be expected to affect optical properties even though
the mass remains unchanged. These changes are caused for two primary reasons. First,
the packing of particles within aggregates is often dense enough that coherent interactions
between scattered waves emanating from individual particles within the aggregate will
cause a different scattering pattern than the simple superposition of scattering by the
individual particles in suspension. Second, aggregate porosity is observed to grow with
increasing aggregate size, so the cross-sectional areas of aggregates can be significantly
larger than that derived by assuming that the solid mass is packed into a sphere of the
same density as the component particles.

The difficulty of modeling scattering by aggregates can be understood as follows. Con-
sider a spherical particle of diameter d. The volume of the particle is V = (π/6)d3 and the
cross-sectional area is A = (π/4)d2. If two such particles are combined into a new spherical
particle, and the density of material remains unchanged, then the new particle has twice
the mass and twice the volume of an individual original particle, but the diameter increases
by a factor of only 3

√
2 = 1.26. (This is the situation if two small raindrops coalesce into

one larger drop.) The cross-sectional area thus increases by a factor of only 2/3
√

2 = 1.58.
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Combining the two particles thus decreases their cross-sectional area compared to the to-
tal cross-sectional area of the two individual particles. Forward scattering (dominated by
diffraction) is roughly proportional to the cross-sectional area, so in this case the aggregate
scatters less that the two individual particles. However, the situation for actual marine
aggregates is more complicated. Rather than the aggregate mass being proportional to d3,
as for a homogeneous sphere, aggregate mass is found to be proportional to dD, with D in
the range of 1.5 to 2.5 (e.g., Li and Logan, 1995, and references therein). In other words,
aggregates are fractal particles (D 6= 3).

Consider an aggregate composed of a number N of component particles, and let F
be the ratio of the gross volume of the aggregate to the total volume of the component
particles. Then fractal theory shows that

F = N1−3/D .

For “perfect” aggregation (e.g., the aggregation of small raindrops to make a larger one),
D = 3 and F = 1. For oceanic aggregates, D < 3, so F decreases with increasing
aggregate size, and F is typically in the range of 0.1 to 0.5 (Latimer, 1985). This complexity
in aggregate structure greatly complicates modeling scattering properties (you certainly
cannot use Mie theory to model scattering as an “equivalent-sphere” aggregate particle).

The role of aggregates in determining oceanic optical properties is remains poorly under-
stood. However, aggregates have been found to contribute significantly to backscattering
with little change in the backscattering-to-mass ratio as they formed in the lab or field
(Hatcher et al., 2001; Flory et al., 2004). Boss et al. (2009a) found that aggregation helps
explain the relative constancy of scattering to mass or attenuation to mass found in coastal
areas. These observations are inconsistent with traditional modeling of marine particles
(e.g., using Mie theory), which assumes that particles are solid and which predicts a de-
crease in scattering efficiency per mass with size. Almost no measurements of scattering
phase functions of aggregates have been made (Hou et al., 1996).

8.8 A Classic IOP Model for Case 1 Waters

The preceding sections of this chapter have surveyed the optical properties of individual
constituents of natural waters. This section begins the discussion of modeling the bulk
optical properties of waters that contain many types of particles and dissolved substances.
Such models are often called bio-geo-optical models because they account for the contri-
butions of biological (phytoplankton, CDOM, organic detritus) and geological (mineral
particles) components of the water body.

This section presents an early model for the IOPs of Case 1 water. It is based on a re-
formulation by Morel and Maritorena (2001) of earlier work by Prieur and Sathyendranath
(1981) and Gordon and Morel (1983). This is the model seen in Eqs. (3.27) and (3.40) of
Light and Water (Mobley, 1994). This IOP model is presented here for historical purposes
and is retained in HydroLight for comparison purposes, where it is called the “Classic Case
1” IOP model in the user interface.
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8.8.1 Absorption

The absorption coefficient is modeled as the sum of three components:

atotal(z, λ) = aw(λ) + ap(z, λ) + aCDOM(z, λ) , (8.12)

where aw(λ) is the absorption by pure water, ap(z, λ) is the absorption by chlorophyll-
bearing particles (phytoplankton) and co-varying detritus, and aCDOM(z, λ) is the absorp-
tion by co-varying colored dissolved organic matter (CDOM).

Absorption and scattering by water are discussed in Section 8.2.

8.8.1.1 Absorption by particles

The particle absorption in Eq. (8.12) is modeled by

ap(z, λ) = 0.06AChl(λ)Chl(z)0.65 , (8.13)

where Chl(z) is the chlorophyll concentration profile in mg Chl m−3, andAChl(λ) is the non-
dimensional chlorophyll-specific absorption coefficient given in Prieur and Sathyendranath
(1981, their a∗

′
c ) and in Morel (1988, Fig 10c), as extrapolated to 300 and 1000 nm. This

AChl(λ) is shown in Fig. 8.29. It should be noted that this AChl(λ) is independent of the
chlorophyll concentration. Thus only the magnitude of the particle absorption coefficient
depends on Chl; the shape of the ap spectrum is the same for all Chl values. The original
data covered 350-700 nm. Extrapolation of the original AChl(λ) to 300 and 1000 nm
was done by eye and is somewhat uncertain, especially for the UV wavelengths; see the
discussion of absorption near 300 nm in Section 8.9.

Figure 8.29: The non-dimensional chlorophyll-specific absorption coefficient AChl(λ) used
in Eq. (8.13). Data from Prieur and Sathyendranath (1981, for 350-700 nm).
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8.8.1.2 Absorption by colored dissolved organic matter

The CDOM absorption is assumed to covary with particle absorption according to

aCDOM(z, λ) = 0.2 ap(z, 440) exp[−0.014(λ− 440)] . (8.14)

Thus the CDOM absorption at 440 nm is assumed to be 20% of the particulate absorption
at 440 nm. This proportionality constant is an average of many measurements, as is the
0.014 wavelength slope factor. In a particular water body both of these values can be
different.

Note that the absorption model of Eqs. (8.12-8.14) reduces to that of pure water if
Chl = 0. This is slightly different than some formulations (e.g., Morel and Maritorena,
2001, Eqs. 16-18), which include a small amount of background CDOM absorption even
in the absence of phytoplankton. The inclusion of a small amount of background CDOM
is reasonable, but in all honesty, the residual was removed from the equations as used in
HydroLight because I just got tired of explaining to HydroLight users why they didnt get
exactly the same results as for pure water when they plugged in Chl = 0 in the Case 1
IOP model. In any case, the difference is negligible except at extremely low Chl values, in
which case the model is suspect anyway.

8.8.2 Scattering

CDOM is assumed to be non-scattering.

The scattering coefficient for the particles is modeled by (Gordon and Morel, 1983)

bp(z, λ) = boChl(z)
n

(
550

λ

)m
, (8.15)

where the defaults are bo = 0.3, n = 0.62, and m = 1.

The user of this IOP model must specify both the chlorophyll concentration Chl(z)
and the scattering phase function for the particles. One way to specify the particle phase
function is to give the particle backscatter fraction, Bp = bbp/bp, and then use a Fournier-
Forand phase function with the requested value of Bp, as described in Section 6.7 or Mobley
et al. (2002).

Various formulas for Bp as a function of chlorophyll can be found in the literature. For
example, Ulloa et al. (1994) give an empirical formula for Bp at 550 nm in Case 1 waters,

Bp = 0.01[0.78− 0.42 log10(Chl)] , (8.16)

and Twardowski et al. (2001) present another formula,

Bp = 0.0096Chl−0.253 . (8.17)

Such formulas for Bp can be used for rough guidance in specifying the phase function in the
absence of other information about the phase function. However, it must be remembered
that scattering in general, and Bp in particular, correlates poorly with Chl (e.g., Fig.
6.11), and there can be order-of-magnitude variability in the measured value of Bp among
different data sets for a given Chl. See Section 6.4 for further discussion of models for
backscattering.
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The particle backscatter fraction can chosen to be the same at every wavelength, or be
a function of wavelength according to the power law

Bp = Bp(λo)

(
λo

λ

)n
. (8.18)

As with all IOP models, this model may give good values on average, but can be
considerably in error when applied to a specific water body. In any case, the use of the
New Case 1 IOP Model described next is recommended for general use, especially near 300
nm.

8.9 A New IOP Model for Case 1 waters

This section develops an IOP model for Case 1 water based on more recent publications
on absorption and scattering in Case 1 waters than those used for the classic IOP model
of the previous section. The intention of this model was to have an IOP model that made
use of the latest data (at the time of its creation) and was also convenient for use in the
HydroLight radiative transfer model (Section 10.6), where it can be selected as the “New
Case 1 IOP Model”. In this model all IOPs are determined by the chlorophyll
concentration (after selecting low, medium, or high ultraviolet absorption). This model
is presumably an improvement over previous models, although that remains to be proven
by comparison with comprehensive measurements. In any case, the inherent limitations of
IOP models must be remembered (in particular, see Section 4.4.3 or Mobley et al. (2004)
for limitations of the “Case 1” concept). IOP models may be very good on average, but
may or may not be (very often, definitely are not) correct in any particular instance. IOP
models are therefore best used for “generic” studies. When modeling a particular water
body, especially in a closure study, it is always best to use measured data to the greatest
extent possible.

8.9.1 Absorption by Particles

It is well known that there is great variability in chlorophyll-specific absorption spectra
a∗(λ). In particular, the spectral shape of a∗(λ) changes with the chlorophyll concentration,
owing to species composition and pigment packaging effects (e.g., Bricaud et al., 1995, 1998)
and Section 8.3.1. This is seen in Fig. 8.11. Another view of the chlorophyll dependence of
absorption spectra is seen in Fig. 8.30. The left panels of this figure show the particulate
absorption at 440 nm obtained from the spectra of Fig. 8.11. The right panels show the
corresponding chlorophyll-specific absorption values, a∗p(440) = ap(440)/Chl.

Thus the next step in improving the particle absorption model is to allow the chlorophyll-
specific absorption a∗(λ) to depend on the chlorophyll concentration itself. Bricaud et al.
(1998) therefore model particle absorption as

ap(z, λ) =a∗(Chl, λ)Chl(z)

=A(λ) [Chl(z)]−B(λ)Chl(z)

=A(λ) [Chl(z)]E(λ) . (8.19)

The Bricaud et al. (1998) paper gives A(λ) and E(λ) between 400 and 700 nm. Ex-
tending the Bricaud et al. values from 700 to 1000 nm is easy because phytoplankton
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Figure 8.30: Particulate absorption at 440 nm as a function of chlorophyll for Case 1 water.
Left panels: particulate absorption ap(440); right panels: the corresponding chlorophyll-
specific absorption a∗p(440). The top row is chlorophyll on a linear scale; the bottom row is
chlorophyll on a log scale. The red curves are the prediction of Eq. (8.19). The lower left
curve reproduces Bricaud et al. (1998, Fig. 1a). The plotted values were obtained from
the spectra of Fig. 8.11.

absorption is essentially zero in the infrared. However, there are very few measurements
of phytoplankton absorption below 350 nm, so extending A(λ) and E(λ) down to 300 nm
is at best an uncertain process.

Morrison and Nelson (2004, Fig. 1) show two normalized phytoplankton absorption
spectra from 300 to 750 nm taken at the Bermuda Atlantic Time Series (BATS) site.
The BATS Chl values ranged between 0.002 and 0.606 mg m−3 over the course of a year,
with a mean of 0.152. Although their spectra are similar above 365 nm, they are highly
variable with season and depth between 300 and 365 nm. This variability is likely due to
mycosporine-like amino acids (MAAs), which strongly absorb near 320 nm. Figure 8.31
compares the Morrison and Nelson spectra (blue curves) with the Bricaud et al. ap of
Eq. (8.19) evaluated for Chl = 0.05 mg m−3 (red curve); the Morrison and Nelson spectra
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are normalized to the Bricaud value of ap(400). The shapes of the Morrison and Nelson
spectra are consistent with the Bricaud values for low Chl values.

Figure 8.31: Comparison of Bricaud et al. (1998) ap for Chl = 0.05 (red) with the Morrison
and Nelson (2004) normalized absorption spectra (blue; dotted is summer, solid is winter).

Vasilkov et al. (2005) present spectra for A(λ) and B(λ) = 1− E(λ) between 300 and
400 nm, as derived from absorption measurements in coastal California waters. Figure 8.32
shows their A(λ) and B(λ) spectra compared with those of Bricaud et al. (1998). The
differences at 400 nm reflect the different databases (i.e., different waters) used to derive
the coefficients.

Figure 8.32: Comparison of the Vasilkov et al. (2005) A(λ) and B(λ) (purple curves) with
those of Bricaud et al. (1998) (green curves). Solid lines are A and dashed lines are B.

Desperation is the mother of modeling (you can quote me on that), so to define A(λ)
and B(λ) over the 300-1000 nm range, I proceeded as follows. The Bricaud et al. A and



8.9. A NEW IOP MODEL FOR CASE 1 WATERS 287

B curves are accepted for use from 400 to 720 nm, with A = B = 0 between 720 and 1000
nm. The Vasilkov et al. curve for A was normalized to the Bricaud value at 400 nm, i.e.,
AV(λ) ← [AV(λ)/AV(400)]AB(400), where subscripts V and B stand for Vasilkov et al.
and Bricaud et al., respectively. The normalized AV(λ) was then averaged with the two
normalized spectra of Morrison and Nelson (2004) seen in Fig. 8.31, assuming that the
A spectra have the same shape as ap. This assumption about the shapes of A and ap is
correct only if B = 0 or if Chl = 1, in which case A = a∗ in Eq. (8.19). The resulting
average A between 300 and 400 nm then merges smoothly with the A of Bricaud at 400
nm. For B, the Vasilkov et al. curve was normalized to the Bricaud et al. curve at 400, and
the result was used to extend the Bricaud et al. B down to 300 nm. The resulting A and B
spectra are shown in red in Fig. 8.33, along with the three A spectra used to compute the
average A between 300 and 400. These A and B give an absorption model that roughly
corresponds to the mid-range of UV absorptions seen in the Morrison and Nelson data.
The new Case 1 IOP model uses these A and E = 1 - B as the default spectra for the last
version of Eq. (8.19). The tabulated A and E spectra can be downloaded from the Web
Book.

Figure 8.33: The A (red solid line) and B (dashed line) spectra used in Eq. (8.19) to
define ap for the mid-range of UV absorption. The purple and blue curves were averaged
to produce A between 300 and 400 nm.

It would be interesting to compare light fields for the wide range of UV absorptions
illustrated by the Morrison and Nelson (2004) spectra of Fig. 8.33. A spectra for low and
high UV absorptions are therefore defined by simply using the shapes of the Morrison and
Nelson spectra absorption spectra to extend the Bricaud A from 400 down to 300 nm. The
B spectra were taken to be the same as for the mid-range of UV absorption just discussed.
These spectra, plus those for low and high UV absorption, can be downloaded from the
Web Book page on the New IOP Model.

Regardless of which set of A and E spectra is chosen, the A and E spectra are used
in the same manner in Eq. (8.19) to define ap(λ) for any Chl value. Figure 8.34 shows
the resulting particle absorption spectra for low, medium, and high UV absorptions and

https://www.oceanopticsbook.info/view/optical-constituents-of-the-ocean/level-2/new-iop-model-case-1-water
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for Chl = 0.01, 0.1, 1.0, and 10.0 mg m−3. The corresponding absorption coefficients as
computed by the classic Case 1 IOP model are shown for comparison, as is absorption
by pure water. There are significant differences in the classic and new models, which will
lead to significant differences in computed radiances, irradiances, and AOPs when used in
radiative transfer calculations. Note in particular that the shape of the particle absorption
spectrum now changes with the chlorophyll value. Presumably the new model gives a
more realistic description, on average, of particle absorption in Case 1 waters than does
the classic model for which the shape of the particle absorption spectrum is independent
of the chlorophyll concentration.

Figure 8.34: Particle absorption coefficients computed by the “New Case 1” model of Eq.
(8.19) (red) and the “Classic Case 1” IOP model of Eq. (8.29) (blue). The red solid line
is for the high-UV absorption, dotted is the mid-range UV absorption, and dashed is the
low-range UV absorption. The purple line is absorption by pure water.

8.9.2 Absorption by CDOM

As has been seen in the CDOM section 8.4 and in Fig. 8.15, for wavelengths greater than
300 nm, CDOM absorption is acceptably well modeled by a function of the form

aCDOM(z, λ) = aCDOM(z, λo) exp[−SCDOM (λ− λo)]. (8.20)

The functional form (8.20) underestimates CDOM absorption at wavelengths less than 300
nm and therefore should not be used below 300 nm. When incorporated into the new Case
1 IOP model, aCDOM(z, λo) is set to fCDOM ap(z, λo), with default values of fCDOM = 0.2,
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λo = 440 nm, and SCDOM = 0.014 nm−1 just as in the classic Case 1 model. However, the
default values of fCDOM, λo, and SCDOM can be changed in HydroLight if desired.

8.9.3 Scattering

Just as for absorption, recent papers have presented improved models for particle scattering
in Case 1 waters. Morel et al. (2002, Eq. 14) model the particle scattering coefficient as

bp(z, λ) = bo [Chl(z)]n
(

λ

550

)ν
, (8.21)

where

ν =

 0.5 [log10Chl − 0.3] for 0.02 < Chl < 2

0 for Chl > 2 .

(8.22)

Equation (8.21) with ν = −1 is the “classic” scattering model proposed by Gordon and
Morel (1983). The wavelength dependence of the new scattering coefficient now depends
on the chlorophyll concentration. In particular, ν now lies between -1 and 0. A value of
ν = −1, as often used in earlier models, is known from Mie theory to be valid only for
nonabsorbing particles with a Junge particle size distribution slope of -4.

Loisel and Morel (1998) studied the relationship between particle beam attenuation at
660 nm, cp(660), and the chlorophyll concentration. They found the functional form

cp(z, 660) = co [Chl(z)]n . (8.23)

The values of co and n are different for near-surface (down to one “penetration depth,”
as relevant to remote sensing) and deeper waters. Because cp ≈ bp at 660, Morel et al.
(2002) adopt the coefficients for Eq. (8.23) for use in Eq. (8.21), after shifting the reference
wavelength to 550 nm. Thus for near-surface waters, Morel et al. (2002) use bo = 0.416
and n = 0.766 in Eq. (8.23).

However, a power law in wavelength of the form of Eq. (8.23) generally gives a better
fit for cp than for bp (e.g., Voss, 1992; Boss et al., 2001). Thus it is probably better to
model cp and then obtain bp from bp = cp − ap (with ap being determined by Eq. (8.19)
as described above). This is the approach taken in the new Case 1 model, which uses

cp(z, λ) = co [Chl(z)]n
(

λ

660

)ν
, (8.24)

where the coefficients are the same as for b in Eq. (8.21) above and ν is given by Eq.
(8.22). Thus this model uses the chlorophyll-dependence of cp(660) from Loisel and Morel
(1998), Eq. (8.24), and assumes that cp has the same chlorophyll-dependent wavelength
dependence as the bp model of Morel et al. (2002), Eq. (8.21) The default values of co

and n , which apply to near-surface waters, are co = 0.407 and n = 0.795 (from Loisel and
Morel, 1998, Eq. 5); other values can be used if desired.

Figure 8.35 shows example ap for mid-range UV absorption, bp, and cp spectra for
near-surface waters (co = 0.416 and n = 0.766 in Eq. 8.24), along with the “classic” bp
with bo = 0.3, n = 0.62, and m = 1. The scattering coefficients are not too different
at low chlorophyll values, but the new bp has a different wavelength dependence and is
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much larger in magnitude, by up to a factor of three, at high Chl values. Unlike in the
classic scattering model, the wavelength dependence of bp now depends on Chl and is more
complicated. These differences in scattering will have a significant effect on computed
radiances.

Figure 8.35: Beam attenuation cp as determined by from Eq. (8.24) and near-surface
values of co = 0.407 and n = 0.795 (blue). The red curves are the same ap as the mid-UV
absorptions in Fig. 8.34. The solid green curve is the new bp = cp − ap; the dashed green
curve is the “classic” bp of Eq. (8.21) with ν = −1.

8.9.4 Scattering Phase Function

Morel et al. (2002) also developed a phase function model for Case 1 water in which the
phase function is a combination of “small” and “large” particle phase functions, with the
fraction of each being determined by the chlorophyll concentration:

β̃p(ψ,Chl) = αs(Chl) β̃s(ψ) + αl(Chl) β̃l(ψ) , (8.25)

where
αs(Chl) = 0.855 [0.5− 0.25 log10(Chl)] and αl = 1− αs . (8.26)

Figure 8.36 shows phase functions determined by Eqs. (8.25) and (8.26), along with the
frequently used Petzold average-particle phase function 9.5.2.

It should be noted that the Morel et al. (2002) phase functions have smaller backscatter
fractions (Bp = 0.014 for the small particles to 0.0019 for the large particles) than the
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Figure 8.36: Phase functions for small (orange) and large (red) particles as given by Morel
et al. (2002). Phase functions as given by Eqs. (8.25) and (8.26) for Chl = 0.01 (purple),
0.1 (blue), 1.0 (teal), and 10.0 (green), and the Petzold average particle phase function
(black) are also shown.

Petzold phase function (Bp = 0.018). This is consistent with what is known about the
phase functions for algal particles (e.g., Ulloa et al., 1994; Twardowski et al., 2001). The
Morel phase functions of Eq. (8.25) and Fig. 8.36 are adopted for use in the new Case 1
IOP model.

To illustrate the quantitative differences (including the combined effects of absorption
and scattering coefficients and the particle scattering phase function) between the classic
and new Case 1 IOP models, Fig. 8.37 shows the remote-sensing reflectance Rrs(λ) for
homogeneous, infinitely deep waters with Chl = 0.01, 0.1, 1, and 10 mg Chl m−3, as com-
puted for the classic and new Case 1 IOP models. The mid-range UV absorption model
was used in the new model. The Sun was placed at a zenith angle of 30 deg in a clear
sky with typical marine atmospheric parameters (sky irradiances were computed using the
RADTRAN-X sky irradiance model for the annual average Earth-Sun distance). The wind
speed was 6 m s−1. For the classic IOP model, the particle phase function was taken to
be a Fournier-Forand phase function with a backscatter fraction as given by the empirical
formula

Bp = 0.01 [0.78− 0.42 log10(Chl) ]

of Ulloa et al. (1994) for Bp at 550 nm in Case 1 waters. These IOPs were then used in the
HydroLight radiative transfer model, which was run from 300 to 800 nm with 5 nm bands.

Figure 8.37 shows that the computed Rrs spectra are very similar for Chl = 0.01 and 0.1,
but that the differences can become very large at high chlorophyll values. The maximum
difference computed as 100(new - old)/old is less than 5% for Chl = 0.01 or 0.1. For
Chl = 1, the maximum difference is less than 50% at visible wavelengths (62% at 798 nm).
For Chl = 10, the differences are as large as 254% (more than a factor of three; at 578
nm). The larger Rrs for high Chl is due to the greatly increased scattering, as seen in Fig.
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8.36.

Figure 8.37: Comparison of Rrs as computed by the New Case 1 model with mid-range
UV absorption (solid lines) and the Classic model (dotted lines), for Chl = 0.01, 0.1, 1, and
10 mg Chl m−3.

8.10 Commonly Used Models for IOPs and Biogeochemistry

[This section was written by Emmanuel Boss.]

This section presents a number of commonly used models relating inherent optical
properties (IOPs) to the underlying biogeochemistry. Models for IOPs and AOPs are
analytical expressions relating these optical variables to bio-geochemical parameters (e.g.
chlorophyll, suspended matter) and/or describing their spectrum (relating their value at
one wavelength with their value at another wavelength). Below is a “laundry list” of such
models assembled from the literature. For a detailed discussion, see the review paper by
Sosik (2008). The users of such models are cautioned that they were developed from specific
data sets and designed with specific applications in mind, which may or not be applicable
to the conditions to which the user is applying them. Also, it is important to note that
the fit parameters will vary depending on the way a model is fit to the data (e.g. how
uncertainties are assumed to behave) and the spectral range that is fit (e.g., Twardowski
et al., 2004). Note that some of the observed variability in relationships is likely due to
methodology in biogeochemical determinations (e.g. filtration) and instrumental issues,
e.g., spectral filters used (narrow versus wide) and acceptance angle (e.g., Boss et al.,
2009b). In addition, empirical relationships are likely to be biased to time and location of
data used to derive them, and their generalization should be done with caution.
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8.10.1 Models Linking CDOM Absorption to Biogeochemical
Parameters

Models for CDOM absorption as a function of wavelength were discussed in Section 8.4.
CDOM absorption at a specific wavelength can also be related to the concentration of
dissolved organic carbon (DOC). In estuaries and coastal waters, CDOM and fluorescence
by dissolved organic matter (DOM) vary in correlation with DOM (e.g., Blough and Green,
1995) via relationships of the type

aCDOM(450) = (0.007− 1.76)DOC [m−1]

for a variety of environmental samples as well as extracted fulvic and humic materials
and where DOC has units of mg organic C L−1. When restricted to whole environmental
samples (and including data from Vodacek et al. (1997)), the relation is

aCDOM(450) = (0.33− 1.23)DOC [m−1] .

Such relationships are not observed in open waters (Nelson and Siegel, 2002). However, the
values of DOC observed in the open ocean (e.g. 48-68 µmol L−1, (Nelson and Siegel, 2002)),
are of the similar magnitude as the intercept of aCDOM–DOC regressions (∼ 70 µmol L−1

(Vodacek et al., 1997)) and hence represent, to a large extent, the surface pool of un-
colored DOC. These relationships arise from end-member mixing between terrestrial and
oceanic water masses and do not hold in coastal areas not strongly affected by river inputs
and where CDOM sinks (e.g. photo-oxydation) affect CDOM concentrations significantly
(Blough and Vecchio, 2002).

Between rivers and estuaries a∗(450) = aCDOM(450)/DOC increases with increases in
aromatic content and thus with lower CDOM spectral slopes (Blough and Vecchio, 2002).

Prieur and Sathyendranath (1981) suggest the following model (recall Eqs. 8.13 and
8.14)

aCDOM(440) = 0.2
[
aw(440) + 0.06Chl0.65

]
.

That is, aCDOM(440) is 20% of the absorption by water plus chlorophyll at 440 nm. Babin
et al. (2003b) have also found a linear relationship between CDOM and Chl for European
waters.

8.10.2 Non-algal Particles

Similar to CDOM, the absorption of non-algal particles (NAP) aNAP (λ) is usually modeled
with a decreasing exponential function (Yentsch, 1962; Kirk, 1980; Roesler et al., 1989;
Bricaud et al., 1998) as seen in Eq. (8.8):

aNAP (λ) = aNAP (λo) exp−SNAP(λ−λo) [m−1] ,

where λo is a reference wavelength and SNAP the spectral slope (independent of λo). The
mean slope (SNAP) generally used to model is 0.011 nm−1 (e.g., Roesler et al., 1989; Bricaud
et al., 1998). However, as always with data-derived parameters, there is variability in SNAP.
Figure 8.18 shows the distribution of SNAP values observed by Babin et al. (2003b). Their
data show a mean of SNAP = 0.0123 nm−1 with a standard deviation of 0.0013. It should
be noted that the exponential function is only an approximation and that realistic NAP



294 CHAPTER 8. OPTICAL CONSTITUENTS OF THE OCEAN

spectra may be non-monotonic and often exhibit a “hump” in the blue (e.g. Iturriaga and
Siegel (1989)).

Both CDOM and NAP display similar exponential absorption spectra, although with
somewhat different spectral slopes. In modeling their absorption effects, CDOM and NAP
are often combined and described by an exponential. Note however, that CDOM and NAP
have much different scattering properties. CDOM is assumed to be non-scattering, but
NAP are highly scattering.

For non-algal particles collected both in coastal and riverine waters and from mineral
samples, Babin et al. (2003b) and Babin and Stramski (2004, Fig. 10) found

ap(443) = (0.03− 1.0)PM

where PM is the concentration of particulate matter in g m−3, with the high values being
associated with high iron-oxide content in the “natural assemblages of mineral particles.”
Relationships with iron concentrations are considerably tighter (Babin and Stramski, 2004):

ap(443) = (1− 4)Fe ,

where Fe is the concentration of iron in g Fe m−3.

8.10.3 Particulate Organic Carbon (POC)

cp(666) = (0.06− 0.3), POC [m−1] .

where POC is in mol m−3.

8.10.4 Particulate Matter or Total Suspended Matter

bp(555) = (0.2− 1)PM [m−1] .

where PM is in g m−3.

8.10.5 Global Particulate Scattering

In open-ocean environments Morel (2008) found

bp(550) = (0.15− 0.45)Chl0.62 [m−1] ,

while in more turbid Case 2 waters the leading coefficient exceeds 0.45 and the exponent
can be different (Morel and Maritorena, 2001); Chl is in mg m−3. For the upper layer, and
based on more recent measurements, Loisel and Morel (1998) found

bp(550) = 0.4Chl0.76 [m−1] .

Babin et al. (2003b) found that

bp(555) = (0.5− 1)PM [m−1] .

where PM is the particulate matter concentration in g m−3. The lower values come from
turbid coastal areas while the open water values are higher. This relatively tight rela-
tionship was explained as arising from the relative insensitivity to particle composition
(PM is the dried mass) using theoretical calculations. Boss et al. (2009a) showed that the
relative insensitivity of this relationship to variability in size composition may be due to
aggregation.
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8.10.6 Global Particulate Absorption

In open ocean environments Morel (2008) found

ap(440) = 0.052Chl0.64,

ap(675) = 0.02Chl0.82

ap(550–620) < 0.01Chl0.85 [m−1] .

Phytoplankton absorption aφ(λ) is always smaller than particle absorption ap(λ) by about
30% in absorbing bands and by more than 100% in weakly absorbing bands such as in the
green part of the spectrum.

8.11 Optical Properties of Shelf Seas and Estuaries

[David Bowers wrote this section.]

The majority of the literature on ocean optics has concentrated, understandably, on
the majority of the ocean. For most people, however, their nearest stretch of salt water
is a shelf sea: water lying on a continental shelf and less than 200 meters deep. Shelf
seas occupy 6-8% (depending on definition) of the surface area of the world ocean but
contain about 16% of the world’s phytoplankton biomass. These seas are also rich in
mineral particles stirred up from the sea bed by tides and waves, and in dissolved organic
matter brought in by rivers. The waters are colored green or blue-green by the mixture of
pigments in phytoplankton, colored dissolved organic matter (CDOM) and minerals. The
optical properties of phytoplankton and their pigments are dealt with in other sections of
this document and in several excellent textbooks on marine optics (e.g., Kirk, 1994) but
CDOM and mineral particles have their own special features in shelf seas and deserve an
account of their own.

Figure 8.38: Shelf Sea waters often appear green to the eye. The picture at the left was
taken from a research ship in clear, deep, shelf sea waters and the one at the right in more
energetic, tidally stirred waters in which sediment is stirred up from the bed to the sea
surface. The effect of the suspended particles in coloring the water green and also making
it opaque can be sensed in these pictures. Photos: D.G. Bowers
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Shelf seas are considered to be optically complex because the CDOM and mineral
particles can make a significant (or even the dominant) contribution to water color and
brightness. Both CDOM and mineral particles absorb light most strongly in the blue
part of the spectrum and so, when added to water (which absorbs mostly red light), they
produce a green color which is easily confused with the effect of phytoplankton pigments.
For this reason, satellite remote sensing algorithms for chlorophyll regularly fail in shelf
seas in the sense that they over-estimate the chlorophyll content. In remote sensing terms,
these waters are classified as Case 2, (Morel and Prieur, 1977) and Section 4.4.3, as distinct
from Case 1 open ocean waters. The mineral particles suspended near the sea surface are
also excellent scatterers of light. Because of this, shelf seas appear bright (highly reflective)
when viewed from space.

8.11.1 CDOM in Shelf Seas

Colored dissolved organic matter is produced when organic material decays. In the open
ocean, the main source of CDOM is from the decay of phytoplankton, and there is some-
times a correlation between the concentration of chlorophyll and the concentration of
CDOM, which is helpful in remote sensing chlorophyll in these waters. Shelf seas in tem-
perate latitudes, however, receive significant fresh water input from the land and this brings
with it CDOM produced by the decay of terrestrial plants. This can be the main source
of CDOM in shelf seas, particularly near the coast, dominating the marine production of
CDOM. In these circumstances it is not reasonable to expect there to be a correlation be-
tween CDOM and chlorophyll concentrations in shelf seas. As the fresh water runoff mixes
with sea water, the land-produced CDOM is diluted. This leads to a negative correlation
between CDOM and salinity of the form

g = gs

(
1− S

S0

)
(8.27)

where g is the CDOM concentration at a point where the salinity is S, gs is the concentration
in the source water (where the salinity is zero) and gs/S0 is the gradient of a plot of g against
S. Since CDOM is often measured optically, the “concentration” of CDOM, g and gs may
be expressed as its absorption coefficient of a filtered water sample at a chosen wavelength
(Kirk, 1994). An example of the relationship between CDOM absorption and salinity in
an estuary is shown in Fig. 8.39.

8.11.2 Effect of Variations in Source Concentration

A linear relationship between CDOM and salinity (obeying Eq. (8.27)) is observed sur-
prisingly often (although not always) in shelf seas and estuaries. This is taken to indicate
“conservative mixing”, that is the CDOM mixes passively with water in the same way as
salt. This is surprising, since it is known that CDOM is consumed in water (by bacteria,
and it is also destroyed by sunlight) and it is produced by the decay of organic matter at
sea. The observation of a linear relationship is also surprising because the concentration in
the source water can be expected to change with time. The intercept of a plot of CDOM
against salinity at zero salinity is not fixed but moves up and down in response to seasonal
and other changes in CDOM production at the source.
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Figure 8.39: Typical variation of CDOM concentration with salinity in an estuary. CDOM
concentration is expressed as the absorption coefficient of filtered seawater at a chosen
wavelength. The concentration of CDOM in the source river water is g0.

Bowers and Brett (2008) have analysed the effect of variations in source concentration
on the CDOM-salinity relationship in shelf seas and estuaries using a simple box model.
They found that in a water body with a short flushing time compared to the timescale of the
source variation (for example, a small body of water such as an estuary), the concentration
of CDOM can “keep up” with the fluctuations in the source and so the linear relationship
between salinity and CDOM is maintained, although the slope changes with time (as
illustrated in Fig. 8.39). In larger water bodies, such as a bay or a gulf, the slow response
time of the water body buffers it against rapid changes in the source concentration, so
again there is a linear relationship between salinity and CDOM, this time with a fixed
slope set by the long term mean concentration of CDOM in the source.

8.11.3 Using CDOM to Trace Water Masses in Shelf Waters

A useful technique in classical physical oceanography is water mass analysis, which uses
temperature-salinity diagrams to identify the source of water in the ocean and mixing
between different sources. This technique does not work in shelf seas (nor in the surface
waters of the ocean) because temperature is affected too much by the heat flux through
the sea surface. Instead, Stedmon et al. (2010) have proposed using CDOM instead of
temperature to trace water masses in shelf seas. Water samples are placed on an x-y plot
which has CDOM concentration (i.e. absorption at a chosen wavelength) on one axis and
salinity on the other, that is a diagram like Fig. 8.39. If sources can be identified by
their characteristic salinity-CDOM value (and for a large water body, the long term mean
values can be used), then the proportion of water in a given sample from either two or
three sources can be established. Stedmon and co-workers applied their technique to the
Baltic-North Sea transition zone. The three end-member water masses were the German
Bight, the Baltic outflow and the central North Sea. The method gave believable results
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for the distribution of these 3 water masses in the study area. The method assumes that
CDOM behaves conservatively. Stedmon et al. (2010) tested this assumption by using a
third variable: the spectral slope of CDOM absorption, and concluded that the CDOM
was behaving conservatively.

8.11.4 Remote Sensing of CDOM and Salinity

CDOM in coastal waters acts as a dye (see Fig. 8.40) producing a coloration which can be
seen from space. In water in which CDOM is the principal optical component this means
that it is possible to measure CDOM concentration using ocean color and, because of the
relationship between CDOM and salinity, this technique can also be used to map salinity in
coastal water bodies. A number of empirical relationships between water color and CDOM
have been proposed (Kutser et al., 2005; Del Castillo and Miller, 2008) but it is possible to
arrive at a theoretically sound relationship using the fact that CDOM is a strong absorber
in the blue and a weak one in the red.

Figure 8.40: A flask of clear water (left) and one containing CDOM (right). Flask on the
right was prepared by filtering coastal water through 0.2µm filters to remove particles. The
coloration produced by CDOM in shelf seas and estuaries is sufficient to remotely sense its
concentration using satellite ocean color data. Photo: B. D. Moate

The reflection coefficient at a given wavelength just below the water surface is propor-
tional to the ratio of the backscattering to absorption coefficient at that wavelength (Morel
and Prieur, 1977). Assuming that (i) absorption in the red is dominated by water, (ii)
absorption in the blue is due to CDOM and water and (iii) the ratio of backscattering co-
efficients in the red and the blue is constant, it is possible to write an expected relationship
between CDOM absorption in the blue and a ratio of reflection coefficients of the form:

g440 = k1
RR
RX

+ k2

Where g440 is the absorption coefficient of CDOM at 440nm (a proxy for its concentra-
tion), RR is the reflection coefficient in the red and RX the reflection coefficient at another
(shorter) wavelength. k1 and k2 are constants provided CDOM is the predominant influ-
ence on water color. Binding and Bowers (2003) found a good (R2 = 0.94) fit for this
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expression against observations for RX = R(490), RR = R(665), k1 = 0.635, k2 = 0.103.
They used this expression to map surface CDOM concentrations in the Clyde Sea in Scot-
land and to derive salinity using the known relationship between CDOM and salinity in
the Clyde.

The application of water color to derive CDOM concentration and salinity remotely
is most appropriate in estuaries where the strongest signal is to be found. Unfortunately,
the color of the water in an estuary is also likely to be influenced by suspended particles
(including mineral particles), although it may be possible to correct for this if the optical
properties of the particles are known.

8.11.5 Suspended Mineral Particles in Shelf Seas

The combination of shallow water and high energy input (through waves and tides) in
shelf seas means that mineral particles are lifted off the sea bed and mixed throughout the
water column. The particles collide and stick together to form flocs (Section 8.7). This
process is particularly important during and after the spring bloom when there is plenty
of organic material in the water to help the flocculation process (the organic material acts
as a “glue” to hold the flocs together). Since flocs tend to have a higher settling speed
than the constituent particles this flocculation process after the spring bloom is important
in making surface waters in shelf seas becoming clearer.

Figure 8.41: Particles in a drop of shelf sea water photographed through a microscope.
The largest particle on view (a phytoplankton cell) is about 100µm long. Individual pieces
of mineral material can be seen as well as flocs of mineral material joined together with
organic “glue”. Photo: P. S. D. Smith.

Flocs are considered to be fairly delicate objects, easily broken up in the turbulent
shear involved in collecting a water sample for instance. For this reason, the most reliable
measurements of floc properties are made in situ using instruments which do not disturb the
flocs. Because flocs cannot withstand turbulence it has been suggested that the largest flocs
will have the same size as the smallest turbulent eddies, a size known as the Kolmogorov
microscale. It is implied that other properties of the particle size distribution, such as the
mean particle size, will change as the turbulent microscale changes and the largest flocs
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adjust to follow this. The Kolmogorov microscale depends on the rate of dissipation of
turbulent kinetic energy. In a tidal sea this will fluctuate with the tide, being largest at
times of slack water. There is growing evidence that the particle size in shelf seas responds
to these changes and that the mean particle size at slack water can be several times greater
than that at maximum tidal flow. This will have interesting implications for the optical
properties of shelf seas and estuaries.

How exactly is it best to imagine the passage of light through a floc? Is it best to
think of the floc as a single particle with uniform properties (an average of the particles
composing the floc), or is the floc better described as a number of separate mineral pieces
(with relatively high refractive index) embedded in a matrix of low refractive index organic
material? Boss et al. (2009a) have described experimental and theoretical results that
suggest that an optical model allowing for the complexity of the floc performs better than
one that assumes that flocs are solid homogenous spheres, but the exact nature of the best
model to use remains an open question.

8.11.6 Measuring the Mass Concentration of Mineral Particles

The concentration of mineral particles is measured by filtering a known volume of sea
water through pre-weighed and pre-combusted GF/F filters (nominal pore size 0.7 µm).
The filters are then combusted in an oven at 500 deg C for 3 hours to remove organic
material, cooled and weighed again.

Figure 8.42: GF/F filters after filtration of water samples on Sofala bank, Mozambique.
The filters have been laid on a chart to show their sampling location. Photo: D.G. Bowers.

8.11.7 Light Absorption by Mineral Particles

The absorption coefficient of mineral particles suspended in seawater can be measured
directly using filters such as those shown in Fig. 8.42. The filters are placed, while wet, on
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a microscope slide and the slide is placed over the exit port of a spectrophotometer (the
filter pad method). The optical density (OD) of the filter plus particles is recorded as a
function of wavelength and the OD of a blank wet filter is subtracted. In calculating the
absorption coefficient of the particles, allowance is made for the increase in the pathlength
of the light through the particles and the filter produced by deviation of the light as it
passes through the particles. The absorption coefficient of particles can also be measured
in situ by measuring total absorption and subtracting the component due to water, organic
material and CDOM.

The general shape of the absorption spectrum of mineral particles is one of exponential
decay with increasing wavelength, often with a small “bump” near 500 nm. It appears
that the absorption coefficient may not necessarily tend to zero in the near infra-red. The
specific absorption spectrum of mineral flocs can therefore be represented by the following
equation which includes the possibility of a non-zero absorption c1 at long wavelength:

a∗min = c1 + c2 exp(−Smin(λ− λo)) (8.28)

Here, a∗min is the concentration-specific absorption coefficient of mineral particles (i.e. ab-
sorption per unit mass concentration, units m2 g−1), λ is wavelength and λo is a refer-
ence wavelength. Bowers and Binding (2006) suggested mean values of c1 = 0.020 m−1,
c2 = 0.042 m−1 (for a reference wavelength of 443 nm) and Smin = 0.012 nm−1 based on
their own measurements and those in the literature. There is no reason to suppose that the
absorption spectrum of mineral particles should be the same from place to place and indeed
variations in these coefficients are observed, but the slope parameter Smin, in particular,
appears to be fairly tightly constrained.

8.11.8 Light Scattering by Mineral Particles

There is no equivalent to the filter pad method for measuring light scattering by mineral
particles. Scattering coefficients are instead measured at sea using instruments specifi-
cally designed for this purpose. Scattering coefficients measured in this way generally in-
crease with the concentration of mineral particles, the rate of increase is the concentration-
specific scattering coefficient for mineral particles b∗min. Specific scattering coefficients (units
m2 g−1) are observed to be rather flat spectrally and to vary over at least an order of mag-
nitude in the range: 0.1 < b∗min < 1.

There is some evidence that b∗min increases as the water becomes more oceanic and less
coastal. Babin et al. (2003a) have suggested this is because of changes in particle density.
Inshore particles tend to be more mineral in content and of higher density. They therefore
can be expected to have a smaller cross sectional area per unit mass. A full appreciation of
the variation of the specific scattering coefficient includes consideration of particle size as
well as density and we turn to this in the next section. Even at the lower end of the range
of b∗min, mineral particles are more likely to scatter light than absorb it. A typical value of
a∗min at 555 nm is 0.03 m2 g−1, therefore light of this wavelength will be scattered at least
3 (and up to 30) times by mineral particles before it is absorbed by a mineral particle.
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8.11.9 Theoretical Ideas About the Optical Properties of Mineral Parti-
cles

The probability that light will interact with a particle in suspension is proportional to the
cross sectional area of the particle. For a suspension of identical particles, the absorption
(or scattering) per unit cross sectional area is known as the absorption (or scattering)
efficiency. For a suspension of spherical particles with a range of diameters (from D1 to
D2) we can calculate the scattering (or absorption) coefficient by integrating the product of
scattering (or absorption) efficiency and particle area over the range of sizes. For example,
in the case of scattering by spherical particles with a range of sizes, the scattering coefficient
can be written:

b =
π

4

∫ D2

D1

Qb(D)n(D)D2dD (8.29)

and there is an equivalent expression for the absorption coefficient. Here n(D)dD is the
number of particles per unit volume in the size range D to D + dD and Qb(D) is the
scattering efficiency. Values of the scattering efficiency for spherical particles of given
size and refractive index (both real and imaginary) are available from Mie theory or the
simpler anomalous diffraction theory of van de Hulst (1957). It is often assumed that the
size distribution of particles obeys a power law (or Junge) distribution, of the form

n(D) = KD−J (8.30)

where K and J are constants for a particular size distribution. A feature of this equation
is that the number of particles rises rapidly as the size decreases. As a result, calculations
based on Eqs. (8.29) and (8.30) lead to the conclusion that optical properties are dominated
by the large number of very small particles. For example, in the case of the scattering
coefficient, it has been estimated that 50% of light scattering by minerals is produced by
particles smaller than 1 µm (Babin et al., 2003a). If this is the case, it would mean that
much of the signal seen in visible band satellite images of shelf seas is produced by very
small particles with low settling speeds. This would be an important conclusion for the
interpretation of these images. However, there is no direct evidence that sub-micron sized
particle exist in the numbers predicted by equation (8.30). Currently, measurements of
particle numbers are limited to particles greater than a few microns in size. Furthermore,
the flocculation process will tend to remove small particles and incorporate them in larger
flocs (Flory et al., 2004; Boss et al., 2009a).

8.11.10 Relationship Between Scattering and Mean Particle Size and
Density

For any size distribution and shape of particle, Eq. (8.29) can be written as

b = Q′bA (8.31)

where A is the cross sectional area of particles in suspension in unit volume of water (units
m−1) and Q′b is an effective scattering efficiency defined by

Q′b ,

∫ D2

D1
Qbn(D)D2dD∫ D2

D1
n(D)D2dD

. (8.32)
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Equation (8.31) can then be written in terms of the bulk, measurable, properties of the
particles as

b = Q′b
C

ρDA
(8.33)

where C is the mass concentration of particles (dry mass per unit volume of water), ρ is
the particle density (dry mass of particle per unit volume of particle in situ) and DA is
the Sauter diameter (volume of particles in situ per unit cross sectional area of particle
in situ). It is possible to measure the volume of particles of different sizes in situ using
laser diffraction instruments and from these measurements, the Sauter diameter (Section
8.12.5) can be calculated. Combining these observations with the mass concentration of
particles weighed on a filter gives the particle density and therefore the validity of Eq.
(8.33) can be tested. Bowers et al. (2010) found that 86 % of the variance in the scattering
coefficient at stations along the west coast of Britain was explained by Eq. (8.33) with
a constant Q′b = 1.96. Since the concentration specific scattering coefficient of mineral
particles b∗min = b/C this means that most of the variation in b∗min is explained by
changes in both particle size and density. In fact, for the flocculated particles in the study
by Bowers et al. (2010), the Sauter diameter changed by a factor of 3 and the density by a
factor of 13, so it is mostly changes in particle density that are responsible for the variation
in the specific scattering coefficient of mineral particles.

8.11.11 Relationship Between Absorption and Mean Particle Size and
Density

We can write a similar equation to (8.33) for the absorption coefficient:

a = Q′a
C

ρDA
, (8.34)

where Q′a is an effective absorption efficiency and the other terms are as before. Unlike
the scattering efficiency, Q′a for semi-transparent particles can be expected to vary with
the particle size, since it is harder for light to pass through large particles than small
ones. A simple analysis of this problem proceeds as follows. The proportion of light that
pass through the center of a particle of diameter D composed of material with uniform
absorption coefficient amin is exp(−aminD). The proportion of light that is absorbed within
the particle is therefore (1− exp(−aminD)). For small D, (1− exp(−aminD)) ≈ aminD and
the proportion of light absorbed within the particle increases linearly with the size of the
particle.

For a suspension of particles of different sizes, Bowers et al. (2010) found that the
effective absorption efficiency of particles in north-west European seas does increase with
a measure of the mean size of the suspension—namely the Sauter diameter, DA. That is,
it is possible to write

Q′a = k1 + k2DA, (8.35)

where k1 and k2 are constants. At 555 nm a reasonable fit to the data at stations where
C > 5 mg l−1(N = 28, R2 = 0.75) was given by the expression

Q′a = 0.02 + 0.0039DA (8.36)
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in which DA is expressed in micrometers. In the case of light absorption by mineral
flocs, therefore, the absorption coefficient depends on the cross sectional area of particles
in suspension (which depends on their size and density) and, in addition, the absorption
efficiency depends on the size of the particles.

8.11.12 Remote Sensing of Mineral Particles in Shelf Seas

Mineral particles suspended near the sea surface color the water and increase the reflection
coefficient. Figure 8.43 shows a false color SeaWiFS image of the north-west European
shelf. The regions of bright, colored water in the Irish Sea, the English Channel and the
southern North Sea are mostly caused by mineral suspended sediments near the sea surface.

Figure 8.43: SeaWiFS false color image of the shelf seas of north west Europe. Image
courtesy NERC NEODAAS.

Quantitative interpretation of images such as Fig. 8.43 is based on the scattering and
absorption properties of the mineral particles and of water itself. The most successful algo-
rithms for predicting the concentration of mineral suspended sediments use the reflection
coefficients in the red (Binding et al., 2005) or, in the most turbid water, near infra-red
parts of the spectrum (Doxaran et al., 2009). Analysis of the vertical flux of light in an ab-
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sorbing ocean allows us to write the sub surface reflection coefficient as (Morel and Prieur,
1977)

R = f
bb
a
,

where f is a factor that depends on solar elevation and sky conditions, bb is the backscatter-
ing coefficient and a is the absorption coefficient. In water where the reflectance is mostly
produced by mineral particles, this equation can be expanded as

R = f
γb∗min

aw + a∗Cmin + aX
, (8.37)

where γ is the backscattering fraction (bb/b), Cmin is the concentration of mineral particles,
b∗ and a∗ are the concentration-specific scattering and absorption coefficients, respectively,
aw is absorption by water and aX is absorption by materials other than water and mineral
particles. In the red and infra-red parts of the spectrum, the spectrum, absorption by water
tends to dominate the denominator of Eq. 8.37 and, for low to moderate concentrations of
mineral particles, the reflectance increases in proportion to Cmin, with a slope of fγb∗/aw.
At higher values of Cmin, absorption by mineral particles becomes more important in the
denominator and the reflectance tends towards an asymptotic value of fγb∗/a∗ . Choosing
a wavelength at the red end of the spectrum where absorption by water is high extends the
region where reflectance is proportional to concentration. Equation (8.37) forms the basis
of most general quantitative algorithms for suspended sediments in shelf seas (Stumpf and
Pennock, 1989; Nechad et al., 2010).

As we have seen, a∗ and b∗ depend on the density and size of particles in suspension
and changes in these properties, as well as of concentration, will produce changes in re-
flectance. What we are really seeing in images such as Fig. 8.43 is the cross sectional
area of the particles in suspension. In order that remote sensing can be used to test and
verify models of suspended particles (which predict mass concentration) we therefore need
a better understanding of the relationship between particle mass and cross sectional area,
and that is a challenge for the near future.

8.12 Particle Size Distributions

Figure 8.1 of this chapter shows the size ranges commonly associated with different compo-
nents of natural waters. This section discusses the theory of how to quantify the number of
particles as a function of their size. The next section, Creating Particle Size Distributions
from Data, discusses the mechanics of creating particle size distributions from measured
data.

8.12.1 Non-uniqueness of Particle Size

The first problem is to decide what is meant by particle “size,” especially when speaking
of statistical measures like the “average size” of a collection of particles.

Suppose we have three spherical particles of radii r = 1, 2, and 3. What is the “average
size” of these three spheres?

If the average size is based on the radius, then the average (radius) sphere has a radius
of (1 + 2 + 3)/3 = 2.
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If the average is based on the surface area of the spheres, A = 4πr2, then the average
surface area is 4π(12 + 22 + 32)/3 which corresponds to a radius of r = 2.16. The same
holds true for the cross-sectional area of the spheres.

If the average is based on the volume of the spheres, V = 4
3πr

3, then the average volume
is 4

3π(13 + 23 + 33)/3 which corresponds to a radius of r = 2.29.
So there is ambiguity in how to define the “average particle size” even for a collection

of spherical particles.
The situation is ever worse for non-spherical particles, which do not have a single

parameter like radius that can be used to specify the size of the particle. The “size“ of a
non-spherical particle is sometimes taken to be

• the largest dimension of the particle,

• the arithmetic mean of the largest dimension of the particle, DL, and the smallest
dimension, DS : 1

2(DL +DS),

• the geometric mean of the largest and the smallest dimensions:
√
DLDS ,

• the diameter of a sphere with the same surface area as the particle (an “area-
equivalent” sphere), or

• the diameter of a sphere with the same volume as the particle (a “volume-equivalent”
sphere),

and there are also other measures of the “size” of a non-spherical particle. Note that the
arithmetic and geometric means are equal for spherical particles, but are in general not
equal.

All of these measures of particle size are valid, but one measure may be optimum for a
particular application. For example, a Coulter Counter measures the change in electrical
conductivity when a particle passes through the sensor. This change is proportional to the
amount of material in the particle, i.e. to the particle volume. Thus a Coulter Counter
measures the the size of a volume-equivalent sphere. Laser diffraction instruments measure
diffraction of light caused by a particle in the light beam. The angular shape of the
diffraction pattern is determined by the cross-sectional (projected) area of the particle as
seen by the beam. Thus laser diffraction measures the size of an area-equivalent sphere.

The diameters of area-equivalent and volume-equivalent spheres can be considerably
different. Consider a cubical particle of length ` on a side. The volume is Vc = `3 and the
equivalent-volume sphere (Vs = πD3/6) has a diameter

Dvol =

(
6

π

)1/3

` = 1.24` .

The surface area of the cube is Ac = 6`2 and of a sphere is As = πD2, which leads to

Darea =

(
6

π

)1/2

` = 1.38` .

If cubes of this size are seen randomly oriented in a laser beam, the average projected
area is one-fourth of the surface area2. Thus the laser sees, on average, particles of area

2Cauchy’s Average Projected Area Theorem shows that for a convex polyhedron, the average projected
area over all orientations, i.e. the average cross section, is one-fourth the surface area of the polyhedron.
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6`2/4, and the equivalent-projected-area sphere has diameter πD2/4. This again leads to
Darea =

√
6/π`.

Thus for a cube the diameter of the equivalent-area sphere is 1.11 times the diameter
of the equivalent-volume sphere. Coulter-principle and laser-diffraction instruments will
therefore report somewhat different equivalent-sphere sizes for the same particle. Clearly,
it is important to understand exactly what an instrument measures and what instrument
was used to measure particle sizes. Unfortunately, publications sometimes fail to state
exactly what measure they are using for the size of non-spherical particles.

8.12.2 Cumulative and Particle Number Size Distributions

First decide on some measure of particle size; call it the diameter D. If the particles are
known to be spherical (e.g., fog droplets or small bubbles in water), then D is the diameter
of the sphere. For non-spherical particles, D is most often taken to be the diameter of the
volume-equivalent sphere. The next step is to quantify how many particles there are of
each size D. There are two equivalent ways to do this.

The cumulative number size distribution (CSDn) N(D) is usually defined (in the
particle-sizing literature) as the number of particles per unit volume larger than size D.
N(D) is usually expressed in units of m−3. In principle, this function can be measured
simply by counting the numbers of particles larger than a given size D, as D in principle
ranges from 0 to∞, but in practice D ranges from some minimum Dmin to some maximum
Dmax. These minimum and maximum sizes are usually determined by the instrument used
to do the counting.

The particle number size distribution (PSDn) n(D) is a function defined so that n(D)dD
is the number of particles per unit volume between size D and D+dD (or in the size range
D±D/2). The units of n(D) are usually number of particles per cubic meter per microm-
eter of size range, i.e. m−3 µm−1.

The CSDn, N(D), as defined above decreases as D increases, so dN(D)/dD is negative.
The corresponding PSD is then the negative of the derivative of the CSD, and is usually
written as

n(D) =

∣∣∣∣dN(D)

dD

∣∣∣∣ (m−3 µm−1) . (8.38)

Because of the large range of values for both N(D) and D, it is customary to plot these
functions on log-log scales and to work with logarithmic size intervals. You then see (e.g.,
Junge, 1953; Liley, 1992) n(D) defined in terms of a log derivative, which is related to
dN(D)/dD by

dN(D)

d logD
=

D

log e

dN(D)

dD
. (8.39)

The log e comes from a change of base from base 10 logarithms, which are convenient for
working with data, to base e natural logarithms, which are convenient for mathematics.
Thus PSDs defined by logarithmic and linear derivatives will differ by a factor of D/ log e =
2.30D:

n′(D) =

∣∣∣∣dN(D)

d logD

∣∣∣∣ =
D

log e

∣∣∣∣dN(D)

dD

∣∣∣∣ =
D

log e
n(D) .

The converse of Eq. (8.38) is

N(D) =

∫ ∞
D

n(D)dD (m−3) .
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The total number of particles per unit volume is given by

Nt = N(0) =

∫ ∞
0

n(D)dD (m−3) .

In the particle sizing literature, it is customary to use a diameter D as the measure of
particle size. However, Mie Theory (Chapter 12) usually expresses its size parameter in
terms of the particle radius r = D/2. If using a PSD(D) in Mie calculations as described
in Section 12.3, it is necessary to use PSD(r) = 2PSD(D).

8.12.3 Area and Volume Size Distributions

The previous definition (8.38) of the PSD was for the number of particles in a unit volume,
hence the notation PSDn or n(D), with the subscript n indicating number of particles,
and the name number size distribution. We can also define size distributions for the area
and volume of the same particles. The surface area of a sphere is πD2, so the PSD for area
(subscript a) is

PSDa(D) = πD2PSDn(D) = πD2n(D) (µm2 m−3 µm−1) . (8.40)

Note that the units of the area size distribution PSDa(D) are particle surface area, usually
in µm2, per unit volume per unit size interval. The size distribution for the cross-sectional
area of the particles is π

4D
2PSDn(D), with the same units. The PSD for particle volume,

π
6D

3, is then (subscript v)

PSDv(D) =
π

6
D3PSDn(D) =

π

6
D3n(D) (µm3 m−3 µm−1) . (8.41)

Now the units of the volume size distribution are particle volume, usually in units of µm3,
per unit volume per unit size interval. For particle volume measured in cubic micrometers,
PSDv(D) thus gives a size distribution for particle volume in parts per million, per unit
size interval. Of course, these formulas are based on the assumed validity of area- and
volume-equivalent spheres.

The total surface area of particles per unit volume is

At = Na(0) =

∫ ∞
0

PSDa(D)dD = π

∫ ∞
0

D2n(D)dD (µm2 m−3) .

The total volume of particles per unit volume is

Vt = Nv(0) =

∫ ∞
0

PSDv(D)dD =
π

6

∫ ∞
0

D3n(D)dD (µm3 m−3) .

If the quantity of interest is the number of particles (e.g., the number of phytoplank-
ton of various sizes), then the number size distribution n(D) is the relevant distribution.
However, some processes depend more on the surface area of the particles than on their
number. For example, chemical reactions such as combustion (e.g., burning of coal dust
in a power plant) depend strongly on the surface area, and laser diffraction is governed
primarily by particle cross-sectional area. For such problems, PSDa is the distribution of
interest. For processes that depend on particle volume or mass (e.g., the mass of sediment
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material resuspended in a bottom boundary layer or particle buoyancy in a fluid), the
volume distribution PSDv is the distribution of interest.

Many commercial particle sizing instruments allow the user to select the output as a
number, area, or volume PSD. Keep in mind that the conversions between one form of PSD
and another are being made on the basis of an assumed equivalent spherical particle, even
though the underlying measurement may be based on particle area (laser diffraction) or
volume (Coulter counter). Thus a laser diffraction instrument may give a good measure-
ment for the area PSDa even for nonspherical particles, but errors can be introduced when
converting the area PSD to number or volume PSDs. A Coulter counter may give a good
measurement of a volume distribution PSDv even for nonspherical particles, but errors can
be introduced with converting the volume distribution to area or number distributions.

8.12.4 Models for Particle Size Distributions

Many models have been proposed for particle size distributions. These differ according
to the environment (atmosphere, ocean, industrial process) and particular data set being
analyzed. The classic studies by Junge (1953) and Junge (1955) were concerned with
aerosol size distributions. He found that a number size distribution of the form

dN(D)

d logD
∝ D−3 (8.42)

gave a good fit to aerosols down to about 1 µm in diameter. Note that according to Eq.
(8.39), the D−3 dependence of Eq. (8.42) corresponds to a D−4 dependence when written
as

n(D) =

∣∣∣∣dN(D)

dD

∣∣∣∣ ∝ D−4 (8.43)

Thus you usually see the statement than a Junge distribution has a slope of -4 when n(D)
and D are plotted on logarithmic axes.

Figure 8.2 showed one instance of the number PSD for various size classes of marine
biological particles; D is the diameter of a volume-equivalent sphere. The Junge distri-
bution is shown as a blue line in that figure, with the magnitude fixed by the value for
picoplankton.

A more general number size distribution model is the power law distribution, which is
usually written as

n(D) = n(Do)

(
D

Do

)−S
. (8.44)

The exponent S is usually called the slope parameter. n(Do) is the value of the distribution
in m−3 µm−1 at a reference diameter Do. The Junge distribution (8.43) is a special case
of a power law distribution for S = 4. (Some authors call the power law distribution a
Junge distribution, but others are careful to use the term Junge distribution only for S = 4
because that is the only slope Junge considered in his papers.)

Figure 8.44 shows 168 number size distributions n(D) measured over the equivalent-
sphere size range 0.8 ≤ D ≤ 120 µm in Arctic waters. When fit to the power law model
of Eq. (8.44), the best-fit values of −S have the distribution of values shown in Fig. 8.45.
The average of the 168 slope parameters is S = 3.6± 0.37.

Figure 8.46 shows two of the PSDs of Fig. 8.44 along with the corresponding area and
volume distributions, and the cumulative distribution functions. Although the fit of the
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Figure 8.44: 168 particle number size distributions N ′ = n(D) measured in Arctic waters.
From Runyan et al. (2020, Fig. 2), reproduced by permission under a Creative Commons
license.

Figure 8.45: Distribution of the best-fit exponents of the power-law model of Eq. (8.44)
when fit to the 168 PSDs of Fig. 8.44. From Runyan et al. (2020, Fig. 3). Reproduced by
permission under a Creative Commons license.

power-law model (8.44) to these number PSDs appears quite good on a log-log plot, it must
be noted that there are order-of-magnitude deviations from the best-fit curves, namely near
40-50 µm in the upper left figure, and near 1.5 µm in the lower-left figure. Such deviations
are common in fits such as these and can result, for example, from a bloom of a particular
species of phytoplankton. It should be noted from the CDFs in the right panels that the
total number of particles comes mostly from particles less than about 3 µm, but the total
volume of particles comes mostly from the larger particles greater than about 30µm. This
is simply because one particle with D = 10 µm has as much volume as 1000 particles of
size D = 1 µm, for example.

It sometimes happens that the small size and large size ends of the distribution have
different slopes. A better fit is then obtained by separate fits of a power law for the two
size regions, but other distributions have also been used.

It is important to recognize that a power-law distribution implies that the size range
extends from D = 0 to ∞. This is never the case in nature. The smallest phytoplankton
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Figure 8.46: Two sets of PSDs from the deep chlorophyll maximum at two locations (top
and bottom rows) in the Arctic. The left panels show the number (N ′ = n(D)), area
(A′ = PSDa(D)), and volume (V ′ = PSDv(D)) distributions. The right panels show the
corresponding cumulative distribution functions for number, area, and volume. The dashed
lines show the power law distributions, based on the best-fit to the number distributions.
From Runyan et al. (2020, Fig. 5), reproduced by permission under a Creative Commons
license.

have a diameter of about 0.2 µm and the largest are about 200 µm. Thus a PSD for
phytoplankton, whatever its mathematical form, should be applied only for the D = 0.2 to
200 µm size range, and perhaps for an even smaller range. Particular species or size classes
of phytoplankton have much smaller size ranges. The upper panel of Fig. 8.47 shows mea-
sured number PSDs for 18 classes and species of phytoplankton (VIRU is viruses, HBAC
is heterotrophic bacteria, PROC is prochlorococcus, ..., MICA is Prorocentrum micans; see
Stramski et al. (2001) for the full listing and description of these microbes). The bottom
panel of the figure show the sum of the individual PSDs, with the concentrations of each
class chosen within the ranges of typical values so that the total (except for viruses) obeys a
Junge distribution (S = 4 in Eq. (8.44)). Modeled distributions for detritus, minerals, and
bubbles are also shown. These PSDs were used to model the inherent optical properties of
oligotrophic waters; the total chlorophyll of the sum is 0.18 mg Chl m−3.

The PSDs of individual species or classes of particles as seen in the upper panel of Fig.
8.47 are often modeled by a log-normal distribution. In this distribution, the numbers are
normally distributed when D is plotted on a logarithmic scale as in the preceding figures,
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Figure 8.47: Top panel: measured number size distributions for 18 classes or species of
microbes. Bottom panel: the sums of the microbial PSDs (solid line), and modeled PSDs
for detritus, minerals, and bubbles. Reproduced from Stramski et al. (2001, Fig. 9) under
Optica’s Fair Use policy.

or equivalently, using a normal distribution in lnD rather than in D. That is, lnD is
distributed as a Gaussian probability distribution function:

pdf(lnD) =
1

σ
√

2π
exp

[
−(lnD − µ)2

2σ2

]
, (8.45)

where µ and σ are the mean and standard deviation of lnD, respectively. Note that this
pdf(lnD) satisfies ∫ ∞

−∞
pdf(lnD)d lnD = 1 ,

as is required of any probability distribution function. Noting that pdf(D)dD = pdf(lnD)d lnD



8.12. PARTICLE SIZE DISTRIBUTIONS 313

represents the same probabilities gives

pdf(D) = pdf(lnD)
d lnD

dD
=

1

D
pdf(lnD) ,

which is the form seen in Campbell (1995, Eq. A1), and is equivalent to Ahmad et al.
(2010a, Eq. 2). To express the log-normal distribution in terms of base 10 logarithms, the
same procedure plus the observation that d logD/dD = log e/D gives

pdf(D) =
log e

D
pdf(logD) =

1

(ln 10)D
pdf(logD) ,

which is the form seen in Shettle and Fenn (1979, Eq. 1). Now µ and σ are the mean
and variance of logD. Note that pdf(D) is defined for 0 < D < ∞, which corresponds
to −∞ < lnD < ∞ in Eq. (8.45). Multiplying these probability distribution functions
by magnitudes (e.g., the total number of particles per cubic meter) scales them for use as
PSDs.

Log-normal distributions are commonly used to describe atmospheric aerosol size dis-
tributions (e.g., Shettle and Fenn, 1979). The current NASA atmospheric correction algo-
rithm models aerosols as a sum of two log-normal distributions: one for small, continental
(dust) aerosols and one for large, marine (sea salt) aerosols (Ahmad et al., 2010a):

n(r) =
1

r

dN(r)

d ln r
=

2∑
i=1

Noi

rσi
√

2π
exp

[
−(ln r − µi)2

2σ2
i

]
. (8.46)

The parameters Noi, µi, and σi, i = 1, 2 are adjusted to give the relative amounts of conti-
nental and marine aerosols, and the parameters also depend on the relative humidity. Fig-
ure 8.48 illustrates these aerosol distributions for a typical open-ocean mix of aerosol types
and for a relative humidity of 50%. The left panel plots the number PSD n(r) = dN(r)/dr
and the right panel plots the same information as dN(r)/d log r. In the left panel, the
dashed line shows the −4 slope of a Junge distribution (Eq. 8.43). In the right panel, the
Junge distribution is represented by a slope of −3 on the log r abscissa scale (Eq. 8.42).
The aerosol model of Eq. (8.46) uses particle radius r rather than diameter D because
these particle size distributions are used as input to Mie calculations of aerosol optical
properties.

The log-normal distribution finds many applications beyond particle size distributions.
Campbell (1995) shows examples of log-normal distributions of chlorophyll concentrations,
normalized water-leaving radiances, the diffuse attenuation coefficient Kd(490), normalized
photosynthetic yields, and several other biological variables. In fields other than oceanog-
raphy, the log-normal distribution has been found to describe phenomena as diverse as the
distribution of income (excluding billionaires), daily rainfall amounts, the populations of
cities, and much more. Qualitative understanding of these observations can be obtained as
follows. If a random variable is the sum of other random variables, then the distribution
of the sum will be normal, regardless of the distribution of the individual variables. This
is known as the Central Limit Theorem. (See Section E.5 on error estimation in Monte
Carlo calculations for numerical examples.) If the total results from a product of random
processes, then the product will obey a log-normal distribution. This is because the loga-
rithm of a product is the sum of the logarithms, and the sum of the individual logarithms
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Figure 8.48: Typical open-ocean aerosol distributions plotted as dN(r)/dr in the left panel
and as dN(r)/d log r in the right panel. The green curve is the contribution by continental
aerosols and the blue curve is the marine aerosols; the red curve is the total. The black
dashed lines show the slope of a Junge distribution.

is then normally distributed. Thus, for example, if the total chlorophyll concentration is
the result of a repeated daily fractional increase (daily growth rate) (e.g., the total Chl is
the value at day 1 times 1.1 to get the value at day 2, time 1.1 again to get the value at
day 3, ...), the the total chlorophyll concentration will be log-normally distributed.

8.12.5 Single-parameter Measures of Particle Size

A PSD contains the full information about the sizes of particles in a sample. However,
a PSD is a function of size, and there is a human tendency to want to have a single
number to describe the particle sizes. Using a single number to describe a distribution
may sometimes be useful, but it often can be misleading or downright dangerous. As
shown in the introduction, it is not even possible to define a unique “size” for more than
one sphere, let along a distribution of non-spherical particles. A power-law distribution
diverges as the size goes to 0, so such a distribution can be integrated only over a finite
size range D1 to D2. Numbers like the mean or median particle size can be computed for
a distribution, but the “mean” size will be different when based on a number distribution
versus a volume distribution, for example.

Perhaps the most commonly used single-number size parameter is the Sauter mean
diameter (SMD), which is defined by

SMD =

∫ D2

D1
D3n(D)dD∫ D2

D1
D2n(D)dD

.

Recalling Eqs. 8.40 and 8.41, the SMD can be written as SMD = 6Vt/At, where Vt and
At are the total volume and area of the particles in the distribution. For a single spherical
particle of volume πD3/6 and area πD2, the SMD reduces to the diameter of the sphere.
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Thus in words, the SMD is the diameter of a sphere that has the same total volume to
total area ratio as the particles in the distribution.

Figure 8.49 shows the differences in the mode, median, mean, and Sauter mean diameter
for a log-normal probability distribution function,

pdf(x) =
1

xσ
√

2π
exp

[
−(lnx− µ)2

2σ2

]
,

with parameters µ = 1.0 and σ = 0.5. This illustrates that these measures of particle
“size” are in general all different. The Sauter mean diameter is larger than the others and
is determined most strongly by the largest particles of a distribution. If you are interested
in total volume or mass, then the SMD is a useful quantity. This is why the SMD is used
in sediment transport studies. On the other hand, if you are interested in the smallest
particles, then the mode or median is probably a better statistic to use. Other single-
number measures of a distribution have been developed for specific problems. Clearly,
which single measure of a size distribution might be most useful depends on the problem
at hand.

Figure 8.49: Differences in the mode, median, mean, and Sauter mean diameter for a
log-normal distribution with parameters µ = 1.0 and σ = 0.5.

8.12.6 Comments on Terminology

As is so often the case, different authors sometimes use different terminology. For example,
Bader (1970) callsN(D) the cumulative number distribution function and n(D) the number
distribution function. Jonasz (1983) calls N(D) the cumulative size distribution and n(D)
the particle size distribution. I use the term cumulative number size distribution (CSDn)
for N(D) and particle number size distribution (PSDn) for n(D) because that seems to
be the most common in the literature (subscript n for number).
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However, in probability theory, a cumulative distribution function CDF (D) refers to
the how much of a total is less than D, rather that greater than D as used for N(D).
Runyan et al. (2020) compute a true CDF (D) by dividing the PSD(D) by the total
number of particles over all sizes, Nt, to get a true PDF (D), and then computing a

(nondimensional) CDF as CDF (D) =
∫ D

0 [n(D′)/Nt] dD
′. They also employ a carefully

designed nomenclature with N ′, A′, and V ′ denoting the number, area, and volume PDFs,
which they refer to as density functions. This is somewhat in analogy to a spectral density
function, which shows how much of something there is per unit interval of distance or
frequency. Their true CDFs are denoted by CDFn(D), CDFa(D), and CDFv(D) for the
number, area, and volume CDFs computed from the respective density functions.

Any of the functions CSDn(D) = N(D), PSDn(D) = n(D), PSDa(D), PSDv(D),
CDFn(D), CDFa(D), CDFv(D) etc. is properly termed a particle size distribution. They
are all different ways of describing how some feature of particles (number, area, volume)
change with size, and one can be computed from and of the others (under certain assump-
tions like spherical particle shapes).

I suspect that the “backwards” definition of the cumulative size distribution as used in
particle analysis traces back to measurement of size distributions of soil or other particles
using a succession of wire mesh sieves. You first sieve out the large particles (gravel, for
example) and count those. Then a smaller mesh collects the next smaller size (sand, for
example), and so on down to the finest particles (e.g., silt). The fine meshes are very
delicate, so you have to remove the large particles first. Thus as the sieving process works
from large to small particles sizes, you are accumulating the number of particles larger
than the current sieve size, and building up a CSD(D) that shows how many particles
are larger than D. Given a normalized probability distribution function PDF (D) (e.g,
PDFn(D) = n(D)/Nt, it is convenient to integrate (or sum) the PDF from small to large
values of D, and thus build up a CDF (D) that shows the fraction of the total that is less
than D.

8.12.7 Comments on Units

Suppose you have some data Y (x) that you wish to model with a normal or Gaussian
distribution. Y might the the number, area, or volume of particles, and x is some measure
of their size. The mean and standard deviation of the data are m and s, respectively, and
Yt is the total “amount” of Y for all sizes (e.g., the total number of particles or their total
volume). Then the Gaussian model of the data would be

Y (x) =
Yt√
2πs

exp

[
−(x−m)2

2s2

]
. (8.47)

If x has units, say µm, then m and s have the same units. The argument of the exponential
is nondimensional, and ∫ ∞

−∞
Y (x)dx = Yt

since a Gaussian distribution integrates to 1.
Now suppose you wish to model the same data using a log-normal distribution. The

idea is that

Y (log x) =
Yt√
2πσ

exp

[
−(log x− µ)2

2σ2

]
, (8.48)
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where now µ = logm and σ = log s are the parameters of the distribution. However, this
equation is not correct because you cannot take the logarithm of a dimensional quantity.
(Nor can you compute ex or sin(x) or any other such function unless x is a nondimensional
number.) However, you can compute log(ax) if a has units of 1 over the units of x, so that
ax is a nondimensional number. Thus, before using a log-normal distribution, you must
non-dimensionalize the size x. If x is in µm, then this can be done by dividing all values of
x by 1µm, i.e. setting a = 1/1µm. However, you could just as well normalize the x values
by dividing by 17.3 µm. Note that converting the x data values from, say, micrometers to
millimeters, or even to inches, also amounts to multiplying all x values by a scale factor a.
If x → ax, then m → am and s → as, and the exponential of the log-normal distribution
does not change. The log-normal distribution this then properly written as

Y [log(ax)] =
Yt√
2πσ

exp

[
−(log(ax)− µ)2

2σ2

]
, (8.49)

where now µ = log(am) and σ = log(as). Of course, if x is measured in micrometers and
a = 1/1 µm, then nothing changes numerically in Eq. (8.48) versus (8.49), but it should
be kept in mind when using equations like (8.45) or (8.46) that the size measure D or r
must be non-dimensional. This subtlety seems never to be mentioned in the particle sizing
literature, although the mathematicians have commented on this; see Matta et al. (2011)
and Finney (1977).

8.13 Creating Particle Size Distributions from Data

[Emmanuel Boss and Nils Haëntjens contributed to this section.]

Particle size distributions (PSDs), the descriptions of how particle number, area, or
volume depend on particle size, are useful tools in oceanography used in applications such
as characterizing the ecosystem (Cermeno and Figueiras, 2008) or computing the carbon
flux to depth (Guidi et al., 2009). While PSDs have been extensively used in the literature,
surprisingly little has been written about how they are actually derived from measured data.

8.13.1 Empirical PSDs

How one constructs a PSD depends on the tool used to size the assembly of particles. Single-
particle analyzers, such as the Coulter Counter or cytometers, provide information on the
size of each individual particle passing through the instrument (typically based on volume
or cross-sectional area and assuming an equivalent sphere). Other methods, such as the
Laser In Situ Scattering and Transmission meter (LISST, Agrawal and Pottsmith (2000)),
provide a PSD of the bulk assembly of particles by inverting a bulk measurement (near-
forward angular scattering in the case of the LISST) to obtain the most likely underlying
PSD.

The process of building a PSD from the size information of individual particles is as
follows. Choose a number of bins (M) and denote their boundaries b1, b2, , bM+1. Place a
particle in the particular bin for which its diameter (D) obeys bj ≤ D < bj+1 (by “placing
it” is meant that the number of particles in that bin is incremented by one). Ideally,
the size characterizing each bin is based on the mean size of the particles in that bin.
Typically, however, that size is based on the boundaries of the bin (e.g. the arithmetic or
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geometric mean of the bin boundaries). Thus the “discrete” PSD, denoted by N(Dj), gives
the number of particles with mean diameter Dj (units of number per volume of water).
To obtain a continuous PSD, n(Dj), (for example for the purpose of comparison between
different instruments each having different bin sizes), one divides the discrete PSD by the
bin width: n(Dj) = N(Dj)/(bj+1 − bj) (units of number per volume per size). To obtain
a volume or area size distribution, the number of particles in each bin is multiplied by
the average volume or area of a particle in that bin, respectively. When using imaging
cytometers such as the Imaging Flow Cytobot (Olson and Sosik, 2007) the cross-sectional
area is measured directly for each cell, from which the volume can be estimated (Moberg
and Sosik, 2012). Hence another option to derive the PSD is to sum the volume or area of
each individual cells instead of the average cross-sectional area or volume of the bin times
the number of particles.

Continuous particle number size distributions in the surface ocean are often approxi-
mated by a power-law distribution (e.g. Jackson et al. (1997)):

n(D) = AD−ξ [number cm−3 µm−1] . (8.50)

Power-law differential distributions are observed to have an exponent (ξ above) varying
between 3 and 4 in the surface ocean (Jackson et al., 1997; Sheldon et al., 1972). An
exponent of 4 implies that volume is constant within bins increasing in size by a power-law
rule (e.g.Sheldon et al. (1972)). A problem in the above equation is that, in principle, we
should never exponentiate with a fraction a quantity that has physical units. Often, (8.50)
will be written instead as function of a nondimensional ratio, e.g.

n(D) = A(D/D0)−ξ ,

with D0 being a reference diameter. In what follows we assume, without loss of generality,
that D0 = 1 µm, and D is reported in µm and hence this normalization is implicitly
assumed.

Before the PSD can be built certain decisions need to be made. The upper and lower
bounds for particle size range, the number of bins, and the rule according to which bins are
allocated. Traditionally, due to the rapid decrease in particle concentration with size, bin
sizes have been chosen to follow a power-law scaling (Sheldon et al., 1972; Jackson et al.,
1997; Agrawal and Pottsmith, 2000). That is to say, a subsequent bin is q times larger
than the previous bin (Section 8.13.5 shows other possible choices for bin sizing). This
choice has the advantage that bins are of equal size on a logarithmic D (abscissa) axis and
that oceanic volume distributions are nearly flat (Sheldon et al., 1972), which provides a
quick check on the data. The downside is that over a decade in size the number of particles
per bin still decreases rapidly. For example, for a choice of ten bins over a decade, the
number of particles between the first and last bin fall by a factor of ∼ 1000. This means
that to reduce counting errors to 10% at the largest bin (counting errors scale like

√
N)

for such a choice, more than 100,000 particles are required per sample, which is typically
unrealistically large for cytometry.

8.13.2 Parametric Description of a PSD

Assume we want to produce a size distribution for oceanic plankton (e.g. Lombard et al.
(2019, Fig. 2)). Denote the boundaries of the bins by b1, b2, , bM+1 . Assuming that the
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bins they bound grow following a power-law:

q =
b3 − b2
b2 − b1

=
b4 − b3
b3 − b2

= · · · = bM+1 − bM
bM − bM−1

,

which is satisfied if for any j,

bj = b1q
j−1 =⇒ bM+1 = b1q

M =⇒ q = M

√
bM+1

b1
.

Thus, if we have the lowest and largest boundaries of the PSD (b1 and bM+1) and the
number of bins in the PSD (M), we can compute the boundaries of all other bins. The
volume of material associated with spherical particles distributed as a power-law with a
differential power law exponent of 4 (the “canonical” value of Sheldon et al. (1972)) is

V (bj < D < bj+1) =
πA

6

∫ bj+1

bj

D−1dD =
πA

6
ln q ,

which, as discussed above, is the same for all bins.

The average size of a particle associated with each bin for such a PSD is

D(bj < D < bj+1) =

∫ bj+1

bj
n(D)DdD∫ bj+1

bj
n(D) dD

=

∫ bj+1

bj
D−3dD∫ bj+1

bj
D−4dD

=
3(b−2

j+1 − b
−2
j )

2(b−3
j+1 − b

−3
j )

=
3bj+1(1 + q)

2(1 + q + q2)
=

3b1q
j(1 + q)

2(1 + q + q2)
. (8.51)

This, however, is different from the typical size chosen to represent bins in the literature.
Typically the size associated with PSD bins is computed as the geometric mean of the bin
boundaries:

D(bj < D < bj+1) =
√
bj+1bj = bj

√
q = b1q

j−1√q ,

which is larger than the size computed in (8.51). While the two may be close (their ratio
is constant and depends on q), they are not identical. Choosing the arithmetic mean to
represent the bin is even more biased.

This issue is of importance because the mean size of the bin is used to convert between
number, area, and volume size distributions. For example the LISST particle size output
is a volume distribution (in parts per million, ppm). Converting it to a size distribution
requires a division of the volume in each bin by the volume of the average particle in that
bin. The choice of the average diameter, because it is cubed, can result in a significant
bias.

In coastal areas the differential PSD power-law slope of particles has an exponent closer
to ξ = 3 (e.g., Jackson et al., 1997). In such cases, where we expect the power-law exponent
not to be 4, the mean size representing a bin changes from that of (8.51) to (Boss et al.,
2001):

D(bj < D < bj+1) =

∫ bj+1

bj
n(D)DdD∫ bj+1

bj
n(D)dD

=

∫ bj+1

bj
D1−ξdD∫ bj+1

bj
D−ξdD

=
(1− ξ)(b2−ξj+1 − b

2−ξ
j )

(2− ξ)(b1−ξj+1 − b
1−ξ
j )

.
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Normalizing a PSD by the total number of particles between the lower and upper
boundaries provides a probability distribution for a particle to be within a specific bin. For
a power-law PSD with exponent ξ:

p(bj < D < bj+1) =

∫ bj+1

bj
n(D)dD∫ bM+1

b1
n(D)dD

=
b1−ξj+1 − b

1−ξ
j

b1−ξM+1 − b
1−ξ
1

.

The cumulative distribution, P (D < Dc) =
∫ Dc
b1

p(D)dD is therefore

P (b1 < D < Dc) =

∫ Dc
b1

n(D)dD∫ bM+1

b1
n(D)dD

=
D1−ξ
c − b1−ξ1

b1−ξM+1 − b
1−ξ
1

,

which is useful to answer questions such as how numerically abundant are certain planktonic
species compared to all other groups. A similar calculus is used to derive the probability
distribution for particle area or volume.

Jackson et al. (1997) further discuss the case of computing the PSD for the solid fraction
of particles if the particles are fractals (as is the case for oceanic aggregates). This requires
assumptions regarding the change of fractal dimension with size and hence is not discussed
further here (see, for example, Maggi (2007) and Khelifa and Hill (2006)).

8.13.3 Ecological Size Spectra

In ecology, size spectra are typically represented by an abundance or biomass size spectrum
with the size axis often represented as mass or volume (e.g., the review by Blanchard et al.
(2017)). A power-law function is often fit to the spectrum whose value is interpreted based
on ecological theory. In such a case the number distribution is represented as

n(V ) = AV −ξ2 [particles cm−3 µm−1] ,

and we expect that ξ2 = ξ/3, which is less steep than is a function of size as seen in
(8.50). Because it is less steep, using the arithmetic mean for bin size is reasonable for the
canonical distribution, more so than the geometric mean. In this case,

D(bj < V < bj+1) =

∫ bj+1

bj
n(V )DdV∫ bj+1

bj
n(V )dV

=

∫ bj+1

bj
DV −ξ2dD∫ bj+1

bj
V −ξ2dD

=
(1− ξ2)(b

4/3−ξ2
j+1 − b4/3−ξ2j )

(4/3− ξ2)(b1−ξ2j+1 − b
1−ξ2
j )

.

8.13.4 Correctly Fitting a Power Law to a PSD

Suppose one is interested in fitting a power-law model to a PSD, for example as a simple
descriptor of a relative contribution of large versus small particles in a given sample. What
is the correct way to fit the PSD such that the exponent will be appropriately computed
whether it is computed from a number, area, or volume distribution?

The answer is as follows. The number distribution n(Di), where Di is the size repre-
senting the ith bin, has an uncertainty δ(Di). For example, if the uncertainty is due to
counting alone, δ(Di) =

√
n(Di) (another source of uncertainty may be instrument sen-

sitivity, particularly at the small end of the PSD). If the metric for fitting is to minimize
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the root-mean-square error, we want to find the fit parameters A and ξ that minimize the
cost function

χ =
M∑
i=1

[
n(Di)−ADξ

i

δ(Di)

]2

.

A more robust fit that reduces the weight of outliers may be found by minimizing

χ =

M∑
i=1

|n(Di)−ADξ
i |

δ(Di)
.

If the appropriate uncertainties are used for each type of size distribution (be it number,
area, or volume), the exponent found should be the same as we would expect, e.g. the
exponent for the differential volume distribution equals that of the differential number
distribution plus three.

On the other hand, if one simply fits a type-I regression line to log[n(Di)] versus log[Di],
the implicit assumption is that the relative uncertainty in n(Di) is constant and the expo-
nent obtained will not be consistent between the different size distributions.

8.13.5 Building PSDs with a Different Rule for the Bin Size

In principle, one could use a different bin size convention from the canonical use of bins
increasing as a power law. For example, if one desires a PSD where, for any ξ, the volume
in each bin is the same, the process is as follows. The total volume (assuming spheres) is∫ bM+1

b1

A
πD3

6
D−ξdD =

Aπ(b4−ξ1 − b4−ξM+1)

6(4− ξ)
= V0 .

For every bin to have the same volume we have∫ bj+1

bj

A
πD3

6
D−ξdD =

Aπ(b4−ξj − b4−ξj+1)

6(4− ξ)
=
V0

M
,

which implies that

b4−ξ1 − b4−ξ2 = b4−ξ2 − b4−ξ3 = · · · = b4−ξM − b4−ξM+1 =
b4−ξ1 − b4−ξM+1

M
.

With a choice of b1, bM+1, and M , we can compute all the other bin boundaries.
On the other hand, if one wanted to have bins of constant numbers of particles (for

example to have similar counting errors in all bins), we would require the same number of
particles in each bin. Assuming we have N0 particles in M bins spanning from b1 to bM+1

gives ∫ bM+1

b1

AD−ξdD =
A(b1−ξ1 − b1−ξM+1)

1− ξ
= N0 .

For every bin to have the same number of particles requires that∫ bj+1

bj

AD−ξdD =
A(b1−ξj − b1−ξj+1)

1− ξ
=
N0

M
,
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which implies that

b1−ξ1 − b1−ξ2 = b1−ξ2 − b1−ξ3 = · · · = b1−ξM − b1−ξM+1 =
b1−ξ1 − b1−ξM+1

M

or

b1−ξ2 = b1−ξ1 −
b1−ξ1 − b1−ξM+1

M
, · · · , b1−ξj+1 = b1−ξj −

b1−ξ1 − b1−ξM+1

M
.

Again, with a choice of b1, bM+1, andM , we can compute all of the other bin boundaries.



CHAPTER 9

Radiative Transfer Theory

The Light and Radiometry Chapter 1 showed how various physical and mathematical
quantities such as energy and solid angle can be combined to describe light in terms of
radiance. The Inherent Optical Properties Chapter 3 showed how various IOPs are used
to describe the absorbing and scattering properties of the medium through which light
propagates. If the radiance is known, then all irradiances and all apparent optical properties
(AOPs) can be computed. As was seen in the organization chart of Fig. 1, the radiative
transfer equation provides the connection between the IOPs and boundary conditions (such
as the incident sky radiance) and the radiance.

The goal of this chapter is to develop a family of radiative transfer equations (RTEs),
which can be used to predict the radiance within a medium, given the IOPs of the medium
and suitable boundary conditions. These equations provide the theoretical framework for
all of optical oceanography and ocean-color remote sensing. The first section gives a quali-
tative derivation of the scalar (unpolarized) radiative transfer equation (SRTE). Although
not physically rigorous, this derivation is seen in many textbooks and is provided here
both for historical reasons and to point out the inadequacies of that derivation. However,
there is a hierarchy of RTEs. At the top is a very general vector radiative transfer equa-
tion (VRTE, Eq. 9.14) capable of describing polarized light propagation in matter that
is directionally non-isotropic, that can absorb light differently for different states of po-
larization, and that contains scattering particles of any shape and random or non-random
orientation. Although very general in its ability to simulate any situation encountered in
optical oceanography, the full set of IOP inputs to this equation is never measured in the
oceanographic setting.

The IOP inputs to the most general VRTE become considerably simpler if the medium
has mirror symmetry. The resulting VRTE (Eq. 9.18) is suitable for computation of
polarized radiative transfer in the oceanic setting, especially after restriction to a plane-
parallel geometry.

The vector-level equations can be further simplified to obtain, in a rigorous fashion, the
SRTE (Eq. 9.21) shown in Fig. 1. That equation for the total radiance is only approximate,
but the inputs are relatively simple to measure and model, so this equation finds wide use
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in oceanography1.
The chapter finishes with sections on several related topics in radiative transfer theory,

namely beam and point spread functions, and the lidar equation.
Solution of the vector and scalar RTEs must be done numerically except for a few trivial

cases such as non-scattering media. Approximate analytical solutions for the radiance can
be obtained under very restrictive (and unphysical) conditions such as the Sun in a black
sky and only single scattering within the water. These solutions are developed in the next
chapter. Chapter 11 on Maxwell’s equations discusses light from the viewpoint of the
classical theory of electromagnetism.

9.1 The Scalar Radiative Transfer Equation; Heuristic
Derivation

This section presents a heuristic or qualitative derivation of the the scalar radiative transfer
equation (SRTE). The end results (Eqs. (9.9), (9.10), or (9.12)) are correct but, strictly
speaking, the steps of the derivation are physically incorrect because polarization is ignored.
In addition, the derivation of this section gives no way to estimate the errors that result
from ignoring polarization. Nevertheless, this form of the derivation of the SRTE is found
is almost every textbook and it does serve as a useful way to remember the various physical
processes that contribute to light propagation in an absorbing and scattering medium like
the ocean or atmosphere. This derivation is also of historical interest because it shows how
the founding fathers of radiative transfer theory proceeded in order to obtain a governing
equation (e.g., Preisendorfer, 1965, page 65) before the link between fundamental physics
and radiative transfer theory was firmly established.

The development beginning in section 9.2 on the General Vector Radiative Transfer
Equation outlines the steps of a physically rigorous derivation of various levels of RTEs,
ending with the SRTE (9.21) and including an error estimate.

9.1.1 Radiative Processes

To the extent that polarization can be ignored, the SRTE expresses conservation of energy
written for a collimated beam of radiance traveling through an absorbing, scattering and
emitting medium. We thus begin by considering the various processes that can occur when
light interacts with an atom or molecule.

The light (electromagnetic radiation) may be annihilated, leaving the atom or molecule
in an excited state with higher internal (electronic, vibrational, or rotational) energy. All or
part of the absorbed radiant energy may be subsequently converted into thermal (kinetic)
or chemical energy (manifested, for example, in the formation of new chemical compounds
during photosynthesis). If the molecule almost immediately (on a femtosecond (10−15 s) or
shorter time scale) returns to its original internal energy state by re-emitting radiation of
the same energy as the absorbed radiation (but probably traveling in a different direction

1The SRTE yields further equations involving the irradiances. One example is the two-flow equations
for the plane irradiances Ed and Eu seen in Light and Water (Mobley, 1994, Section 5.11). However,
those equations cannot be solved for the irradiances unless ad hoc assumptions are made about the angular
shape of the radiance distribution. Although once important, the two-flow equations have little value now
that computers allow for very accurate numerical solutions of both the vector and scalar radiative transfer
equations. The two-flow equations are therefore not discussed in this book.



9.1. THE SCALAR RADIATIVE TRANSFER EQUATION; HEURISTIC DERIVATION325

from the original radiation), the process is called elastic scattering. Because of the ex-
tremely short time required for these events, elastic scattering can reasonably be thought
of as the light interacting with the molecule and simply “changing direction” without an
exchange of energy with the scattering molecule.

The excited molecule also may emit radiation of lower energy (longer wavelength) than
the incident radiation. The molecule thus remains in an intermediate excited state and
may at a later time emit new radiation and return to its original state, or the retained
energy may be converted to thermal or chemical energy. Indeed, if the molecule is initially
in an excited state, it may absorb the incident light and then emit light of greater energy
(shorter wavelength) than the absorbed light, thereby returning to a lower energy state.
In either case the scattered (emitted) radiation has a different wavelength than the inci-
dent (absorbed) radiation, and the processes is called inelastic scattering. One important
example of this process in the ocean is Raman scattering by water molecules (Section 7.2).
Fluorescence (Section 7.3) is an absorption and re-emission process that occurs on a time
scale of 10−11 to 10−8 sec. If the re-emission requires longer than about 10−8 sec, the pro-
cess is usually called phosphorescence. The physical and chemical processes that lead to
the vastly different times scales of Raman scattering versus fluorescence versus phospho-
rescence are much different. The distinctions between the very short time scale of Raman
“scattering” versus the longer time scale of fluorescence “absorption and re-emission” do
not concern us in the derivation of the time-independent RTE. However, the terminology
has evolved somewhat differently, e.g., Raman scattering usually refers to “incident” and
“scattered” wavelengths, whereas fluorescence usually refers to “excitation” and “emission”
wavelengths.

The reverse process to absorption is also possible, as when chemical energy is converted
into light; this process is called emission. An example of this is bioluminescence (Section
2.6), in which an organism converts part of the energy from a chemical reaction into light.

In order to formulate the RTE, it is convenient to imagine the total light field as many
beams of electromagnetic radiation of various wavelengths coursing in all directions through
each point of a water body. We then consider a single one of these beams, which is traveling
in some direction (θ, φ) and has wavelength λ. This beam and the processes affecting it
are illustrated in Fig. 9.1.

Now think of all the ways in which that beam’s energy can be decreased or increased.
Bearing in mind the preceding comments, the following six processes are both necessary
and sufficient to write down an energy balance equation for a beam of light on the phe-
nomenological level:

Process 1: loss of energy from the beam through annihilation of the light and conversion
of radiant energy to nonradiant energy (absorption)

Process 2: loss of energy from the beam through scattering to other directions without
change in wavelength (elastic scattering)

Process 3: loss of energy from the beam through scattering (perhaps to other directions)
with change in wavelength (inelastic scattering)

Process 4: gain of energy by the beam through scattering from other directions without
change in wavelength (elastic scattering)

Process 5: gain of energy by the beam through scattering (perhaps from other directions)
with a change in wavelength (inelastic scattering)
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Figure 9.1: Illustration of a single beam of radiance and the processes that affect it as it
propagates a distance ∆r.

Process 6: gain of energy by the beam through creation of light by conversion of nonra-
diant energy into radiant energy (emission)

Next we must mathematically express how these six processes change the radiance as
the beam travels a short distance ∆r in passing through a small volume ∆V of water,
which is represented by the blue rectangle of Fig. 9.1.

Processes 1 and 3. It is reasonable to assume that the change in radiance while
traveling distance ∆r due to absorption is proportional to the incident radiance, i.e., the
more incident radiance there is, the more is lost to absorption. Thus we can write

L(r + ∆r, θ, φ, λ)− L(r, θ, φ, λ)

∆r
=

∆L(r + ∆r, θ, φ, λ)

∆r
= −a(r, λ)L(r, θ, φ, λ) . (9.1)

Here ∆L(r+ ∆r, θ, φ, λ) denotes the change in L between r and r+ ∆r. The minus sign is
necessary because the radiance decreases (energy is disappearing, so ∆L is negative) along
∆r. Referring back to Eq. (3.4) of the Inherent Optical Properties section, it is easy to
see that the present Eq. (9.1) is just the definition of the absorption coefficient written as
a change in radiance over distance ∆r, rather than as a change in absorptance. Thus the
proportionality constant a(r, λ) in Eq. (9.1) is just the absorption coefficient as defined
in the IOP section. Note that absorption at the wavelength λ of interest accounts both
for energy converted to non-radiant form (absorption) and for energy that disappears from
wavelength λ and re-appears at a different wavelength (inelastic scattering). Either process
leads to a loss of energy from the beam at wavelength λ.

Process 2. In a similar fashion, the loss due to elastic scattering out of the (θ, φ) beam
direction into all other directions can be written as

∆L(r + ∆r, θ, φ, λ)

∆r
= −b(r, λ)L(r, θ, φ, λ) , (9.2)

where b(r, λ) is the scattering coefficient as defined in the IOP Chapter 3.
Process 4. This process accounts for elastic scattering from all other directions into the

beam direction (θ, φ). Figure 9.2 shows Fig. 9.1 redrawn to illustrate scattering along path
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length ∆r from one direction (θ′, φ′) into the direction (θ, φ) of interest. These incident
and final directions correspond to scattering angle ψ as shown in Fig. 9.2.

Figure 9.2: Illustration of a beam of radiance in direction (θ′, φ′) generating radiance in
the direction of interest (θ, φ) by elastic scattering.

Recalling from Eq. (3.9) that one definition of the volume scattering function β is
scattered intensity per unit incident irradiance per unit volume, we can write

Is(r + ∆r, θ, φ, λ) = Ei(θ
′, φ′, λ)β(θ′, φ′ → θ, φ;λ)∆V . (9.3)

Here Is(r + ∆r, θ, φ, λ) is the intensity exiting the scattering volume at location r + ∆r
in direction (θ, φ). All of this intensity is created along ∆r by scattering from direction
(θ′, φ′) into (θ, φ), so ∆Is(r+ ∆r, θ, φ, λ) = Is(r+ ∆r, θ, φ, λ). The incident irradiance Ei is
computed on a surface normal to the incident beam direction, as illustrated by the dotted
lines in Fig. 9.2. We can rewrite Ei as the incident radiance times the solid angle of the
incident beam:

Ei(θ
′, φ′, λ) = L(θ′, φ′, λ)∆Ω(θ′, φ′) . (9.4)

Next recall from the Geometrical Radiometry section that intensity is radiance times
area. Thus the intensity created by scattering along pathlength ∆r and exiting the scat-
tering volume over an area ∆A can be written as

∆Is(r + ∆r, θ, φ, λ) = ∆L(r + ∆r, θ, φ, λ)∆A , (9.5)

where ∆L(r + ∆r, θ, φ, λ) is the radiance created by scattering along ∆r and exiting the
scattering volume over a surface area ∆A. Using Eqs. (9.4) and (9.5) in (9.3)) and writing
the scattering volume as ∆V = ∆r∆A gives

∆L(r + ∆r, θ, φ, λ)

∆r
= L(θ′, φ′, λ)β(θ′, φ′ → θ, φ;λ)∆Ω(θ′, φ′) . (9.6)

This equation gives the contribution to ∆L(r+ ∆r, θ, φ, λ)/∆r by scattering from one par-
ticular direction (θ′, φ′). However, ambient radiance may be passing through the scattering
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volume from all directions. We can sum up the contributions to ∆L(r + ∆r, θ, φ, λ)/∆r
from all directions by integrating the right hand side of Eq. (9.6) over all directions,

∆L(r + ∆r, θ, φ, λ)

∆r
=

∫ 2π

0

∫ π

0
L(θ′, φ′, λ)β(θ′, φ′ → θ, φ;λ) sin θ′dθ′dφ′ , (9.7)

where we have written the element of solid angle in terms the angles using Eq. (1.12).

Processes 5 and 6. Process 5 accounts for radiance created along pathlength ∆r
in direction (θ, φ) at wavelength λ by inelastic scattering from other all other wavelengths
λ′ 6= λ. Each such process, such as Raman scattering by water molecules or fluorescence by
chlorophyll or CDOM molecules, requires a separate mathematical formulation to specify
how radiance is absorbed from an incident beam at wavelength λ′ and converted to the
wavelength λ of interest.

Process 6 accounts for radiance created de novo by emission, e.g., by bioluminescence,
and each emission process again requires a separate formulation to define how the light is
emitted as a function of location, direction, and wavelength. For the moment, we can simply
include a generic source function that represents creation of radiance along pathlength ∆r
in direction (θ, φ) at wavelength λ by any inelastic scattering or emission process. Thus
we write just

∆L(r + ∆r, θ, φ, λ)

∆r
= S(r, θ, φ, λ) , (9.8)

without specifying the mathematical form of the source function S. Previous sections have
developed the source functions for bioluminescence (Section 2.6.1) , Raman scattering
(Section 7.2), and fluorescence by chlorophyll (Section 7.4) and CDOM (Section 7.5).

We can now sum of the various contributions to the changes in L along ∆r. We can
also take the conceptual limit of ∆r → 0 and write

dL(r, θ, φ, λ)

dr
= lim

∆r→0

∆L(r + ∆r, θ, φ, λ)

∆r
.

9.1.2 Standard Forms of the RTE

The net change in radiance due to all six radiative processes is the sum of the right hand
sides of Eqs. (9.1), (9.2) , (9.7), and (9.8). We thus obtain an equation relating the
changes in radiance with distance along a given beam direction to the optical properties of
the medium and the ambient radiance in other directions:

dL(r, θ, φ, λ)

dr
=− [a(r, λ) + b(r, λ)]L(r, θ, φ, λ)

+

∫ 2π

0

∫ π

0
L(r, θ′, φ′, λ)β(r; θ′, φ′ → θ, φ;λ) sin θ′dθ′dφ′

+S(r, θ, φ, λ) (W m−3 sr−1 nm−1) . (9.9)

This is one form of the SRTE, written for changes in radiance along the beam path.

In oceanography, it is usually convenient to use a coordinate system with the depth
z being normal to the mean sea surface and positive downward. Thus depth z is a more
convenient spatial coordinate than location r along the beam path. Changes in r are related
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to changes in z as shown in Fig. 9.1: dr = dz/cosθ. Using this in Eq. (9.9), assuming that
the ocean is horizontally homogeneous, and recalling that a+ b = c, we get

cos θ
dL(z, θ, φ, λ)

dz
=− c(z, λ)L(z, θ, φ, λ)

+

∫ 2π

0

∫ π

0
L(z, θ′, φ′, λ)β(z; θ′, φ′ → θ, φ;λ) sin θ′dθ′dφ′

+S(z, θ, φ, λ) . (9.10)

This equation expresses location as geometric depth z and the IOPs in terms of the beam
attenuation c and the volume scattering function β.

Other forms of the RTE are often used. The nondimensional optical depth ζ is defined
by

dζ = c(z, λ)dz . (9.11)

Dividing Eq. (9.10) by c(z, λ) and using (9.11) gives the SRTE written in terms of optical
depth. It is also common to use µ = cosθ as the polar angle variable. Recalling Eq. (3.14)
of the Volume Scattering Function section, we can factor the volume scattering function
β into the scattering coefficient b times the scattering phase function β̃. Finally, recalling
the definition of the albedo of single scattering ωo = b/c, we can re-write Eq. (9.10) as

µ
dL(ζ, µ, φ, λ)

dζ
=− L(ζ, µ, φ, λ)

+ωo(ζ, λ)

∫ 2π

0

∫ 1

−1
L(ζ, µ′, φ′, λ)β̃(ζ;µ′, φ′ → µ, φ;λ)dµ′dφ′

+
1

c(ζ, λ)
S(ζ, µ, φ, λ) . (9.12)

This equation now shows all quantities as a function of optical depth.
Any of Eqs. (9.9), (9.10), or (9.12) is called the monochromatic (1 wavelength), one-

dimensional (the depth is the only spatial variable), time-independent SRTE.
Form (9.12) of the SRTE yields an important observation: In source-free (S = 0) wa-

ters, any two water bodies having the same single-scattering albedo ωo, phase function β̃,
and boundary conditions (including incident radiances) will have the same radiance distri-
bution L at a given optical depth. This is why optical depth, albedo of single scattering,
and phase function are often the preferred variables in radiative transfer theory. Note,
for example, that doubling the absorption and scattering coefficients a and b leaves ωo

unchanged, so that the radiance remains the same for a given optical depth. However,
the geometric depth corresponding to a given optical depth will be different after such a
change in the IOPs.

We can convert geometric depth to optical depth, or vice versa, by integrating Eq.
(9.11):

ζ =

∫ z

0
c(z′, λ)dz′ or z =

∫ ζ

0

dζ ′

c(ζ ′, λ)
, (9.13)

Note that the optical depth ζ corresponding to a given geometric depth z is different for
different wavelengths because the beam attenuation c depends on wavelength. This is
inconvenient for oceanographic work, so Eq. (9.10) is usually the preferred form of the
SRTE for oceanography.
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We have now derived the SRTE in a form adequate for much oceanographic work.
Technically, the SRTE is a linear integrodifferential equation because it involves both an
integral and a derivative of the unknown radiance. This makes solving the equation for
given IOPs and boundary conditions quite difficult. Fortunately, the radiance appears
only to the first power. Nevertheless, there are almost no analytic (i.e., pencil and paper)
solutions of the SRTE except for trivial special cases, such as non-scattering waters. So-
phisticated numerical methods therefore must be employed to solve the SRTE for realistic
oceanic conditions.

As mentioned at the start, the development on this section has been for unpolarized
light. In a sense, this is always incorrect because polarization is an inherent property
of electromagnetic waves (light in particular). Even if the incident beam is unpolarized,
scattering (either by particles within the water or by reflection and transmission by the air-
water surface) induces polarization. Thus underwater radiance in a particular direction is
usually at least partially polarized. Nevertheless, the unpolarized, or scalar RTE (SRTE),
derived here gives sufficiently accurate solutions for many (but not all) oceanographic
applications. There are three main reasons for the utility of the SRTE in underwater
optics:

• The particles responsible for scattering within the ocean are usually much larger
than the wavelength of light. Polarization by scattering is greatest for particles much
smaller than the wavelength (for example, Rayleigh scattering by water molecules).
The larger the particle, the less polarization is induced by scattering of unpolarized
sunlight.

• Multiple scattering is almost always significant underwater. Multiple scattering tends
to depolarized the radiance, i.e., reduce the overall degree of polarization induced by
single scattering events.

• Irradiances are often the radiometric quantity of interest. Irradiances are computed
from integration of the radiance over direction, which tends to average out different
polarizations in different directions.

However, if very accurate results are needed (e.g., radiance with an error of less than
10% in a given direvction), or if the state of polarization itself is of interest, then a polarized
or vector RTE (VRTE), must be used. The VRTE is more complicated than the SRTE
developed here. The development of a general VRTE suitable of oceanography begins in
the next section.

9.2 The General Vector Radiative Transfer Equation

After the introductory comments of the previous section of this chapter, it is now time to
outline a rigorous derivation of the family of radiative transfer equations. The goal of this
section and the next two is to obtain the vector and scalar radiative transfer equations in
the forms that are commonly used in optical oceanography. The steps to these equations
are outlined starting from the most fundamental physics. This sequence makes explicit
what assumptions must be made along the way to get from an exact but highly abstract
and mathematical theory to equations that are only approximate but which can be solved to
get results that are accurate enough for many applications. In particular, the presentation
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shows what is given up at each step in exchange for increased simplicity in the resulting
physics and mathematics. The final result will be the scalar radiative transfer equation
(SRTE), which was seen above (Eq. 9.10) and is found in many textbooks, and which is
solved by the widely used the HydroLight radiative transfer software (Section 10.6).

The phenomenological nature radiative transfer theory as developed over the decades
made its connections to fundamental physics unclear because of its heuristic derivations
and (sometimes physically indefensible) assumptions (e.g. Preisendorfer, 1965; Mishchenko,
2013, 2014). Theoreticians worked for decades to construct “an analytical bridge be-
tween the mainland of physics and the island of radiative transfer theory”, as R. W.
Preisendorfer worded it (Preisendorfer, 1965, page 389). Most recently, M. I. Mishchenko
expended enormous effort to develop a physically and mathematically rigorous connection
between Maxwell’s equations and the vector radiative transfer equation (VRTE), from
which the SRTE is obtained after further simplifications. Thus Preisendorfer’s bridge has
now been completed with a level of rigor worthy of any branch of physics (Mishchenko,
2008a; Mishchenko et al., 2016). This section outlines how that bridge is constructed.

The path from fundamental physics to radiative transfer theory works it way through
the following stages:

1. Quantum Electrodynamics

2. Maxwell’s Equations

3. The general vector radiative transfer equation (VRTE)

4. The VRTE for particles with mirror symmetry

5. The SRTE for the first component of the Stokes vector

9.2.1 Quantum Electrodynamics

Quantum electrodynamics (QED) is the fundamental physical theory that explains with
total accuracy (as far as we know) the interactions of light and matter, or of electrically
charged particles. In this theory, the electromagnetic field itself is quantized, and the
photon is the quantum of the field. The electromagnetic force between charged particles is
described by the exchange of so-called virtual photons (called “virtual” because they are
not detectable in the role of transferring forces between charged particles). The photon is
said to mediate or carry the electromagnetic force.

As an example of the accuracy of QED, the most recently measured value of a quantity
called the electron spin g-factor is (Hanneke et al., 2011)

g/2 = 1.001 159 652 180 73(28)

where the last two digits in parentheses give the uncertainty in the preceding two digits.
The value predicted by the most recent QED calculations is (Aoyama et al., 2015)

g/2 = 1.001 159 652 181 643(763)

This is an agreement between theory and experiment of around 1 part in 1012, which is an
accuracy equivalent to measuring the circumference of the Earth to within 0.04 millimeters.
Similar results are obtained for other QED predictions. Because of its exceptional success
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in explaining nature at its most fundamental level of elementary particle interactions, QED
is often regarded as the most successful theory in physics.

Unfortunately, QED is exceptionally abstract and mathematical, and the calculations
can be carried out only for simple interactions, such as the scattering of one elementary
charged particle by another (although the calculations for even the simplest of interactions
can be exceedingly complex according to the rules of QED). QED is the conceptual start-
ing point for much of modern physics, but it isn’t even remotely practical for everyday
calculations. If you want to start learning about how the theory is formulated, there is no
better place to begin than Feynman’s classic popular exposition QED: The Strange Story
of Light and Matter (Feynman, 1985). After that, if you want to get a bit more serious
and see how the calculations are actually done, the best text I’ve found is Introduction to
Elementary Particles, Second Edition (Griffiths, 2008). Learning about QED a fascinating
journey, but this is not a road that oceanographers are required to travel.

9.2.2 Maxwell’s Equations

QED is a quantum field theory that describes light and electromagnetism at the level of
individual photons, which in QED are viewed as the quantized vibrational modes of the
electromagnetic field. It is possible to take a “classical physics limit” of QED to get a
classical field theory, in which the electromagnetic field is not quantized. The result is
Maxwell’s equations, which describe electric and magnetic fields as continuous functions
of space and time. One way to think of this limiting process was stated by Sakurai (1967)
as “The classical limit of the quantum theory of radiation is achieved when the number
of photons becomes so large that the occupation number may as well be regarded as a
continuous variable. The space-time development of the classical electromagnetic wave
approximates the dynamical behavior of trillions of photons.” Not surprisingly, getting
from QED to Maxwell requires a high level of mathematical and physical sophistication.

Maxwell’s equations are a set of four equations that govern electric and magnetic fields.
Maxwell built upon earlier work by Coulomb, Gauss, Ampere, Faraday, and others; and
the equations developed by these earlier geniuses are contained within his equations. These
equations are applicable to the every-day needs of science and engineering. They govern
matters as seemingly diverse as the generation, propagation, and detection of radio waves;
the generation of electrical power for your house; the generation of Earth’s magnetic field,
the refraction of light at an air-water surface, and the scattering of light by phytoplankton.
However, the greatest achievement of Maxwell and his equations is this: In a vacuum (as
viewed by classical physics), a bit of vector calculus shows (Section 11.1.4) that each of the
x, y, and z components of the electric and magnetic field vectors satisfies an equation of
the form

∇2f = µoεo
∂2f

∂2t
.

Here εo = 8.85×10−12 A2 s4 kg−1 m−3 or coul2 N−1 m−2) is the electric permittivity of free
space, and µo = 4π × 10−7 kg m s−2 A−2 or N A−2) is the magnetic permeability of free
space. These are physical constants that describe the ability of electric and magnetic fields
to penetrate a vacuum.

This equation describes a wave propagating with speed c = 1/
√
µoεo. Plugging in the

numbers for εo and µo gives c = 3 · 108 m s−1. As Maxwell observed in 1862, “This velocity
is so nearly that of light that it seems we have strong reason to conclude that light itself
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(including radiant heat and other radiations) is an electromagnetic disturbance in the form
of waves propagated through the electromagnetic field according to electromagnetic laws.”
This result is one of the greatest intellectual achievements of all time: not only
were electric and magnetic fields tied together in the first unified field theory
in physics, but light was shown to be an electromagnetic phenomenon2.

Although Maxwell’s equations are very accurate for predicting the phenomena of clas-
sical physics, they do fail when applied to atomic-scale processes, extremely strong fields,
and the realm of “quantum optics,” which deals with individual photons. In particular,
classical physics failed to describe blackbody radiation and the photoelectric effect, which
is why Planck and Einstein had to make radical new assumptions in order to explain the
observations. Those assumptions were the start of quantum mechanics3.

For solution in material media, Maxwell’s equations must be augmented with infor-
mation about the electrical and magnetic properties of the material and with boundary
conditions describing the specific problem of interest, such as sunlight passing through the
sea surface and propagating through an ocean full of absorbing and scattering particles.
The equations become somewhat more complicated in material media, although the general
form remains the same. These equations do find occasional use in oceanography. For exam-
ple, they have been used for measurement of oceanic currents via the electric fields set up
by a conductor (salt water) moving through the earth’s magnetic field (e.g., Larsen, 1973,
1992). They are also the foundation for computations of sea ice emissivity and reflection
at microwave frequencies (e.g., Tan et al., 2016). However, those applications are either
non-optical or at wavelengths much longer than the visible spectrum. Direct numerical
solutions of Maxwell’s equations are reviewed in Mishchenko et al. (2016, Section 7).

Maxwell’s equations are discussed in detail in Chapter 11.

For geometry as complex as a wind-blown sea surface and a water column filled with
spatially varying absorbing and scattering matter, Maxwell’s equations and their boundary
conditions are just too complex to solve for typical optical oceanographic problems. So,
elegant and useful as they are for some problems, optical oceanographers must seek still
further simplifications.

9.2.3 The General Vector Radiative Transfer Equation

The next simplifying step is to go from the world of electric and magnetic fields to the
world of radiance. At optical wavelengths, the frequency of electromagnetic waves (light)
is of order 1015 Hz. This is far higher than can be directly measured for a time-dependent
propagating electric field. In practice, time-averaged irradiances are measured, in conjunc-
tion with various combinations of polarizing filters, over times long compared to the wave

2Maxwell developed his theory of electromagnetism is a series of papers in the 1860s, culminating with
“A Dynamical Theory of the Electromagnetic Field,” published in 1865. If you do an internet search
on “important events in world history in 1865” or check the Wikipedia page on 1865, the results will be
dominated by events of the U.S. Civil War, plus mention of the first ascent of the Matterhorn, the arrival
of Jumbo the elephant at the London zoo, and endless trivia about various kings and political shenanigans.
You will not find a single mention of the publication of Maxwell’s paper, which is a sad commentary on
what most historians consider important.

3To be precise, benefiting from the insights of a century of quantum mechanics, the failure of classical
physics to describe the photoelectric effect and blackbody radiation was not due to the radiation field not
being quantized (Maxwell’s equations), but due to the discrete nature of atomic absorption and emission
processes, which in turn lead to discrete frequencies of the associated radiation. But that’s another story.
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period. This time-averaging destroys the phase information contained in the instantaneous
vector fields, but preserves the directional information about the plane of oscillation of the
electric (and magnetic) field, i.e., it preserves information about the state of polarization
of the light.

As described in the Polarization: Stokes Vectors Section 1.6, the state of polarization
of a light field is specified by the four-component Stokes vector, whose elements are related
to the complex amplitudes of the electric field vector E resolved into directions that are
parallel (E‖) and perpendicular (E⊥) to a conveniently chosen reference plane. In the
oceanographic setting, this reference plane is usually the meridian plane, which is defined by
the normal to the mean sea surface, ẑ, and the azimuthal direction of the propagating light;
the meridian plane is thus perpendicular to the mean sea surface. In a polar coordinate
system (r, θ, φ), E‖ = Eθ is the polar angle component of the electric field and E⊥ = Eφ is
the azimuthal angle component. Figure 1.20 shows the meridian plane as commonly used
for oceanography radiative transfer calculations.

As discussed in Section 1.7, there are two versions of the Stokes vector, which have dif-
ferent units and refer to different physical quantities. The coherent Stokes vector describes
a quasi-monochromatic plane wave propagating in one exact direction, and the vector com-
ponents have units of power per unit area (i.e., irradiance) on a surface perpendicular to
the direction of propagation. The diffuse Stokes vector is defined as in Eq. (1.35) but de-
scribes light propagating in a small set of directions surrounding a particular direction and
has units of power per unit area per unit solid angle (i.e., radiance). It is the diffuse Stokes
vector that appears in the radiative transfer equations as developed here. The differences
in coherent and diffuse Stokes vectors are rigorously presented in Mishchenko et al. (2002).

The transition from electric and magnetic fields to Stokes vectors yields a general 3-D
vector radiative transfer equation. Let S(x, ξ̂) denote the diffuse Stokes vector at spatial
location x = (x, y, z) = (r, θ, φ) for light propagating in the ξ̂ = (θ, φ) direction: S(x, ξ̂) =
S(x)ξ̂. Then the VRTE has the form (Mishchenko (2008a), with slightly different notation
and with the addition of an internal source term)

ξ̂ · ∇S(x, ξ̂) = −K(x, ξ̂) S(x, ξ̂) +

∫∫
4π

Z(x, ξ̂′ → ξ̂) S(x, ξ̂′) dΩ(ξ̂′) + Q(x, ξ̂) . (9.14)

In this equation,

• K(x, ξ̂) is a 4 × 4 extinction matrix, which describes the attenuation (by the back-
ground medium and any particles imbedded in the medium) of the light propagating
in direction ξ̂.

• Z(x, ξ̂′ → ξ̂) is a 4× 4 phase matrix, which describes how light in an initial state of
polarization and direction ξ̂′ in the incident meridian plane is scattered to a different
state of polarization and direction ξ̂ in the final meridian plane.

• Q(x, ξ̂) is a 4×1 internal source term, which specifies the Stokes vector of any emitted
light such as bioluminescence or light at the wavelength of interest that comes from
other wavelengths via inelastic scattering.

In general, all 16 elements of K and Z are nonzero, and they depend on both location
and direction (and wavelength; not shown). Equation (9.14) can describe polarized light
propagation in matter that is directionally non-isotropic (e.g., in a crystal), that can absorb
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light differently for different states of polarization (linear or circular dichroism), and that
contains scattering particles of any shape and random or non-random orientation. (See
Mishchenko et al. (2002) or Mishchenko et al. (2016) for a rigorous discussion of how these
matrix elements are defined and computed. The K(x, ξ̂) of Eq. 9.14 is a bulk extinction
matrix. In Mishchenko’s papers this is written as no〈K〉ξ̂, where no = N/V is the number
of particles N in the volume of interest V , and 〈K〉ξ̂ is a single-particle extinction matrix
averaged over all N particles. A similar comment holds for Z.)

By definition the phase phase matrix Z(ξ̂′ → ξ̂) scatters light from one meridian plane
(defined by ẑ and ξ̂′) to another (defined by ẑ and ξ̂). It is customary to write Z(ξ̂′ → ξ̂)
as a product of three matrices that

1. Transform the initial (unscattered) Stokes vector from the incident meridian plane
to the scattering plane, which is the plane containing the incident (ξ̂′) and scattered
(ξ̂) directions,

2. Scatter the Stokes vector from direction ξ̂′ to ξ̂, with calculations performed in the
scattering plane, and

3. Transform the final Stokes vector from the scattering plane to the final meridian
plane.

When this is done, the phase matrix is written as

Z(ξ̂′ → ξ̂) = R(α)M(ξ̂′ → ξ̂)R(α′) . (9.15)

Here R(α′) is a 4× 4 matrix that transforms (“rotates” through an angle α′) the incident
Stokes vector into the scattering plane; M(ξ̂′ → ξ̂) is a 4× 4 matrix, the scattering matrix,
which by definition scatters the incident Stokes vector to the final Stokes vector, with both
expressed in the scattering plane; and R(α) is a 4× 4 matrix that rotates the final Stokes
vector from the scattering plane to the final meridian plane. (In general, M is called the
scattering matrix. In the laboratory setting, M is usually called the Mueller matrix.) This
factoring of Z separates the physics of the scattering process (M) from the geometrical
bookkeeping related to the coordinate systems (the rotation matrices). For the choice of
a positive rotation being counterclockwise when looking into the beam, the Stokes vector
rotation matrix is given by Eq. (1.51) (e.g., Mishchenko et al., 2002, page 25). The rotation
angles α′ and α are shown in Fig. 1.21 These angles determined by spherical trigonometry
as described in Section 1.7.2.

Equation (9.14) is almost never applied to oceanic problems. The reason is less for
mathematical reasons than because there are no comprehensive data or models for the
needed inputs K and M. To be useful, all elements of these matrices must be available for
a wide range of oceanic waters. Further simplification is required.

9.3 The VRTE for Mirror-symmetric Media

A great simplification to the general VRTE of Eq. (9.14) results if the scattering particles
are assumed to be (1) randomly oriented and (2) mirror symmetric. The concept of mirror
(or bilateral) symmetry is illustrated in Fig. 9.3. Panel A represents a particle. The dashed
line represents a mirror, and particle B is the mirror image of A. This B does not “look
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like” or overlay A. However, if B is rotated by 180 deg about an axis normal to the plane
of the figure, as illustrated by the green arrow, B becomes C, which looks exactly like A
(is congruent with A). This means that A is a mirror-symmetric particle. Particle D has
mirror image E. Rotating D by 180 deg about a vertical axis gives F, which (even without
the “head”) cannot be made to overlay D. This means that the shape of D is not mirror
symmetric. In general, a particle is mirror symmetric if a translation and/or rotation of
the mirror-reflected particle can make it congruent with the original particle.

Figure 9.3: Figures A and D represent two particles. The dashed line is a mirror. The
second column in the mirror image of the first column. The last column is the mirror image
rotated by 180 deg about an axis normal to the figure, as illustrated by the green arrows.
Top row: a mirror-symmetric particle; bottom row: a particle that is not mirror-symmetric.

Suppose that the scattering medium consists of randomly oriented, mirror-symmetric
particles. The bulk medium is then directionally isotropic and mirror symmetric. In this
case, the extinction matrix becomes diagonal, with each element equal to K11. There is thus
a common extinction coefficient for all states of polarization and directions of propagation:

K(x, ξ̂) = c(x)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (9.16)

Here c = K11 is the oceanographers’ “beam attenuation coefficient.” (In Mishchenko’s
notation, c = 2k′′ + no〈K11〉, which explicitly shows the contributions of the background
medium (the water; the k′′ term) and the imbedded particles.)

In addition, the scattering matrix becomes block diagonal and the scattering depends
only on the included angle between directions ξ̂′ and ξ̂, and not on the directions ξ̂′ and
ξ̂ themselves. This scattering angle ψ is given by (1.9), one form of which is

cosψ = ξ̂′ · ξ̂ = cos θ′ cos θ + sin θ′ sin θ cos(φ− φ′) .
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The form of the scattering matrix is then (Mishchenko et al., 2002)

M =


M11(ψ) M12(ψ) 0 0

M12(ψ) M22(ψ) 0 0

0 0 M33(ψ) M34(ψ)

0 0 −M34(ψ) M44(ψ)

 . (9.17)

The restriction to an isotropic, mirror-symmetric medium gives a scattering matrix with
only six independent elements.

The obvious question is now, “How realistic is the assumption that oceanic particles are
mirror-symmetric?” Figure 9.4 shows a collection of oceanic diatoms (arranged for artistic
purposes). Many of these are clearly not spherical (contrary to what is often assumed by
modelers who cannot wean themselves away from Mie theory), but they all appear to be
mirror-symmetric to a good approximation. The same holds true for many other species of
phytoplankton which, if not roughly spherical, at least have bilateral symmetry. Likewise,
atmospheric particles such as fog droplets, snowflakes, and ice crystals are often mirror
symmetric. Use of Eqs. (9.16) and (9.17) is then justified.

Figure 9.4: Diatom shapes. Photo Kreispraeparat-25-G from http://www.mikroskopie-
ph.de

Of course, this is not always the case. Figure 9.5 shows a photo of a chain-forming
diatom Chaetoceros debilis. This cute little microbe appears to be a left-handed helix
(assuming that the original image has not been flipped). Chiral (left- or right-handed)
particles are not mirror symmetric. If the ocean contains lots of such particles (e.g., during
a bloom), and all have the same handedness, then you have solve Eq. (9.14) of the previous
section (perhaps with the simplification to one spatial dimension). Of course, no one ever
does that, which is one more reason that numerical predictions of radiances may not agree

.
.
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Figure 9.5: Photograph of Chaetoceros debilis; magnification of 250x. Photo 01-
25002-Egmond-Chaetoceros-debilis from https://www.wired.com/2013/10/nikon-small-
world-2013/ c©Wim van Egmond.

perfectly with measurements. However, if there are equal numbers of randomly oriented
left- and right-handed helical particles, then the bulk medium itself is mirror symmetric
even though the individual particles are not, and the simplified VRTE is still applicable.

Consider next the calcium carbonate plates that are at times shed by cocolithophores.
The material itself, CaCO3, is birefringent (meaning that the real index of refraction de-
pends on the polarization), so in general would require the full 16-element K matrix to
describe the polarization-dependent extinction. However, the shapes of the liths (little
platelets of CaCO3) are mirror symmetric. So if the water is filled with randomly oriented
liths, and the spatial distribution of the refractive index is also randomly oriented, then the
bulk medium is mirror symmetric and Eqs. (9.16) and (9.17) are applicable. Likewise, the
medium might contain spherical beads of dichroic glass (dichroic means that the imaginary
index of refraction depends on the polarization). The spherical shape is mirror symmetric.
However, if the spatial pattern of the dichroism is not random, then the full VRTE must
be used. If the beads are randomly oriented in the pattern of dichroism, then the bulk
medium is again mirror symmetric and Eqs. (9.16) and (9.17) are applicable.

There are very few measurements of scattering matrices for ocean waters. However,
those that have been made indicate that the form of M seen in Eq. (9.17) is a reasonable
approximation. The reduced scattering matrix M̃(ψ) is defined as the scattering matrix
with each element normalized by the M11(ψ) element, which is the volume scattering
function for scattering of unpolarized light into unpolarized light. That is, M̃ij(ψ) =
Mij(ψ)/M11(ψ).

Figure 9.6 shows measurements of the reduced scattering matrix for a location in the
Atlantic Ocean. To a good approximation, the matrix elements shown in this figure obey
the symmetries shown in Eq. (9.17). The measured M is block symmetric with M21 ≈M12

and M43 ≈ −M34 (although both of those elements are zero to within a bit of noise).
In addition, M33 ≈ M44, which is characteristic of rotationally symmetric particles. For
spherical particles, in addition, M11 = M22; these are noticeably, but not greatly, different
in the measured matrix elements. Similar results were obtained for about 200 measurements
in Atlantic, Pacific, and Gulf of Mexico waters. Thus observation supports the use of
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scattering matrices of the form of Eq. (9.17), corresponding to the assumption of non-
spherical but mirror-symmetric particles, except for unusual circumstances such as a bloom
of helical phytoplankton like those of Fig. 9.5.

Figure 9.6: Measurements of an oceanic scattering matrix. Each element is normalized by
the M11 element, which is not shown. Redrawn from Voss and Fry (1984, Fig. 3(a)).

In summary, the assumption of randomly oriented, mirror-symmetric particles gives an
isotropic, mirror-symmetric medium with two very important simplifications to the general
VRTE:

1. the attenuation coefficient does not depend on direction or state of polarization, and

2. the scattering matrix has only six independent elements, which depend only on the
scattering angle (and of course on location and wavelength).

Figure 9.4 should convince you that the additional assumption of an ocean dominated by
spherical phytoplankton may not be valid except during bloom conditions by a species that
is nearly spherical.

If we further assume that the optical properties of the ocean depend only on depth z,
and that the boundary conditions are horizontally homogeneous, then the left hand side of
the three-dimensional VRTE reduces to a one-dimensional, ordinary (in space) derivative,

ξ̂ · ∇S(x, ξ̂) = cos θ
d

dz
S(z, θ, φ) .

Likewise, the other location arguments simplify to depth only. The resulting one-dimensional
(1-D) VRTE then reads
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cos θ
d

dz
S(z, θ, φ) =− c(z)S(z, θ, φ)

+

∫∫
4π

R(α)M(z, ψ)R(α′)S(z, θ′, φ′) dΩ(θ′, φ′) + Q(z, θ, φ) . (9.18)

Here M(ψ) has the form shown in Eq. (9.17) and the rotation matrices have the form seen
in Eq. (1.51). In polar coordinates, the element of solid angle is given by dΩ(θ′, φ′) =
sin θ′ dθ′ dφ′. The integration is over all 4π steradians of the incident directions.

Equation (9.18) along with Eq. (9.17) is as far as we should go in simplifying the VRTE
if we are interested in computing underwater polarized radiance distributions.

Solving Eq. (9.18)) requires knowledge of the M11,M12,M22,M33,M34, and M44 ele-
ments of the phase matrix. Several modern instruments have been developed for in situ
measurement of the VSF, M11(ψ), over a wide range of scattering angles (e.g., Lee and
Lewis (2003), Harmel et al. (2016), Li et al. (2012), Tan et al. (2013)). The POLVSM
instrument described in Chami et al. (2014) can measure the nine elements of M that
do not involve circular polarization, i.e. Mij , i = 1, 2, 3 and j = 1, 2, 3. The MASCOT
instrument (Twardowski et al., 2012) measures the top row of M, i.e. M1j , j = 1, 2, 3, 4.
The LISST-VSF (Slade et al., 2013) measures M11,M12 and M22. Only the LISST-VSF
is commercially available. Not even the VSF is routinely measured during oceanographic
field work. Therefore, when the VRTE is solved, usually some model is used to create
the needed scattering matrix elements. This model is often Mie theory, which assumes
spherical particles.

The three-dimensional VRTE is most commonly solved by Monte Carlo techniques. The
assumption of a one-dimensional geometry gives a VRTE that is amenable to a variety
of other numerical solution techniques, which have been employed in many studies of
atmospheric and oceanic light fields.

9.4 The Scalar Radiative Transfer Equation; Rigorous
Derivation

In many cases we are interested only in the total radiance, without regard to its state of
polarization. Most instruments used in optical oceanography are by design not sensitive
to polarization. Furthermore, it is commonly assumed that many processes of interest,
such as absorption of light by phytoplankton to drive photosynthesis, do not depend on
the polarization state4. However, underwater light fields are partially linearly polarized
by transmission through the sea surface and by scattering within the water column, even
though the Sun’s direct beam is unpolarized. Thus there will be a contribution to the total
radiance through conversion of this linearly polarized light to unpolarized by the (1,2)
element of the scattering matrix.

9.4.1 From the VRTE for Total Radiance to the SRTE

Now let c = cos 2α, s′ = sin 2α′, etc. for the rotation angles seen in Eq. (9.15) and in the
rotation matrix of Eq. (1.51); let Mij = Mi,j(ψ); and use the form of M seen in Eq. (9.17)

4However, an internet search on “polarization-dependent phytoplankton absorption” or similar key words
results in exactly zero papers on this topic.

http://www.sequoiasci.com/product/lisst-vsf/
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of the previous section. The phase matrix after matrix multiplications then becomes

Z =


M11 c′M12 −s′M12 0

cM12 c′ cM22 − s′ sM33 −s′ cM22 − c′ sM33 0

sM12 c′ sM22 + s′ cM33 −s′ sM22 + c′ cM33 0

0 0 0 M44

 . (9.19)

This equation shows that linear polarization (the Q and U Stokes parameters) contributes
to the total I component via the M12 matrix element and the rotation angles that carry
the incident linear polarization into the scattering plane. I does not depend on the rota-
tion angle from the scattering plane to the final meridian place because total radiance is
independent of the coordinate system. Scattering by the volume of the water body cannot
convert circular polarization (V ) into unpolarized light because Z14 = 0, nor can circular
polarization be converted to linear because Z24 = Z34 = 0. Similarly, unpolarized and
linearly polarized light cannot be converted to circular because Z41 = Z42 = Z43 = 0.
(However, total internal reflection can convert linear into circular and vice versa, as seen
in Section 13.3.)

Writing Eq. (9.18) of the previous section for just the first element of the Stokes vector
then gives

cos θ
d

dz
I(z, θ, φ) =− c(z) I(z, θ, φ)

+

∫∫
4π
M11(z, ψ) I(z, θ′, φ′) dΩ(θ′, φ′) +QI(z, θ, φ)

+

∫∫
4π

cosα′M12(z, ψ)Q(z, θ′, φ′) dΩ(θ′, φ′)

−
∫∫

4π
sinα′M12(z, ψ)U(z, θ′, φ′) dΩ(θ′, φ′) . (9.20)

Here QI is the first element of the source term Q = [QI , QQ, QU , QV ]T , which contributes
to the first element of the Stokes vector S = [I,Q, U, V ]T .

Equation (9.20) is the correct 1-D radiative transfer equation for the total radiance
I(z, θ, φ), under the simplifications described above. Unfortunately, this equation cannot
be solved as written because Q and U are not known unless the full VRTE (9.18) is solved.

As already noted, routine solution of the VRTE is hindered not so much by the math-
ematics as by the lack of the needed inputs for the scattering matrices for various water-
column constituents (phytoplankton, mineral particles, microbubbles, etc.). In response
to this situation, modelers often raise their hands in surrender and simply drop the two
integrals involving M12 in Eq. (9.20). This amounts to an ad hoc assumption—almost
always incorrect—that underwater radiance distributions are unpolarized. However, the
result is a scalar RTE for the total radiance that requires only beam attenuation and the
VSF as input. In particular, this is the SRTE that is solved by the HydroLight radiative
transfer software. There are much more data and models available for the VSF than for the
other elements of the scattering matrix, so the trade off is decreased accuracy in exchange
for requiring less input and doing simpler mathematics (i.e., faster computer programs).

In optical oceanography it is common to write the total radiance as L(z, θ, φ, λ) rather
than I((z, θ, φ, λ). The volume scattering function is usually written as either β(z, ψ, λ) =
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M11(z, ψ, λ), which emphasizes the scattering angle, or as β(z; θ′, φ′ → θ, φ;λ), which
emphasizes the initial and final directions of the scattered light. With these changes in
notation, the 1-D SRTE as commonly seen in textbooks (e.g., Mobley, 1994, Eq. 5.23) is

cos θ
dL(z, θ, φ, λ)

dz
=− c(z, λ)L(z, θ, φ, λ)

+

∫ 2π

0

∫ π

0
L(z, θ′, φ′, λ)β(z; θ′, φ′ → θ, φ;λ) sin θ′dθ′dφ′

+S(z, θ, φ, λ) . (9.21)

Following Light and Water (Mobley, 1994), the source term in the SRTE is denoted by
S, which is not to be confused with the Stokes vector S. This equation expresses location
as geometric depth z and the IOPs in terms of the beam attenuation c and the volume
scattering function β. This form is convenient for studies at multiple wavelengths because
the geometric depth z is independent of the IOPs.

The beam attenuation coefficient is the sum of the absorption and scattering coefficients:
c = a + b. The VSF is often written as the product of the scattering coefficient and the
scattering phase function: β(z, ψ, λ) = b(z, λ) β̃(ψ). Dividing the SRTE by c, defining the
optical depth by dζ = c dz, and the albedo of single scattering by ωo = b/c, gives

cos θ
dL(ζ, θ, φ, λ)

dζ
=− L(ζ, θ, φ, λ)

+ω(ζ, λ)

∫ 2π

0

∫ π

0
L(ζ, θ′, φ′, λ)β̃(ζ; θ′, φ′ → θ, φ;λ) sin θ′dθ′dφ′

+
1

c(ζ, λ)
S(ζ, θ, φ, λ) . (9.22)

This equation expresses location as nondimensional optical depth ζ and the IOPs in terms of
the albedo of single scattering and the scattering phase function. This form is convenient for
theoretical studies at one wavelength. It is difficult to use for multiple wavelengths because
optical depth depends on the inherent optical properties. Thus the same geometric depth
in meters corresponds to different optical depths at different wavelengths.

Equations (9.21) and (9.22) are the same as were obtained from the heuristic derivation
in Section 9.1 (Eqs. 9.10 and 9.12). Now, however, Eq. (9.20) allows us to go one step
further and estimate the errors that occur by ignoring polarization.

The magnitude of the error in computed values of the total radiance induced by ignoring
the M12 terms in Eq. (9.20) can be crudely estimated as follows. Measurements show that
underwater light fields are partially linearly polarized (e.g., Cronin and Shashar, 2001; ?;
You et al., 2011). The degree of linear polarization is seldom more than 0.5, and is typically
in the 0.1 to 0.3 range. Figure 9.6 shows that the maximum magnitude of M12(ψ)/M11(ψ)
is about 0.8 at ψ = 90 deg. For Q/I = 0.3 and a 90 deg scattering angle, the ratio of M12Q
(or M12U) to the M11I term is then

M12Q

M11I
= 0.8× 0.3 ≈ 0.25.
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Thus for a viewing direction at right angles to the unscattered direction (often the Sun’s
direct beam in the water), single scattering gives an error of order 25%. However, for near-
forward and near-backward scattering angles, M12 ≈ 0, and the error is much smaller.
In addition, multiple scattering tends to reduce the degree of polarization. It thus seems
reasonable to say that neglecting the M12 terms in Eq. (9.20) can cause errors in the total
radiance as large as a few tens of percent in certain directions, but in other directions
the errors will be of order 10% or even smaller. This error can be positive or negative,
depending on the sign of Q and U . That is, in some directions the radiance value will be
too large, and in other directions too small. These errors tend to cancel when computing
irradiances, which are integrals of the radiance over direction. The historical justification
for dropping the M12 terms in Eq. (9.20) has been that, although the errors in the total
computed radiances are of order 10% (and possibly greater), the errors in the corresponding
irradiances are only of order 1%. That is considered an acceptable trade off for the increased
simplicity of solving Eq. (9.21) compared to the VRTE of the previous section.

9.4.2 Summary

This development started with QED and part-per-trillion accuracy and ended up with
the SRTE and order of 10% accuracy in radiances but only order of 1% percent error in
irradiances. This loss of accuracy is the price to be paid for an equation that is simple
enough to solve on a routine basis for situations of practical oceanographic interest.

The development outlined here accomplishes two things:

1. It shows how Preisendorfer’s “analytical bridge between the mainland of physics
and the island of radiative transfer theory” was constructed, although the actual
construction requires an exceptionally high level of physics and mathematics.

2. The physically rigorous development makes clear all of the assumptions needed to
arrive at an equation for the total radiance without regard for the state of polar-
ization—the scalar radiative transfer equation, or SRTE. Moreover, it enables an
estimate of the errors that may occur if polarization is ignored.

Neither of these accomplishments can be obtained from the heuristic derivation of the
SRTE seen in Section 9.1.

The largest errors in computing underwater radiances usually come not from the ap-
proximations made to the general VRTE, but from the inputs to the simplified VRTE
or SRTE. This is especially true if generic bio-geo-optical models for the absorption and
scattering coefficients are used to convert chlorophyll and/or mineral particle concentra-
tions to IOPs. Even if correct on average, such models can be off by tens of percent to an
order of magnitude in any particular situation. A 10% error in the absorption coefficient
can easily result in an order-of-magnitude error in the computed radiance or irradiance at
depth. Guessing or modeling the phase function can give a factor-of-two or more error in
backscatter directions, which gives an error of the same magnitude in the water-leaving
radiance. It is certainly possible to get very good agreement between measurements and
predictions based on the SRTE, but heroic efforts are required to measure all of the needed
inputs. Examples of such comparisons can be seen in Tzortziou et al. (2006) and Tonizzo
et al. (2017).
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9.5 Beam and Point Spread Functions

This section defines two equivalent quantities, the beam and point spread functions, which
describe light propagation in absorbing and scattering media. The beam spread function
will be used in Section 9.6 to understand the return of a lidar signal when used for detection
of in-water scattering layers or of bathymetric measurements. The point spread function
is fundamental to image analysis, as will be seen in Appendix G.

9.5.1 The Beam Spread Function (BSF)

Consider a collimated source emitting spectral power P (units of W nm−1) in direction
ψ = 0 as shown in Fig. 9.7. As the beam passes through the medium, scattering will
spread out the beam as illustrated by the green arrows in the figure, and absorption will
reduce the beam power. The combined effects of scattering and absorption give some
spectral plane irradiance E(R,ψ) (units of W m−2 nm−1) on the surface of a sphere of
radius R at an off-axis angle ψ relative to the direction of the emitted beam. Distance
R is often called the range. The irradiance sensor used to measure E(R,ψ) has a cosine
response for angles relative to the normal to the detector surface. It is assumed here that
the emitted light is unpolarized and that the medium is isotropic, so that there is no
azimuthal dependence of the detected irradiance. The green arrows in the figure represent
one possible path for a light ray between the source and the detector.

Figure 9.7: Geometry for defini-
tion of the Beam Spread Function.

The beam spread function (BSF) is then defined as the detected irradiance normalized
by the emitted power:

BSF (R,ψ) ,
E(R,ψ)

P

[
W m−2 nm−1

W nm−1
= m−2

]
. (9.23)

Recall that the Volume Scattering Function (VSF) defined in Section 3.1 describes a
single scattering event. Two such scatterings are shown for the green arrows in Fig. 9.7.
The BSF on the other hand describes the cumulative effects on the emitted beam of all of
the scattering and absorption events between the source and the detector. The BSF thus
depends both on the IOPs and on the distance R between the source and the detector,
whereas the VSF depends only on the optical properties of the medium and is independent
of the locations of the source and detector.

9.5.2 The Point Spread Function (PSF)

Now suppose that there is a source at the location of the detector in Fig. 9.7 and that this
source is emitting spectral intensity I(γ) (units of W sr−1 nm−1) with an angular pattern
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given by

I(γ) ,


P
π cos(γ) 0 ≤ γ ≤ π/2 [W sr−1 nm−1]

0 π/2 < γ ≤ π .

For this intensity pattern the total emitted power is∫
4π
I(γ)dΩ = 2π

∫ π/2

0

P

π
cos(γ) sin(γ) dγ = P .

The short green arrows in Fig. 9.8 illustrate the emission of light by this cosine source. As
illustrated by the long green arrows in this figure, the emitted intensity will give rise to a
radiance L(R,ψ), where R is the distance from the source and ψ is direction measured from
the γ = 0 axis of the emitted intensity. The light emitted by this source is then detected
by a well collimated radiance sensor that can scan past the source as shown in Fig. 9.8.

Figure 9.8: Geometry for definition
of the Point Spread Function.

The Point Spread Function (PSF) is then defined as the detected radiance normalized
by the maximum of the emitted intensity:

PSF (R,ψ) ,
L(R,ψ)

P/π

[
W m−2 sr−1 nm−1

W sr−1 nm−1
= m−2

]
.

The PSF can be visualized as the “glow” of light around distant street light seen through
a foggy atmosphere as seen in Fig. 9.9. Although a street light is not a cosine-emitting
point source, the angular pattern of the glow seen around the light gives a qualitative
feeling for the PSF, which is just the pattern of the radiance distribution centered on the
source.

Figure 9.10 shows PSFs for a homogeneous water body with a Petzold average-particle
phase function and a single-scattering albedo (3.7) of ωo = 0.8 These PSFs were computed
by Monte Carlo ray tracing simulations as described in Appendix E. The left panel shows
the PSF for the first 15 deg of ψ and for nondimensional optical distances between the
source and detector of τ = cR = 0.1, 1, 5, 10, and 30 (c is the beam attenuation coefficient).
These curves show that the magnitude of the PSF decreases as τ increases because of
absorption. The colored dots are the centers of the angular bins used to tally the light rays
in the Monte Carlo simulations.

The right panel of the figure shows the PSF values normalized to 1 at ψ = 0. These
curves show that the shape of the PSF starts out very highly peaked near ψ = 0 for small
τ and eventually becomes relatively flat in ψ as the optical distance increases. This is
progression of PSF shapes can be understood as follows.
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Figure 9.9: The glow of light around a distance street light seen through fog is essentially
the PSF for the given distance and atmospheric properties.

As τ goes to zero, there is almost no chance for light to scatter. As the radiometer seen
in Fig. 9.8 scans past the point source, it sees either almost nothing, or it sees the point
source at ψ = 0. The PSF then approaches a Dirac delta function in ψ as τ → 0. As the
optical distance increases, there is more and more chance for scattering until many rays
have been scattered once. The PSF then begins to look similar to the scattering phase
function, which describes the redistribution of radiance by single scattering. The red curve
lying close to the curve for τ = 5 is the normalized Petzold phase function used in these
simulations. (The PSF would not in general ever have exactly the same shape as the phase
function. Even if, at some distance, most light rays have been scattered once, others will
not yet be scattered, and others will have been scattered more than once. Thus a PSF
never describes just single scattering.)

Finally, as τ becomes very large, all rays have been scattered many times, and the
resulting radiance distribution, hence the PSF, approaches the shape of the asymptotic
radiance distribution L∞, which is described in Section 10.4. The black curve near the
τ = 30 PSF shows L∞ as computed by HydroLight for the IOPs of these simulations.
The τ = 30 curve is still noticeably different from L∞. It is computationally expensive to
trace enough rays to large optical distances to reproduce the asymptotic distribution. A
computation for τ = 50 required emitting 109 initial rays, of which about 0.05% reached
τ = 50 for ψ < 15 deg, but the resulting PSF (not shown) is much closer to L∞. Similarly,
statistical noise can become large for large ψ angles if the angular bins are small. However,
it is the small ψ values that are most important for image analysis (you are usually looking
generally toward an object, not away from it), so noise at large angles is seldom a problem
in practical applications.

Because of the importance of the PSF in image analysis (to be seen in Appendix G),
considerable effort has been expended to develop models of the PSF as a function of water
IOPs, e.g., Mertens and Replogle (1977), Voss and Chapin (1990), Voss (1991), McLean
and Voss (1991), Gordon (1994b), McLean et al. (1998), Sanchez and McCormick (2002),
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Figure 9.10: Example point spread functions. Left panel: PSF as a function of optical
distance for ψ = 0 to 15 deg. Right panel: the same curves normalized to 1 at ψ = 0. In
the right panel, the red line near the τ = 5 curve is the normalized Petzold phase function
used in the Monte Carlo simulations. The black line at the top is the asymptotic radiance
distribution.

and Xu and Yue (2015).

9.5.3 Equivalence of the BSF and PSF

In Maxwell’s Equations for the propagation of electromagnetic energy, if you change time
to minus time, nothing changes except that the direction of propagation is reversed. This
means that if light is propagating from the source to the receiver along the path shown in
Fig. 9.7, then light emitted from the receiver location in the same direction as the detected
beam will propagate back along the same path to the source, as shown by the green arrows
in Fig. 9.8. This is known as the principle of electromagnetic reciprocity, or Helmholtz
reciprocity, or the “if I can see you, you can see me” theorem. Figures 9.7 and 9.8 were
drawn to highlight the symmetry between the BSF and the PSF.

The BSF and PSF are superficially different: a collimated source and a cosine detector
vs a cosine source and a collimated detector. However, reciprocity suggests that the BSF
and PSF contain equivalent information. Indeed, the BSF and PSF are numerically the
same. Figure 9.11 shows PSF and BSF measurements from two very similar water bodies
obtained by Mertens and Replogle (1977). The instruments were mounted on a 20 m
long underwater frame, which allowed a maximum range R between source and detector
of approximately 19 m. Although the measurements in the figure were made on different
days and the water IOPs were slightly different, the closeness of the PSF and BSF over
several orders of magnitude suggests that the BSF and PSF are numerically equal, as they
stated without proof. Gordon (1994b) started with the radiative transfer equation and
used reciprocity to show that the BSF and PSF are indeed numerically equal. It is thus
customary refer to just the PSF, even if the geometry of a problem corresponds to that
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of the BSF. (This is the case in the derivation of the lidar equation the next section, for
example.)

Figure 9.11: The BSF and PSF at 488 nm measured on two different days in very clear
Bahamas water. The range was approximately 19 m. The BSF was measured when the
water beam attenuation length was 1/c(488) = 6.8 m . The PSF was measured on the
following day when 1/c(488) = 7.0 m . Curves extracted from Figs. 4 and 6 of Mertens
and Replogle (1977).

9.6 A Lidar Equation for Oceanography

The purpose of a “lidar5 equation” is to compute the power returned to a receiver for given
transmitted laser power, optical properties of the medium through which the lidar beam
passes, and target properties. There are, however, many versions of lidar equations, each of
which is tailored to a particular application. For example, Measures (1992) develops lidar
equations for elastic and inelastic backscattering scattering by the medium, for fluorescent
targets, for topographical targets, for long-path absorption, for broad-band lasers, and so
on.

The lidar equation developed here6 applies to the detection of a scattering layer or in-
water target as seen by a narrow-beam laser imaging the ocean from an airborne platform.

5Is it lidar, or Lidar, or LIDAR, or something else? Deering and Stoker (2014) argue that the acronym
has now reached same status as radar and sonar, so lidar is the preferred form.

6Acknowledgment: I learned this derivation from Richard C. Honey, one of the pioneering geniuses of
optical oceanography, and of many other fields ranging from antenna design to laser eye surgery. Dick
Honey is unfortunately little known to the general community because he spent much of his career doing
classified work.
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This equation explicitly shows the effects of atmospheric and sea-surface transmission, the
water volume scattering function and beam spread function, water-column diffuse attenu-
ation, and transmitter and receiver optics.

9.6.1 Preliminaries

Table 9.1 lists for reference the variables involved with the derivation of the present form
of the lidar equation.

variable definition units

H Height of the airplane above the sea surface m

z Depth of the water layer being imaged m

∆z Thickness of the water layer being imaged m

Pt Power transmitted by the laser W

∆Pr Power detected from water layer ∆z W

Ta Transmittance by the air nondimen

Ts Transmittance by the water surface nondimen

Ar Receiver aperture area m2

ΩFOV Receiver field of view solid angle sr

Az Area at depth z seen by the receiver m2

Ω Solid angle of the receiver aperture as seen from depthz sr

βπ Water VSF for 180-deg backscatter m−1 sr−1

BSF Water beam spread function m−2

Ei Irradiance incident (downward) onto the water layer at z W m−2

∆Er Irradiance reflected (upward) by the water layer ∆z W m−2

Kup Depth-averaged (over 0 to z) attenuation coefficient
for upwelling (returning) irradiance ∆Er

m−1

Table 9.1: Variables occurring in the lidar equation.

Figure 9.12 shows the geometry of the lidar system for detection of a scattering layer.

Recall from Eq. (3.24) of the section of measuring the volume scattering function that
the VSF is operationally defined by

β(ψ) =
∆Φs(ψ)

Φi ∆r∆Ω
,

where Φi is the power incident onto an element of volume defined by a surface area A
and thickness ∆r, and ∆Φs(ψ) is the power scattered through angle ψ into solid angle
∆Ω. These quantities are illustrated in Fig. 3.2. In this derivation, quantities directly
proportional to the layer thickness ∆z (= ∆r in Fig. 3.2) will be labeled with a ∆. Thus
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Figure 9.12: Geometry of the lidar system for detection of a scattering layer. The left
panel illustrates the physical variables. The right panel illustrates the system optics; this
panel ignores refraction at the sea surface.

∆Φs(ψ) is the power scattered by the water layer of thickness ∆z. The incident power Φi

onto area A gives an incident irradiance Ei = Φi/A.

Now consider exact backscatter, which is a scattering angle of ψ = π, or ψ = 180 deg.
The backscattered power ∆Φs(π) exits the scattering volume through the same area A, so
the backscattered irradiance is ∆Es(π) = ∆Φs(π)/A. The VSF for exact backscatter can
then be written as

βπ , β(ψ = π) =
∆Φs(π)/A

(Φi/A) ∆zΩ
=

∆Es(π)

Ei ∆zΩ
.

This gives

∆Es(π) = Ei βπ Ω ∆z . (9.24)
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(Do not confuse this backscattered or reflected irradiance with Eu = REd, which is defined
for any incident radiance distribution and for an arbitrarily thick layer of water. Here Ei

is the irradiance for a collimated incident laser beam and a thin layer of water.)
Now suppose a collimated beam is emitting power P in direction ψ = 0. Then scattering

and absorption in the medium will give some irradiance E(R,ψ) on the surface of a sphere
of radius R at an angle of ψ relative to the direction of the emitted beam, as illustrated by
the green arrow in Fig. 9.7. Recall that the beam spread function (BSF) is then defined
by Eq. (9.23), which is

BSF (R,ψ) ,
E(R,ψ)

P
(m−2) . (9.25)

9.6.2 Derivation of the Lidar Equation

The derivation of the lidar equation for the stated application now proceeds via the fol-
lowing steps:

1. As illustrated in Fig. 9.12, the laser pulse has transmitted power Pt to start. After
transmission through the atmosphere and sea surface, the pulse has power

Pw(0) = Pt Ta Ts

just below the water surface.

2. The laser pulse is still a narrow beam when it enters the water, but it then begins to
spread out because of scattering, and it is attenuated by absorption. This process is
quantified by the beam spread function. We are interested in the “on-axis” irradiance
incident onto a layer of water at depth z. From Eq. (9.25), this is given by

Ei(z) = Pw(0)BSF (R = z, ψ = 0) .

3. The irradiance that is reflected by a layer of thickness ∆z at depth z is given by Eq.
(9.24):

∆Er(z) = Ei(z)βπ(z) Ω ∆z .

The solid angle Ω is determined by the aperture size of the receiver and the distance
from the receiver to the layer. This is discussed in step 7 below.

4. The irradiance ∆Er(z) heading upward from the layer ∆z will be attenuated by some
diffuse attenuation function Kup as ∆Er propagates back to the sea surface:

∆Er(0) = ∆Er(z) exp(−Kupz) .

The receiver sees only an area Az at depth depth z. It is assumed that Az is less
than the total area illuminated by the spreading laser beam at depth z. Thus we can
multiply ∆Er(z) by Az to get the power leaving the illuminated area that is seen by
the receiver. The fraction of the total power reaching the surface, which is seen by
the detector, is then

∆Pr(0) = ∆Er(z)Az exp(−Kup z) .

Az is determined by the receiver field of view and the distance from the receiver to
the layer.



352 CHAPTER 9. RADIATIVE TRANSFER THEORY

5. The power just below the surface is now transmitted through the water surface and
through the atmosphere to the receiver. The power detected is then

∆Pr = ∆Pr(0)Ts Ta .

6. Combining the above results gives

∆Pr = Pt T
2
a T

2
s Az ΩBSF (z, 0)βπ exp(−Kupz) ∆z .

7. Az and Ω can be written in terms of known parameters. We are interested only in
power that is reflected by the layer ∆z into the solid angle Ω that will take the light
into the receiver. As shown in the right panel of Fig. 9.12, the receiver aperture Ar

and the range H + z determine Ω = Ar/(H + z)2. Only power heading into Ω from
area Az, which is seen by the receiver, reaches the receiver. Az is determined by the
receiver field of view solid angle ΩFOV and the range: Az = ΩFOV(H + z)2. Thus the
AzΩ factor in the preceding equation can be rewritten as

AzΩ = ΩFOV(H + z)2 Ar

(H + z)2
= ArΩFOV .

This equation shows how the receiver optics affects the detected power. This is
an application of the “AΩ” theorem of optical engineering. AΩ is also called the
throughput or étendue of the system. Strictly speaking, the in-air solid angle ΩFOV

decreases by a factor of 1/n2 upon entering the water, where n is the water real index
of refraction. However, the in-water Ω increases by a factor of n2 when entering the
air. For a round trip, air to water to air, these n2 factors cancel. They are thus
ignored here and in Fig. 9.12.

8. Collecting the above results gives the desired lidar equation:

∆Pr = Pt T
2
a T

2
s Ar ΩFOV BSF (z, 0)βπ exp(−Kupz) ∆z . (9.26)

Equation (9.26) nicely shows the effects of the transmitted power (Pt); atmospheric and
surface transmission (T 2

a T
2
s ); receiver-optics (Ar ΩFOV); water-column optical properties

(BSF (z, 0)βπ exp(−Kupz)); and layer thickness (∆z). The take-home message from this
equation is that in order to understand lidar data, the water inherent optical properties
you need to know are the beam spread function and βπ. This observation was in part
the incentive for the work of Mertens and Replogle (1977), Voss and Chapin (1990), Voss
(1991), McLean and Voss (1991), Maffione and Honey (1992), Gordon (1994b), McLean
et al. (1998), Sanchez and McCormick (2002), Dolin (2013), Xu and Yue (2015), and others.
These papers present several models for beam/point spread functions in terms of the water
absorption and scattering properties. Several of those models are reviewed in Hou et al.
(2008).

There are various arguments about what to use for Kup, which depends on both the
water optical properties and on the imaging system details. It is intuitively expected that
Kup, which is defined for a horizontally small patch of upwelling irradiance, will be greater
than the diffuse attenuation coefficient for upwelling irradiance, Ku, which is defined for a
horizontally infinite light field. Likewise, we expect that Kup will be less than c, the beam
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attenuation coefficient. Thus Ku < Kup < c. Because K̄up is an attenuation function for
a finite patch of reflected irradiance, computing its value is inherently a three-dimensional
radiative transfer problem. To pin down the value of Kup more accurately thus requires
either actual measurements for a particular system and water body, or three-dimensional
radiative transfer simulations (usually Monte Carlo simulations) tailored to a given system
and water properties.

9.6.3 Example Lidar Calculation

To develop some intuition about Eq. (9.26), consider the following example application.
Suppose a 532 nm laser is being used to look for objects in the water that have an area of
1 m2. The receiver FOV must be small enough that the object can be distinguished from
its surroundings. For H = 100 m and z = 10 m, this requires that

ΩFOV ≤
1 m2

(100 + 10) m2
≈ 8× 10−5 sr .

For a 15 cm radius receiving telescope, Ar = π(0.15 m)2 ≈ 0.07 m2. For normal incidence
at the sea surface, Ts ≈ 0.97, and for a clear atmosphere, Ta ≈ 0.98. Suppose the water
is Jerlov type 1 coastal water for which Kd(532) ≈ 0.15 m−1 (Fig. 4.24 or Mobley (1994,
page 130)), and assume that Kup = Kd. Further assume that BSF ≈ exp(−0.2z), since
the lidar beam attenuation will be more “beam like” than diffuse attenuation, and c > Kd.
Finally, take βπ = 10−3 m−1 sr−1 (Fig. 6.13 or 6.13 for “coastal ocean” water). Then for
∆z = 1 m at a depth of 10 m, the water returns the fraction

∆Pr

Pt
=(0.98)2 (0.97)2 (0.07) (8× 10−5) e−(0.2)10 (10−3) e−(0.15)10 (1)

≈1.5× 10−10

of the transmitted power.
Now suppose that the laser beam hits an object at z = 10 m whose surface is a Lam-

bertian reflector of 2% (irradiance) reflectance. Then 0.02 of Ei is reflected into 2π sr. The
layer backscatter βπ∆z = 0.001 sr−1 is then replaced by

0.02

2π sr
≈ 0.003 sr−1 .

If all other terms remain the same, the object would return about three times the signal
as the water itself.
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CHAPTER 10

Radiative Transfer Solutions

With the exception of the conceptually simple and widely used Monte Carlo ray trac-
ing techniques (Appendices E and F), this book does not discuss numerical methods for
solving radiative transfer equations. There are many such methods, all highly mathemat-
ical and not of interest to most optical oceanographers. (One such technique, invariant
imbedding theory, briefly mentioned here, is used in the commercial HydroLight software.)
However, there are a few approximate analytical methods that are frequently cited in
the oceanographic and remote-sensing literature, namely the successive-order-of-scattering
(SOS) series, and the resulting single-scattering (SSA) and quasi-single-scattering (QSSA)
approximations. These warrant discussion, even if just for historical reasons. There is
also a solution for the SRTE at the irradiance level, namely Gershun’s law, that is fun-
damental to light calculations in many aquatic ecosystem models. The chapter finishes
with the derivation of Gershun’s law, a discussion of the behavior of light at large depths
in homogeneous water (the asymptotic radiance distribution), a qualitative description of
HydroLight, and discussions of energy conservation and closure in optical oceanography.

10.1 Solving the Radiative Transfer Equation

The 1-D, time-independent RTEs are linear two-point boundary value problems. That is to
say, there are boundary conditions describing the radiance at the top and bottom of the
atmosphere or ocean (the two spatial points), and the propagation of radiance within the
medium—between the boundaries—is governed by the linear integro-differential RTE. In
the oceanographic setting, the upper boundary condition specifies the sky radiance incident
onto the sea surface. The lower boundary condition specifies how the sea bottom reflects
the downwelling radiance. The “sea bottom” can be a physical bottom, or the deepest
depth in the water column at which the RTE needs to be solved to obtain the radiances
above that depth. In the vector-level equations, the sky radiance specification is in terms
of Stokes vectors; for the scalar RTE the sky input is specified by the unpolarized sky
radiance.

355
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Two-point boundary value problems in general do not have solutions. Consider a simple
example:

dy

dx
= x2

with the two-point boundary conditions

y = 0 at x = 0 and y = 2 at x = 1 .

What is the function y(x) that satisfies this differential equation and the two boundary
conditions? Integration gives y = x3/3, which satisfies the first boundary condtion but
not the second. Thus the problem as stated has no solution; i.e., there is no such function
y(x). This equation however does have a solution for the two boundary conditions

y = 0 at x = 0 and y =
1

3
at x = 1 .

In the case of the radiative transfer equation and boundary conditions on the radiance
at the sea surface and sea bottom (when properly formulated), the equation does have a
solution. We know a solution must exist simply because light propagates in the ocean!
However, finding that solution is quite difficult. Even the scalar radiative transfer equation
quite difficult to solve.

10.1.1 Exact Analytical Solutions

Exact analytical (i.e., pencil and paper) solutions of the SRTE can be obtained only for
very simple situations, such as no scattering. There is no function (that anyone has ever
found) of the form

L(z, θ, φ, λ) = f(a, V SF, Sun angle, bottom reflectance, etc.),

where f is some function into which you can “plug in” the absorption coefficient, the VSF,
and other parameters and get back the radiance. This is true even for very simple situa-
tions such as homogeneous water with isotropic scattering. Even the conceptually simple
geometry of an isotropically emitting point light source in an infinite homogeneous ocean
is unsolved. (A very complicated solution for the the scalar irradiance Eo(r) around an
isotropically emitting point source with isotropic scattering does exist (Davison and Sykes,
1957, Eq 5.25) or (Mobley, 1996, Section 9.2). This may seem surprising because other
point-source problems, such as the electric field around a point charge or the gravitational
field around a point mass, are often very simple. The difference with optics lies in the com-
plications caused by absorption and scattering within the medium surrounding the point
source, which do not exist for problems like the gravitational field around a point mass.

10.1.2 The Bouguer-Lambert-Beer Law

If there is no scattering, the SRTE (9.9) reduces to just

dL(r, θ, φ, λ)

dr
= −a(r, λ)L(r, θ, φ, λ) + S(r, θ, φ, λ) . (10.1)

This is a linear, first order, ordinary differential equation, which is easily solved (see any text
on differential equations, e.g., Rainville, 1964, page 36). If the medium is homogeneous,
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so that the absorption coefficient and source function do not depend on distance r, the
solution of Eq. (10.1) is (dropping the wavelength and direction arguments for brevity)

L(r) = L(0)e−ar +
S

a
[1− e−ar] , (10.2)

where L(0) is the initial radiance at distance r = 0. In source-free water, S = 0 and the
solution is a simple exponential decay of the initial radiance with distance:

L(r) = L(0)e−ar , (10.3)

This result is known as Beer’s Law, Lambert’s Law, Bouguer’s Law, or some hyphenated
combination of these names1. An equivalent result was derived in another way in the
discussion of measuring IOPs (Eq. 3.21).

Note that for great distances, r →∞, the radiance depends only on the source function
and the absorption coefficient: L → S/a. This result for the asymptotic behavior of the
radiance with distance also holds when scattering is present, as shown in Section 10.5 on
an analytical asymptotic solution for internal sources.

10.1.3 Approximate Analytical Solutions

A number of approximate analytical solutions to the SRTE can be derived after simplify-
ing the SRTE in various ways. One of these approximate solutions is the Single-scattering
Approximation (SSA), which will be obtained in Section 10.2. This solution is developed
by assuming that the water is homogeneous, the sea surface is level, the Sun is a point
source in a black sky, there are no internal sources, and only single-scattering of light rays
is considered. The Quasi-single-scattering Approximation (QSSA) to be seen in Section
10.3 is a further simplification of the SSA. These solutions are derived below and in Gor-
don (1994a). A much more complicated solution including second-order scattering (i.e.,
including rays that have been scattered twice) is developed in Walker (1994, Section 2-6).

These approximate solutions of the SRTE are useful for isolating the main factors
influencing underwater radiances. However, the solutions depend on various simplifying
assumptions and the predicted radiances are typically accurate to a few tens of percent at
best, and can be off by an order of magnitude.

10.1.4 Numerical Solutions

If accurate solutions of the vector or scalar RTE are to be obtained for realistic oceanic
conditions, numerical methods must be used. Many such methods have been developed.

1The exponential decay of light through a medium was first reported by Bouguer (1729, Fig. 4) based on
observations of candles made by eye. Lambert (1760) placed Bouguer’s graphical result in the mathematical
form an of exponential decay with distance. Beer (1852) found that for a fixed distance, the transmitted
light decreased as an exponential function of the concentration of salts in solution. It seems that Bouguer
should be credited with the original understanding of the exponential decrease of light when traveling
through a material medium, and Lambert gets credit for putting Bouguer’s results into the mathematical
form seen in Eq. (10.3). It is then “Lambert’s law” if you use Eq. (10.3) to predict the attenuation of
light as a function of distance for a given substance. It is “Beer’s law”if you use Eq. (10.3) to predict the
attenuation of light as a function of concentration for a given distance. To give full credit to everyone, it
should be called the “Bouguer-Lambert-Beer law.” It seems that “Beer’s law” or the “Lambert-Beer law”
seems to be most common in optical oceanography.
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Some of these solution techniques have been tailored to specific environments, such as stellar
or planetary atmospheres, and are not commonly used in oceanography. The numerical
methods most commonly employed in oceanographic radiative transfer, and their salient
characteristics, can be summarized as follows:

Monte Carlo

• based on conceptually simple physics that mimics how nature absorbs and scatters
idealized light rays

• completely general; can solve time-dependent and 3-D problems with arbitrary ge-
ometry

• relatively easy to incorporate polarization

• easy to program

• computed radiances have statistical errors, which can be reduced by tracing more
initial rays (requiring longer computer times)

• computer run times can be extremely slow for some problems (e.g., solving the RTE
to large optical depths; run times increase exponentially with optical depth)

• sophisticated mathematical “tricks” can sometimes be used to speed up the calcula-
tions

Invariant Imbedding

• computed radiances do not have statistical errors

• includes all orders of multiple scattering

• can solve only 1-D problems (the one dimension being the depth in optical oceanog-
raphy)

• highly mathematical

• difficult to program

• is extremely fast (run times increase linearly with optical depth)

Discrete Ordinates

• computed radiances do not have statistical errors

• does not handle highly peaked scattering phase functions well

• highly mathematical

• difficult to program

• models the medium as a stack of homogeneous layers

• is fast for irradiance calculations and homogeneous water, but can be slow for ra-
diances or if many layers are needed to resolve depth-dependent IOPs (run time is
proportional to the number of layers)

Because of their simplicity and generality, Monte Carlo methods are widely used to
solve RTEs in fields as diverse as oceanography, atmospheric sciences, astronomy, medical
physics, and nuclear engineering. The trade-off for their simplicity and generality is long
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computer run times for many problems. Invariant imbedding is the solution technique
used in the HydroLight numerical model. The scattering phase functions for atmospheric
aerosols are not as highly peaked at very small scattering angles as are those for oceanic
particles. Discrete ordinates can handle aerosol phase functions well and is often used in
atmospheric optics, but is seldom used for underwater calculations because of the need to
resolve highly peaked phase functions and to have many layers if the IOPs vary strongly
with depth. Each of these techniques gives the same answer for the same inputs and
boundary conditions for the RTE, for problems where all three techniques are applicable,
as can be seen in the model comparison study of Mobley et al. (1993). They differ only
in their internal mathematics and the resulting computer run times, and well-debugged
and validated computer programs exist for each. In this sense, solving the RTE in the
oceanographic setting can be considered a “solved problem.”

10.2 The Single-Scattering Approximation (SSA)

As previously noted 10.1, exact analytical solutions of the RTE exist only for a few idealized
and unphysical situations such as no scattering. There are, however, a few approximate
analytic solutions. In pre-computer days these were useful computational tools. These
approximate solutions are no longer needed for numerical computation, but they are still
useful for isolating the most important processes governing light propagation in the ocean
and can provide guidance in interpretation of radiometric data. This section develops one
such solution: the single-scattering approximation (SSA). The next section discusses the
related quasi-single scattering approximation (QSSA).

10.2.1 The Successive-Order-of-Scattering (SOS) Solution Technique

Recall Eq. (9.22), the optical depth form of the time-independent, 1-D (plane parallel
geometry) RTE:

µ
dL(ζ, µ, φ, λ)

dζ
=− L(ζ, µ, φ, λ)

+ ωo(ζ, λ)

∫ 2π

0

∫ 1

−1
L(ζ, µ′, φ′, λ) β̃(ζ;µ′, φ′ → µ, φ;λ) dµ′ dφ′

+
1

c(ζ, λ)
Σ(ζ, µ, φ, λ) .

We next make a number of simplifications by assuming that

• The water is homogeneous, so that the IOPs do not depend on depth;

• The water is infinitely deep;

• The sea surface is level (zero wind speed);

• The Sun is a point source is a black sky, so that the incident radiance onto the sea
surface is collimated;

• There are no internal sources or inelastic scattering.
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The RTE then becomes, for a given wavelength λ, which we henceforth drop for brevity,

µ
dL(ζ, µ, φ)

dζ
=− L(ζ, µ, φ)

+ ωo

∫ 2π

0

∫ 1

−1
L(ζ, µ′, φ′) β̃(µ′, φ′ → µ, φ) dµ′ dφ′ . (10.4)

A powerful technique for solving differential equations is to attempt a power series
solution in which higher order terms of the series are weighted by a powers of a parameter
whose magnitude is less than 1. The higher order terms then contribute less and less
to the sum that represents the solution. The albedo of single scattering, ωo, meets the
requirement for an expansion parameter. We therefore attempt a solution of Eq. (10.4) of
the form

L(ζ, µ, φ) =
∞∑
k=0

ωko L
(k)(ζ, µ, φ)

= L(0)(ζ, µ, φ) + ωo L
(1)(ζ, µ, φ) + ω2

o L
(2)(ζ, µ, φ) + · · · (10.5)

The notation L(0) denotes radiance that is unscattered, L(1) is radiance from rays that
have been scattered once, L(2) is radiance from rays that have been scattered twice, and so
on. This is consistent with the interpretation of ωo as the probability of ray survival in an
interaction with matter, i.e., the probability that a ray will be scattered and not absorbed.

We now substitute Eq. (10.5) for the radiance into Eq. (10.4) to obtain

µ

[
dL(0)

dζ
+ ωo

dL(1)

dζ
+ ω2

o

dL(2)

dζ
+ · · ·

]
= − [L(0) + ωo L

(1) + ω2
o L

(2) + · · · ]

+ ωo

∫ 2π

0

∫ 1

−1
[L(0) + ωo L

(1) + ω2
o L

(2) + · · · ] β̃(µ′, φ′ → µ, φ) dµ′ dφ′ . (10.6)

We next group terms that have the same power of ωo:[
µ
dL(0)

dζ
+ L(0)

]

+ ωo

[
µ
dL(1)

dζ
+ L(1) −

∫ 2π

0

∫ 1

−1
L(0) β̃(µ′, φ′ → µ, φ) dµ′ dφ′

]

+ ω2
o

[
µ
dL(2)

dζ
+ L(2) −

∫ 2π

0

∫ 1

−1
L(1) β̃(µ′, φ′ → µ, φ) dµ′ dφ′

]
+ · · · = 0 .

This equation must hold true for any value of 0 ≤ ωo < 1. Setting ωo = 0 would leave only
the first line of the equation, whose terms must sum to 0. Similarly, when ωo 6= 0, each
group of terms multiplying a given power of ωo must equal zero in order for the entire left
side of the equation to sum to zero. We can therefore equate to zero the groups of terms
in brackets multiplying each power of ωo. This gives a sequence of equations:

µ
dL(0)

dζ
=− L(0) (S0)
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Figure 10.1: The collimated incident
radiance onto the sea surface and the
refracted radiance just below the sur-
face.

µ
dL(1)

dζ
=− L(1) +

∫ 2π

0

∫ 1

−1
L(0) β̃(µ′, φ′ → µ, φ) dµ′ dφ′ (S1)

µ
dL(2)

dζ
=− L(2) +

∫ 2π

0

∫ 1

−1
L(1) β̃(µ′, φ′ → µ, φ) dµ′ dφ′ (S2)

and so on. Note that because ωo multiples the path integral term in Eq. (10.6), the path
integrals in this sequence of equations always involve the radiance at one order of scattering
less than the derivative term. We first solve Eq. (S0), which governs the unscattered
radiance. The solution for L(0) then can be used in Eq. (S1) to evaluate the path integral,
which becomes a source function for singly scattered radiance. After solving Eq. (S1) for
singly-scattered radiance, L(1) can be used to evaluate the path function in Eq. (S2), and
so on. This process constitutes the successive-order-of-scattering (SOS) solution technique.

10.2.1.1 Solution for the unscattered radiance

To solve Eq. (S0) we need boundary conditions at the sea surface and bottom. Figure 10.1
reminds us that the incident unscattered radiance onto the sea surface, and transmitted
into the water, is perfectly collimated because we have assumed that the Sun is a point
source in a black sky and the surface is level. In that figure, E⊥(0) denotes the irradiance
measured just below the sea surface on a plane that is perpendicular to the direction of
photon travel (denoted by the red dashed line), and θsw is the Sun’s zenith angle in the
water after refraction by the level surface.

Recalling the Dirac delta function 1.4.3, we can write the unscattered radiance just
below the surface as

L(0)(0, µ, φ) = E⊥(0) δ(µ− µsw) δ(φ− φsw) , (BC1)

where (µsw, φsw) is the direction of the Sun’s beam in the water. The two delta functions,
which together have units of sr−1, “pick out” the direction of the Sun’s beam; the unscat-
tered radiance is zero in all other directions. Note that integrating this radiance over all
downward directions to compute the downwelling plane irradiance gives

Ed(0) =

∫ 1

0

∫ 2π

0
E⊥(0) δ(µ− µsw) δ(φ− φsw)µ dµ dφ

= E⊥(0)µsw
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as expected.

It is assumed that the incident solar irradiance is given, so Eq. (BC1) is the boundary
condition on L(0)(ζ, µ, φ) at the sea surface (i.e., in the water at depth ζ = 0). We are
assuming that the water is infinitely deep and source free, so the radiance must approach
0 at great depth. The boundary condition at the bottom is thus

L(0)(ζ, µ, φ)→ 0 as ζ →∞ . (BC2)

We can now solve Eq. (S0) subject to boundary conditions (BC1) and (BC2). Rewriting
(S0) as

dL(0)(ζ)

L(0)(ζ)
= −dζ

µ

and integrating from depth 0 to ζ, corresponding to radiances L(0)(0) and L(0)(ζ) respec-
tively, gives

lnL(0)
∣∣∣L(0)(ζ)

L(0)(0)
= −ζ

′

µ

∣∣∣∣ζ
0

or

L(0)(ζ, µ, φ) = L(0)(0, µ, φ) e−ζ/µ (10.7)

= E⊥(0) δ(µ− µsw) δ(φ− φsw) e−ζ/µ . (10.8)

Solution (10.7) is simply the Lambert-Beer law: the initial unscattered radiance decays
exponentially with optical depth. Using (BC1) to rewrite the radiance at the surface gives
(10.8), which will be the convenient form for solution of (S1) below. Equation (10.8) also
shows explicitly that the unscattered radiance is 0 except in direction (µsw, φsw). The
exponential forces the radiance to 0 as the depth increases, so that (BC2) is satisfied.
Thus our solution satisfies both the surface and bottom boundary conditions and thus
constitutes a complete solution of the two-point boundary value problem for unscattered
radiance. This solution gives the contribution of unscattered radiance to the total radiance.

10.2.1.2 Solution for the singly-scattered radiance

The first step in solving Eq. (S1) for the singly-scattered radiance is to evaluate the
scattering term using the solution for L(0). To do this we use (10.8) to get∫ 2π

0

∫ 1

−1
L(0)(ζ, µ′, φ′) β̃(µ′, φ′ → µ, φ) dµ′ dφ′

=

∫ 2π

0

∫ 1

−1
E⊥(0) δ(µ′ − µsw) δ(φ′ − φsw) e−ζ/µ

′
β̃(µ′, φ′ → µ, φ) dµ′ dφ′

= E⊥(0) e−ζ/µsw β̃(µsw, φsw → µ, φ) . (10.9)

This result shows how much of the unscattered radiance reaches depth ζ and then gets
scattered into the direction of interest (µ, φ). In other words, the unscattered radiance is a
local (at depth ζ) source term for singly scattered radiance.

All quantities on the right hand side of Eq. (10.9) are known from the given IOPs and
surface boundary condition. We can therefore proceed with the solution of (S1) for the
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singly scattered radiance L(1). The equation to be solved is

µ
dL(1)

dζ
+ L(1) = E⊥(0) e−ζ/µsw β̃(µsw, φsw → µ, φ) , (10.10)

where the right hand side is now a known function of depth. There is no incident scattered
radiance from the sky because the Sun’s collimated beam is all unscattered light. Thus the
boundary conditions for Eq. (10.10) are

L(1)(0, µ, φ) = 0 and L(1)(ζ, µ, φ)→ 0 as ζ →∞ . (10.11)

Figure 10.2 shows that the singly scattered downwelling radiance at depth ζ comes only
from above depth ζ, and that the upwelling radiance at ζ comes only from depths below ζ.

We can thus consider the downwelling, L
(1)
d (ζ, µ, φ), and upwelling, L

(1)
u (ζ, µ, φ), radiances

separately. We can integrate from the surface down to ζ to compute L
(1)
d , and we can

integrate from ζ to ∞ to compute L
(1)
u .

Figure 10.2: Single-scattering contributions to L
(1)
d and L

(1)
u .

If you were paying attention in your undergraduate differential equations class, you
recognize Eq. (10.10) as an ordinary differential equation with constant coefficients, which
can be solved by means of an integrating factor. Multiplying Eq. (10.10) for downwelling
radiance by 1

µ e
ζ/µ (the integrating factor) gives

1

µ
eζ/µ

[
µ

dL
(1)
d (ζ)

dζ
+ L

(1)
d (ζ)

]
=

1

µ
eζ/µ

[
E⊥ β̃ e

−ζ/µsw

]
d

dζ

[
L

(1)
d (ζ) eζ/µ

]
=
E⊥ β̃

µ
exp

[(
1

µ
− 1

µsw

)
ζ

]
. (10.12)

Now integrating from depth 0 to ζ, where the radiances are L
(1)
d (0) and L

(1)
d (ζ), respectively,

and recalling that L
(1)
d (0) = 0 by the upper boundary condition (10.11) gives

L
(1)
d (ζ) eζ/µ =

E⊥ β̃

µ

1(
1
µ −

1
µsw

) [exp

(
1

µ
− 1

µsw

)
ζ − 1

]
,
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provided that µ 6= µsw. Recalling that Ed(0) = E⊥(0)µsw, the preceding equation can be
rewritten as

L
(1)
d (ζ, µ, φ) = Ed(0) β̃(µsw, φsw → µ, φ)

1

µsw − µ

[
e−ζ/µsw − e−ζ/µ

]
. (10.13)

For the special case of µ = µsw but φ 6= φsw, so that the scattering angle is nonzero,
Eq. (10.12) reduces to

d

dζ

[
L

(1)
d (ζ) eζ/µsw

]
=

E⊥ β̃

µsw

which integrates to

L
(1)
d (ζ, µsw, φ) = E⊥ β̃(µsw, φsw → µsw, φ)

ζ

µsw
e−ζ/µsw

= Ed(0) β̃(µsw, φsw → µsw, φ)
ζ

µ2
sw

e−ζ/µsw . (10.14)

The second form results from Ed(0) = E⊥(0)µsw, which was derived above.
The direction of µ = µsw and φ = φsw is the case of no scattering, so there is no singly

scattered radiance.
We next compute the upwelling radiance at ζ by integrating Eq. (10.10) from ζ to ∞,

keeping in mind that now µ = cos θ < 0 since θ is measured from 0 in the nadir direction.
The integration gives (writing µ = −|µ| to emphasize the negativity of µ)[

L(1)
u (ζ ′) e−ζ

′/|µ|
]
ζ′→∞

− L(1)
u (ζ) e−ζ/|µ| =

E⊥β̃

−|µ|
1(

1
−|µ| −

1
µsw

) {[
exp

(
1

−|µ|
− 1

µsw

)
ζ ′
]
ζ′→∞

− exp

(
1

−|µ|
− 1

µsw

)
ζ

}

Both limits as ζ ′ →∞ are zero. The result can be rewritten as

L(1)
u (ζ) = Ed(0) β̃(µsw, φsw → µ, φ)

1

µsw − µ
e−ζ/µsw . (10.15)

10.2.2 Assembling the SSA solution

Recalling from Eq. (10.5) that the SSA is given by

L(SSA)(ζ, µ, φ) = L(0)(ζ, µ, φ) + ωo L
(1)(ζ, µ, φ),

we can assemble L(SSA) from the pieces computed in Eqs. (10.7) and (10.13-10.15):

L
(SSA)
d (ζ, µ, φ) = L(0)(0, µsw, φsw) e−ζ/µsw (10.16)

if µ = µsw and φ = φsw

L
(SSA)
d (ζ, µ, φ) = ωoEd(0) β̃(µsw, φsw → µsw, φ)

ζ

µ2
sw

e−ζ/µsw (10.17)

if µ = µsw but φ 6= φsw

L
(SSA)
d (ζ, µ, φ) = ωoEd(0) β̃(µsw, φsw → µ, φ)

1

µsw − µ

[
e−ζ/µsw − e−ζ/µ

]
(10.18)
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if µ > 0 and µ 6= µsw

L(SSA)
u (ζ, µ, φ) = ωo Ed(0)β̃(µsw, φsw → µ, φ)

1

µsw − µ
e−ζ/µsw (10.19)

if µ ≤ 0

Equations (10.16)-(10.19) constitute the SSA solution to the RTE. This solution is seen,
for example, in Gordon (1994a), where it is presented without derivation.

It is easy to show that

lim
µ→µsw

1

µsw − µ

[
e−ζ/µsw − e−ζ/µ

]
=

ζ

µ2
sw

e−ζ/µsw , (10.20)

in which case Eq. (10.18) reduces to Eq. (10.17), which was derived independently as a
special case of the depth integration.

It must be remembered that the SSA rests upon a number of simplifying assumptions.
In particular, the input sky radiance was collimated. The delta functions in direction then
made evaluation of the scattering path function in Eq. (10.9) easy. This would not be the
case for any other sky radiance distribution, or for a non-level sea surface. Likewise, the
assumption of infinitely deep water removed any bottom effect.

The SSA will be a good approximation to actual radiances only if the higher order
terms in the Eq. (10.5) are negligible. This means that ωo must be sufficiently small,

but how small? Figure 10.3 compares L
(SSA)
u and L

(SSA)
d with radiances computed by

HydroLight for nadir- and zenith-viewing radiances. The Sun was at 42 deg, which gives
the in-water solar zenith angle of θsw = 30 deg or µsw = 0.866. This gives a scattering angle

of ψ = 30 deg for L
(SSA)
d and ψ = 150 deg for L

(SSA)
u . The Petzold “average-particle” phase

function 9.5.2 was used, for which β̃(ψ = 30) = 0.08609 and β̃(ψ = 150) = 0.002365 sr−1.
HydroLight includes all orders of multiple scattering, so comparison of its radiances with
the SSA values shows the importance of multiple scattering. The HydroLight runs modeled
the SSA conditions as closely as possible, the difference being that the SSA is for one exact
direction and HydroLight computes nadir and zenith radiances as averages over polar caps
with a 5 deg half angle, and the Sun’s direct beam in water is spread out over a quad
from θ = 25 to 35 deg. The HydroLight runs set Ed(in air) = 1.028 W m−2 sr−1 so that
Ed(0) = 1.0 W m−2 sr−1.

Figure 10.3 shows that for ωo = 0.01 the agreement between the SSA and HydroLight
is very good. The HydroLight values are slightly higher than the SSA values because there
is still a small multiple scattering contribution to the total radiance even at very small ωo

values. For ωo = 0.1 the SSA still gives good results near the sea surface but differs from
the multiple scattering solution by a factor of 3 at 10 optical depths. For ωo = 0.85, which
is typical of blue and green wavelengths in ocean waters, the SSA upwelling radiance is
a factor of five too small even at the surface, and the SSA radiances are off by orders of
magnitude at large optical depths. Thus, as expected, we see that the SSA is of little use
in optical oceanography because multiple scattering almost always dominates underwater
radiance distributions at visible wavelengths.

We end the SSA discussion by noting that Walker (1994) has carried the SOS solu-
tion through second order scattering (i.e., an analytical solution of Eq. (S2) above). His
development requires a good bit of mathematical masochism and results in a much more
complicated set of equations, which can be seen in his Section 2-6. There is little need
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Figure 10.3: Comparison of the SSA and HydroLight solutions for nadir-viewing (Lu;
dashed lines) and zenith-viewing (Ld; solid lines) radiances for four ωo values; Ed(0) =
1 W m−2 sr−1.

for such approximations given the ease of numerical solution of the RTE to include all (in
HydroLight) or at least many (in Monte Carlo models) orders of multiple scattering, and
without any of the assumptions required for the analytic evaluation of the path integrals
in the SSA. Perhaps the greatest value of the SSA solution is that it can be used to check
numerical models when ωo is small.

10.3 The Quasi-Single-Scattering Approximation (QSSA)

For highly peaked phase functions such as those typical of ocean waters, most of the
scattering is at very small scattering angles ψ. For some purposes, scattering through a
small scattering angle is almost the same as no scattering at all. The quasi-single-scattering
approximation (QSSA) exploits this observation by assuming that the forward-scattering
part of the phase function can be represented by a Dirac delta function at scattering angle
ψ = 0, with no scattering at all for 0 < ψ < 90deg. At first glance this seems like a terribly
inaccurate approximation of reality for phase functions like the Petzold average-particle
phase function shown in the left panel of Fig. 10.4 . However, when plotted on linear axes
as in the right panel of the figure, the approximation looks more reasonable. In practice,
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it can yield surprisingly accurate results for quantities that depend mostly on absorption
and/or backscatter (such as Kd and Rrs).

The QSSA can be traced back to Hansen (1971), who used it in studies of reflection
by planetary atmospheres. Gordon (1973) introduced it to oceanography for ocean color
remote sensing of the ocean.

Figure 10.4: The Petzold average particle phase function plotted on log-linear and linear-
linear axes.

The QSSA uses the formulas of the SSA, but treats forward scattering as no scattering
at all. With this approximation, the beam attenuation coefficient c becomes

c = a+ b = a+ bf + bb ≈ a+ bb , c∗ .

With this approximation for c, the single scattering albedo ωo and the optical depth ζ
become

ωo =
b

c
≈ b

a+ bb
=

bb
a+ bb

1

B
, ω∗o ,

and

ζ = c z ≈ (a+ bb)z , ζ∗ .

where B is the backscatter fraction. The QSSA thus replaces c, ωo, and ζ with c∗, ω∗o, and
ζ∗ respectively. This is an example of a similarity transformation in which the solution of
one problem is rescaled to obtain the solution to a different problem.

The QSSA was developed for reflectance calculations, so let us compute the QSSA

approximation for the remote-sensing reflectance Rrs. The SSA solution for L
(SSA)
u (Eq.

10.19),

L(SSA)
u (ζ, µ, φ) = ωo Ed(0)β̃(µsw, φsw → µ, φ)

1

µsw − µ
e−ζ/µsw , (10.21)
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with the approximations of the QSSA becomes

L
(QSSA)
u (ζ∗, µ, φ)

Ed(0)
=

bb
a+ bb

β̃(µsw, φsw → µ, φ)

B

1

µsw − µ
e−ζ

∗/µsw

When evaluated just below the sea surface at ζ∗ = 0, this quantity is related to Rrs by

Rrs =
t

n2

Ed(0)

Ed(in air)

L
(QSSA)
u (0, µ, φ)

Ed(0)
. (10.22)

Here t is the transmittance of radiance from water to air. For nadir-viewing radiance, µ =
−1 and t ≈ 0.98. n ≈ 1.34 is the index of refraction of water, and the ratio of irradiances
(close to 1 for solar zenith angles away from the horizon) converts the underwater irradiance
to the above-water value used in the definition of Rrs. Thus for nadir-viewing Rrs we have

Rrs =
bb

a+ bb

β̃(µsw, φsw → µ = −1, φ = 0)

B

1

µsw + 1
, (10.23)

The factor of β̃/B is determined by the shape of the total phase function, which in turn
is determined by the type of particles in the ocean. The µsw factor is determined by solar
angle. The remaining factor,

G =
bb

a+ bb
,

shows that, to first order, Rrs depends on the IOPs via bb/(a + bb), where both a and bb
are functions of depth and wavelength. G is sometimes called the Gordon parameter in
recognition of his use of this quantity in numerous ocean remote-sensing studies.

Figure 10.5 compares the accuracy of the QSSA as a function of ωo with the SSA
and with HydroLight computations that include all orders of multiple scattering. The
HydroLight run used the Petzold phase function of Fig. 10.4, for which the backscatter
fraction is B = 0.0183. The Sun was placed at 30 deg in a black sky, and the sea surface
was level. This figure shows that the SSA does well only for ωo < 0.3. The SSA is almost
a factor of four too small at ωo = 0.7, whereas the QSSA is only 16% too small. Even
at ωo = 0.85 the QSSA is only 35% too small, whereas the SSA is only one tenth of the
correct value.

The blue curve of Fig. 10.6 shows an Rrs spectrum computed by HydroLight for homo-
geneous Case 1 water with a chlorophyll concentration of 2 mg m−3. The phytoplankton
were modeled with a Petzold average particle phase function as used above. The Sun was
at 30 deg in a clear sky, and the wind was 5 m s−1. Those sky and surface conditions vio-
late the assumptions of collimated incident radiance and a level sea surface that underlie
the SSA and QSSA. Nevertheless, the QSSA, evaluated using the IOPs generated by the
HydroLight bio-optical model, gives an amazingly close prediction of the exact spectrum
even though ωo was in the range of 0.80 to 0.86 between 350 and 575 nm. The QSSA
of course does not capture the chlorophyll fluorescence peak near 685 nm. The SSA fails
badly until near 750 nm, where ωo is less than 0.15.

The excellent performance of the QSSA seems counterintuitive given the crudeness of
its phase function approximation. Why, in particular, does it do better than the SSA,
since the SSA uses the full phase function, which is certainly a better description of nature
than a delta function for forward scattering? The answer lies in how backscattering is
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Figure 10.5: Predictions of Rrs for the SSA, QSSA, and HydroLight as a function of ωo.

Figure 10.6: Predictions of Rrs for the SSA, QSSA, and HydroLight as a function of
wavelength for Case 1 water with a chlorophyll concentration of 2 mg m−3.
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parameterized in the QSSA. Note from Eq. (10.21) that in the SSA the backscatter part
of the phase function is weighted by (multiplied by) ωo. For a typical water body with
a scattering coefficient four times the absorption coefficient, b = 4a, and a Petzold phase
function with a backscatter fraction of B = 0.018, this gives

ωo β̃ =
b

a+ b
β̃ = 0.80 β̃ .

Equation (10.23) shows that the QSSA for the same water weights β̃ by

bb
a+ bb

1

B
β̃ =

bB

a+ bB

1

B
β̃ = 3.73 β̃ .

Thus, for these IOPs, the QSSA weights the backscatter part of the phase function by a
factor 4.66 times greater than that of the SSA. This corresponds precisely to the increase
in Rrs for the QSSA compared to the SSA as seen in Fig. 10.5 for ωo = 0.8. In effect, the
QSSA accounts for the “missing” multiple scattering in the single-scattering formulation by
increasing the amount of backscattering. In other words, the QSSA parameterizes multiple
scattering within the single-scattering mathematical framework by artificially increasing
the backscattering.

The main utility of the SSA and QSSA is in the insight they give to the dependence
of various AOPs on the IOPs. We saw above that Rrs depends primarily on bb/(a + bb).
Likewise, the SSA and QSSA both show that near the sea surface Kd depends primarily on
a+ bb. Gordon (1994a) shows comparisons between the SSA, QSSA and numerical (Monte
Carlo) computations of other quantities such as the near-surface irradiance reflectance R
and Kd/c.

Two more comments must be made for completeness. As Gordon noted in his origi-
nal paper, the desired partitioning of scattered radiance is into upward versus downward
components. His development and the one above truncated the phase function out to a
scattering of ψ = 90 deg. This separation of backward and forward scattering corresponds
to radiance scattered into upwelling and downwelling directions, respectively, only if the
Sun is at the zenith. If the Sun is not at the zenith, then the phase function used in the
QSSA should include only the angles that contribute to upward scattering, in which case B
in Eq. (10.23) is not exactly the backscatter fraction of the original phase function. How-
ever, as we have seen in the example calculations with the Sun at a 30 deg zenith angle,
the QSSA still works well for non-zenith solar angles even when evaluated with B equal
to the phase function backscatter fraction. Finally, note that in the limit of no scattering,
i.e., ωo → 0, the QSSA reduces to the SSA.

10.4 The Asymptotic Radiance Distribution

Deep in homogeneous, source-free waters the radiance distribution L(z, θ, φ) approaches
a shape L∞(θ) that depends only on the IOPs. Moreover, the radiance distribution at
great depth decays in magnitude exactly exponentially with a decay rate K∞ that, once
again, depends only on the IOPs. The shape L∞(θ) is called the asymptotic radiance
distribution, and K∞ is called the asymptotic decay rate or the asymptotic K function.
L∞(θ) and K∞ depend on the wavelength λ via the wavelength dependence of the IOPs;
the wavelength is omitted here for brevity. An asymptotic radiance distribution exists only
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if the IOPs do not depend on depth (homogeneous water) and if there is no inelastic scatter
or bioluminescence contributing to the radiance (source-free water). Preisendorfer (1976,
Vol. 5, page 212) and Højerslev and Zaneveld (1977) give rigorous mathematical proofs
that L∞(θ) and K∞ exist for any physically realistic phase function and single-scattering
albedo.

These statements imply that the directional and depth dependencies of the radiance
distribution decouple at great depths. That is to say,

L(z, θ, φ) −−−→
z→∞

L∞(θ) exp(−K∞ z) . (10.24)

This in turn implies that all irradiances decay in the asymptotic regime at the same rate
as the radiance. For example,

lim
z→∞

Ed(z) =

∫ 2π

0

∫ π/2

0
L∞(θ) exp(−K∞z) cos θ sin θ dθ dφ

=

[
2π

∫ π/2

0
L∞(θ) cos θ sin θ dθ

]
exp(−K∞z)

, Ed(∞) exp(−K∞z) .

We can compute corresponding values for Eu, Eod, and Eou. Clearly, each of these
irradiances has the same asymptotic K function. Using these asymptotic irradiances, we
can compute asymptotic values for any apparent optical property. For example, we have

R∞ ,
Eu(∞)

Ed(∞)
.

Note that any normalization factor in L∞(θ) divides out when computing AOPs.
Because the asymptotic radiance L∞(θ) is determined solely by the IOPs, it follows that

any quantity computed from L∞(θ) is also in IOP. Therefore all apparent optical properties
become inherent optical properties in the asymptotic regime. The K ’s, µ’s, R’s, and their
ilk, which are influenced by boundary conditions near the water surface, all approach values
at depth that are independent of the boundary conditions. This was seen in Figs. 4.3- 4.6,
4.16, and 4.21.

10.4.1 An Integral Equation for the Asymptotic Radiance Distribution

The obvious question is, “How do you compute the asymptotic radiance distribution and
the asymptotic decay rate, given the IOPs?” One way is to recall the SRTE for homoge-
neous, source-free water

cos θ
dL(z, θ, φ)

dz
= −cL(z, θ, φ)

+

∫ 2π

0

∫ π

0
L(z, θ′, φ′)β(θ′, φ′ → θ, φ) sin θ′ dθ′ dφ′ ,

and assume that the radiance has the form seen in Eq. (10.24). This gives an integral
equation for the shape L∞(θ) and decay rate K∞ of the asymptotic radiance distribution:

(c − K∞ cos θ)L∞(θ) =

∫ 2π

0

∫ π

0
L∞(θ′)β(θ′, φ′ → θ, φ) sin θ′ dθ′ dφ′ . (10.25)
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(Note that since the scattering angle ψ depends only on cos(φ − φ′), we can set φ = 0 in
this equation, so that the result is a function only of θ.) This equation is often written in
terms of µ = cos θ and a nondimensional asymptotic decay rate κ∞ = K∞/c as

(1 − κ∞µ)L∞(µ) = ωo

∫ 2π

0

∫ 1

−1
L∞(µ′) β̃(µ′, φ′ → µ, φ) dµ′ dφ′ . (10.26)

Given the IOPs c and β for Eq. (10.25) or ωo and β̃ for Eq. (10.26), we can solve either
of these equations for the corresponding L∞ and K∞ or κ∞. Another form of Eq. (10.26),
often seen in the literature, is

(1 − κ∞µ)L∞(µ) = 2πωo

∫ 1

−1
L∞(µ′)h(µ′, µ) dµ′ ,

where h(µ′, µ) is the azimuthally averaged phase function

h(µ′, µ) ,
1

2π

∫ 2π

0
β̃(µ′, φ′ → µ, φ) dφ′ .

For the idealized case of isotropic scattering, β̃ = 1/4π and the solution of Eq. (10.26)
has the simple form

L∞(µ) =
1− κ∞

1− κ∞µ
, (10.27)

where L∞(µ) is normalized to 1 at µ = 1 (or at the nadir direction θ = 0). This L∞(µ) has
the shape of an ellipse whose major axis is oriented vertically. The corresponding value of
κ∞ is the solution of the transcendental equation

1 =
ωo

2κ∞
ln

(
1 + κ∞
1− κ∞

)
,

as can be seen by substitution of Eq. (10.27) into Eq. (10.26).
Kattawar and Plass (1976) obtained an analytic solution of Eq. (10.26) for the Rayleigh

phase function β̃ = (3/16π)(1 + cos2 ψ). However, for other phase functions, in particular
for those characteristic of oceanic waters, the solution of Eq. (10.25) or (10.26) must be
obtained numerically.

Solving the integral Eq. (10.25) is mathematically equivalent to solving a certain eigen-
matrix equation2 for its eigenfunctions (which give L∞) and eigenvalues (which give K∞).
The eigenmatrix approach is described in Light and Water (Mobley, 1994, Section 9.6).

The asymptotic radiance distribution including polarization has been studied by Kat-
tawar and Plass (1976) for selected phase matrices and by Sun et al. (2016) for arbitrary
phase matrices. In the asymptotic regime the Stokes parameters (I,Q, U, V ) (Section 1.6)
are independent of the azimuthal angle and U and V are zero. The degree of polarization
Q/I in the asymptotic regime depends on the phase matrix and on the albedo of single
scattering, ωo. As ωo → 1 the radiance in the asymptotic regime becomes unpolarized.
However, as ωo decreases, the asymptotic radiance becomes increasingly polarized and can
approach that for singly scattered radiance for the given phase matrix.

2HydroLight uses the eigenmatrix approach to obtain its asymptotic values. The excellent agreement
between the asymptotic values computed by the eigenmatrix method and the approach with depth to those
values, as obtained by independent numerical solution of the SRTE, is an excellent check on the correctness
of the HydroLight code.
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10.4.2 Dependence of Asymptotic Values on Inherent Optical Properties

As just seen, the two asymptotic properties L∞ and K∞ are determined solely by the
IOPs c, ωo and β̃. Figure 10.7 shows how the nondimensional asymptotic decay rate
κ∞ = K∞/c depends on the albedo of single scattering ωo for three phase functions.
The dotted line is for the pure water phase function β̃w; the dashed line is for a Henyey-
Greenstein phase function β̃HG with an asymmetry parameter g = 0.7; and the solid line
is for a Petzold “average-particle” phase function β̃p, which is typical of phase functions
for oceanic particles. The squares show experimental data taken in laboratory suspensions
containing milk (Timofeeva and Gorobetz, 1967). The fat globules in milk are large (� λ),
efficient scatterers, which explains the similarity between the milk solution and the β̃p

phase function, which is typical of particle-laden natural waters.

Figure 10.7: Dependence of κ∞ on ωo for selected phase functions. The solid line is for
β̃p, the dashed line is for β̃HG, and the dotted line is for β̃w. The squares are the data of
Timofeeva and Gorobetz (1967).

Figure 10.8 shows the shape of L∞(θ) as a function of ωo for the average-particle phase
function β̃p. Since it is the shape that is determined by the IOPs, it is customary to
normalize L∞(θ) to one for the nadir radiance direction (looking upward in the zenith
direction). The viewing angle θv as plotted is the angle in which an underwater observer
would look in order to see radiance traveling in direction θ = 180◦ − θv; θv and θ are both
measured from the +ẑ, or nadir, direction. Thus, θv = 180◦ corresponds to looking toward
the zenith and seeing radiance heading straight down (θ = 0). As we would expect, in
highly scattering water (large ωo) the upwelling radiance is relatively much greater than in
weakly scattering water (small ωo). Corresponding curves for the Rayleigh phase function
can be seen in Kattawar and Plass (1976). Prieur and Morel (1971) show such curves as
a function of the relative contributions by molecular and particle scattering, i.e., for phase
functions that are in between β̃w and β̃p.

Figure 10.9 shows the asymptotic mean cosines and irradiance reflectance for the same
phase functions used in Fig. 10.7.
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Figure 10.8: Shape of the asymptotic radiance distribution L∞(θ) as a function of ωo, for
the particle phase function β̃p. The viewing angle θv is 180◦ − θ, as discussed in the text.

Figure 10.9: Asymptotic values of the mean cosines and of the irradiance reflectance, as a
function of ωo, for for the Petzold average-particle phase function. The solid, dashed, and
dotted lines correspond to those of Fig. 10.7.
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10.4.3 Rate of Approach to Asymptotic Values

The asymptotic values are determined solely by the IOPs of a homogeneous water body.
However, how quickly a given quantity approaches its asymptotic value depends on both
the IOPs and the boundary conditions. We have already seen this in the discussion of K
functions 4.1, but a few more examples will be instructive. HydroLight was run for Case
1 water with a chlorophyll concentration of Chl = 1.0 mg m−3. The wavelength was 443
nm. The corresponding IOPs (including water) were a = 0.0680 m−1, b = 0.4346 m−1, so
that c = 0.5026 m−1. Thus one meter of geometric depth is about 0.5 optical depths. The
albedo of single scattering is then ωo = b/c = 0.8648, and the total backscatter fraction was
0.1253. Figure 10.10 shows Kd at 443 nm for four different surface boundary conditions:

• the Sun is at the zenith in a clear sky (θsun = 0) and the sea surface is level (wind
speed U = 0)

• the Sun is at a 50 deg zenith angle in a clear sky (θsun = 50) and the sea surface is
level (U = 0)

• the Sun is at a 50 deg zenith angle in a clear sky (θsun = 50) and the sea surface is
wind blown, with a wind speed of 10 m/s (U = 10)

• the sky has a cardioidal radiance distribution, L(θ, φ) = Lo(1 + 2 cos θ), 0 ≤ θ ≤ π/2,
which is similar to a heavy overcast through which the location of the Sun cannot be
determined, and the sea surface is wind blown, with a wind speed of 10 m/s (U = 10)

The curves of Fig. 10.10 show the boundary effects on the rate of approach to the
asymptotic value of K∞ = 0.1075 m−1, which depends only on the IOPs. The curve for
the heavily overcast sky approaches K∞ the quickest. The physical reason is that the
overcast sky radiance is already a diffuse radiance distribution, so that less scattering (i.e.,
less propagation to depth) is required to redirect the initial photon directions towards
the asymptotic angular distribution within the water. The other cases with the Sun in a
clear sky have a strongly collimated incident radiance distribution, which requires more
scattering (a deeper depth) to “erase the memory” of where the Sun is in the sky and
achieve the asymptotic shape of L∞(θ) . For the 50 deg Sun zenith angle, the surface
roughness makes a noticeable but minor difference.

Figure 10.11 shows the corresponding results for the approach of the irradiance re-
flectance R = Eu/Ed to its asymptotic value of R∞ = 0.0406.

Figure 10.12 shows the average cosines µd, µu, and µ.
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Figure 10.10: Approach of Kd to K∞ for one set of IOPs and different sea-surface boundary
conditions, as described in the text.

Figure 10.11: Approach of R to R∞ for one set of IOPs and different sea-surface boundary
conditions, as described in the text. The color-coded curves correspond to those of Fig.
10.10.

Finally, Fig. 10.13 shows the approach of measured and modeled radiances to the
asymptotic shape. The dots are radiances measured in the azimuthal plane of the Sun by
Tyler (1960) at the depths indicated. The blue curves are the corresponding HydroLight
simulation. The measured data were published only as relative values. Therefore, the
radiances are normalized for plotting to a value of 1 in the nadir-viewing direction (θv = 0)
at depth 4.2 m. The φv = 0 direction is looking toward the Sun, and φv = 180 is looking
away from the Sun. The red curve shows the shape of L∞, normalized to the nadir-
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Figure 10.12: Approach of the mean cosines µd, µu, and µ to their respective asymptotic
values. The color-coded curves correspond to those of Fig. 10.10.

viewing measured value at 66.1 m. The data are described in detail in Tyler’s report, and
the modeling is described in Mobley (1994, Section 11.1). Given the uncertainties in the
measured data and the educated guesses that had to be made about unmeasured inputs
needed by HydroLight, the overall agreement between data and model predictions is quite
good.

Near the surface, the Sun’s location is obvious and the unscattered direct beam gives a
large spike in the radiance. At 29.0 m, the Sun’s azimuthal direction can still be discerned,
but the large spike of the direct beam has been removed by scattering. By 66.1 m, there
is only a slight asymmetry remaining to indicate the Sun’s azimuthal direction. Clearly,
both the measured and modeled radiances are close to the asymptotic shape at 66.1 m,
which was about 26 optical depths.

10.5 An Analytical Asymptotic Solution for Internal Sources

As already noted, exact pencil-and-paper solutions of the radiative transfer equation are
extremely rare, but there are a few. Here is an interesting one related to bioluminescence.

Consider an infinitely deep ocean with homogeneous IOPs and a uniform distribution
of bioluminescing material. The material is isotropically emitting with a source function
S(z, θ, φ, λ) = So W m−3 sr−1 nm−1 at some wavelength. What is the spectral radiance
deep within this ocean?

The RTE for this problem is (dropping the wavelength λ)

cos θ
L(z, θ, φ)

dz
= −cL(z, θ, φ)

+

∫ 2π

0

∫ π

0
L(z, θ′, φ′)β(θ′, φ′ → θ, φ) sin θ′ dθ′ dφ′ + So
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Figure 10.13: Approach of measured and modeled radiances to L∞. The dots are radiances
measured at the depths indicated. The blue curves are the HydroLight simulation, and
the red curve is L∞. Measured and modeled radiances are normalized to 1 for the nadir-
viewing direction at 4.2 m depth. L∞ is normalized to the nadir-viewing radiance at 66.1
m.

Because the source is directionally isotropic, the radiance also should be independent of
direction when the depth is sufficiently far from the surface boundary. Because the source
is constant with depth, the radiance should not depend on the depth when far from the
surface boundary. Thus L(z, θ, φ) → Lo, a constant value, at great depth. The left side
of the RTE is then zero, and the radiance can be taken out of the path integration. The
RTE then becomes

0 = −cLo + Lo

∫ 2π

0

∫ π

0
β(θ′, φ′ → θ, φ) sin θ′ dθ′ dφ′ + So

The integral of the volume scattering function over all directions (all scattering angles)
is by definition the scattering coefficient b. Thus the RTE reduces to just

0 = −cLo + Lob+ So ,

which gives the radiance as

Lo =
So

a
,

where a = c− b is the absorption coefficient. This is the same asymptotic solution as was
derived with the assumption of no scattering in the discussion of exact analytical solutions
of the SRTE (Eq. 10.2). Here we see that this simple solution holds for any volume
scattering function.
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This analytic solution is easily tested with HydroLight. A run was done using a =
1 m−1, b = 4 m−1, and a Petzold average-particle phase function for the water IOPs. The
Sun was placed at a 50 deg zenith angle in an otherwise black sky; the solar irradiance
onto the level sea surface was Ed = 1 W m−2 nm−1. The source magnitude was So =
0.1W m−3 sr−1 nm−1. Figure 10.14 shows the radiance as a function of depth and direction
looking upward to see the downwelling radiance Ld (green), looking downward at the
upwelling radiance Lu (purple), and looking horizontally toward (blue), at perpendicular
to (red), and away from (orange) the Sun’s azimuthal direction.

Figure 10.14: Radiances in selected directions for an average-particle scattering phase
function and other conditions as described in the text.

Figure 10.15 shows the radiances when an isotropic phase function is used, and all
other simulation conditions remain the same. The near-surface radiances are now differ-
ent. In particular, the three horizontal directions are all identical because of the isotropic
scattering. However, the radiance at depth remains the same.

Thus the radiance does depend on depth and direction near the sea surface, where
transmitted sky radiance contributes significantly to the total. However, within a few
meters (about 20 optical depths for these IOPs) of this boundary, all radiances converge to
the predicted value of Lo = So/a = 0.1W m−2 sr−1 nm−1. Although the rate of approach to
the final radiance value depends on the scattering phase function, Sun and sky conditions,
and sea state, the solution far from the surface boundary does not.

Depending on your point of view, this simulation can be taken as a numerical confir-
mation that the analytic solution is correct, or as a validation of the HydroLight code by
comparison with a known solution of the RTE.

10.6 HydroLight

Full disclosure: HydroLight was developed by Curtis Mobley and is now a commercial
software product of Numerical Optics, Ltd. Because HydroLight is used to generate many
of the figures in this book, and because it is widely by the oceanic optics community, some
discussion of the model is warranted.

https://www.numopt.com/
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Figure 10.15: Radiances in selected directions for an isotropic scattering phase function
and other conditions the same as for Fig. 10.14.

HydroLight is a radiative transfer numerical model that computes radiance distribu-
tions and derived quantities (irradiances, reflectances, K functions, etc.) for natural water
bodies. It is designed to solve a wide range of problems in optical oceanography and ocean
color remote sensing. Many of the figures of this book show HydroLight-computed results.

In brief, HydroLight solves the time-independent, depth-dependent, scalar radiative
transfer equation (9.21) to compute the radiance distribution within and leaving any plane-
parallel water body. The spectral radiance distribution is computed as a function of depth,
direction, and wavelength within the water. The upwelling radiance just above the sea
surface includes both the water-leaving radiance and that part of the incident direct and
diffuse sky radiance that is reflected upward by the wind-blown sea surface. The water-
leaving and reflected-sky radiances are computed separately in order to isolate the water-
leaving radiance, which is the quantity of interest in most remote sensing applications.
Input to the model consists of the absorbing and scattering properties of the water body,
the nature of the wind-blown sea surface and of the bottom of the water column, and the
Sun and sky radiance incident on the sea surface. Output consists both of archival printout,
Excel spreadsheets, and of files of digital data from which graphical or other analyses can
be performed.

The input absorbing and scattering properties of the water body can vary arbitrarily
with depth and wavelength. These IOPs can be obtained from actual measurements or
from analytical models, which can build up the IOPs from contributions by any number
of components. The software comes with various bio-optical models for Case 1 and 2
waters, which are based on historical and recent publications on absorption and scattering
by various water constituents. The most general case 2 IOP model can have any number of
components (such as different phytoplankton functional groups, different types of mineral
particles, dissolved substances, bubbles, etc.). The user can also write subroutines to define
the IOPs in any chosen way.

The input sky radiance distribution can be completely arbitrary in the directional and
wavelength distribution of the solar and diffuse sky light. HydroLight does not solve the
RTE for the atmosphere to obtain the radiance incident onto the sea surface. However, it
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does include default sky radiance and irradiance models based on published atmospheric
radiative transfer models.

In its most general solution mode, HydroLight includes the effects of inelastic scatter
by chlorophyll fluorescence, by colored dissolved organic matter (CDOM) fluorescence, and
by Raman scattering by the water itself. The model also can simulate internal layers of
bioluminescing microorganisms (but not point sources of bioluminescence, which give a
3-D radiative transfer problem).

HydroLight employs mathematically sophisticated invariant imbedding techniques to
solve the radiative transfer equation. Details of this solution method are given in Mobley
(1994). When computing the full radiance distribution, invariant imbedding is computa-
tionally extremely fast compared to other solution methods such as discrete ordinates and
Monte Carlo simulation. Computation time is almost independent of the depth variability
of the inherent optical properties (whereas a discrete ordinates model, which resolves the
depth structure as N homogeneous layers, takes N times as long to run for stratified water
as for homogeneous water). Computation time depends linearly on the depth to which the
radiance is desired (whereas Monte Carlo computation times increase exponentially with
depth). All radiance directions are computed with equal accuracy. There is no statistical
noise caused by the invariant imbedding in-water RTE solution (although there can be a
small amount of statistical noise resulting from HydroLight’s Monte Carlo treatment of
wind-blown water surfaces). Monte Carlo models suffer from statistical noise, and quan-
tities such as radiance contain more statistical noise than quantities such as irradiance,
because the simulated rays must be partitioned into smaller directional bins when comput-
ing radiances. The water-leaving radiance—the fundamental quantity in remote sensing
studies—is very time consuming to compute with Monte Carlo simulations because so few
incident rays are backscattered into upward directions.

HydroLight has been under continuous development for over 30 years, with its first pub-
lished description in Mobley (1989). It has been extensively compared with independent
numerical models (e.g., Mobley et al., 1993) (wherein HydroLight version 3.0 is referred
to as “Invariant Imbedding”). The literature contains many comparisons between Hydro-
Light predictions and measured data; representative examples are seen in Mobley et al.
(2002), Chang et al. (2003), Tzortziou et al. (2006), and Tonizzo et al. (2017) . Although
several researchers have developed excellent numerical codes for solving the RTE in the
oceanographic setting, their codes are not readily available. HydroLight is commercially
available, thoroughly validated, and therefore is widely used and trusted.

10.6.1 The HydroLight Physical Model

The version of the RTE solved by HydroLight is describes the following physical conditions:

• time-independent

• horizontally homogeneous IOPs and boundary conditions

• arbitrary depth dependence of IOPs

• wavelengths between 300 and 1000 nm (for the default underlying databases)

• sea surfaces are modeled either by wave variance spectra or by Cox-Munk sea-surface
slope statistics

• finite or infinitely deep (non-Lambertian) water-column bottom
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• can optionally include Raman scatter by water

• can optionally include fluorescence by chlorophyll and CDOM

• can optionally include horizontally homogeneous internal sources such as biolumi-
nescing layers

• includes all orders of multiple scattering

• does not include polarization

• does not include whitecaps

These conditions are appropriate for many (but not all) oceanographic simulations.
HydroLight cannot, for example, simulate time-dependent wave focusing by surface waves
because its sea surface treatment describes the spatially or temporally averaged effects
of surface waves. It cannot be used for pulsed lidar bathymetry simulation, which is an
inherently time-dependent problem. It cannot simulate sloping bottoms or the radiance
reflected by an object in the water, which are inherently 3-D problems. Probably the
most limiting simplification of the physics of HydroLight is that it solves the scalar, or
unpolarized, RTE. It thus cannot be used for studies where the state of polarization is of
interest.

10.6.2 The HydroLight Computational Model

Any radiance sensor actually measures an average of L(z, θ, φ, λ) taken over some finite
solid angle ∆Ω, which is determined by the field of view of the instrument, and over some
finite bandwidth ∆λ, which is determined by the wavelength response of the instrument.
Likewise, in order to solve the RTE numerically, it must be discretized (or otherwise sim-
plified) by averaging over direction and wavelength to obtain a finite number of values
that must be computed. In HydroLight, this directional averaging is performed by first
partitioning the set of all directions (θ, φ), 0 ≤ θ ≤ 180 deg, 0 ≤ φ < 360 deg, into regions
bounded by lines of constant θ (like lines of constant latitude) and constant φ (constant
longitude), plus two polar caps. These quadrilateral regions and polar caps are collectively
called “quads.” The individual quads Quv are labeled by discrete indices u = 1, 2, ...,M
and v = 1, 2, ..., N to show their θ and φ positions, respectively. The standard (default)
quad layout is shown in Figure 10.16. In this layout, which has M = 20 and N = 24, the
polar caps have a 5 deg half angle and the θ boundaries lie at 5, 15, 25, ...,75, 85, 90, 95,
105, ..., 175 deg. For mathematical reasons there is no quad centered on the “equator”
at θ = 90 deg. However, the radiances computed for the 85-90 and 90-95 deg quads can
be averaged to get the “horizontal” radiance at a nominal angle of θ = 90 deg. Thus the
HydroLight standard quad layout essentially gives 10 deg resolution in θ and 15 deg in φ.
This is adequate for most oceanographic simulations.

Similarly, the wavelength region of interest is partitioned into a number of contiguous
wavelength bands of width ∆λj , j = 1, 2, ..., J . The ∆λj need not be the same size for
different j values.

The fundamental quantities computed by HydroLight are then the quad- and band-
averaged radiances at any selected set of depths zk, k = 1, 2, ...,K:

L(k, u, v, j) =
1

∆Ωuv ∆λj

∫
∆λj

∫
Quv

L(zk, θ, φ, λ) dΩ(θ, φ) dλ .
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Figure 10.16: The HydroLight standard quad layout, which has a nominal angular resolu-
tion of θ = 10 deg and φ = 15 deg. The red box indicates a particular 10 × 15 deg quad.
The green line is the “equator” between the upper and lower hemispheres of directions.

The quads “homogenize” or average the radiance within each quad, just like a diffuser
does in an instrument. Thus, in the quad layout of Fig. 10.16, it is not possible to resolve
the difference in the radiance for polar angles θ = 26 deg and θ = 34 deg, because they
both lie in the same quad extending from θ = 25 deg and θ = 35 deg. However, there
is a difference in θ = 34 deg and θ = 36 deg, because those angles lie in different quads
and thus are represented by (probably) different quad-averaged radiances. This same sort
of directional averaging of radiances occurs in Monte Carlo models, which collect rays in
directional “bins.” If it is necessary to have greater angular resolution in the radiance
distribution, a different quad layout can be created. However, the computer storage and
run time are proportional to the square of the number of quads, so increasing the angular
resolution comes with increased computational cost, just as for other solution techniques.

10.6.3 Ways in Which HydroLight Can Be Used

HydroLight has been used in numerous published studies on topics as diverse as biological
primary production, ecosystem modeling, remote sensing, underwater visibility, mixed-
layer thermodynamics, and generation of large synthetic data sets needed for neural net-
work training, generation of spectrum-matching libraries, and design of ocean color satellite
sensors and retrieval algorithms. These studies have used HydroLight in various ways:

• HydroLight can be run with modeled input values to generate in-water scalar ir-
radiances, which in turn become the input to models of primary productivity or
mixed-layer thermodynamics. Accurate light calculations are fundamental to the
coupling of physical, biological, and optical ecosystem models.

• HydroLight can be run with the IOPs of different water types to simulate in-water
light fields for the purpose of selecting or designing instruments for use in various
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water types. Such information aids in the planning of field experiments.

• HydroLight can be run with assumed water inherent optical properties as input, in
order to obtain estimates of the signals that would be received by various types or
configurations of remote sensors, when flown over different water bodies and un-
der different environmental conditions. Such information can guide the planning of
specific operations.

• HydroLight can be used to isolate and remove unwanted contributions to remotely
sensed signatures. Consider the common remote-sensing problem of extracting in-
formation about a water body from a downward-looking imaging spectrometer. The
detected radiance contains both the water-leaving radiance (the signal, which con-
tains information about the water body itself) and sky radiance reflected upward by
the sea surface (the noise). HydroLight separately computes each of these contri-
butions to the radiance heading upward from the sea surface and thus provides the
information necessary to correct the detected signature for surface-reflection effects.

• When analyzing experimental data, HydroLight can be run repeatedly with different
water optical properties and boundary conditions, to see how particular features of
the data are related to various physical processes or features in the water body, to sub-
stance concentrations, or to boundary or other external environmental effects. Such
simulations can be valuable in formulating hypotheses about the causes of various
features in the data.

• HydroLight can be used to simulate optical signatures for the purpose of evaluating
proposed remote-sensing algorithms for their applicability to different environments
or for examining the sensitivity of algorithms to simulated noise in the signature.

• HydroLight can be used to characterize the background environment in an image.
When attempting to extract information about an object in the scene, all of the
radiance from the natural environment may be considered noise, with the radiance
from the object being the signal. HydroLight can be used to compute and remove
the environmental contribution to the image.

• HydroLight can be run with historical (climatological) or modeled input data to
provide estimates about the marine optical environment during times when remotely
or in-situ sensed data are not available.

10.6.4 Inputs to HydroLight

In order to run HydroLight to predict the spectral radiance distribution within and leav-
ing a particular body of water, during particular environmental (sky and surface wave)
conditions, the user supplies the core model with the following information (via built-in
submodels, or user-supplied subroutines or data files):

• The inherent optical properties of the water body. These optical properties are
the absorption and scattering coefficients and the scattering phase function. These
properties must be specified as functions of depth and wavelength.

• The state of the wind-blown sea surface. HydroLight can model the sea surface
using the Cox-Munk capillary-gravity wave slope statistics (Section 13.4), which ad-
equately describe the optical reflection and transmission properties of the sea surface



10.6. HYDROLIGHT 385

for moderate wind speeds and solar angles away from the horizon. In this case, only
the wind speed needs to be specified. HydroLight can also use wave variance spectra
(Appendices B and C), which resolve both wave height and wave slope.

• The sky spectral radiance distribution. This radiance distribution (including back-
ground sky, clouds, and the Sun) can be obtained from semi-empirical models that
are built into HydroLight, from observation, or from a separate user-supplied atmo-
spheric radiative transfer model (such as MODTRAN).

• The nature of the bottom boundary. The bottom boundary is specified via its bidi-
rectional reflectance distribution function (BRDF, Section 13.6). If the bottom is a
Lambertian reflecting surface at a finite depth, the BRDF is defined in terms of the
irradiance reflectance of the bottom. For infinitely deep water, the inherent opti-
cal properties of the water body below the region of interest are given, from which
HydroLight computes the needed (non-Lambertian) BRDF describing the infinitely
deep layer of water below the greatest depth of interest.

The absorption and scattering properties of the water body can be provided to Hydro-
Light in various ways. For example, if actual measurements of the total absorption and
scattering are available at selected depths and wavelengths, then these values can be read
from files provided at run time. Interpolation is used to define values for those depths
and wavelengths not contained in the data set. In the absence of actual measurements,
the IOPs of the water body can be modeled in terms of contributions by any number of
components. Thus the total absorption can be built up as the absorption by water itself,
plus the absorption by chlorophyll-bearing microbial particles, plus that by CDOM, by
detritus, by mineral particles, and so on. In order to specify the absorption by chlorophyll-
bearing particles, for example, the user can specify the chlorophyll profile of the water
column and then use a bio-optical model to convert the chlorophyll concentration to the
needed absorption coefficient. The chlorophyll profile also provides information needed for
the computation of chlorophyll fluorescence effects. Each such absorption component has
its own depth and wavelength dependence. Similar modeling can be used for scattering.

Phase function information can be provided by selecting (from a built-in library) a phase
function for each IOP component, e.g., using a Rayleigh-like phase function for scattering
by the water itself, by using a Petzold type phase function for scattering by particles, and
by assuming that dissolved substances like CDOM do not scatter. HydroLight can also
generate phase functions that have a specified backscatter fraction. For example, if the user
has both measured scattering coefficients b(z, λ) (e.g., from a WETLabs ac-s instrument)
and measured backscatter coefficients bb(z, λ) (e.g., from a WETLabs bb-9 or HOBILabs
HydroScat-6 instrument), then HydroLight can use the ratio bb(z, λ)/b(z, λ) to generate
a Fournier-Forand phase function (Section 6.7) that has the same backscatter fraction at
each depth and wavelength. The individual-component phase functions are weighted by the
respective scattering coefficients and summed in order to obtain the total phase function.

HydroLight does not carry out radiative transfer calculations for the atmosphere. The
sky radiance for either cloud-free or overcast skies can be obtained from simple analytical
models or from a combination of semi-empirical models. Such models are included in the
HydroLight code. Alternatively, if the sky radiance is measured, that data can be used as
input to HydroLight via a user-supplied data file. It is also possible to run an independent
atmospheric radiative transfer model (such as MODTRAN) in order to generate the sky
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radiance coming from each part of the sky hemisphere, and then give the model-generated
values to HydroLight as input.

The bottom boundary condition is applied at the deepest depth of interest in the
simulation at hand. For a remote sensing simulation concerned only with the water-leaving
radiance, it is usually sufficient to solve the radiative transfer equation only for the upper
two optical depths, because almost all light leaving the water surface comes from this
near-surface region. In this case, the bottom boundary condition can be taken to describe
an optically infinitely deep layer of water below two optical depths. In a biological study
of primary productivity, it might be necessary to solve for the radiance down to five (or
more) optical depths to reach the bottom of the euphotic zone, in which case the bottom
boundary condition would be applied at that depth. In such cases, HydroLight computes
the needed bottom boundary BRDF from the inherent optical properties at the deepest
depth of interest. The bottom boundary condition also can describe a physical bottom at a
given geometric depth. In that case, irradiance reflectance of the bottom must be specified
(for a Lambertian bottom). In general, this reflectance is a function of wavelength and
depends on the type of bottom—mud, sand, sea grass, etc. The user can also write a
subroutine to define a non-Lambertian bottom BRDF.

10.6.5 Outputs from HydroLight

HydroLight generates files of archival “printout,” which are convenient for a quick ex-
amination of the results, and larger files of digital data. The digital files include Excel
spreadsheets and files of data (including the full radiance distribution) formatted for in-
put into graphics packages such as IDL. (The software package contains example routines
that use IDL to read and plot HydroLight output. Those routines created many of the
HydroLight-computed figures in this book.). The default printout gives a moderate amount
of information to document the input to the run and to show selected results of interest to
most oceanographers (such as various irradiances, reflectances, mean cosines, K-functions,
and radiances in selected directions). This output is easily tailored to the user’s require-
ments. A file of digital data contains the complete input and output for the run, including
the full radiance distribution. This file is generally used as input to plotting routines that
give graphical output of various quantities as functions of depth, direction, or wavelength.
All input and output files are in ASCII (text file) or Excel spreadsheet format to enable
easy transfer between different computer systems.

10.6.6 Documentation

The invariant imbedding algorithms used within HydroLight are described in detail in
Light and Water (Mobley, 1994), in particular Chapters 4 and 8. The source code is
extensively documented with comments referencing equations in Light and Water and
other publications. There is a Users’ Guide (Hedley and Mobley, 2019b) that describes
how to run the code, and Technical Documentation (Hedley and Mobley, 2019a) that gives
information about the included models for IOPs, bottom reflectances, sky radiances, and
such. The latest versions of these documents can be downloaded from the references page
of the Web Book.

The software itself comes in native versions for the Microsoft Windows, Apple OSX,
and Linux operating systems. The mathematical source code is written in Fortran 95.
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The user interface is written in C++ and uses the Qt library for graphical elements. There
are related specialized versions of HydroLight3 called EcoLight and EcoLight-S(ubroutine).
For further details, see Numerical Optics, Ltd..

10.7 Gershun’s Law

The radiative transfer equation is a statement of energy conservation in the sense that it
accounts for all the losses and gains to a beam of light moving through the water along a
path in a fixed direction. We now derive a useful conservation statement that holds at a
fixed point in the water, through which light is moving in all directions.

The desired result is obtained by integrating the 1-D, time-independent, source-free
RTE

cos θ
dL(z, θ, φ, λ)

dz
= − c(z, λ)L(z, θ, φ, λ)

+

∫ 2π

0

∫ π

0
L(z, θ′, φ′, λ)β(z, θ′, φ′ → θ, φ, λ) sin θ′dθ′dφ′ (10.28)

over all directions. Dropping the wavelength argument for brevity and writing the dif-
ferential element of solid angle sin θdθdφ as dΩ(θ, φ), the left hand side of Eq. (10.28)
yields ∫ 2π

0

∫ π

0
cos θ

dL(z, θ, φ)

dz
dΩ(θ, φ) =

d

dz

∫ 2π

0

∫ π

0
L(z, θ, φ) cos θdΩ(θ, φ)

=
d

dz
[Ed(z)− Eu(z)] (10.29)

after noting that cos θ < 0 for π/2 < θ ≤ π and recalling the definitions (1.22) and (1.23)
of the upwelling and downwelling plane irradiances as integrals of the radiance. The −cL
term becomes

∫∫
−c(z)L(z, θ, φ)dΩ(θ, φ) =− c(z)

∫∫
L(z, θ, φ)dΩ(θ, φ)

=− c(z)Eo(z) , (10.30)

where the double integration over all directions is the same as shown in Eq. (10.29), and
Eo(z) is the scalar irradiance. The elastic scatter path function gives∫∫ [∫∫

L(z, θ′, φ′)β(z, θ′, φ′ → θ, φ)dΩ(θ′, φ′)

]
dΩ(θ, φ)

=

∫∫
L(z, θ′, φ′)

[∫∫
β(z, θ′, φ′ → θ, φ)dΩ(θ, φ)

]
dΩ(θ′, φ′)

= b(z)

∫∫
L(z, θ′, φ′)dΩ(θ′, φ′) = b(z)Eo(z) . (10.31)

3Caveat Emptor : There are many “HydroLight” products on the market, including hydrogen powered
lighting systems, hydroelectric power systems, underwater dive lights, lighting for irrigation systems, lighting
for growing recreational plants in your basement, and even skin care lotions, bicycles, sports drinks, and a
toothbrush. However, none of those other HydroLights can solve the radiative transfer equation.

https://www.numopt.com/
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Here we recall that the integral of the volume scattering function over all directions is the
scattering coefficient.

Collecting terms (10.29)-(10.31) resulting from the directional integration of the RTE,
we have

d

dz
[Ed − Eu ] = −cEo + bEo ,

or
d

dz
[Ed(z, λ)− Eu(z, λ) ] = −a(z, λ)Eo(z, λ) (W m−3 nm−1) , (10.32)

which is the desired result. This equation is known as Gershun’s law (Gershun, 1936) and
(Gershun, 1939).

The physical significance of Eq. (10.32) is that it relates the depth rate of change of
the net irradiance Ed − Eu to the absorption coefficient a and the scalar irradiance Eo. If
inelastic contributions (fluorescence and Raman scattering) and internal sources (such as
bioluminescence) are negligible at the wavelength of interest, then Eq. (10.32) can be used
to obtain the absorption coefficient a from in situ measurements of the irradiance triplet
Ed, Eu, and Eo:

a(z, λ) = − 1

Eo(z, λ)

d[Ed(z, λ)− Eu(z, λ)]

dz
. (10.33)

This is an example of an explicit inverse model—a model that retrieves an inherent optical
property from measurements of the light field. Voss (1989) used Eq. (10.33) to recover a
values to within an estimated error of order 20%. Inelastic scattering and internal source
effects were reasonably assumed to be negligible in his study. The needed irradiances
were all computed from a measured radiance distribution, so that no intercalibration of
instruments was required. Li et al. (2018) made extensive measurements of the irradiance
quartet Ed, Eu, Eod, and Eou and used those to retrieve absorption, which was compared
with measurements made by an ac9. Some of their results are seen in Fig. 7.24.

A more general development can be made to account for internal sources or inelastic
scatter and for 3-D and time-dependent light fields, as shown in Light and Water (Mobley,
1994, Section 5.10). The result is known as the divergence law for irradiance:

1

v

∂Eo

∂t
+∇ · ~E = −aEo + ESo . (10.34)

Here v is the speed of light in the water, ~E is the vector irradiance, and ESo is a source
term. For time-independent, 1-D, source-free water, this equation reduces to Eq. (10.32).

Maffione et al. (1993) determined absorption values by writing the source-free form of
the 3-D divergence law in spherical coordinates and applying the result to irradiance mea-
surements made using an underwater, artificial, isotropic light source. The artificial light
source allowed measurements to be made at night, thus there was no inelastic scattering
from other wavelengths. Their instrument did not require absolute radiometric calibration.

Note, however, that Gershun’s law will give incorrect absorption values if naively ap-
plied to waters and wavelengths where inelastic processes such as Raman scattering or
fluorescence are significant; see Li et al. (2018) for examples. For this reason, and because
of calibration difficulties if different instruments are used to measure Ed, Eu, and Eo, Ger-
shun’s law is seldom used as a way to measure absorption. Nevertheless, it is sometimes
a useful check on the internal consistency of numerical models or measured data, and it
leads to a convenient way of calculating radiant heating rates.
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10.7.1 Heating Rates in the Upper Ocean

Gershun’s law has a very important application in the computation of heating rates in
the upper ocean. The rate of heating of water depends on how much scalar irradiance is
available and on the total absorption coefficient of the water (pure water plus all other
constituents). Combining the First Law of Thermodynamics (i.e., conservation of energy)
with Eq. (10.32) gives

∂T

∂t
(z, at λ) =

1

cvρ
a(z, λ)Eo(z, λ) = − 1

cvρ

∂[Ed(z, λ)− Eu(z, λ)]

∂z

[
deg C

sec

]
.

In this equation,

• T is the temperature in deg C

• t is the time in seconds

• ∂T
∂t (z, at λ) denotes the rate of change of temperature at depth z due to energy
absorbed at wavelength λ. It does not mean that temperature is a function of wave-
length.

• cv = 3900 J (kg deg C)−1 is the specific heat of sea water at constant volume

• ρ = 1025 kg m−3 is the density of sea water

This equation is usually applied with wavelength-integrated irradiances. In ocean modeling,
“short-wave” radiation is usually taken to be the range of 400—1000 nm. Letting

Ed,u(z) =

∫ 1000

400
Ed,u(z, λ)dλ

gives
∂T

∂t
(z, short-wave) = − 1

cvρ

∂[Ed(z)− Eu(z)]

∂z
. (10.35)

In optically deep water, Eu(z) << Ed(z), and the upwelling irradiance is usually dropped.
The downwelling irradiance is then modeled, e.g. in terms of the chlorophyll concentration
in Case 1 water. The EcoLight-S radiative transfer code (Mobley, 2011) was developed
to provide extremely fast solutions of the radiative transfer equation to obtain Ed(z) and
Eu(z) for any water body (deep or shallow, Case 1 or Case 2) for use in Eq. (10.35)
in coupled physical-biological-optical ecosystem models. (EcoLight-S also computes other
quantities such as PAR and remote-sensing reflectance, which are inputs to photosynthesis
calculations or are useful for model validation.) For an example application of such a
model, see Mobley et al. (2015).

10.8 Energy Conservation

When making or computing radiance or irradiance measurements in the ocean, it is some-
times hard to verify that energy is being conserved. This is equally true when looking at
the output from a numerical model such as HydroLight. Confusion most often arises when
comparing measurements made just above and below the sea surface and observing that
the measured (or predicted) radiances do not seem to “add up” correctly. To resolve such
confusion, first note that it’s the Law of Conservation of Energy, not the law of conserva-
tion of radiance or irradiance. We must therefore express the law of conservation of energy
in terms of radiance or irradiance as appropriate to the measurements being made.
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10.8.1 Energy Conservation Within the Water

Within the water column, if there are no internal sources such as bioluminescence or inelas-
tic scatter contributing to the wavelength of interest, conservation of energy is expressed
in terms of irradiances by Gershun’s law (10.33). This can be illustrated using numerical
results generated by HydroLight. A run was made with the Sun placed at a 60 deg zenith
angle in a clear sky; the wind speed was 5 m s−1, and the water was infinitely deep. The
absorption coefficient was set to a = 0.1 m−1, the scattering coefficient to b = 0.4 m−1,
and a Petzold “average-particle” phase function was chosen. (The run used HydroLight’s
“Constant IOPs” submodel for these inputs.) No internal sources were included in the run.
Table 10.1 shows the computed irradiances at depths of 5.00 and 5.01 m. Closely spaced
depths are used to evaluate Eq. (10.33) so that the depth derivative can be accurately
approximated as a finite difference and the scalar irradiance can be taken as the average
of the values at 5.00 and 5.01 m.

depth (m) Eo Eu Ed

5.00 0.51833 0.013151 0.32613

5.01 0.51749 0.013129 0.32559

Table 10.1: Irradiances computed within the water body as described in the text. The
irradiances have units of W m−2 nm−1.

Using these values in the finite difference approximation of Eq. (10.33) gives

a = − 1

0.5(0.51833 + 0.51749)

(0.32559− 0.013129)− (0.32613− 0.013151)

5.01− 5.00

= 0.1 m−1 .

The absorption coefficient as computed from the irradiances via Gershun’s law is the same
as the one used as input to the run, so HydroLight is conserving energy in its in-water
solution of the radiative transfer equation. Such accuracy cannot be expected with real
data because of imperfect instrument calibration and other sources of error such as Raman
scatter (an internal source not accounted for in Eq. (10.32), but which will always be
present to some degree during daylight measurements4). Nevertheless, Gershun’s law can
be a useful way to retrieve absorption coefficients from in-water radiance or irradiance
measurements, as seen in papers by Voss (1989) and Maffione et al. (1993).

10.8.2 Energy Conservation Across the Air-Water Surface

The situation is more complicated when considering energy conservation across the air-
water surface. Consider a collimated beam of light incident onto a level sea surface. Part
will be reflected and part will be transmitted into the water. Figure 10.17 shows this
geometry and various quantities needed to express conservation of energy at the surface.

4HydroLight also conserves energy if internal sources are present. Demonstration of that requires adding
an appropriate source term to Gershun’s equation; see Eq. (10.34).
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Figure 10.17: Geometry needed for expressing the law of conservation of energy in terms
of irradiances across a level sea surface.

Conservation of energy (or equivalently, power) across the surface requires that

Pi = Pr + Pt , (10.36)

where Pi is the power in an incident collimated beam of cross section Ai, Pr is the power
in the reflected beam of cross section Ar, and Pt is the power in transmitted beam of cross
section At. These beam cross sectional areas are shown in green in Fig. 10.17. The beam
of incident power illuminates a horizontal area As of the level sea surface (shown in blue).

10.8.2.1 Energy conservation in terms of plane irradiances

Conservation of energy can be expressed in terms of incident (downwelling), reflected (up-
welling), and transmitted (downwelling) plane irradiances using the horizontal projections
of the beam cross section areas. Recalling that plane irradiance is power per unit horizontal
area, Eq. (10.36) becomes

ApEd(incident, in air) = ApEu(reflected, in air)

+ ApEd(transmitted, in water) ,

where the horizontally projected areas Ap corresponding to each beam are shown in yellow
in Fig. 10.17. Since each beam has the same horizontally projected area, this equation
reduces to just

Ed(incident, in air) = Eu(reflected, in air)

+ Ed(transmitted, in water) . (10.37)

Equation (10.37) is conservation of energy across the surface expressed in terms of plane
irradiances for a collimated incident beam.
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10.8.2.2 Energy conservation in terms of scalar irradiances

To express Eq. (10.36) in terms of the scalar irradiances, first recall from (1.24) how Eod

is obtained from the radiance:

Eod =

∫∫
2πd

L(ξ̂′)dΩ(ξ̂′) .

For a collimated incident beam in direction ξ̂o, we can write the radiance in terms of
the beam irradiance and a Dirac delta function to get

Eod =

∫∫
2πd

E⊥δ(ξ̂
′ − ξ̂o)dΩ(ξ̂′) = E⊥ ,

where E⊥ is the incident irradiance on the beam cross sectional area; E⊥ = Pi/Ai. Similar
equations hold for the reflected and transmitted scalar irradiances. These beam cross
sectional areas are shown in green in Fig. 10.17. Thus Eq. (10.36) becomes

AiEod(incident, in air) = ArEou(reflected, in air)

+ AtEod(transmitted, in water) ,

or

Eod(incident, in air) = Eou(reflected, in air)

+ AtEod(transmitted, in water)
At

Ai
, (10.38)

after noting that Ar = Ai by the law of reflection. By geometry, the ratio of areas At/Ai is
just cos θt/ cos θi. θt can be written in terms of θi using Snell’s law, sin θi = n sin θt, where
n is the real index of refraction of the water. Equation (10.38) then becomes

Eod(incident, in air) = Eou(reflected, in air)

+ Eod(transmitted, in water)
1

cos θi

√
1− sin2 θi

n2
. (10.39)

Equation (10.39) is conservation of energy expressed in terms of scalar irradiance for a
collimated incident beam.

To illustrate Eqs. (10.37) and (10.39) with HydroLight output, a run was made with the
Sun at a zenith angle of θi = 60 deg in a black sky, in order to obtain a collimated incident
beam. The incident Ed onto the surface was set to 1. The sea surface was level (zero wind
speed), and the water index of refraction was n = 1.34. The scattering coefficient within
in the water was set to zero, so that upwelling light from the water column would not
confuse the illustration of energy conservation across the sea surface itself. The absorption
coefficient was set to a = 0.1 m−1. (These runs used HydroLight IOP model “Constant
IOPs” and the “idealized sky model.”)

The computed irradiances just above and below the surface are shown in Table 10.2.
The upwelling irradiances in the water are zero because there was no scattering by the
water and the bottom was infinitely deep. These computed irradiances satisfy Equations
(10.37) and (10.39), showing that HydroLight conserves energy across the surface.
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location Eou Eod Eu Ed

in air 0.12690 2.0077 0.063209 1.0000

in water at depth 0 0.00000 1.2277 0.0000 0.93693

Table 10.2: Plane and scalar irradiances for a collimated incident beam and no scattering
within the water.

location Eou Eod Eu Ed

in air 0.18863 1.7764 0.050456 1.0000

in water at depth 0 0.00000 1.1430 0.0000 0.94954

Table 10.3: Plane and scalar irradiances for a diffuse incident sky radiance and no scattering
within the water.

A run was then done with a heavily overcast sky to generate a diffuse sky radiance
pattern with the Sun’s location not discernible. The wind speed was 10 m s−1 to generate
a non-level sea surface. The resulting irradiances are shown in Table 10.3

As before, these plane irradiances satisfy Eq. (10.37). However, the scalar irradiances
do not satisfy Eq. (10.39). The reason is that Eq. (10.39) must be applied for each
particular incident direction θi of the diffuse sky radiance, in order to correctly compute
the angle factor seen in Eq. (10.39). If this is done one direction at a time (with the Sun in
a black sky), each individual incident direction satisfies Eq. (10.39) just as in the previous
example. Thus energy is conserved across the surface “beam by beam,” hence in toto, even
if it is not obvious from the total scalar irradiances.

A further complication occurs when the water body has scattering. To illustrate this,
the scattering coefficient was set to b = 0.4 m−1 and a Petzold “average-particle” phase
function was used in the previous simulation. The computed irradiances were then

location Eou Eod Eu Ed

in air 0.21264 1.7764 0.062372 1.0000

in water at depth 0 0.07922 1.2046 0.031115 0.96873

Table 10.4: Plane and scalar irradiances for a diffuse incident radiance, with scattering in
the water.

Now even the plane irradiances appear to violate conservation of energy, Eq. (10.37).
The reason is that Eou and Eu in air contain both surface-reflected radiance (as before) and
radiance transmitted upward through the sea surface. Likewise, Eod and Ed in the water
contain both downward transmitted irradiance (as before) as well as upwelling radiance
that has been reflected back downward by the surface. This makes it appear at first glance
that the irradiances do not add up correctly, even though energy actually is conserved
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across the air-water surface. The effects of both the surface itself and the water body can
be accounted for simply by tallying the plane irradiances incident onto and leaving the
surface from above and below:

Ed(downwelling, in air)− Eu(upwelling, in air) =

Ed(downwelling, in water)− Eu(upwelling, in water) . (10.40)

Equation (10.40) expresses conservation of energy for the surface plus water body, for
any conditions of incident lighting and water IOPs. The irradiances seen in Table (10.4)
satisfy this equation.

10.8.2.3 Energy conservation in terms of radiance

Another complication occurs when expressing conservation of energy across the surface
in terms of radiance. Now it is necessary to account for changes in both the beam cross
sectional area and in solid angle when going across the surface. When interpreting Hy-
droLight output, it must be remembered that the computed radiances are averages over
“quads” or solid angles of finite size, as discussed on the HydroLight section. Such quads
are represented by the green areas in Fig. (10.18).

Figure 10.18: Illustration of the HydroLight radiance quads as needed to express energy
conservation for a collimated beam across a level sea surface.

Remembering that radiance is power per unit area per unit solid angle, Eq. (10.36)
can be written as

LiAi∆ωi = LrAr∆ωr + LtAt∆ωt ,

or

Li = Lr + Lt
At ∆ωt

Ai,∆ωi
,
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after noting that Ar = Ai and ∆ωr = ∆ωi by the law of reflection. As noted before,
At/Ai = cos θt/ cos θi. The solid angles are given by ∆Ω = ∆(cos θ)∆φ, where the angle
ranges are determined by the θ and φ boundaries of the quads. Thus the last equation
becomes

Li = Lr + Lt
cos θt

cos θi

∆(cos θt)

∆(cos θi)
, (10.41)

since ∆φt = ∆φi for the HydroLight quad layout. These angle factors must be evaluated
for the particular quads associated with the incident and transmitted beams.

Consider again the previous case of the Sun in a black sky at θi = 60 deg, a level water
surface, and no scattering. The incident and reflected HydroLight quads are centered
at 60 deg and extend from 55 to 65 deg. Snell’s law gives the transmitted direction as
θt = sin−1[(sin θi)/n] = 40.26 deg. Thus the transmitted radiance is contained in the
HydroLight quad centered at 40 deg and extending from 35 to 45 deg. For the transmitted
quad, for example, ∆(cos θt) = cos 35 − cos 45 = 0.11205. Evaluating the angle factors in
Eq. (10.41) for these quads gives

Li = Lr + Lt
0.76604

0.50000

0.11205

0.15096
. (10.42)

The corresponding computed quad-averaged radiances for this run were Li = 50.7996,
Lr = 3.21094, and Lt = 41.8544 W m−2 sr−1 nm−1. These radiances satisfy Eq. (10.42).
Thus energy expressed as radiance is conserved beam-by-beam across the water surface.

We have seen that conservation of energy across the sea surface can be expressed in
various ways in terms of radiance and irradiances. However, those expressions are often
written for collimated incident beams and consider only the surface itself (Eqs. 10.37,
10.39, and 10.41). It is therefore not always obvious that energy is conserved for the entire
surface plus water column when looking at data or simulations for realistic conditions of
sky radiances and water IOPs. In general, Eq. (10.40) should be used to check conservation
of energy across the sea surface with measured or modeled plane irradiances.

10.9 Closure

We have now assembled all of the pieces needed for optical oceanography: radiometric
variables, inherent and apparent optical properties, and a family radiative transfer equa-
tions. There remains one more topic: closure. “Closure” is just a fancy word for “getting
everything to agree,” and it comes in various forms:

Scale Closure: Do measurements made on one spatial scale agree with measurements
made on a different spatial scale? An ac-s instrument (Sea-Bird Scientific) mea-
sures the absorption coefficient on a few cubic centimeters of water, as does a spec-
trophotometer (Section 5.5). However, it is also possible to extract the absorption
coefficient from Gershun’s law (Eq. 10.33) or from remote-sensing measurements,
and both of these techniques employ optical measurements (irradiances or remote-
sensing reflectance) that are determined by large volumes of the ocean. In a given
set of measurements, do these small-volume and large-volume measurements give the
same absorption coefficient? If they do, this provides a good check on the quality of
the data (and perhaps on the spatial homogenity of the water body being observed).
If they do not, the discrepancy needs to be explained.

https://www.seabird.com/
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Instrument Closure: Do different instruments that supposedly measure the same quan-
tity give the same answers? Do the just-mentioned ac-s and spectrophotometer give
the same absorption coefficient spectrum for the same water sample? Both the Coul-
ter counter (Beckman Instruments) and the LISST (Sequoia Scientific, Inc.) measure
particle size distributions, but using different physical principles to detect the par-
ticles. Do they give the same size distributions for a given water body? If so, this
gives reassurance that the data are good. If they disagree, what is the reason? Is
the difference expected because their different physical principles make them “see”
different particle properties, or is the difference because one of the instruments was
badly calibrated?

Model Closure: Do different models give the same outputs for the same inputs? Both
HydroLight (Section 10.6) and Monte Carlo models (Appendix E) can compute ra-
diometric variables in one-dimensional geometries, but using very different numerical
methods to solve the SRTE. Do these very different techniques give the same answers
to a given problem? If the answers agree, both models are likely correct. But if not, is
the difference due to explainable differences in the physical assumptions of the mod-
els, or to different accuracies of the solution algorithms (e.g., statistical noise in the
Monte Carlo solution), or perhaps to a bug on one of the codes? There are many bio-
geo-optical models that compute various IOPs given the concentrations of the water
column constituents such as chlorophyll, CDOM, and mineral particles. Do different
IOP models give the same predictions for absorption and scattering coefficients given
the same water composition? If not, why not?

Model-Data Closure: Do model predictions agree with measurements? This is per-
haps the most difficult closure to achieve. A field experiment may have instruments
measuring chlorophyll and other component concentrations, which are used in a bio-
optical model to predict the IOPs. Those IOPs are then used in HydroLight to predict
in-water Ed(z, λ) and Lu(z, λ). There may also be a profiling instrument such as a
Hyper Pro (Sea-Bird Scientific)) measuring Ed(z, λ) and Lu(z, λ) directly. Do the
measurements and the HydroLight predictions agree? If not, is the disagreement
due to bad input to HydroLight (e.g., from the bio-optical model that converted the
concentrations to IOPs), or due to bad radiometer calibration, or due to physics not
included in HydroLight (e.g., polarization or the effects of 3-D geoemtry)?

Figure 10.19 show absorption coefficients atotal − aw measured five different ways in
a coastal lagoon. Four instruments were used: two versions of reflective tube absorption
meters, the ac9 and acs (www.seabird.com); and two designs of integrating cavity absorp-
tion meters, ICAM ((www.turnerdesigns.com) and PSICAM (unstonesci.com). (For a
detailed description of these instruments and the protocols for their use, see Neeley and
Maninno (2018).) Comparison of these instruments gives an example of instrument clo-
sure. In addition, Gershun’s law (10.33) was used to retrieve the absorption coefficient
from measurements of the scalar and plane irradiances. The four instruments make mea-
surements on small volumes of water inside the instruments, whereas Gershun’s law uses
in situ measurements of irradiances that are determined by a large water volume. Com-
paring the instruments with Gershun’s law thus gives a test of scale closure. As seen in
the figure, sometimes the measurements differ by tens of percent (their Station 4, left
panel), and sometimes they are within a few percent (Station 9, right panel). This level
of disagreement among different instruments and methods for absorption measurements is

https://www.beckman.com/
https://www.sequoiasci.com/
https://www.seabird.com/
www.seabird.com
www.turnerdesigns.com
unstonesci.com
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typical. The paper by Kostakis et al. (2021) shows an additional ten stations and many
other comparisons, including the effects of different scattering corrections for the as9 and
acs instruments.

Figure 10.19: Comparison of non-water absorption coefficients measured five different ways
in coastal waters. Data from Kostakis et al. (2021, Fig 5) provided courtesy of I. Kostakis.

Figure 10.20 shows measurements of the particle backscatter coefficient bbp made by
four different instruments on a water sample containing E. huxleyi coccolithophores. As
with the absorption measurements just discussed, in principle all four instruments should
give the same value at a given wavelength. In reality, there are differences of 30% or more
at some wavelengths. Note that the supposed error bars for the individual measurements
do not overlap, so the actual errors are greater than the error bars imply.

Figure 10.20: Comparison of backscattering coefficients measured by four different instru-
ments on a sample containing E. huxleyi coccolithophores. Modified from Mannino et al.
(2019).

These two figures show the typical spread of values seen for the same IOP for oceano-
graphic measurements. Optical oceanography is not a field where you can simply buy
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an instrument and get six-figure accuracy in the output. Such comparisons give valuable
information about the true uncertainties in data values, which then can be used in error
analyses of final products such as the remote-sensing reflectance. To first order, the remote-
sensing reflectance Rrs is proportional to backscatter over absorption, so if absorption and
backscatter coefficients with errors of tens of percent are used as input to HydroLight, the
HydroLight-predicted Rrs values can easily differ by tens of percent (depending on whether
the errors in a andbb have the same of different signs, with all else being the same).

An example of model closure is shown in Fig. 10.21. In that study (Mobley et al.,
1993), numerical models using invariant imbedding (HydroLight before it was named),
discrete ordinates, and Monte Carlo solution methods for the SRTE were compared for
a “canonical” set of problems. The differences in the computed in-water radiances are
due to different angular resolutions in the model outputs and to Monte Carlo statistical
noise. This paper convinced the community that all of the compared models were giving
correct outputs for a given set of inputs and can be trusted in routine use. Thirty years
of use of these models has established that when a model like HydroLight gives a “wrong
answer,” the cause is almost always due to “bad” IOP inputs from either inaccurate IOP
measurements or the use of bio-geo-optical models that are not applicable for the water
body being studied.

Figure 10.21: Comparison of radiance distributions L(τ, θv, φv) in the azimuthal plane of
the Sun as computed by six different numerical models. (In this figure τ is the optical depth;
θv and φv are viewing directions.) The solid lines are computed by invariant imbedding
(HydroLight) and discrete ordinates; the dash curves are four different Monte Carlo codes.
The dotted line is the asymptotic radiance distribution L∞(θv) normalized to the value of
L(τ = 20, θv = 180). Figure 8 of Mobley et al. (1993), reproduced under Optica’s Fair Use
policy.

As a final example of closure, Fig. 10.22 shows an example of model-data closure from
Tzortziou et al. (2006). This outstanding paper is a gold standard for closure studies and is
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highly recommended to see what is involved in taking good data. As seen in Fig. 10.22 and
several other figures in the paper, it is possible to achieve closure between measurement
and model predictions, but only with great care in the instrument calibration and data
processing. In the present case, it was a full PhD project.

Figure 10.22: Comparison of HydroLight-computed (model) and measured (data) water-
leaving radiances Lw at various times and locations in Chesapeake Bay, USA. Figure 7 of
Tzortziou et al. (2006), reproduced by paid permission.

Another excellent model-data closure paper is Tonizzo et al. (2017). They were able to
get agreement between measured and modeled (HydroLight) Rrs spectra to within 20%.
They found that about one-have of the difference in model and measurement came from
uncertainties in the measurement of Rrs, and one-half came from the combined uncertain-
ties in IOPs measurements and radiative transfer modeling (HydroLight does not include
polarization).

The examples are sufficient to illustrate the concept of optical closure and the necessity
of comparing as many different instruments or data processing methods as possible in
order to assess the errors in the measurements or predictions. When working with data
and models, it is always necessary to perform as many closure tests as possible. This is the
basis of convincing yourself that your models and data are correct, and you can learn a lot
from any disagreements. Redundancy is always good, whether in instruments, models, or
algorithms.
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CHAPTER 11

Maxwell’s Equations

Figure 11.1:
James Clerk Maxwell (1831-1879)

“War es ein Gott, der diese Zeichen schrieb?”
(“Was it a God who wrote these symbols?”)

—Ludwig Boltzmann, commenting on Maxwell’s equations
(and recycling a quote from Goethe’s Faust)

As seen Section 9.2, radiative transfer theory rests on the theory of electromagnetism
as expressed by Maxwell’s equations. In spite of their fundamental importance to every-
thing in optical oceanography and ocean remote sensing, most oceanography texts mention
Maxwell’s equations only in passing: a dozen or so pages in Apel (1987), two pages in Shifrin
(1988), one paragraph in Walker (1994), and no mention at all in Neumann and Pierson,
Jr. (1966) or Jerlov (1976). Specialized, advanced texts like Bohren and Huffman (1983)
and Mishchenko et al. (2002) make extensive use of Maxwell’s equations, but with the
assumption that the reader is already familiar with them.

401
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A physics major will learn a lot about Maxwell’s equations; a biology or chemistry
major may learn almost nothing about them. It thus seems fitting to present an overview
of these equations at a level in between these two extremes. The goal of this chapter is
to discuss Maxwell’s equations in a way that minimizes the mathematics but still gives a
non-physicist reader some appreciation of these equations and their implications.

The first section of this chapter introduces Maxwell’s equation in a vacuum. The next
section reformulates them for use in material media such as water. They are then used to
study the propagation of electromagnetic waves, i.e. light, in dielectrics like water. Two
sections on dispersion follow—the first on the basic concepts of dispersion and the differ-
ences in phase and group speeds, and the second on anomalous dispersion. These concepts
have been used, for example, to gain a fundamental understanding of absorption by phyto-
plankton. The chapter finishes with a short section on the Kramers-Kronig relations, which
establish a fundamental connection between absorption and the real index of refraction.

The solution of Maxwell’s equations for a plane electromagnetic wave incident onto a
homogeneous dielectric sphere, the so-called Mie theory, is discussed in the next chapter.

11.1 Maxwell’s Equations in Vacuo

This section begins a qualitative overview of Maxwell’s equations as they govern electric and
magnetic fields in a vacuum. Entire books have been written about these equations, so a few
sections are not going to teach you much. The goal here is to present the fundamental ideas
and, hopefully, inspire you to continue to study these equations in the references provided.
The discussion presumes a knowledge of basic physics (concepts such as electric charge
and current, and electric and magnetic fields). Knowledge of vector calculus (divergence
and curl in particular) is needed to understand the equations, but you can understand
the basic ideas even without the math. If you are unfamiliar with the basic physics and
math of electric and magnetic fields, or need a good review, an excellent place to start is A
Student’s Guide to Maxwell’s Equations by Fleisch (2008). That tutorial spends 130 pages
covering what is presented here.

11.1.1 Physical Preliminaries: Electric and Magnetic Fields

The Lorentz equation for the force F exerted on an electric charge q moving with velocity
v through an electric field E and a magnetic filed B is (in SI units)

F = q(E + v ×B).

In this discussion, vectors in 3-D space are indicated by bold-faced symbols. The × indi-
cates the vector cross product. The Lorentz equation gives us the units for electric and
magnetic fields. The force on the charge due to the electric filed is F = qE, so the units of
electric field must be

[E] =
[F ]

[q]
=

newton

coulomb
,

where [...] denotes “units of ...”. Similarly, magnetic fields have units of

[B] =
[F ]

[qv]
=

newton

coulomb meters per second
.
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You will see equivalent forms for these units. A newton per coulomb is the same as a volt per
meter. An ampere is a current of a coulomb per second, so we can write [B] = N/(A m),
which is called a Tesla (T). Table 11.1 summaries for reference the quantities seen in
Maxwell’s equations.

The first two quantities in Table 11.1 are worthy of comment. The electric constant
or permittivity of free space, εo, is an empirical constant that measures an electric field’s
ability to “penetrate” a vacuum. In other words, it sets the strength of the force between
two electric charges separated by some distance in a vacuum. This is seen if you write
Coulomb’s law as

F =
1

4πεo

q1q2

r2
,

where F is the magnitude of the force (in newtons) between charges q1 and q2 (in coulombs)
separated by a distance r (in meters) in a vacuum. The value of εo is not derived from
fundamental physics; it must be measured. This can be done by measuring the force
between two charges, but the measurement is more accurately made with a parallel plate
capacitor. Similarly, the magnetic constant or permeability of free space, µo, measures a
magnetic field’s ability to penetrate a vacuum. This is seen in Ampere’s law, which when
used to compute the strength of the magnetic field B (in Tesla) at distance r from a long,
straight wire carrying a current I (amperes) gives

B(r) =
µo

2π

I

r
.

µo also must be measured, e.g. by measuring the strength of the magnetic force between
two current-carrying wires separated by some distance in a vacuum. Why do these two
fundamental constants have the particular values shown in Table 11.1? This is a question
like “why does an electron have the charge it has, and not some other value?” All that can
be said is that these values are what they are because that is just how the universe works.

By the way, an electric field of 1 V/m is a very weak field: just think of a large parallel
plate capacitor with the plates separated by 1 m and connected by a 1 V battery. The
electric field between a thundercloud and the ground is of order 105 V/m just before a
lightning discharge. On the other hand, a 1 T magnetic field is really strong1. The Earth’s
magnetic field at the surface is about 5 · 10−5 T.

11.1.2 Mathematical Preliminaries: Divergence and Curl

In order to enjoy Maxwell’s equations, it is necessary to understand the mathematical
notation. For the benefit of readers who are not familiar with vector calculus, the needed
operations are as follows.

A scalar field S(x, y, z, t) associates a number with each point in space and time. An
example is the temperature in room. A vector field V(x, y, z, t) = V(x, t) associates a
vector (a magnitude and a direction)

V(x, y, z, t) = Vx(x, y, z, t)x̂ + Vy(x, y, z, t)ŷ + Vz(x, y, z, t)ẑ

with each point in space and time. An example is the wind blowing outside your home.

1Important research has shown that a 16 T magnetic field is so strong that it can overcome the force of
gravity and levitate a living frog (Berry and Geim, 1997).
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Physical
quantity

Symbol SI Units Comment

Electric constant εo ≈ 8.8542 · 10−12

A2 s4 kg−1 m−3

(or C2 N−1 m−2)

measures a vacuum’s ability
to support an electric field;
also called the permittivity of
free space

Magnetic
constant

µo ≈ 1.2566 · 10−6

kg m s−2 A−2

(or N A−2)

measures a vacuum’s ability
to support a magnetic field;
also called the permeability of
free space

Electric charge q coulomb (C) a fundamental physical quan-
tity

Charge density ρ C m−3 charge per unit volume

Electric current I ampere (A = C/s) measures flow of electric
charge per unit time

Current density J A m−2 current per unit area

Electric field E N/C = V/m a vector field set up by sta-
tionary electric charges or
time varying magnetic fields;
acts on stationary electric
charges

Magnetic field B N/(A m) = T a vector field set up by mov-
ing electric charges (currents)
or by time-varying electric
fields; acts on moving electric
charges

Electric dipole
moment

p C m measures charge separation;
direction is from negative to
positive charge

Polarization P C m/m3 electric dipole moment per
unit volume

Magnetic dipole
moment

m A m2 measures the magnetic field
set up by a loop of current; di-
rection is by a right-hand rule
or from south pole to north

Magnetization M (A m2)/m3 magnetic dipole moment per
unit volume

Electric
displacement

D C/m2 D = εoE + P

Magnetic
intensity

H A/m H = B/µo −M

Table 11.1: Quantities involved in Maxwell’s equations. Other than the physical constants
εo and µo, all quantities are functions of time and space, e.g., E = E(x, t) = E(x, y, z, t).
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The “del” operator ∇ (sometimes also called “nabla”) can be thought of as a vector
whose elements are partial derivatives defined (in Cartesian coordinates) as

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
.

Applying the del operator to a scalar gives a vector, called the gradient of the scalar field:

∇S = x̂
∂S

∂x
+ ŷ

∂S

∂y
+ ẑ

∂S

∂z
.

Just like any vector, we can take the dot product of ∇ with a vector, and the result is a
scalar. Taking the dot product of the del operator with a gradient gives a scalar:

∇ · ∇S = ∇2S =
∂2S

∂x2
+
∂2S

∂y2
+
∂2S

∂z2
.

This is usually called the Laplacian of S, and ∇2 is called the Laplace operator.
The divergence of a vector field is defined as

∇ ·V =
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

.

The cross product of two vectors a = axx̂ + ayŷ + azẑ and b = bxx̂ + byŷ + bzẑ is

a× b = (aybz − azby)x̂ + (azbx − axbz)ŷ + (axby − aybx)ẑ .

In the same fashion we get the curl of a vector field, which is the cross product of ∇ with
the vector field and yields a vector:

∇×V =

(
∂Vz
∂y
− ∂Vy

∂z

)
x̂ +

(
∂Vx
∂z
− ∂Vz

∂x

)
ŷ +

(
∂Vy
∂x
− ∂Vx

∂y

)
ẑ .

There is a useful trick for remembering the order of the vector components and derivatives
in the curl if you know how to expand the determinant of a 3 × 3 matrix. Write the unit
direction vectors in the first row of the determinant, the partial derivatives in the second
row, and the vector components in the third row:

∇×V =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

∣∣∣∣∣∣∣∣ .
Then expand the determinant just as though the elements were ordinary numbers, and let
the derivatives operate on the vector elements.

Thus the divergence and curl are just certain combinations of the spatial derivatives
of a vector field. Each has a physical interpretation when the vector field is a physical
variable such as the velocity or an electric field. However, just knowing the definitions is
sufficient for our level of presentation of Maxwell’s equations.

11.1.3 Maxwell’s Equations in a Vacuum

Without further ado, Maxwell’s equations for the electric field E(x, t) and magnetic field
B(x, t) in a vacuum are (in differential form, in SI units)
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∇ ·E =
1

εo
ρ (11.1)

∇ ·B = 0 (11.2)

∇×E = − ∂B

∂t
(11.3)

∇×B = µoJ + µoεo
∂E

∂t
(11.4)

Note that “in a vacuum” means that the electric and magnetic fields are in empty space.
There can still be electric charges located here and there in space (the ρ term), and the
same for currents (J), which give rise to the fields in the region of interest.

These equations can be described as follows:

Eq.(11.1) This equation is called Gauss’s law for electric fields. It shows how electric
charges (via the charge density ρ) create electric fields. This equation is the equivalent
of Coulomb’s law for a point charge.

Eq.(11.2) This equation is sometimes called Gauss’s law for magnetic fields. It says that
there are no magnetic charges corresponding to electric charges.

Eq.(11.3) This is Faraday’s law. It shows that a time-varying magnetic field creates an
electric field.

Eq.(11.4) This is Ampere’s law as modified by Maxwell. The first term on the right,
deduced by Ampere, shows that electric currents create magnetic fields. The second
term on the right, added by Maxwell, shows that a time-varying electric field also
creates a magnetic field.

Thus there are two ways to create electric fields: electric charges create them, and time-
dependent magnetic fields create them. One might suppose that the electric fields resulting
from these two entirely different creation mechanisms could some way be different, but they
are not. An electric field is an electric field, no matter how it is created. That’s just the way
the universe works. (Pondering this equivalence of electric fields, no matter how created,
was one of the things that lead Einstein to the development of special relativity.) The
same situation holds for magnetic fields. They can be created by electric currents or by
time-dependent electric fields, but the nature of the magnetic field is the same in either
case.

Simply stating Maxwell’s equations is really no different than simply stating Newton’s
law of gravity for the magnitude of the force of attraction between two spherical masses
M1 and M2 separated by a distance r:

F = G
M1M2

r2
. (11.5)

Newton did not derive his law of gravity from more fundamental principles; it is the
fundamental principle. Newton found that if he assumed Eq. (11.5) to be true, then he
could derive Kepler’s laws of planetary motion, explain the motion of the moon, and (to
first order) predict the ocean tides. The same can be said of Maxwell’s equations. They are
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based on decades of observational work by Coulomb, Gauss, Faraday, Ampere and others,
but we can view them as the mathematical statement of the fundamental laws governing
electric and magnetic fields. We can simply accept these equations as given and get on with
the business of applying them to problems of interest. (Of course, “fundamental” laws of
nature may turn out of be imperfect in the light of new data. That happened to Newton’s
law of gravity, which was replaced by, and can be derived from, Einstein’s theory of general
relativity. Likewise, Maxwell’s equations can now be derived from the more fundamental
laws of quantum electrodynamics developed by Feynman and others.)

It may at first glance seem that Maxwell’s equations are over-determined. That is,
there are four equations but only two unknowns, E and B. This would be true for alge-
braic equations, in which case we could solve two linearly independent equations for two
unknowns. However, for vector fields, Helmholtz’s theorem (also known as “the fundamen-
tal theorem of vector calculus”) says that an arbitrary vector field in 3 dimensions can be
uniquely decomposed into a divergence part (with zero curl) and a curl part (with zero
divergence) (under a few conditions, namely vector functions that are sufficiently smooth
and that decay to zero at infinity). Conversely, knowing the divergence and curl of a vector
field determines the vector field. That is the case here for both E and B. Given the charge
density ρ and current density J, the four Maxwell equations uniquely determine the elec-
tric and magnetic fields via their divergences and curls. (To be rigorous, a vector field is
determined from its divergence and curl to within an additive term. This is somewhat like
saying that knowing a derivative df(x)/dx determines f to within an additive constant.
Adding a boundary condition f(xo) = fo then fixes the value of the constant.)

11.1.4 Light as an Electromagnetic Phenomenon

Starting with equations (11.1) to (11.4), Maxwell derived what is probably the most elegant
and important result in the history of physics. Consider a region of space where there are
no charges (ρ = 0) or currents (J = 0). Equations (11.1)-(11.4) then become

∇ ·E = 0 (11.6)

∇ ·B = 0 (11.7)

∇×E = − ∂B

∂t
(11.8)

∇×B = µoεo
∂E

∂t
(11.9)

Now take the curl of Eq. (11.8), use the vector calculus identity ∇ × (∇ × E) = ∇(∇ ·
E) − ∇2E, use Eq. (11.6) to eliminate the ∇(∇ · E) term, and use Eq. (11.9) to rewrite
the ∂(∇×B)/∂t term. The result is

∇2E = µoεo
∂2E

∂t2
.

The same process starting with the curl of Eq. (11.9) gives an equation of the same form
for B. Equations of the form

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
=

1

v2

∂2f

∂t2
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describe a wave propagating with speed v. Thus each component of E and B satisfies a
wave equation with a speed of propagation

v =
1

√
µoεo

. (11.10)

Inserting the experimentally determined values of µo and εo given in Table 11.1 gives
v = 3·108m s−1. As Maxwell observed (Maxwell, 1864, page 466), “This velocity is so nearly
that of light that it seems we have strong reason to conclude that light itself (including
radiant heat and other radiations) is an electromagnetic disturbance in the form of waves
propagated through the electromagnetic field according to electromagnetic laws.” This
conclusion is one of the greatest intellectual achievements of all time: not
only were electric and magnetic fields tied together in Maxwell’s equations,
but light itself was shown to be an electromagnetic phenomenon. This is the
first example of a “unified field theory,” in which seeming independent phenomena—here
electric fields, magnetic fields, and light—were shown to related and governed by the same
underlying equations.

11.2 Maxwell’s Equations in Matter

This section considers electric and magnetic fields inside dielectric materials.

11.2.1 Dielectrics

We begin with the effects of electric fields on dielectrics. Dielectrics are materials that do
not easily allow the flow of electric charge, so they are also called insulators. Dielectrics
include materials like water, glass, wood, or plastic, but not metals, which easily conduct
electricity.

The molecules making up many dielectrics have the center of the negative electric charge
(due to the electrons surrounding the nuclei) offset slightly from the center of the positive
charge (due to the protons in the nuclei). Such molecules are called polar molecules. (The
molecule overall is of course electrically neutral.) This offset gives the molecule a dipole
moment p whose magnitude is defined as the product of the positive charge times the
distance between the charge centers. By convention, the direction of the dipole moment
vector points from the negative to the positive charge. For example, in the asymmetric
water molecule, the electrons tend to cluster around the oxygen atom, leaving the center
of the positive charge a bit toward the point between the two hydrogen atoms. A water
molecule has a dipole moment of about 6 · 10−30 C m.

For macroscopic volumes of matter, the combined effect of the molecular dipole mo-
ments is described by the net dipole moment per unit volume P, which is called the
polarization and has units of (C m)/m3. (Note that this use of the term “polarization” has
nothing to do with the polarization of light.) If the molecules are randomly oriented as
illustrated in Fig. 11.2(a), the molecular dipole moments in the difference directions cancel
out so that the net dipole moment of the substance is zero.

However, if the dielectric is placed in an external electric field, that field can cause
the dipole moments to align so that the substance has a net dipole moment, or non-
zero polarization P, as illustrated in Fig 11.2(b). In this figure, the green symbols with
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Figure 11.2: Concepts of electric polarization in dielectrics. The small red-blue ovals
represent polar molecules, with the negative charge in blue and the positive charge in red.
The small white arrows illustrate the molecular dipole moments p. The large white arrow
is the polarization P. The green arrows represent an applied electric field. Panel (a)
represents unpolarized matter. Panel(b) shows polarization induced by an applied electric
field. Panel (c) represents an electret.

plus and minus signs represent positive and negative charges creating the external electric
field, which is illustrated by the green arrows. The negative ends of the polar molecules
are attracted to the positive charges creating the external field, and the positive ends to
the negative external charges, so the molecules align as shown. (In practice, this is a
complicated business. The applied electric field tends to align the polar molecules, but
random thermal motions tend to randomize the directions. Thus, for a given material, P
depends on temperature. It takes time for the molecules to rotate into alignment, so if the
applied field is not constant, P depends on the frequency of the applied field. These details
need not concern us here, but this is the origin of the frequency (wavelength) dependence
of the index of refraction, for example.)

Note that as the molecules align in response to the external field, there is a net ac-
cumulation of positive charge on the surface of the material nearest the negative external
charges, as illustrated in Fig 11.2(b) by the reddish area and the black symbols with plus
signs. In essence, the positive “heads” of the molecules are sticking out of the volume of
material. Likewise, there is an accumulation of negative charge on the opposite side of
the material caused by the negative “tails” of the molecules, as illustrated by the bluish
area and the black symbols with minus signs. In the interior of the matter, the net charge
remains zero because nearby positive heads and negative tails cancel each other out. The
external charges (the green + and - symbols in Fig. 11.2(b)) creating the applied field
are called “free” charges because I am free to place them as desired in order to create
the external electric field. The charges on the surface of the material are called “bound”
charges because they are fixed to the material and cannot be moved around as desired.

The bound charges on the surface of the material create an electric field directed oppo-
site to the applied field. Recall the bookkeeping: electric fields are by convention directed
from positive to negative charges, but dipole moments, hence P, are directed from negative
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to positive charges. Thus we expect that the total electric field inside the material will
be less than the externally applied electric field. This is why capacitors are filled with
dielectric material. By decreasing the electric field between the plates of the capacitor, the
capacitor can store more charge before a spark jumps from one plate to the other. The
field set up by the bound charges will also distort the field of the free charges in the region
outside the dielectric.

Even if the molecules or atoms of the dielectric are symmetric and have no dipole
moment in the absence of an electric field, they will become polarized in the presence of an
applied field. This is because the applied field tends to pulls the negative electron cloud in
one direction and the positive nucleus in the other direction, creating a dipole moment.

The situation just discussed is called induced polarization, because the polarization
is induced by the applied external electric field. The direction of the polarization vector
P is then parallel to the applied field E. This is not always the case. Some crystals
have a permanent polarization due to their molecular structure. These substances are
called “electrets” and are the electrical equivalent of permanent bar magnets. (Indeed, the
name comes from“electr ic magnets”.) Examples are quartz crystals and barium titanate,
Ba Ti O3. In this case, illustrated in Fig. 11.2(c), the polarization is not induced by the
applied field and can be in any direction relative to the applied field.

11.2.2 Maxwell’s Equations Inside Matter

To continue the development, recall for reference the forms of Maxwell’s equations in vacuo:

∇ ·E =
1

εo
ρ (11.11)

∇ ·B = 0 (11.12)

∇×E = − ∂B

∂t
(11.13)

∇×B = µoJ + µoεo
∂E

∂t
(11.14)

The total electric field is equal to the field of the free charges plus the field of the bound
charges. In practice, we control the free charges and can place them as desired, but not the
bound charges, which are stuck to the material. In the most general case, there may even
be bound charges induced within the material if the material is inhomogeneous so that
P varies with location. A general expression for the bound charge density is then (e.g.,
Griffiths, 1981, Section 4.2)

ρb = −∇ ·P .

We can now write the total charge density as the sum of the free charge density and the
bound charge density:

ρ = ρf + ρb = ρf −∇ ·P .

Inserting this into Eq. (11.11) gives

εo∇ ·E = ρf −∇ ·P .

Defining the electric displacement D as

D = εoE + P (11.15)
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allows Eq. (11.11) to be rewritten as

∇ ·D = ρf . (11.16)

The significance of this development warrants discussion. In Gauss’s law, ∇·E = ρ/εo,
the charge density ρ includes all charges, both free and bound (if any), and the electric
field E is the total electric field caused by all charge density. This E is the electric field
either outside or inside a dielectric. It is E that we normally want to know. Although we
can define the free charge density ρf as desired, we may not know what the bound charge
density is because that depends on the dielectric material. Determining ρb for a given
material and applied electric field can be very difficult (this is what solid state physicists
get paid to do). However, we can compute the displacement field D given only the free
charge density ρf , which we do know, without any knowledge of the nature of the dielectric
material or its bound charge density. This gives us something to start with, using only
what we know. Then, if we can determine the polarization P (which may or may not be
easy), we can obtain the electric field E from Eq. (11.15).

In summary, we can avoid having to know the details of the dielectric properties by
solving for something, the displacement field D, that is not really what we want, but which
is related to the electric field. Note that the displacement D does not have the same units
as E, and may not even be in the same direction as E (the situation of Fig. 11.2(c)). (There
are other subtleties associated with D. For example, there is no equivalent of Coulomb’s
law for D, but those discussions are left to the textbooks.) Note also that the remaining
three Maxwell’s equations (11.12)-(11.14) remain unchanged because they do not involve
the charge density.

We can repeat the above process for conducting materials such as metals. Now, instead
of molecules or atoms having electric dipole moments, either inherent or induced, we con-
sider molecules or atoms having magnetic dipole moments m. Magnetic dipole moments
are generated by current loops enclosing some area and have units of A m2. The small
electric dipoles shown in Fig 11.2 are now replaced by small current loops, and instead
of bound charges we have bound currents. The sum of these magnetic dipole moments is
expressed by the magnetization M, which is the magnetic dipole moment per unit volume,
with units of (A m2)/m3) = A/m. As was seen above, the induced electrical polarization P
aligns with the applied electric field. However, the induced magnetization M can align ei-
ther with the applied magnetic field (paramagnetic materials) or opposite the applied field
(diamagnetic materials). Materials with permanent magnetization are called ferromagnetic
(an example is a common bar magnet).

The Ampere’s law part of (11.14) shows how currents generate magnetic fields.

∇×B = µoJ . (11.17)

Here the current density J refers to all currents, and B is the magnetic field either outside
or inside matter. In addition to free currents Jf and bound currents Jb, in analogy with
free and bound charges, there will also be a current associated with a time-dependent
polarization. A change in the electrical polarization of a material implies moving charges
around, which gives a “polarization” current. We can thus partition the total current
density into three parts:

J = Jf + Jb + Jp .
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The bound currents can be either on the surface on an object, or within the object if the
magnetization is non uniform. In general (e.g., Griffiths, 1981, Section 6.2) the bound
current and magnetization are related by

Jb = ∇×M .

The polarization current is given by

Jp =
∂P

∂t
.

The Ampere-Maxwell law (11.14) can now be rewritten as

1

µo
∇×B = J + εo

∂E

∂t

= Jf + Jb + Jp + εo
∂E

∂t

= Jf +∇×M +
∂P

∂t
+ εo

∂E

∂t
.

Defining the magnetic intensity H by

H =
1

µo
B−M (11.18)

and recalling the definition (11.15) of D then gives

∇×H = Jf +
∂D

∂t
.

In this equation, we have hidden our ignorance about the magnetic properties of the mate-
rial inside the H term. Note that the magnetic intensity H does not have the same units as
the magnetic field B, and in general the two are not even in the same direction. However,
we can solve for H given only the free current density Jf and the displacement D, which
depends only on the free charge density ρf . Then, if we are smart enough to figure out M
for the material at hand, we can extract the desired B from Eq. (11.18).

We now have Maxwell’s equations in the form usually seen in discussions of arbitrary
materials:

∇ ·D = ρf (11.19)

∇ ·B = 0 (11.20)

∇×E = − ∂B

∂t
(11.21)

∇×H = Jf +
∂D

∂t
(11.22)

These equations are sometimes called the “macroscopic” Maxwell equations, because they
hold inside and outside of macroscopic amounts of matter large enough for the spatial
averages underlying D and H to be defined. The original equations (11.11)-(11.14) are
then called the “microscopic” Maxwell equations because they hold at even the smallest
spatial scales, even between the atoms within materials. Equations (11.15) and (11.18) are
called constitutive equations.

It may seem that we now have four equations in four unknowns, but Eqns. (11.15) and
(11.18) make clear that all we have done is rewrite the original four equations with their
two unknowns. In order to solve these equations, we must specify the free charge density
ρf and the free current density Jf along with boundary conditions on the fields.
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11.2.3 Comments on Terminology

A word of warning is needed regarding terms and units for magnetic fields. I grew up
with B called the magnetic field and H the magnetic intensity, and I’m too old to change.
However, the venerable Jackson (1962), the standard graduate-level text on electromagnetic
theory for over 60 years, calls H the magnetic field and B the magnetic induction. The
equally competent and respected Griffiths (1981) calls B the magnetic field and H the
auxillary field. Griffiths (page 232) says calling B the magnetic induction is “an absurd
choice” because it leads to confusion with electromagnetic induction, which is something
totally different. He also says, “H has no sensible name; just call it ‘H’ ”. The great
Arnold Sommerfeld, doctoral or postdoctoral adviser to seven students who later won
Nobel prizes, says (Sommerfeld, 1952, page 45) that “The unhappy term ‘magnetic field’
for H should be avoided as far as possible.” The thing to keep in mind is that E and B are
the fundamental quantities; D and H arise from rewriting the fundamental equations (11.6)
to (11.9) in forms convenient for material media. To make matters even worse, the units
of B and H, whatever you call them, depend on the system of fundamental units chosen.
Here I have used SI units (previously called “rationalized mks” units). B and H then have
different units, as we have seen. However, in the cgs (centimeter-gram-second) system, H
is defined by H = B−M/(εoc

2), where c is the speed of light. This is convenient because
B and H then have the same units of Tesla, but then Maxwell’s equations are slightly
different. In cgs, the Ampere-Maxwell equation (11.22) reads εoc

2∇ ×H = Jf + ∂D/∂t.
This whole business is a confusing mess; see the discussion in Feynman et al. (1964, Section
36.2).

This qualitative discussion is sufficient for most oceanographers. If nothing else, you
can now hold your own at a cocktail party full of undergraduate physics majors. But in
all seriousness, it is worth keeping in mind the importance of Maxwell’s synthesis. He tied
together apparently unrelated results describing electric and magnetic fields, finished off
Ampere’s law, and showed that light of any frequency is a propagating electromagnetic
wave. Everything in the modern world that has to do with electricity or magnetism or
optics rests upon these equations—generation of electrical current in hydroelectric plants,
the use of that current in electric motors, radios, televisions, mobile phones, computers,
microwave ovens, lasers, and so on ad infinitum. In oceanography, the well known Fresnel
equations (Section 13.3) for the reflection and transmission of light at the sea surface arises
from solving Eqs. (11.19)-(11.22) for a plane wave incident onto an interface between two
dielectric media. The widely used Mie Theory (Chapter 12) for the scattering of light
by spherical particles is the solution of these equations for a plane wave incident onto a
spherical dielectric.

You would have to return to the early 1800s—when lighting was by candles and whale
oil lamps, communication was by handwritten letters delivered by riders on horses, and
calculations were done with a quill pen and paper—to live in a world without applications
of Maxwell’s equations.

In addition to his work on electromagnetism, Maxwell made major contributions to
thermodynamics (the Maxwell relations connecting temperature, entropy, pressure, and
volume) and statistical mechanics (the Maxwell-Boltzmann distribution). He developed an
explanation for the dynamics of Saturn’s rings that is still used today. He even made the
first color photographs. Although less known to the general public, Maxwell stands with
Newton, Einstein, and Darwin as one of the most profound intellects the world has ever
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known.

11.3 Plane Wave Solutions of Maxwell’s Equations

Now that we have been introduced to Maxwell’s Equations in the previous two sections,
we can attempt to solve them. Textbooks on classical electrodynamics (e.g. Jackson,
1962; Griffiths, 1981; Bohren and Huffman, 1983) take a general approach of assuming
little and letting Maxwell’s equations force upon you conclusions about what functional
forms of solutions are possible for propagating waves. This is not a physics text, so I
will propose simple forms for propagating electric and magnetic fields and show that they
satisfy Maxwell’s equations. That approach is sufficient to show with a minimum of math
and physics how waves can propagate in dielectrics like water. In so doing, we will discover
the relation between the absorption coefficient and the imaginary parts of the index of
refraction and the wavenumber. The discussion of plane waves in this section sets the
stage for a deeper investigation of wave propagation in the section on dispersion.

Before proceeding, we must again face the never-ending problem of notation. In Section
8.2.1, I wrote the complex index of refraction as m = n + ik, where n was the real index
of refraction and k was called the imaginary part of the index of refraction. It is also
common to use k as the angular wavenumber: k = 2π/λ (Section 1.5.9). We will also need
to introduce a complex wavenumber. Every author seems to have a slightly different way
to avoid using the same k symbol for two different quantities. Bohren and Huffman (1983)
use a Roman k for the complex wavenumber, which they write as k = k′ + ik′′, and they
use an italic k for the imaginary part of the index of refraction. They also use N rather
than m for the complex index of refraction. Thus my m = n+ ik is Bohren and Huffman’s
N = n+ ik. (Griffiths, 1981) uses κ+ for the real part of the complex wavenumber and κ−
for the complex part; he writes the complex wavenumber as κ = κ+ + iκ−. Mishchenko
et al. (2002) write k = kR + ikI and m = mR + imI. For this section, I have chosen to use k
for the imaginary part of the index of refraction and κ̃ for the complex wavenumber, with
a single prime on the real part and a double prime on the imaginary part: κ̃ = κ′ + iκ′′.
You will similarly see the complex index of refraction written as n = n′ + in′′. To further
complicate matters, some authors write the time dependence in Eq. (11.23) as +ωt, in
which case the complex index of refraction (in my notation) becomes m = n− ik and the
complex wavenumber is κ̃ = κ′ − iκ′′. The whole notation business is a mess, and you just
have to figure out each author’s preferences.

11.3.1 Plane Waves in a Dielectric

Other than electromagnetic waves propagating in a vacuum, the simplest solution of
Maxwell’s equations for wave propagation is for a plane wave in a dielectric material.
The term “plane wave” refers to an electromagnetic wave (i.e., light) that is propagating in
some direction, and which has the same properties at all points of a plane perpendicular to
the direction of propagation. As will be seen, if we know the electric field of the wave, we
can find the magnetic field from Maxwell’s equations (or vice versa). Thus it is customary
to consider only the electric field of the wave.

Consider first an electromagnetic wave propagating in a vacuum. We are free to choose
a convenient coordinate system, so let the wave propagate in the +x̂ direction, and let the
electric field E oscillate in the ±ŷ direction (i.e., the electric field is linearly polarized in
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the y direction). The associated magnetic field then oscillates in the ±ẑ direction. This
situation is illustrated in Fig. 11.3.

Figure 11.3: Illustration of sinusoidal electric and magnetic plane waves in a vacuum. The
red arrows represent the electric field and the blue arrows are the magnetic field.

We can write the magnitude of the electric field as

E(x, t) = Eo cos(κ′x− ωt+ φ) , (11.23)

where Eo sets the magnitude of the electric field, κ′ = 2π/λ is the angular wavenumber,
and ω = 2π/T is the angular frequency; λ is the wavelength and T is the period of the
oscillation. For propagation in a vacuum, λ = c T ; i.e., a wave propagating at the speed of
light c travels a distance λ in one period of the oscillation. It is common to use k rather
than κ′ for the angular wavenumber (recall Section 1.5.9); the reason for my choice of κ′

was explained above.
Electric fields, wavenumbers, and frequencies are of course real quantities. However, it

will prove to be convenient to write the electric field of Eq. (11.23) as the real part of a
complex quantity:

E(x, t) = <{Eo exp i(κ′x− ωt+ φ)} ,

where <{...} stands for the real part of the argument, and we recall that eiθ = cos θ+i sin θ;
i =
√
−1. Some authors use a subscript c to indicate a complex field, and some use a tilde,

and some leave it to the reader to figure out from the context which variables are real and
which are complex. I will use a tilde and write

Ẽ(x, t) = Eo exp i(κ′x− ωt+ φ)

= Ẽo exp i(κ′x− ωt) (11.24)

In the second equation, the phase angle has been incorporated into the amplitude so that
Ẽo = Eo exp(iφ). Now E = <{Ẽ}, and so on. It is customary to omit writing the <
symbol, in which case it is understood that at the end of any calculation involving complex
numbers we must take the real part to get back to a real physical quantity. Some authors
call Ẽ the “complex electric field”, but a better terminology is to say that Ẽ is the complex
representation of the real electric field E.
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We can rewrite (11.24) as

Ẽ(x, t) = Ẽo exp iκ′(x− ω

κ′
t) .

It is easily shown by substitution that any function of the form f [s(x − vt)], where s is a
constant scale factor, satisfies the 1-D wave equation

∂2f(x, t)

∂x2
=

1

v2

∂2f(x, t)

∂t2
.

Thus any function of the form f [s(x − vt)] describes a function with shape f(sx) at time
t = 0 propagating in the +x direction with speed v. We can thus identify the speed

vp =
ω

κ′
(11.25)

as the speed of the electromagnetic wave. This speed is known as the phase speed of the
sinusoidal wave because it shows how fast a point with a given phase of the sinusoidal
wave, say the wave crest, travels.

A function of the form Ẽo exp i(κ′x − ωt) propagates with an amplitude Ẽo that is
independent of time and location. That is correct for propagation in a vacuum. However,
in absorbing matter, the Bouguer-Lambert-Beer law says that the irradiance attenuates
exponentially with distance according to exp(−ax), where a is the absorption coefficient.
We can build this attenuation into the electric field in an ad hoc manner by replacing the
constant amplitude of the electric field with a function of x with the form

Ẽo ← Ẽo exp(−κ′′x) ,

where k′′ is a positive constant. (The← means “is replaced by”.) Equation (11.24) is then
replaced by

Ẽ(x, t) = Ẽo exp(−κ′′x) exp i(κ′x− ωt)}

= Ẽo exp i[(κ′ + iκ′′)x− ωt] = Ẽo exp i(κ̃x− ωt) . (11.26)

Here κ̃ = κ′ + iκ′′ is called the complex wavenumber.
Now let us turn the electric and magnetic field magnitudes into vectors so we can insert

them into Maxwell’s equations. In Fig. 11.3 the electric field oscillates in the y plane, and
the magnetic field lies in the z plane. So for these fields we can write

Ẽ(x, t) = Ẽo exp i(κ̃x− ωt)ŷ (11.27)

B̃(x, t) = B̃o exp i(κ̃x− ωt)ẑ (11.28)

At this point I have proposed two traveling waves for the electric and magnetic fields. Now
we can ask, “under what conditions do waves of the form of Eqs. (11.27) and (11.28) satisfy
Maxwell’s equations?”

For reference, Maxwell’s equations in matter are
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∇ ·D = ρf (11.29)

∇ ·B = 0 (11.30)

∇×E = − ∂B

∂t
(11.31)

∇×H = Jf +
∂D

∂t
(11.32)

with the constitutive relations

D = εoE + P (11.33)

H =
1

µo
B−M . (11.34)

For a linear medium, P is proportional to E and is commonly written P = εoχE, where
χ is the electric susceptibility (i.e., χ measures how susceptible the material is to being
polarized by an electric field). χ is assumed to be independent of E and is independent of
location and direction in a homogeneous, isotropic medium. Thus D = εo(1 + χ)E. The
quantity ε = εo(1 + χ) is the permittivity of the medium. If we assume that there are no
free electric charges in the medium (ρf = 0), the first of Maxwell’s equations (Eq. 11.29)
is ∇ ·D = 0. Inserting the complex representation D̃ = εẼ into ∇ · D̃ gives

∇ · D̃ =

{
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ

}
· εẼo exp i(κ̃x− ωt)ŷ

= ε
[
iκ̃Ẽo exp i(κ̃x− ωt)x̂ · ŷ + 0 + 0

]
= 0

after noting that x̂ · ŷ = 0 and that the y and z derivatives are 0 because the wave varies
only in x. Thus the form of Eq. (11.27) for Ẽ(x, t) satisfies ∇ · D̃ = 0. Likewise, the form
of Eq. (11.28) for B̃(x, t) satisfies ∇ · B̃ = 0.

Next insert the proposed Ẽ(x, t) and B̃(x, t) into Eq. (11.31). The result is

iκ̃Ẽo exp i(κ̃x− ωt)ẑ = iωB̃o exp i(κ̃x− ωt)ẑ

This equation is satisfied only if

B̃o =
κ̃

ω
Ẽo . (11.35)

Thus, given the electric field, we can compute the magnetic field. Taking the real part of
this equation gives

Bo =
κ′

ω
Eo =

1

vp
Eo =

n

c
Eo (11.36)

after recalling the definition of the phase speed from Eq. (11.25), and recalling that the
speed of light in a medium with real index of refraction n is the speed in vacuo divided by
n.

For a dielectric, the magnetization M is zero, so H = 1
µB, where µ is the permeability

of the medium. (In general one can write µ = µo(1 + χm), where χm is the magnetic
susceptibility of the medium. In a dielectric, µ is very nearly equal to µo, the permeability
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of a vacuum.) If there are no free currents (Jf = 0), the remaining Maxwell equation 11.32
reduces to

∇× 1

µ
B =

∂

∂t
εE

Inserting the complex representations into this equation gives

−i κ̃
µ
B̃oŷ = −iωεẼoŷ

or

B̃o =
ω

κ̃
µεẼo

This result combined with that of Eq. (11.35) implies that

κ̃2 = ω2µε

or

κ̃ = ω
√
µε .

When the wave equation is derived starting with Maxwell’s equations in matter, the wave
speed is v = 1/

√
µε, rather than v = c = 1/

√
µoεo as was seen in Eq. (11.10) for the vacuum

case. The speed of light in a medium with real index of refraction n is c/n. Given that κ̃ in
the last equation is complex (which implies that µ and/or ε must also be complex, as will
be seen in the discussion of dispersion), we can introduce the complex index of refraction
m = n+ ik and write

κ̃ = ω
√
µε =

ωm

c
=

2πm

λ
, (11.37)

after recalling that ω/c is the free-space wavenumber 2π/λ.

We can now rewrite the complex representation of the electric field as

Ẽ(x, t) = Ẽo exp i

(
2πmx

λ
− ωt

)
ŷ (11.38)

= Ẽo exp

(
−2πkx

λ

)
exp i

(
2πnx

λ
− ωt

)
ŷ , (11.39)

Taking the real part gets us back to the real electric field:

E(x, t) = Eo exp

(
−2πkx

λ

)
cos

(
2πnx

λ
− ωt+ φ

)
ŷ . (11.40)

The corresponding equation for B̃ is

B(x, t) =
1

vp
Eo exp

(
−2πkx

λ

)
cos

(
2πnx

λ
− ωt+ φ

)
ẑ , (11.41)

or an equivalent based on Eq. (11.36).

We have now shown that sinusoidal plane waves can propagate through a dielectric
provided that the magnitude of the magnetic field is proportional to the magnitude of the
electric field according to Eq. (11.36), and that the wavenumber is related to the angular
frequency according to Eq. (11.37).
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11.3.2 The Absorption Coefficient

The equations above are for electric and magnetic fields, which are what physicists like to
play with. Oceanographers, however, almost always work with irradiance For the moment,
let E be irradiance, rather than the usual E, to avoid confusion with the electric field.

The Poynting vector is defined by

S ,
1

µ
E×B .

This vector points in the direction of wave propagation, and it has units of Js−1m−2,
i.e. of irradiance. The Poynting vector thus describes the irradiance of the propagating
electromagnetic wave in the medium. Inserting E and B from Eqs. (11.40) and (11.41)
gives

S(x, t) =

√
ε

µ
E2

o exp

(
−4πkx

λ

)
cos2

(
2πnx

λ
− ωt+ φ

)
x̂ ,

after using Eq. (11.36), v = 1/
√
µε, and ŷ × ẑ = x̂. This is the instantaneous irradiance

of the wave at time t, which cannot be measured by an instrument at optical frequencies
of order 1014 Hz. What is measured is the time-average of S(x, t) over many wave cycles.
Recalling that the average of the cosine squared over a wave period is 1/2 gives

E(x) = 〈S(x)〉 =
1

2

√
ε

µ
E2

o exp

(
−4πkx

λ

)
x̂ . (11.42)

Here E(x) = E(x)x̂. The thing to note in this equation is that the irradiance is propor-
tional to the square of the electric field amplitude, and that its magnitude it damps out
exponentially as

E(x) = E(0) exp

(
−4πkx

λ

)
= E(0) exp(−ax) .

This is the Bouguer-Lambert-Beer law as derived from Maxwell’s equations2. In the last
equation we have identified the usual absorption coefficient a as

a =
4πk

λ
. (11.43)

You will also see the absorption coefficient written as

a = 2κ′′ , (11.44)

which follows from Eq. (11.26).

11.3.3 Generalizations

I have made a number of simplifications in the preceding development, which should be
noted for completeness.

2This may look like circular reasoning because the exponential decay was built into the solution in Eq.
(11.26) when we allowed for in imaginary part of the wavenumber. What was not seen in that equation
was that the oceanographers’ absorption coefficient is related to the complex index of refraction k by Eq.
(11.43) and to the imaginary part of the wavenumber, κ′′, by Eq. (11.44)
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I assumed that the electric field was in the ŷ plane and the magnetic field was in the
ẑ plane, and that both were perpendicular to to the direction of propagation and to each
other. In a more general treatment, you find that Maxwell’s equations can be satisfied
for a plane wave only if E and B are perpendicular to the direction of propagation, i.e.,
electromagnetic plane waves are transverse waves. Furthermore, in a vacuum or in a
homogeneous, isotropic, linear medium like water or glass, E and B are also perpendicular
to each other. (A linear medium means that D and H are proportional to E and B,
respectively.) The choice of E in the ŷ plane was arbitrary. In general, you can write

Ẽ = Ẽo exp i(κ̃ · x− ωt) ,

where x and κ̃ are arbitrary directions in space, and the direction of the electric field is
contained in the amplitude vector Ẽo. It is then found that

κ̃ · Ẽo = κ̃ · B̃o = Ẽo · B̃o = 0 .

That is, these three vectors are mutually perpendicular. The magnetic field can then be
written as

B̃ =
1

vp
κ̃× Ẽ

My example was just a special case of these equations with κ̃ = κ̃x̂ and x = x̂.
The electric and magnetic fields are perpendicular for plane waves propagating in a

dielectric. However, they are not always perpendicular, for example in the 3-D fields
created by scattering by a particle or radiated by an antenna. Similarly, although the
electric and magnetic fields are in phase in a dielectric, they are out of phase by as much
as 45 deg in a conducting medium. When decomposing electric and magnetic fields using
Fourier transforms, the E and B fields of each Fourier mode are orthogonal, however the
total fields resulting from a sum of modes may not be orthogonal. That is to say, if E1

and B1 are orthogonal (i.e., E1 ·B1 = 0), and E2 and B2 are orthogonal, it does not follow
that (E1 + E2) · (B1 + B2) = 0.

The complex representation of the Poynting vector is

S̃ =
1

µ
Ẽ× B̃ = Ẽ× H̃ .

To get back to the real version, the formula is

S = <{Ẽ} × <{H̃} = <{Ẽ× H̃∗} ,

where H̃∗ is the complex conjugate of H̃. Note that these formulas are not the same as
<{Ẽ× H̃}.

11.4 Dispersion: Phase and Group Speeds

The preceding section discussed wave propagation for a sinusoidal wave with given spatial
(κ′) and temporal (ω) angular frequencies. In that case, there is a single speed of propaga-
tion, the phase speed vp = ω/κ′. I will now revert to using the customary k rather than κ′

for the real wavenumber, k = 2π/λ. However a true sinusoidal wave cannot exist in nature
because real waves must start and stop at finite times. This in turn means that the finite
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length “wave packet” must contain more than one frequency. (This is easily seen using
Fourier transforms. The Fourier transform of a finite-length spatial function contains all
frequencies.) It is then possible that the overall wave packet or group of waves propagates
at a different speed, called the group speed, than the phase speeds of the individual waves
comprising the wave packet. This results in some waves “outrunning” others, and the
original group of waves spreads out, or disperses.

This section examines dispersion in detail. The basic phenomenon of dispersion and
different phase and group speeds is illustrated first by the sum of just two sinusoids. This
is then generalized to wave packets containing all frequencies. This allows for an under-
standing of “normal” and “anomalous” dispersion. A specific example of phase and group
speeds is then given for light wave propagation in pure water, which leads to a surprise.

11.4.1 Phase and Group Speeds for a Two-component System

Let ψ be the magnitude of a propagating disturbance. ψ might be the electric field of a light
wave, or the height of the sea surface relative to the mean sea surface, or the fluctuating
pressure of a sound wave. Suppose that ψ is composed of two cosines of equal amplitudes
but differing wavenumbers and temporal frequencies. That is to say

ψ(x, t) = A cos(k1x− ω1t) +A cos(k2x− ω2t) . (11.45)

The trigonometric identity

cosα+ cosβ = 2 cos

(
α− β

2

)
cos

(
α+ β

2

)
can be used to rewrite ψ as

ψ(x, t) = 2A cos[1
2(∆k x−∆ω t)] cos(k̄ x− ω̄ t) ,

where ∆k = k2 − k1, ∆ω = ω2 − ω1, k̄ = 1
2(k1 + k2), and ω̄ = 1

2(ω1 + ω2). This can be
rewritten as

ψ(x, t) = 2A cos[1
2∆k(x− ∆ω

∆k t)] cos[k̄(x− ω̄
k̄
t)]

Recalling that a function of the form f [s(x− vt)] propagates with speed v, we see that the
two cosines describe waves that propagate with speeds

= 2A cos[1
2∆k(x− vg t)] cos[k̄(x− vp t)] ,

where we identify the two speeds as

vp =
ω̄

k̄
, and (11.46)

vg =
∆ω

∆k
. (11.47)

vp has the form of the phase speed of the previous section, computed now from the average
wavenumber and average angular frequency. vg is called the group speed and is computed
as the ratio of the differences in the two wavenumbers and frequencies.

The implications of these equations are illustrated in Figs. 11.4–11.6. In the first
figure the wavenumbers and frequencies are chosen so that both the individual waves (the
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red curves) and the group envelope (the blue dots) propagate in the same direction and
vp > vg. In the second figure the wavenumbers and frequencies are chosen so that both
the waves and the group envelope propagate in the same direction but with vp < vg. In
the third figure the wavenumbers and frequencies are chosen so that the waves propagate
in one direction but the group envelope propagates in the opposite direction.

11.4.2 Dispersion Relations

We have seen that the phase speed is the ratio of the angular frequency to the angular
wavenumber. It is easy to see from the previous example that if the two waves have
nearly the same frequencies and wavenumbers that ∆ω/∆k is a good approximation to the
derivative dω/dk. In the general development below, the group speed will be defined as

vg =
dω

dk
. (11.48)

Clearly, knowing how ω depends on k allows the computation of both the phase speed and
the group speed. This relation is known as a dispersion relation.

Do the situations illustrated in Figs. 11.4–11.6 actually occur in nature? Indeed they
do. Consider waves propagating on a water surface. The dispersion relation for small
amplitude3, free-surface water waves is (e.g. Apel, 1987)

ω2 =

(
gk +

σ

ρ
k3

)
tanh(kh) , (11.49)

where g = 9.8 m s−2 is the acceleration of gravity, σ = 0.074 N m−1 is the surface tension
of water, ρ = 1000 kg m−3 is the density of water, and h is the depth of the water. This
dispersion relation has three limiting cases of interest.

For waves whose wavelengths are small compared to the water depth, so-called deep-
water waves, tanh(kh) = tanh(2πh/λ) ≈ 1. Then

ω2 =

(
gk +

σ

ρ
k3

)
.

For long-wavelength “gravity waves”, gk >> σk3/ρ and the surface-tension term is negli-
gible (i.e., surface tension is a negligible restoring force compared to gravity). Then

ω2 ≈ gk .

From this we can compute vp = ω/k =
√
g/k and vg = dω/dk = 1

2

√
g/k. Thus the group

speed for deep-water gravity waves is one-half the phase speed. For very short-wavelength
capillary waves, σk3/ρ >> gk and the surface-tension term dominates. Then

ω2 ≈ σ

ρ
k3 ,

from which we find vp =
√
σk/ρ and vg = 3

2

√
σk/ρ. Thus the group speed is 3

2 times
the phase speed. For wavelengths that are large compared to the water depth, so-called

3The assumption that the waves have a small amplitude allows the equations of fluid motion to be
linearized, which results in the dispersion relation shown here.
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Figure 11.4: Illustration of phase and group speeds for the two-wave system giving vp > vg.
The blue dots track the crest of the wave envelope. The red dots track the crest of a
particular wave phase that forms at the rear of an envelope and moves forward, growing
in amplitude and eventually passing the crest of the envelope, after which it decreases in
amplitude as it propagates further and eventually dies out. The parameter values used in
Eq. (11.45) are A = 1, ω1 = 2π, ω2 = 1.1ω1, and k1 = 2π, k2 = 1.2k1. The resulting phase
and group speeds are vp = 0.9545 and vg = 0.50, so both waves propagate to the right in
the figure but the individual waves outrun the wave packet.
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Figure 11.5: Illustration of phase and group speeds for two waves giving vp < vg. As
before, the blue dots track the crest of the wave envelope. The red dots track the crest
of a particular wave phase that forms at the front of an envelope. Although the red dot
moves to the right (vp > 0), from the viewpoint of the wave packet, the wave forms at the
front of the packet and moves to the rear of the packet, where it dies out. The parameter
values used in Eq. (11.45) are A = 1, ω1 = 4π, ω2 = 1.15ω1, and k1 = 4π, k2 = 1.1k1.
The resulting phase and group speeds are vp = 1.024 and vg = 1.50, so now the individual
waves propagate slower than the wave packet.
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Figure 11.6: Illustration of phase and group speeds for two waves giving vp > 0 and
vg < 0. The blue dots track the crest of the wave envelope and the red dots track the
crest of a particular wave phase. The parameter values used in Eq. (11.45) are A = 1,
ω1 = 2π, ω2 = 0.9ω1, and k1 = 2π, k2 = 1.2k1. The resulting phase and group speeds are
vp = 0.8636 and vg = −0.50. Now the individual waves propagate to the right, but the
group envelope propagates to the left.

shallow-water waves, tanh kh ≈ kh and, again, the surface tension term is negligible. The
dispersion relation is then

ω2 ≈ ghk2 ,
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from which we get vp = vg =
√
gh. Thus for shallow-water waves the phase and group

speeds are equal.

The deep-water case of vg = 1
2vp is qualitatively like Fig. 11.4. The individual waves

travel faster than the group envelope. The individual waves appear to form at the back of
the envelope, move forward to the crest of the envelope while growing in amplitude, and
then move past the crest of the envelope and decrease in amplitude until they disappear
at the front of the group. I have watched this happen many times while sea kayaking on
a nearly calm water water body. Then a ship goes by some distance away and leaves a
large wake composed of a string of smaller waves. As the wake reaches my kayak, smaller
waves form at the rear of the wake group and propagate to the front of the wake, where
they disappear. I never cease to be amazed as I watch waves appear from nowhere, grow
in size as they propagate forward, and then simply disappear when they reach the front of
the wake, exactly as predicted by the deep-water dispersion formula.

The capillary-wave case of vg = 3
2vp is similar to Fig. 11.5. The very short-wavelength

capillary waves form at the front of the wave packet and propagate to the rear, or rather,
the wave packet envelope outruns them. An example of a positive phase speed and a
negative group speed will be seen below.

11.4.3 The General Development

This section merely outlines the general development of wave propagation in dispersive
media; a more complete discussion is given in Jackson (1962, Section 7.3) and Towne
(1967, Sections 16-4 and 16-5). We have learned that a single sinusoidal wave of given
frequency ω and wavenumber k satisfies the wave equation and has a wave propagation
speed of ω/k. Because the wave equation is linear, a linear combination of sinusoids also
satisfies the wave equation. Thus a general wave function ψ(x, t) can be built up as a sum
of sinusoids of various amplitudes, frequencies, and wavenumbers. Rather than deal with
real sinusoids as seen in Eq. (11.45), it is convenient (indeed, almost necessary) to use the
complex representation of propagating waves. We thus write

ψ̃(x, t) =

∫ ∞
−∞

Ã(k) exp i[kx− ω(k)t]dk , (11.50)

where the tilde reminds us that the quantity is a complex function whose real value must
be taken at the end of the development. Positive and negative k values represent waves
with the same physical wavenumber but traveling in opposite directions. This equation
thus adds up waves of any amplitude and wavenumber to create a general waveform. Note
that the angular frequency is a function of the wavenumber according to the dispersion
relation for the medium under study. It is noted that at t = 0 this equation is, to within
a factor of 2π, precisely the inverse Fourier transform of Ã(k) as defined in Eq. (A.4),
although that connection will not be used here.

The dispersion relation can be expanded in a power series about any value of ko:

ω(k) = ωo +
dω

dk

∣∣∣∣
o

(k − ko) + higher order terms . (11.51)

If the distribution of Ã(k) values is peaked around the value ko, or if the dependence of ω
on k is weak, then the higher order terms can be neglected. Use of this approximation in
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Eq. (11.50) eventually leads to the identification of vg = dω/dk as shown in (11.48) as the
speed at which a wave pulse or packet travels. But note: as will be seen, neglecting the
higher order terms in this expansion in not always a good approximation.

For light waves in a dielectric medium like water or glass the dispersion relation is

ω(k) =
c k

n(k)
, (11.52)

where c is the speed of light in a vacuum and n(k) is the real index of refraction expressed
as a function of k. This gives the phase speed as

vp =
ω

k
=

c

n(k)
. (11.53)

This makes clear that “the speed of light in a medium” as presented in freshman physics
is the phase speed. The corresponding group speed is

vg =
dω

dk
=

d

dk

[
ck

n(k)

]
=

c

n(k)
− c k

n(k)2

dn(k)

dk
.

It is more convenient to view the index of refraction as a function of frequency than of
wavenumber, so using

dn

dk
=
dn

dω

dω

dk
=

(
c

n
− c k

n2

)
dn

dω

in the previous equation leads to

vg =
c

n(ω) + ω dn(ω)
dω

.

This is the form usually seen in advanced physics texts. The corresponding equation with
n viewed as a function of wavelength (as oceanographers prefer to do) is

vg =
c

n(λ)

(
1− λ

n(λ)

dn(λ)

dλ

)
= vp

(
1− λ

n(λ)

dn(λ)

dλ

)
. (11.54)

Note that if n is independent of wavelength, vg = vp. This is approximately the case
for water at wavelengths near 1000 nm, as seen in the top panel of Fig. 11.7. If n = 1,
vg = vp = c. The only “substance” with n = 1 is a vacuum.

It is very instructive to examine these phase and group speeds when applied to the
propagation of light in pure water. The top panel of Fig. 11.7 shows the real index of
refraction of pure water for λ = 0.1–10 µm. The bottom panel shows the corresponding
phase and group speeds computed from Eqs. (11.53) and (11.54), respectively. There are
a number of features to note in these curves. Below 72 nm, the real index of refraction is
less than 1, which makes the phase speed vp = c/n greather than c. This is not a violation
of special relativity. The “universal speed limit” of c applies to material objects and the
speed at which energy or signals can propagate; phase speeds can have any value. Between
about 200 and 2000 nm, which includes the region of interest to optical oceanographers,
n(λ) decreases smoothly with increasing wavelength. The group speed is a bit greater than
the phase speed, and both are about three-fourths the speed of light in a vacuum. However,
there are regions where the group speed displays a seemingly bizarre behavior—it can be
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greater than the speed of light, and it can be negative, and there are rapid fluctuations
between these two extremes. The conventional wisdom of undergraduate physics says that
energy propagates at the group speed, which therefore should not exceed the speed of light
in vacuo.

What is happening here is that the concept of the group speed of a wave packet has
broken down. Note in the figure that the large fluctuations in vg occur near the wavelengths
where n(λ) is changing rapidly. Rapid changes in the index of refraction give rapid changes
in the dispersion relation of Eq. 11.52. This in turn means that the higher order terms
in the expansion of ω(k) seen in Eq. (11.51) cannot be neglected. When that is the case,
the simple concept of a group speed as defined by Eq. (11.48) is inadequate to describe
the propagation of the wave pulse envelope. As the venerable Jackson (1962, page 211)
points out, a value of vg > c “...is no cause for alarm that our ideas of special relativity are
here violated; group velocity is no longer a meaningful concept.” and “The behavior of the
pulse is much more involved.” Towne (1967, Section 6-5) and Bohren and Huffman (1983,
Section 9.1.3) discuss the physical processes leading to n < 1. It is true for all substances
that at high frequencies (short wavelengths) n approaches 1 from values less than 1, just
as is seen for water in Fig. 11.7.

11.5 Anomalous Dispersion: The Lorentz Model

When the real index of refraction decreases with increasing wavelength (i.e., dn/dλ < 0, or
dn/dω > 0) the associated dispersion is called “normal” dispersion. This is the situation
for water or glass at visible wavelengths. According to Snell’s law, red light will deviate less
than blue when passing from air into a water drop. The result is that the red band of color
(longer wavelengths) is at the outside of a rainbow, and the violet (shorter wavelengths) is
at the inside. Regions of the spectrum where n increases with wavelength (dn/dλ > 0, or
dn/dω < 0) would give the reverse order of wavelengths: shorter wavelengths would be at
the outside of the rainbow and longer wavelengths at the inside. This reversal of “colors”
from that seen in normal life at visible wavelengths is called “anomalous dispersion.” There
is really nothing normal or abnormal about either situation, you simply get a particular
order of refracted wavelengths depending on the sign of dn/dλ.

Anomalous dispersion occurs near strong absorption bands, which is how it enters into
the understanding of the optical properties of phytoplankton (e.g., Morel and Bricaud,
1981a,b; Bricaud et al., 1983; Bricaud and Morel, 1986; Stramski et al., 1986). Because
of this important application, anomalous dispersion warrants discussion. To understand
anomalous dispersion, we must construct a model for light propagation in a dielectric. A
simple, but very fruitful, model was constructed by H. A. Lorentz4 around 1900. I will
merely outline the development of the Lorentz model—the details are a standard topic in
texts on classical electrodynamics; see, for example, Griffiths (1981, Section 8.4.2). The
arguments are as follows.

4This is the same Lorentz of the Lorentz transformation in special relativity and of many other results
that still bear his name. He shared the 1902 Nobel Prize with P. Zeeman for their discovery and explanation
of the Zeeman effect, which is the splitting of certain spectral lines in the presence of a magnetic field. His
model of light propagation in dielectrics grew out of his efforts to understand the physical basis for the
index of refraction. His work was one of the first couplings of Maxwell’s equations with the new “electron
theory of matter” after the discovery of the electron in 1897.



11.5. ANOMALOUS DISPERSION: THE LORENTZ MODEL 429

Figure 11.7: Phase and group speeds for water. The top panel shows the real index of
refraction of pure water (data of Segelstein (1981) redrawn from Fig. 8.4). The bottom
panel shows the phase speed vp computed using Eq. (11.53) (blue curve) and and the
group speed vg computed from Eq. (11.54) (red curve). The black dashed line is the speed
of light. The region of interest to optical oceanography, 300-1000 nm, is shaded in blue.

Electrons in a dielectric are bound to specific molecules by electrostatic forces from the
nuclei. When an electromagnetic wave of frequency ω passes by, the oscillating electric
field causes the electrons to oscillate at the same frequency as the wave. However, the
electrons also have resonant or “natural” frequencies ωo. If the incident wave frequency is
near to resonate frequency, the light-molecule interaction is particularly strong.

Let y be the displacement of an electron of charge q and mass me from its equilibrium
position in the molecule. When the electron is pulled away from its equilibrium position
at y = 0 there is a binding or restoring force that pulls it back towards its equilibrium
position:

Fbinding = −meω
2
oy .

If the sign of the force pulling the electron away from equilibrium is taken to be the
positive y direction, then the binding force pulling it back is in the negative y direction.
If the electron is set in motion by a passing electromagnetic wave, it will oscillate forever
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unless there is some damping force. That force is taken to be proportional to the speed of
the oscillating electron:

Fdamping = −meγ
dy

dt
,

where γ is a measure of the strength of the damping. The nature of the damping need not
concern us here, but one mechanism is “radiation damping,” which arises because oscil-
lating (i.e., accelerated) charges radiate energy. The driving force is the electromagnetic
field:

Fdriving = qEo cos(ωt) .

The total force on the electron is then

Ftotal = me
d2y

dt2
= Fbinding + Fdamping + Fdriving ,

which gives the equation

d2y

dt2
+ γ

dy

dt
+ ω2

o y =
q

me
Eo cos(ωt) .

This is the equation for a damped harmonic oscillator. Thus the electrons are modeled in
classical physics terms as though they are charged masses tied to molecules like a masses
on springs driven by an applied sinusoidal force. This equation is linear, so we can replace
the terms with complex representations, just as was done in the previous section on wave
propagation:

d2ỹ

dt2
+ γ

dỹ

dt
+ ω2

o ỹ =
q

me
Eoe

−iωt .

In steady state conditions, the electron oscillates at the driving frequency:

ỹ(t) = ỹo e
−iωt .

Inserting this into the previous equation gives

ỹo =
q

me

1

(ω2
o − ω2)− iγω

Eo .

The dipole moment induced by the electric field is the product of the charge and the
distance from equilibrium:

p̃(t) = qỹ(t) =
q2

me

1

(ω2
o − ω2)− iγω

Eoe
−iωt .

If N is the number of electrons per cubic meter in the material, then the bulk polarization
is P̃ = Np̃. Moreover, there are many electrons in a molecule, each of which has its own
resonant frequency, denoted ωoj for the jth electron. Each electron contributes to the bulk
polarization, so we sum over all electrons to obtain

P̃ (t) =
Nq2

me

∑
j

fj
(ω2

oj − ω2)− iγjω

 Ẽ(t) ,
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where fj is the number of electrons in each molecule with resonant frequency ωoj and
damping parameter γj .

Now recall from the previous section that the polarization vector was written as P =
εoχE. We now introduce a complex susceptibility χ and write the magnitudes as P̃ = εoχẼ.
Recall also that the proportionality between the the displacement field D and the electric
field E is D = εE = εo(1 +χ)E, so we now introduce a complex permittivity ε = εo(1 +χ).
Assembling these pieces gives the Lorentz model for the permittivity:

ε = εo

1 +
Nq2

meεo

∑
j

fj
(ω2

oj − ω2)− iγjω

 . (11.55)

We also recall from Eq. (11.37) that the complex wavenumber was written as

κ̃ = ω
√
µε =

ωm

c
= κ′ + iκ′′ ,

where m is the complex index of refraction.

To simplify the math, let us assume that the χ term is small compared to 1, and that
µ = µo, so that we can write

κ̃ = ω
√
µε = ω

√
µoεo

√
1 + χ ≈ ω

c
(1 +

1

2
χ) .

We now have

κ̃ = κ′ + iκ′′ =
ω

c

1 +
Nq2

2meεo

∑
j

fj
(ω2

oj − ω2)− iγjω

 . (11.56)

The summands in this equation are complex numbers of the form a/(b− ic), which can be
written as

a

b− ic
=

a

b− ic
b+ ic

b+ ic
=
ab+ iac

b2 + c2
=

ab

b2 + c2
+ i

ac

b2 + c2
.

This make it easy to extract the real and imaginary parts of 11.56. Recalling that the real
index of refraction is n = cκ′/ω and that the absorption coefficient is a = 2κ′′ gives

n ≈ 1 +
Nq2

2meεo

∑
j

fj(ω
2
oj − ω2)

(ω2
oj − ω2)2 + γ2

jω
2

(11.57)

and

a ≈ Nq2ω2

meεoc

∑
j

fjγj
(ω2

oj − ω2)2 + γ2
jω

2
. (11.58)

Equation (11.57) is what Lorentz was after: a model linking parameters of the substance,
e.g., the density of electrons and their resonant frequencies, to the index of refraction. His
development also gave a model for the absorption coefficient with no additional effort. The
shape of the absorption curve defined by Eq. (11.58) is called a Lorentzian line shape.
(There are other line shapes that describe effects in gases such as pressure broadening and
Doppler shifting, but these do not concern oceanographers.)
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The limiting cases of the Lorentz model are worth noting. At very low frequencies
(ω → 0), the permittivity seen in Eq. (11.55) becomes real and of the form ε = εo(1 + χ),
where χ is now a constant that depends on the particular substance. Water is a highly polar
molecule, which means that the bulk polarization P = εoχE achieves a large magnitude
as the water molecules align themselves with the slowly varying electric field. This gives a
large value for χ and thus for ε. For water, ε ≈ 78 at low frequencies. This gives a real index
of refraction n =

√
ε ≈ 8.8, which is seen in Fig. 8.4 for λ & 10cm (ω . 2·1010 rad s−1). For

very high frequencies, ω →∞, the −ω2 term in the denominator of Eq. (11.55) dominates
because the applied frequency is greater than any resonant frequency of the molecule. The
permittivity then has the form ε ≈ εo(1 − constant/ω2). Thus the index of refraction
approaches 1 from values less than 1 as ω →∞. This is true for any substance, and is seen
for water in Figs. 8.4 and 11.7 for λ . 0.04 µm (ω & 5 · 1016 rad s−1).

Figure 11.8 shows the shapes of the functions for the index of refraction and the ab-
sorption coefficient near a single resonant frequency. (That is to say, the n plot shows the
frequency-dependent function without the factor Nq2/2meεo and similarly for the a plot.
A value of γ = 0.4 was used.) For most of the frequency range, dn/dω > 0 (or dn/dλ < 0).
This is the case of “normal” dispersion. However, near the absorption line, the derivative
of n is reversed. This is the case of “anomalous dispersion.” In materials like water there
are many absorption lines due to electronic transitions (in the UV), vibrational modes (in
the near IR), and rotational modes (in the far IR and longer wavelengths). These lines are
often closely spaced, so they tend to overlap and blur out the features seen here for a single
isolated line, and n can remain above 1. However, near very strong absorption features,
the anomalous dispersion effect on the index of refraction can be seen. This is the case
near λ = 4 and 6µm in Fig. 11.7, where the shape of the n(λ) curve looks qualitatively like
that of the bottom panel of Fig. 11.8. These features are due to strong vibrational modes
of the water molecule (O-H stretching modes). The structure of n(λ) in at wavelengths
from 0.115 to 0.180 µm is due to a number of electronic transitions.

To finish the discussion of the Lorentz model, it is first noted that the assumption that
χ was small compared to 1 is fairly good for gases. However, for liquids and solids, where
one molecule interacts with its neighbors and not just with the sinusoidal electric field, the
equations seen here require modification to allow for the “packing” of the molecules in space.
That leads to a result known as the Clausius-Mosotti, or the Lorentz-Lorenz, equation.
However, that modification does not change the basic idea developed here and needs not
be pursued. Of course, real electrons are not attached to molecules as though they were on
springs. Somewhat surprisingly, a proper quantum mechanical treatment of the problem
leads to a result with exactly the same functional form as seen in Eq. (11.55). However,
the various terms are interpreted differently. The resonant frequencies are replaced by the
frequencies corresponding to the energy differences between the quantized energy levels in
the atom or molecule, and so on.

11.6 Kramers-Kronig Relations

At first glance it would seem that the real index of refraction and the absorption coefficient
should be unrelated optical properties of a material. As emphasized in Section 4.2, spatial
changes in the index are responsible for scattering. Absorption, on the other hand, describes
how energy is removed from a beam of light. However, as seen in the development of the
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Figure 11.8: Lorentz line shapes for the real index of refraction n and the absorption
coefficient a. These are plots of the summands in Eqs. (11.57) and (11.58) with the scale
factors set to 1. Top panel: n and a as functions of frequency; bottom panel: n and a as
functions of wavelength.

Lorentz model, equations for both the index of refraction and the absorption coefficient were
obtained from the same analysis of how matter responds to a sinusoidal electromagnetic
wave, i.e. to light. The frequency-dependent functions for n(ω) and a(ω) are very similar
in form. This hints at a deeper connection between n(ω) and a(ω).

There is indeed a profound connection between the real index of refraction and the
absorption coefficient. These two quantities are in fact so closely related that if you know
one at all wavelengths, you can compute the other at all wavelengths. This relation was
discovered independently by R. de L. Kronig in 1926 and by H. A. Kramers in 1927. The
derivation of these equations is mathematically difficult and will not be give here; see
Bohren and Huffman (1983, Section 2.3.2) for a discussion.

Kramers-Kronig equations relate the real and imaginary parts of what are called an-
alytic functions. Without going into the details, there are many physical functions that
satisfy the requirements to be analytic. Examples relevant to optics are the frequency
dependent complex index of refraction m(ω) and related quantities such as the complex
dielectric function ε(ω) and the electric susceptibility χ(ω). When stated for the complex
index of refraction m(ω) = n(ω) + ik(ω), the Kramers-Kronig relations are (Bohren and
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Huffman, 1983, Eqs. 2.49 and 2.50)

n(ω)− 1 =
2

π
℘

∫ ∞
0

Ω k(Ω)

Ω2 − ω2
dΩ (11.59)

k(ω) = − 2ω

π
℘

∫ ∞
0

n(Ω)− 1

Ω2 − ω2
dΩ . (11.60)

If these equations do not scare you, they should. Note that as the frequency is integrated
from 0 to ∞, somewhere along the way the integration variable Ω will equal ω and the
denominator of the integrand will equal 0, while the numerator is non-zero. Thus the
integrand becomes infinite and the integral diverges. The ℘ symbol in front of the integrals
indicates the Cauchy principle value of the integrals. The Cauchy principle value is a way
to assign a finite value to some divergent integrals by computing a contour integral in the
complex plane, “going around” the singular point, and then taking suitable limits5. The
mathematical details are not needed for the present discussion, which will take as given
that the integrals can be evaluated.

The absorption coefficient is determined by the imaginary part of the index of refraction
via Eq. (11.43): a = 4πk/λ. Using this and the relation ω/c = 2π/λ allows the previous
form of the Kramers-Kronig relations to be converted into the corresponding form for n(ω)
and a(ω):

n(ω)− 1 =
c

π
℘

∫ ∞
0

a(Ω)

Ω2 − ω2
dΩ (11.61)

a(ω) = − 4ω2

πc
℘

∫ ∞
0

n(Ω)− 1

Ω2 − ω2
dΩ . (11.62)

These equations are not just of academic interest. For example, it is often easier to measure
the absorption coefficient than the index of refraction. Then a measurement of absorption
allows the determination of the index of refraction via Eq. (11.61). This is what Zoloratev
and Demin (1977) did, although they do not give the details of their numerical calculations.
Segelstein (1981) did essentially the same thing, although he did his numerical calculations
using a fast Fourier transform technique derived from the Kramers-Kronig relation (11.59).

It is important to note that you cannot measure absorption at one frequency (or wave-
length) and then determine the index of refraction at that frequency. You have to measure
a(ω) over all frequencies, and then you can determine n(ω) over all frequencies by repeated
evaluations of Eq. (11.61). In practice you never have measurements over all frequencies,
but you have to have measurements over a wide-enough range of frequencies to enable
an accurate approximate evaluation of the integrals. Of course, the integrations must be
performed numerically, which is not trivial because of the singularity at Ω = ω. There is
considerable literature on this; Fitzgerald (2020) gives a listing of MATLAB code to carry
out the calculations.

The purpose of this brief discussion of Kramer-Kronig relations is to show that ab-
sorption and the real index of refraction are closely related. You might have a need for
a material with particular absorption and refractive properties. So you mix together just

5To learn how that is done, you need to take a class in complex analysis, where you will learn about
wonderful things like poles, residues, branch points, contour integration of complex functions and, of course,
how to evaluate such integrals. The standard text on this topic was published by R. V. Churchill in 1948.
It is still in press as an 8th edition (Brown and Churchill, 2009).
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the right combination of dyes to give the absorption spectrum you want. However, at that
point you have no freedom to someway define the real index of refraction; it has now been
fixed by Eq. (11.61).

There is much more to be said about Kramers-Kronig relations, which occur throughout
physics and engineering. They are much more general than just the forms seen here for
optical variables. At the deepest level, they are a necessary and sufficient for causality,
which means that an effect cannot occur before its cause. This also means that no signal
can propagate faster than the speed of light in a vacuum. A necessary and sufficient
condition that a signal speed in a medium be less than the speed of light c is that the real
and imaginary parts of the medium’s refractive index satisfy Eqs. (11.59) and (11.60).
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CHAPTER 12

Mie Theory

Figure 12.1: Gustav Adolf
Feodor Wilhelm Ludwig Mie,
later in life

As discussed in the Physics of Scattering, Section 6.2, one way to change the real index
of refraction and thereby cause elastic scattering is to imbed a particle of some index of
refraction within a medium with a different index of refraction. If the imbedded particle
is a homogeneous sphere (of any radius), the solution of Maxwell’s equations for a plane
wave incident onto the sphere is now called Mie theory.

Gustav Mie (1868-1957) began his career in mathematics and mineralogy. One of the
mysteries of the late 1800s was why colloidal suspensions of metallic particles displayed a
rainbow of colors. Figure 12.2 shows an example of red to violet colors in suspensions of
gold particles. The difference in colors is due to the different sizes of the gold particles,
which are smaller than the wavelength of visible light. Understanding the optical effects of
small concentrations of very small particles had important industrial applications because
adding metallic nanoparticles to molten glass was (and still is) a common way to make
glass of different colors.

Mie realized that particles made of the same material might absorb and scatter light
much differently just because of differences in their sizes. He approached this problem by

437
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working out the solution to scattering of light by spheres, starting with Maxwell’s equations.
His approach is all the more remarkable because, at the time, the importance of Maxwell’s
equations was not yet recognized by all physicists. His classic paper, Mie (1908), is titled
“Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” or “Contributions
to the optics of turbid media, particularly colloidal metal solutions.” Mie used his solution
equations to explain how particle size and absorption properties can explain the different
colors. After that success, he moved on to other problems and never published another
paper on the scattering of light.

Figure 12.2: Suspensions of gold
nanoparticles of various sizes
showing a range of colors. Photo
by Aleksandar Kondinski from
en.wikipedia.org/wiki/Colloidal gold.

The fundamental importance of Mie’s paper went unrecognized for the next 50 years,
apparently even by Mie himself. He does not even mention this paper in his autobiograph-
ical notes of 1948. This is perhaps understandable because his solution equations are so
complicated that they cannot be evaluated except by modern computers. Mie gets credit
for the complete solution of this scattering problem, but many of the most famous physi-
cists of the late 1800s also worked on a solution; Kerker (1969) gives a detailed review of
who did exactly what and when. There are several short biographies of Mie, e.g., Lilienfeld
(1991), Stout and Bonod (2020), and Mishchenko and Travis (2008).

12.1 Statement of the Problem

Mie’s problem is formulated as follows.

• We have given a single, homogeneous sphere of radius ρ, whose material has a complex
index of refraction ms = ns + iks. Here ns is the real index of refraction, and ks is
the complex index of refraction. The complex index is related to the absorption
coefficient as of the sphere material by Eq. (11.43): as(λ) = 4πks(λ)/λ, where λ is
the wavelength in vacuo corresponding to the frequency of an electromagnetic wave.

• The sphere is imbedded in a non-absorbing, homogeneous, infinite medium whose
index of refraction is mm = nm.

• A plane electromagnetic wave of frequency f is incident onto the sphere. The wave-
length on the incident light in the medium is thus λm = c/(nmf) = λ/nm, which
corresponds to a wavelength in vacuo of λ = c/f .

https://en.wikipedia.org/wiki/Colloidal_gold
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• We wish to find the electric field within the sphere and throughout the surrounding
medium. That is, we wish to determine how the incident light is absorbed and
scattered by the sphere, including the angular distribution of the scattered light and
its state of polarization.

The solution of this geometrically simple problem is exceptionally difficult. Indeed, this
is one of the classic problems of applied mathematics, and its solution was attempted (and
partially achieved in various forms) by many of the most illustrious figures of nineteenth-
century physics. For historical reasons, Mie usually gets credit for the first complete so-
lution of the problem, and his solution of Maxwell’s equations is commonly called Mie
theory. Mie’s paper, (Mie, 1908), is 69 pages of dense equations, and I doubt that more
than a handful of people have actually read the entire paper, although it has been cited in
tens of thousands of papers. Bohren and Huffman (1983, page 93) say that someone who
works through the details of Mie’s solution will have “acquired virtue through suffering.”
I second that. Mie’s paper is full of scary equations (see Fig. 12.4) connected by phrases
like “It is easily shown that...”, “Symmetry shows that...”, and “You can convince yourself
that...”

The details of Mie’s solution are given (along with much needed extra explanation and
modern notation) in the texts by van de Hulst (1957) and by Bohren and Huffman (1983).
The purpose of the present section is to state the problem and outline its solution, so that
you will understand the inputs to and outputs from computer programs that implement
Mie’s equations, and also have a qualitative idea of what is happening deep inside those
programs. The chapter closes with examples of Mie-computed quantities.

12.1.1 Geometry

Figure 12.3 shows the geometry of Mie theory. An incident electromagnetic plane wave
(i.e., a collimated beam of light) of frequency f (cycles per second) is incident onto a homo-
geneous spherical particle at the origin of a coordinate system. The coordinate system is
chosen so that the wave is propagating in the +z direction, and the origin of the coordinate
system is chosen so that the wave is a cosine at time 0. The incident electric field in the
medium of real index of refraction nm then can be written as

Ei(z, t) = Eoi cos(kz − ωt) ,

where k = 2π/λm = 2πnm/λ is the wavenumber (cycles per meter) in the medium, and
ω = 2πf is the angular frequency (radians per second). Eoi is the amplitude of the incident
electric field vector, and the direction of propagation is êz. Life will be mathematically
easier later on if we write the incident wave as a complex variable,

Ei(z, t) = Eoie
i(kz−ωt) ,

and keep in mind that we’re interested in only the real part of the complex variable Ei(z, t).
We’re dealing with Maxwell’s equations, which involve both electric and magnetic fields.
However, if you know one, then you can get the other, so it suffices to discuss just the
electric field.

The incident wave Ei will interact with the particle at the origin of the coordinate
system and generate a scattered wave Es traveling in direction êr, which is at polar and



440 CHAPTER 12. MIE THEORY

Figure 12.3: Geometry for Mie theory. Unit direction vectors are indicated by hatted
letters, êz, ê⊥i, etc. The thick green arrows represent the incident plane wave, and the
thick red arrow represents the scattered wave. The scattering particle is the blue sphere
at the origin.

azimuthal angles (θ, φ) as seen in Fig. 12.3. The incident direction êz and the scattered
direction êr define the scattering plane, part of which is shaded in pink in the figure.

The incident plane wave is a transverse electromagnetic wave, which means that the
electric and magnetic fields are perpendicular to the direction of travel. The incident wave
is also arbitrarily polarized. An arbitrary state of polarization of E(z, t) can be written as
a combination of two components, which are orthogonal to the direction of propagation.
We choose these two directions to be parallel and perpendicular to the scattering plane.
Thus we can write the incident electric field as

Ei = E‖i ê‖i + E⊥i ê⊥i , (12.1)

where the parallel (ê‖i) and perpendicular (ê⊥i) directions are shown by the thin green
arrows in Fig. 12.3. Note that ê⊥i × ê‖i = êz. At large distances from the particle (the
so-called “far field”), the scattered field becomes transverse and can also be written as a
combination of components in directions parallel and perpendicular to the scattering plane:
Es = E‖s ê‖s + E⊥s ê⊥s. The directions ê‖s and ê⊥s are parallel and perpendicular to the
scattering plane at the point (r, θ, φ) where the scattered light is being measured by an
instrument looking towards the particle at the origin. As seen in Fig. 12.3, ê⊥s = ê⊥i but
ê‖s 6= ê‖i. In particular,

ê‖s = êθ , ê⊥s = −êφ , and ê⊥s × ê‖s = êr , (12.2)

where êr, êθ, êφ give the directions of increasing r, θ, φ in the spherical coordinate system.
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12.2 The Solution

For an arbitrary (i.e., non-spherical and/or inhomogeneous) particle at the origin, the
scattered wave can be written as (e.g., van de Hulst, 1981, Section 4.41), (Bohren and
Huffman, 1983, Section 3.2)E‖s

E⊥s

 =
eik(r−z)

−ikr

S2 S3

S4 S1

E‖i
E⊥i

 . (12.3)

The four Sj , j = 1, 2, 3, 4, are the elements of the amplitude scattering matrix. These
functions transform the amplitudes of the incident electric field into the amplitudes of the
scattered field. For an arbitrary particle, all four elements of the amplitude scattering
matrix are non-zero and depend on both the polar θ and azimuthal φ scattering angles.
These functions of course depend on the particle size, shape, and composition, as well as on
the wavelength of the incident light, and it is that dependence that we wish to determine.

This present discussion accepts the form of Eq. (12.3) as given to us by the physicists,
but it is worth a comment. When working with 3-D waves, it is common to seek a solution
that separates the radial (r) and angular (θ, φ) variables. Here the Sj depend only on
(θ, φ). As shown in Eq. 11.42, the irradiance of an electromagnetic wave is proportional
to square of the amplitude of the electromagnetic field. Squaring Eq. (12.3) gives a factor
of ∣∣∣∣∣eik(r−z)

−ikr

∣∣∣∣∣
2

=
1

k2r2

for the radial dependence of the scattered irradiance. We are considering scattering by a
single particle, so the farther away we are from the particle, the less the irradiance detected
by a sensor looking at the particle will be by a factor of 1/r2. This result is known as the “r2

law for irradiance.” We see here how the form of (12.3) for the scattered electric field has
the r2 law for irradiance built into the radial dependence of the electric field amplitudes.
In particular, we are interested in the “far field” of the scattered light, which means that
kr >> 1. Note also that since kr is non-dimensional, so must be the Sj matrix elements.

For a homogeneous spherical particle, S3 = S4 = 0 and the amplitude scattering matrix
reduces to E‖s

E⊥s

 =
eik(r−z)

−ikr

S2 0

0 S1

E‖i
E⊥i

 . (12.4)

Now comes the hard part: how to compute S1 and S2 given the particle radius ρ, the
complex index of refraction of the spherical particle, ms = ns + iks, and the real index of
refraction of the medium, mm = nm.

Comment on notation. It is common in Mie theory papers to use a as the radius of
the spherical particle. However, in applications of Mie theory to optical oceanography, that
leads to confusion with the absorption coefficient. Mie used ρ, and that’s good enough for
me (pun intended). There is also confusion between the common use of k as wavenumber
and k as the complex part of the index of refraction; Bohren and Huffman use a Roman k for
wavenumber and an italic k for the imaginary part of the index of refraction. I avoid that
subtlety by using k for wavenumber and ks for the imaginary part of the index of refraction
of the sphere, but then I’m using a subscript s for both “sphere” and “scattered,” although
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context should keep things clear. Bohren and Huffman use ρ for the phase shift parameter
2x(ns/nm − 1). Unfortunately, choosing good notation is a never-ending problem.

The incident and scattered electric fields must satisfy both Maxwell’s equations and
boundary conditions for the behavior of the electric field at the surface of the sphere and
at infinity. It is these boundary conditions that determine exactly which of all possible
electric fields that satisfy Maxwell’s equations is the one particular field that describes
scattering by a particular sphere.

Figure 12.4 shows a couple of the pages of Mie’s 1908 paper. This figure should be
sufficient to convince you that we should skip the mathematical details and jump straight
to the answer.

Figure 12.4: Two of the pages of Mie’s 1908 paper.

Mie’s solution is in the form of infinite series of very complicated mathematical func-
tions. The terms in these series depend on a size parameter x,

x =
2πρ

λm
=

2π ρnm

λ
, (12.5)

and the refractive index of the sphere relative to that of the surrounding medium,

m =
ns

nm
+ i

ks

nm
. (12.6)
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The size parameter x is a measure of the sphere’s size relative to the wavelength of the
incident light in the surrounding medium. This parameter shows why oceanographers tend
to use wavelength rather than frequency as the measure of light’s oscillations: it is particle
size relative to wavelength that is important for scattering (whether or not the particle is
spherical). Note that the real part of the relative refractive index m can be less than 1, for
example if the spherical particle is an air bubble (ns ≈ 1) in water (nm ≈ 1.33).

Mie’s solution (in modern notation) is

S1 =
∞∑
n=1

2n+ 1

n(n+ 1)
(anπn + bnτn)

S2 =

∞∑
n=1

2n+ 1

n(n+ 1)
(anτn + bnπn)

(12.7)

where

an =
mψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)

mψn(mx) ξ′n(x)− ξn(x)ψ′n(mx)

bn =
ψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)

ψn(mx) ξ′n(x)−mξn(x)ψ′n(mx)

(12.8)

The an and bn are often called the “Mie coefficients.” These functions describe multipole
expansions of the electric (an) and magnetic (bn) fields of the scattered wave: n = 1 is the
dipole term, n = 2 is the quadrapole term, and so on. The ψn and ξn are Riccati-Bessel
functions; the prime denotes derivatives of these functions with respect to the argument of
the function (either x or mx). Riccati-Bessel functions are obtained from something called
spherical Bessel and spherical Hankel functions, which in turn are obtained from something
called Bessel functions of the first and second kind, which are themselves.... You get the
idea. You eventually get down to something normal people can understand, likes sines and
cosines. The πn and τn are angle-dependent functions obtained by recursion relations:

πn =

(
2n− 1

n− 1
cos θ

)
πn−1 −

n

n− 1
πn−2

τn =(n cos θ)πn − (n+ 1)πn−1

(12.9)

starting with π0 = 0 and π1 = 1. The first 8 of these functions are plotted in Fig. 12.8 of
the next section.

Thus the amplitude functions S1 and S2 depend on the particle size and index of
refraction via the x and m in the an and bn, and on scattering angle via the cos θ factors
in πn and τn. For the geometry of Fig. 12.3, the polar angle θ is the scattering angle (ψ
is my preferred symbol for scattering angle). It should be noted that if m = 1 + i0, i.e., if
the sphere has the same index of refraction as the surrounding medium, then an = 0 and
bn = 0 for all n. That is to say, there is no scattering. This observation highlights that
scattering is caused by differences in index of refraction.

If the incident light is unpolarized, then the scattered light is independent of the az-
imuthal scattering angle φ because of the symmetry of the sphere. However, the original
problem was formulated for arbitrary polarization of the incident light, as shown in Fig.
12.3. If the incident light is plane polarized, then the plane of the polarization defines
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an azimuthal direction that carries through as a φ dependence of the scattered light. For
convenience, let the plane of polarization in Fig. 12.3 be the x-z plane, so that angle φ
in the figure is the azimuthal angle from the plane of polarization to the scattering plane.
The far field of the scattered light is the region far away from the scattering particle, usu-
ally measured in terms of λ/r. In the far-field limit r → ∞, the scattered wave becomes
a transverse electromagnetic plane wave and the scattered energy flows radially outward.
Mie’s solution for the θ and φ components of the electric field in the far field are (Kerker,
1969, Section 3.3.3), (van de Hulst, 1981, page 124) (and recalling Eq. 12.2)

Eφ = − E⊥s =
i

kr
exp(−ikr − iωt) sinφS1(θ) (12.10)

Eθ = E‖s =
−i
kr

exp(−ikr − iωt) cosφS2(θ) . (12.11)

The irradiance is proportional to the square of the electric field (Eq. 11.42), so the corre-
sponding scattered irradiance components are given by

Eφ =
1

k2r2
sin2 φ |S1(θ)|2 (12.12)

Eθ =
1

k2r2
cos2 φ |S2(θ)|2 . (12.13)

Here E is used for irradiance to prevent confusion with E for the electric field. As indicated
in Eqs. (12.10) and (12.11), these components are respectively perpendicular and parallel to
the scattering plane. As described by Kerker (1969, page 47), “Each of these components
of the scattered light can be thought of as arising from that component of the incident
beam polarized in the same sense, i.e., Eφ arises from an incident beam of irradiance
(proportional to) sin2 φ polarized perpendicularly to the scattering plane, and Eθ from a
beam of irradiance (proportional to) cos2 φ polarized parallel to the scattering plane1.”
This is made clear by Fig. 12.5 , which is a view of the coordinate system of Fig. 12.3 as
seen “from above,” i.e., looking in the −ẑ direction. The solid green arrow is the incident
beam polarized in the x-z plane, i.e., Ei = Eiêx. This incident field can be resolved into
components parallel (E‖i) and perpendicular (E⊥i) to the scattering plane, which is the
red arrow at an angle φ to the incident polarization plane. If φ = 0, then Eφ = 0 because
there is no component of the incident wave in the êφ = êy direction. If φ = 90, then Eθ = 0
because there is no component of the incident wave in the êθ = êy direction.

It must be remembered that the total field outside the scattering particle, which is
what an instrument measures, is the vector sum of the scattered field just discussed and
the incident (unscattered) field. This addition of fields must take proper account of the
phase differences in the waves, which were induced by the incident wave passing through
the particle.

Mie codes such as those used in Section 12.4 output only the two amplitude matrix
elements Si(θ); if needed, the φ dependence of the scattered light can be constructed from
the preceding equations. However, most applications of Mie theory use only the efficiencies
or the phase function (defined below), which do not depend on the φ dependence of the
scattered electric field.

For completeness, it must be mentioned that in the near field of the sphere, i.e, within
a few wavelengths of the surface of the sphere, the electromagnetic field is extremely com-
plicated. In particular, there are also radial components of the electric and magnetic fields,

1Kerker uses Iφ and Iθ can calls them intensity rather than irradiance.
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Figure 12.5: Geometry for interpreting azimuthal dependence of Mie scattering. This is
Fig. 12.3 as seen “from above.” Unit direction vectors are indicated by hatted letters, êz,
ê⊥i, etc. The thick green arrows represent the incident plane wave polarized in the x-z
plane, i.e., Ei = Eiêx. The thick red arrow represents the scattered wave.

so that the scattered light is not a transverse electromagnetic wave, in spite of what you
were taught in freshman physics. However, the radial electric fields decay with distance
according to (λ/r)2 (or (λ/r)4 for the radial irradiances) or faster, so these radial compo-
nents die away very quickly with distance from the scattering particle and are of no interest
for oceanographic applications of Mie theory.

Mie’s solution is exact and valid for all sizes of homogeneous spheres, in-
dices of refraction, and wavelengths.

12.2.1 Computational Issues and Derived Quantities

Unfortunately, it is not possible to compute the sums of the infinite series (12.7) analytically.
The sums must be approximated numerically by adding only a finite number of terms in
the series. If the size parameter x is less than roughly 10, e.g. typically when ρ < λ, only
the first few terms are needed to get an accurate approximation for S1 and S2. However, for
large size parameters, e.g. when ρ >> λ, many terms must be computed and convergence
of the series is very slow. A commonly used rule is that the number of terms that must be
computed is the integer closest to

Nmax = x+ 4x1/3 + 2 .

Suppose we want to compute scattering by a spherical phytoplankton of radius ρ = 0.5µm,
real index of refraction ns = 1.4, in water with nm = 1.33, at a wavelength of λ = 500 nm.
The size parameter is then x = 8.36 and Nmax = 18. That is no problem for a computer.
But suppose we want to compute the scattering for a rain drop of size ρ = 1mm, ns = 1.33,
in air with nm = 1.0, and for λ = 500 nm. Then x = 12, 566 and Nmax = 12, 661. That
can take a while.

The BHMIE code used to generate the examples on the next section is restricted to
x < 2 · 104 for reasons of computational accuracy. However, specialized codes have been
designed for use with size parameters larger than 107, but you are then getting into the
world of quadruple-precision arithmetic and supercomputers. In Mie’s original paper, he
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had to do the calculations by hand. He was able to compute only the first three terms
of the infinite series, which limited his applications to particles less that 200 nm in size
for visible wavelengths (x of order 1). However, that was sufficient to explain the optical
effects of scattering by the colloidal particles that prompted his study.

It must be remembered that S1 and S2 are complex variables that transform incident
complex electric fields into scattered complex electric fields. In oceanography, we are
interested in scattered energy, which can be detected and turned into radiances. We are
also interested in the shape of scattering phase function as a function of scattering angle,
and in other quantities like absorption and scattering coefficients. The energy in an electric
field is proportional to its amplitude squared so, not surprisingly, the quantities of real
interest are obtained from various functions of the absolute values squared of S1 and S2.
The |Sj |2 are real functions that are proportional to the scattered power (i.e., to scattered
irradiance).

Suppose that the incident light is polarized parallel to the scattering plane, i.e. E⊥i = 0
in Eq. (12.1). Then Eq. 12.3 shows that for an arbitrary particle, this incident light can be
scattered into light that has components that are both parallel and perpendicular to the
scattering plane. But for a spherical particle, Eq. 12.4 shows that incident light polarized
parallel (perpendicular) to the scattering plane is scattered into light that remains polarized
parallel (perpendicular) to the scattering plane.

Thus the angular pattern (ignoring normalization factors) of the incident parallel-
polarized light that is scattered parallel to the scattering plane is given by

I‖s = |S2|2 = S2S
∗
2 ,

where S∗ denotes complex conjugation. Likewise the perpendicular-incident to perpendicular-
scattered pattern is given by I⊥s = |S1|2. It is therefore common to plot |S1|2 and |S2|2 as
functions of the scattering angle to see how these two polarization states are scattered.

I‖s and I⊥s can be thought of as unnormalized scattering phase functions for particular
states of polarization. The oceanographer’s scattering phase function for unpolarized light
is, to within a normalization factor, given by

β̃ =
1

2

(
|S1|2 + |S2|2

)
=

1

2
(S1S

∗
1 + S2S

∗
2) . (12.14)

A word of warning here: Mie codes return S1(ψ) and S2(ψ) for the set of scattering angles
requested by the user (e.g., ψ from 0 to 180 deg by 0.1 deg). You can then use Eq. 12.14
to compute the phase function, but you can be guaranteed that it will be unnormalized.
For example, if you study Bohren and Huffman (and you should), you will see many places
where they say something like “where we have omitted the factor 1/k2r2” (page 113). You
need to integrate the β̃ obtained from 12.14 to determine the needed normalization factor.
A phase function used in a radiative transfer code such as HydroLight must satisfy the
normalization 2π

∫
β̃(ψ) sinψ dψ = 1.

Additional output of Mie codes is usually given as various absorption and scattering
efficiencies. The absorption efficiency Qa, for example, gives the fraction of radiant energy
incident on the sphere that is absorbed by the sphere. The term “energy incident on the
sphere,” means the energy of the incident plane wave passing through an area equal to
the cross-sectional (projected, or “shadow”) area of the sphere, As = πρ2. Likewise, the
total scattering efficiency Qb gives the fraction of incident energy that is scattered into all
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directions. Other efficiencies can be defined: Qc = Qa +Qb for total attenuation, Qbb for
backscattering, and so on.

Mie solutions may also be presented in terms of absorption and scattering cross sections.
The physical interpretation of these cross sections is simple. The absorption cross section
σa, for example, is the cross sectional area of the incident plane wave that has energy equal
to the energy absorbed by the sphere. The absorption and scattering cross sections are
therefore related to the corresponding efficiencies by the geometrical cross section of the
sphere. Thus

σa = QaAs = Qaπρ
2 (m2) .

Likewise, σb = QbAs, and so on for σc, σbb, etc.

For the record, these cross sections are obtained within the Mie code from the an and
bn functions of Eq.(12.8):

σb =
2π

k2

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
σc =

2π

k2

∞∑
n=1

(2n+ 1)<(an + bn)

where <(...) denotes the real part of the argument; 2π/k2 is equivalent to 2πρ2/x2 or
λ2/(2πn2

m). The absorption cross section can be obtained from σa = σc − σb.

Warning: Mie computer codes usually output what they call a backscattering effi-
ciency or cross section, often denoted by Qback or σback, which is given in terms of the Mie
coefficients by

σback =
π

k2

∣∣∣∣∣
∞∑
n=1

(2n+ 1)(−1)n(an − bn)

∣∣∣∣∣
2

.

This quantity is also called the “radar cross section” or “radar backscattering.” The radar
cross section is the hypothetical area required to intercept incident power onto the particle
such that if the total intercepted power were re-radiated isotropically with a scattering
amplitude equal to the amplitude for exact backscattering (at 180 deg), the power actu-
ally observed at the receiver is produced. See Bohren and Huffman (1983, Section 4.6)
for further discussion. Do not confuse this quantity with the backscatter cross section
σbb, which corresponds to scattering over the backward hemisphere of the phase function
without any assumption of isotropic scattering pinned to the phase function value at 180
deg. The oceanographers’ backscattering coefficient can be computed by integrating the
Mie-computed phase function from 90 to 180 deg2.

12.3 Mie Theory with Particle Size Distributions

The cross sections obtained from Mie theory are for a single particle and have units of m2

per particle, for the given particle properties. In oceanography, we are usually interested

2I have never found even one paper in the Mie literature that mentions backscattering over 90-180 deg,
let alone seen a formula for computing the 90-180 deg backscattering cross section or efficiency from sums
of the the Mie coefficients. It might be possible to obtain such a formula, but the derivation looks really
ugly.
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in a water body containing a huge number of particles per cubic meter. If there are N
particles per cubic meter corresponding to particle radius ρ (for given other conditions of
indices of refraction and wavelength, which determine the size parameter x and relative
index of refraction m), then the oceanographers’ scattering coefficient corresponding to a
collection of identical particles is

b(ρ) = N (ρ)σb(ρ) (m−1) .

Now, of course, the ocean does not contain just one size and type of particle. The
range of particle sizes is described by the particle number size distribution PSD(ρ), where
PSD(ρ) is a function such that the number of particles with radii between ρ and ρ + dρ
is PSD(ρ)dρ (Section 8.12). The units of PSD are particles per cubic meter per size
interval, which is usually written as 1/(m3µm) because particle sizes are usually measured
in micrometers. Particle size distributions are often modeled as a power law of the form
PSD(ρ) = Kρ−s, where K sets the scale and s is in the range of 4 or 5. So the total
scattering coefficient due to all particles of a given type is then

b(all sizes) =

∫ ∞
0

σb(ρ)PSD(ρ) dρ .

In practice, the integration over all ρ will be approximated as a summation from some
minimum size ρmin to some maximum size ρmax for which the σb PSD term makes a
significant contribution to the summation.

There will also be different types of particles for a given size ρ, which gives different
x and m parameters in the Mie equations, hence different cross sections for the different
particle types: σb(ρ, i), where i = 1, ...,M labels the type of particle (cyanobacteria, quartz
sand, etc.). Each particle type can have its own size distribution, PSD(ρ, i). Then the
total scattering coefficient for all sizes of all particle types is

b(all sizes, all types) =

M∑
i=1

ρmax∑
j=ρmin

σb(ρj , i)PSD(ρj , i) ∆ρj . (12.15)

Thus there must be many evaluations of the Mie equations to obtain the cross sections for
a realistic range of particle types and size bins. Keep in mind that if Mie theory is used
to obtain the cross sections, then it is being assumed that the particles are homogeneous
spheres, which is almost never the case in the ocean. However, Eq. (12.15) shows how
Mie calculations can be used to compute the quantities used in optical oceanography if the
particles can be approximated as homogeneous spheres.

12.4 Mie Theory Examples

This section shows examples computed from the equations discussed on the preceding Mie
Theory Overview section. These examples were generated with the IDL version of the
Bohren and Huffman Mie code (BHMIE) downloaded from SCATTERLIB.

http://scatterlib.wikidot.com/
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For ease of reference, recall the physical inputs to the Mie calculations:

• The radius ρ of the homogeneous sphere

• The complex index of refraction of the sphere, ms = ns + iks, where ns is the real
index of refraction, and ks is the complex index of refraction. The complex index is
related to the absorption coefficient as of the sphere material by as(λ) = 4πks(λ)/λ,
where λ is the wavelength in vacuo corresponding to the frequency ν of the incident
electromagnetic wave.

• The real index of refraction nm of the non-absorbing, homogeneous, infinite medium

• The wavelength in vacuo, λ, of the incident plane electromagnetic wave. This corre-
sponds to a frequency ν = c/λ and to a wavelength in the medium of λm = λ/nm

These inputs are recast into the quantities actually used in the Mie calculations:

• The size parameter

x =
2πρnm

λ
=

2πρ

λm

• The complex index of the particle relative to the medium,

m =
ns

nm
+ i

ks

nm

Most Mie codes then return the following outputs:

• The unnormalized complex amplitude matrix elements S1 and S2 as a function of
scattering angle, 0 ≤ ψ ≤ 180 deg, from which can be computed:

– The scattering phase function for incident perpendicular polarization to scat-
tered perpendicular polarization, I⊥ = |S1|2

– The scattering phase function for incident parallel polarization to scattered par-
allel polarization, I‖ = |S2|2

– The scattering phase function for unpolarized light, β̃ = 1
2(|S1|2 + |S2|2)

• Various efficiencies

– The attenuation efficiency Qc

– The scattering efficiency Qb

– The absorption efficiency Qa = Qc −Qb

• or the equivalent cross sections

– The attenuation cross section σc

– The scattering ecross section σb

– The absorption efficiency σa = σc − σb

• The average cosine of the scattering angle, g

The radar cross section may also be returned, but it is not of interest to oceanographers.
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12.4.1 Example 1: Bohren and Huffman Fig. 4.9(b)

As a first example, let us reproduce one of the figures from Bohren and Huffman (1983).
They considered a water droplet in air with ρ = 0.263 µm, an index of refraction of the
particle relative to the air of m = 1.33 + i10−8, and a wavelength of λ = 550 nm. These
values give a size parameter of x = 3. Figure 12.6 shows the curves for I⊥ = |S1|2,
I‖ = |S2|2, and β̃ = 1

2(I⊥ + I‖). The I⊥ and I‖ curves exactly reproduce the curves in Fig.
4.9(b) of Bohren and Huffman. This is a check that the Mie code is working correctly.

The I⊥ and I‖ curves can be viewed as unnormalized phase functions for scattering of
incident light that is polarized perpendicular (parallel) to the scattering plane into light
that is polarized perpendicular (parallel) to the scattering plane. The red curve shows
the phase function for scattering of unpolarized incident light into a sensor that is not
polarization sensitive. This is the phase function usually used by oceanographers. Recall,
however, the warning of the previous section about Mie codes outputting unnormalized
amplitude matrix elements. Integrating the red curve of Fig 12.6 gives

2π

∫ π

0
β̃(ψ) sin(ψ) dψ = 51.70 .

Thus the red curve in the figure must be divided by 51.70 to obtain a properly normalized
phase function that could be used, for example, in HydroLight.

The figure also shows the scattering, absorption, and attenuation efficiencies, and the
mean cosine of the scattering angle. The scattering efficiency Qb is 1.759, which means
that the particle is scattering more than would be expected from its geometric cross section
πρ2. We will return to this peculiar result below.

Figure 12.6: Figure 4.9(b) from Bohren and Huffman (1983), with additional information.
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12.4.2 Example 2: Oceanic Particles

Let us next consider a particle that might be an approximation to a small spherical phy-
toplankton like Synechococcus. For physical parameters we use

• ρ = 0.5 µm

• ns = 1.37

• ks = 0.015 (corresponding to as = 3.77 · 105 m−1)

• nm = 1.33

• λ = 500 nm

Remember that the absorption coefficient as is the absorption coefficient of the plankton
material. These values are typically in the range of 104-105 m−1 at visible wavelengths.
Figure 12.7 shows the resulting normalized phase function for unpolarized light.

Figure 12.7: The normalized phase function for unpolarized light for the simulated phyto-
plankton with ρ = 0.5 µm.

As seen in this figure, a single particle scatters light in a very complex angular pattern.
The peaks and valleys of the phase function result from constructive and destructive inter-
ference between the incident electric field and the scattered field that arises in the region
of the sphere. You can think of this as being the 3-D version of the diffraction pattern of
bright and dark lines seen when a plane wave is incident onto a slit in screen (recall Fig.
1.2). You can also think of this pattern as resulting from the sum of the infinite series of
multipole modes of the scattered field, that is, the sum of a dipole electric field, plus a
quadrapole field, plus an octopole field, plus....

Recall from Eq. (12.7) that the amplitude matrix elements are given by infinite sums
of particle-dependent coefficients, the an and bn of Eq. (12.8), times angle-dependent
functions πn(ψ) and τn(ψ) given by Eq. (12.9). Figure 12.8 shows the first 8 of the angle
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functions. The most important feature to note in these curves is that both πn and τn are
always positive as ψ → 0. Therefore, as more and more terms are added in the amplitude
matrix sums, the small-angle amplitudes (hence the associated phase function) become
more and more peaked. The oscillations at larger scattering angles combine to create the
peaks and valleys of seen in the phase functions of Figs. 12.6 and 12.7 and in 12.10 below.

Figure 12.8: The first 8 of the Mie angular-dependent functions πn and τn defined by Eq.
(12.9).

The shapes of the πn and τn functions trace back to mathematical functions called
spherical harmonics, which are buried deep inside the Mie equations. Expanding a 3-D
function of (θ, φ) as a sum of spherical harmonics is analogous to expanding a 1-D function
as a sum of sines and cosines (a Fourier series). Figure 12.9 shows a graphical representation
of the first few spherical harmonics. (If you think these patterns looks suspiciously like the
shapes of the orbitals seen in Fig. 5.6 of the Physics of Absorption section, you would not be
wrong. The underlying physics is different—quantum mechanics vs light scattering—but
the same mathematical functions occur in both cases.)

The locations of the peaks and valleys of the scattering pattern depend on the parti-
cle’s physical properties—its size, relative index of refraction, and the wavelength. Figure
12.10 shows three normalized phase functions for the same particle type (a simulated
phytoplankton) as in Fig. 12.7, but for particles of radii ρ = 0.5, 1.0, 2.0 µm. These par-
ticles have size parameters of x = 8.42, 16.84, and 33.68, respectively; each particle has
m = 1.02239 + i0.01119. It is seen that the peaks and valleys of the phase functions are at
different scattering angles. In general, the larger the size parameter x, the more features
there are in the phase function. Note also that as the particle size increases, the phase
function becomes more peaked at small scattering angles. The scattering cross section
increases rapidly with particle size; that is, a large particle scatters more strongly than a
small particle.
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Figure 12.9: Graphical representation of the first few spherical harmonics. The blue color
shows where the function is positive, and the yellow is negative values; the distance from
the origin represents the magnitude for a given (θ, φ) direction. Creative Commons image
created by Inigo Quilez, downloaded from Wikipedia–Spherical Harmonics.

In the ocean, there are particles of many sizes and many indices of refraction, all
occurring with different numbers of particles per cubic meter. When the phase functions for
many different particle sizes and compositions are added together, the peaks and valleys of
the individual phase functions tend to cancel out, leaving a much smoother phase function
for the mixture of particles corresponding to what is measured on a sample of ocean water.

To combine phase functions for different particle types or sizes, remember that IOPs,
including the volume scattering function, are additive. Thus the total phase function
for the three particles used to generate Fig. 12.10 would be combined as follows. Let
Ni, i = 1, 2, 3 be the number density (particles per cubic meter) of each size of particle.
The particle scattering cross sections obtained from Mie theory are σsi; the values are
shown in Fig. 12.10. Then

V SFtotal = V SF1 + V SF2 + V SF3

btotal β̃total = b1 β̃1 + b2 β̃2 + b3 β̃3

β̃total =
N1 σs1 β̃1 +N2 σs2 β̃2 +N3 σs3 β̃3

N1 σs1 +N2 σs2 +N3 σs3
.

Suppose, just for the sake of illustration, that there are one-fifth as many particles of radius
ρ = 1 µm as there are particles of radius ρ = 0.5 µm, and one-fifth as many of radius 2
as of radius 1. Then the three individual-particle phase functions seen in the red, green,
and blue curves of Fig. 12.10 would combine to give the total phase function shown by the
black curve in the figure. This shows that the highly peaked features of the single-particle
phase functions are starting to average out to leave a smoother total phase function. When

https://en.wikipedia.org/wiki/Spherical_harmonics
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Figure 12.10: The normalized phase functions for unpolarized light for simulated phyto-
plankton with ρ = 0.5, 1.0, 2.0 mum. The black curve is the total phase function for a
particular size distribution of these three particle sizes, as discussed in the text.

the same process is carried out for many sizes of particles, say from 0.1 to 100 µm, and for
many different kinds of particles (living phytoplankton of various types, detritus, sediment
particles, etc.), a much smoother, typical ocean phase function can result.

Adding the results for individual particles together in the manner just shown assumes
that each scattering particle is in the “far field” of its neighbors, so that the scattered field
set up by one particle is not affected by nearby particles. This means that the particles
should be separated by many wavelengths of the light. If there are, say, 1012 particles per
cubic meter (a typical value for small phytoplankton) and the wavelength is 500 nm, then
each particle is separated by 200 wavelengths, on average. This more than satisfies the
far-field approximation.

Note, however, that the relative contributions of different particles is highly dependent
not just on particle size and index of refraction, but on how many particles there are. Very
small particles generally occur in high numbers, but they are individually weak scatterers
and thus may contribute little to the total because of their small cross sections. Very large
particles are strong scatterers, but they occur in very small numbers, and thus also may
contribute little because of their small numbers. It is often the medium-sized particles, say
radii from 0.5 to 5 µm, that contribute the bulk of the total scattering in typical waters.

12.4.3 The Extinction Paradox

Recall from Fig. 12.6 that the scattering efficiency was Qb = 1.759 for a small water
droplet in air at 550 nm. This says that the particle is scattering more light than just the
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light that encounters the cross-sectional area of the particle. This seems counterintuitive
from everyday experience. If light hits a baseball, some will be absorbed and some will
be reflected (scattered) by the ball, but light that misses the ball travels onward—or so it
seems.

Figure 12.11 shows the absorption (Qa), scattering (Qb), and extinction (Qc = Qa +
Qb) efficiencies for highly absorbing soot particles, which are generated by incomplete
combustion and are a common component of air pollution caused by coal-fired power
plants, diesel exhaust, or forest fires. Soot has a real index of refraction of about 1.5, and
an imaginary index of about 0.05 (Adler et al., 2010). The wavelength of the incident light
is 532 nm.

For small size parameters, starting from x = 0, the scattering curve rises rapidly and
then displays broad but damped oscillations with increasing x. These oscillations are
caused by constructive and destructive interference between the incident and scattered
light waves. Thus very small particles can be very efficient scatterers if their size matches
the wavelength of the light in just the right way. For these soot particles in air, the
maximum in scattering efficiency near x = 4 corresponds to a particle radius of about 340
nm. There is also a fine “ripple structure,” which requires a more complicated explanation
(Bohren and Huffman, 1983). Thus these very small particles are scattering much more
energy than would be expected from their physical cross section size. This behavior of
large extinction for small x is seen in measurements of soot extinction efficiency in Fig.
12.12. The agreement between measurements and Mie theory is surprisingly good given
that real soot particles are far from spherical.

Figure 12.11: Efficiencies as a function of the size parameter for highly absorbing soot
particles with m = 1.549 + i0.044. Compare with panel A of Fig. 12.12.

Figure 12.11 shows that, for soot in air, as x becomes large, Qa is close to 1, but so
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Figure 12.12: Measurements and Mie predictions of the extinction efficiency of diesel-fuel
soot particles. Panel A corresponds to the Mie simulations of Fig. 12.11. (WSM refers
to water-soluble material and OSM is organic soluble material. Figure 2 from Adler et al.
(2010).

is Qb, so Qc is close to 2. These values remain similar as x continues to increase. For
x = 10, 000 (a particle size of ρ = 0.85 mm for λ = 532 nm), Qa = 0.9085, Qb = 1.096, and
Qc = 2.004. The Qa value makes sense: the soot is highly, but not totally absorbing, so
a 91% absorption efficiency is plausible. However, if the light incident onto the particle is
almost all absorbed, then it would seem that the particle should not be scattering as much
or more light as it absorbs.

Geometric optics is a model of light propagation using rays and is often used to model
light scattering by objects that are much, much larger than the wavelength of light. Ge-
ometric optics corresponds to large size parameters x in Mie theory. Geometric optics
predicts that the maximum of Qc should be 1, that is, a particle can absorb and/or scatter
at most the energy that is incident onto the particle. The asymptotic approach of Qc to 2
is known as the “extinction paradox.” This very general result is called a paradox because
geometric optics predicts Qc = 1. An equivalent statement is that the asymptotic value of
the extinction cross section σc is twice the particle’s geometric cross section πρ2.

The standard explanation for the extinction paradox is that the “extra” scattering is due
to diffraction by the particle. The electric field of light passing near to, but not intersecting,
the particle is perturbed by the presence of the particle, which causes the light to change
direction, even if only slightly. Diffraction is not easily observed for everyday objects like
baseballs because the angle of deviation of the diffracted light from the direction of the
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incident light is extremely small. Indeed, it was Newton’s inability to observe the bending
of light around large objects, and their apparently sharp shadow edges, that led him to
conclude that light consisted of particles and not waves. Nevertheless, diffraction occurs
for all sizes of objects, and any deviation, no matter how small, of light from its initial
direction counts as scattering and contributes to Qb. However, the diffraction explanation
can be shown to be incomplete, and papers are still being written about the fundamental
cause of the Qc = 2 limit (e.g., Berg et al., 2011). The full explanation requires a deep
understanding of how the incident and scattered waves interact within and surrounding
the particle. Regardless of the full explanation, the effect is very real and occurs for all
particles.

Another example of the extinction paradox is seen in Fig. 12.13. These simulations
are for quartz particles in water. Quartz has a real index of refraction of about 1.54 and
is modeled here as completely non-absorbing. The wavelength is taken to be 500 nm.
Since the particles are non-absorbing, the absorption efficiency is identically 0, and the
total extinction is due to scattering (Qc = Qb). Both the interference structure and the
ripple structure are clearly seen. The ripple structure is much less noticeable for the soot
particles in Fig. 12.11 because the ripples are damped out by absorption. The quartz
particles also display an oscillating, asymptotic approach of Qc to a value of 2, just as do
the soot particles.

Figure 12.13: Efficiencies as a function of the size parameter for non-absorbing quartz
particles in water at 500 nm.

Figure 12.14 shows the efficiencies for the phytoplankton model used to generate the
phase function of Fig. 12.7. For this relative index of refraction, the scattering efficiency
shows only one broad maximum near x = 50, which corresponds to a particle radius of
about ρ = 3 µm. By x = 150, the extinction efficiency Qc = 2.02, so within 1% of its
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asymptotic value.

Figure 12.14: Efficiencies as a function of the size parameter x for the phytoplankton model
used to generate the phase function of Fig. 12.7.

A fine way to spend a rainy Saturday is to download a Mie code and do a few thousand
runs to see the effects of real and imaginary indices of refraction, particle size, and wave-
length on the various phase functions and efficiencies. However, regarding the wavelength
effect, keep in mind that as wavelength changes so do the indices of refraction of the parti-
cle and medium. Suppose that, for a given particle radius ρ you want to generate a figure
like Figs. 12.14 and 12.13, but showing the efficiencies as a function of wavelength. That
can be done, but you have to change the particle and medium indices of refraction for each
wavelength. The absorption coefficient of water changes from aw ≈ 0.015 m−1 at 440 nm
to 0.65 m−1 at 700 nm. If modeling a water droplet in air, this wavelength dependence
of aw determines the water imaginary index of refraction via ks(λ) = aw(λ)λ/(4π), and
thus affects the size parameter x(λ) = 2πρ ks(λ)nm(λ)/λ = ρ aw(λ)nm(λ)/2. If modeling
a phytoplankton in water, the needed phytoplankton ks(λ) might be constructed from a
phytoplankton chlorophyll-specific absorption spectrum, and so on.

Finally, remember that Mie theory is valid only for homogeneous spherical particles,
even though it often, but not always, gives reasonable approximate results for non-spherical
particles.

12.5 Mie Theory Approximations

As discussed on the previous two sections, Mie theory is exact for homogeneous spheres of
any size, but it can be computationally expensive for spheres that are large relative to the
wavelength of the light incident on them. There are, however, analytical approximations
to the exact theory that can be useful in limited situations. Loosely speaking, these might
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be called approximations for “really small particles,” “weakly scattering particles,” and
“really large particles.” This section presents these three approximations and illustrates
the limits of each.

12.5.1 Small Particles, x� 1: Rayleigh’s Approximation

John William Strutt had the good fortune to be born a wealthy British aristocrat at a
time when that still meant something. Unlike some of his peers, he did not spend his
life in the idle dissipation of an inherited fortune. On the contrary, he became one of
Britain’s greatest scientists. He worked in many areas including optics, acoustics, and fluid
mechanics, publishing 446 papers. He received many honors, including the Nobel Prize
in Physics in 1904 for “for his investigations of the densities of the most important gases
and for his discovery of argon in connection with these studies.” Upon the death of his
father in 1873, he inherited the title of Baron Rayleigh, and was henceforth known as Lord
Rayleigh. Masters (2009) gives a short biography of his scientific life.

In a series of three papers published in 1871, he developed equations to describe scat-
tering by non-absorbing particles that are small compared to the wavelength of the incident
light. The first of these papers, Strutt (Lord Rayleigh) (1871), titled “On the Light from
the Sky, its Polarization and Colour,” begins “It is now, I believe, generally admitted that
the light which we receive from the clear sky is due in one way or another to small sus-
pended particles which divert the light from its regular course.” He first used dimensional
analysis to conclude that the scattering must be proportional to the inverse fourth power
of the wavelength.

Rayleigh’s dimensional analysis argument was as follows. Incident irradiance Ei will
be scattered by a particle to give some amount of scattered irradiance Es. How much
irradiance is scattered and observed at a distance r from the particle should depend on the
amount of material doing the scattering, i.e., on the volume V of the particle, the indices
of refraction of the particle (np) and of the surrounding medium (nm), the distance r, the
wavelength λ, and perhaps on the speed of light c. Thus we can write

Es = f(V, np, nm, r, λ, c)Ei ,

where f is a nondimensional function that converts incident irradiance into scattered irradi-
ance. For a single particle viewed from a distance r, the scattered irradiance must decrease
as 1/r2; this is the r2 law for irradiance. The speed of light c is the only parameter that
depends on time, and the steady-state scattering is independent of time, so c cannot appear
in f . The scattered electric field will be proportional to the volume of the particle, and
the irradiance is proportional to the square of the electric field, so the scattered irradiance
must be proportional to V 2. The indices of refraction are dimensionless. So the only way
to keep

f(V, np, nm, r, λ, c) = f ′(np, nm, λ)
V 2

r2

dimensionless is for the wavelength to appear as 1/λ4, because V 2 has dimensions of length
to the sixth power. Thus it must be that

Es ∝
V 2

r2λ4
Ei .
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After reaching this conclusion, he proceeded to derive the exact mathematical form of the
scattering.

Rayleigh found, under the assumption that the particle is much smaller than the wave-
length of the incident light, that the single-particle volume scattering function for unpo-
larized light (to use modern terminology and notation) is

β(ψ) =
8π4ρ6

λ4

(
m2 − 1

m2 + 2

)2

(1 + cos2 ψ) , (12.16)

where ρ is the particle radius, λ is the wavelength, m is the real index of refraction of the
particle relative to that of the surrounding medium, and ψ is the scattering angle. This
result can be written as the product of a single-particle scattering cross section σb and a
scattering phase function β̃, β = σb β̃, where

σb =
π5 ρ6

96λ4

(
m2 − 1

m2 + 2

)2

(12.17)

β̃ =
3

16π
(1 + cos2 ψ) . (12.18)

This phase function satisfies the normalization condition 2π
∫ π

0 β̃(ψ) sinψ dψ = 1. Note
that σb has units of m2. After multiplication by N particles per cubic meter, the result is
a scattering coefficient b = Nσb with the customary units of inverse meters. β̃ describes
the angular scattering per steradian, so the bulk VSF then has units of m−1 sr−1. Dividing
σb by the particle cross section πρ2 and rewriting in terms of the Mie theory size parameter
x = 2πρ/λ (for a medium index of refraction of 1) gives the scattering efficiency

Qb =
8

3
x4

(
m2 − 1

m2 + 2

)2

. (12.19)

Rayleigh used the λ−4 dependence of his equations to explain the blue sky as wavelength-
dependent scattering by the “small suspended particles” of his first papers. However, in
Rayleigh (1899) he returned to “...the interesting question whether the light from the sky
can be explained by diffraction from the molecules of air themselves, or whether it is nec-
essary to appeal to suspended particles composed of foreign matter, solid or liquid.” and
concluded that “...even in the absence of foreign particles we should still have a blue sky.”

12.5.2 Rayleigh’s Approximation Obtained from Mie Theory

Rayleigh’s result (12.16) can be obtained from and extended by Mie theory, which came
36 years later. Recall from Eqs. (12.5 – 12.9) in the Mie Theory Overview section that
Mie’s solution for scattering by a sphere is in the form of infinite series, the terms of which
depend on powers of the size parameter x. Expanding the series solution and keeping
terms through x4 eventually leads to the efficiency factors (see Bohren and Huffman (1983,
Section 5.1) for the math)

Qc ≈ 4x=
{
m2 − 1

m2 + 2

[
1 +

x2

15

(
m2 − 1

m2 + 2

)
m3 + 27m2 + 38

2m2 + 3

]}
+

8

3
x4<

{(
m2 − 1

m2 + 2

)2
}

(12.20)
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and

Qb ≈
8

3
x4

∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣2 , (12.21)

where now the index of refraction m can be complex, i.e. the sphere can be absorbing.
<{...} and ={...} indicate the real and imaginary parts of the quantities in braces, and
|...|2 indicates the absolute value squared of the complex quantity. If the particle is non-
absorbing, m is real. The first term in Eq. (12.20) is then zero, and the second term is then
the same as Eq. (12.21) and Rayleigh’s Qb seen in Eq. (12.19). The Rayleigh scattering
coefficient (in the form of either b, σb, or Qb) thus falls out of the first terms of the Mie
solution. If x is small enough that terms of order |m|x and higher can be ignored, then the
absorption efficiency Qa = Qc −Qb reduces to just

Qa ≈ 4x=
{
m2 − 1

m2 + 2

}
. (12.22)

Remembering that x = 2πρ/λ, then if the (m2 − 1)/(m2 + 2) factor is almost independent
of wavelength over some wavelength interval, then Qa ∝ 1/λ and Qb ∝ 1/λ4 over that
interval.

12.5.3 Applicability of Rayleigh’s Approximation

Rayleigh’s scattering result (12.19) was derived for very small, non-absorbing particles.
The question remains as to how small is small enough for the Rayleigh formulas to be
accurate within some error compared to the exact Mie theory. In particular, can Rayleigh’s
equations be used to compute scattering by phytoplankton or other oceanic particles? At
visible wavelengths, phytoplankton typically have real indices of refraction in the range of
1.02 to 1.1, relative to water (e.g., Ackleson and Spinrad, 1988). The complex index of
refraction is in the region of 0.001 at 500 nm up to 0.005 in an absorption band (e.g., Bricaud
et al., 1983, Table 1). Figure 12.15 compares the Mie and Rayleigh scattering efficiencies
for a typical phytoplankton index of refraction and a wavelength of 500 nm. Suppose we
accept a 10% error in Qb as an acceptable trade-off for the ease of computation. For a
size parameter of x = 0.5, the Rayleigh Qb is about 9% too large. Figure 12.16 shows the
corresponding difference in phase functions for x = 0.5. Again, the maximum difference
is about 10% (at ψ = 0 and 180 deg). So we could use the Rayleigh formulas for size
parameters up to 0.5 for phytoplankton. The problem for oceanography is that a size
parameter of x = 2πρ/λ = 0.5 for λ = 500 nm gives a particle radius of ρ = 0.04 µm,
which is an order of magnitude smaller than bacteria or the smallest phytoplankton. Thus
the Rayleigh scattering formulas are not useful for computing the scattering coefficients or
phase functions for phytoplankton or other oceanographic particles, which are usually of
size ρ = 0.5 µm or larger.

Comment: Rayleigh was not the first to recognize that scattering by very small par-
ticles was a primary contributor to the blue of the sky; he was the first to work out the
physics and math. His work captured much, but not all, of the physics of Earth’s sky color.
We now understand that the “small suspended particles” assumed by Rayleigh are mainly
the nitrogen and oxygen molecules that comprise most of the atmosphere. To really un-
derstand sky color, in addition to the 1/λ4 scattering law, one must also take into account
the wavelength dependences of the solar spectrum and the response of the human eye. The
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Figure 12.15: Comparison of exact Mie and approximate Rayleigh scattering efficincies.
The red Mie curve is computed numerically from the BHMIE code; the blue Rayleigh
curve is from Eq. (12.21), which allows for an absorbing particle. However, Eq. (12.19)
for a non-absorbing particle gives essentially the same result (0.01% difference at x = 1).

Figure 12.16: Comparison of exact Mie and approximate Rayleigh phase functions. The
red Mie curve is computed numerically from a Mie code; the blue Rayleigh curve is from
Eq. (12.18).
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excellent text by Bohren and Clothiaux (2006) devotes much a chapter to the blue-sky
problem, including absorption by ozone at green to red wavelengths. See also Bohren and
Fraser (1985) for a non-mathematical summary. That Rayleigh did not totally account for
every last contribution to the color of the sky in no way detracts from the brilliance of his
work at age 29, in an era when light was still supposed to propagate through a “luminifer-
ous aether” and the very existence of atoms and molecules was disputed by many eminent
scientists3.

12.5.4 Weakly Scattering or “Soft” Particles: The Rayleigh-Gans
Approximation

A second approximation to Mie theory is available for particles whose complex index of
refraction relative to the surrounding medium, m, and size parameter x satisfy two condi-
tions:

|m− 1| �1 (12.23)

δ = 2x|m− 1| �1 . (12.24)

These are two independent requirements. |m− 1| � 1 says that the particle scatters only
weakly; there would be no scattering if the real part of the index of refraction were exactly 1.
2x|m−1| � 1 says that the particle is small enough that there is only a small change in the
phase and amplitude of the incident electromagnetic wave as it passes through the particle.
That is, the electric field inside the particle is almost the same as that of the incident wave.
δ is usually called the phase shift parameter. Particles that satisfy Eqs. (12.23) and (12.24)
are usually called “optically soft” particles. Recall that Rayleigh’s equations require that
the particle size parameter x be small. The Rayleigh-Gans simplification allows x to be
large so long as the index of refraction is small enough to satisfy 2x|m− 1| � 1.

To develop the solution, the volume of the particle is divided into small volume elements.
The particle does not need to be spherical. Each volume element receives essentially the
same incident electromagnetic wave (condition 12.24), which it then scatters according to
the Rayleigh approximations for x � 1. However, there will be phase differences for the
scattered waves from different volume elements, which lead to interference effects. These
are accounted for via an integration of the phase differences over the volume of the particle.
The result of that integration is a non-dimensional form factor G(ψ, α), which depends on
both the polar (ψ) and azimuthal (α) scattering angles if the particle is non-spherical. The
form factor contains all of the information about the shape of the particle.

The scattering-matrix elements have the same general form as those obtained from
Mie theory (see Eq.12.4), except for extra factors of G2; see Bohren and Huffman (1983,
Section 6.1) for the details. These matrix elements eventually lead to a phase function for
scattering of unpolarized light of the form

β̃(ψ) = KV 2 |m− 1|2G2(ψ, α) (1 + cos2 ψ) , (12.25)

3The debate about whether atoms and molecules actually exist, or whether they are just convenient
mathematical artifices, was quite acrimonious. The great Ludwig Boltzmann became so depressed trying
to convince people that his statistical mechanics proved that molecules are real entities that he committed
suicide in 1906.
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where V is the volume of the particle, and K is the proportionality constant that normalizes
the phase function; this is easily computed by numerical integration after the rest of the
calculations are performed. This equation holds for any shape of particle.

As noted, G(ψ, α) must be computed by an integration over the volume of the particle.
For a homogeneous spherical particle, G depends only on the polar scattering angle, and
the integration can be done analytically with the result

G(ψ) =
3

u3
(sinu− u cosu) where u = 2x sin

ψ

2
. (12.26)

Although the phase function of Eq. (12.25) contains a (1 + cos2 ψ) factor like that of the
Rayleigh phase function of Eq. (12.18), the form factor G makes the Rayleigh-Gans phase
function much more peaked at small scattering angles.

Let the index of refraction of the particle relative to the surrounding medium be written
as m = n+ ik and define a parameter ξ by

tan ξ =
k

n− 1
. (12.27)

Note that ξ ranges from 0 (for non-absorbing particles) to ∞ (for absorbing particles with
n approaching 1). Then the Rayleigh-Gans extinction and absorption efficiency factors for
spherical particles are functions of ξ and the phase shift parameter δ:

Qc = 2− 4 exp(−δ tan ξ)
cos ξ

δ

[
sin(δ − ξ) +

cos ξ

δ
cos(δ − 2ξ)

]
+ 4

(
cos ξ

δ

)2

cos(2ξ)

(12.28)

Qa = 1 +
exp(−2δ tan ξ)(2δ tan ξ + 1)− 1

2δ2 tan2 ξ
. (12.29)

For nonspherical particles, the Rayleigh-Gans scattering efficiency factor depends on the
polarization state of the incident light. For a spherical particle, the scattering efficiency
Qb = Qc − Qa can be obtained from the preceding two equations. For non-absorbing
particles, tan ξ = 0, ξ = 0, and Eq. (12.28) reduces to just

Qc = 2− 4

δ
sin δ +

4

δ2
(1− cos δ) . (12.30)

12.5.5 Applicability of the Rayleigh-Gans Approximation

To give an idea of its applicability in oceanography, Fig. 12.17 compares the Rayleigh-Gans
efficiency factors with those of the exact Mie numerical calculations for typical phytoplank-
ton IOPs. The Rayleigh scattering or extinction efficiency of Eq. (12.19) is also shown, as
is the equivalent Rayleigh absorption efficiency of Eq. (12.22), obtained from the lowest-
order term of the Mie series expansion. The figure displays the results as a function of the
phase shift parameter δ = 2x|m − 1|. Not surprisingly, the Rayleigh scattering efficiency
blows up for δ & 0.1, corresponding to x & 1. However, the Rayleigh-Gans equations do
very well for much larger δ values. (For these IOPs, δ = 20 corresponds to a size parameter
of x = 200.) This is quite unexpected and remarkable given that Rayleigh-Gans theory was
developed on the assumption than δ � 1. Indeed, van de Hulst (1981, page 176) comments
on Eq. (12.30) that “This is one of the most useful formulae in the whole domain of the
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Mie theory, because it describes the salient features of the extinction curve not only for m
close to 1 but even for values of m as large as two.” The same holds for Eqs. (12.28) and
(12.29).

Figure 12.17: Comparison of exact Mie, Rayleigh-Gans, and Rayleigh efficiencies for phy-
toplankton IOPs.

Figure 12.18 shows the efficiencies for the IOPs typical of soot; recall Fig. 12.11. Even
for this high-index-of-refraction, highly absorbing particle, Rayleigh-Gans does amazingly
well. (For these IOPs, δ = 20 corresponds to a size parameter of x = 18.45.)

Because of their wide range of validity, the Rayleigh-Gans efficiency formulas have been
used to gain insight into phytoplankton optical properties. Examples are Bricaud et al.
(1983) and Gordon (2007).

Now consider how well Rayleigh-Gans phase functions computed by Eqs. (12.25) and
(12.26) compare with the exact Mie phase functions. Picoplankton have diameters on the
order of 1µm, or ρ = 0.5µm; nanoplankton have diameters of order 10µm. For a wavelength
of λ = 500 nm, these give size parameters of x = 6.28 and 62.8, respectively. Figure 12.19
compares exact Mie and Rayleigh-Gans phase functions for these size parameters and
indices of refraction that are very near 1, m = 1.01 + i0.0001; typical of phytoplankton
in water, m = 1.05 + i0.005; and typical of soot in air, m = 1.54 + i0.044. For the very
low index (top two figures), the envelopes of the maximum values of the Rayleigh-Gans
phase function are close to those of the Mie phase functions. For the large particle (upper
right plot), the peaks are somewhat out of phase for large scattering angles, but this is
probably acceptable for most applications because a disperse range of sizes would cause the
individual interference features to average out, leaving only the upper bound of the curves
(recall Fig. 12.10). By the same argument, the Rayleigh-Gans phase function for the small
size, typical index particle (middle left figure) would be acceptable for many applications.
However, the large-phytoplankton phase functions (middle right figure) differ by an order
of magnitude over almost the entire range of scattering angles. Averaging over a range
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Figure 12.18: Comparison of exact Mie, Rayleigh-Gans, and Rayleigh efficiencies for soot
IOPs.

of sizes will not bring those curves together. Similarly, for the high-index soot particles
(bottom row), Mie and Rayleigh-Gans differ by one or two orders of magnitude for most
scattering angles. Thus it seems that, although Rayleigh-Gans efficiency factors perform
well beyond the range of their derivation, the Rayleigh-Gans phase functions cannot be
pushed as far.

12.5.6 Large Particles, x� 1: Geometric Optics

At the other end of the size spectrum are particles that are much larger than the wavelength
of the light incident onto them. This is the realm of geometrical optics and ray tracing.
The needed tools are simply Snell’s law, Fresnel’s law, and a computer. Geometric ray
tracing can compute the optical properties, phase functions in particular, for any shape of
particle, but at the expense of missing any effects due to diffraction or interference. For
visible wavelengths, diffraction can be significant for particles in the size range of most
phytoplankon, ρ . 10 µm or x . 100. For diffraction to appear insignificant compared
to reflection and refraction, particle sizes need to be of order 0.05 mm or larger, which
gives a size parameter of x & 1000. Thus ray tracing is seldom used of computing the
phase functions of oceanic particles. However, ray tracing is commonly used to compute
the reflectance and transmission properties of wind-blown sea surfaces (e.g., Mobley, 2015)
or of underwater objects or surfaces (e.g., Mobley, 2018).

In geometric optics ray tracing, a ray that misses a particle by even the smallest distance
continues onward unperturbed. Consider a particle that is so highly absorbing that it
absorbs all of the light that hits it. Then no light will be scattered. The absorption
and scattering efficiencies are then Qa = 1 and Qb = 0, so that the extinction efficiency
Qc = Qa + Qb = 1. Conversely, if the particle is non-absorbing, all light that hits it will



12.5. MIE THEORY APPROXIMATIONS 467

Figure 12.19: Comparison of exact Mie (red) and Rayleigh-Gans (blue) phase functions.
Left column: a picoplankton-sized particle; right column: a nanoplankton-sized particle.
Top row: a very low index of refraction, |m| = 1.01; middle row, typical phytoplankton
index of refraction, |m| = 1.05; bottom row, soot index of refraction, |m| = 1.54.

be scattered. Then Qa = 0, Qb = 1, and Qc = 1. This is the origin of the “extinction
paradox,” which was discussed on the preceding section. There we saw that Mie theory
leads an asymptotic large-particle value of Qc = 2, not 1. The difference is that Mie theory
fully accounts for diffraction and interference effects, and geometric optics does not.
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Incidentally, if you want to convert a geometric optics efficiency Q into a cross section
σ, there is a wonderful result, Cauchy’s Average Projected Area Theorem, which shows
that for a convex polyhedron, the average projected area over all orientations, i.e. the
average cross section, is one-fourth the surface area of the polyhedron. (This result is
obvious only for a sphere, whose surface area is 4πr2 and whose cross section is πr2.) If
〈A〉 is the average area of the particle as seen from all orientations, the the cross section is
given by σ = Q〈A〉, regardless of the particle shape (as long as it is convex, i.e., with any
“indentations” in its surface).

12.5.7 A Geometric Optics Ray Tracing Example

The use of ray tracing to explain rainbows goes back to Descartes in the early 1600s. An-
other area of geophysical optics where ray tracing has proved very useful is the computation
of phase functions for atmospheric ice crystals in cirrus clouds. These clouds are important
for modeling the Earth’s radiation balance. Ice has a hexagonal crystal structure, so cloud
ice crystals commonly form as hexagonal plates or solid or hollow columns, although more
complex shapes (e.g., snowflakes and columns with pyramidal caps or indentations) can
form, depending on the temperature and humidity during formation.

Figure 12.20 illustrates possible ray paths through a solid hexagonal column of ice,
which is very common in cirrus clouds. Such columns are on the order of 0.05 to 0.5 mm
in size. When ray tracing through such columns, millions of rays are traced for randomly
oriented columns. The reflected and refracted rays for different directions are then used to
build up, ray by ray, the shape of the scattering phase function. Certain directions, such
as those shown by the red and green arrows in Fig. 12.20, tend to generate caustics, or
“collections” of rays near particular directions (just as happens for spherical water drops
in the formation of rainbows).

Figure 12.20: Illustration of rays passing through the sides and ends of a solid hexagonal
ice crystal. Rays generating the 22.5 and 46 degree cirrus cloud halos are shown.

Figure 12.21 shows the scattering phase function for cirrus clouds containing hexagonal
columns like those of Fig. 12.20. The prominent peaks near 22 and 46 degrees give halos
or “rings around the Sun” (or Moon) at those angles. The 22 deg halo is common. The
46 deg halo, resulting from rays passing through the flat ends of hexagonal column, is seen
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Figure 12.21: Scattering phase function β̃(ψ) for hexagonal column cirrus cloud ice crystals
at λ = 550 nm. Data of Takano and Liou (1989, Table 1) divided by 4π for normalization.

less often. The peak near 160 deg results from two internal reflections in the crystal. The
left panel of Fig. 6.1 shows a spectacular 22 deg halo. Note how well the phase function
of Fig. 12.21 matches the halo: There is a very sharp transition from darker to brighter
on the inner side of the halo, where the phase function rises very rapidly between ψ = 20
and 22 deg. Then there is a slower decrease in brightness on the outer side of the halo,
corresponding to the slower decay of the phase function between 23 and 44 degrees. There
is no 46 deg halo in this image. That will be the case if the hexagonal crystals do not have
the flat ends needed to create the 46 deg peak in the phase function, as illustrated by the
green rays in Fig. 12.20. The color in the halo results from the small difference in the ice
index of refraction as a function of wavelength.

A myriad of other halos can be generated by ice crystals of other shapes. Some of these
crystal shapes rarely form and the resulting halos are almost “once-in-a-lifetime” events.
An excellent book showing photographs of many types of halos, rainbows, glories, and
other atmospheric phenomena, along with explanations of their causes, is Greenler (2020).
There are free ray tracing codes for halo simulation now available, e.g., HaloSim 3 and
HaloPoint 2.

12.5.8 Closing Thoughts

Rayleigh developed his scattering theory in the late 1800s, and it worked quite well to
solve the problem of interest to him. Rayleigh-Gans theory arose in the late 1800’s and
early 1900’s. (Gans worked out the theory for homogeneous spheres in 1925.) In those pre-
computer days, use of the exact Mie theory was not possible, so analytical approximations
were the only option for computation of scattering properties of particles. As we have
seen, Rayleigh scattering theory is not applicable to scattering by oceanic particles like

http://www.atoptics.co.uk/halo/halfeat.htm
https://www.ursa.fi/blogi/ice-crystal-halos/new_halo_simulation_program_halopoint_2_/
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phytoplankton or minerals, which are too large. Rayleigh-Gans theory does have some
usefulness, but it too has its limits. Geometric optics can be useful for atmospheric particles
like large ice crystals, but oceanic particles tend to be too small for geometric optics.
Thus the approximations surveyed in this section are of interest, but they do not find
frequent application in oceanic optics. There are additional analytical approximations for
spherical particles, but these have found little if any application in optical oceanography.
Those approximations are surveyed in Kokhanovsky and Zege (1997). If you have spherical
particles, it is usually feasible with modern computers to do numerical Mie calculations
without the need for approximations. For non-spherical particles, there are other numerical
methods that can be used (T-matrix theory or the discrete dipole approximation).

It should be noted that this section refers to “Rayleigh’s approximation” and “the
Rayleigh-Gans approximation,” rather that to “Rayleigh scattering,” or “Rayleigh-Gans
scattering,” as is often seen. This is to emphasize that “Rayleigh scattering,” “Rayleigh-
Gans scattering,” and Geometric optics are not physically different types of scattering.
They are approximate mathematical models for computing scattering quantities such as
cross-sections and phase functions in particular size and index-of-refraction domains. As
was explained in the Physics of Scattering, Section 6.2, all scattering is caused by a change
in the real index of refraction and in that sense all scattering is fundamentally the same.



CHAPTER 13

Surfaces

Chapter 9 on radiative transfer theory developed the equations that govern light propaga-
tion within a water body. This chapter now develops the equations that describe how light
is reflected and transmitted by the surfaces that bound the water body. These surfaces
include the wind-blown sea surface and, in shallow water, an opaque sea floor of sediment
or vegetation. There may also be objects within the water column that reflect light.

The discussion begins with the basics of reflection and transmission of unpolarized light
by a level or flat water surface. The case of polarized light is then considered. Although the
ocean is rarely glassy smooth, reflection and transmission by rough, wind-blown surfaces
are modeled using the Fresnel equations for a flat surface applied to each small patch of sea
surface, which although tilted from the normal to the mean sea surface can be assumed to
be locally flat. The next sections then introduce the bidirectional reflectance distribution
function or BRDF. The BRDF is the fundamental quantity for specifying how an opaque
surface reflects light. The chapter closes with a section on the various measures of surface
reflectance that are encountered in the literature.

Appendices A-D discuss the advanced topics of how random sea surfaces can be de-
scribed in terms of wave energy spectra or autocovariance functions and, conversely, how
random sea surfaces can be generated starting with wave energy spectra or autocovariances.

13.1 The Level Sea Surface

The wavelength of visible light is much, much less than the millimeter and larger spatial
wavelengths of the waves on wind-blown sea surfaces. Therefore, the laws of geometrical
optics and the idealization of a narrow ray of collimated light give a good description of
the relevant physical processes.

13.1.1 Geometric Relations

Figure 13.1 illustrates a level surface with light incident onto the surface from the air side
(panel a), and from the water side (panel b). The real index of refraction of the air is
na, which is taken to be one. nw is the real index of refraction of the water, which is
weakly wavelength dependent at visible wavelengths (Section 8.2.1.1). However, for many
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calculations nw can be taken to be approximately 1.34 at visible wavelengths. n̂ is a unit
vector normal to the surface. ξ̂i is a unit vector in the incident direction; ξ̂r and ξ̂t are
respectively the directions of the reflected and transmitted rays. θi = cos−1(|ξ̂i · n̂|) is the
acute angle between the incident direction and the normal, and θr and θt are the angles of
the reflected and transmitted rays relative to the normal.

Figure 13.1: Illustration of incident, reflected, and transmitted rays for air- and water-
incident light.

The incident, reflected, and refracted directions all lie in the plane defined by ξ̂i and n̂.
The reflected angle is always equal to the incident angle: θr = θi, which is known as the
Law of Reflection. The incident and transmitted angles are related by

n1 sin θ1 = n2 sin θ2 , (13.1)

where subscripts 1 and 2 refer to any two media. This equation is usually called Snell’s
law, although more properly it should be Snel’s law (see the footnote on page 174).

Figure 13.2 gives a visual representation of the relations between the various unit vec-
tors, angles, and indices of refraction.

For air-incident light, na = 1 and Snell’s law reads sin θi = nw sin θt. Then the angle of
transmission is given by

θt = sin−1

(
1

nw
sin θi

)
. (13.2)

The relations between the unit vectors are given by the following equations (with na = 1):

ξ̂r = ξ̂i − 2(ξ̂i · n̂)n̂ , (13.3)

and

ξ̂t =
1

nw
(ξ̂i − cn̂) , (13.4)

where

c = ξ̂i · n̂ +

√
(ξ̂i · n̂)2 + n2

w − 1 . (13.5)

It should be noted from Eq. (13.2) that if the incident ray is nearly parallel to the
water surface, θi ≈ 90 deg, then the angle of the transmitted ray is θt ≈ sin−1(1/nw). For
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Figure 13.2: Graphical representations of relations among incident, reflected, and trans-

mitted directions. Reproduced from Fig. 4.2 of Mobley (1994), where ξ̂i = ξ̂
′
.

nw = 1.34, this gives θt ≈ 48 deg. Thus the entire hemisphere of sky directions is mapped
into an underwater code of half angle 48 deg, as illustrated in Fig. 13.3. This phenomenon
is known as “Snell’s cone,” or the “optical manhole.”

Figure 13.3: Illustration of Snell’s cone.
Based on Preisendorfer (1976, Fig. 1.18)
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For the water-incident case, Snell’s law reads nw sin θi = sin θt, in which case the angle
of transmission is given by

θt = sin−1(nw sin θi) . (13.6)

The relations between the unit vectors are then

ξ̂r = ξ̂i − 2(ξ̂i · n̂)n̂ , (13.7)

and

ξ̂t = nwξ̂i − cn̂ , (13.8)

where

c = nwξ̂i · n̂−
√

(nwξ̂i · n̂)2 − n2
w + 1 . (13.9)

If nw sin θi < 1, Eq. (13.6) gives a real value for θt and light is transmitted from the
water to the air. However, if θi is greater than the critical angle for total internal reflection

θc = sin−1(1/nw) , (13.10)

then there is no real solution for the inverse sine. In this case, all light incident onto the
water side of the air-water surface is reflected back into the water. This is called total
internal reflection. The dotted line in the right panel of Fig. 13.1 represents the critical
angle. The red unit vectors illustrate the case θi < θc with both reflected and transmitted
light, and the yellow vectors represent the case of θi > θc and total internal reflection. As
shown in Fig. 13.3, total internal reflection by the underside of a water surface makes the
image of an underwater object appear inverted when seen reflected from the water side of
the sea surface.

13.1.2 The n2 Law for Radiance

Snell’s law yields an important result governing how unpolarized radiance changes when
going from one medium to another, e.g., when crossing an air-water surface. Figure 13.4
shows two beams of radiance, one incident onto an interface and one transmitted. Let L1 be
the incident radiance in medium 1 defined by power Φ1 passing through an area ∆A1 normal
to the direction of photon travel and contained in a solid angle ∆Ω1 = sin θ1∆θ1∆φ1, where
θ1 is polar angle measured relative to the normal to the surface and ∆φ1 is the width of the
solid angle in the azimuthal direction. Likewise, L2 is the transmitted radiance in medium
2 defined by the corresponding quantities as illustrated. The azimuthal angle does not
change when crossing the surface, so ∆Ω2 = sin θ2∆θ2∆φ1. The incident and transmitted
power passes through a common area ∆A at the interface.

The indices of refraction n1 and n2 are fixed, but the polar angle θ changes when
crossing the interface. Squaring Eq. (13.1) and differentiating gives

n2
1 sin θ1 cos θ1∆θ1 = n2

2 sin θ2 cos θ2∆θ2 .

Multiplying each side of this equation by the common value of ∆φ and rewriting in terms
of solid angles gives

n2
1 cos θ1∆Ω1 = n2

2 cos θ2∆Ω2 ,

which is known as Straubel’s invariant.
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Figure 13.4: Geometry for deriving the n2 law for radiance.

The radiances are defined by

L1 =
∆Φ1

∆A1∆Ω1
and L2 =

∆Φ2

∆A2∆Ω2
.

Fresnel’s equation (13.11) gives the transmitted power as ∆Φ2 = [1 − RF(θ1)]∆Φ1 =
TF∆Φ1. The areas are related by ∆A1 = ∆A cos θ1 and ∆A2 = ∆A cos θ2. Thus the ratios
of the incident and transmitted radiances can be written as

L2

L1
=

∆Φ2

∆Φ1

∆A1∆Ω1

∆A2∆Ω2

= TF
cos θ1∆Ω1

cos θ2∆Ω2

= TF
n2

2

n2
1

or
L2

n2
2

= TF
L1

n2
1

.

This result is called the n-squared law for radiance. The quantity L/n2 is sometimes called
the reduced radiance or the basic radiance.

Although energy is conserved when crossing a boundary, the radiance changes by a
factor proportional to the change in the index of refraction squared. This is a simple
consequence of the change in solid angle resulting from the change in θ when crossing the
boundary. Note that for normal incidence and nw = 1.34, TF ≈ 0.979 and the radiance
just below a water surface is 0.979(1.34)2 ≈ 1.76 times the radiance in the air. Conversely,
when going from water to air, the in-water radiance is reduced by a factor of 1.76.
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To the extent that losses to absorption and scattering out of the beam can be ignored
(sometimes a good approximation for atmospheric transmission, but almost never the case
in water), the radiance divided by the square of the index of refraction is constant along
any path. This result has even been called the Fundamental Theorem of Radiometry, which
is perhaps a bit grandiose given that real beams always lose at least some radiance due to
absorption and can lose or gain radiance due to scattering.

Finally, note that the n2 law applies only to radiance transmission. When tracing rays
in a Monte Carlo simulation, from which the radiance can be estimated by appropriate
binning of the transmitted rays, no n2 factor is applied to the energy of the transmitted
rays or to the radiance estimated from the detected rays. This is because the n2 effect is
automatically built into the radiance estimate ray by ray as the directions of the individual
rays are computed by Snell’s law.

13.2 Fresnel’s Equations for Unpolarized Light

The equations of the previous section show the relations between the angles and directions
of the incident and the reflected and transmitted light. However, they do not show how
much energy is reflected or transmitted. That information is given by Fresnel’s equations.

Consider first a collimated beam of unpolarized incident light, which has some irradi-
ance measured on a surface normal to the direction ξ̂i of propagation. The fraction of this
incident irradiance that is reflected by the air-water surface is (e.g., Hapke (1993, Section
4.C) or Hecht (1989, Section 4.3))

RF(θi) =
1

2

{[
sin(θi − θt)

sin(θi + θt)

]2

+

[
tan(θi − θt)

tan(θi + θt)

]2
}
, (13.11)

which holds for θi 6= 0. For normally incident light, θi = 0, the reflectance is1

RF(θi = 0) =

(
nw − 1

nw + 1

)2

. (13.12)

Equations (13.11) and (13.12) hold for both air- and water-incident light. Given the inci-
dent angle θi, the transmitted angle θt is computed using either Eq. (13.2) or (13.6), and
then Eq. (13.11) (or 13.12) can be evaluated. For water-incident light and θi ≥ θc, RF = 1.
Figure 13.5 shows the Fresnel reflectance for the range of water indices of refraction at
visible wavelengths.

To be completely general, the Fresnel equations should use the complex index of refrac-
tion m = n + ik, where n is the real index of refraction seen above and k(λ) = λa(λ)/2π
is the complex part (a is the absorption coefficient). Thus Eq. (13.12) should be

RF(θi = 0) =

∣∣∣∣m− 1

m+ 1

∣∣∣∣2 =
(nw − 1)2 + k2

(nw + 1)2 + k2
.

However, for water at near-UV to near-IR wavelengths, k < 10−6 and the difference is
negligible. However k can be of order 0.1 to 1 at some UV and far-IR wavelengths, in
which case the complex index of refraction must be used.

1In general, RF(θi = 0) =
(
n1−n2
n1+n2

)2

.
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Figure 13.5: Fresnel reflectance for unpolarized light and selected water indices of refrac-
tion.

Conservation of energy requires that the sum of the reflected and transmitted energy
equal the incident energy. Thus the fraction of the incident energy that is transmitted is
TF = 1−RF. It can be confusing to see that energy is conserved when different quantities
such as plane irradiance, scalar irradiance, or radiance are used to describe the light, or
when the incident light is not a single collimated beam. This is discussed in detail Section
10.8 on energy conservation.

13.3 Fresnel’s Equations for Polarized Light

Reflection and transmission are much more complicated when the incident light is polar-
ized. The geometry is the same as for the preceding discussion of Fresnel reflectance and
transmittance of unpolarized light by a level sea surface. Now, however, the state of polar-
ization of the incident light is described by a four-component Stokes vector, as described
in Section 1.6. Consequently, reflection and transmission by the surface are described by
4× 4 matrices.

The state of polarization of a light field is specified by the four-component Stokes
vector, whose elements are related to the complex amplitudes of the electric field vector E
resolved into components that are parallel (E‖) and perpendicular (E⊥) to a conveniently
chosen reference plane. As explained in Section 1.7, there are two versions of the Stokes
vector, and these two versions have different units and refer to different physical quantities.
The coherent Stokes vector describes a quasi-monochromatic plane wave propagating in
one exact direction, and the vector components have units of power per unit area (i.e.,
irradiance) on a small surface element perpendicular to the direction of propagation. The
diffuse Stokes vector describes light propagating in a small set of directions surrounding a
particular direction and has units of power per unit area per unit solid angle (i.e., radiance).
It is the diffuse Stokes vector that appears in the vector radiative transfer equation. The
differences in coherent and diffuse Stokes vectors are rigorously discussed in Mishchenko
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(2008b).
For either air- or water-incident light, Si denotes the diffuse Stokes vector of the incident

light, Sr is the reflected light, and St is the transmitted light. Angles θi, θr, and θt are the
incident, reflected, and transmitted directions of the light propagation measured relative
to the normal to the surface. For a level surface, Si, Sr, and St all lie in the same plane as
seen in Fig. 13.1.

There are four matrices to describe reflection and transmission: Raw describes how air-
incident light is reflected by the water surface back to the air, Taw describes how air-incident
light is transmitted through the surface into the water, Rwa reflects water-incident light
back to the water, and Twa transmits light from the water into the air. However, because
Si, Sr, and St are coplanar, scattering by the level surface does not involve rotation matrices
as does scattering within the water body. (Or, from another viewpoint, the incident and
final meridian planes and the scattering plane are all the same, the rotation angles between
meridian and scattering planes are 0, and the rotation matrices reduce to identity matrices.)

The reflection and (especially) transmission of polarized light by a dielectric surface
such as a level water surface are rather complicated processes, and the literature contains
a number of different (and, indeed, sometimes incorrect) mathematical formulations of the
equations. The formulas given in Garcia (2012) are used here. Note, however, that although
the equations in Garcia (2012) are correct, some of his derivations and interpretations are
incorrect, as explained by Zhai et al. (2012). Both papers must be used to understand the
equations now presented. The equations in Garcia will be referenced by (G21) and so on;
the corresponding equations in Zhai et al. (2012) will be referenced as (Z5), etc.

The reflectance and transmittance matrices have a general formulation for the interface
between any two dielectric media a and b. Let na be the index of refraction of medium
a and nb be that of medium b. In general na and nb are complex numbers, but for the
air-water surface we take nair = 1 and nwater ≈ 1.34 to be real indices of refraction. For
reflection, the reflected angle θr equals the incident angle θi. For transmission from a to b,
the transmitted angle is given by Snell’s law, na sin θa = nb sin θb, or

θb = sin−1

(
na sin θi

nb

)
. (13.13)

For water-incident light, na = nwater and nb = nair, in which case the transmitted angle
becomes undefined beyond the critical angle for total internal reflection, which for water is
θc = sin−1(1/nwater) ≈ 48 deg. For water-incident angles greater than θc the incident light
is totally reflected back to the water and no light is transmitted to the air.

Let Rab denote the reflectance matrix for light incident from medium a and reflected
back by medium b. Rab thus represents either Raw or Rwa. Likewise, let Tab denote the
reflectance matrix for light incident from medium a and transmitted through the surface
into medium b. Tab thus represents either Taw or Twa.

With these preliminaries, the reflectance matrix Rab is (G10)

Rab =


1
2(R‖R

∗
‖ +R⊥R

∗
⊥) 1

2(R‖R
∗
‖ −R⊥R

∗
⊥) 0 0

1
2(R‖R

∗
‖ −R⊥R

∗
⊥) 1

2(R‖R
∗
‖ +R⊥R

∗
⊥) 0 0

0 0 <{R‖R∗⊥} ={R‖R∗⊥}

0 0 −={R‖R∗⊥} <{R‖R∗⊥}

 . (13.14)
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Here <{R‖R∗⊥} denotes the real part of R‖R
∗
⊥ and ={R‖R∗⊥} is the imaginary part.

The transmission matrix Tab is (G11 or Z3)

Tab = fT


1
2(T‖T

∗
‖ + T⊥R

∗
⊥) 1

2(T‖T
∗
‖ − T⊥T

∗
⊥) 0 0

1
2(T‖T

∗
‖ − T⊥R

∗
⊥) 1

2(T‖T
∗
‖ + T⊥T

∗
⊥) 0 0

0 0 <{T‖T ∗⊥} ={T‖T ∗⊥}

0 0 −={T‖T ∗⊥} <{T‖T ∗⊥}

 . (13.15)

The components of these equations are given by (G7):

R‖ =
nb cos θa − na cos θb
nb cos θa + na cos θb

(13.16)

R⊥ =
na cos θa − nb cos θb
na cos θa + nb cos θb

(13.17)

T‖ =
2na cos θa

nb cos θa + na cos θb
(13.18)

T‖ =
2na cos θa

na cos θa + nb cos θb
. (13.19)

The factor fT is defined below in Eq. (13.35). In general, the indices of refraction are
complex numbers and these equations must be used. However, for real indices of refraction,
the matrix elements can be simplified at the expense of having a special case for water-
incident angles greater that the critical angle.

Define
nab =

na

nb
and nba =

nb

na
. (13.20)

Then for the case of air-incident light, i.e., na ≤ nb, or water-incident light with the incident
angle less than the critical angle, i.e., na > nb and θa < θc, the equations yield the real
forms (G14 and G15)

R‖R
∗
‖ =

(
cos θa − nab cos θb
cos θa + nab cos θb

)2

(13.21)

R⊥R
∗
⊥ =

(
nab cos θa − cos θb
nab cos θa + cos θb

)2

(13.22)

<{R‖R∗⊥} =

(
cos θa − nab cos θb
cos θa + nab cos θb

)(
nab cos θa − cos θb
nab cos θa + cos θb

)
(13.23)

={R‖R∗⊥} = 0 (13.24)

T‖T
∗
‖ =

(
2nab cos θa

cos θa + nab cos θb

)2

(13.25)

T⊥T
∗
⊥ =

(
2nab cos θa

nab cos θa + cos θb

)2

(13.26)

<{T‖T ∗⊥} =
4n2

ab cos2 θa
(cos θa + nab cos θb)(nab cos θa + cos θb)

(13.27)

={T‖T ∗⊥} = 0 . (13.28)
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It should be noted that for the case of normal incidence, θi = 0, both R‖R
∗
‖ and R⊥R

∗
⊥

reduce to

R‖R
∗
‖ = R⊥R

∗
⊥ =

(
nb − na

nb + na

)2

. (13.29)

This gives a reflectance of Rab(θi = 0) = 0.021 for nwater = 1.34, for both air- and water-
incident light.

For the case of total internal reflection, i.e., na > nb and θa ≥ θc, the following equations
are to be used (G22):

R‖R
∗
‖ = 1 (13.30)

R⊥R
∗
⊥ = 1 (13.31)

<{R‖R∗⊥} =
2 sin4 θa

1− (1 + n2
ba) cos2 θa

− 1 (13.32)

={R‖R∗⊥} =−
2 cos θa sin2 θa

√
sin2 θa − n2

ba

1− (1 + n2
ba) cos2 θa

(13.33)

and all elements of the transmission matrix elements are 0:

Tab = Twa = O . (13.34)

(O is a 4 × 4 matrix of zeros.) Finally, the all-important transmission factor fT in Eq.
(13.15) is given by

fT = n3
ba

(
cos θb
cos θa

)
(for diffuse Stokes vectors) , (13.35)

when computing the transmittance for diffuse Stokes vectors. These equations give ev-
erything needed to describe reflection and transmission of polarized light by a level sea
surface.

Figure 13.6 shows the Raw and Taw matrices as a function of incident angle θi for
nair = 1 and nwater = 1.34. The (1,1) matrix elements are shown in the upper-left plot,
and the (4,4) elements are in the lower-right plot. The red curves are Raw(θi) and the
blue curves are Taw(θi). The reflectance curve for Raw(1, 1) is the Fresnel reflectance for
unpolarized light as given in the previous section on Fresnel formulas for unpolarized light:
it starts at 0.021 for normal incidence and nwater = 1.34, and rises to 1 at grazing incidence.
The transmission curve for Taw(1, 1) on the other hand may look incorrect because it has
values greater than one. Its maximum value at normal incidence is

Taw(1, 1) =
4n3

b

(1 + nb)2
= 1.758 (13.36)

However, this value is indeed correct and is a consequence of the fact that we are now
dealing with a diffuse Stokes vector with units of radiance, and the n2 law for radiance
(Section 13.1.2) applies. The curves in Fig.(13.6) agree exactly with the corresponding
plots in Garcia (2012, Figs. 1-3).

If we were dealing with coherent Stokes vectors with units of irradiance, then the fT

factor of Eq. (13.35) would be

fT = nba
cos θb
cos θa

(for coherent Stokes vectors) . (13.37)
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Figure 13.6: Reflectance and transmittance matrices as functions of the incident angle θi

for air-incident radiance. Raw is in red and Taw is in blue. The vertical dotted line at
θi = 53.3 deg is Brewster’s angle.

The transmittance for normal incidence then would be (4nb)/(1+nb)2 = 0.979, which with
the reflectance sums to one (and also sums to one for all other incident angles). As noted
elsewhere, it is the law of conservation of energy, not the law of conservation of radiance.
This business of diffuse and coherent Stokes vectors and their different fT values may seem
like a confusing bit of trivia, that is until you write a computer program and cannot figure
out why your numbers do not agree with observation or with someone else’s computations.

The vertical dotted line in Fig. (13.6) shows the location of Brewster’s angle,

θBrew = arctan(nb) (13.38)

which is arctan(1.34) = 53.3 deg in the present case. At this angle, Raw(1, 2) = Raw(2, 1) =
−Raw(1, 1), and Raw(3, 3) = Raw(4, 4) = 0. In the present case Raw(1, 1) ≈ 0.04 at θBrew,
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and the reflection process Sr = Raw(θi = θBrew)Si becomes

Sr =


0.04 −0.04 0 0

−0.04 0.04 0 0

0 0 0 0

0 0 0 0




I

0

0

0

 =


0.04I

−0.04I

0

0

 . (13.39)

Thus, at Brewster’s angle, unpolarized incident radiance is totally horizontally polarized
upon reflection.

It should also be noted that the non-zero Taw(2, 1) means that unpolarized radiance
becomes partly horizontally polarized upon transmission through the surface.

Figure (13.7) shows Raw and Taw as reduced scattering matrices, i.e. after dividing each
element by its (1,1) component. These plots show more clearly the behavior of the Raw

matrix elements at Brewster’s angle. These curves agree exactly with the corresponding
plots in Kattawar and Adams (1989, Fig. 4).

Figure (13.8) shows Rwa and Twa. The vertical dotted line is at the critical angle for
total internal reflection, which in the present case is θc = 48.3 deg. For angles less than
the critical angle, the transmission is never more than about 0.54. This again shows the n-
squared law for radiance. In going from water to air, the in-water radiance is decreased by
a factor of 1/n2

water when crossing the surface because the solid angle in air is greater than
that in water by a factor of n2

water. The (1,1) elements show that beyond the critical angle
there is no transmission and total reflection. These curves agree with the corresponding
plots in Garcia (2012, Figs. 4-6).

Figure (13.9) shows the reduced water-to-air matrices. These curves agree with the
corresponding plots in Kattawar and Adams (1989, Fig. 5) (The signs of the Twa(3, 4) and
Twa(4, 3) elements are reversed in the original Fig. 5, which had a sign error.).

The non-zero matrix elements of course depend on incident angle as seen above, but
also depend weakly on the wavelength via the wavelength dependence of nwater.
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Figure 13.7: Reduced reflectance and transmittance matrices for air-incident radiance [the
reflectance and transmittance matrices of Fig.(13.6) normalized by their (1,1) elements].
The vertical dotted line is Brewster’s angle.
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Figure 13.8: Reflectance and transmittance matrices as functions of the incident angle θi

for water-incident radiance. Rwa is in red and Twa is in blue. The vertical dotted line is
the critical angle for total internal reflectance.
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Figure 13.9: Reduced reflectance and transmittance matrices for air-incident radiance [the
reflectance and transmittance matrices of Fig.(13.8) normalized by their (1,1) elements].
The 34 and 43 elements are the reverse of Fig. 5 in Kattawar and Adams (1989) due to a
sign error in the original paper.



486 CHAPTER 13. SURFACES

13.4 The Cox-Munk Sea Surface Slope Statistics

Cox and Munk (1954a,b) analyzed aerial photographs of the Sun’s glitter patterns on wind-
blown sea surfaces, from which they were able to deduce the slope statistics of the sea
surface as a function of the wind speed (see also Cox and Munk, 1955). Figure 13.10 shows
one such photograph. The wind speed, measured from a ship within the area photographed,
was 4.6 m/s.

Figure 13.10: A glitter pattern photograph for a wind speed of 4.6 m/s. The view is looking
azimuthally toward the Sun and downward at the sea surface from an altitude of 2,000 feet
(610 m). The Sun’s glitter pattern is the central bright area. The upper left and right
areas are glint from the background sky or perhaps from clouds. The superimposed grid
shows lines of constant wave facet tilt β and azimuth α as described in the text and in Fig.
13.11.

If the surface were perfectly flat (i.e., zero wind speed and no swell) and the sky were
black, the glitter pattern would be a single bright spot at the Sun’s specular reflection
direction, which is at the center of the photograph. However, wind ruffles the sea surface
so that the Sun’s direct beam can be reflected from a wider area of the sea surface into the
observer’s direction. In order for a wave facet to reflect a solar ray towards the observer,
the facet must be tilted in just the right way so that the tilted facet can reflect an incident
ray from the Sun into the direction of the observer. This is illustrated in Fig. 13.11. The
blue triangle represents a tilted wave facet that is reflecting an incident solar ray ξ̂′ into
the observer’s direction ξ̂. The (x̂, ŷ, ẑ) coordinate system shown by the green arrows is a
Sun-centered system with −x̂ pointing horizontally towards the Sun, ẑ vertically upward
(normal to the mean sea surface), and ŷ = ẑ × x̂. The Sun’s incident ray ξ̂′ = (ξ′x, ξ

′
y, ξ
′
z)

thus has ξ′x > 0, ξ′y = 0, and ξ′z < 0. n̂ is the normal to the tilted facet. Polar angle
β = cos−1(n̂ · ẑ) measures the tilt of the facet from the normal to the mean sea surface.
Azimuthal angle α measures the orientation of the facet relative to the x̂ axis, with α being
measured clockwise from x̂ as shown.
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Figure 13.11: The image of Fig. 13.10 with an illustration of a tilted wave facet (blue
triangle) reflecting an incident solar ray ξ̂′ into the direction ξ̂ of an observer.

Let η(xa, xc) be the sea surface elevation in a wind-centered coordinate system2. where
xa is in the along-wind direction (with xa positive in the downwind or x̂ direction) and xc

is in the cross-wind direction (with xc positive in the ŷ direction). Then

ηa =
∂η

∂xa
and ηc =

∂η

∂xc

are respectively the sea surface slopes in the along-wind and cross-wind directions. Af-
ter laborious analysis of numerous photographs for different solar zenith angles and wind
speeds, Cox and Munk found that the statistical distribution of the random sea surface
slopes ηa and ηc is, to a good approximation, a bivariate Gaussian:

p(ηa, ηc) =
1

2πσaσc
exp

[
−1

2

(
η2

a

σ2
a

+
η2

c

σ2
c

)]
(13.40)

where σ2
a and σ2

c are respectively the variances of the slopes in the along-wind and cross-
wind directions. Note that p(ηa, ηc) is normalized as required for a probability distribution
function, i.e., ∫ ∞

−∞

∫ ∞
−∞

p(ηa, ηc) dηa dηc = 1 .

2The analysis of the glint photographs requires several coordinate systems. One is Sun-centered, as
seen in Fig. 13.11. Another system is used to define the image plane of the camera recording the glitter
patterns. Use of the surface statistics to be presented below for generation of random realizations of wind-
blown surfaces requires a wind-centered system (x̂, ŷ, ẑ), with x̂ pointing downwind, ŷ cross-wind, and ẑ
upward. Figure 13.11 shows the (x̂, ŷ, ẑ) system as used by Preisendorfer and Mobley. The Sun system
used in the Cox and Munk papers has ŷ pointing horizontally toward the Sun, with α measured from ŷ “to
the right of the Sun.” Conversion from one system to the other is straightforward but tedious trigonometry;
the details are given in Section 7(a) of Preisendorfer and Mobley (1985) and in Preisendorfer and Mobley
(1986). Fortunately, these details do not concern us here.
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These slope variances were found to be related to the wind speed U in meters per second
at “mast height” (41 feet or 12.5 m) by

σ2
a = 0.000 + 3.16 · 10−3U ± 0.004, r = 0.945 (13.41a)

σ2
c = 0.003 + 1.92 · 10−3U ± 0.002, r = 0.956 (13.41b)

σ2 = σ2
a + σ2

c = 0.003 + 5.12 · 10−3U ± 0.004, r = 0.986 (13.41c)

Equations (13.40) and (13.41) are the celebrated Cox-Munk wind speed-wave slope statis-
tics. The non-zero value of σ2

c at zero wind speed results from a residual amount of slope
that is not attributable to the local wind. This contribution to σ2

c is often ignored when
modeling sea surfaces, so that a wind speed of zero corresponds to an exactly flat sea
surface.

Duntley (1954) used closely spaced vertical wires to measure surface elevations at the
two wires, from which the slope could be obtained. His measurements were consistent with
the values obtained by Cox and Munk. Several later studies have found some dependence
on the air-sea temperature difference, i.e., on the atmospheric stability, although sometimes
with conflicting conclusions, perhaps because the sea states were not in a mature state for
the given wind speed. The slope variances are also sensitive to the presence of films (e.g.,
from oil) that tend to dampen waves, especially at the smallest spatial scales. Cox and
Munk themselves did measurements within areas where they had poured a mixture of oils
onto the sea surface3; those values are found in the papers cited. Regardless of potential
improvements to the Cox and Munk values, the original values of the slope variances are
widely used, e.g. they are one option for surface generation in the HydroLight radiative
transfer code (Section 10.6), and they are used by NASA for atmospheric correction (Sec-
tion 15.9 ). The numerous successful applications of the Cox-Munk equations have proven
that their values are sufficiently accurate for a wide range of conditions.

It should be noted that the Cox-Munk statistics are based on observations, so they
describe the slope effects of whatever waves were on the sea surface at the times the
photographs were taken. They thus describe the full range of long-wavelength gravity
to short-wavelength capillary waves for the sea states at the time of observation. Note,
indeed, the obvious presence of long-wave swell at the lower right of Fig. 13.10. It is
sometimes stated (e.g., in Preisendorfer and Mobley (1985) and in Section 4.3 of Mobley
(1994)) that these slope statistics refer to capillary waves, which is only partially correct.
Capillary waves are responsible for much of the slope variance, and they are included in
the Cox-Munk statistics, but the effects of gravity waves on the surface slopes are also
included.

13.5 Sea Surface Simulations

The numerical modeling of random water surfaces is an exceedingly complex business, and
there are many techniques for simulating random sea surfaces (Tessendorf, 2004). At one
extreme are hydrodynamics-based methods that solve the equations of fluid motion (the

3As described in Cox and Munk (1954b), they pumped a mixture of “40 percent used crankcase oil, 40
percent Diesel oil, and 20 percent fish oil” in the water to create a slick approximately 2000 by 200 feet
in size (approximately 600 by 60 meters). In 1954 that was good science; today they probably would be
thrown in jail for such an action.
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Navier-Stokes and related equations as seen in Kinsman (1965). At the other extreme
are methods that generate a sea surface that visually looks good enough for use in a
video game or movie, but often does not obey even the simplest of physical laws such as
conservation of energy. What technique you use depends on your problem. Do you want
to compute the energy transferred to the waves in the wake of passing ship, do you want
to compute the energy transferred from the wind blowing over the ocean to the waves and
currents, or do you want to make a video game that runs in real time? For the purposes
of optical oceanography, we need to simulate water surfaces that can be used to compute
the reflectance and transmittance of light incident onto the water surface. That problem
is intermediate in difficulty between the hydrodynamics and visual-appearance methods.

Preisendorfer and Mobley (1985) and Preisendorfer and Mobley (1986) showed how to
use the Cox-Munk statistics to generate random realizations of wind-blown sea surfaces
(see also Section 4.3 of Mobley, 1994). The mathematical details need not be repeated
here, but the procedure is as follows. First, they divide a hexagonal patch of sea surface
into triangular wave facets. Then the Cox-Munk along-wind and cross-wind variances are
used in conjunction with a random number generator to define, for a given wind speed,
the relative surface elevations at the vertices of the triangular wave facets. The slopes of
the resulting surface facets then reproduce, on average, the slope statistics of a real sea
surface. Figure 13.12 shows an example of such a surface realization for a wind speed of 10
m/s. These Cox-Munk surfaces are “scale independent.” That is, only the slopes matter,
not the actual physical size of the patch of surface. Thus no units are shown for the axes.
Note that, in this figure, the vertical scale (the surface elevations) is greatly expanded
relative to the horizontal scales (the x axis is the along-wind direction, and the y axis is
the cross-wind direction).

Figure 13.12: Example of a Cox-Munk sea surface for a wind speed of U = 10 m s−1. High
surface elevations (above the mean sea level of zero) are light blue; low elevations (below
mean sea level) are dark blue.

This technique does not reproduce the sea surface elevation statistics of a real sea
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surface because the Cox-Munk equations describe the statistics of only the sea surface
slopes. Although the surface realization seen in Fig. 13.12 correctly reproduces the Cox-
Munk slope variances, it simply does not look like a real sea surface. In particular, there
is no spatial correlation from one point on the surface to another nearby point, as occurs
with real water waves. However, both the elevation and slope statistics can be reproduced
using more advanced techniques, which are described in the appendices. Those techniques
are based on sea surface elevation variance spectra (Appendix B) and use fast Fourier
transforms (FFTs; Appendix A). Here, surfaces generated by these techniques (as described
in Appendix C) will be called FFT surfaces for brevity. Figure 13.13 shows an example
surface constructed using the techniques of Appendix C. The inset shows the mean square
slopes in the along-wind (mssx) and cross-wind (mssy) directions; these values correspond
to σ2

a and σ2
c , respectively, in the Cox-Munk equations. For a wind speed of 10 m s−1, the

Cox-Munk equations give σ2
a = 0.0316 and σ2

c = 0.0222, which agree well with the values
shown in the figure for this particular FFT surface realization. The value H1/3 = 2.14 m
is the significant wave height, which is in agreement with the wave heights for a mature
sea at this wind speed. Note that the figure axes are now in meters, because an actual
100× 100 meter patch of sea surface is being simulated, although the scale of the vertical
axis is still exaggerated compared to the horizontal scales.

Figure 13.13: Example realization of a 10 m s−1 sea surface constructed using the tech-
niques of Appendix C. This surface reproduces both the surface elevation statistics and
the slope statistics. Reproduced from Fig. 3.4 of Mobley (2016).
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13.5.1 Optical Differences in Sea Surfaces

The obvious next question is this: How much do optical quantities such as the sea surface
reflectance or water-leaving radiance differ for a Cox-Munk surface like that of Fig. 13.12
versus a more realistic FFT surface like that of Fig. 13.13? This can be answered by
Monte Carlo simulation, which is described in Appendix E. In such simulations, a large
number (often millions) of random sea surface realizations are generated. For each surface,
rays simulating the Sun and sky incident radiance are sent toward the surface, where
they are reflected and transmitted by the surface wave facets according to the Fresnel
equations applied to the point where a ray intersects a wave facet. In this manner, the
reflected and transmitted radiances are built up ray by ray. The mathematical details of
these computations are rather ugly; see Preisendorfer and Mobley (1985) or Mobley (2014,
Appendix B) for a detailed description of a ray tracing algorithm that fully accounts for
the possibility of multiple scattering between surface wave facets.

Figure 13.14 shows an example of a simulated solar glitter pattern created by ray
tracing and a Cox-Munk surface. In this figure, the final direction of each ray is plotted
as a dot where the ray intersects the image plane of a camera photographing the glitter
pattern from the air. The pattern of this simulated glitter pattern should be compared
with central glitter pattern of Fig. 13.10. The two patterns are in qualitative agreement.

Figure 13.14: Monte Carlo simulation of a glitter pattern for the Sun at a 60 deg zenith
angle and a wind of 5 m s−1. The ψh and ψv axes refer to the coordinate system used to
describe the viewing direction in the image plane of the observer’s camera. In this figure,
the glitter pattern is being viewed ±30 degrees in the horizontal from the specular point,
and from 30 deg above to 50 deg below the specular point. Reproduced from Preisendorfer
and Mobley (1986).
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A feeling for the optical differences of various sea surfaces can be obtained by comparison
of their surface-reflected radiances, i.e., their glitter patterns. The left panel of Fig. 13.15
shows the surface-reflected radiance for a Cox-Munk surface and a wind speed of 5 m s−1,
as generated by HydroLight. The Sun was at a zenith angle of 50 deg in a clear sky.
The Sun’s azimuthal angle was in the down-wind direction (the arrow at the middle of
the plot indicates the wind direction). The water IOPs were based on an albedo of single
scattering of 0.8 and the sky conditions were for a wavelength of 550 nm. The ray tracing
that underlies these calculations used 250,000 sea surface realizations; there is a negligible
amount of Monte Carlo noise in these results. The colors display contours of the radiance,
with the lightest color being the highest radiance; the contour spacing is not linear but was
chosen for visual effect. The light colored area at the right of the polar plot is the glitter
pattern as would be seen by an observer looking downward at the sea surface and facing the
Sun at an azimuthal viewing angle of ϕv = 0. The concentric circles show off-nadir viewing
angles of 30, 60, and 90 deg (the horizon). The radiance is largest near the horizon, rather
than near the specular direction, because of the large increase in the Fresnel reflectance
for angles of reflection greater than about 60 deg. The right panel of the figure shows the
glitter pattern for an FFT surface, with all else being the same.

Figure 13.15: HydroLight-computed surface-reflected radiances for a solar zenith angle of
50 deg and a wind speed of 5 m s−1. Left panel: a Cox-Munk surface realizations; right
panel: FFT surfaces.

Some differences in the glitter patterns can be seen in the contour plots of Fig. 13.15,
but a more quantitative comparison can be made by plotting the radiances as a function of
polar angle in the plane of the Sun. This is done in Fig. 13.16, using the data of Fig. 13.15.
This plot shows that for viewing directions out to about 60 deg in the azimuthal direction
of the Sun, there is only a few percent difference in the surface-reflected radiances. For
viewing directions near the horizon, the difference increases to several tens of percent, with
the Cox-Munk surface having the “brighter” glitter pattern near the horizon.

Figure 13.17 shows the corresponding water-leaving radiances, which determine the
remote-sensing reflectance. Again, there is very little difference (at most a few percent) for
off-nadir viewing directions less than about 50 deg, which covers the range of most ocean-
color remote sensing. However, for viewing directions near the horizon, the difference in
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Figure 13.16: Surface-reflected radiances in the plane of the Sun. Negative off-nadir viewing
directions θv correspond to looking away from the Sun (in the ϕv = 180 direction in Fig.
13.15; positive θv values correspond to looking toward the Sun.

the Cox-Munk and the FFT surface is again a few tens of percent.

Figure 13.17: Water-leaving radiances in the plane of the Sun, as in Fig. 13.16.

The details of these comparisons will be different for different Sun zenith angles and
different wind speeds. However, it is generally true that the sea surface affects the water-
leaving radiance by only a few percent for the near-nadir viewing directions relevant to
most remote sensing. Surface effects are most prominent in the glitter patterns themselves.
There are also differences when the Sun is in the along-wind versus the cross-wind direction.
However, a full discussion of such matters is a topic for elsewhere.
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13.6 The Bidirectional Reflectance Distribution
Function (BRDF)

The preceding sections have discussed the optical effects of air-water surfaces. This section
considers how light is reflected by opaque surfaces, such as a sandy sea bottom or a sub-
marine within the water. Scientists in many different fields including astronomy, geology,
agronomy, the paint industry, camouflage technology, and remote sensing have studied
how surfaces reflect light. Unfortunately, different fields often use different measures of
“reflectance,” and they all have their own terminology and notation even when they are
measuring the same physical quantity. (The next section discusses other measures of re-
flectance.) There are many opportunities for losing factors of π and cosines of angles, and
it is sometimes nearly impossible to figure out exactly what is being discussed when reading
a paper. This section gives an overview of the definitions, terminology, and notation as
needed for optical oceanography and remote sensing.

For the most part, the definitions and terminology used here are given in Hapke (1993),
which is a good introductory textbook on reflectance, and in Nicodemus et al. (1977) (ref-
erenced here as NBS160). NBS160 is a National Bureau of Standards4 document that
discusses the measurement of reflectance in great detail and is the authoritative document
on the subject. However, we have changed some notation to correspond to what is com-
monly used in optical oceanography. Table 13.1 at the end of this section compares the
notation used in these books.

For convenience, let the “surface” reflecting the light be a horizontal plane. This can be
a physical surface such as a sandy ocean bottom, or it can be simply a particular depth in
the water column, say at 1 m above a sea grass bed or at 100 m in optically deep mid-ocean
water. To conform to NBS160, let subscript i denote incident and r to denote reflected.
In the oceanographic setting of a horizontal bottom, the light incident onto the surface
is traveling downward, and the light reflected by the surface is traveling upward. Thus
we sometimes use subscript d for downward (incident) and u for upward (reflected) when
necessary to conform to common oceanographic usage.

In nature, light is usually incident onto a surface from all directions, and some of the
incident light gets reflected by the surface into all directions. Therefore, to completely
understand the optical properties of a surface, it is necessary to know how the surface
reflects radiance incident from any incident direction into any reflected direction.

Figure 13.18 shows the geometry used to describe reflectance from a surface. A Carte-
sian (x̂, ŷ, ẑ) coordinate system is chosen with the surface lying in the x-y plane and with
the z axis normal to the surface (upward in our case), an element of which is shown in
aqua. There is a collimated light source, which provides the incident light coming from
direction (θi, φi); and there is a detector, which receives the reflected light traveling toward
the viewing direction (θr, φr). Surface optical properties usually depend on the wavelength
λ, so the complete description of the reflectance properties of a surface will be a function
(the BRDF) of five variables: θi, φi, θr, φr, and λ. To make our equations as simple as
possible, we drop the λ, but keep in mind that everything discussed below depends on
wavelength.

For oceanography, it is often reasonable to assume that the surface is azimuthally
isotropic, which means that its reflectance properties depend on the difference of φi and

4The NBS is now NIST; see the footnote on page 15
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Figure 13.18: Geometry for discussion of surface reflectance. The surface is in aqua, the
incident light is red, and the reflected light is green.

φr. (This would not the case for long parallel ripples on a sandy bottom, for exam-
ple.) The specular direction is the direction that a level mirror surface would reflect light:
(θr, φr) = (θi, φi + 180◦). The retroreflection direction is the direction of exact backscatter:
(θr, φr) = (θi, φi). The angle ξ between the source and detector is called the phase angle5;
it is computed from

cos ξ = cos θi cos θr + sin θi sin θr cos(φi − φr) . (13.42)

Great care and precise language must be used when talking about reflectance. In
particular, “reflectance” always should be preceded by two adjectives: the first describes
the source and the second the detector. Thus we have

The directional-hemispherical reflectance tells how much light is reflected from a
particular incident (e.g., downward) direction (θi, φi) into the hemisphere of all re-
flected (e.g., upward) directions

The hemispherical-directional reflectance tells how much light is reflected from all
incident directions into a particular reflected direction (θr, φr). The remote-sensing
reflectance Rrs = Lw/Ed used in optical oceanography is a hemispherical-directional
reflectance.

The bi-hemispherical (i.e., hemispherical-hemispherical) reflectance tells how
much light is reflected from all incident directions into all reflected directions. The
irradiance reflectance R = Eu/Ed used in optical oceanography is a bi-hemispherical
reflectance.

The bi-directional (i.e., directional-directional) reflectance tells how light is re-
flected from a particular incident direction into a particular reflected direction.

We now define the bi-directional reflectance distribution function (BRDF), which tells
us everything we need to know about how a surface reflects light. The following discussion
is based on NBS160, which treats these matters in great detail.

5If the source is the Sun and the surface is the Moon and the Earth is the detector, then the phase angle
determines the phase of the Moon as seen from the Earth. This is the historical origin of the term “phase
function” for the function that describes the angular pattern of scattered light. The scattering angle ψ as
used in radiative transfer theory is the complement of the phase angle: ψ = 180 − ξ.
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Conceptually, we think about a light beam traveling in a particular direction (θi, φi)
being reflected into another particular direction (θr, φr). But since any source has some
finite divergence, and any detector has some finite field of view, we can associate small
solid angles dΩi and dΩr with the incident and reflected beams, respectively. The radiance
of the incident beam is Li(θi, φi), and Lr(θr, φr) is the reflected radiance. These quantities
are shown in Fig. 13.19, which is a redrawn version of Fig. 13.18.

Figure 13.19: Quantities used in the definition of the BRDF.

Our goal is to define an inherent optical property that tells us how the reflective proper-
ties of the surface vary with incident and reflected directions (and wavelength). Therefore,
consider a measurement in which we hold the direction of the detector in Fig. 13.19 con-
stant while we vary the direction of the source. The BRDF is then defined as

BRDF (θi, φi, θr, φr) ,
dLr(θr, φr)

Li(θi, φi) cos θi dΩi(θi, φi)
[sr−1]. (13.43)

Note that if only the magnitude of the incident radiance changes, the reflected radiance
will change proportionately, and the BRDF will remain unchanged. However, if the direc-
tion of the incident or reflected beams changes while holding all else constant, the BRDF
will in general change.

Equation (13.43) allows an easy transition to radiative transfer theory. Suppose we
want to compute the total radiance heading upward in direction (θr, φr) owing to light
incident onto the surface from all directions. We then rewrite (13.43) as

dLr(θr, φr) = BRDF (θi, φi, θr, φr)Li(θi, φi) cos θi dΩi

and then integrate over all incident directions to get the total reflected radiance in direction
(θr, φr):

Lr(θr, φr) =

∫
2πi

Li(θi, φi)BRDF (θi, φi, θr, φr) cos θi dΩi (13.44)

,
∫

2πi

Li(θi, φi) r(θi, φi, θr, φr) dΩi . (13.45)
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This last equation is exactly what is seen (with slightly different notation) in Mobley
(1994, Eq. 4.3), where r(θi, φi, θr, φr) is called the radiance reflectance function. Clearly,

r(θi, φi, θr, φr) = BRDF (θi, φi, θr, φr) cos θi ,

and the two functions are equivalent ways of describing a surface. In radiative transfer
theory irradiances are measured on surfaces normal to the direction of light propagation,
whereas actual irradiance measurements are made on the surface of interest. The cos θi

factor in Eq. (13.44) just projects the incident beam irradiance onto the horizontal surface.
This is one of those places where it is easy to lose a cosine factor when comparing an
observational paper and a theory paper. Also, some investigators add a factor of π sr to
the numerator of Eq. (13.43) and define the BRDF as a nondimensional quantity, although
this is non-standard6. Finally, note that the BRDF is a reflectance per unit solid angle; it
can have any non-negative value. It is only when the BRDF is integrated over solid angle
to get, for example, an irradiance reflectance that the resulting irradiance reflectance is
bounded by one.

It is emphasized that the BRDF completely describes the net effect of every-
thing that happens on or below the surface where it is measured. For example,
if the BRDF is measured in the water column 1 m above a sea grass bed, then all the
effects of the light interacting with the grass, sediments, and water below the 1 m level
are accounted for in this BRDF. Knowing the BRDF on this imaginary surface would, for
example, allow HydroLight to compute the radiance distribution in the region above the
depth where the BRDF was measured7. Predicting or modeling the BRDF of the grass and
sediments from first principles is, however, very difficult and requires understanding and
modeling all of the extremely complicated interactions of light with the grass and sediment
particles.

All other reflectances can be computed if the BRDF is known. For example, the
irradiance reflectance R = Eu/Ed is given by (here the d and u subscripts to identify the
downwelling and upwelling irradiances, respectively, as is common in optical oceanography,
which correspond to the i and r subscripts in the integrals):

R =
Eu

Ed
=

∫∫
2πr

Lr(θr, φr) | cos θr| dΩr∫∫
2πi
Li(θi, φi) | cos θi| dΩi

=

∫∫
2πr

[ ∫∫
2πi
Li(θi, φi)BRDF (θi, φi, θr, φr) | cos θi| dΩi

]
| cos θr| dΩr∫ ∫

2πi
Li(θi, φi) | cos θi| dΩi

(13.46)

The first equation here is just the definitions of the plane irradiances in terms of the
incident (downwelling) and reflected (upwelling) radiances. The differential of solid angle
is dΩ = sin θ dθ dφ, and the double integrals are over the corresponding hemispheres of

6This is how the MODTRAN atmospheric radiative transfer model defines its BRDFs for various types
of surfaces that form the bottom boundary of the atmosphere.

7This is indeed how HydroLight models infinitely deep, homogeneous water without actually solving the
radiative transfer equation to extreme depth. The BRDF of an infinitely deep, homogeneous layer of water
with known inherent optical properties can be found analytically (Mobley, 1994, Section 9.5). Thus, when
HydroLight simulates infinitely deep water, it first computes the BRDF of the infinitely deep water below
the maximum depth of interest, zmax, and it then uses that BRDF at zmax just as though there were an
actual physical bottom at depth zmax.
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2π sr. In going to the second equation, Eq. (13.44) has been used to write the upwelling
radiance reflected from the surface in terms of the downwelling radiance onto the surface
and the BRDF of the surface. Equation (13.46) is completely general and is the fundamental
equation for computing the irradiance reflectance of any surface, given the BRDF of the
surface and the incident radiance onto the surface. Note that in general the irradiance
reflectance depends both on the surface (the BRDF) and on the incident lighting (the
incident radiance Li(θi, φi)). As will be seen in Section 13.7, if the surface is Lambertian,
R becomes independent of the incident radiance distribution.

The equations of this section show the BRDF as used in radiative transfer theory.
The use of the BRDF as a probability distribution function in Monte Carlo simulations is
discussed in Appendix Section F.8.

Finally, there is an important reciprocity theorem about what happens if the positions
if the source and detector are interchanged. It states simply that

BRDF (θi, φi, θr, φr) = BRDF (θr, φr, θi, φi) . (13.47)

If you measure or define a BRDF that does not obey Eq. (13.47), then it is simply wrong.

Table 13.1 compares the notation used in several texts.

Quantity This Book Light and Water Hapke NBS160

radiance L L I L

irradiance E E J E

single-scattering albedo ωo ωo w —

scattering angle ψ ψ θ —

mean cosine of scattering angle g g ξ —

phase angle ξ — g —

incident polar angle θi θ′ i θi

reflected polar angle θr θ e θr

incident azimuthal angle φi φ′ set to 0 φi

reflected azimuthal angle φr φ ψ φr

solid angle Ω Ω Ω ω

BRDF BRDF r/ cos θi BRDF fr

irradiance reflectance R R r ρ

Table 13.1: Comparison of the notation used here with that used in Light and Water
(Mobley, 1994) , Hapke (1993), and NBS 160 (Nicodemus et al., 1977).

13.7 Lambertian Surfaces

Actual measurements of BRDFs of ocean bottom materials like sand or sea grass canopies
have rarely been made, although some measurements of sediments do exist (e.g. Zhang
et al., 2003). Because of the lack of measurements and models of the BRDF for actual
ocean bottom materials, it is usually assumed that a bottom is a Lambertian reflecting
surface.



13.7. LAMBERTIAN SURFACES 499

A Lambertian surface by definition reflects radiance equally into all directions. Its
BRDF is simply

BRDFLamb(θi, φi, θr, φr) =
ρ

π
, (13.48)

where ρ is called the reflectivity of the surface. The reflectivity varies from zero for a
completely absorbing (“black”) surface, to one for a completely reflecting (“white”) surface.
There are no Lambertian surfaces in nature, but matte paper is good approximation except
at grazing angles (θi and θr near 90 degrees), where the surface begins to look “shiny.”

There is sometimes confusion as to how Lambertian surfaces reflect light. You will
sometimes see a statement like

• A Lambertian surface reflects light equally into all directions. Lambertian surfaces
therefore are also called isotropic/uniform/perfectly diffuse reflectors.

You can also see statements like

• A Lambertian surface reflects light with a cosine angular distribution. Lambertian
surfaces therefore are also called cosine reflectors.

These statements conjure up different mental images, as shown in Fig. 13.20, and
appear to be contradictory.

Figure 13.20: The mental images corresponding to the two descriptions of Lambertian
surfaces.

However, either statement can be correct or incorrect, depending on which measure of
“light” is used. Each point of a Lambertian surface reflects intensity in a cosine pattern,
as in the right-hand panel of Fig. 13.20, which is the correct form of the second statement.
However, when the surface is viewed with a radiometer with a finite field of view, the area
of the surface seen by the radiometer is proportional to 1/ cos θ. The radiance measured
comes from the the intensity reflected from each point (∝ cos θ) times the number of points
seen (∝ 1/ cos θ), and is therefore independent of θ. This is illustrated in Fig. 13.21. Thus
the measured reflected radiance is independent of the viewing direction, which corresponds
to the first statement.

In addition to their mathematical simplicity, Lambertian surfaces have an extremely
important property. To see what it is, compute the irradiance reflectance R = Er/Ei of a
Lambertian surface. Recall the general equation (13.46) for the irradiance reflectance:

R =

∫∫
2πr

[ ∫∫
2πi
Li(θi, φi)BRDF (θi, φi, θr, φr) | cos θi| dΩi

]
| cos θr| dΩr∫ ∫

2πi
Li(θi, φi) | cos θi| dΩi
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Figure 13.21: Resolution of the paradoxical statements about how Lambertian surfaces
reflect light.

Substituting the Lambertian BRDF of Eq. (13.48) into this equation and rearranging gives

R =

ρ
π

[∫∫
2πi
Li(θi, φi) | cos θi| dΩi

] ∫∫
2πr
| cos θr| dΩr∫∫

2πi
Li(θi, φi) | cos θi| dΩi

= ρ ,

since the integrals over 2πi cancel, and the integral over 2πr equals π. A Lambertian
surface thus has the property that its irradiance reflectance R equals its re-
flectivity ρ and, furthermore, its irradiance reflectance R is independent of the
incident radiance. Both of these results are true only for Lambertian surfaces. For
non-Lambertian surfaces, R generally depends both on the surface and on the incident
lighting, as seen in Eq. (13.46).

Fortunately, the use of a Lambertian BRDF for ocean bottom materials in radiative
transfer calculations usually results in errors of less than 10 per cent (and often less, see
Mobley et al., 2003) in predicted upwelling radiances as viewed for near-nadir directions
(the geometry for most remote sensing), so long as the reflectivity ρ of the assumed Lam-
bertian surface equals the irradiance reflectance R of the actual non-Lambertian surface.
Thus the crucial measurement to make is the irradiance reflectance of the bottom for the
incident lighting conditions of interest.

13.8 Other Measures of Reflectance

The bi-directional reflectance distribution function (BRDF) just discussed tells us every-
thing we need to know about how a surface reflects light. However, it in general depends on
four angles (θi, φi, θr, φr) plus the wavelength λ (and in general on the state of polarization,
which is ignored for the moment), which makes it a complicated function. The BRDF
is consequently difficult to measure or model. Measuring even a partial BRDF for a few
values of θi, φi, θr, φr, λ is a difficult and tedious task in the laboratory and is almost never
attempted in the ocean. Of course, everyone wants to have some easily made (compared to
a BRDF) measure of surface reflectance that, with appropriate assumptions, can be used
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to describe the optical properties of the surface. (The surface can be the water surface
itself, or the water surface plus the water column, or the surface of an object.) This leads
us to various other reflectances and quantities derived from the BRDF.

13.8.1 Albedos

There are many definitions of “albedo.” Hapke (1993) defines bolometric, Bond, geometric,
hemispherical, normal, physical, plane, single-scattering, and spherical albedos, as well as
an albedo factor. Not a single one of these albedos corresponds to how albedo is defined
in Mobley (1994, page 193) and commonly used in optical oceanography. Fortunately,
oceanographers do not have to deal with all of these albedos, but we should clarify a point
that can cause confusion when reading papers on reflectance, which sometimes just say,
“...and the albedo is...” without telling you which one they are using.

Optical oceanographers generally think of the albedo as being the ratio of the upwelling
plane irradiance to the downwelling plane irradiance, for whatever conditions of incident
lighting you have in nature at the time of measurement. (This is how the albedo is defined
in Mobley (1994).) This is what you need to know to compute an energy balance in
the ocean, for example. Thus the oceanographers’ albedo is the same as the irradiance
reflectance R = Eu/Ed.

Many surface-reflectance scientists (e.g., in the paint industry) like to define their albe-
dos and reflectances in terms of isotropic illumination of the surface, i.e., the incident
radiance Li(θi, φi) is a constant independent of (θi, φi). For isotropic incident radiance, the
general equation (13.46) for the irradiance reflectance R,

R =

∫∫
2πr

[ ∫∫
2πi
Li(θi, φi)BRDF (θi, φi, θr, φr) | cos θi| dΩi

]
| cos θr| dΩr∫∫

2πi
Li(θi, φi) | cos θi| dΩi

, (13.49)

reduces to just

A ,
1

π

∫∫
2πr

[∫∫
2πi

BRDF (θi, φi, θr, φr) | cos θi| dΩi

]
| cos θr| dΩr . (13.50)

This quantity is called the Bond or spherical albedo, or the spherical or bi-hemispherical
reflectance, or just the albedo, depending on the author’s preference. Note that this A is not
equal to R = Eu/Ed unless the incident lighting is isotropic (which never occurs in nature)
or unless the surface is Lambertian (which never occurs in nature). For a Lambertian
surface, A = ρ, where ρ is the reflectivity of the surface.

The same convention of assuming isotropic illumination of the surface is often used
when defining other reflectances, e.g., the hemispherical-directional reflectance. Note that
the convention of using isotropic illumination when defining albedos and reflectances is
not necessarily bad: it removes a complicating factor—variable incident lighting—from the
discussion of surface properties. However, oceanographers cannot control their incident
lighting; they have to live with whatever incident radiance nature gives them.

13.8.2 The Irradiance Reflectance versus The Bi-Hemispherical Reflectance

As already noted, the oceanographers’ albedo or irradiance reflectance R = Eu/Ed as
given by Eq. (13.46) is a bi-hemispherical reflectance, but it is not the bi-hemispherical
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reflectance as defined in books such as Hapke’s, because the oceanographer’s R uses the
actual incident radiance distribution in Eq. (13.46) rather than an isotropic incident radi-
ance.

13.8.3 The Remote-Sensing Reflectance

The oceanographers’ remote-sensing reflectance

Rrs(θr, φr) ,
Lw(θr, φr)

Ed
(sr−1) ,

has the same units as the BRDF, but they are not the same thing. Note in particular that
Rrs uses the downwelling radiance from all directions (as contained in Ed), whereas the
incident radiance in the definition of the BRDF is in a collimated beam. The water-leaving
radiance Lw is the total upward radiance Lu minus the radiance Lsr reflected by the surface
itself: Lw = Lu−Lsr. Determining Lw from a measurement of Lu is always problematic, so
for practical reasons some people approximate Rrs as Lu/Ed. If the measurement is made
underwater at depth z, the ratio of upwelling radiance to downwelling irradiance is often
called the “remote-sensing ratio”, RSR:

RSR(z, θr, φr) ,
Lu(z, θr, φr)

Ed(z)
(sr−1) .

13.8.4 The Reflectance Factor and the Radiance Factor

The reflectance factor REFF (also called the reflectance coefficient) is defined as the ratio
of the BRDF of a surface to that of a perfectly diffuse surface under the same conditions of
illumination and observation. “Perfectly diffuse” means a Lambertian surface with ρ = 1.
Thus

REFF (θi, φi, θr, φr) ,
BRDF (θi, φi, θr, φr)

BRDFLamb(with ρ = 1)
= πBRDF (θi, φi, θr, φr) . (13.51)

The radiance factor RADF is defined as the reflectance factor for normal illumination,
i.e., for θi = 0. Thus

RADF (θr, φr) , πBRDF (0, 0, θr, φr) . (13.52)

13.8.5 The Fresnel Reflectance

The Fresnel reflectance RF is the reflectance of a perfectly smooth surface between two
media of different indices of refraction n. RF is discussed in detail in Section 13.2 for
unpolarized light and in Section 13.3 for polarized light.

Note that the Fresnel reflectance describes the reflectance of the surface itself. The
irradiance and remote-sensing reflectances, R and Rrs, when measured just above the sea
surface describe the reflectance of the sea surface plus the water beneath the surface.

RF can be combined with Dirac delta functions (Section 1.4.3) to create a BRDF.
Consider the BRDF

BRDF (θi, φi, θr, φr) = 2RF δ(sin
2 θr − sin2 θi) δ(φr − φi ± π) .
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Inserting this BRDF into the general equation (13.45) for reflected radiance,

Lr(θr, φr) =

∫∫
2πi

Li(θi, φi)BRDF (θi, φi, θr, φr) cos θi dΩi ,

gives

Lr(θr, φr) = RF

∫∫
2πi

Li(θi, φi) δ(sin
2 θr − sin2 θi) δ(φr − φi ± π) 2 cos θi sin θi dθi dφi

= RF

∫ 1

0
Li(θi, φi = φr ± π) δ(sin2 θr − sin2 θi) d sin2 θi

= RF Li(θi = θr, φi = φr ± π) .

This last equation is the form usually seen in the definition of the Fresnel reflectance
as being the ratio of reflected to incident (ir)radiances for angles related by the law of
reflection.
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CHAPTER 14

Ocean Color Remote Sensing

Remote sensing of the ocean uses electromagnetic signals from the near UV (wavelengths
from ∼ 300 to 400 nm) to various radar bands (wavelengths from ∼ 1 cm to ∼ 1 m). This
chapter introduces ocean color radiometry, commonly called “ocean color remote sensing,”
which typically uses visible (400 to 700 nm) and near-IR (wavelengths from 700 to less
than 2000 nm) light. Ocean color remote sensing uses data obtained from aircraft- or
satellite-borne instruments to obtain information about the constituents of natural waters,
the corresponding IOPs, the bottom depth and type, or the surface wave state.

The applications of ocean color remote sensing are extensive, varied, and fundamental
to understanding and monitoring the global ecosystem. The current applications of ocean
color data include

• Mapping of chlorophyll concentrations

• Measurement of inherent optical properties such as absorption and backscatter

• Determination of phytoplankton physiology, phenology, and functional groups

• Studies of ocean carbon fixation and cycling

• Monitoring of short- and long-term ecosystem changes

• Fisheries management

• Mapping of coral reefs, sea grass beds, and kelp forests

• Mapping of shallow-water bathymetry and bottom type

• Monitoring of water quality

• Detection of harmful algal blooms and pollution events

The International Ocean Colour Coordinating Group (IOCCG) has a lengthy report,
Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology (Platt et al., 2008)
describing the many applications and societal benefits or ocean color remote sensing. A
National Research Council study Assessing the Requirements for Sustained Ocean Color
Research and Operations (National Research Council, 2011) also shows the diversity of
ocean color applications. These reports give many additional applications and details
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about each. The definitive treatise on the physical and mathematical foundations of ocean
color remote sensing is Physical Principles of Ocean Color Remote Sensing (Gordon, 2019),
which can be downloaded from the IOCCG website.

Ocean color remote sensing from satellites began with the the Coastal Zone Color Scan-
ner (CZCS), which was launched in 1978. CZCS was a multi-spectral sensor, meaning that
it had only a few wavelength bands with bandwidths of 10 nm or more. After the phenom-
enal success of that “proof of principle” sensor, numerous other multispectral sensors have
been developed and launched. Those later sensors generally had a few more bands with
narrower bandwidths. Thus the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) added
a band near 412 nm to improve the detection of CDOM. The near-IR bands are used for
atmospheric correction. There is today much interest in the use of hyperspectral sensors,
which typically have 100 or more bands with nominal bandwidths of 5 nm or less. Figure
14.1 shows the wavelength bands for a few representative sensors. The MODIS (MOD-
erate resolution Imaging Spectroradiometer) sensor has additional bands in the 400-900
nm range, not shown in Fig. 14.1, which are used for detection of clouds, aerosols, and
atmospheric water vapor. The bands shown are the ones used for remote sensing of water
bodies. The launch dates of the three satellite sensors are shown. Acker (2015) gives a
very nice history of these sensors and NASA’s long involvement with ocean color remote
sensing. The Compact Airborne Hyperspectral Imager (CASI) is a commercially available
hyperspectral sensor that is widely used in airborne remote sensing of coastal waters. It
has 228 slightly overlapping bands, each with a nominal 1.9 nm bandwidth and covering
the 400 - 1000 nm range. CASI users often select a subset of these bands as needed for
a particular application. Lidar bathymetry systems typically use either 488 nm in “blue”
water or 532 nm in “green” water. Those wavelengths can be obtained from high-power
lasers and give close to optimum water penetration for the respective water types.

Figure 14.1: Wavelength bands used by various ocean color remote sensors.

Ocean color remote sensing usually obtains information for one spatial point at a time,
most applications combine measurements from many points to build up an image, i.e. a
2-D spatial map of the ocean displaying the desired information at a give time. Imagery

https://ioccg.org/what-we-do/training-and-education/educational-links-and-resources/
http://www.itres.com
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acquired at different times then gives temporal information. Satellite systems typically
have spatial resolution (the size of one image pixel at the ocean surface) of 250 m to 1 km.
Those systems are useful for regional to global scale studies. Airborne systems can have
resolutions as small as 1 m, as required for applications such as mapping coral reefs.

Ocean-color remote sensing is conceptually simple. Sunlight, whose spectral properties
are known, enters the water body. The spectral character of the sunlight is then altered,
depending on the absorption and scattering properties of the water body, which of course
depend on the types and concentrations of the various constituents of the particular water
body. Part of the altered sunlight eventually makes its way back out of the water and
is detected by the sensor on board an aircraft or satellite. If we know how different
substances alter sunlight, for example by wavelength-dependent absorption, scattering,
or fluorescence, then we can hope to deduce from the altered sunlight what substances
must have been present in the water, and in what concentrations. However, this process of
“working backwards” from the sensor to the ocean is an inverse problem that is fraught with
difficulties, as seen on the next pages. Nevertheless, these difficulties can be overcome, and
ocean color remote sensing has completely revolutionized our understanding of the oceans
at local to global spatial scales and daily to decadal temporal scales.

This chapter introduces ocean color remote sensing. Terminology is defined in the next
section. Remote sensing is then described as a type of radiative transfer inverse problem.
Constraints on satellite sensors are then illustrated by counting the number of photons
reaching the top of the atmosphere (TOA). Finally, differences in ocean and terrestrial
remote sensing via thematic mapping are discussed. The topic of atmospheric correction
for ocean-color remote sensors is treated in the next chapter.

14.1 Remote-sensing Terminology

Remote sensing, like any field of science, has specialized terminology, which we introduce
here.

14.1.1 Active versus Passive Remote Sensing

Remote sensing can be active or passive.

Active remote sensing means that a signal of known characteristics is sent from
the sensor platform—an aircraft or satellite—to the ocean, and the return signal is then
detected after a time delay determined by the distance from the platform to the ocean
and by the speed of light. One example of active remote sensing at visible wavelengths
is the use of laser-induced fluorescence to detect chlorophyll, yellow matter, or pollutants.
In laser fluorosensing, a pulse of UV light is sent to the ocean surface, and the spectral
character and strength of the induced fluorescence at UV and visible wavelengths gives
information about the location, type and concentration of fluorescing substances in the
water body. Another example of active remote sensing is lidar bathymetry. This refers to
the use of pulsed lasers to send a beam of short duration, typically about an nanosecond,
toward the ocean. The laser light reflected from the sea surface and then slightly later from
the bottom is used to deduce the bottom depth. The depth is simply 0.5(c/n)∆t, where
c is the speed of light in vacuo, n is the water index of refraction, ∆t is the time between
the arrival of the surface-reflected light and the light reflected by the bottom, and the 0.5



508 CHAPTER 14. OCEAN COLOR REMOTE SENSING

accounts for the light traveling from the surface to the bottom and back to the surface.
Laser fluorosensing and lidar bathymetry are discussed in detail in Measures (1992).

Passive remote sensing simply observes the light that is naturally emitted or re-
flected by the water body. The night-time detection of bioluminescence from aircraft is
an example of the use of emitted light at visible wavelengths. The most common example
of passive remote sensing, and the one primarily discussed in this chapter, is the use of
sunlight that has been scattered upward within the water and returned to the sensor. This
light can be used to deduce the concentrations of chlorophyll, CDOM, or mineral particles
within the near-surface water; the bottom depth and type in shallow waters; and other
ecosystem information such as net primary production, phytoplankton functional groups,
or phytoplankton physiological state.

14.1.2 Data Resolution

The quality of remote sensing data is determined by the spatial, spectral, radiometric and
temporal resolutions.

• Spatial resolution refers to the “ground” size of an image pixel, which may be as
small as 1 m for airborne systems to more than 1000 meters for satellite systems.

• Spectral resolution refers to the number, spacing, and width of the different wave-
length bands recorded. This can range from one broad band covering the visible
spectrum to several hundred bands, each a few nanometers wide. The spectral reso-
lution is quantified by the

– Sampling interval , which is the spectral distance between the centers or peaks
of adjacent spectral channels along a spectrum

– Band width (or band pass), which is the full width at half maximum (FWHM)
of a spectral channel response to monochromatic light

Figure 14.2 illustrates the difference in sampling interval and band width. The three
blue curves indicate a sampling interval that is greater than the band width, as is
common for multispectral sensors. The red curves illustrate a sampling interval that
is less than the band width, which is often the case for hyperspectral sensors.

Spectral resolution can be further described the sensor type:

– Monochromatic refers to a sensor with 1 very narrow wavelength band, e.g.
at a laser wavelength.

– Panchromatic refers to 1 very broad wavelength band, usually over the visible
range, e.g. a black and white photograph.

– Multispectral sensors have several (typically 5-10) wavelength bands, each
typically 10-20 nm wide.

– Hyperspectral sensors have 30 or more bands with 10 nm or better resolution.
Typical hyperspectral sensors have more than 100 bands, each less than 5 nm
wide.
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Figure 14.2: Illustration of the difference in sampling interval and band width.

• Radiometric resolution refers to the number of different intensities of light the
sensor is able to distinguish, often specified as the number of recorded bits. An n-bit
sensor can record 2n levels of light intensity between the smallest or darkest expected
value (usually zero, or no light) and the brightest expected value. Typically sensors
range from 8 to 14 bits, corresponding to 28 = 256 to 214 = 16, 384 levels or “shades”
of color in each band. The radiometric resolution determines how small of a change in
the measured quantity can be recorded by the instrument. Usable resolution depends
on the instrument noise.

• Temporal resolution refers to the frequency of flyovers by the sensor. This is
relevant for time-series studies, or if cloud cover over a given area makes it necessary
to repeat the data collection.

14.1.3 Data Processing Levels

Processing remotely sensed imagery involves many steps to convert the radiance measured
by the sensor to the information desired by the user. These processing steps result in
different “levels” of processed data, which are often described as follows:

• Level 0 refers to unprocessed instrument data at full resolution. Data are in “engi-
neering” units such as volts or digital counts.

• Level 1a is unprocessed instrument data at full resolution, but with information such
as radiometric and geometric calibration coefficients and georeferencing parameters
appended, but not yet applied, to the Level 0 data.

• Level 1b data are Level 1a data that have been processed to sensor units (e.g.,
radiance units) via application of the calibration coefficients. Level 0 data are not
recoverable from level 1b data. Science starts with Level 1b data.

Atmospheric correction converts the top-of-the-atmosphere radiance of Level 1b to
the normalized water-leaving reflectance [ρ]ex

N of Level 2. [ρ]ex
N is defined in Section
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15.3, and the Atmospheric Correction Chapter 15 describes in detail the steps needed
to get from Level 1b to Level 2.

• Level 2 refers to normalized reflectance [ρ]ex
N and derived geophysical variables (e.g.,

chlorophyll concentration or bottom depth) at the same resolution and location as
Level 1 data.

• Level 3 are variables mapped onto uniform space-time grids, often with missing
points interpolated or masked, and with regions mosaiced together from multiple
orbits to create large-scale maps, e.g. of the entire earth.

• Level 4 refers to results obtained from a combination of satellite data and model
output (e.g., the output from an ocean ecosystem model), or results from analyses of
lower level data (i.e., variables that are not measured by the instruments but instead
are derived from those measurements).

14.1.4 Validation

It is always of interest to compare remotely sensed values with “ground truth” or known
values, usually measured in situ, of the quantity being determined by remote sensing. This
leads to various ways of describing the difference in remotely sensed and in situ values of
the same quantity.

• Reliability refers to the certainty with which the value of a remotely sensed quantity
is actually a measure of the quantity of interest. For example, if chlorophyll concen-
tration is the quantity of interest, it is desirable that the value obtained be a measure
only of chlorophyll and not, perhaps, a false value caused by high concentrations of
mineral particles or dissolved substances that can change a spectrum so as to give an
incorrect chlorophyll value in a retrieval algorithm. A reliable chlorophyll retrieval
algorithm would give the chlorophyll value regardless of what other substances are in
the water. (Note that in some fields, reliability is defined as the ability to reproduce
a measurement; this is different that the meaning used here.)

• Reference value is the quantity (often measured in situ) being used for comparison
with a remotely sensed value. This is often thought of as the “true” value of the quan-
tity, but it must be remembered that the “truth” is seldom known. A value measured
in situ is also subject to errors determined by the instrument and methodology used,
and thus also may not be the true value of the quantity being measured.

• Error is the difference between a measurement and a reference value. Errors can be
systematic or random.

– Random errors are differences between a measurement and a reference value
that are determined by random physical processes such as electronic noise. Al-
though the statistical properties of the errors can be determined, the value of
the error in any particular measurement cannot be predicted. The statistical
distribution of random errors is often assumed to be Gaussian, but this is often
just a mathematical convenience rather than a correct description of the under-
lying physical process. The effects of random errors can be reduced by making
repeated measurements of the same quantity and then averaging the results.
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– Systematic errors are biases or offsets between a measurement and reference
value that are caused by imperfect instruments, methodologies, or algorithms.
Examples are additive offsets caused by failure to remove dark current values or
multiplicative errors caused by imperfect instrument calibration. The purpose
of instrument calibration is the removal of systematic errors from the measure-
ments. The systematic error is quantified as the difference in the reference value
and the average of repeated measurements. Systematic errors cannot be reduced
by making additional measurements and averaging the results.

• Precision is the reliability with with an instrument will give the same value when
repeated measurements of the same quantity are made. Precision is determined by
repeated measurements, without regard for any reference value. It can be quantified
by the standard deviation of the values measured.

Figure 14.3 illustrates the differences in accuracy and precision, and systematic and
random errors. The red curve represents the distribution of values obtained by many
repeated measurements; the red dot represents any one of those measurements. The arrow
showing the precision is drawn as the mean value±1.96 standard deviations of the measured
values; this means that 95% of the measurements lie within that range of values. In this
example, there is a large systematic error, so that the measured quantity is not very
accurate, but there is a relatively small spread of measured values, so that the precision
is high compared to the systematic error. Ideally, measurements have a small systematic
error and high precision. In practice, if repeated measurements can be made, it is better
to have a small systematic error even if the precision is low, because averaging repeated
measurements reduces the effects of random errors and leads to an accurate average value.

Figure 14.3: Illustration of terms used in validating measurements.

Finally, when developing a mathematical model or algorithm, there are two potential
sources of error. The model may leave out some of the physical processes essential to
describing the phenomenon of interest. Even if the physics is correct, there may be errors
in the computer programming of the model equations. The model must be checked for
both of these types of errors.
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• Verification refers to making sure that the model equations have been programmed
correctly.

• Validation then refers to checking the model output against reference values to
make sure that both the model physics and the computer programming are correct.

14.2 Inverse Problems

The development of the radiative transfer equation and its solution techniques in Chapters
9 and 10 and Appendices E and F is concerned with the forward or direct problem of
radiative transfer theory. The rules of the game are simple: Given the inherent optical
properties of the water and the properties of the boundaries, find the radiance distribution
throughout and leaving the water. This problem has a unique solution, which means that a
given set of IOPs and boundary conditions yields a unique radiance distribution. The only
limits on the accuracy of computed radiances are the accuracy with which we specify the
IOPs and the boundary conditions, and the amount of computer time we wish to devote
to the numerical solutions. In this sense the direct problem of computing radiances can be
regarded as solved.

Figure 14.4 shows the conceptual process of solving the forward problem. In principle,
we can start with the fundamental physical properties of the particles and dissolved sub-
stances in the ocean and derive the water IOPs from the physical properties (e.g., using
Mie theory to compute the VSF from the particle properties and size distribution). In op-
tical oceanography, we often begin with direct measurements of the IOPs. We then apply
suitable boundary conditions and solve the very complicated RTE to obtain the radiance
distribution. Any other quantities of interest, such as irradiances or AOPs can then be
computed from the radiances.

Figure 14.4: The conceptual process involved in solving a forward radiative transfer prob-
lem.

The inverse problem of radiative transfer theory can be stated as follows: given radio-
metric measurements of underwater or water-leaving light fields, determine the inherent
optical properties of the water. This is very much an unsolved problem. Both conceptual
and practical limits are encountered in inverse problems. Unfortunately, remote sensing is
an inverse problem.



14.2. INVERSE PROBLEMS 513

The first problem we encounter is uniqueness of the solution. Consider the following
situation. A body of water with a particular set of IOPs and boundary conditions has an
underwater radiance distribution L1(z, θ, φ, λ). If the boundary conditions now change,
perhaps because the Sun moves, there will be a different radiance distribution L2(z, θ, φ, λ)
within the water, even though the IOPs remain unchanged. Can we correctly recover the
same set of IOPs from the two different light fields? Can we distinguish between L1 6= L2

because of a change in boundary conditions, as opposed to L1 6= L2 because of a change in
IOPs? Because the same set of IOPs can yield different radiance distributions for different
boundary conditions, as we just saw, we are led to ask if two different sets of IOPs and
boundary conditions can lead to the same radiance distribution. In other words, is there
even in principle a unique solution to the inverse problem stated above?

Another problem often encountered with inverse solutions is the stability of the solution,
or its sensitivity to errors in the measured radiometric variables. In direct problems we
often find that a small error (say 5%) in the IOPs or boundary conditions leads to a
correspondingly small error in the computed radiance. With inverse problems we often
find that small errors in the measured radiometric quantities lead to large errors, or even
unphysical results, in the retrieved IOPs. Sensitivity of the inversion scheme to small errors
in the input data often renders inversion algorithms useless in practice, even though they
appear in principle to be quite elegant and satisfactory.

It can be shown that if the full radiance distribution is measured with perfect accuracy,
there is in principle a unique inverse solution to the RTE to obtain the full set of IOPs.
But from a practical standpoint, if we have to measure the entire radiance distribution
throughout the water body with high accuracy to obtain the IOPs, we could measure the
IOPs themselves just as easily. An inverse method is useful only when it saves us time,
money, or effort. What is desired is a recovery of at least some of the IOPs from a limited
set of imperfect radiometric measurements. We have seen one example of this in Gershun’s
law, Eq. (10.33), which allows us to recover the absorption coefficient from measured values
of the plane and scalar irradiances, if there are no internal sources present.

In remote sensing, we have a very limited set of imperfect light field measurements,
namely just the water leaving radiance or remote-sensing reflectance, from which we want
to retrieve as much information as possible about the water body. Our input measurements
fall far short of measuring the full radiance distribution, and the measurements we do have
may contain substantial errors due to poor atmospheric correction or inaccurate radiometer
calibration. Thus we expect a priori that we will not be able to recover a full set of water
IOPs, and that what is recovered may contain large errors. Oceanic remote sensing is
thus a very difficult inverse problem. The various inversion algorithms discussed on the
following pages show the wide range of techniques developed over the years to address
the inherent difficulties of inverting remote sensing measurements to obtain information
about the ocean. Each of these techniques has its strengths and weaknesses, and each is
imperfect, but each still has demonstrated great value to oceanographers.

Inversions are always based on an assumed model that relates what is known to what
is desired. The inversion is then effected by using the known quantities as inputs to the
model, whose output is an estimate of the desired quantities. In some cases the model is
simple. For example, if historical data relating the chlorophyll concentration to the ratio of
remote sensing reflectance at two wavelengths are used to find a best-fit function of the form
Chl = f [Rrs(λ1)/Rrs(λ2)], then the model is that function. Inserting a newly measured
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reflectance at λ1 and λ2 then gives an estimate of the chlorophyll concentration. The
accuracy of that estimate will depend on the scatter in the original data and on whether
the water body being studied is similar to the one used to determine the function. In other
cases the model is complicated. A neural network with may layers is a complex model in
which it is often not obvious how a particular input is related to a particular output. The
accuracy of a neural network inversion depends on how well the neural network represents
nature and on the data used to train the network.

Because of the limited measurements available for remote sensing, inversion algorithms
usually require constraints to limit the possible solutions obtained from a give remote
sensing reflectance. Constraints can be “built in” for example as simplifications to the
RTE. They can also be external, typically as additional required measurements (such as
a measurement of the water leaving radiance or bottom depth at one point in an image).
They can also be implicit constraints, such as a limitation of retrieved values to the range of
values found in the data set used to predetermine certain parameters in the inverse model.

Figure 14.5 summarizes the conceptual issues involved with inverting remotely sensed
data to obtain estimates of oceanic properties.

Figure 14.5: The conceptual process involved in solving a remote-sensing inverse radiative
transfer problem.

14.2.1 Classification of Inverse Problems

There are many kinds of inverse problems. For example, there are medium characterization
problems, for which the goal is to obtain information about the IOPs of the medium, which
in our case is the water body with all of its constituents. This is the type of problem
considered in this chapter. There are also hidden-object characterization problems, for
which the goal is to detect or obtain information about an object imbedded within the
medium, for example a submerged submarine. This book does not discuss this type of
problem. Inverse problems may use optical measurements made in situ, as with the use of
Gershun’s equation to obtain the absorption coefficient. Remote sensing uses measurements
made outside the medium, typically from a satellite or aircraft.
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Another type of inverse problem seeks to determine the properties of individual parti-
cles from light scattered by single particles. Such problems usually start with considerable
knowledge about the particles (for example, the particles are spherical and have a known
radius) and then seek to determine another specific bit of information (such as the particle
index of refraction). The associated inversion algorithms usually assume that the detected
light has been singly scattered. Even these highly constrained problems can be very dif-
ficult. These “individual-particle” inverse problems are not discussed in this book. In
the ocean, there is no escaping multiple scattering, which greatly complicates the inverse
problem, and we do not generally have the requisite a priori knowledge of the individual
particle properties needed to constrain the inversion.

Solution techniques to inverse problems fall into two categories: explicit and implicit.
Explicit solutions are formulas that give the desired IOPs as functions of measured radio-
metric quantities. A simple example is Gershun’s law when solved for the absorption in
terms of the irradiances. Implicit solutions are obtained by solving a sequence of direct or
forward problems. In crude form, we can imaging having a measured remote-sensing re-
flectance (or set of underwater radiance or irradiance measurements). We then solve direct
problems to predict the reflectance for each of many different sets of IOPs. Each predicted
reflectance is compared with the measured value. The IOPs associated with the predicted
reflectance that most closely matches the measured reflectance are then taken to be the
solution of the inverse problem. Such a plan of attack can be efficient if we have a rational
way of changing the IOPs from one direct solution to the next, so that the sequence of
direct solutions converges to the measured reflectance or radiance.

14.3 Counting Photons for Remote Sensing

[Bryan Monosmith, Jeremy Werdell, and Curtis Mobley contributed to this section.]

The foundation of ocean color remote sensing is sunlight that has entered the ocean,
been transformed through absorption and scattering by the myriad constituents of the
water body, and then been scattered out of the ocean and into a detector. It is worthwhile
to consider how many photons going through this process are actually available for detection
by a satellite sensor. An order-of-magnitude calculation suffices to identify many of the
engineering constraints on the design of an ocean color sensor.

14.3.1 Radiance from the Sea Surface

Figure 2.18 shows that the downwelling spectral plane irradiance Ed onto the sea surface on
a clear day is of order 1 W m−2 nm−1 at visible wavelengths. Most (90-98%, depending on
Sun zenith angle and wind speed) of this irradiance enters the ocean. In-water irradiance
reflectances R = Eu/Ed are typically in the 0.01 to 0.05 range, depending on the water
constituents and wavelength (R can reach 0.1 in very turbid, highly scattering waters).

Suppose that R = 0.03 of downwelling plane irradiance of magnitude 1 W m−2 nm−1

entering the ocean is backscattered into upward directions. If this upwardly scattered
light is isotropically scattered into the 2π sr of the upward hemisphere, then the upwelling
isotropic radiance just below the sea surface would be

Lu =
0.03

2π sr
(1 W m−2 nm−1) .
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For ocean waters the upwelling radiance is not isotropic. Just below the sea surface,
upwelling radiance within 30 deg of the zenith (the angles relevant to remote sensing) is
less than the radiance in more nearly horizontal directions by a factor of two or three, as
shown in Fig. 14.6. Thus the above value for isotropic scattering can be reduced by a
factor of roughly 1

2 to estimate the underwater radiance in near-zenith directions.

Figure 14.6: Example upwelling radiances at 90 deg to the Sun’s azimuthal direction,
normalized to the zenith (nadir-viewing) radiance. The six curves are for chlorophyll
values of 0.05, 0.5 and 5 mg m−3 in Case 1 water and Sun zenith angles of 30 and 60 deg.

A beam of this radiance just below the sea surface will be reduced by a factor of t/n2
w

when passing through the sea surface. Here t is the water-to-air radiance transmittance,
which is close to 1 for directions relevant to remote sensing, namely directions within a few
tens of degrees of the zenith. nw ≈ 1.34 is the water index of refraction. The water-leaving
radiance is then roughly

Lw =
0.03

2n2
w2π

≈ 0.0013 [W m−2 sr−1 nm−1]

Atmospheric transmittance is 0.7 to 0.95 at visible wavelengths, so most of the water-
leaving radiance will be transmitted to the top of the atmosphere (TOA), where it can be
detected by a satellite. However, along the way, atmospheric scattering of solar radiation
into the beam will add typically 10 to 20 times as much radiance to the beam. The TOA
radiance seen by a satellite would then be of order 10 × Lw ≈ 0.01 W m−2 sr−1 nm−1.
Typical open-ocean TOA radiances for the MODIS sensor are in the range of 0.01 (red
wavelengths) to 0.08 (blue wavelengths) W m−2 sr−1 nm−1.

14.3.2 Photons Detected at the Top of the Atmosphere

Now that we have the radiance detected at the satellite, we can compute the numbers of
photons collected and consider the related engineering matters. We start by computing
the number of detected photons that come from a 1 m2 patch of sea surface in 1 second of
observation time. For specific numbers, the MODIS sensors have the following character-
istics:
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Physical quantity value

altitude 705 km = 7.1× 105 m

off-nadir viewing angle 20 deg

slant range 750 km = 7.5× 105 m

sensor aperture radius 89 mm = 0.09 m

band width ∆λ = 10 nm

optical efficiency OE = 0.6

quantum efficiency QE = 0.9

Table 14.1: MODIS sensor characteristics.

The slant range is the distance from the satellite to the observed point on the ocean
surface along the line of sight, which is taken here to be 20 deg off nadir. The optical
efficiency is the fraction of light incident onto the sensor fore-optics that eventually reaches
sensor material itself; the losses are due to reflections from lens surfaces or diffraction
gratings, absorption by filters, etc.

The quantum efficiency is the fraction of photons reaching the sensor material that
actually results in a signal, e.g., by the generation of a photo-electron. Figure 14.7 shows
the quantum efficiencies of typical sensors. The “standard CCD” curve is for CCDs like
those used in consumer-grade video cameras. “Scientific CCD” is for a much more expensive
“science grade” CCD. The MODIS curve shows what is achievable if your budget is almost
unlimited. The bottom curves are for the human eye. The human eye has a maximum QE
of only a few percent for color (photopic) vision and 10% for night-time (scotopic) vision1.

The solid angle of the sensor as seen from the Earth’s surface is

Ωaperture =
π(aperture radius)2

(slant range)2
= 4.5× 10−14 sr .

The power detected by the sensor coming from a square meter of the ocean surface is

Pdetector = L Ωaperture Areasurface OE ∆λ

= (0.01 W m−2 sr−1 nm−1) (4.5× 10−14 sr) (1 m2) (0.6) (10 nm)

≈ 2.7× 10−15 W

This equation has been written for viewing the satellite from the sea surface. We could
also take the viewpoint of the satellite viewing the earth. In that case, the relevant solid
angle would be that of the 1 m2 pixel as seen from the satellite, and the area factor would
be that of the sensor aperture. The throughput, or etendue, of an optical system is

Ωaperture Areasurface = Ωsurface Areaaperture ,

which shows that these viewpoints are equivalent.

1It thus seems that evolution has given us eyes that are adequate for finding food and avoiding tigers,
and even for reading this book, but which are shockingly inefficient from an optical engineering standpoint.
This figure gives another refutation of “intelligent design” for the human eye. The intelligent design in this
figure was done by the physicists and optical engineers working on the CCD and MODIS sensors.
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Figure 14.7: Quantum efficiencies for various light detectors. (Human eye and CCD data
redrawn from learn.hamamatsu.com/articles/quantumefficiency.html).)

If we assume a wavelength of 550 nm, the corresponding number of photo-electrons
released in the detector in time t = 1 s is

Nelectrons = Pdetector t QE
λ

hc

= (2.7× 10−15J s−1)(1 s) (0.9)
550× 10−9 m

(6.63× 10−34 J s) (3× 108 m s−1)

≈ 6800

where h is Planck’s constant and c is the speed of light.
These 6800 electrons are for the total TOA radiance in this green band. As previously

noted, the TOA radiance is typically 90% atmospheric path radiance, in which case only
680 of these electrons correspond to the water-leaving radiance from a square meter of the
sea surface.

Kepler’s third law of planetary motion and Newton’s law of gravity give the relation
between a satellite’s orbital period T and the radius r of its orbit:

T 2 =
4π2r3

GM
,

where G = 6.67 × 10−11 m3 kg−1 s−2 is Newton’s gravitational constant and M = 5.97 ×
1024 kg is the mass of the earth. For a satellite at altitude 705 km above the earth (whose
mean radius is 6731 km), this gives a period of 6385 s. This corresponds to a speed of
v = (2πr)/T = 7318 m s−1 relative to the ground. The time required for the satellite to
travel 1 m is then 1.37×10−4 s. For 1 m spatial resolution, this short exposure time reduces
the number of detected photons by a factor of 1.37× 10−4 compared to the 1 s collection
time computed above. Thus the number of water-leaving photons collected during the time
the satellite passes over the 1m2 area is only 0.093. Alas, the actual situation is even worse
because the sensor is not collecting light from just one pixel, but from perhaps 1000 pixels

http://learn.hamamatsu.com/articles/quantumefficiency.html
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as the sensor either scans back and forth or rotates to observe a wide swath to either side
of the satellite nadir point. Thus, in the 10−4 s time required for the satellite to move
forward by 1 m, the sensor must collect photons from 1000 pixels, reducing the number
for each to roughly 0.0001 photoelectrons per pixel. Collecting only 0.0001 photoelectrons
per pixel would not yield a very good image.

These physical and orbital constraints show one reason why orbiting satellites do not
obtain meter-scale ocean color imagery: There simply are not enough photons leaving the
ocean surface from a square meter of area to form an image. Many more photons must be
collected, and there are several ways to do this:

• View a larger surface area, which both increases the number of photons leaving the
surface and allows for longer integration times.

• View the surface area for a longer time, e.g., from a geostationary satellite that can
stare at the same point for very long times (but a geostationary satellite has an
altitude of 36,000 km, which makes the solid angle much smaller).

• Get closer to the surface, e.g. by using an airborne sensor flying at a few kilometers
above the sea surface. This greatly increases the solid angle of the sensor and allows
for longer integration times for a slowly flying aircraft.

• Increase the bandwidth.

• Increase the aperture of the receiving optics.

• Use multiple detector elements to observe the same ground pixel nearly simultane-
ously, either on the same or successive scans, and then combine the photons collected
from the different sensors.

Suppose, as is typical of ocean color sensors such as MODIS, that we image a 1 km2

area of ocean surface. This increases the number of photons leaving the imaged pixel by
a factor of 106 and the integration time by a factor of 103 (the increased time for the
satellite to travel 1 km rather than 1 m). The sensor now collects 93,000 photoelectrons
from the water-leaving radiance. The total number of TOA photoelectrons, including the
atmospheric path radiance, would be roughly ten times as large, about 106. In practice,
this number will be less because of the duty-cycle time of the sensor: a rotating sensor
will be viewing the ocean only about one-third of the time, and a scanning sensor will
require time to stop and start each scan. Nevertheless, we can still collect roughly 106

photoelectrons for each pixel, of which 105 correspond to water-leaving radiance.
The signal to noise ratio, SNR, is given in general by

SNR =
NPE√

N 2
PE +N 2

DC +N 2
RO +N 2

QN

,

where the signal NPE is the number of photoelectrons counted. The terms in the denom-
inator represent the noise terms for the photoelectrons (PE), dark current (DC), sensor
read-out (RO), and quantization (QN). Dark current noise results from the spontaneous
emission of photoelectrons within the sensor, read-out noise comes from the sensor’s ana-
log front-end electronics when the collected photoelectrons are read from the sensor, and
quantization noise comes from uncertainty when the analog signal is digitized. (Writing the
total noise as the square root of the sum of the individual noise terms squared assumes that
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the individual noise processes are uncorrelated.) The number of photoelectrons counted
during a given time interval is described by a Poisson probability distribution, for which the
noise is the standard deviation of the distribution, which in turn equals the number NPE

of photoelectrons counted. The emission of dark current photoelectrons is also a Poisson
process. The SNR can thus be written

SNR =
NPE√

NPE +NDC +N 2
RO +N 2

QN

.

Assuming no dark current or other noise, this gives an SNR of

SNR =
106

√
106

= 1000.

for the number of photoelectrons estimated above. The actual SNR will be somewhat
less due to dark current, read out, and quantization noise. The MODIS sensor has SNR
requirements of 750 to 1000 for various bands, so we have achieved the approximate number
of photons needed at the sensor.

These simple estimates illustrate the severe constraints on the design of any ocean
color sensor. In practice, the engineering of a satellite ocean color sensor requires great
sophistication to achieve the needed SNR.

14.4 Thematic Mapping

Thematic mapping refers to the determination and display of a particular type of infor-
mation (the theme). In terrestrial and oceanic remote sensing, a common theme is the
type of surface material. On land, a thematic map might display the land areas covered by
forest, grassland, water, crops, bare soil, pavement, etc. In shallow waters, the thematic
map might distinguish bottom areas covered by mud, sand, rock, sea grass, coral, etc.
Much work has been done recently on mapping bathymetry, bottom type, and water IOPs
as extracted from hyperspectral imagery. This page compares the supervised classifica-
tion technique used for terrestrial thematic mapping with spectrum-matching techniques
(Mobley et al., 2005; Dekker et al., 2011, e.g.,) for shallow-water mapping of bottom type.

The simultaneous retrieval of bathymetry, bottom classification, and water IOPs is a
much more difficult task than traditional thematic mapping to determine land surface type,
as used in terrestrial remote sensing. In terrestrial thematic mapping, only the type of land
surface must be deduced from an atmospherically corrected image spectrum; there are no
confounding influences by water IOPs and depth. We will see that terrestrial techniques for
supervised classification are not well suited to the oceanic problem because of the additional
complications of bottom depth and water optical properties, neither of which are present in
terrestrial remote sensing.

14.4.1 Supervised Classification

In supervised classification the object is to associate a given image spectrum with one of
several pre-determined classes of spectra. In terrestrial remote sensing these classes are
typically defined as soil, grass, trees, water, pavement, etc. A thematic map of earth
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surface features is then generated by classifying the spectrum from each image pixel into
one of the pre-determined classes.

One approach to supervised classification is to compute the mean spectrum for each
class and a corresponding covariance matrix that defines the “size” of each class of spectra
about its mean. The image spectrum is then compared only with the mean spectrum and
size for each class, and the image spectrum is statistically associated with the class it is
most likely to belong to according to some metric for distance between the image and
mean spectra and user-specified assumptions about the statistical properties of the class
members.

This section considers the terrestrial and oceanic problems in more detail and shows that
the standard terrestrial thematic mapping methodology based on supervised classification is
not easily applied to the ocean remote sensing problem.

14.4.2 Covariance and Correlation Matrices

Consider a collection of N remote sensing reflectance spectra Rrs, each with K wavelengths,
which we denote by Rn(λk), n = 1, ..., N and k = 1, ...,K (dropping the rs subscript on Rrs

for convenience). The spectra can be regarded as column vectors:

Rn =


Rn(λ1)

Rn(λ2)
...

Rn(λK)

 = [Rn(λ1), Rn(λ2), . . . , Rn(λK)]T , (14.1)

where bold type indicates a vector or matrix, and superscript T indicates transpose. In the
spectrum matching technique described previously, these spectra are the database spectra,
N is usually 105 or more, and K would be 75 for spectra from 380 to 750 nm with 5 nm
resolution. Let

I = [R(λ1), R(λ2), . . . , R(λK)]T

be the image spectrum that is to be classified.

Now consider subsets of the entire database that define various classes of spectra. To
be specific in the illustrative computations below, we chose four classes of spectra: Rrs for
10 sand and sediment spectra seen through 0.01 m of water, 10 coral spectra seen through
0.01 m of water, and the same sand and coral spectra seen through 10 m of the same water.
The water IOPs were based on measurements of the very clear water in the Bahamas. The
sand and sediment spectra range from clean ooid sand to heavily biofilmed, darker sand.
The coral spectra are different species of corals. Figure 14.8 shows the individual spectra
in these four classes. To minimize the array sizes for the printout of Table 1 below, we
subsampled the spectra to wavelengths of 400, 450, ..., 650, 700 nm, so that K = 7. The
subsampled spectra are shown in Fig. 14.9.

These spectra are obviously correlated in wavelength. The amount of correlation be-
tween one wavelength and another is quantified by the covariance and correlation matrices,
which are computed as follows. Let m = 1, ...,M label the class, with M being the total
number of classes (here 4). Class m contains Nm spectra (here, Nm = 10 for each class).
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Figure 14.8: Example database Rrs spectra defining the four thematic classes; each class
has 10 spectra.

Figure 14.9: The spectra of Fig. 14.8 as re-sampled at 50 nm intervals for use in the
illustrative computations (light lines). The heavy lines are the class mean spectra.

Then the mean or average spectrum for each class is defined by

Rm(λi) =
1

Nm

Nm∑
n=1

Rn(λi) , (14.2)

where the sum is over the spectra belonging to class m. In vector notation this is

Rm =
1

Nm

Nm∑
n=1

Rn . (14.3)

The mean spectra for the example four classes are shown by the heavy lines in Fig. 14.9.
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The elements of the K ×K class covariance matrices Σm are defined by

Σm(i, j) =
1

Nm − 1

Nm∑
n=1

[Rn(λi)−Rm(λi)][Rn(λj)−Rm(λj)] . (14.4)

Σm(i, j) expresses the covariance of the class spectra at wavelength λi with λj ; Σm(i, i)
is the variance of the class spectra at λi. For remote-sensing reflectance spectra Rrs with
units of sr−1, the units of Σm(i, j) are sr−2. If we arrange the spectrum column vectors for
class m in a K ×Nm matrix with the class mean removed,

R(m) =


R1(λ1)−Rm(λ1) · · · RNm(λ1)−Rm(λ1)

... · · ·
...

R1(λK)−Rm(λK) · · · RNm(λK)−Rm(λK)

 , (14.5)

then the covariance matrix for class m can be compactly written as

Σm =
1

Nm − 1
R(m)R

T
(m) . (14.6)

The elements of the K ×K correlation matrix ρm for class m are defined from the class
covariance matrix Σm by

ρm(i, j) =
Σm(i, j)√

Σm(i, i)Σm(j, j)
. (14.7)

The following arrays show the class covariance and correlation matrices computed by
these equations for the four classes of spectra shown in Fig. 14.9.

Σ(sand at 0.1 m) =

2.462e−4 3.049e−4 3.612e−4 3.797e−4 4.141e−4 3.994e−4 3.625e−4

3.049e−4 4.547e−4 5.361e−4 5.447e−4 5.712e−4 5.639e−4 4.569e−4

3.612e−4 5.361e−4 6.338e−4 6.462e−4 6.787e−4 6.692e−4 5.449e−4

3.797e−4 5.447e−4 6.462e−4 6.658e−4 7.046e−4 6.912e−4 5.780e−4

4.141e−4 5.712e−4 6.787e−4 7.046e−4 7.546e−4 7.364e−4 6.340e−4

3.994e−4 5.639e−4 6.692e−4 6.912e−4 7.364e−4 7.230e−4 6.179e−4

3.625e−4 4.569e−4 5.449e−4 5.780e−4 6.340e−4 6.179e−4 5.856e−4
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ρ(sand at 0.1 m) =

1.000 0.911 0.914 0.938 0.961 0.947 0.955

0.911 1.000 0.999 0.990 0.975 0.983 0.885

0.914 0.999 1.000 0.995 0.981 0.989 0.894

0.938 0.990 0.995 1.000 0.994 0.996 0.926

0.961 0.975 0.981 0.994 1.000 0.997 0.954

0.947 0.983 0.989 0.996 0.997 1.000 0.950

0.955 0.885 0.894 0.926 0.954 0.950 1.000



Σ(coral at 0.1 m) =

5.793e−5 4.952e−5 6.378e−5 1.143e−4 1.389e−4 1.129e−4 1.552e−4

4.952e−5 4.442e−5 6.222e−5 1.080e−4 1.299e−4 1.059e−4 1.417e−4

6.378e−5 6.222e−5 1.070e−4 1.712e−4 2.007e−4 1.655e−4 2.057e−4

1.143e−4 1.080e−4 1.712e−4 3.010e−4 3.578e−4 2.961e−4 3.775e−4

1.389e−4 1.299e−4 2.007e−4 3.578e−4 4.432e−4 3.774e−4 4.950e−4

1.129e−4 1.059e−4 1.655e−4 2.961e−4 3.774e−4 3.300e−4 4.306e−4

1.552e−4 1.417e−4 2.057e−4 3.775e−4 4.950e−4 4.306e−4 6.132e−4



ρ(coral at 0.1 m) =

1.000 0.976 0.810 0.865 0.867 0.817 0.823

0.976 1.000 0.903 0.934 0.926 0.875 0.859

0.810 0.903 1.000 0.954 0.922 0.881 0.803

0.865 0.934 0.954 1.000 0.980 0.940 0.879

0.867 0.926 0.922 0.980 1.000 0.987 0.949

0.817 0.875 0.881 0.940 0.987 1.000 0.957

0.823 0.859 0.803 0.879 0.949 0.957 1.000
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Σ(sand at 10 m) =

5.792e−7 2.174e−6 3.341e−6 1.880e−6 4.235e−8 2.783e−9 2.886e−12

2.174e−6 1.006e−5 1.542e−5 8.357e−6 1.805e−7 1.214e−8 1.047e−11

3.341e−6 1.542e−5 2.369e−5 1.288e−5 2.785e−7 1.872e−8 1.645e−11

1.880e−6 8.357e−6 1.288e−5 7.086e−6 1.545e−7 1.033e−8 9.641e−12

4.235e−8 1.805e−7 2.785e−7 1.545e−7 3.409e−9 2.267e−10 2.151e−13

2.783e−9 1.214e−8 1.872e−8 1.033e−8 2.267e−10 1.517e−11 1.457e−14

2.886e−12 1.047e−11 1.645e−11 9.641e−12 2.151e−13 1.457e−14 2.776e−17



ρ(sand at 10 m) =

1.000 0.900 0.902 0.928 0.953 0.939 0.720

0.900 1.000 0.999 0.990 0.975 0.983 0.626

0.902 0.999 1.000 0.994 0.980 0.987 0.641

0.928 0.990 0.994 1.000 0.994 0.996 0.687

0.953 0.975 0.980 0.994 1.000 0.997 0.699

0.939 0.983 0.987 0.996 0.997 1.000 0.710

0.720 0.626 0.641 0.687 0.699 0.710 1.000



Σ(coral at 10 m) =

1.956e−7 5.520e−7 9.484e−7 9.105e−7 2.255e−8 1.305e−9 1.714e−12

5.520e−7 1.638e−6 3.068e−6 2.868e−6 7.055e−8 4.100e−9 4.858e−12

9.484e−7 3.068e−6 7.054e−6 6.135e−6 1.484e−7 8.731e−9 8.282e−12

9.105e−7 2.868e−6 6.135e−6 5.845e−6 1.424e−7 8.393e−9 9.001e−12

2.255e−8 7.055e−8 1.484e−7 1.424e−7 3.620e−9 2.197e−10 2.322e−13

1.305e−9 4.100e−9 8.731e−9 8.393e−9 2.197e−10 1.372e−11 1.359e−14

1.714e−12 4.858e−12 8.282e−12 9.001e−12 2.322e−13 1.359e−14 2.221e−17
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ρ(coral at 10 m) =

1.000 0.975 0.807 0.852 0.847 0.797 0.823

0.975 1.000 0.903 0.927 0.916 0.865 0.805

0.807 0.903 1.000 0.955 0.928 0.888 0.662

0.852 0.927 0.955 1.000 0.979 0.937 0.790

0.847 0.916 0.928 0.979 1.000 0.986 0.819

0.797 0.865 0.888 0.937 0.986 1.000 0.778

0.823 0.805 0.662 0.790 0.819 0.778 1.000


These specific examples make it clear that

• For a given class, Rrs at one wavelength is highly correlated with Rrs at another
wavelength, as expected.

• The covariance and correlation matrices are different for each class. These matrices
depend not only on bottom type (sand vs coral) but also on bottom depth (and water
IOPs, not explicitly shown here). In other words, the wavelength covariances carry
information about both bottom type and water depth and IOPs.

14.4.3 Spectrum Matching versus Statistical Classification

One metric for comparing two spectra is the simple Euclidean metric, which measures
the squared distance (in units of sr−2) between an image spectrum I and each Rm in the
database:

D2
E(m) =

K∑
i=1

[I(λi)−Rm(λi)]
2 = [I−Rm]T[I−Rm] (14.8)

The spectrum Rm giving the minimum distance D2
E(m) of all N database spectra deter-

mines the closest match to the image spectrum I. Note that this is not a statistical estimate
in the sense that no probability model is involved. Note also that the image spectrum is
being compared with every spectrum in the database, not just with pre-defined class mean
spectra.

In traditional thematic classification, an image spectrum I is compared only with the
mean spectrum and “size”’ for each class, as expressed by the class mean Rm and covariance
Σm. Here “size” is used in the sense that the variances and covariances in Σm are larger
when the spread of Rrs spectra is greater. Inspect, for example, the elements of Σm for
the class of sand at 0.01 m compared to sand at 10 m, for which the spectra are all much
closer together (especially at blue and red wavelengths) and thus have smaller covariances.
The class covariance matrix defines the size of the “swarm of points” surrounding the
centroid (mean class spectrum) representing the class in K -dimensional Rrs space. The
image spectrum is assigned to a particular class according to a statistical model (often
based on the assumption of a multivariate normal distribution of the swarm of points) that
determines the probability that the image spectrum belongs to a particular the swarm of
points defining a given class. The class spectra (K -dimensional swarms of points) generally
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overlap, so that an unambiguous, non-probabilistic association of I with a given class is
not possible.

In maximum likelihood estimation (MLE; see Richards and Jia (1996) for an excellent
discussion of this whole business), the distance metric is

D2
MLE(m) = ln |Σm|+ [I−Rm]T Σ−1

m [I−Rm] , (14.9)

where |Σm| denotes the determinant of Σm and Σ−1
m denotes the inverse. |Σm| and Σ−1

m

are of course pre-computed for each class before doing the spectrum matching. The image
spectrum I is assigned to the class m having the smallest value of D2

MLE(m). Note that
now the image spectrum is compared only with the class mean spectra Rm. The assignment
of the image spectrum to a particular class is based on its closeness to the class mean and
the spread of the “swarm of points” surrounding the mean, as described by the covariance
matrix. This metric involves matrix multiplication, which is computationally expensive,
but the number of classes is generally small, so in practice this may not be a problem.

It is often said that the incorporation of Σm into the distance metric “removes the effect
of correlations between wavelengths.” This interpretation of the effect of Σm relates to the
fact that covariance matrices are the foundation of principle component analysis (PCA;
see Preisendorfer (1988)). In PCA the original independent, physical variables (here, the
wavelengths) are transformed to obtain a new set of (generally unphysical) independent
variables for which the data are uncorrelated. This transformation can be viewed as a
rotation of the axes of the original, physical data space (here the wavelength axes used for
plots in K -dimensional space) to generate new (generally unphysical) axes for which the
data are uncorrelated.

If the class covariances are equal (or assumed to be equal), then ln |Σm| is the same for
each class and can be ignored. The MLE metric then reduces to the Mahalanobis distance
metric,

D2
M(m) = [I−Rm]T Σ−1 [I−Rm] , (14.10)

where Σ is the common value of Σm. The image spectrum I is then assigned to the class
m having the smallest value of D2

M(m).
We have seen by the specific examples of Fig. 14.9 and Table 1 that the covariance

matrices are different for different classes of the sort that are relevant for ocean-bottom
remote sensing. Indeed, Table 1 shows that the elements of the Σm can change by orders
of magnitude as a function of water depth. This inequality of the Σm for different classes
precludes use of the Mahalanobis metric for classes as defined here. For the retrievals
needed for shallow-water mapping of bottom type, MLE (or something else) would have
to be used with a different covariance matrix for each class.

However, it is not at all clear how meaningful classes should be defined for simultaneous
retrievals of bottom type, water column IOPs, and bottom depth. Should one class be
“sand spectra at 5.25 m depth with a particular set of water absorption, scattering, and
backscatter spectra,” and another class be “sand spectra at 5.25 m depth with the same
absorption and scattering spectra but a different backscatter fraction,” and another class
be “sand spectra at 5.50 m with the first set of IOPs,” and then another class be “sea
grass spectra at 7.50 m with yet another set of IOPs,” and so on? If so, then the number
of classes quickly becomes as large as the number of depths, IOP sets, and pre-chosen
classes of bottom type (sand, coral, sea grass, etc.). A database generated as previously
described easily could have hundreds or thousands of classes (a database often has 50-100
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bottom depths, several dozen to several hundred sets of IOPs, and more than 100 bottom
reflectance spectra). With such a large number of classes, the validity of doing traditional
thematic mapping becomes uncertain, not to mention the additional computational costs
involved with the matrix multiplications.

Clearly spectrum matching for shallow-water applications addresses a much more com-
plicated problem than classic terrestrial thematic mapping, which corresponds to retrieval
of bottom type if there were no water present, i.e. no simultaneous retrieval of depth and
IOPs. Because of the greater complexity of the oceanographic retrieval problem, and be-
cause of the difficulty in defining meaningful classes, shallow-water spectrum matching does
not use statistical classification techniques such as MLE. The spectrum matching approach
of Mobley et al. (2005) does not compare an image spectrum to a class mean spectrum.
In that technique, an image spectrum is compared to every spectrum in a database to find
the closest match by the chosen (Euclidean or some other) metric, which is appropriate in
this case. In a manner of speaking, each database Rrs spectrum is a separate class corre-
sponding to a particular depth, bottom reflectance spectrum, and set of IOPs. In such a
situation (only one member in each class) the covariance matrix is undefined.

Moreover, for the present problem it is not even desirable to remove the effects of
wavelength correlations, as can be done with the MLE or Mahalanobis metrics, because
the wavelength correlations carry information that is critical to separating depth and IOPs
effects from bottom type effects.

The spectrum-matching approach of Mobley et al. (2005) for shallow-water benthic
mapping therefore avoids defining predetermined classes and finds the closest match from
the entire database. This gives the highest possible resolution (in depth, bottom type, and
water IOPs) of retrievals. This approach retrieves a particular bottom reflectance spectrum
(which represents a particular bottom type), not just a generic bottom type such as sand
or coral. If the user later wishes to group the particular spectra for the retrieved bottom
types into broader classes such as corals versus sediments, or to group the retrieved IOPs
into low, medium, and high absorption bins, for example, then that is easily done from the
full-resolution retrieval.



CHAPTER 15

Atmospheric Correction

[The development of this chapter was a collaborative effort by Curtis Mobley, Jeremy
Werdell, Bryan Franz, Ziauddin Ahmad, Sean Bailey, Howard Gordon and David Antoine.]

The topic of atmospheric correction perhaps belongs in the preceding Remote Sensing
chapter. However, this is such an important and complicated topic that it warrants a
chapter of its own.

The initial sections of this chapter discuss the generic atmospheric correction problem.
The first section shows via numerical simulations how the atmosphere can affect top-of-
the-atmosphere (TOA) radiances. The following section then formulates the atmospheric
correction problem in terms of the various contributions to the TOA radiance measured
by a satellite-borne sensor. Those contributions come from solar radiance scattered by
atmospheric molecules and aerosols, Sun and sky radiance reflected by the sea surface
(either by the water surface itself or by foam from whitecaps), and finally from water-
leaving radiance. The details of how normalized water-leaving radiances and normalized
reflectances are defined and how they should be interpreted are then given. Sections on
vicarious calibration and the computation of diffuse transmittances then follow.

Several sections then describe one by one the specific algorithms used (as of the date of
this writing) by the NASA Ocean Biology Processing Group (OBPG) to effect the various
steps of the atmospheric correction process, namely the corrections for absorption and
scattering by gases and aerosols, Sun and sky reflectance by the sea surface, whitecap
reflectance, and finally corrections for sensor out-of-band response and polarization effects.
The end result is an estimate of the “exact normalized water-leaving radiance,” or its
equivalent reflectance, which carries the information about the water-column itself.

Once obtained, the normalized reflectance is the input to algorithms for retrieval of
various quantities of scientific interest. These ocean-color products include—among oth-
ers—the Chlorophyll a concentration, the water-column diffuse attenuation for downwelling
plane irradiance at 490 nm (Kd490, which is a proxy for water transparency), water-column
absorption and backscatter coefficients, and particulate organic and inorganic carbon. The
algorithms for retrieval of specific products, given the normalized reflectance, are given
in a series of reports found at NASA Algorithms. Those retrieval algorithms are under
continual refinement are not discussed here.

529
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There are many other sources with additional information about atmospheric correc-
tion. The NASA ocean color web site contains a wealth of information about how NASA
collects, processes, calibrates, validates, archives and distributes ocean color data from a
variety of satellite sensors. That web site has many pages with links to various technical
memos and other information about ocean color, and many of the data files underlying the
atmospheric correction process can be downloaded there.

There are also many non-NASA sources of information on atmospheric correction. The
Maine In-situ Sound and Color Lab website links to PowerPoint presentations of lectures
given at the University of Maine summer courses, and to videos of the 2015 and 2017 lec-
tures. The International Ocean Color Coordinating Group (IOCCG) has hosted summer
lecture series during which the lectures were videoed. The IOCCG lectures delivered by
Menghua Wang in 2012 and 2014 cover much of the material presented here; they can be
found at IOCCG 2012 Lectures and IOCCG 2014 Lectures. IOCCG Report 10 compares
the SeaWiFS-MODIS versus MERIS versus OCTS-GLI versus POLDER atmospheric cor-
rection algorithms, but assumes that the reader is already familiar with the general process.

The OBPG-specific material of this chapter is available as a NASA Technical Mem-
orandum, Atmospheric Correction for Satellite Ocean Color Radiometry (Mobley et al.,
2016).

The chapter finishes with two sections on methods for atmospheric correction that are
sometimes used for airborne imagery or in situations for which the OBPG algorithms are
not applicable.

15.1 The Atmospheric Correction Problem

An instrument viewing the ocean from a satellite or aircraft measures upwelling radiances
that include contributions by the atmosphere, the water surface, and the water column.
The atmospheric contribution La comes from solar radiance that is scattered one or more
times by atmospheric gases and aerosols into the direction of the sensor. The surface-
reflected radiance (Sun and sky glint) Lr is downwelling solar radiance that is reflected
toward the sensor by the water surface. The water-leaving radiance Lw comes from light
that is transmitted through the surface into the ocean, Lt, where it is changed by the
absorbing and scattering components in the water, and is then scattered into an upward
direction, Lu, and eventually leaves the sea surface in the sensor direction. Figure 15.1
shows this conceptually.

Radiance reflected by the sea surface contains information about the wave state of the
surface, which may be of interest in itself or which, for example, may be useful for detection
of surface oil slicks. Radiance scattered by the atmosphere along the path between the
sea surface and the sensor contains information about atmospheric aerosols and other
atmospheric parameters. However, only the water-leaving radiance carries information
about the water column (and, in optically shallow water, about the sea bottom). A sensor
looking downward measures the total radiance Lu = La + Lr + Lw and cannot separate
the various contributions to the total. Atmospheric correction1 refers to the process of

1The term “atmospheric correction” offends some in the atmospheric optics community who rightly say
that the atmosphere does not need correcting because it has not done anything wrong. They prefer to
call the process “atmospheric compensation.” They make a valid point, but “atmospheric correction” is
commonly used by those doing ocean color remote sensing, so that is what is used here.

http://oceancolor.gsfc.nasa.gov
http://misclab.umeoce.maine.edu/education.php
http://www.ioccg.org
http://www.ioccg.org/training/SLS-2012/
http://www.ioccg.org/training/SLS-2014/
http://www.ioccg.org/reports/report10.pdf
https://oceancolor.gsfc.nasa.gov/docs/technical/NASA-TM-2016-217551.pdf
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Figure 15.1: Contributions to the total upwelling radiance above the sea surface, Lu. Yel-
low arrows are the Sun’s unscattered beam; orange arrows are atmospheric path radiance
La; red is surface-reflected radiance Lr; green is water-leaving radiance Lw. Thick arrows
represent single-scattering contributions; thin arrows illustrate multiple scattering contri-
butions.

removing the contributions by surface glint and atmospheric scattering from the measured
total to obtain the water-leaving radiance.

This section uses numerical atmosphere-ocean radiative transfer simulations to show
examples of the nature and magnitude of the atmospheric correction problem. These fig-
ures were generated by a coupled MODTRAN-HydroLight radiative transfer code. The
MODTRAN atmospheric code (Acharya et al., 1998) was used to propagate Sunlight from
the top of the atmosphere to the sea surface. The atmospheric radiance incident onto the
sea surface was then used to initialize the HydroLight in-water code (Section 10.6). Hy-
droLight transmitted the radiance through the sea surface, computed its interaction with
the water constituents, and eventually returned the water-leaving radiance back to MOD-
TRAN. MODTRAN then propagated the water-leaving radiance, plus the glint radiance
and atmospheric path radiance, to the sensor. Both of these codes are for unpolarized
radiance calculations. The HydroLight-MODTRAN code can separate the Rayleigh versus
[aerosol + aerosol-Rayleigh] contributions, but cannot separate the pure aerosol from the
aerosol-Rayleigh contributions. Likewise, it does not normally separate Sun glint and sky
glint contributions, although that separation can be effected with some extra effort. The
partitioning of atmospheric radiance contributions in the model simulations is thus not
exactly the same as is done operationally, but the model simulations can still illustrate the
various contributions to the TOA radiance.

Figure 15.2 shows examples of at-sensor total radiances Lu for different sensor altitudes.
The inputs to MODTRAN were for

• cloudless mid-latitude summer atmosphere

• marine aerosols

• relative humidity of 76% at sea level

• solar zenith angle of 50 deg
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• surface wind speed of 6 m s−1

• nadir-viewing sensor

These atmospheric conditions give excellent remote-sensing conditions with a horizontal
visibility of 63 km at sea level. The HydroLight inputs were for

• homogeneous water

• Case 1 water with a chlorophyll concentration of 1 mg m−3

• infinitely deep water

The runs were from 300 to 1000 nm with 10 nm bandwidths. The Sun and viewing
geometry gives almost no Sun glint radiance. However, there is always surface-reflected
sky radiance, which shows up in the surface (zero altitude) spectrum (black curve) as
non-zero Lu radiance beyond 750 nm, where the water-leaving radiance is very close to
zero. The differences in these curves are due solely to atmospheric contributions along
the different path lengths from the sea surface to the sensor because all other conditions
were the same for each curve. This figure shows that there is a noticeable atmospheric
contribution to the total radiance even for sensors just a few hundred meters above the
surface in very clear atmospheres. Airborne sensors typically fly at altitudes from 3,000
to 10,000 m, and even at lower altitudes the atmospheric contribution is greater than the
water-leaving radiance. At 30,000 m, a sensor is effectively above the top of the atmosphere
(TOA) and atmospheric path radiance is typically 90-95% of the total.

Figure 15.2: Example at-sensor radiances Lu for different sensor altitudes. The water-
leaving radiance and surface-reflected radiance (not shown) are the same in all cases.

Figure 15.3 shows the Fig. 15.2 at-sensor radiance at 3,000 m partitioned into the
contributions by water-leaving, surface-reflected, and atmospheric path radiances; the in-
dividual contributions can be separated in the numerical models. This altitude is typical
for aircraft acquiring high spatial resolution hyperspectral imagery.
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Figure 15.3: The total radiance curve of Fig. 15.2 at 3000 m sensor altitude partitioned
into the contributions by water-leaving radiance, surface reflectance, and atmospheric path
radiance.

The atmospheric correction problem becomes even more intimidating when effects of
Sun and sensor viewing directions, atmospheric conditions, and surface wave state are
considered. The following figures show a few examples of simulations performed in support
of the design of the proposed NASA HyspIRI (Hyperspectral InfraRed Imager) mission.
That sensor will measure radiances at the top of the atmosphere at 10 nm resolution from
380 to 2500 nm with 60 m ground resolution. The HyspIRI orbital characteristics were
used to obtain the Sun zenith and azimuthal angles at the time the sensor would fly over
a point at (latitude, longitude) = (28.75 N, 158.00 W) on June 21. This point is north of
the island of Oahu in Hawaii and is known as Station ALOHA (A Long-term Oligotrophic
Habitat Assessment). Figure 15.4 shows the relevant angles needed for the simulation.

The simulations shown below all have a chlorophyll value of 0.05 mg m−3 characteristic
of the very clear Case 1 ocean water near the Hawaiian Islands. The atmospheric conditions
are for either a very clear tropical atmosphere (horizontal visibility of 100 km at sea level)
or one with considerable haze (horizontal visibility of 10 km). The wind speed was 0 (a
level sea surface) or 10m s−1. The sensor viewing direction was 30 deg east of nadir, nadir,
or 30 deg west of nadir. The Sun zenith angle was 18 deg, which corresponds to the time
of the satellite overpass on 21 June at Station Aloha, near Hawaii.

A simulation was done for the following environmental conditions:

• The water was homogeneous and infinitely deep.

• The water IOPs were simulated using a chlorophyll concentration of Chl = 0.05mg m−3

in the “new Case 1” IOP model (Section 8.9) in HydroLight.

• The Sun zenith angle was θSun = 17.99 deg and the Sun’s azimuthal angle was east
of the nadir point at 84.34 deg from true north.

• The off-nadir viewing angle was θv = 30deg, φv = 281.12deg, which is at right angles
to the satellite’s orbital direction and looking to the west side of the orbit, away from

http://hyspiri.jpl.nasa.gov/
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Figure 15.4: Sun and viewing geometry for a mid-day HyspIRI pass over Station ALOHA
on 21 June.

the Sun’s direction.

• The atmospheric conditions (temperature profile, water vapor, ozone, etc.) were
typical of a tropical marine atmosphere (defined via MODTRAN’s “Tropical Atmo-
sphere” option). The sky conditions were clear. The aerosols were for an open-ocean
marine atmosphere.

• The wind speed was 10 m s−1.

• The wavelength resolution was 10 nm from 350 to 1500 nm.

Figure 15.5 shows various radiances and irradiances obtained from this simulation. The
solid curves are values at the TOA, and the dotted curves are the corresponding quantities
just above the sea surface. The Ed TOA curve (the solid purple line) is the extraterrestrial
solar irradiance (averaged over 10 nm bands) on a surface parallel to the mean sea surface.
The dips in the curve below 700 nm are due to absorption by various elements in the Sun’s
photosphere; these are Fraunhofer lines averaged over the 10 nm bands of this simulation.
Above 700 nm, the Sun’s irradiance is close to a blackbody spectrum (Section 2.4.2). The
purple dotted line shows how much of the TOA solar irradiance reaches the sea surface.
There are large dips in the TOA irradiance that reached the sea surface in the regions
around 940 and 1130; these are due to absorption by water vapor, as are the smaller dips
near 720 and 820 nm. The large opaque region between 1350 and 1450 nm is due to
water vapor and carbon dioxide. The dip at 760 nm is due to absorption by atmospheric
oxygen. These absorption features of the Earth’s atmosphere will affect any radiation
passing through the atmosphere.

The solid blue line shows the TOA radiance Lt that would be measured by a satellite
looking in the direction 30 deg West of the nadir point. The orange curve shows how much
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Figure 15.5: Example radiances contributing to the TOA radiance. Solid lines are radiances
at the TOA; dotted lines are at the sea surface (SFC). The geometric, atmospheric, and
water conditions are described in the text.

of the total is atmospheric path radiance, Latm. The aqua and gray curves respectively
show how much of the path radiance is due to Rayleigh scattering by atmospheric gases
and by aerosols (including aerosol-gas interactions). The green curves in Fig. 15.5 show
that the water-leaving radiance at the TOA (the solid curve) is less than the water-leaving
radiance just above the sea surface (the dotted curve). This makes intuitive sense, because
part of the water-leaving radiance would be lost to atmospheric absorption or scattering
into other directions before that radiance reaches the TOA.

The red curves show the total radiances due to surface reflectance, i.e., the sum of the
background sky reflectance and the direct Sun glint. However, the red curves show that
the surface-reflectance contribution is greater at the TOA than at the surface. This seems
counterintuitive and requires explanation. Figure 15.6 gives a more detailed view of the
contributions to the TOA radiance. In this figure, the arrow labeled Lg represents Sun
glint due to the occasional wave facet that is tilted in just the right direction to create
glint that is seen by the sensor. The arrow labeled Lgs represents the very bright glint
in the Sun’s specular direction; the sensor is looking in the direction away from the Sun’s
azimuthal direction in order to avoid viewing this specular glint. However, the specular
glint gives a strong reflected radiance, some of which is being scattered by the atmosphere
into the sensor viewing direction; this is illustrated by the Lgs2 arrow in Fig. 15.6. The
surface contribution in Fig. 15.5 is the sum of the Lsky, Lg, and Lgs2 contributions. If
the ocean is viewed from just above the sea surface (the red dotted line in Fig. 15.5), the
surface-reflected radiance comes only from reflected sky radiance Lsky and a small amount of
direct Sun glint Lg from wave facets that are tilted in just the right way to reflect the Sun’s
direct beam into the direction of the sensor. (This direct Sun glint Lg is minimal because
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of the choice of viewing direction.) These surface-reflected sky and Sun radiances decrease
between the surface and the TOA, just as does the water-leaving radiance. However, the
total TOA radiance that arises from sea surface reflectance, as partitioned in the simulation,
comes from the sum of the surface reflectance in the viewing direction (decreasing with
altitude) and the contribution by atmospheric scattering of specular Sun glint into the
viewing direction (Lgs2, increasing with altitude). The specular radiance Lgs2 is large in
magnitude, so the atmospheric scattering of this radiance into the viewing direction can
be significant. If the present simulation is run with a level sea surface, for which there is
no Lg Sun glint into the sensor direction, this behavior is still present and, indeed, is even
somewhat greater in magnitude.

To fully isolate the effect of specular Sun glint being atmospherically scattered into the
sensor, a run was made in which any ray from the Sun’s unscattered beam that was reflected
by the sea surface was killed. That is, all Sun glint was forced to be zero. Only rays from
the background sky that were reflected by the sea surface were allowed to contribute to
the TOA surface-reflected radiance. In that case, the surface-reflected radiance behaves
the same as the water-leaving radiance: less sky glint reaches the TOA than leaves the sea
surface.

Figure 15.6: Qualitative illustration of the various processes contributing to the total TOA
radiance. The notation corresponds to Table 15.1 in the next section. The blue N-N
represents a nitrogen (N2) molecule, or any other atmospheric gas molecule; the brown
blob represents an aerosol particle.

Figure 15.7 shows the fractional contributions by these various processes to the total
TOA radiance Lt. For this particular case, the water-leaving radiance is at most 10% of the
total TOA radiance. The atmospheric path radiance contributes 70 to 90% of Lt, with the
rest coming from surface glint. Below 500 nm, Rayleigh scattering by atmospheric gases
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is the largest contributor to the TOA radiance. This is also true in the band from 1350
to 1400 nm, where the atmosphere is essentially opaque, because the aerosols are located
mostly near the sea surface. Aerosols are the greatest contributor between 500 and 1350
nm.

Figure 15.7: The fraction of Lt due to various processes, for the particular simulation of
Fig. 15.5.

Figure 15.8 shows the Lt of Fig. 15.5, plus the corresponding Lt radiances for wind
speeds of 0 and 10 m s−1, clear and hazy atmospheric conditions, and viewing directions of
0 (nadir) and 30 deg East or West of the flight direction. Each of these 12 much-different
TOA radiances has essentially the same water-leaving radiance Lw, which is shown in
green.

The atmospheric correction problem can be visually summarized as follows: Given any
of these TOA radiance spectra seen in Fig. 15.7 and the geometry (Sun location and viewing
direction), recover the water-leaving radiance spectrum Lw. This is clearly a difficult
problem because the needed atmospheric conditions (aerosol type and concentration in
particular) are not obtained as part of the Lt measurement.

Atmospheric correction is the central problem of ocean color remote sensing.
However, the problem is not intractable—if it were, we could not do ocean color remote
sensing! There are many inversion algorithms that can retrieve ocean properties such as
chlorophyll, mineral, or CDOM concentrations, or bottom depth and reflectance, IF an
accurate water-leaving radiance (or, usually, its equivalent reflectance, to be developed in
Section 15.3) is available. The hard part of the game is to get from radiance measured at
the TOA to water-leaving radiance at the sea surface.
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Figure 15.8: Upper curves: 12 TOA radiances for various environmental and viewing
conditions as labeled. Each TOA radiance has the same water-leaving radiance Lw, which
is shown by the green curve.

15.2 Problem Formulation

The introduction to atmospheric correction given in Section 15.1 illustrated the nature of
the problem. It is now time to define the problem quantitatively.

The total radiance Lt measured by a satellite-borne sensor at the top of the atmosphere
(TOA) comes from contributions by atmospheric scattering, Latm; Sun and sky radiance
reflected back upward by the sea-surface and reaching the TOA, LTOA

surf ; and water-leaving
radiance that reaches the TOA, LTOA

w :

Lt = Latm + LTOA
surf + LTOA

w . (15.1)

For brevity, the viewing direction (θv, φv) and wavelength λ are not shown. Expanding
this equation into further levels of detail requires the definition of many different radiances,
and precise notation is needed to minimize confusion. The atmospheric contribution Latm

is always considered to be at the TOA. However, the surface-reflected radiance and water-
leaving radiance can be formulated either at the sea surface or at the TOA. For these
radiances, a superscript TOA will be used to specify the TOA value. Thus Lw will denote
the water-leaving radiance just above the sea surface, and LTOA

w will denote how much
of Lw reaches the TOA. Table 15.1 summarizes the various radiances introduced in this
chapter and used throughout this report.

The atmospheric contribution in Eq. (15.1), usually called atmospheric path radiance,
comes from scattering by atmospheric gases and aerosols, including multiple scattering
between gases and aerosols. The path radiance that comes solely from scattering by at-
mospheric gas molecules is usually called the Rayleigh radiance, LR, because scattering by
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Table 15.1: Radiance notation. The notation here corresponds to that seen in Fig. 15.6.
Spectral radiance L has SI units of W m−2 nm−1 sr−1; in practice mW cm−2 µm−1 sr−1 is
often used.

Symbol Definition

Lt total upwelling radiance at the top of the atmosphere

Latm total contribution of atmospheric scattering to the TOA radiance

LTOA
surf total contribution of surface-reflected radiance to the TOA radiance

LR total Rayleigh radiance at the TOA

Lr “standardized” Rayleigh radiance at the TOA

La TOA radiance due to scattering by aerosols only

LaR TOA radiance due to aerosol-molecule scattering

LA La + LaR; total aerosol radiance at the TOA

Lw water-leaving radiance just above the sea surface

LTOA
w the part of the water-leaving radiance Lw that reaches the TOA

Lg direct Sun glint radiance just above the sea surface

LTOA
g the part of the direct Sun glint radiance Lg that reaches the TOA

Lsky surface-reflected background sky radiance at the sea surface

LTOA
sky the part of the surface-reflected background sky radiance Lsky that

reaches the TOA

Lwc radiance due to whitecaps and foam just above the sea surface

LTOA
wc the part of the whitecap radiance Lwc that reaches the TOA

Lu upwelling underwater radiance just beneath the sea surface

molecules is well described by the Rayleigh mathematical model of scattering by particles
that are much smaller than the wavelength of light. In the absence of any aerosols, the
atmospheric path radiance would equal the Rayleigh radiance. Let La denote the aerosol
contribution, which is the path radiance that would occur if the atmosphere consisted only
of aerosol particles. Let LaR denote the contribution resulting from multiple scattering
between aerosols and gases. The total surface reflectance can be separated into a contri-
bution due to direct Sun glint from the water surface, LTOA

g ; by background sky radiance

reflected by the water surface, LTOA
sky ; and by Sun and sky radiance reflected by whitecaps

and foam, LTOA
wc . Thus Eq. (15.1) can be further partitioned into

Lt = LR + [La + LaR] + LTOA
g + LTOA

sky + LTOA
wc + LTOA

w . (15.2)

In practice, the aerosol and aerosol-gas contributions are usually grouped together and
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treated as one contribution, sometimes denoted LA = La + LaR and often called just the
aerosol contribution. The sky reflectance term is accounted for as part of the Rayleigh
correction, which incorporates reflectance by the sea surface. For some sensors that were
specifically optimized for ocean color (e.g., CZCS and SeaWiFS), the strongest part of the
Sun glint (the Sun’s glitter pattern) is avoided by pointing the sensor in a direction away
from the Sun so that almost no direct glint is present in the image. However, there is still
a correction for residual amounts of Sun glint. Figure 15.6 illustrates these contributions
to the TOA radiance.

Most papers (e.g., Wang and Bailey, 2001; Wang, 2002) rewrite Eq. (15.2) as

Lt = LR + [La + LRa] + TLg + tLwc + tLw , (15.3)

or something very similar. Now, however, Lg, Lwc, and Lw are all measured at sea level.
T is the direct transmittance between the sea surface and the TOA along the viewing
direction, and t is diffuse transmittance in the viewing direction. These transmittances are
discussed in Section 15.4.

Yet a third formulation can be found in the literature (e.g., Franz et al., 2007, Eq. 1):

Lt =
(
Lr + [La + Lra] + tdvLwc + tdvLw

)
tgvtgsfp . (15.4)

Here tdv is the diffuse transmittance along the viewing path of the sensor. tgv is the
transmittance by atmospheric gases in the viewing direction, and tgs is the transmittance
by atmospheric gases in the Sun’s direction; these transmittances are usually called gaseous
transmittances. fp is a known instrument polarization-correction factor. Comparison of
Eqs. (15.3) and (15.4) shows, for example, that

LR = Lrtgvtgsfp .

Thus the total TOA Rayleigh contribution LR has been factored into a product of terms
involving a Rayleigh term times gaseous transmittances and a polarization-correction fac-
tor. The difference between Eqs. (15.3) and (15.4) is primarily a matter of simplification
for presentation purposes. The fp term enters because MODIS has large polarization sen-
sitivity and this requires correction. Earlier papers by Gordon and Wang often ignored
the gaseous transmission terms because they were only considering ozone, which could
be “taken off the top,” so to speak, with the remaining problem being effectively formu-
lated below the ozone layer. The Lr term is computed using a standard atmosphere and
only non-absorbing gases N2 and O2. This allows “standard” Rayleigh radiances Lr to
be computed as a function of Sun and viewing geometry. The gaseous transmittances are
computed by use of absorption coefficients, computed path lengths, and gas concentrations
for the various gases. The fp term is computed for each image pixel as a function of at-
mosphere and surface polarization states (modeled Rayleigh and glint Stokes vectors) and
the sensor-specific polarization sensitivity with viewing direction.

All of Eqs. (15.2), (15.3), and (15.4) can be found in the literature. They all give the
same TOA total radiance Lt. Which form is used in a particular instance is determined by
convenience. Forms (15.2), (15.3) are often convenient for discussions of theory, whereas
form (15.4) is convenient for operational atmospheric correction algorithms. Table 15.2
summarizes for later reference the various transmittances seen in the literature and in later
sections of this chapter.
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Table 15.2: Transmittances used in Eqs. (15.3) and (15.4).

Symbol Definition

T the direct transmittance between the sea surface and the TOA
along the viewing direction

tdv the diffuse transmittance along the viewing path of the sensor

tgv the diffuse transmittance by atmospheric gases in the viewing
direction

tgs the diffuse transmittance by atmospheric gases in the solar direction

fp the sensor-specific polarization-correction factor

The goal of atmospheric correction is to convert a measured top-of-the-atmosphere
radiance Lt into the corresponding sea-level water-leaving radiance Lw. Since only Lt is
measured, this requires estimation of the various atmospheric and surface-reflectance terms
seen in Eqs. (15.3) or (15.4) so that they can be subtracted from Lt in order to arrive at
Lw. How this is done is discussed in the following sections.

15.3 Normalized Reflectances

Ocean-color remote sensing algorithms usually work with remote-sensing reflectances or
normalized water-leaving reflectances. The calculation and interpretation of those quanti-
ties are discussed in detail in this section.

As seen in Section 4.2.2, the ratio of water-leaving radiance Lw to incident sky irradi-
ance Ed is an apparent optical property (AOP) that has only weak dependence on external
parameters such as solar zenith angle and sky conditions, but which is strongly corre-
lated with water-column inherent optical properties (IOPs). However, the remote-sensing
reflectance Rrs , Lw/Ed still does depend somewhat on the atmospheric and other condi-
tions (recall the discussion of Section 4.2.3) at the time of measurement and thus, strictly
speaking, is tied to the particular time and location of the observation.

It would be desirable to have an AOP that completely removes the effects of solar zenith
angle, viewing direction, atmospheric conditions, and sea state, while retaining a strong
dependence on the water IOPs. It would then be possible to compare this AOP for mea-
surements made at different times and/or locations, and thereby extract information about
the differences in the water columns for the different measurements. Even for measure-
ments made at the same time and location, normalization to a common set of conditions
is needed, e.g., when comparing in situ measurements having different viewing directions.
Such an AOP is obtained via the concept of the normalized water-leaving reflectance.

15.3.1 Normalized Radiances and Reflectances

Let Lu(z, θs, θv, φ) be the in-water, upwelling radiance at depth z, for a Sun zenith angle
of θs and a viewing direction of θv, φ. Polar viewing direction θv = 0 indicates a direc-
tion looking at the nadir, detecting radiance traveling toward the zenith. The azimuthal



542 CHAPTER 15. ATMOSPHERIC CORRECTION

angle φ is measured relative to the Sun’s azimuthal direction. Lw(θs, θv, φ) denotes the
corresponding water-leaving radiance, which is measured just above the sea surface. These
radiances depend strongly on wavelength, which is not shown. In practice, Lu is measured
by instruments in the water. Lw can be obtained by atmospheric correction of a radiance
measured at the top of the atmosphere, from an above-surface measurement at sea level af-
ter correction for surface reflectance, or from an in-water measurement of Lu extrapolated
upward through the sea surface.

One goal of normalization is to transform a satellite-based measurement of top-of-the-
atmosphere radiance Lt into something that can be compared with a standard measurement
made in situ, in the ocean, for whatever Sun zenith angle, viewing direction, atmospheric
conditions, and wave state occurred at the time of the satellite measurement. Let this
standard in situ measurement be the nadir-viewing radiance measured just below the sea
surface, Lu(0−, θv = 0). Depth z = 0− refers to a location in the water just below the sea
surface; 0+ refers to a location in the air just above the sea surface. Dividing Lu(0−, θv = 0)
by the downwelling plane irradiance within the water, Ed(0−), gives the in-water Remote
Sensing Ratio RSR:

RSR ,
Lu(0−, θv = 0)

Ed(0−)
. (15.5)

The division of Lu(0−, θv = 0) by Ed(0−) removes the “zeroth order” effect of solar zenith
angle θs and the “first order” atmospheric effects (including aerosol effects) on the magni-
tude of Lu(0−, θv = 0). We now want to transform Lt into something comparable.

In the early days of satellite remote sensing, it was sometimes assumed that the up-
welling underwater radiance distribution is isotropic. Under that assumption, RSR is
approximately what you would get if the Sun were at the zenith and there were no atmo-
sphere (i.e., the sky were black). This was the origin of statements that the normalized
water-leaving radiance is the water-leaving radiance “which would exit the sea surface if
the Sun were at the zenith and if the atmosphere were absent” (Gordon et al., 1988, page
10,910).

Fig. 15.9 compares upwelling and water-leaving radiances for “no atmosphere” or
“black sky” versus realistic sky conditions. The curves of this figure were generated using
HydroLight with the Sun placed at the zenith. The sky was either black (a collimated
incident sky radiance) or had a diffuse radiance angular distribution typical of a clear sky.
The water IOPs were determined using the same “new Case 1” bio-optical model (Section
8.9) as for the simulations of the previous section. Runs were made for chlorophyll values
of 0.05, 0.5 and 5 mg m−3. The runs were at a wavelength of 550 nm and the sea surface
was level. Each radiance is normalized by its value at the nadir-viewing direction to isolate
the differences in the shapes of the curves. The upper set of curves shows the shape of the
upwelling radiances Lu just below the sea surface as functions of the in-water, off-nadir
viewing angle θ′v at right angles (φ = 90 deg) to the solar plane. The lower set of curves
(those curving downward in the figure) shows the corresponding water-leaving radiances
Lw as functions of the in-air, off-nadir viewing angle θv. For a level sea surface, these in-
water and in-air angles are related by Snell’s law sin θv = nw sin θ′v, where nw ≈ 1.34 is the
water index of refraction. Although the differences in the black-sky and real-sky radiances
are only a few percent over the range of angles relevant to most remote sensing (θv . 60
deg), differences of this magnitude are significant given the high accuracy requirements for
retrieved water-leaving radiances in ocean remote sensing.
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Figure 15.9: Comparisons of Lu(z = 0−, θs = 0, θ′v, φ = 90) and Lw(θs = 0, θv, φ = 90) for
a zenith Sun in a black sky (no atmosphere; dashed lines) versus a zenith Sun in a typical
atmosphere (solid lines). The colors identify the chlorophyll concentrations. The black line
at an ordinate value of 1 corresponds to an isotropic radiance distribution.

The observation that the upwelling radiance distribution depends on the sky radiance
distribution indicates that the idea of removing the atmosphere is too extreme. Morel
and Gentili (1996, page 4852) therefore revised the definition of normalized water-leaving
radiance to be “...the radiance that could be measured by a nadir-viewing instrument, if
the Sun were at the zenith in the absence of any atmospheric loss, and when the Earth is at
its mean distance from the Sun.” The distinction between “atmosphere were absent” (i.e.,
a vacuum) and “absence of any atmospheric loss” (i.e., no attenuation by the atmosphere)
is fundamental to understanding the developments of this section.

The normalization proceeds as follows. The first step is to account for solar zenith
angle and atmospheric attenuation effects on Lw(θs, θv, φ) via (e.g., Gordon and Clark
(1981, page 10,910) or Gordon and Wang (1994b, Eq. 4)):

[Lw(θv, φ)]N ,
Lw(θs, θv, φ)

cos θs t(θs)
,

where t(θs) is the atmospheric diffuse transmittance for irradiance in the Sun’s direction
for the given atmospheric conditions. Recent papers include an explicit factor to correct
Lw for the Earth-Sun distance at the time of measurement:

[Lw(θv, φ)]N ,

(
R

Ro

)2 Lw(θs, θv, φ)

cos θs t(θs)
. (15.6)

Here R is the Earth-Sun distance at the time of measurement, and Ro is the mean Earth-
Sun distance. The (R/Ro)2 factor corrects the Lw measurement to what it would be at
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the mean Earth-Sun distance. (The solar irradiance at the TOA varies by about 8% over
the course of a year due to the Earth’s elliptical orbit.)

[Lw(θv, φ)]N is called the normalized water-leaving radiance. It is the water-leaving
radiance that would occur if the earth were at the mean Earth-Sun distance, the Sun were
at the zenith, and the atmosphere were non-attenuating. Note that although the factors
of (R/Ro)2, cos θs, and t(θs) largely remove the effects of Earth-Sun distance, solar zenith
angle, and atmospheric attenuation, respectively, on the measured Lw, the normalized
water-leaving radiance still refers to a particular viewing direction and depends on the sky
angular radiance distribution at the time of observation.

Multiplying the [Lw(θv, φ)]N of Eq. (15.6) by a factor of π/Fo, where π has units of
steradian and Fo is the extraterrestrial solar irradiance at the mean Earth-Sun distance,
gives the nondimensional normalized water-leaving reflectance2 [ρw]N (Gordon and Wang,
1994b, page 7756):

[ρw(θv, φ)]N ,
π

Fo
[Lw(θv, φ)]N = π

(
R
Ro

)2
Lw(θs, θv, φ)

Fo cos θs t(θs)
. (15.7)

The remote-sensing reflectance Rrs is defined as

Rrs(θs, θv, φ) ,
Lw(θs, θv, φ)

Ed(0+, θs)
. (15.8)

In this definition, both Lw and Ed are values for the Earth-Sun distance at the time of
measurement. However, this Rrs is numerically the same as what would be obtained if both
Lw and Ed were corrected to the mean Earth-Sun distance by (R/Ro)2 factors applied to
each, because the correction factors on Lw and Ed cancel out. That is to say, the irradiance
at the sea surface for Earth-Sun distance R is

Ed(0+, θs) = Fo

(
Ro

R

)2

cos θs t(θs) . (15.9)

It thus follows that

[ρw(θv, φ)]N = π

(
R
Ro

)2
Lw(θs, θv, φ)

Fo cos θs t(θs)
= π

Lw(θs, θv, φ)

Ed(θs)
= πRrs(θv, φ) . (15.10)

Another way to view [ρw]N is to think of it as the bidirectional reflectance distribution
function (BRDF) of the ocean normalized by the BRDF of a perfectly reflecting Lambertian
surface. The BRDF of a surface as measured in the laboratory is the radiance reflected
by the surface divided by the incident plane irradiance onto the surface. The BRDF of a

2Radiant energy is a physical quantity that propagates through space and that can leave the water.
Radiance is a derived physical quantity that likewise can leave the water, so it makes sense to speak of the
“water-leaving radiance.” Reflectance, however, is a property of a surface. Reflectance is not a physical
quantity that can leave a surface and propagate through space, so it does not make sense to speak of the
“water-leaving reflectance.” However, the term “water-leaving reflectance” is well established shorthand for
“reflectance based on the water-leaving radiance and the incident irradiance,” so I will use the term even if
it is physically improper.
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Lambertian surface whose irradiance reflectance is R is R/π, with units of inverse steradian.
For a perfect Lambertian reflector, R = 1, and

[ρw]N =
BRDFocean

BRDFLamb
=
Lw/Ed

1/π
= πRrs .

This makes it clear that the π carries units of solid angle, so that [ρw]N is nondimensional.

15.3.2 The BRDF Effect

As noted above, the normalizations contained in [ρw(θv, φ)]N or Rrs(θv, φ) remove the ef-
fects of solar zenith angle, atmospheric attenuation, and Earth-Sun distance on a measured
radiance Lw. However, [ρw(θv, φ)]N still refers to a particular viewing direction (θv, φ). This
dependence ties [ρw(θv, φ)]N to the angular distribution of the upwelling underwater radi-
ance and to the transmittance through the sea surface from water to air (which depends
on the wave state, i.e., on the wind speed). The upwelling underwater radiance in turn
depends on the angular distribution of the incident sky radiance, surface transmittance
from air to water, and on the absorbing and scattering properties of the water body (the
scattering phase function in particular). The dependence of the upwelling radiance distri-
bution on the sky radiance distribution, viewing geometry, and water optical properties
is commonly called the BRDF effect. The final step is to remove the BRDF effect to the
greatest extent possible.

The BRDF effect was studied by Morel and colleagues in a series of papers, Morel and
Gentili (1991), Morel and Gentili (1993), and Morel and Gentili (1996), culminating in
Morel et al. (2002). They used numerical radiative transfer models to compute correction
factors that would transform a measurement made for a particular Sun zenith angle, view-
ing direction, wind speed, atmospheric conditions, and water IOPs into a measurement
that corresponds to a zenith Sun and nadir viewing direction for a typical marine atmo-
sphere and for Case 1 water with a given chlorophyll value. The correction involves three
separate factors, R, f , and Q, as follows.

Let R(θ′v, U) be a nondimensional factor that accounts for all transmission and reflection
effects by the wind-blown sea surface when Ed(0+) is transmitted downward through the
surface to give Ed(0−), and Lu(0−, θ′v, φ) is transmitted upward through the surface to give
Lw(0+, θv, φ). Polar angle θ′v (measured from the nadir) is the underwater angle that is
refracted by the surface into the above-surface viewing direction θv of the water-leaving
radiance Lw(θv, φv). U is the wind speed. R(θ′v, U) depends on the wind speed (i.e., the
surface wave state) and the water index of refraction via the Snell’s law mapping of θ′v to
θv. However, Gordon (2005) showed that the dependence of R(θ′v, U) on wind speed is
very weak, and usually R can be computed with adequate accuracy over a wide range of
viewing angles using U = 0. The detailed derivation of R(θ′v, U) in Morel and Gentili (1996,
Eq. 5 and Appendix D) shows that, strictly speaking, R also depends on the solar zenith
angle and the angular distribution of the incident atmospheric radiance, which affect how
much incident irradiance is transmitted through the sea surface. Likewise, R depends on
the water IOPs via the in-water irradiance reflectance R(0+) = Eu(0+)/Ed(0+). However,
these dependencies are weak compared to the directional (θ′v) dependency and so, for
compactness and consistency with Morel’s notation, are not shown as arguments.

Let Ro(U) be the reference value of R(θ′v, U) corresponding to transmission normal
to the mean sea surface (θv = θ′v = 0). Multiplying the [Lw(θv)]N of Eq. (15.6) by
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Ro(U)/R(θ′v, U) corrects for surface-transmission effects for the actual viewing direction
θ′v and wind speed U . For θ′v ≈ 0, Ro ≈ 0.53; Ro is greater than 0.52 out to angles
of 50 deg. (Figure 4 of Morel et al. (2002), which shows ratios of Ro(U)/R(θ′v, U), was
incorrectly computed; see the discussion and revised figures in Gordon (2005).)

The dimensionless factor f is defined by Eu(0−)/Ed(0−) , f × (bb/a), where a and
bb are the water absorption and backscatter coefficients, respectively, which are assumed
to be independent of depth for the present discussion. This factor parameterizes how
downwelling irradiance in the water is converted to upwelling irradiance by backscatter
and reduced by absorption. That is to say, f relates the irradiance reflectance within the
water to the most relevant IOPs. f values are in the range of 0.3 to 0.5 (Morel and Gentili,
1996, Fig. 2).

The factor Q , Eu(0−)/Lu(0−) (units of steradian) describes the angular distribution
of the upwelling radiance. Q = π sr for an isotropic upwelling radiance distribution; actual
in-water radiance distributions typically have Q values in the range of 3 to 6 sr (Morel and
Gentili, 1996, Fig. 3).

In practice, f and Q are combined to give a term that has less variability than the indi-
vidual factors. The combined factor f/Q = Lu(0−, θ′v, φ)/[Ed(0−)(bb/a)] describes how the
downwelling irradiance just beneath the sea surface is reflected back upward as upwelling
radiance in the direction (θ′v, φ). The f/Q term thus describes both the efficiency of con-
version of downwelling irradiance into upwelling radiance, and the angular (non-isotropic)
distribution of the upwelling underwater radiance that generates the water-leaving radi-
ance. f/Q values are typically in the range to 0.07 to 0.15 (Morel and Gentili, 1996, Fig.
6). Let fo/Qo refer to the ratio for the nadir viewing direction and Sun at the zenith.

Multiplying [Lw(θv, φ)]N by (fo/Qo)/(f/Q) corrects for the difference of the actual
angular distribution of the upwelling radiance and what that distribution would be for the
Sun at the zenith, nadir viewing, for the particular atmospheric and oceanic conditions
used to compute f and Q.

Applying these BRDF corrections to the [Lw(θv, φ)]N of Eq. (15.6) gives (Morel et al.,
2002, Eq. 13):

[Lw]ex
N , [Lw(θv, φ)]N

Ro(U)

R(θ′v, U)

fo(ATM, U, IOP)

Qo(ATM, U, IOP)

[
f(θs,ATM, U, IOP)

Q(θs, θ′v, φ,ATM, U, IOP)

]−1

.

(15.11)
Morel et al. call [Lw(λ)]ex

N the “exact normalized water-leaving radiance.” The arguments
“ATM” and “IOP” refer to the specific set of atmospheric conditions and water inherent
optical properties used to compute f and Q. (As previously noted, these arguments are
omitted from the R terms because the ATM and IOP dependencies are small for R.) This
[Lw(λ)]ex

N is equivalent to the normalization seen in Franz et al. (2007, Eq. 2), except for
a sensor-specific correction factor for out-of-band wavelength response. It should be noted
that the fo/Qo factor has arguments of (ATM, U, IOP) because those values correspond
to the same atmospheric and oceanic conditions as the f/Q factor; the difference is that
fo/Qo corresponds to θs = 0 and θ′v = 0. Values of the (Ro/R)(fo/Qo)/(f/Q) product are
typically in the 0.6 to 1.2 range, depending on the IOPs, solar zenith angle, atmospheric
conditions, wind speed, and wavelength.

It is noted that the wind speed at the time of observation, U , is shown in both the
Ro and (fo/Qo) terms in Eq. (15.11). It can be argued that these terms should use a
reference value of U = 0, so that all quantities are referred to a level sea surface. However,
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as presently implemented by the OBPG, the same wind speed U is used in the reference
terms.

The atmospheric conditions used to compute the f/Q factors were typical of marine
atmospheres and are summarized as follows (Morel and Gentili, 1996; Morel et al., 2002):

• The atmosphere was modeled as 50 layers, each 1 km thick

• The aerosol optical thickness was τa = 0.2 at 550 nm.

• The tropospheric aerosols had a relative humidity of 70% and were distributed in the
upper 45 atmospheric layers

• The marine aerosols had a relative humidity of 90% and were distributed in the lower
5 atmospheric layers

• The aerosol phase functions were modeled using Mie theory and the data of Shettle
and Fenn (1979).

• The sea surface was modeled using a Gaussian distribution of wave slopes based on
the empirical wind-speed, wave-slope data of Cox and Munk (1954b, page 847) for
the given wind speed U . U was taken to be 0 for the Q calculations, although there
are still some residual waves according to the empirical slope data of Cox and Munk.

The water optical properties were obtained from bio-optical models for Case 1 water,
for which the IOPs can all be parameterized by the chlorophyll concentration Chl. In
particular, the scattering phase function was computed as a chlorophyll-weighted sum of
phase functions for “small” and “large” particles, which themselves were computed using
T-matrix theory for non-spherical particles with different size distributions. The details of
the IOP bio-optical models are given in Morel et al. (2002).

The radiative transfer calculations were carried out using a Monte Carlo code for cal-
culation of the R factors, and using HydroLight for the f/Q calculations. The R are
tabulated for an exactly level sea surface and for wind speeds of U = 0, 4, 10 and 16 m s−1;
the U = 0 values include a small amount of residual waves because the Cox-Munk mean
square sea surface slopes are not exactly zero for a zero wind speed. The f/Q calculations
were done both with and without Raman scattering by water. None of the calculations
included polarization. These codes were run for

• 7 wavelengths (412.5, 442.5, 490, 510, 560, 620, and 660 nm)

• 6 chlorophyll values (Chl = 0.03, 0.1, 0.3, 1.0, 3.0 and 10 mg m−3). The water was
homogeneous.

• 6 solar zenith angles (θs = 0, 15, 30, 45, 60 and 75 deg)

• 13 azimuthal angles (φ = 0 to 180 deg by steps of 15 deg)

• 17 nadir angles (θ′v = 1.078, 3.411, 6.289, 9.278, 12.300, 15.330, 18.370, 21.410, 24.450,
27.500, 30.540, 33.590, 36.640, 39.690, 42.730, 45.780, and 48.830 deg)

These runs give a total of 7×6×6×13×17 = 55, 629 f/Q values, which are organized into
7× 6× 6 = 252 tables, each with 13 columns and 17 rows. A separate table gives values of
R(θ′v, U) at θ′v increments of 1 deg and for wind speeds of U = 0, 4, 10 and 16 m s−2. The
tables including Raman effects are available at BRDF tables.

Use of these tables requires the chlorophyll concentration, which is not a priori known.
In the initial study of Morel and Gentili (1996), a band-ratio algorithm was used to obtain

ftp://oceane.obs-vlfr.fr/pub/gentili/AppliedOptics2002/
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an initial guess for Chl. That value was then used in the tables to obtain the BRDF
correction factors. Those factors give a new estimate of [Lw(λ)]ex

N , which can be used to
obtain an new value of Chl, and so on. However, the tables are not tied to how the Chl
value is obtained, so in practice any algorithm can be used to obtain Chl values from the
reflectances in an iterative process.

Finally, the exact normalized water-leaving radiance of Eq. (15.11) is used in Eq. (15.7)
to obtain the exact normalized water-leaving reflectance:

[ρw]ex
N ,

π

Fo
[Lw]ex

N (15.12)

=


(
R
Ro

)2
π

Fo cos θs t(θs)

Ro(U)

R(θ′v, U)

fo(ATM, U, IOP)

Qo(ATM, U, IOP)

[
f(θs,ATM, U, IOP)

Q(θs, θ′v, φ,ATM, U, IOP)

]−1


× Lw(θs, θv, φ) . (15.13)

The quantities in brackets can all be obtained from pre-computed look-up-tables given the
Sun and viewing geometry, wavelength, atmospheric conditions used to obtain Lw(θs, θv, φ)
from Lt(θs, θv, φ) (used to determine t(θs)), and the chlorophyll concentration. The chloro-
phyll concentration determines the IOPs according to the bio-optical models for Case 1
water used in the Morel et al. calculations.

Although Morel and others call [Lw]ex
N the “exact” normalized water-leaving radiance,

and [ρw]ex
N the “exact” normalized water-leaving reflectance, it must be remembered that

these quantities are exact only if the atmosphere and ocean have exactly the same absorbing
and scattering properties as used in the model simulations upon which the BRDF correction
factors are based. That will of course not in general be the case. In Case 1 waters, the
differences between the Morel et al. Case 1 IOP model and the actual ocean IOPs are
often small enough that the BRDF-corrected quantities are sufficiently accurate for remote
sensing. However, the differences can become large in Case 2 waters. Research therefore
continues on ways to improve the BRDF correction, both to extend its validity to Case
2 water and to remove the need to estimate the chlorophyll concentration in order to use
the look-up tables (Lee et al., 2011; Fan et al., 2016). Although further improvements can
be anticipated, the BRDF correction as described above remains the OBPG operational
algorithm at the time of this writing.

The OBPG works with radiance to get to [Lw]ex
N . However, when doing atmospheric

correction on TOA radiances, the various look-up-tables used for Rayleigh correction, etc.
are in terms of reflectances [ρw]ex

N . Equation (15.12) allows easy conversion from one to the
other, depending on which quantity is most convenient for a given step of the atmospheric
correction process.

It is to be noted that the “remote-sensing reflectance” reported by the NASA OBPG as
a standard Level 2 product of the NASA ocean color satellites such as MODIS and VIIRS
is the exact normalized water-leaving reflectance of Eq. (15.13), divided by π:

Rrs(NASA) =
[ρw]ex

N

π
=

[Lw]ex
N

Fo
. (15.14)

However, the “remote-sensing reflectance” computed by HydroLight is Rrs(θs, θv, φ) as
defined by Eq. (15.8). A given HydroLight run computes Rrs(θs, θv, φ) for all viewing
directions θv, φ for the given θs and other conditions of wind speed, IOPs, and atmospheric
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radiance distribution. Thus the HydroLight Rrs outputs for various viewing directions
incorporate the BRDF effects. (Indeed, comparison of HydroLight-computed Rrs(θs, θv, φ)
values with HydroLight values for a zenith Sun and nadir viewing direction is how the f/Q
BRDF factors were determined in the Morel et al. studies.) Thus there is no need for an
explicit BRDF correction to the HydroLight-computed Rrs. If a HydroLight run has the
Sun at the zenith, then the nadir-viewing HydroLight Rrs times π corresponds to [ρw]ex

N :

[ρw]ex
N = πRrs(HydroLight; θs = 0, θv = 0) . (15.15)

Recalling Eq. (15.14), this gives

Rrs(NASA) = Rrs(HydroLight; θs = 0, θv = 0) . (15.16)

There should be only a very small difference in HydroLight’s πRrs and [ρw]ex
N , attributable

to any differences in the angular distributions of the sky radiances used to compute the
Morel BRDF factors and as used in HydroLight. Morel et al. (2002, page 6295) notes that
these differences are negligible.

It should be noted that HydroLight Rrs values are valid for whatever IOPs were used
in the run; there is no restriction to homogeneous Case 1 water and no need to estimate a
chlorophyll concentration as must be done when applying the Morel BRDF factors. Thus
HydroLight can give a very general [ρw]ex

N via Eq. (15.15), without the assumptions made
by Morel et al. when developing the BRDF correction factors seen in Eq. (15.13).

Figure 15.10 illustrates the magnitudes of the corrections to πRrs(θs, θv, φ) values. Hy-
droLight was first run to generate remote-sensing reflectances for a Sun zenith angle of
θs = 50 deg, with the Sun in a clear sky. The water IOPs and chlorophyll values were
the same as those used for Fig. 15.9. The runs included Raman scatter by water and
fluorescence by chlorophyll and CDOM. The dashed lines in Fig. 15.10 show the values of
πRrs(θs = 50, θv = 30, φ = 90). These viewing angles correspond to a sensor viewing the
ocean at an off-nadir angle of 30 deg at right angles to the solar plane. The HydroLight
runs were then repeated with the Sun at the zenith. The solid lines in the figures show the
resulting values of [ρw]ex

N as determined by Eq. (15.15). Depending on the water IOPs, Sun
zenith angle, viewing direction, and wavelength, the normalization can change a spectrum
by tens of percent, or almost not at all. The changes tend to be greatest in high-chlorophyll
waters, at large solar zenith angles, and at large off-nadir viewing angles.

When formulated in terms of reflectances, the partitioning of Eq. (15.3) of the Problem
Formulation section 15.2 becomes (e.g., Gordon and Wang, 1994a)

ρt = ρR + [ρa + ρRa] + Tρg + tρwc + tρw , (15.17)

where the terms correspond to those of Eq. (15.3). A similar equation applies to the
reflectance form of Eq. 15.4.

Figure 15.11 shows the radiances of Fig. 15.5 recast as normalized reflectances. It
should be noted in Fig. 15.11 that the solar-spectrum features (most noticeable below
600 nm) seen in the TOA Ed spectrum of Fig. 15.5 are removed by the normalization
process. However, the atmospheric absorption features (most noticeable beyond 600 nm)
remain in the TOA reflectances, but are not present in the surface reflectances. Thus the
dotted curves for ρt, ρg, and ρw, are very smooth functions of wavelength. The surface
glint reflectance spectrum ρg is almost independent of wavelength, whereas the surface
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Figure 15.10: Comparison of exact normalized water-leaving reflectances [ρw]ex
N (solid lines)

with unnormalized reflectances (dashed lines) for θs = 50, θv = 30, φ = 90. The color
identifies the chlorophyll values of 0.05, 0.5, and 5 mg m−3.

glint radiance seen in Fig. 15.5 depends of wavelength in the same manner as the surface
irradiance spectrum3.

15.3.3 Summary

The interpretation of [ρw]ex
N as developed above can be summarized as follows:

• Start with a measured Lw(θs, θv, φ). Then

• The division by cos θs in Eq. (15.6) moves the Sun to the zenith.

• The division by t(θs) in Eq. (15.6) rescales the radiance magnitude to account for
atmospheric attenuation, but the angular distribution of the radiance is unchanged.
This diffuse transmission is for the actual atmosphere at the time of observation.

• The (R/Ro)2 factor in Eq. (15.6) corrects for the Earth-Sun distance.

• The BRDF factors in Eq. (15.11) normalize Lw as measured for the actual at-
mospheric and in-water radiance distributions to what Lw would be for a reference
atmospheric radiance distribution and for Case 1 water with the given chlorophyll
value.

The proposed atmospheric retrieval accuracy requirements for the PACE (Pre-Aerosol,
Clouds, and ocean Ecosystem) mission are (Franz, 2014)

3Note that the glint reflectance ρg considered here is not the same as the surface radiance reflectance
factor ρ of Mobley (1999, Eq. 4) and Mobley (2015), which is a ratio of reflected to incident sky radiances
for the given wind speed, and Sun and viewing directions.
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Figure 15.11: Normalized reflectances corresponding to the radiances of Fig. 15.5. These
reflectances are [ρ]N, not [ρ]ex

N .

• for [ρ]ex
N in the 350-400 nm range, a maximum error of 0.002 or 10%

• for [ρ]ex
N in the 400-710 nm range, a maximum error of 0.001 or 5%

In terms of Rrs = [ρ]ex
N /π, this gives

• for Rrs in the 350-400 nm range, a maximum error of 6× 10−4 sr−1

• for Rrs in the 400-710 nm range, a maximum error of 3× 10−4 sr−1

Given that the water-leaving radiance Lw is at most 10% of the TOA radiance (e.g., Fig.
15.7), a requirement for a 5% maximum error in Lw (expressed as the same percentage error
in [ρ]ex

N or Rrs) implies a maximum error of roughly 0.5% in the measured TOA radiance
Lt. Such a small error in the TOA radiance cannot be achieved by pre-launch sensor
radiometric calibration alone. Thus ocean color sensors require post-launch “vicarious
calibration.” This term refers to the process of forcing measured TOA radiances (or the
equivalent reflectances) to agree with measured water-leaving radiances (or reflectances) as
propagated from the sea surface to the TOA. This agreement is obtained via an empirically
determined set of sensor calibration correction factors to be applied to the measured TOA
radiances so that they lead, after atmospheric correction, to the proper sea-level water-
leaving radiances and associated reflectances. Vicarious calibration is described in more
detail in Section 15.5.

The Q part of the Morel et al. correction has been validated against empirical data
for Case 1 waters by Voss et al. (2007) and found to give good agreement with measured
radiance distributions. As concluded there, “...the bidirectional corrections based on the
lookup tables generated from the model, and presently applied to ocean color imagery, are
sound and amply validated for Case 1 waters...” However, it should be remembered that
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the above BRDF correction is based on a particular atmospheric model and on particular
bio-optical models for Case 1 water. For different atmospheric conditions, the f/Q cor-
rection would be different, although the difference would probably be small. However, for
different water IOPs, in particular for Case 2 waters with high mineral particle loads or
high concentrations of CDOM, the differences in the water-column scattering and absorp-
tion properties could have a significant effect on the f/Q correction. That variability has
not yet been studied, and the above correction remains the current state of the science and
is implemented by the OBPG for operational ocean color image processing.

15.4 Atmospheric Transmittances

Equations such as (15.3)) of the Problem Formulation section and (15.17) of the Normalized
Reflectances section involve various direct (T ) and diffuse (t) atmospheric transmission
terms, which require discussion.

15.4.1 Direct Transmittance

Direct atmospheric transmission is used if only one particular path, or a narrow bundle of
nearly colinear paths, connects the source and the observer. This is the case for specular
reflection, as illustrated in the left panel of Fig. 15.12. When the sea surface is viewed
by the sensor, only a small patch of sea surface is seen as the Sun’s specular reflection or
direct glint. Other points of the sea surface would be seen as localized patches of Sun glint
for other viewing directions, but not by the sensor viewing direction as shown. In each
case, the reflected radiance is traveling in a very narrow set of directions determined by
the Sun’s location and the law of reflection (θr = θs for a level surface). The narrow beams
of Sun glint for other viewing directions are represented by the dotted and dash lines in
the left panel of the figure. These beams can influence the direction of interest only via
two scatterings: the first out of the reflected beam and the second into the direction of
interest. Such a two-scatter path is shown by the light dashed line. Two scatterings makes
the contributions of the unseen beams of specular reflection to the direction of interest very
small.

Let τ be the atmospheric optical depth along a vertical path (the nadir viewing direction
for the sensor). This τ includes all effects of atmospheric absorption and attenuation by all
atmospheric constituents. For an off-nadir viewing direction θv, the direct transmittance
is then simply

T (θv) = exp(−τ/ cos θv) . (15.18)

This geometry is analogous to the Lambert-Beer law for radiance propagation of a beam
through a homogeneous medium: L(r) = L(0) exp(−cr), where c is the beam attenuation
coefficient and r is the distance traveled. In the present case, τ = cra, where ra is the
distance though the atmosphere on a vertical (nadir-viewing) path, and r = ra/ cos θv is
the atmospheric path length along the viewing direction.

15.4.2 Diffuse Transmittance

For water-leaving radiance Lw, every point of the sea surface is emitting an upward distri-
bution of radiance Lw(θ, φ), as illustrated in the right panel of Fig. 15.12. Radiance from
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all locations and various directions can be scattered into the direction of interest via only
one scattering, as illustrated by the dotted line in the right panel of Fig. 15.12. Radiance
scattered out of the beam along the viewing direction can thus be replaced via a single scat-
tering from the radiance emitted by a neighboring point propagating in a different direction.
The diffuse transmittance therefore depends not just on the atmospheric properties and
viewing direction, but also on the angular distribution of Lw, which in general is unknown.
This situation is analogous to the diffuse attenuation Kd of downwelling irradiance within
the water column of a plane parallel ocean that is illuminated at all points of the surface.
Because radiance absorbed or scattered out of the path between the source and sensor can
be replaced by radiance from other sea surface points and directions, the diffuse trans-
mittance t(θv) will be greater than the direct transmittance T (θv) (just as the the diffuse
transmittance exp(−Kdz) is always greater than than the beam transmittance exp(−cz)).
Accounting for the angular distribution of Lw and for the scattering processes makes the
computation of diffuse transmittance more complicated than for direct transmittance.

Figure 15.12: Left panel: Illustration of Sun glint as seen from the TOA, which is described
by a direct transmittance. Right panel: Illustration of water-leaving radiance as seen from
the TOA, which is described by a diffuse transmittance.

The diffuse transmittance of the water-leaving radiance along a particular viewing di-
rection (θv, φv) is by definition

t(θv, φv, λ) ,
LTOA

w (θv, φv, λ)

Lw(θv, φv, λ)
, (15.19)

where Lw is the water-leaving radiance at the sea surface and LTOA
w is the water-leaving

radiance that reaches the TOA. Henceforth, all quantities are assumed to be functions of
wavelength, and the argument λ will be omitted. One way to compute t(θv, φv) is to run
a coupled ocean-atmosphere radiative transfer model to compute the needed Lw(θv, φv)
and LTOA

w (θv, φv) for a wide range of atmospheric and oceanic conditions, Sun and viewing
geometries, and wavelengths. The values of t(θv, φv) would then be obtained via Eq. (15.19)
and tabulated for later use. Such tables would need to be constructed for all possible
aerosol types (i.e, aerosol phase function shapes), aerosol optical thicknesses, water IOPs
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(or at least for chlorophyll concentrations in Case 1 waters), and viewing geometries. The
tables would necessarily be large because of the large number of parameters that can affect
t(θv, φv).

Yang and Gordon (1997) examined the computation of diffuse transmittance and errors
therein on the retrieved water-leaving radiance. Using a combination of radiative transfer
numerical modeling of the ocean and atmosphere and reciprocity principles, they compared
diffuse transmittances computed using realistic modeled and measured Lu(θ′, φ′) distri-
butions versus diffuse transmittances computed on the assumption that Lu is isotropic.
Here Lu(θ′, φ′) denotes the upwelling underwater radiance distribution just beneath the
sea surface. For a level sea surface, Lw(θv, φv) = TF(θ′)Lu(θ′, φ′)/n2

w, where nw is the
index of refraction of the water, the in-water θ′ is related to the in-air θv by Snell’s law
sin θv = nw sin θ′, and TF(θ′) is the Fresnel transmittance of the surface from water to air.
When Lu is isotropic, the diffuse transmittance is independent of the azimuthal angle and
is denoted by t∗(θv).

Yang and Gordon (1997, Eq. 3) show via a clever use of reciprocity that the diffuse
transmittance of radiance t∗ along an atmospheric path in the direction of the Sun at solar
zenith angle θo is numerically equal to the diffuse transmittance of irradiance from the
TOA to a depth just beneath the sea surface, on the assumption that there is no upwelling
radiance within the water. That is,

t∗(θo) =
ER(θo)

Fo cos(θo)TF (θo)
, (15.20)

where ER(θo) is the downwelling plane irradiance just beneath the sea surface for an
extraterrestrial solar irradiance Fo incident onto the TOA at angle θo, and TF(θo) is the
Fresnel downward transmission of the sea surface for radiance incident at angle θo from the
normal. Since the upwelling radiance Lu(θ′, φ′) used to obtain this result is assumed to be
isotropic, the azimuthal dependence of t∗ is irrevelant, and the desired diffuse attenuation
for radiance at viewing direction θv = θo is equal to the value of the irradiance transmission
at the same polar angle. The great virtue of Eq. (15.20) is that it allows the efficient
numerical computation of t∗ using backward Monte Carlo simulation (Sections E.7 and
F.7) of downwelling irradiance for a given aerosol type and optical thickness.

The retrieved water-leaving radiance is, by Eq. (15.19),

Lw(θv, φv) =
LTOA

w (θv, φv)

t(θv, φv)
. (15.21)

Let L∗w denote the retrieval when t∗ rather than t is used in Eq. (15.21). The error in the
retrieved water-leaving radiance due to using t∗ rather than the exact t is

∆Lw

Lw
=
L∗w − Lw

Lw
=
t− t∗

t∗
. (15.22)

Yang and Gordon (1997) found that for viewing angles φv perpendicular to the principle
plane (the plane of the Sun), the errors in the retrieved Lw are no more than 4% for
viewing angles θv ≤ 45 deg, Sun zenith angles θo ≤ 60 deg, and aerosol optical thicknesses
typical of clear atmospheres. The errors in band-ratio algorithms were less; e.g., the error
in Lw(443)/Lw(555) (used to retrieve chlorophyll concentration) is less than 2% except for
very clear water and some viewing directions, for which the error in the ratio is about
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3%. These parameter ranges covered most of the needs for SeaWiFS and errors of this
magnitude were deemed acceptable compared to other errors in the retrieval process (i.e.,
removal of atmospheric path radiance). In that case, the diffuse attenuation can be obtained
by pre-computed functions of the form

t∗(θv) = A(θv) exp[−B(θv)τa] . (15.23)

where A(θv) and B(θv) are tabulated for each aerosol type. Thus, for N angles θv, only 2N
numbers A(θv) and B(θv) need to be tabulated for each aerosol type. Moreover, the aerosol
type and optical thickness are determined as part of the process to remove the aerosol
contribution to the total path radiance. This enables selection of the appropriate A,B,
and τa, and evaluation of Eq. (15.21) is operationally feasible. If aerosols are ignored, Eq.
(15.23) reduces to t∗(θv) = exp[−1

2τR/ cos θv)], where τR is the Rayleigh optical thickness.
This is the formula used in the early days for CZCS atmospheric correction. The virtue
of Eq. (15.23) is that it allows the aerosol optical thickness τa to be incorporated into
the diffuse transmittance calculations via a simple exponential and pre-computed A and
B values.

However, for larger off-nadir viewing angles θv, for azimuthal viewing directions near
φv = 0 or 180 deg, and for very clear water, the errors ∆Lw/Lw can be as much as 6%.
This could be significant for the MODIS Aqua sensor, which views a wide range of φv

directions. Gordon and Franz (2008) therefore re-examined the model of Yang and Gordon
(1997) and developed a correction term to t∗ so that Eq. (15.21) becomes

Lw(θv, φv) =
LTOA

w (θv, φv)

t∗(θv)[1 + δ(θv, φv)]
. (15.24)

The δ(θv, φv) factor corrects for the bi-directional effects resulting from the use of an
isotropic Lu in the computation of t∗, rather than the exact, non-isotropic Lu(θ′, φ′).
The Lu(θ′, φ′) needed for computation of δ was obtained from Lu = (f/Q)(bb/a) and
chlorophyll-based models for f/Q and bb/a. Again, the δ correction term can be pre-
computed and tabulated for various aerosol types and water IOPs. Evaluation of the
impact of the δ correction applied to both SeaWiFS and MODIS Aqua data showed that
retrieved water-leaving radiances will be in error by no more than ∼1% if θv < 60 deg and
the δ correction is omitted. For θv > 60 deg, i.e. near the edges of scan lines, the use of
the δ correction is warranted.

In current operational practice, the tabulated A and B functions are applied for both
downwelling (solar irradiance) and upwelling Lw paths. The δ(θv) correction of Gordon
and Franz (2008) is not applied because it is an added complication with no significant
impact in most instances.

15.5 Vicarious Calibration

The atmospheric correction techniques described in the following sections remove most
of the effects of atmospheric scattering and absorption and sea surface reflectance from
a measured TOA radiance. The end result is an estimate of the water-leaving radiance,
which can be converted to a normalized reflectance as shown in Section 15.3. However,
neither the sensor radiometric calibration nor the atmospheric correction are perfect, so
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a satellite-derived water-leaving radiance usually will not exactly match a water-leaving
radiance measured at the sea surface. It is therefore necessary to make comparisons between
satellite-derived radiances and radiances measured at the sea surface in order to determine
the gain or correction factor needed to convert a best estimate of a radiance into one that
agrees with the radiance measured at the sea surface. This process is called vicarious
calibration.

As described in Antoine et al. (2006) and at the BOUSSOLE website, there are two
main vicarious calibration paths that can produce ocean color products of the desired
accuracy, i.e., water-leaving radiances within an uncertainty of about 5% in the blue for an
oligotrophic ocean. The first path is usually referred to as vicarious calibration, and consists
in forcing satellite-derived water-leaving radiances to agree with a set of in situ water-
leaving radiances (so-called match-up analyses). A set of vicarious calibration coefficients
is obtained, which is applied to the top-of-atmosphere (TOA) total radiances measured
by the sensor. The second procedure, which is also an indirect (vicarious) calibration and
is sometimes referred to as a vicarious radiometric calibration, consists in simulating the
TOA signal that the sensor should measure under certain conditions, and to compare it to
the measured signal.

One of the difficulties of the first type of vicarious calibration is that it is dependent
upon the procedure used for the atmospheric correction of the TOA observations. Even
if it is admittedly less dependent upon the selected set of in situ water-leaving radiances,
these measurements also contribute to the final accuracy. The advantage of this technique,
besides the fact that atmospheric measurements are not needed, is that the marine signals
delivered by several sensors that use different atmospheric correction algorithms can be
cross-calibrated provided that the same set of in situ water-leaving radiances is used to
perform the vicarious calibration. This is the case, for instance, for the SeaWiFS and
OCTS sensors.

Inconveniences of the vicarious radiometric calibration are that it requires a set of
in situ measurements that is usually difficult to collect, among other things because a
high accuracy is needed. In addition to the in-water measurements of the water-leaving
radiances, this data set includes sea state and atmospheric pressure, ozone concentration,
aerosol optical thickness, aerosol type, and even aerosol vertical profile if the aerosols are
found to be absorbing. If this data set is successfully assembled, the advantage of the
vicarious radiometric calibration is that it is independent of the atmospheric correction
algorithms, so that the TOA signals of various sensors can be cross-calibrated. Then it
is up to any user to apply their preferred atmospheric correction to these TOA signals.
The marine signals in that case might be inconsistent if significant differences exist in the
various atmospheric corrections.

The greatest difficulty of the vicarious radiometric calibration lies in the estimation
of the aerosol optical thickness, phase function, and single scattering albedo. These pa-
rameters are accessible through the inversion of Sun photometer measurements, yet un-
certainties inevitably occur when applying such methods, for instance because of multiple
scattering, perturbations from the ground reflectance, and uncertainties in the photometer
calibration. Assembling all data needed for these vicarious calibration experiments is often
compromised because the aerosol parameters are not accurate enough.

The current practice, including at NASA’s OBPG, is to take the atmospheric path
radiance from the atmospheric correction lookup tables. The reasoning is that the vicarious

http://www.obs-vlfr.fr/Boussole/html/calibration/vicarious_d.php
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calibration is then consistent with the atmospheric correction, which, in some ways, is a
good point, but as just explained, also can be considered an issue.

The vicarious calibration methodology employed by the OBPG is described in Franz
et al. (2007). Their procedure simultaneously corrects for residual errors in both sensor
radiometric calibration and in atmospheric correction. The correction factors are therefore
specific to a particular sensor and atmospheric correction procedure, but they are inde-
pendent of the how the water-leaving radiance is obtained. It is assumed that the sensor
has been calibrated as well as possible, so that only residual calibration errors need be
corrected by the vicarious calibration process.

Operational data processing starts with a measured TOA total radiance Lt and derives
the corresponding water-leaving radiance Lw. The process is based on Eq. (15.4) of the
Problem Formulation section:

Lt =
(
Lr + LA + tdvLwc + tdvLw

)
tgvtgsfp , (15.25)

where the radiances are defined in Table 15.1 and the transmittances are defined in Table
15.2. These quantities are all functions of wavelength. No specular-reflection term is in-
cluded in Eq. (15.25) because it is assumed that pixels containing a detectable amount of
specular reflection are omitted from consideration. In this equation, the aerosol radiance LA

and the water-leaving radiance Lw are the two primary unknowns. The aerosol-dependent
diffuse transmittance tdv can be computed for a given aerosol type as described in the At-
mospheric Transmittances section. The Rayleigh and whitecap radiances and the gaseous
transmittances can be computed for given atmospheric conditions as described in Sections
15.7 on non-absorbing gases, 15.8 on absorbing gases, and 15.10 on whitecaps. The deter-
mination of the aerosol contribution is the crux of the atmospheric correction process and
is described in the Aerosols Section 15.11. These computations constitute the atmospheric
correction process. Once these terms have been computed, Eq. (15.25) can be solved for a
measured Lt to obtain the corresponding Lw.

To develop the correction factors, this process is reversed. Let Ltar
w denote the known

or “target” water-leaving radiance that is to be matched by the satellite-derived value. In
most instances, the target water-leaving radiance is obtained from in-situ measurement,
but can in principle be the value retrieved by another satellite sensor or predicted by a
model. In any case, this value can be propagated to the TOA under various assumptions
about the atmospheric conditions to obtain the corresponding target TOA radiance Ltar

t

which, ideally, would match the satellite-measured TOA radiance. The ratio

g(λ) =
Ltar

t (λ)

Lt(λ)
(15.26)

is then the correction or gain factor that, when multipled by a measured Lt gives an
adjusted TOA radiance Ltar

t that, when atmospherically corrected, yields the correct water-
leaving radiance Ltar

w . Note that the gain factor is different for each wavelength. The gain
factors are created via a series of “match-up” comparisons of satellite and in situ data
and then, once determined, are routinely applied as part of the operational reduction of
satellite-measured TOA radiances to water-leaving radiances.

Now consider the details of the computation of the gain factors. A satellite-derived Lw

is converted to an exact normalized water-leaving radiance as described in Section 15.3.
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This process can be summarized as

[Lw]ex
N =

Lw

µs fs tds fb fλ
, (15.27)

where

• µs is the cosine of the solar zenith angle,

• fs is the Earth-Sun distance correction factor,

• tds is the Rayleigh-aerosol diffuse transmittance in the Sun’s direction,

• fb is the BRDF correction factor, and

• fλ is a band-pass adjustment factor.

A target water-leaving radiance is converted to an exact normalized water-leaving radiance
in the same manner:

[Ltar
w ]ex

N =
Ltar

w

µtar
s f tar

s ttar
ds t

tar
gs f

tar
b f tar

λ

, (15.28)

where now the superscript tar on the terms in Eq. (15.28) indicates that these terms are
evaluated for the Sun and viewing geometry at the time of the measurement of Ltar

w , which
may be different from the geometry at the time of the satellite observation leading to Lw.
A factor of tgs is included in Eq. (15.28) to account for the diffuse transmittance due to
absorption by gases in the Sun’s direction at the time of measurement of Ltar

w . This factor
does not appear in Eq. (15.27) because that correction to the total measured radiance
Ltar

t is accounted for in Eq. (15.25). The radiances in Eq. (15.25) are computed for the
full spectral response of each sensor band. The fλ factor converts these full-band values
to nominal band-center wavelengths to remove residual out-of-band response effects. Since
the satellite and in situ instruments usually have different spectral responses, this factor
adjusts the satellite and in situ values to a common wavelength dependence.

Writing Lw in terms of [Lw]ex
N via Eq. (15.27) and then replacing [Lw]ex

N by the target
value [Ltar

w ]ex
N gives an equation for the target value of the TOA radiance:

Ltar
t =

(
tdv[Ltar

w ]ex
N (µs fs tds fb fλ) + Lr + Ltar

A + tdvLwc

)
tgvtgsfp . (15.29)

The total transmittance along the Sun’s path is the product of the diffuse transmittance
for the Rayleigh and aerosol scattering and the diffuse transmittance for gaseous absorption.
The ttar

ds term depends on the aerosols and is thus an unknown for the calibration target.
The total transmittance for the target could be obtained from auxiliary measurements
(e.g., from a Sun photometer) made at the time of the target radiance measurement.
However, such measurements are not generally available and, even if available, any error
in those measurements would be an additional source of error in the the target radiance.
Therefore, the satellite-retrieved atmospheric and aerosol properties are used to evaluate
the total transmittance for the target measurement via

ttar
ds t

tar
gs = exp

[
ln(tdstgs)

µs

µtar
s

]
. (15.30)

The total transmittance for the target is therefore the total transmittance for the satellite
with a correction for the difference in the solar zenith angles. Other terms in Eq. (15.29)
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such as the Rayleigh radiance and gaseous transmittances along the viewing direction are
evaluated for the atmospheric conditions of the satellite retrieval as described in sections
15.7 and 15.8. Thus the tdv that multiplies Lwc is determined by Rayleigh-scattering
calculations based on the sea-level pressure. The whitecap radiance is modeled as a function
of wavelength and wind speed as described in sectiion 15.10. These choices reference both
the target and the satellite radiances to a common atmosphere, which is desirable for the
development of the gain factors.

Finally, the BRDF correction factors fb and f tar
b must be evaluated. As discussed in

the BRDF Effect, Section 15.3.2, the IOPs needed for evaluation of the BRDF correction
are parameterized in terms of the chlorophyll concentration Chl. If a measurement of Chl
is made in conjunction with the target measurement, then that value of Chl can be used
to evaluate the BRDF correction. However, chlorophyll measurements are not usually
available. Operationally, the chlorophyll concentration is obtained via insertion of the
satellite-derived [Lw]ex

N (or the corresponding reflectance [ρw]ex
N ) into a chlorophyll-retrieval

algorithm. That is an iterative process because [Lw]ex
N is required to determine Chl, and

Chl is required to determine [Lw]ex
N . During the determination of gain factors, the target

radiance can be used as input to the operational chlorophyll-retrieval algorithm and no
iteration is required.

The final issue is the determination of the aerosol properties. This is a two-step process
based on the “black-pixel” assumption to be described in Section 15.11.2. As seen in
the Table 15.4 in that section, satellite sensors use two wavelengths in the near-infrared
(NIR) for aerosol retrievals. Call the longer of these wavelengths λL and the shorter λS.
(For VIIRS, the NIR bands are at the nominal wavelengths λL = 862 nm and λS = 745
nm.) During determination of the gain factors, it is first assumed that the water-leaving
radiance at these two wavelengths is zero (the black-pixel assumption). This is usually a
good approximation for the mid-ocean, oligotrophic waters used for vicarious calibration.
It is further assumed that the instrument calibration is perfect for the λL band, in which
case the gain factor for the longer NIR band is g(λL) = 1. The black-pixel assumption
means that Eqs. (15.25) and (15.29) reduce to

Lt(NIR) =
(
Lr + LA + tdvLwc

)
tgvtgsfp (15.31)

Ltar
t (NIR) =

(
Lr + Ltar

A + tdvLwc

)
tgvtgsfp , (15.32)

respectively, at the two NIR bands. Given the satellite-measured TOA radiances at the two
NIR bands, Eq. (15.31) can be solved for LA at the two NIR bands. The assumption that
g(λL) = 1 means that Ltar

A (λL) = LA(λL). Thus Ltar
t (λL) is determined via Eq. (15.32)

evaluated at λL. The locations for match-ups are purposely chosen at times and locations
where it is reasonable to assume that the aerosol type in stable and predictable over the
image area, e.g. mid-ocean areas where the aerosols are predominately sea salt and water
droplets. The aerosol model derived from the satellite measurements as described in the
Black Pixels Section 15.11.2 can then be used along with the value of Ltar

t (λL) to determine
Ltar

t (λS). Both Lt and Ltar
t are then known at the two NIR wavelengths, and the NIR gain

factor at g(λS) can be determined by Eq. (15.26).

Values of g(λS) are computed for various times and locations during the lifetime of the
mission. These values are averaged to determine the mean gain ḡ(λS). The criteria for
selection of suitable images for gain determination are quite rigorous and most candidate
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pixels are eliminated from consideration because of glint, inhomogeneous water at the
target location, or non-ideal atmospheric conditions. The details of the selection criteria
and statistical determination of the mean gain factors are given in Franz et al. (2007).
Experience shows that 20 to 40 match-ups are required for the determination of ḡ(λS) values
that are stable to within 0.1% of their long-term values. Once the NIR gains g(λL) = 1 and
ḡ(λS) have been determined for the given sensor, the extrapolation algorithm described in
the Black Pixels section can be used to determine Ltar

A (λ) at all wavelengths. Equation
(15.32) then gives Ltar

t (λ), and the gains at the remaining visible wavelengths are obtained
from Eq. (15.26). Once determined, the gains are held fixed and applied as part of the
operational atmospheric correction process.

For the SeaWiFS sensor the gains ranged from 1.0377 at 412 nm to 0.972 at 765 nm.
A correction of 3 or 4% to the TOA radiance can correspond to a 30 or 40% correction
to the water-leaving radiance because the water-leaving radiance is typically about 10%
of the TOA radiance. Thus the determination of accurate gain factors is critical to the
overall retrieval process. It must be remembered that a set of gains must be determined
for each sensor and atmospheric correction algorithm. As improvements are made to the
atmospheric correction algorithms described in this chapter, the gains must be recomputed.
However, these recomputations can be made using the original target radiances. Gain
recalculation is a part of the standard reprocessing of data sets.

15.6 Algorithm Introduction

The following seven sections discuss, one by one, the various corrections made to the TOA
radiance during the atmospheric correction process as implemented (as of 2021) by the
NASA Ocean Biology Processing Group for processing satellite imagery. The philosophy
of these sections is simply to show “Here is what is done.” See the references for the
historical development and scientific basis of the algorithms.

The first two sections show how to account for absorption and scattering by atmospheric
gases. Sun glint and whitecap reflectances are then discussed, followed by the various
aspects of correction for the effects of atmospheric aerosols. Two sections then discuss the
sensor-specific corrections for spectral out-of-band response and for polarization.

For satellite imagery, the entire sequence of data processing beginning with the mea-
surement of a TOA radiance and ending with the output of a geophysical product such
as a global map of chlorophyll concentration is divided into a number of processing lev-
els, which were defined in Section 14.1.3. The OBPG atmospheric correction process
described here takes the data from Level 1b, TOA radiances that have been processed to
radiance units, to Level 2, normalized water-leaving radiance [Lw(λ)]ex

N (or the equivalent
reflectance[ρw(λ)]ex

N ). Figure 15.13 shows the sequence in which the various corrections are
applied during the overall process.

It is important to keep in mind that there are severe computational constraints on how
atmospheric correction is performed on an operational basis. The MODIS-Aqua sensor,
for example, collects about 1.4 terabytes of data per day. The requirement to routinely
process this amount of data (along with data from many other sensors) requires that vari-
ous approximations be made in order to speed up the calculations. Some of the corrections
require ancillary information such as sea level pressure, wind speed, and ozone concentra-
tion, which are not collected by ocean color sensors themselves. These ancillary data may
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Figure 15.13: Flowchart of the atmospheric correction process.

be inaccurate or missing, in which case climatological values must be used. The quality of
the ancillary information impacts the accuracy of the atmospheric correction. Table 15.3
shows some of the ancillary data and its sources as used by the various OBPG atmospheric
correction algorithms.

The sea surface temperature and salinity are used to compute the water index of re-
fraction and water backscattering coefficient. Operationally, pixels are masked before at-
mospheric correction for only a few conditions, namely the presence of land or clouds, and
saturation of the measured radiance. An attempt is made to process all other pixels. A
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Table 15.3: Ancillary data needed for atmospheric correction. Abbreviations: NCEP, Na-
tional Centers for Environmental Prediction; OMI, Ozone Monitoring Instrument; TOMS,
Total Ozone Mapping Spectrometer; SCIAMACHY, SCanning Imaging Absorption spec-
troMeter for Atmospheric CHartographY; GOME, Global Ozone Monitoring Experiment;
Reynolds/NCDC, Reynolds analysis, National Climate Data Center; NCEI, NOAA Na-
tional Centers for Environmental Information (previously NODC); NSIDC, National Snow
and Ice Data Center.

Data Source Use

atmospheric pressure NCEP Rayleigh correction

water vapor NCEP transmittance

wind speed NCEP Rayleigh, Sun glint, white caps

ozone concentration OMI/TOMS transmittance

NO2 concentration SCIAMACHY/OMI/
GOME

transmittance

sea surface temperature Reynolds/NCDC seawater index of refraction and
backscattering

sea surface salinity NCEI World Ocean
Atlas, Salinity
Climatology

seawater index of refraction and
backscattering

sea ice coverage NSIDC masking

separate mask is applied during atmospheric correction to pixels with too much Sun glint.
Various flags are incorporated into Level 2 and 3 data after the atmospheric correction
process described below. These identify pixels that may have various problems such as sea
ice contamination, turbid water, bottom effects, or failed atmospheric correction. These
flags are listed at NASA Processing Flags. Other information on flags is given in Patt et al.
(2003, Chapter 6). With the exception of Sun glint, applying masks and flags is not a part
of the atmospheric correction process per se, so this topic is not discussed here.

15.7 Non-absorbing Gases

This section describes the Rayleigh corrections made for non-absorbing gases. The next
section describes the more complicated problem of absorbing gases.

A radiative transfer numerical model is used to solve the vector (polarized) radiative
transfer equation for non-absorbing atmospheric gases only. The radiative transfer model
includes atmospheric multiple scattering, polarization, and sea surface roughness modeled
analytically by a Cox-Munk slope distribution (Section 13.4) with an added analytical wave
shadowing function. The Cox-Munk slope distribution as used is azimuthally isotropic (no
dependence on wind direction); therefore only the relative angle between Sun and viewing
direction matters. This greatly simplifies the Fourier decomposition seen in Wang (2002,

http://oceancolor.gsfc.nasa.gov/atbd/ocl2flags
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Eq. 3). The radiative transfer model is described in Ahmad and Fraser (1982).

15.7.1 Wind Speed and Surface Reflectance Effects

Background sky reflectance by the rough sea surface is accounted for as part of the Rayleigh
correction. Some sensors (CZCS, SeaWiFS, OCTS) can be tilted to avoid looking at glint
near the Sun’s specular direction. Other sensors (MODIS, VIIRS, MERIS, OLI) do not
tilt and therefore must account for specular reflection.

Wind speed and surface glint corrections are computed as described in Wang (2002):
Run the numerical model to compute a look-up table (LUT) of TOA Fourier components
Lmr (λ, θs, θv, τRo, U) (his Eq. 3) for the following conditions:

• The sensor wavelength bands (e.g., bands centered at 412, 443, 490, 510, 555, 670, 765,
865 for SeaWiFS). The radiative transfer model is run using band-averaged optical
thicknesses (rather than running at high-wavelength resolution, and then averaging
the Lr values over the band response functions to get the nominal band values of Lr

for a particular sensor).

• 45 Sun zenith angles θs from 0 to 88 deg by 2 deg

• 41 viewing nadir angles θv from 0 to 84 deg by roughly 2 deg

• Rayleigh optical thickness τRo for standard sea level atmospheric pressure Po =
1013.25 hPa (1013.25 millibar).

• 8 wind speeds U = 0, 1.9, 4.2, 7.5, 11.7, 16.9, 22.9 and 30.0 m/s. (These wind
speeds correspond to convenient spacing in the mean square slopes of the sea surface
according to the Cox-Munk equation mss = 0.00512U : mss = 0.0, 0.01, 0.02, 0.04,
0.06,... for U = 0, 1.9, 4.2, 7.5, 11.7, ....) Linear interpolation is used for values
between these wind speeds.

The Rayleigh optical thickness τRo(λ) at 1 atmosphere of pressure, Po (1013.25 hPa),
temperature of 288.15K, and a CO2 concentration of 360 ppm is given by Bodhaine et al.
(1999, Eq. 30):

τRo(λ) = 0.0021520

(
1.0455996− 341.29061λ−2 − 0.90230850λ2

1.0 + 0.0027059889λ−2 − 85.968563λ2

)
, (15.33)

where λ is in micrometers. These values and the corresponding Rayleigh depolarization
ratio ρ(λ) are shown in Fig. 15.14. (At the scale of this figure, the Bodhaine values are
almost indistinguishable from the values given by the formula of Hansen and Travis (1974)
Bodhaine et al. (see 1999, Eq. 15), which was used in earlier calculations.)

The Rayleigh LUTs for Lr contain the I,Q and U Stokes vector components in re-
flectance units, as a function of wind speed and geometry. The Stokes vector V component
for circular polarization is assumed to be zero. There is a separate LUT for each wave-
length. During image correction, the wind speed U for a given pixel comes from NCEP 1
deg gridded data, interpolated to the image pixel.

15.7.2 Pressure Effects

The Rayleigh optical thickness at the time of the observation depends on the number of
atmospheric gas molecules between the sea surface and the top of the atmosphere. The
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Figure 15.14: The Rayleigh optical thickness τa and depolarization ratio ρ based on Bod-
haine et al. (1999). Plotted from NASA data file rayleigh bodhaine.txt

number of molecules is directly proportional to the sea-level pressure P . Thus the Rayleigh
optical thickness at any pressure P is given by

τR(P, λ) =
P

Po
τRo(Po, λ) .

The TOA LR is then computed by Wang (2005, Eq. 5) and subsequent equations:

LR[τR(P, λ)] = LR[τR(Po, λ)]
1− exp[−C(λ,M)τR(P, λ)M ]

1− exp[−C(λ,M)τR(Po, λ)M ]
, (15.34)

where

M =
1

cos θs
+

1

cos θv
(15.35)

is the geometric air mass factor for the total path through the atmosphere. C(λ,M) is
a coefficient that is determined so that Eq. (15.34) gives the best fit to LR[τR(P, λ)] as
computed by an extremely accurate atmospheric radiative transfer model when run for
values of sea level pressure P 6= Po. Numerical simulations show that this coefficient can
be modeled as

C(λ,M) = a(λ) + b(λ) ln(M)

a(λ) = − 0.6543 + 1.608τR(Po, λ)

b(λ) = 0.8192− 1.2541τR(Po, λ) .
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15.8 Absorbing Gases

CO, N2O, CH4, and CO2 have negligible absorption at the visible and NIR wavelengths
relevant to ocean color remote sensing. However, O2, O3, NO2, and H2O have absorption
bands in the visible and NIR. The O2 and H2O bands can be avoided by judicious choice
of sensor bands, as shown in Fig. 15.15 for the MODIS bands. However, as seen in Figs.
15.16 and 15.17, O3 and NO2 have broad, concentration-dependent absorption bands that
cannot be avoided. It is therefore necessary to account for absorption by these two gases.

The concentrations of absorbing gases are usually measured as column concentrations,
i.e., the number of molecules per unit area, or as the equivalent in Dobson units. One
Dobson unit refers to a layer of gas that would be 10 µm thick at standard temperature
and pressure, or about 2.69 × 1016 molecules cm−2. 1000 DU = 1 atm-cm; that is, 1000
DU is the number of molecules that would give a layer of gas 1 cm thick at a pressure of
one atmosphere.

Figure 15.15: Transmittance by O2 and H2O for a moist tropical atmosphere. The resolu-
tion is 1 nm. The MODIS sensor bands are shaded in gray.

For optically thin absorbing gases that are high in the atmosphere (O3 in particular), it
is possible to correct for absorption using just the geometric air mass factor M computed
by (15.35) because scattering is not significant. However, for gases near the surface (NO2

in particular), multiple scattering by dense gases and aerosols is significant and increases
the optical path length, hence the absorption. Thus M is not a good approximation for
the total optical path length through an absorbing gas near sea level.

Note that an absorbing gas reduces the TOA radiance because light is lost to absorption.
Correcting for this loss will increase the TOA radiance or reflectance, with the effect being
greatest at blue wavelengths where multiple scattering is greatest.



566 CHAPTER 15. ATMOSPHERIC CORRECTION

Figure 15.16: Transmittance by O3 for 200, 350, and 500 Dobson units and a vertical path
through the atmosphere.

Figure 15.17: Transmittance by NO2 for low (2.8×1015), typical (1.1×1016), and high (6.0×
1016 molecules cm−2) concentrations of NO2 and a vertical path through the atmosphere.
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15.8.1 Absorption by Ozone

The diffuse transmission by ozone can be written as

tO3 = exp

[
−τO3

(
1

cos θs
+

1

cos θv

)]
(15.36)

= exp [−τO3M ] ,

where M is the geometric air mass factor defined in Eq. (15.35), and τO3 is the optical
thickness of the ozone for a vertical path through the atmosphere. Scattering by ozone
is negligible, but absorption is significant at some wavelengths. Thus τO3 is the optical
thickness for absorption by ozone, which is given by

τO3(λ) = [O3]kO3(λ) , (15.37)

where [O3] is the ozone concentration (column amount in molecules cm−2), and kO3 is
the absorption cross section (in cm2 molecule−1). The ozone concentration [O3] for a
given image pixel is obtained from the NASA OMI or TOMS sensors (Ozone Monitoring
Instrument; Total Ozone Mapping Spectrometer, now replaced by OMI).

As was seen in for transmittance in Figs. 15.16 and 15.17, the absorption cross sections
for gases like O3 and, especially, NO2 can vary with wavelength on a nanometer scale.
To fully resolve the effects of such wavelength dependence on sensor signals, radiative
transfer calculations would require computationally intensive “line-by-line” calculations
followed by integration over the sensor bands. To avoid that computational expense, band-
averaged values of the Rayleigh optical depth and absorption cross sections kO3 and kNO2

are computed for each sensor and tabulated. Radiative transfer calculations then use the
band-averaged values with just one radiative transfer calculation done for each sensor band.
These band-averaged values depend on the sensor even for the same nominal wavelength
band (e.g, the 412 nm blue band) because of different band widths about the nominal
center wavelength and different sensor response functions within a band. Figure 15.18
shows example band-averaged values for the VIIRS and MODIS Aqua sensors.

15.8.2 Absorption by Nitrogen Dioxide

Nitrogen dioxide NO2 occurs both in the stratosphere and near the Earth’s surface. NO2

in the lower atmosphere is generated primarily by human activities (automobiles, indus-
try, fires), and the highest concentrations are near the earth’s surface in industrial areas.
Numerical simulations show that failure to correct for absorption by NO2 can give errors
of approximately 1% in TOA radiances at blue wavelengths, which result in ∼ 10% errors
in retrieved water-leaving radiances (Ahmad et al., 2007).

The geometric air mass factor M of Eq. (15.35) and a simple atmospheric transmit-
tance function like that of Eq. (15.36) are valid for ozone absorption corrections because
scattering by ozone in the upper atmosphere is negligible. However, such functions may be
not adequate for NO2 correction calculations because of multiple scattering in the dense
lower atmosphere. Further guidance for the form of the NO2 correction comes from the
observation that the water-leaving radiance Lw sees all NO2 in the atmosphere, so the
total NO2 concentration N must be used to correct Lw for NO2 absorption. However, the
upwelling atmospheric path radiance Latm, which is generated throughout the atmosphere,
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Figure 15.18: Band-averaged Rayleigh optical depth τR, ozone absorption cross section
kO3 , and NO2 absorption cross section kNO2 for the VIIRS and MODIS Aqua sensors.
(Data from NASA ocean color documents)

is not strongly influenced by the absorbing gas very near the surface. Extremely accurate
numerical simulations show that in that case, N ′, the NO2 concentration between an alti-
tude of 200 m and the TOA, can be used as a satisfactory measure of NO2 concentration.
This result leads to different corrections for the measured TOA path radiance and for the
water-leaving radiance.

Let ρobs be the uncorrected, observed (measured) TOA reflectance, and let ρcorr be the
TOA reflectance corrected for NO2 absorption effects. Comparison of numerical simulations
and analytical approximations justifies a correction of the form

ρcorr = ρobs exp

[
αN ′

(
1

cos θs
+

1

cos θv

)]
,

where N ′ is the NO2 concentration between an altitude of 200 m and the TOA. This simple
formula gives ρcorr values that are within 0.15% of the values obtained by exact numerical
simulations that account for the total column NO2 concentration and multiple scattering.

The correction for water-leaving radiance proceeds as follows. The reflectances can be
written as (Ahmad et al., 2007, Eqs. 1 and 7)

ρt(θs, θv) = ρpath(θs, θv) + t3(θv)td(θs)ρw(θs, θv) + glint and whitecap terms

(omitting the arguments for wavelength, azimuthal angle, and wind speed). Here t3 is
the diffuse transmission along the viewing direction from the sea surface to the sensor, td
is the diffuse transmission of downwelling solar irradiance, and ρw is the water-leaving re-
flectance at the sea surface. Consider now only the path and water-leaving terms, and omit
the directional arguments for brevity. Then multiplying this equation by the exponential

http://oceancolor.gsfc.nasa.gov/DOCS/RSR_tables.html
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correction factor for the observed TOA reflectance gives

ρt exp
[
αN ′ (sec θs + sec θv)

]
= ρpath exp

[
αN ′ (sec θs + sec θv)

]
+ [t3 exp(αN ′ sec θ)] [tdρw exp(αN ′ sec θs)] .

Numerical simulations show that both the path reflectance and the diffuse transmission
term [t3 exp(αN ′ sec θ)] are accurate to within 0.2% with this correction. However, the
error in the water-leaving factor, [tdρw exp(αN ′ sec θs)] is in error by 0.5 to 1.5%, which
is unacceptably large. The reason for the greater error in this term is that it depends on
the downwelling irradiance, which passes through the entire atmosphere and thus sees the
total concentration N , not just the reduced concentration N ′ that is adequate for correction
of the TOA path term. However, the error in this term also decreases to ∼ 0.2% if N ′ is
replaced by N . This error can be reduced still further by the following empirical procedure.

For bands where NO2 absorption is significant (e.g., at 412 or 443 nm), the atmo-
spheric correction is determined as always (without NO2 correction) using the NIR bands.
However, rather than subtract these terms from the corrected TOA reflectance, the atmo-
spheric correction terms (including the Rayleigh reflectance) are reduced for NO2 absorp-
tion by applying a factor of exp[−αN ′(sec θs + sec θv)]. The computed path reflectance
for NO2 is then subtracted from the observed TOA reflectance to obtain ∆ρobs = t3tdρw,
which is the TOA value for water-leaving reflectance in the presence of NO2. The NO2-
corrected value of the water-leaving reflectance is then obtained by multiplying this ∆ρobs

by exp(αN ′ sec θ) exp(αN sec θs), which gives

exp(αN ′ sec θ) exp(αN sec θs)∆ρobs = [t3 exp(αN ′ sec θ)] [tdρw exp(αN sec θs)] .

Note that t3 exp(αN ′ sec θ) is the NO2-corrected transmission term, and ρ′w = tdρw exp(αN sec θs)
is the desired NO2-corrected water-leaving reflectance. This equation is then solved to ob-
tain ρ′w:

ρ′w =
exp(αN ′ sec θ) exp(αN sec θs)∆ρobs

t3 exp(αN ′ sec θ)
. (15.38)

Note that the exponentials are increasing the magnitude of the water-leaving radiance
compared to the no-NO2 case, which accounts for the loss due to NO2 absorption along
the paths of the Sun’s direct beam and the viewing direction. The term for the Sun’s direct
beam uses the full column NO2 concentration N , whereas the viewing-path term uses the
reduced concentration N ′. This is an artifice that brings the analytical correction of Eq.
(15.38) into close agreement with the exact numerical calculations. The absorption cross
section α is a function of wavelength. Computations are done for α at 18 deg C, and then
a temperature correction is made4.

15.9 Sun Glint

Both direct Sun glint and background sky reflectance are included in the radiative trans-
fer calculations. However, the Sun glint contribution is removed from the look-up-tables
(LUTs) so as to allow the historical approach of Gordon and Wang (1994a) to be used.

4Ahmad et al. (2007, Table 1) gives the band-averaged NO2 absorption cross sections for SeaWiFS and
MODIS bands, which are called σ in that table. This σ is same quantity as α in his Eq. (4) and in the
equations of this chapter.
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The current Rayleigh LUTs are wind-speed dependent, but the aerosol LUTs assume a flat
ocean. Thus the LUTs include diffuse sky reflectance but not specular reflection. There
is thus an explicit correction for Sun glint, but not for diffuse sky reflectance, which is
accounted for as part of the Rayleigh correction.

Even for sensors (such as SeaWiFS) that are designed with tilt capabilities allowing
them to be oriented so that they do not look at the Sun’s glitter pattern, there can still
be significant residual glint radiance reaching the sensor, especially near the edges of the
obvious glint area. This is corrected as follows.

Recall again (15.3) of the Problem Formulation section:

Lt = LR + [La + LRa] + TLg + tLwc + tLw ,

where Lg is the direct Sun glint radiance. Lg is computed using the analytical Cox-Munk
wind speed-wave slope distribution and the Sun and viewing geometry. Wang and Bailey
(2001, Eq. 2) write the Sun glint radiance Lg in terms of a normalized Sun glint LGN,
which is defined by

Lg(λ) , Fo(λ)T (θs, λ)LGN .

LGN is computed using an azimuthally symmetric analytical form of the Cox-Munk wind
speed–wave slope distribution for the given Sun and viewing directions, and an incident
irradiance of magnitude Fo(λ) = 1 W m−2 nm−1. LGN thus has the angular distribution of
the surface-reflected radiance, but its units are 1/steradian. Note that LGN is independent
of wavelength.

During image processing, pixels with a value of LGN > 0.005 sr−1 are masked out as
having too much glint to be useful. Pixels with LGN ≤ 0.005 sr−1 have a glint correction
applied before use.

For the glint correction, atmospheric attenuation occurs first along the path of the
Sun’s direct solar beam as the Sun’s beam travels from the TOA to the sea surface; the
associated transmittance is T (θs, λ). Attenuation then occurs along the viewing direction
from the sea surface back to the TOA; this transmittance is T (θv, λ). These are both direct
beam transmittances because only one particular path connects the Sun with a point on
the sea surface that reflects the direct beam into the sensor (recall the left panel of Fig.
15.12). The total “two-path” transmittance is the product of the transmittances. The glint
radiance correction, which is subtracted from Lt, is then (Wang and Bailey, 2001, Eqs. 4
and 5)

T (θv, λ)Lg(θv, λ) = Fo(λ)T (θs, λ)T (θv, λ)LGN ,

where

T (θs, λ)T (θv, λ) = exp

{
−[τR(λ) + τa(λ)]

(
1

cos θs
+

1

cos θv

)}
, (15.39)

and where τR(λ) and τa(λ) are the Rayleigh and aerosol optical thicknesses, respectively.
Wang and Bailey (2001, page 4792, left column) comment that the effects of ozone

absorption have already been accounted for before this state of processing. This is now
also true for NO2 absorption.

Note that the glint correction cannot be computed unless the aerosol optical thickness
(AOT) τa is known. The AOT is obtained in a two-step process. First, the measured Lt(λ)

and the wind speed U are used to get a first estimate τ
(1)
a (λ) of the AOT. This estimate
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is obtained using the algorithms described on the aerosols section 15.11. This estimate is
then used in Eq. (15.39), and the glint-corrected TOA radiance is then computed as

L
′
t(λ) = Lt(λ)− Fo(λ)T (θs, λ)T (θv, λ)LGN . (15.40)

This gives the initial estimate L
(1)′

t (λ) of L
′
t(λ). This value is then used again in the AOT

algorithm to obtain the second estimate τ
(2)
a (λ) for the AOT. The second AOT estimate

is then used again in Eqs. (15.39) and (15.40) to obtain an improved estimate L
(2)′

t (λ). In

practice, only two iterations give a satisfactory final estimate for the AOT, τa(λ) = τ
(2)
a (λ),

and thus for the glint-corrected TOA radiance. This final τa(λ) is then used to compute
the aerosol contribution to the TOA radiance, as described on the aerosols section below.

15.10 Whitecaps

The contribution of white caps and foam to the TOA radiance depends on two factors:
the reflectance of whitecaps per se and the fraction of the sea surface that is covered by
whitecaps.

Following Gordon and Wang (1994b), the contribution of whitecaps and foam at the
TOA is

t(θv, λ)ρwc(λ) = [ρwc(λ)]N t(θs, λ) t(θv, λ) ,

where t(θv, λ) is the diffuse atmospheric transmission in the viewing direction, t(θs, λ) is the
diffuse transmission in the Sun’s direction, and [ρwc(λ)]N is the non-dimensional normalized
whitecap reflectance. [ρwc(λ)]N is defined in the same manner as was the normalized water-
leaving reflectance [ρw(λ)]N in Eq. (15.7), namely

[ρwc]N ,
π

Fo
[Lwc]N = π

(
R
Ro

)2
Lwc(θs)

Fo cos θs t(θs)
, (15.41)

where Lwc is the whitecap radiance. It is assumed that the whitecaps are Lambertian
reflectors, so that (unlike for Lw) Lwc does not depend on direction θv, φ. This gives
the interpretation (Gordon and Wang, 1994b, page 7754) that “ρ is the reflectance—the
reflected irradiance divided by the incident irradiance—that a Lambertian target held
horizontally at the TOA would have to have to produce the radiance L.” [ρwc]N can be
interpreted as the average reflectance of the sea surface that results from whitecaps in the
absence of atmospheric attenuation.

The effective whitecap irradiance reflectance is taken from Koepke (1984) to be 0.22
(albeit with ±50% error bars). This reflectance is independent of wavelength. This gives
[ρwc]N = 0.22Fwc, where Fwc is the fraction of the sea surface that is covered by whitecaps.
The fractional coverage is taken from Stramska and Petelski (2003), who give two models
for for Fwc:

Fwc = 5.0× 10−5(U10 − 4.47)3 for developed seas (15.42)

Fwc = 8.75× 10−5(U10 − 6.33)3 for undeveloped seas (15.43)

where U is the wind speed in m s−1 at 10 m. Formula (15.43) for undeveloped seas is
used on the assumption that if the seas are well developed it is probably stormy, hence



572 CHAPTER 15. ATMOSPHERIC CORRECTION

cloudy, so that remote sensing is not possible. The blue curve in Fig. (15.44) shows Fwc

for undeveloped seas.
The final model for [ρwc]N is then taken to be

[ρwc]N(λ) = awc(λ)× 0.22× Fwc

= awc(λ)× 1.925× 10−5(U10 − 6.33)3 . (15.44)

A whitecap correction is applied for wind speeds in the range 6.33 ≤ U10 ≤ 12 m s−1. The
factor awc(λ) is a normalized whitecap reflectance that describes the decrease in reflectance
at red and NIR wavelengths. This factor is taken from Frouin et al. (1996, Figs. 3 and 4);
the values are

λ = 412 443 490 510 555 670 765 865

awc = 1.0 1.0 1.0 1.0 1.0 0.889 0.760 0.645

Linear interpolation is used as needed between these values. Figure 15.19 shows the white-
cap reflectance as given by Eq. (15.44) when awc = 1.

Figure 15.19: Whitecap normalized reflectance as given by Eq. (15.44) with awc = 1, and
the fraction of sea surface whitecap coverage Fwc as given by Eq. (15.43).

15.11 Aerosols

15.11.1 Aerosol Properties

Aerosols are solid or liquid particles that are much larger than gas molecules but small
enough to remain suspended in the atmosphere for periods of hours to days or longer.
Typical sizes are 0.1 to 10 µm. An aerosol’s optical properties are determined by its
composition, usually parameterized via its complex index of refraction, and its particle size
distribution (PSD).
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For the purposes of atmospheric correction, aerosol particle size distributions are mod-
eled as a sum of “fine” (small; radii less than roughly 1 µm) and “coarse” (large; radii
greater than roughly 1 µm) particles, with a log-normal distribution for each. The log-
normal distribution (8.45) is discussed in Section 8.12.4. That section also discusses the
relations between particle number, area, and volume size distributions. The cumulative
volume distribution is then (Ahmad et al., 2010a)

dV (r)

d ln r
=

2∑
i=1

Voi√
2πσi

exp

[
−
(

ln r − ln rvoi√
2σi

)2
]
.

Here V (r) is the volume of particles per volume of space with size less than or equal to r;
V (r) is typically specified as µm3 cm−3. rvoi is the volume geometric mean radius, and σi
is geometric standard deviation for class i. The integral of dV (r)/d ln r over all sizes r = 0
to∞ (i.e., ln r from −∞ to∞) gives V (∞) = Voi. Thus Voi is the total volume of particles
of class i per volume of space.

A similar equation holds for the cumulative number distribution dN(r)/d ln r, where
N(r) is the number of particles per volume of space with size less than or equal to r. The
corresponding parameters rnoi and Noi can be obtained from rvoi and Voi; see the equations
in Ahmad et al. (2010a). The particle size distribution (PSD) is given by

n(r) =
dN(r)

dr
=

1

r

dN(r)

d ln r
,

where n(r)dr is the number of particles per unit volume in size range r to r + dr. The
units for n(r) are usually expressed as particles m−3 µm−1.

Figure 15.20 illustrates shapes of the volume V (r), number N(r), and particle size n(r)
distributions for an open ocean aerosol, computed using the parameter values of Ahmad
et al. (2010a, Table 2). The distributions of the fine aerosols are given by the green lines.
The blue lines are the coarse aerosols, and the red lines are the sums. The two roughly
comparable distributions of left panel of the figure show that the fine and coarse aerosols
each contribute a significant amount of the total particle volume. In the present example
the fines are 25.7% of the total volume and the coarse particles are 74.3% of the total
volume. The middle panel shows that the fines dominate the number of particles; in the
present case there are 477 times as many fine particles as coarse. The right panel shows
the PSD. The black dashed line shows the -4 slope of a Junge distribution for comparison.

The radius parameter rvoi and index of refraction both depend on the aerosol type (dust,
sea salt, soot, etc.) and on the relative humidity Rh. The index of refraction generally
depends on wavelength. Figure 15.21 shows the effect of relative humidity on cumulative
volume and particle size distributions for an open-ocean aerosol (parameter values from
Ahmad et al. (2010a, Table 4)). Note that as Rh increases, the particles absorb more water
and increase in size, so the distributions shift to the right. The shape of the distribution
also changes with Rh.

As modeled in Ahmad et al. (2010a), the fine particles are generally of “continental”
origin and include both dust and soot. The fine particles are sometimes absorbing. The
coarse particles are of “oceanic” origin and are assumed to be non-absorbing sea salts.
The tables5 in Ahmad et al. (2010a) give the PSD parameters and indices of refraction for
different aerosol types (dust, sea salt, soot, etc.) and relative humidities.

5Table 1 of Ahmad et al. (2010a) has errors. The corrected table is given in Ahmad et al. (2010b)
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Figure 15.20: Illustration of aerosol volume, number, and particle size distributions. The
parameter values are for an open-ocean aerosol. The green curve is fine particles; blue is
coarse particles; red is the sum of fine and coarse particles. Each total curve is normalized
to 1 at its maximum value.

Figure 15.21: Effect of relative humidity Rh on the cumulative volume and particle size
distributions for a typical open-ocean aerosol. The curves in each panel are normalized to
1 at the maximum value of the three curves.

An aerosol’s physical properties determine its optical properties, namely its mass-,
number-, or volume-specific absorption a∗(λ) and scattering b∗(λ) coefficients and scatter-
ing phase function β̃(ψ, λ), where ψ is the scattering angle. If the particles are homogeneous
spheres, Mie theory can be used to compute the optical properties from the physical prop-
erties. This is often done, although the assumption of homogeneous spherical particles
may or may not be valid in a given situation. In any case, once the a∗(λ) and scattering
b∗(λ) coefficients are known, then given the concentration profile Conc(z) as a function
of altitude z, the extinction coefficient c(z, λ) = Conc(z)[a∗(λ) + b∗(λ)] can be computed.
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The aerosol optical thickness or aerosol optical depth is then given by

τa(λ) =

∫ TOA

z0

c(z, λ)dz ,

where z0 is the surface elevation. (Generally z0 = 0 for mean sea level, but may also be
the elevation of a lake, for example.)

For all else held fixed, the aerosol optical thickness at wavelength λ is approximately
related to the value at a reference wavelength λo by

τa(λ)

τa(λo)
=

(
λo

λ

)α
(15.45)

The parameter α is known as the Ångström exponent or Ångström coefficient. Smaller
(larger) particles generally have a larger (smaller) Ångström exponent.

The single scattering albedo ωo defined by

ωo(λ) =
b∗(λ)

c∗(λ)

is also of use in modeling the optical effects of aerosols on the radiance distribution.
Ahmad et al. (2010a) constructed look-up tables (LUTs) for 10 aerosol types and 8

relative humidities, for a total of 80 aerosol tables. The fine fraction was a mixture of 99.5%
dustlike and 0.5% soot particles (not modeled by Shettle and Fenn) for all 10 aerosol types,
which gives good agreement on average with AERONET measurements of aerosol optical
properties. The ten aerosol models have different weights of fine and coarse particles, but
the effective radius

reff =

∫
r3n(r)dr∫
r2n(r)dr

and mean radius

µo =

∫
rn(r)dr∫
n(r)dr

are the same. The aerosol types were then defined by letting the fine-to-coarse fraction
vary from 0 to 1. For each aerosol type, relative humidities of Rh = 30, 50, 70, 75, 80, 85,
90, and 95% were used. The actual aerosol LUTs contain the components of the model
from which to derive single-scattering aerosol reflectance ratios in each band (relative to
any reference band), plus a set of quadratic coefficients relating single to multiple scattering
(as in Gordon and Wang (1994a), plus a separate table of Rayleigh-aerosol diffuse trans-
mittance coefficients of the form t = A exp(−Bτa) (recall Eq. (15.23) of the Atmospheric
Transmittances section). Mie is theory used to compute the aerosol phase functions for
use in the radiative transfer model.

15.11.2 Black-pixel Calculations

The algorithm developed by Gordon and Wang (1994a) is used, although the original
aerosol models and LUTs have been updated as described in Ahmad et al. (2010a), and
model selection is now partitioned by relative humidity (Rh). (Gordon and Wang ignored
the glint term since they were considering SeaWiFS, whose viewing direction was chosen
to avoid direct Sun glint.)
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Beginning with Eq. (15.17) of the Normalized Reflectances section,

ρt = ρR + [ρa + ρRa] + Tρg + tρwc + tρw , (15.46)

The basic theory in Gordon and Wang (1994a) is developed using single-scattering theory,
in which case the ρRa term is zero because there is no multiple scattering. Multiple-
scattering effects are then added via numerical models using the guidance of the single-
scattering theory.

Assume that the corrections for Rayleigh, whitecaps, O3, NO2, and Sun glint have all
been made. Then the left hand side of

ρt − ρR − Tρg − tρwc = [ρa + ρRa] + tρw (15.47)

or
ρAw , ρA + tρw

is known. Here ρAw is just convenient shorthand for the measured TOA reflectance ρt with
the Rayleigh and other effects removed. The next task is to compute ρA, the combined
aerosol and aerosol-Rayleigh reflectance, and move it to the left hand side, after which the
desired ρw will be known.

Low-chlorophyll, Case 1 waters have negligible water-leaving radiance at near-infrared
(NIR) wavelengths, i.e. beyond roughly 700 nm. For such waters, it can be assumed that
ρw(λ > 700 nm) = 0, which is known as the “black-pixel” assumption. Let λ1 and λ2

be two NIR wavelengths, with λ1 < λ2. At these two wavelengths, the TOA normalized
reflectance (corrected as shown in Eq. (15.47)) is due entirely to atmospheric path radiance:
ρAw(λi) = ρA(λi), i = 1, 2. Table 15.4 shows the λ1 and λ2 bands for several sensors.

Band Label Wavelengths [nm] Nominal Wavelength [nm]

SeaWiFS

7 745-785 λ1 = 765

8 845-855 λ2 = 865

MODIS

15 743-753 λ1 = 748

16 862-877 λ2 = 869

VIIRS

M6 739-754 λ1 = 745

M7 846-885 λ2 = 862

Table 15.4: NIR bands used for aerosol correction.

Now consider the ratio

ε(λ1, λ2) ,
ρA(λ1)

ρA(λ2)
=

Black Pixel

ρAw(λ1)

ρAw(λ2)
(15.48)

The quantity ε(λ1, λ2), and more generally the quantity ε(λ, λ2) for any λ < λ2, depends
on the aerosol type, which is determined by the particle type, PSD, and relative humidity.
Figure 15.22 shows the dependence of ε(λ, λ2 = 865) for the ten aerosol models, for one
particular set of solar zenith angle, viewing direction, and relative humidity.

For the given image pixel being corrected, the process is as follows:
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Figure 15.22: Dependence of ε(λ, λ2 = 865) on aerosol model. The aerosol model is
determined by the value of the Ångström exponent α and the effective particle size reff .
All curves are for a particular Sun zenith angle θs, viewing direction θv, φv, and relative
humidity Rh, as shown. The black curve shows the qualitative behavior of ε(λ, λ2 = 865)
for a blue-absorbing aerosol.

• The relative humidity Rh is taken from NCEP.

• For each bounding Rh value in the family of 8 Rh values in the database, the cor-
responding family of 10 aerosol types in the database is then searched to find the
two aerosols types whose precomputed values of ε(λ1, λ2), call them εlow and εhigh,
bracket the measured value of ε(λ1, λ2) for the given Sun and viewing geometry.

• This selects two of the curves like those of Fig. 15.22, for which the corresponding
ε(λ, λ2) and τa values have been precomputed and stored in the aerosol LUT.

• It is assumed that the difference in the precomputed ε(λ, λ2) is at all wavelengths in
the same proportion as the measured ε(λ1, λ2) is to the bracketing values at the NIR
reference wavelengths. Thus let

∆ =
ε(λ1, λ2)− εlow(λ1, λ2)

εhigh(λ1, λ2)− εlow(λ1, λ2)
(15.49)

• The aerosol reflectance at all wavelengths is then computed from the measured
ρAw(λ2) and the tabulated εlow and εhigh values using

ρA(λ) = [(1−∆)εlow(λ, λ2) + ∆εhigh(λ, λ2)] ρAw(λ2) (15.50)

Now that ρA(λ) is known, Eq. (15.47) gives

tρw = ρAw − ρA = ρt − ρR − Tρg − tρwc − [ρa + ρRa] (15.51)
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Recall that t is the diffuse transmission in the viewing direction, and that tρw is the
contribution of water-leaving radiance (in reflectance form) at the TOA. The desired ρw

at the sea surface is thus obtained from

ρw =
ρAw − ρA

t
. (15.52)

The aerosol optical depth is computed at all wavelengths using the values of τ(λ2) and
the Ångström exponent in Eq. (15.45).

This technique rests on two main assumptions:

• The water-leaving radiance is negligible at the NIR reference wavelengths. This is
valid only for optically deep, Case 1 waters, with a chlorophyll concentration of
0.3 mg m−3 or less. Waters containing higher chlorophyll concentrations or mineral
particles will violate this assumption. Figure 15.23 shows an example of very turbid
water for which the remote-sensing reflectances at NIR wavelengths is not negligible.

• The aerosols are not strongly absorbing. Some mineral aerosols absorb strongly at
blue wavelengths but not in the NIR. Their ε(λ, λ2) functions look like the black
curve in Fig. 15.22. Thus their presence cannot be detected from the NIR TOA
radiances.

Note that these are unrelated assumptions: the water can have non-zero NIR reflectance
and the atmosphere can have non-absorbing aerosols, or there can be zero NIR reflecance
but absorbing aerosols. If the water-leaving radiance is not zero at the λ2 reference wave-
length, then the ρw contribution to ρAw will be interpreted as a larger aerosol concentration.
This leads to over-correction for the aerosol, i.e, subtracting too much ρA from ρTOA. The
resulting ρw is then too small, and can even be negative at blue wavelengths. Likewise, if
the aerosol is blue-absorbing, over-correction occurs at blue wavelengths and, again, ρw is
too small or even negative at blue wavelengths.

15.11.3 Non-black-pixel Calculations

Many ways to treat non-black pixels have been developed; the method currently imple-
mented by the OBPG is described in Bailey et al. (2010). This algorithm works as follows.

It is necessary to estimate Rrs(λ) (or equivalently ρw(λ)) at the NIR reference wave-
lengths so that the non-zero water-leaving radiance can be removed from the TOA signal,
leaving only the aerosol reflectance as the contribution to ρAw, from which the aerosol type
(i.e., ε(λ, λ2)) can be determined. However, Rrs(NIR) can’t be estimated until the aerosol
contribution is removed. Thus an iterative solution must be used to obtain both Rrs(NIR)
and the aerosol type.

The remote-sensing reflectance can be written

Rrs(λ) =
f(λ)

Q(λ)

bb(λ)

a(λ) + bb(λ)
. (15.53)

As discussed in detail on the Normalized Reflectances section, the f/Q factor describes the
angular distribution of the water-leaving radiance, i.e., the BRDF of the ocean. This factor
depends on the Sun and sky radiance distribution (parameterized by the solar zenith angle
θs and AOT τa), water-column IOPs (parameterized by the chlorophyll concentration Chl
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Figure 15.23: Examples of Rrs for Case 1 and Case 2 waters. Rrs is not zero in the NIR
for the Mississippi River Delta water.

in Case 1 waters), sea state (wind speed U), viewing direction (θv, φv), and wavelength. It
has been extensively studied and numerically modeled by Morel et al. (2002), who present
tabulated values as functions of θs, τa, θv, φv, Chl, U , and λ. Although the Morel et al.
(2002) f/Q table was generated for Case 1 waters, analysis shows (Bailey et al., 2010) that
it is often adequate for Case 2 waters as well. The f/Q factor is thus considered known
for the present calculations.

The iterative correction for waters where the black-pixel assumption cannot be made
has the following steps:

1. Assume that Rrs(765) and Rrs(865) are both 0, i.e. make the black-pixel assumption
for both NIR reference bands.

2. Complete the atmospheric correction process as described for black pixels. This gives
the initial estimate of ρw(λ), or equivalently Rrs(λ).

3. Use Rrs(443) and Rrs(555) from the initial estimate of Rrs(λ) to get η by the empirical
relationship (Lee et al., 2010, Eq. 8), (Bailey et al., 2010, Eq. 3)

η = 2

[
1− 1.2 exp

(
0.9

Rrs(443)

Rrs(555)

)]
. (15.54)

4. Use the initial Rrs(λ) to get an initial estimate of the chlorophyll concentration Chl.
The particular algorithm used to obtain Chl from Rrs(λ) depends on the sensor.

5. Use this Chl to obtain a(670) via the empirical relationship (Bailey et al., 2010, Eq.
4)

a(670) = exp[0.9389 ln(Chl)− 3.7589] + aw(670) . (15.55)

where the aw(670) = 0.439 m−1 is the absorption by pure water.
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6. Use a(670) and Rrs(670) in Eq. (15.53) to solve for bb(670) = bbw(670) + bbp(670),
where bbw(670) = 4.26× 10−4 m−1 is the backscatter coefficient for pure sea water.

7. Use η from Eq. (15.54) and (Bailey et al., 2010, Eqs. 2b and 3) to compute bb(765):

bb(765) = bbw(765) + bpb(670)

(
670

765

)η
(15.56)

where bbw(765) = 2.38 × 10−4 m−1. bb(865) is computed in the same manner using
bbw(865) = 1.41× 10−4 m−1.

8. Use this bb(765) and a(765) = aw(765) = 2.85 m−1 to get Rrs(765) from Eq. (15.53).
Similarly, compute Rrs(865) using bb(865) and aw(865) = 4.61 m−1.

9. Use the new, non-zero value of Rrs(765) (i.e. ρw(765)) to remove the non-zero ρw(765)
contribution to ρt(765). Do the same calculation for 865 nm.

10. Return to Step 2 and repeat the atmospheric correction using the black-pixel al-
gorithm. This will give a new (hopefully better) estimate of Rrs(λ), thus an new
estimate of the other parameters, and finally new estimates of Rrs(765) and Rrs(865)
at Step 8. After using the new values of ρw(765) and ρw(865) to correct for the non-
zero water contribution to ρt(765) and ρt(865), return to Step 2 for a new iteration.
Continue iterating until the change in Rrs(765) from one iteration to the next is less
than 2%, which typically takes 2-4 iterations, or when 10 iterations have been made.

If this iteration process fails to converge within 10 cycles, then re-initialize with ρa(NIR) =
0, i.e., set the NIR aerosol contribution to zero. This implies that all of the NIR reflectance
is due to the water (after correction for Rayleigh and Sun glint). Repeat the iteration until
convergence is reached. If convergence is still not reached, do one more calculation with
ρa(NIR) = 0 and flag the pixel as “atmospheric correction warning.” However, even in this
case, the retrieval may still be useful.

The above iteration is not done if the initial Chl estimate is less that 0.3 mg m−3,
and it is always done if the initial Chl estimate is greater that 0.7 mg m−3. To prevent
discontinuities in the final results, the Rrs(765) estimate is linearly weighted from 0 to 1
for 0.3 ≤ Chl ≤ 0.7. Figure 15.24 shows the regions of the ocean where the non-black-pixel
algorithm is likely to be applied.

Finally, rather than the exact NIR reference wavelengths of λ1 = 765 and λ2 = 865
shown above, in practice band-averaged IOP values are used for the particular sensor.
Thus for VIIRS-NPP, the reference bands are centered at 745 and 862 nm, with the band-
averaged aw(745) = 2.806 m−1, and so on. Band averaged IOPs for different sensors are
given at NASA ocean color documents.

15.11.4 Strongly Absorbing Aerosols

The aerosol models of Ahmad et al. (2010a) discussed in Section 15.11.2 include a small
fraction of absorbing soot for the fine part of the aerosol size distribution. These aerosol
models are used for routine correction for aerosols. These models, however, cannot account
for the presence of strongly absorbing aerosols, which frequently occur in coastal regions
downwind from continents, and even in mid-ocean regions because winds can transport
fine dust particles long distances.

http://oceancolor.gsfc.nasa.gov//DOCS/RSR_tables.html
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Figure 15.24: Regions of the ocean where the non-black-pixel correction is likely to be
applied, based on SeaWiFS climatology. Land is black, gray is Chl < 0.3 mg m−3 (where
the correction is not applied), and white is Chl > 0.3 mg m−3 (where the correction is
applied). (Bailey et al., 2010, Fig. 3), used by permission.

Strongly absorbing aerosols (especially at blue wavelengths) have been a topic of much
research over the years (e.g., Gordon et al., 1997b). However, as was illustrated in Fig.
15.22, there is no reliable way to detect the presence of absorbing aerosols from the NIR
bands of Table 15.4 during the atmospheric correction process. Therefore, all pixels are
processed using the algorithms for non- or weakly absorbing aerosols as described in the
previous sections.

15.12 Out-of-band Response

Figure 15.25 shows the sensor response functions (SRF) of the MODIS-Aqua bands used
for ocean color remote sensing; each response function is normalized to 1 at its maximum.
Visually, in this plot with a linear ordinate axis, the bands appear to be well defined and
narrow, with full-width, half-maximum (FWHM; the wavelengths at which the function is
one-half of its maximum) widths of 10 to 15 nm. However, when plotted with a logarithmic
ordinate as in Fig. 15.26, it is seen that there is significant “out-of-band” (OOB) sensitivity;
i.e., a non-zero response outside the nominal band width. In each plot, the black curve
represents a TOA radiance with a wavelength dependence of λ−4.

Rayleigh scattering with a λ−4 dependence dominates the total TOA radiance. If a
radiance with such a wavelength dependence is measured by sensors having the response
functions shown in Figs. 15.25 and 15.26, the total measured radiance in the ith band over
the 380-1100 nm range shown in the figures will be (Gordon, 1995, Eq. 8)

Li(total) =

∫ 1100
380 LTOA(λ)SRFi(λ) dλ∫ 1100

380 SRFi(λ) dλ
.

Define the “in-band” part of the total signal to be the part detected between chosen lower
(λlow) and upper (λup) wavelengths. The OBPG uses the wavelengths at which the SRF
drops to 0.1% of its maximum value to define the lower and upper boundaries of the in-band
region. For the nominal 488 nm band, for example, λlow = 460nm and λup = 503nm. (The
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Figure 15.25: Relative sensor response functions (SRF) for the MODIS-Aqua bands used
for ocean color remote sensing. The black curve represents a TOA radiance proportional
to λ−4. (Data from from NASA ocean color documents)

FWHM boundaries for the 488 nm band are FWHMlow = 482nm and FWHMup = 493nm.)
The part of the measured radiance that comes from in-band wavelengths is then

Li(in band) =

∫ λup

λlow
Lt(λ)SRFi(λ) dλ∫ 1100

380 SRFi(λ) dλ
, (15.57)

with similar equations for the out-of-band contributions at wavelengths less than λlow

and greater than λup. Numerical integration shows that for a λ−4 TOA radiance and
the nominal 488 nm band, 99.24% comes from the in-band wavelengths, 0.55% comes
from out-of-band response at wavelengths less than λlow = 460 nm, and 0.20% comes
from out-of-band response at wavelengths greater than λup = 503 nm. For the 866 nm
band, the corresponding numbers are 99.22% in-band, 0.63% from wavelengths less than
λlow = 843 nm, and 0.16% comes from wavelengths greater than λup = 891 nm. Thus,
for the MODIS-Aqua bands, almost 1% of the TOA radiance attributed to a nominal
bandwidth actually comes from outside that band. This magnitude of misattribution of
radiances between bands is significant and requires correction for proper interpretation of
measured data.

Gordon (1995) points out that the OOB corrections must be applied separately to
the individual components of the TOA radiance because the OOB response depends on
the spectral shape of the radiance. That is, separate corrections must be applied to the
Rayleigh, aerosol, and water-leaving radiances. Those corrections are built into the sensor-
specific Rayleigh and aerosol look-up tables described above. This section describes how

http://oceancolor.gsfc.nasa.gov/DOCS/RSR_tables.html
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Figure 15.26: Same as Fig. 15.25 except that the ordinate axis is logarithmic to show the
out-of-band response.

the OOB correction is applied to the remote-sensing reflectance Rrs after the preceding
steps of the atmospheric correction process have been carried out.

It should be noted that OOB corrections are also required when comparing measure-
ments made by sensors having different spectral responses. This happens, for example,
when comparing a nominal MODIS 412 nm band value with an in-situ measurement made
by a multispectral radiometer having a nominal 412 band. The filters in the MODIS and
in situ radiometer instruments will not have exactly the same spectral responses or nom-
inal bandwidths. In general, it is desirable to reference any measurement to what would
be obtained by an ideal sensor with a perfect response function defined by the nominal
FWHM. This is illustrated in Fig. 15.27 for the MODIS-Aqua 412 band and a sensor with
a perfect “top hat” response for 407 ≤ λ ≤ 412 nm. For a radiance with a λ−4 wavelength
dependence, 18.1% of the MODIS nominal 412 band response comes from λ < 407, 60.5%
comes from within the nominal 10 nm bandwidth of the perfect sensor, and 21.4% comes
from λ > 412 nm.

Figure 15.28 shows Rrs(λ) as computed for Case 1 water using a model of the type
developed in Morel and Maritorena (2001) for Kd(λ) and R(λ).

For each nominal sensor band labeled by λi, i = 1, ..., Nbands, and for each chlorophll
value Chlj , j = 1, ..., NChl, the Rrs(λ) spectra of Fig. 15.28 are used in equations of the
form of (15.57) with appropriate integration limits to compute:

• R11
rs (λi, Chlj) = The mean Rrs over idealized 11-nm bandwidths (center wavelength
±5 nm) corresponding to the nominal satellite bands (as illustrated by the gray 412
nm band in Fig. 15.27)
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Figure 15.27: The MODIS-Aqua relative sensor response (purple) and a perfect sensor with
a 10-nm FWHM (gray shading). The black line represents a radiance proportional to λ−4.

Figure 15.28: Rrs(λ) spectra as functions of the chlorophyll concentration.

• Rfull
rs (λi, Chlj) = Rrs computed using the full spectral response function for the ith

sensor band.
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• The ratio

r(λi, Chlj) =
R11

rs (λi, Chlj)

Rfull
rs (λi, Chlj)

. (15.58)

Figure 15.29 illustrates the results of these calculations for the SeaWiFS nominal 555 nm
band. This figure shows chlorophyll values only for Chl ≤ 3 mg m−3, which was felt to be
the upper limit of reliability of the chlorophyll-based Rrs(λ) model of Fig. 15.28. A similar
figure can be drawn for each sensor band. If the chlorophyll concentration were known,
a rearrangement of Eq. (15.58) and ratio curves like that of Fig. 15.28 could be used to
compute the correction to the measured Rfull

rs for the ith band.

Figure 15.29: R11
rs (λ555, Chlj) (red dots), Rfull

rs (λ555, Chlj) (black squares), and the ratio
r(λ555, Chlj) (blue line, right ordinate axis) for the SeaWiFS nominal 555 nm band.

However, the chlorophyll concentration is not yet known. To proceed, the r(λi, Chlj)
curves like the one shown by the blue line of Fig. 15.29 are used to compute correction
factors r(λi) as functions of the ratio of the uncorrected Rrs(490 nm) to the uncorrected
Rrs(555nm). Each chlorophyll value shown in figures like 15.29 for the various bands gives a
point like those shown in Fig. 15.30 for r(555) versus the uncorrected Rrs(490)/Rrs(555). A
corresponding set of r(λi) points is computed for each band, but in each case as a function
of Rrs(490)/Rrs(555). (This choice of the ratio of 490 to 555 nm for the independent
variable traces back to SeaWiFS, for which these were the most trustworthy bands.) A
best-fit function to the set of points so generated is then found for each of the r(λi) versus
Rrs(490)/Rrs(555) functions.

These functions are then used to apply the OOB correction to the measured Rrs(555)
values as follows. Given the measured full-band (uncorrected) Rrs(i), the value of
Rrs(490)/Rrs(555) is used to evaluate the functional fit to the points of Fig. 15.30 in order
to obtain the correction to be applied to the Rrs(555) value. The corresponding functions
for the other bands are used to correct those bands. For example, the fit to r(412) versus
Rrs(490)/Rrs(555) is used to correct the 412 nm band, and so on. If the Rrs(490)/Rrs(555)
value is outside the range of the points used for the data fit as illustrated in Fig. 15.30,
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Figure 15.30: Out-of-band correction factor for the SeaWiFS 555 nm band as a function
of the ratio of the uncorrected Rrs(490) to Rrs(555).

the value of the nearest point is used, rather than extrapolating with the fitting function
beyond the range of the underlying data.

The Rrs(i) functions were developed using a Case 1 model for Rrs(λ) as shown in Fig.
15.28. Case 2 waters can have much different Rrs(λ) spectra and therefore should have
different OOB corrections. However, in practice, Case 2 waters have the same correction
applied as for Case 1 waters.

A final comment is warranted regarding the use of this out-of-band correction when
comparing satellite-derived and in-situ measurements of Rrs (e.g, when doing vicarious
calibration):

• If comparing a multispectral satellite band Rrs with in an in situ multispectral mea-
surement, perform the OOB adjustment to the satellite data. (Of course, an ad-
justment should also be made to the in situ values based on the relative spectral
responses SRF (λ) of the in situ radiometer.)

• If comparing a multispectral satellite band Rrs with in an situ hyperspectral measure-
ment that has been filtered with a 10 nm bandpass filter, perform the adjustment.

• If comparing a multispectral satellite band Rrs with an in situ hyperspectral mea-
surement that has not been filtered, do not perform the OOB adjustment to the
satellite data. However, the hyperspectral in situ spectrum should processed using
the satellite sensor SRF (λ) spectra. That is, replace the spectrum used in integrals
of the form of Eq. (15.57) with the hyperspectral Rrs(λ).

Performing the OOB adjustment is the default for processing imagery at OBPG. There-
fore, if a user wants to compare satellite data with unfiltered hyperspectral data as in the
third bullet above, the standard Level 2 files cannot be used. The user would need to
begin with the Level 1b TOA radiances, disable the OOB correction in the atmospheric
correction software, and reprocess the TOA radiances to Level 2.
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15.13 Polarization

Radiance leaving the top of the atmosphere can be strongly polarized even though the
Sunlight incident onto the TOA is unpolarized. This is because scattering by atmospheric
constituents, reflection by the sea surface, and scattering within the water all can generate
various states of polarization from unpolarized radiance. Although remote sensing as con-
sidered here is based on the total TOA radiance without regard to its state of polarization,
many instruments are sensitive to polarization. Therefore, the total TOA radiance they
measure may depend on the state of polarization of the TOA radiance and the orientation
of the instrument relative to the plane of linear polarization. Correction for these effects
is required so that instruments give consistent measurements of the total TOA radiance.

The MODIS sensors are polarization sensitive. MODIS radiance measurements vary
by up to ±5.4% for totally linearly polarized radiance, depending of the orientation of
the sensor relative to the plane of polarization. This amounts to about ±3% differences
in measured TOA radiances for typical values of atmospheric polarization (Meister et al.,
2005). These effects must be accounted for in order to achieve the desired 0.5% accuracy
in measured TOA radiance. Similarly, the VIIRS instrument polarization sensitivity is
1-2% and requires a polarization correction. SeaWiFS by design was not very sensitive to
polarization (< 0.25%), and no polarization correction was applied.

As explained in Section 1.6.2, the state of polarization is described by the four-component
Stokes vector [I,Q, U, V ]T, where superscript T denotes transpose, I is the total radiance
without regard for its state of polarization, Q specifies the linear polarization resolved in
planes parallel and perpendicular to a conveniently chosen reference plane, U specifies the
polarization resolved in planes oriented ±45 deg to the reference plane, and V specifies
the right or left circular polarization. The choice of the reference plane for specification
of the Q and U components is arbitrary and can be made for convenience. The direction
of propagation of the radiance is given by a unit vector î, so that the Stokes vector can
be written as I = [I,Q, U, V ]Tî when it is desired to indicate both its components and
direction. Direction î can be specified by the polar (θ) and azimuthal (φ) directions in
a spherical coordinate system as shown in Fig. 15.31. In that figure, θ̂ and φ̂ are unit
vectors specified by the directions of increasing θ (θ = 0 at the pole or ẑ direction in a c
Cartesian coordinate system) and increasing φ (φ = 0 in a conveniently chosen azimuthal
direction such as x̂ pointing east or toward the Sun).

In the geophysical setting, it is customary to define the Stoke vector components Q
and U with reference to a plane defined by the normal to the sea surface and the direction
of propagation of the radiance. This plane is known as the meridional plane and is partly
shaded in light blue in Fig. 15.31. Following the notation and choices of Gordon (1997), let
r̂t = φ̂ be the reference direction perpendicular to the meridional plane, and let l̂t = −θ̂
be the reference direction parallel to the meridional plane. The direction of propagation of
the radiance to be measured is then î = r̂t× l̂t. The total TOA radiance resolved in these
directions is denoted I t = [It, Qt, Ut, Vt]

T î.

This radiance is being measured by a sensor illustrated by the red rectangle in Fig.
15.31. The Stokes vector measured by that sensor has its Q and U components resolved
along perpendicular (r̂) and parallel (l̂) directions chosen for convenience relative to the
orientation of the sensor. The sensor will measure the TOA radiance as a Stokes vector
I m = [Im, Qm, Um, Vm]T î. For an incident radiance I , the optical system comprising the
sensor itself and any associated optical components (mirrors, lenses, etc.) will convert
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Figure 15.31: Angles and directions used in specification of Stokes vectors. The blue-shaded
wedge indicates the meridional plane used to define the TOA Stokes vector I t defined via
the blue unit vectors; the red-shaded rectangle represents the sensor that measures I m

defined via the red unit vectors.

the incident radiance into a measured value given by I m = M I , where M is the 4 × 4
Mueller matrix that describes the optical properties of the sensor optical system. M is
defined relative to the sensor reference directions r̂ and l̂. In order for M to operate on
the TOA radiance I t, which is defined with reference directions r̂t and l̂t, I t must first
be transformed (rotated) from the meridional-based r̂t, l̂t system to the sensor-based r̂, l̂
system.

Let α = cos−1(l̂t · l̂) be the angle between the parallel reference directions for I t and
for the sensor. With the choice of α being positive for clockwise rotations from l̂t to l̂ as
seen looking “into the beam” (looking in the −î direction), the transformation is given by
the 4× 4 rotation matrix

R(α) =


1 0 0 0

0 cos(2α) sin(2α) 0

0 − sin(2α) cos(2α) 0

0 0 0 1

 . (15.59)

Thus, the radiance as measured by the sensor is

I m = M R(α)I t . (15.60)

It is important to note that the radiance measured by the sensor, I m depends both on the
“true” TOA radiance I t, the sensor optical properties via M , and the orientation α of the
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sensor relative to the local meridional plane. M is fixed for a given sensor, but I t and
α change from moment to moment as the sensor orbits and views the TOA radiance in
different locations and directions. (To be exact, there are long-term changes to M caused
by degradation of the sensor optical surfaces. These changes are monitored on-orbit and
corrected by a cross-calibration technique.)

The quantity of interest here is the measured TOA radiance magnitude, which is given
by the first element of the Stokes vector. Using (15.59) in Eq. (15.60) gives this to be

Im = M11It+M12[cos(2α)Qt + sin(2α)Ut]

+M13[− sin(2α)Qt + cos(2α)Ut] +M14Vt . (15.61)

Clearly, if M11 = 1 and all elements of M other than the M11 element are zero, then the
sensor is not sensitive to the state of polarization and Im = It. Physical arguments and
numerical simulation show the circular polarization of the TOA radiance is very small:
|Vt| ≤ 10−3It. This term is therefore neglected in the present correction algorithm. It
is customary to define the elements of the reduced Mueller matrix by mij , Mij/M11.
Similarly defining reduced Stokes vector element by qt , Qt/It and ut , Ut/It, Eq. (15.61)
becomes

Im = It{1+m12[cos(2α)qt + sin(2α)ut]

+m13[− sin(2α)qt + cos(2α)ut]} . (15.62)

Gordon et al. (1997a) give the general procedure for measuring m12 and m13 in the labora-
tory. Meister et al. (2005) give the details of these measurements for the MODIS sensors.
These quantities, which specify the polarization sensitivity of the instrument, are deter-
mined before the instrument is launched; they are thus known. Angle α is determined by
the orbit and pointing geometry of the sensor. It remains to determine the elements of I t.

Following Eq. (15.3) of the Problem Formulation section, the total TOA polarized
radiance can be decomposed as

I t = I R + I a + I Ra + TI g + tI wc + tI w . (15.63)

Here, as before, the Rayleigh (R), aerosol (a), and Rayleigh-aerosol (Ra) radiances are
at the TOA; the glint (g), whitecap (wc), and water-leaving (w) radiances are at the sea
surface. The surface values are transmitted to the TOA via the appropriate direct (T )
and diffuse (t) transmittances. According to Eq. (15.60), each of these radiances must be
known in order to predict what the sensor will measure for a given TOA radiance and,
thereby, to determine the correction needed to account for sensor polarization effects.

The surface-glint and atmospheric polarization contributions to the TOA signal are
computed separately. Sea-surface glint can be highly polarized. This glint contribution to
the TOA signal is computed using a vector radiative transfer code assuming a Rayleigh-
scattering atmosphere above a rough Fresnel-reflecting ocean surface (Gordon. and Wang,
1992; Wang, 2002), meister2005. The water-leaving radiance is at most 10% of the TOA
total, and the whitecap contribution is generally even less. These two terms are therefore
ignored in the present development. The effect of aerosols and Rayleigh-aerosol interac-
tions depends on the particle size distribution and concentration of the aerosols, which are
unknown during atmospheric correction. Fortunately, numerical simulations show that the
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Rayleigh contribution to the TOA polarization is usually much greater than the aerosol-
related contributions. Therefore, the aerosol contributions are also ignored and the polar-
ization correction is based on the TOA Rayleigh radiance. The total TOA Stokes vector
is then modeled as the sum of the glint and Rayleigh contributions.

Meister et al. (2005, Eq. 15) defines the polarization correction via pc , Im/It. Equa-
tions (15.61) and (15.62) allow this to be written as

pc =
1

1−m12[cos(2α)Qt + sin(2α)Ut]/Im −m13[− sin(2α)Qt + cos(2α)Ut]/Im
.

As applied during atmospheric correction, the unknown total TOA radiance components
Qt and Ut are replaced by the corresponding TOA Rayleigh components QR and UR.
The Rayleigh components are precomputed and tabulated for use during the first step
of the atmospheric correction process, namely the removal of the Rayleigh contribution as
described in Section 15.7. The end result is that the actual measured value Im is used along
with the Rayleigh radiance for the given atmospheric conditions and viewing geometry to
obtain an estimate of the TOA radiance via

It = Im−m12[cos(2α)QR + sin(2α)UR]

−m13[− sin(2α)QR + cos(2α)UR] . (15.64)

Gordon et al. (1997a) show that this approximate polarization correction is acceptably
accurate (errors ∆It/It < 0.01 so long as the error has the same sign throughout the
spectrum) when m12 is independent of wavelength and less than about 0.1 in magnitude.
If m12 depends on wavelength, the approximation does not perform well for m12 as small as
0.02. Application of this polarization correction to MODIS Aqua imagery shows (Meister
et al., 2005) that the polarization correction pc is largest at blue wavelengths (the MODIS
412 nm band), where pc lies in the range of 0.978 to 1.032.

[This section ends the discussion of the atmospheric correction algorithms used by the
NASA Ocean Biology Processing Group for processing of satellite imagery.]

15.14 Empirical Line Fits

[Contributors to this section include Richard Zimmerman and Victoria Hill of Old Domin-
ion University, who made the field measurements and developed the ELFs; Paul Bissett
(then at WeoGeo, Inc.), who provided the WV2 image; and Curtis Mobley.]

The “black-pixel” technique discussed in the Aerosols Section 15.11.2 works well in
many open-ocean situations, but it is not applicable if the water-leaving radiance is not
very close to zero at the near-IR wavelengths used to model the aerosol scattering. This can
occur for two reasons. First, if the water contains mineral particles, these highly scattering
particles can give a significant amount of water-leaving radiance even out to 1000 nm
and beyond. Such particles are common in coastal waters because of inputs by rivers
or sediment resuspension by strong currents. Second, if the water is clear and less than
a meter deep, there can be significant water-leaving radiance due to bottom reflectance,
especially for bright sand bottoms.

Case 2 and shallow waters are of great interest for reasons such as ecosystem manage-
ment, recreation, and military operations, and such waters are often observed from aircraft
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with hyperspectral imaging sensors. New techniques have been developed for atmospheric
correction of such imagery.

In general, we need an atmospheric correction technique that

• works for any water body (Case 1 or 2, deep or shallow),

• works for any atmosphere (including absorbing aerosols), and

• does not require zero water-leaving radiance at particular wavelengths (no black-pixel
assumption).

Two basic atmospheric correction methods have been developed in response to these
needs. The first of these is a correlational technique called empirical line fitting, which
is discussed in this section. The second, discussed in the next section, uses atmospheric
radiative transfer calculations.

The essence of the empirical line fit (ELF) technique is as follows:

• Make field measurements of the remote-sensing reflectance Rrs(λ) [or water-leaving
radiance Lw(λ), or non-dimensional reflectance ρw(λ), or whatever is needed by your
retrieval algorithms] at the same time as the image acquisition and at various points
within the imaged area.

• The Rrs(λ) measurements at various points in the imaged area are then correlated
with the at-sensor measurements for the image pixels viewing the stations where
Rrs(λ) was measured. The at-sensor spectra can be in any units, e.g. radiance
or digital counts. The correlation functions that convert at-sensor spectra to sea-
surface Rrs(λ) values are the empirical line fits. A different ELF is obtained for each
wavelength.

• Assume that the atmospheric conditions, surface waves, and illumination are the
same for every pixel in the image.

• The ELFs, which were developed from a few image pixels, are then used to convert
the at-sensor measurements to sea-level Rrs(λ) spectra for every pixel in the image

To illustrate how this process works, ELFs were developed for a DigitalGlobe WorldView-
2 image of shallow Case 2 waters in St. Joseph’s Bay, Florida, USA. WorldView-2 (WV2) is
a commercial satellite that provides high spatial resolution (approximately 2 m pixel size),
8-band multispectral imagery. Figure 15.32 shows an RGB image of this area, created from
WV2 bands 5 (656 nm), 3 (546 nm) and 2 (478 nm) for the red, green, and blue values.
The area includes some dry land (at the lower left of the image), areas of dense bottom
vegetation (reddish color in this image), clean sand bottom (white to green, depending on
depth), and an optically deep channel (darkest area). These Case 2 waters are optically
deep (the bottom cannot be seen) for depths greater than about 3 m.

Hyperspectral Rrs(λ) measurements were made from a small boat at 10 stations in St.
Joseph’s Bay. Those spectra were then weighted by the WV2 spectral response functions
for each of the 8 bands to obtain multispectral Rrs(λ) spectra that correspond to the 8
WV2 bands. Figure 15.33 shows the relative spectral response of the 8 WV2 bands. Thus
Rrs(j), the equivalent of Rrs(λ) corresponding to WV2 band j, is obtained from

Rrs(j) =

∫ 1100
400 wj(λ)Rrs(λ)dλ∫ 1100

400 wj(λ)dλ
,

https://www.satimagingcorp.com/satellite-sensors/worldview-2
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Figure 15.32: RGB image created from the WorldView-2 image of the south end of St.
Joseph’s Bay, Florida. This image covers about 6.3 km2 and is 1400× 1297 pixels.

where wj(λ), j = 1, ..., 8 is the spectral response function for band j as seen in Fig. 15.33.
Figure 15.34 shows one of the measured hyperspectral Rrs(λ) spectra and the corresponding
values for the WV2 bands.

Figure 15.33: Normalized WV2 spectral response functions.

Each of the WV2 image pixels “looking” at the 10 ground stations was then used to
correlate the WV2 top-of-the-atmosphere (TOA) band values in digital counts (DC) with
the sea-level Rrs(j) values for each of the 8 bands. Figure 15.35 shows the results for
WV2 band 3, which is centered at 546 nm. The best-fit line to these 10 points is the ELF
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Figure 15.34: Example of a measured hyperspectral Rrs(λ) spectrum and the 8 values
corresponding the the WV2 multispectral bands.

for this wavelength band. In this example, the ELFs convert the TOA measurements in
digital counts to sea-level Rrs(j) values in units of sr−1. These ELFs, obtained from only
10 points, are then applied to every pixel in the image. Note that the measured Rrs(λ)
spectra correspond to different water IOPs, bottom depths, and bottom types, but the
atmospheric conditions and viewing geometry (and resulting atmospheric path radiance)
are assumed to be the same at each ground station.

Figure 15.35: Rrs(j = 3) values for the 10 ground stations, and the corresponding TOA
radiances in digital counts. The red line is the ELF for this wavelength band.

Figure 15.36 shows an example WV2 TOA spectrum (excluding the two bands in the
IR) and the corresponding sea-level Rrs spectrum obtained from the 6 ELFs. Note for band
3, for example, that the TOA value of 170 DC is converted to an Rrs value of 0.0057 sr−1,
in accordance with the ELF of Fig. 15.35.
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Figure 15.36: Example of conversion of a TOA spectrum in digital counts (DC) to a sea-
level Rrs in sr−1.

The advantages of the ELF technique are

• The ELFs account for atmospheric path radiance for any atmospheric conditions,
without the need to know what these conditions are. No atmospheric measurements
are needed.

• The technique works for shallow or Case 2 waters, for which Lw(λ) is not zero.

• The technique works for any Sun and sensor geometry, or sensor altitude (airborne
or satellite sensors).

The disadvantages of the ELF technique are

• Field measurements of Rrs(λ) must be made at the time of image acquisition, which
is labor intensive and often impossible.

• A set of ELFs is valid only for the one image used for their development. ELFs for
one image cannot be applied to a different image of the same area, or to a different
area, because the atmospheric conditions, or Sun and viewing geometry, will differ
for other locations and times.

• The field measurements always contain errors, which introduces an unknown amount
of error into the ELFs, hence into the final Rrs(λ) spectra.

• The same ELFs are applied to all image pixels, even though the atmospheric and
water conditions and viewing geometry may vary from one part of the image to
another. (For airborne sensors, the viewing geometry and atmospheric path radiances
can vary greatly from one part of an image to another.)

15.15 Radiative Transfer Techniques

As just seen, the empirical line fit technique has the virtues that it works in principle
for any atmosphere and no atmospheric measurements are needed. However, it has the
disadvantage that it requires field measurements of Rrs(λ) to use in developing the ELF
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functions. These are often impossible to obtain and certainly are not practicable for routine
observation of large areas. The ELF technique also does the same atmospheric correction
for every image point, even though for airborne imaging the viewing geometry may be
significantly different for different image pixels.

Radiative transfer techniques take the sophisticated approach of numerically comput-
ing the atmospheric path radiance for each pixel in an image. The virtue of this approach
is that every image pixel can get a different atmospheric correction, which can account
for differences in viewing geometry or even for differences in atmospheric conditions in
various parts of the image. The disadvantage of this approach is that the atmospheric con-
ditions must be measured in the field at the time of image acquisition, or perhaps obtained
from atmospheric forecast models, in order to obtain the inputs needed to compute the
atmospheric path radiance for each pixel.

A pioneering radiative transfer model developed for atmospheric correction of airborne
hyperspectral images over water is the TAFKAA code developed by the U.S. Naval Re-
search Laboratory (Gao et al., 2000; Montes and Gao, 2004). TAFKAA is based on the
earlier ATREM6 (ATmospheric REMoval) code of Gao and Goetz (1990). Other such
codes exist (e.g., ACORN and FLAASH; see the comparison in San and Suzen (2010)),
but they are used primarily for terrestrial remote sensing. TAFKAA is discussed here
because one of its versions is designed for the particular problems of oceanic hyperspectral
remote sensing. (One TAFKAA version is designed for terrestrial imagery and does not
remove surface reflectance; the other version is designed for ocean imagery and can remove
sea-surface reflectance.)

When using a radiative transfer code such as TAFKAA, the Sun and viewing geometry
for each pixel are known from the location, time, sensor altitude and heading, and pixel
location in a georectified image. If atmospheric conditions such as sea-level pressure; aerosol
type, altitude, and optical thickness; and humidity are known, the path radiance can be
computed for each path from pixel to sensor. Knowing the wind speed allows for a estimate
of the background sky reflectance by the sea surface to be computed. These path radiance
calculations are performed with an atmospheric radiative transfer model, usually including
polarization. Such calculations are computationally intensive, so one set of calculations
is performed for a wide range of conditions to create a look-up table of path radiances
(and other factors, such as atmospheric transmittances). Given the viewing geometry and
atmospheric conditions for a pixel, interpolation in the look-up table is used to obtain the
appropriate wavelength-dependent path radiance and surface reflectance to subtract from
the at-sensor radiance or reflectance to obtain the water-leaving radiance or reflectance at
the sea surface.

The original TAFKAA look-up table included path radiances and atmospheric trans-
mittances for the following grid of values:

• 5 aerosol types (maritime, 2 coastal, tropospheric, and urban)

• 5 relative humidities (50, 70, 80, 90, and 98%)

• 10 aerosol altitudes from 0 to 84 km

• 10 aerosol optical depths from 0.0 to 2.0 (at 550 nm)

• 9 solar zenith angles from 1.5 to 72 deg.

6Indeed, TAFKAA stands for The Algorithm Formerly Known As ATREM.
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• 17 off-nadir viewing angles from 0 to 88 deg

• 17 azimuthal viewing angles from 0 to 180 deg, relative to the Sun

• 17 wavelengths from 390 nm to 2.25 µm

• 3 wind speeds of 2, 6, and 10 m s−1

This grid of inputs required about 332 million solutions of the vector radiative transfer
equation. These calculations required many months of computer time, but they needed to
be done only once.

When processing an image, the user inputs the image information (location, time,
aircraft or satellite altitude and heading, georectification information) and atmospheric
conditions. TAFKAA can then look up the appropriate value to subtract from each at-
sensor spectrum, interpolating as necessary in the look-up table. If no aerosol information
is available, then TAFKAA defaults to making a “black-pixel” assumption and estimating
the aerosol type from wavelengths of 750 and 865 nm (if no wavelengths greater than 1000
nm are available in the image), as previously described. TAFKAA allows the user to input
a file with the sensor wavelength responses for the different wavelength bands, so that
TAFKAA output matches a particular sensor’s wavelength response as closely as possible.
Inputs to TAFKAA are made via an ENVI-format image header file. Applications of
TAFKAA can be seen at Montes et al. (2003) and Goodman et al. (2003).

There are assumptions in the TAFKAA calculations that limit its applicability or ac-
curacy. The water-leaving radiance is assumed to be Lambertian; this excludes modeling
multiple scattering effects between the water-leaving radiance and the atmosphere. It is
assumed that the viewing geometry avoids direct Sun glint; thus TAFKAA cannot correct
Sun glint in an image. The surface reflectance calculations for background sky radiance
cannot correct for swell effects. The code does not interpolate in wind speed. Neverthe-
less, given the needed atmospheric information, TAFKAA provides adequate atmospheric
corrections for a wide range of imagery and environmental conditions. However, as with
any such model, if the inputs do not describe the imaged environment, the TAFKAA
corrections can be poor.
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Photometry and Visibility

In general the well defined and objectively measured quantities of geometrical radiometry
are used in quantitative studies of optical oceanography, remote sensing, and radiative
transfer. However, there are times when, either unavoidably or by choice, the human eye
becomes one of our instruments. Such is the case when we enjoy the beautiful colors of
nature or when someone observes the appearance of a distant object as a semi-quantitative
measure of the clarity or “visible range” of the atmosphere or ocean. In other instances,
the eye-brain system may be the preferred instrument, as in visual searches for underwater
objects. We therefore must understand how the human visual system responds to radiant
energy. This takes us into the domain of photometry, which, for our present purpose,
is defined as the study of the human visual response to the quantities of geometrical
radiometry. Photometry provides the theoretical structure for understanding visibility, in
particular for predicting whether or not an object will be visible under given environmental
conditions.

Perhaps the first person interested in underwater visibility was Alexander the Great
around 330 BCE. Legend says that he had constructed “a very fine barrel made entirely
of white glass” in which he had himself lowered into the sea as shown in Fig. 16.1. The
first underwater photograph was made in 1893, and the first underwater color photograph
was made in 1923. The first movie filmed in part underwater was a 1916 adaptation of
Jules Verne’s 20,000 Leagues Under the Sea.1 Mertens (1970) gives a short review of this
history. Today underwater visibility and imaging have a wide variety of applications such
as visual searches for objects in marine archaeology and recreational scuba diving and, of
course, military applications.

This chapter first covers the basic ideas of human visual response and visibility, begin-
ning with an overview of how the eye senses light and color. The next topic discussed is the
photopic luminosity function, which describes the spectral response of the average human
eye, and luminance, which corresponds to the visual sensation of brightness. Luminance
is an inherently broad-band (all visible wavelengths) correspondent of monochromatic ra-
diance. An equation for luminance transfer is then developed from the monochromatic

1You can watch the entire movie at https://www.youtube.com/watch?v=QsrXuyjci7U There is a 20
minute segment of underwater scenes starting at 39:10. Although murky, these images were wildly popular
with audiences of a century ago, who had never seen the underwater world.
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Figure 16.1: Alexander the Great
in his glass diving bell. From an
illuminated manuscript circa 1400,
now in the Bodleian Library at Ox-
ford University (MS. Bodl. 264).

radiative transfer equation. This requires the development of photopic (broad-band) re-
placements for wavelength-dependent inherent optical properties. The quantitative spec-
ification of color via CIE chromaticity coordinates is then developed. The introductory
material closes with a discussion of the relation between CIE chromaticity coordinates and
the red-green-blue RGB values used by computer monitors.

The mathematical formulation of classical visibility theory is then developed. A lumi-
nance transfer equation, corresponding the the radiative transfer equation for monochro-
matic light, is first developed. Whether or not an object can be seen depends on the visual
contrast between the object and its background. This is quantified by the inherent and
apparent contrast, and a law of contrast reduction is developed. These tools give us what is
needed to understand the theory of the Secchi disk and the prediction of the Secchi depth.

Appendix G develops a rigorous mathematical framework for image propagation through
absorbing and scattering media.

16.1 Human Color Vision

Writing this section is something of a no-win undertaking. How the eye works and how
humans perceive color are so complicated that anything I say will be a great oversimpli-
fication and therefore open to criticism (justly deserved) that what I’m saying isn’t quite
correct. Indeed, half a dozen Nobel Prizes in Physiology or Medicine have been awarded
for studies of how eyes work. Nevertheless, I’ll try to give a qualitative summary of human
color vision that will be sufficient for the needs of the rest of the this chapter.

The quantitative study of color began in the 1600s with Isaac Newton, who showed
that white light can be decomposed into various colors, which could then be recombined
to create white light. He also showed that it was possible to add certain “primary” colors
together to obtain a different color, e.g., combining red and green to get yellow. (Primary
colors are colors such that combining any two of them cannot produce the third. These
are usually taken to be red, green, and blue; but other combinations such as blue, yellow
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and red could also be used as the primaries. Then blue plus yellow gives green.) In the
early 1800s Thomas Young proposed the idea that color vision is based on combinations of
three different colors and suggested that the eye must have three types of color receptors;
this is called trichromatic color vision. James Clerk Maxwell and Hermann von Helmholtz
furthered the study of trichromatic color vision in the late 1800s.

However, not all visual phenomena can be explained by the trichromatic hypothesis.
Consider, in particular, “afterimage” color reversals as illustrated in Fig.16.2. First look
at the black dot in the white area at the right of the yellow patch. You see a black dot
against a white background. Now stare at the black dot in the center of the yellow area
for at least 30 seconds. Then shift your focus to the black dot in the white area to the
right. When staring at the black dot on the white background, you now will perceive
the surrounding white area as a light bluish shade. It is difficult to explain the perceived
change of the white background to blue in terms of a simple sum of red, green, and blue
inputs. This and other visual phenomena led Ewald Hering to develop in the late 1800s
the opponent-process theory of color vision, in which opposing responses generated by the
color opposites blue-yellow and red-green, along with black-white, generate color vision.
These opposite or complementary color pairs are based on the observation that you might
describe a color as bluish-green or greenish-yellow, but never as bluish-yellow, so blue and
yellow are complementary colors. Likewise no one ever describes a color as reddish-green.

Figure 16.2: Color patches for illustration of afterimage colors. See the text for instructions.

We now know that the retinas of normal human eyes contain two types of cells that
detect light. One type, called rods, contain only one type of pigment are are achromatic,
i.e. they “see in black and white.” The rods have a slow response (longer integration
time) and operate at low light levels. These cells give us “night vision” (scotopic vision),
at the expense of spatial resolution. The other cell type, called cones, have three types
of pigments. The cones have faster responses (shorter integration times) and therefore
operate at higher light levels. These cells give us daytime color vision (photopic vision),
with good spatial resolution. The three types of cones (for the three types of pigments) are
sensitive to different but somewhat overlapping wavelength ranges, which are usually called
short-wavelength (S), middle-wavelength (M), and long-wavelength (L) cones. Figure 16.3
shows the normalized sensitivities of the S, M, and L cones. These curves are derived from
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measurements of the absorption spectra of the three different pigments found in cone cells.

Figure 16.3: Sensitivities of the three different types of cone cells. Figure created by BenRG

The three types of cones give us trichromatic color vision, i.e. color vision that is based
on the responses of the three different S, M, and L cone cell receptors. This is often called
red (R), green (G), and blue (B) color vision although, as the overlapping spectra of Fig.
16.3 show, it is not correct to say that our eyes simply detect red, green, and blue light.
The color perceived depends on the relative levels of excitation of the S, M, and L cones
and on how those signals are processed. Thus the total signal (S + M + L) gives an
achromatic measure of overall brightness. Then L + M - S gives yellow or blue, depending
on the excitation strengths, and L - M + S leads to red or green. Thus the trichromatic
and opponent-process models are complementary and both are necessary to explain the
complexities of color vision. The trichromatic model describes the detection of light at the
receptor level, and the opponent-process model is needed to explain how the detected RGB
inputs are processed by the eye-brain system, i.e. the opponent-process model applies at
the signal-processing level.

It must be understood that color is not a property of a material, or even of the light
reflected from or emitted by an object. Color is a perceived sensation, not a physical
property of light. Using well designed and calibrated radiometers, we can all agree on the
spectrum of light received by an eye. However, different people may perceive that light
differently. There is some natural variability in the chemical composition of the pigments
that give the S, M, and L responses. Thus my “red” may not be quite the same as your
“red” when we view the same spectrum. If you are red-green color blind (deuteranopia),
you are missing the M cones, which alters how a spectrum of detected light is perceived.
Figure 16.4 shows a simulation of how a spectrum appears to a normal person and to one
with deuteranopia. Deuteranopia occurs in about 6% of males, but in less than 0.5% of
females (which illustrates another of the many disadvantages of having a Y chromosome).

There are many other abnormalities in color vision. The most extreme is achromatopsia,
in which all three types of cones are missing. Such people see only in shades of gray via
their rod cells, which also makes them generally hypersensitive to bright light and degrades

https://commons.wikimedia.org/w/index.php?curid=7873848
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Figure 16.4: Visual appearances of spectra for a normal person (top) and a deuteranop
(bottom). Figure from Colblindor

their visual acuity. This is a rare condition affecting only about 1 in 30,000 people, except
on the small island of Pingelap Atoll in Micronesia, where about 10% of the population is
achromatopic2.

The perceived color also depends on the magnitude (“brightness”) of the detected
spectrum. For example, brown is just red that is not very bright. This is shown in
Fig. 16.5. The color patches were generated on an RGB computer monitor for which the
minimum is intensity is 0 (the pixel is turned off), and the maximum intensity is 255. The
upper left patch has the red pixels at maximum intensity, with the green and blue pixels
turned off. The remaining patches have the red pixels at lower and lower intensities. As
the magnitude of the red spectrum decreases, the color is perceived as going from bright
red to dark brown.

I will close this section with an interesting connection between linguistics and color
vision. Every European language spoken from Portugal to Russia and Iceland to Greece
has (as far as I know) separate words for green and blue (and has words for finer distinctions
of each—just visit any paint store), as do many other languages around the world. However,
there are also many languages that do not have separate words for green and blue. There are
so many of these languages that linguists have a term for them: the grue languages, where
grue comes from combining green and blue. Most (but not all) grue languages are minor
languages spoken by people living in either desert or tropical areas. For example, in the
deserts of the southwestern United States and northwestern Mexico, Cahuilla, O’odham,
Seri, Guaraj́ıo, and Western Tarahumara are grue languages. So the question arises: Do
speakers of grue languages not see the difference in green and blue, or do they see the
difference in green and blue, but just don’t consider the difference important enough to
warrant having different words? I don’t know the answer. It seems hard (for me at least)
to believe that someone would think the color difference between green leaves and blue
sky is unworthy of distinction with different words. However, it’s equally hard to image
that diverse populations from tropical areas around the world all have a similar genetic
difference that gives them some sort of green-blue color blindness. More research is needed,
as they say.

2That’s an interesting genetics story; see The Island of the Colorblind by Sachs (1996).

https://www.color-blindness.com/deuteranopia-red-green-color-blindness/.
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Figure 16.5: Change in the appearance of “red” as the intensity of the signal decreases
from the maximum possible value on a computer monitor. See the additional discussion of
these colors in Section 16.4.

The above discussion shows only a small part of the complexity of color vision. Just do
an internet search on “optical illusions” and you can entertain yourself for hours with visual
phenomena that show the incredibly complex ways that the eye-brain system can interpret
images and colors. An excellent site is that of Michael Bach. Likewise, investigation of
how different cultures around the world describe colors is another good way to spend rainy
winter days when you can’t go outside and play. There is a short history of color vision at
this Smithsonian website.

16.2 Luminosity Functions

If the human eye is the sensor, then all visible wavelengths are seen simultaneously, and
monochromatic radiometric variables, IOPs, and AOPs must be replaced by broad-band
values that depend on both the wavelength dependence of the ambient radiance and on
the relative sensitivity of the eye to different wavelengths. This is effected by replacing
radiometric quantities by their photopic equivalents.

Not all wavelengths of light evoke the same sensation of brightness in the human
eye-brain system. For example, suppose a person with “normal” eyesight is exposed to
monochromatic radiance of wavelength 550 nm and magnitude of 103 W m−2 sr−1 nm−1.
(This is comparable in magnitude to the Sun’s spectral radiance at this wavelength when
seen through a hazy atmosphere or at a large solar zenith angle.) The person will “see” a
bright yellowish-green light. However, if the person is exposed to light of the same radiance
magnitude, but of wavelength 300 nm, the person will not “see” anything because the eye
is not sensitive to this ultraviolet wavelength. However, if the exposure lasts long enough,

https://michaelbach.de/ot/
https://library.si.edu/exhibition/color-in-a-new-light/science
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permanent and severe damage will be done to the eye by the ultraviolet radiant energy.

The relative ability of radiant energy of different wavelengths to evoke differing sensa-
tions of brightness in the human observer is described by luminosity functions. The cone
cells of the human eye are responsible for color vision at daylight levels of the ambient illu-
mination. These cells have a sensitivity described, when averaged over many individuals,
by the photopic luminosity function. The rod cells are responsible for vision in very dim
light, such as at night. These cells are more efficient at seeing blue wavelengths and less
efficient at red wavelengths than are the cones. The eye sensitivity at low-light conditions
is given by the scotopic luminosity function.

The photopic and scotopic luminosity functions are plotted in Fig. 16.6. These func-
tions are empirically derived averages based on visual response studies of numerous humans.
In these studies a colored light is viewed next to a reference light. The observer adjusts
the power of the colored light until it subjectively appears to have the same brightness as
the reference light. The reciprocal of the measured radiance of the colored light is then
plotted at the wavelength of the colored light. This process of “brightness matching” is
subjective and there is considerable variance among observers, so the resulting average over
many observers has somewhat the same statistical validity as the “average American male,
age 30.” Nevertheless, the functions serve as reasonable reference standards for human
eye response. Suppose, for example, that monochromatic radiance L(λ = 500 nm) (blue-
green light) of some given magnitude (in W m−2 sr−1 nm−1) evokes a certain qualitative
sensation of brightness in the eye. Then from Figure 16.6 we see that in order to produce
the same sensation of brightness with red light of wavelength 650 nm requires about three
times the radiance, i.e. L(λ = 650) ≈ 3L(λ = 500). The left panel of this figure shows
for comparison the relative spectra response of a low-light video camera3. That camera
outputs a gray-scale image, and its spectral response gathers as much light as possible over
a broad spectral range (even out to 1000 nm).

The normalized photopic luminosity function is denoted by ȳ(λ). The spectral radiance
L(λ), weighted by ȳ(λ) and integrated over all wavelengths (in practice, usually from 380
to 720 nm or even just 400 to 700 nm) gives the luminance Lv, which is the photopic, or
vision, equivalent of radiance:

Lv , Kcd

∫ ∞
0

L(λ) ȳ(λ) dλ [lm m−2 sr−1] . (16.1)

Here Kcd is a fundamental physical constant called the luminous efficacy that by definition
has the value Kcd = 683 lumen W−1 exactly (recall the discussion of Section 1.3 and Table
1.1). This quantity converts radiance from energy units (Watts or Joules per second) to
the visual unit of lumens (abbreviated lm). The numerical value of Kcd traces back to the
idea of the visual brightness of a “standard candle.” The modern definition of a lumen
is that the surface of melting platinum (at a temperature of 2042 K) emits luminance of
6 × 105 lm m−2 sr−1. The luminance Lv corresponds to the visual impression of bright-
ness. In photometry, the subscript v (for visual) on a radiometric quantity flags it as the
corresponding photometric quantity.

As seen in the units of Kcd, the lumen is the visual correspondent of radiometric power
in watts. The SI base unit for photometric variables in the candela, abbreviated cd (Table

3This is the sort of camera that is used for television nature programs showing tigers running around in
the jungle at night.
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Figure 16.6: Luminosity functions for bright and dim light. Left panel: normalized func-
tions; right panel: functions in lumen per watt. (The photopic function is the 1931 CIE
2-degree function in energy units; see www.cvrl.org/lumindex.htm; see also Mobley (1994,
Tab. 2.1).)

1.2). The definition of the candela is “The candela is the luminous intensity, in a given
direction, of a source that emits monochromatic radiation of frequency 540×1012 hertz and
that has a radiant intensity in that direction of 1/683 watt per steradian.” (This frequency
corresponds to λ = 555 nm for light in a vacuum.) Recall that radiometric intensity is
power per unit solid angle. The candela is correspondingly luminous power per unit solid
angle, i.e. 1 cd = 1 lm , sr−1. The lumen is then a derived quantity, which by definition
is 1 lm , 1 cd sr. Unsuccessful attempts have been made to have the lumen adopted
as the SI base unit; the proposed definition being “the lumen is the luminous power of
monochromatic radiant energy whose radiant power is 1/683 W and whose frequency is
540 × 1012 Hz.” Neither of these definitions is particularly enlightening, so for intuitive
purposes, think of an ordinary candle as having a luminous intensity of about 1 cd, or
1 lm sr−1. The candela (Latin for candle) indeed traces back to the historical use of a
“standard candle” as the unit of brightness4.

For conversion of night-time, or dim-light, radiances to luminance, an equation of the
same form as (16.1) is used but with the scotopic luminosity function, denoted ȳ′(λ). The
conversion factor for the scotopic luminosity function is K ′cd = 1700 lm W−1. Thus the
rods are more efficient at converting radiant energy into visible light, but at the trade off
of giving only gray-scale images.

As an example, we can compute the luminance of the Sun. The Sun’s output can be
approximated as that of a blackbody at a temperature of T = 5782 K. The radiance of a
blackbody is given by Eq. 2.6 in the blackbody radiation section:

LBB(λ) =
2hc2

λ5

1

ehc/λkT − 1
. (16.2)

4One of the historical definitions of a standard candle was the “light produced by a pure spermaceti
candle weighing one sixth of a pound and burning at a rate of 120 grains per hour.” A grain is an obsolescent
unit of weight equal to approximately 0.065 g.

www.cvrl.org/lumindex.htm
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Using this radiance in Eq. (16.1) gives

LSun
v = Kcd

∫ ∞
0

LBB(T = 5782K,λ) ȳ(λ) dλ = 1.86× 109 lm m−2 sr−1 .

This is the value in the first line of Table 16.1.

Source Luminance

(lm m−2 sr−1 = cd m−2)

solar disk, above the atmosphere 2× 109

solar disk, at Earth’s surface, Sun near the zenith 1× 109

melting platinum at 2042 K , 6× 105

60 W frosted light bulb 1× 105

sunlit snow surface 1× 104

full Moon’s disk 6× 103

clear blue sky, directions away from the Sun 3× 103

heavy overcast, zenith direction 1× 103

twilight sky 3

clear sky, moonlit night 3× 10−2

overcast sky, moonless night 3× 10−5

Table 16.1: Typical luminances Lv.

All radiometric quantities have a photometric equivalent obtained by an equation of
the form of (16.1). Thus the photometric equivalent of the downwelling plane irradiance
Ed(λ), which is called the downwelling plane illuminance, is given by

Edv , Kcd

∫ ∞
0

Ed(λ) ȳ(λ) dλ [lm m−2] ,

and so on. Just as irradiances can be computed from radiances, illuminances can be
computed from luminances by equations of the same form as for radiometric variables. For
example,

Edv =

∫
2πd

Lv(θ, φ)| cos θ| sin θ dθ dφ .

Table 16.2 shows typical illuminances Edv. In illumination engineering, one lumen per
square meter is called a “lux.” Thus the instruments used to measure brightness is rooms
are often called lux meters (photographers usually call them light meters).

Photometric equivalents of apparent optical properties are obtained from the photomet-
ric variables just as AOPs are obtained from radiometric variables. Thus the illuminance
reflectance is given by

Rv =
Euv

Edv
,

and the photometric diffuse attenuation function for Edv is given by

Kdv(z) = −d lnEdv(z)

dz
,

and so on.
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Source Iluminance

(lm m−2 = lux)

Sun at the zenith, clear sky 1× 105

Sun at 60 deg zenith angle, clear sky 5× 104

overcast day 1000

well-lit room 300-500

very dark, heavily overcast day 100

full Moon at 60 deg zenith angle, clear sky 0.2

starlight, moonless night, clear sky 4× 10−3

moonless night, heavy overcast, in a thick forest 10−4

Table 16.2: Typical illuminances Edv.

16.3 Chromaticity

This section develops a way to specify color “coordinates” such that if I give you the
coordinates of a color I see, you can reproduce that color.

16.3.1 Color Matching

“Color-matching” experiments were performed in the 1850s by James Clerk Maxwell as he
worked on his theory of trichromatic color vision. Further experiments in the late 1920s by
W. D. Wright and J. Guild formed the foundation of modern color matching. The design
of the Wright and Guild experiment is shown in Fig. 16.7. A box is divided into two
sections by a partition. On one side of the partition, a test light shines light of any color
onto a white viewing screen. On the other side of the partition, three adjustable lights can
shine primary colors onto the viewing screen. These primary colors are usually taken to be
red, green, and blue. The viewer can adjust the brightnesses of the individual R, G, and
B lights, but not their wavelengths. The viewer then adjusts the brightnesses of the R,
G, and B lights until their combined light matches the test color. The geometry restricts
the observer’s vision to a 2 deg field of view. This means that the light from the viewing
screen is collected at the fovea area of the observer’s retina, where the cone cells are most
dense and where there is a minimum of rod cells.

The purpose of the Wright and Guild experiments was not to show that red, green, and
blue lights can be combined to create another color. That was well known. Their intention
was to get the data needed for developing a quantitative and unambiguous way to describe
all colors visible to the human eye. That is to say, if I give you the “coordinates” of a color
I see, you can reproduce that color. Wright and Guild of course had no idea in the 1920s
that their work would find application decades later in color television, computer monitors,
and digital cameras.

In their experiments it was found that a combination of monochromatic red, green,
and blue lights (say, at wavelengths of 650, 550, and 450 nm) could match many, but
not all, test colors. For example, if the test light is 500 nm, then no combination of
650, 550, and 450 nm light will give a perfect match to the visual color of light with a
wavelength of 500 nm. To make a long story short, it was eventually determined that
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Figure 16.7: The experimental layout of a color-matching experiment.

any color visible to humans with normal vision can be matched by mixing the light from
three non-monochromatic “color-matching” spectra. These reference spectra are the CIE
tristimulus functions, which are often called the CIE color-matching functions or spectra.
Service (2016) has an excellent explanation of the path from the Wright-Guild experiments
to the CIE tristimulus functions.

16.3.2 CIE Chromaticity Coordinates

The Commission Internationale de l’Eclairage (CIE, or International Commission on Illumi-
nation) develops and publishes standards for all matters relating to photometry, including
lighting, vision, and colorimetry. In 1931, based on the Wright and Guild data, the CIE
published three color-matching, or tristimulus, functions. Although other similar functions
have been developed over the years, e.g, for a 10 deg observer field of view, which includes
more rod cells, the 1931 CIE two-degree tristimulus functions remain the most commonly
used starting point for specification of color. These functions are shown in Fig. 16.8.

The tristimulus functions are used as follows. Given a spectrum Λ(λ), which could be
radiance or irradiance, first compute the integrals

X = Kcd

∫ ∞
0

Λ(λ) x̄(λ) dλ , (16.3a)

Y = Kcd

∫ ∞
0

Λ(λ) ȳ(λ) dλ , (16.3b)

Z = Kcd

∫ ∞
0

Λ(λ) z̄(λ) dλ . (16.3c)

The tristimulus functions have equal areas under the three curves, and each integrates to
a value of 106.9Kcd = 73000 (to three place accuracy). The x̄(λ), ȳ(λ) and z̄(λ) spectra do

http://www.cie.co.at
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Figure 16.8: The CIE 1931 two-degree tristimulus functions. (The data can be downloaded
from the corresponding Web Book page.)

not represent actual light sources as might be used in a color-matching experiment, and
they are certainly not red, green, and blue primary colors, because there is considerable
overlap of the three spectra. The functions are just mathematical constructions that allow
the unique specification of the visual color of a given spectrum Λ(λ) via the values of X,Y,
and Z. The magnitudes of X,Y, and Z depend on the magnitude of the Λ(λ) spectrum,
and the units of X,Y, and Z depend on the whether Λ(λ) is a radiance (in which case X,Y,
and Z are in lumens per square meter per steradian) or an irradiance (in which case X,Y,
and Z are in lumens per square meter).

To remove the dependence of the magnitude of Λ(λ) from the computation of its color,
next form

(x, y, z) =

(
X

X + Y + Z
,

Y

X + Y + Z
,

Z

X + Y + Z

)
. (16.4)

The quantities (x, y, z) are called the chromaticity coordinates of the spectrum Λ(λ). Note
that x+ y + z = 1, so only two of these quantities are independent. By convention, x and
y are used to specify the color.

The ȳ(λ) tristimulus function is identical to the photopic luminosity function discussed
previously (and ȳ(λ) is almost identical to the response of the M cones). Thus the Y
integral of Eq. (16.3b) is the same as the luminance integral seen previously. The values
of (x, y) are used to specify the color, independent of the magnitude of the spectrum, and
Y is used to specify the brightness, which depends on both the shape of the spectrum and
its magnitude.

Consider a spectrum that has unit magnitude at all wavelengths; this represents pure
white light. This is known as CIE reference illuminant E, with the “E” standing for Equal
energy at each wavelength. Inserting this spectrum into Eqs. (16.3) gives X = Y = Z =
73000, so (x, y) = (0.333, 0.333). This is known as the white point.
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Now consider a spectrum that has unit magnitude at 500 nm and is zero at all other
wavelengths: Λ(λ) = δ(λ − 500), where δ is the Dirac delta function of Section 1.4.3.
This spectrum picks off the values of the tristimulus functions at 500 nm, which are
x̄(500) = 0.0049, ȳ(500) = 0.3230, and z̄(500) = 0.2720. From equations 16.3, the val-
ues of (X,Y, Z) are then (16.7, 1103, 929) e.g., X = 0.0049Kcd∆λ, with ∆λ = 5 nm for
integration (summation) at 5 nm resolution. These values give (x, y) = (0.0082, 0.5384). If
all pure wavelengths between 360 and 830 nm are processed in the same way, this generates
a sequence of (x, y) values known as the spectrum locus. The spectrum locus gives the color
coordinates of monochromatic spectra, and the white point gives the color of a spectrum
containing equal energy at all wavelengths.

The spectrum locus defines a region of (x, y) space in which any color visible to the
human eye has a corresponding point. This plot is known as the CIE chromaticity diagram
and is shown in Fig. 16.9. The region between 360 and 830 nm (often taken to be 400 and
700 nm since the eye is very insensitive outside 400-700 nm) is call the purple line. Purple
is not a spectral color; it is the visual sensation generated by a mixture of red and blue
light. Figure 16.10 shows the chromaticity diagram with the different regions labeled by
their common color names.

Figure 16.9: The CIE 1931 two-degree chromaticity diagram. The white point is indicated
by the circle at (x, y) = (0.333, 0.333). The square at (x, y) = (0.313, 0.329) is the color of
the D65 spectrum shown in Fig. 16.11. The large black triangle shows the gamut of colors
that can be represented by a linear combination of pure red, green, and blue colors at 650,
550, and 450 nm. The colors seen here are only a rough approximation of what the eye
would actually see.
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Figure 16.10: Color names for different regions of the CIE chromaticity diagram as defined
by Kelly (1943).

16.3.3 Metameric Spectra

Every spectrum Λ(λ) (that is not zero at all visible wavelengths) has a unique associ-
ated color (x, y), which is obtained from Eqs. (16.3) and (16.4). However, the converse
is not true: every color (x, y) corresponds to many different spectra. Different spectra
Λi(λ) and Λj(λ), i 6= j, that have the same color (x, y) are called metameric spectra or
metamers. (Strictly speaking, two different spectra are metameric if they have the same
color coordinates for a given reference illuminant and reference observer.)

CIE reference illuminant D65 is a commonly used spectrum that simulates outdoor
light at mid-day on a sunny, clear day. This spectrum has color coordinates (x, y) =
(0.3128, 0.3290), which lies somewhat on the blue side of the white point. This shift
towards the blue simulates the contribution by blue sky radiance to the whiter light of
the Sun’s direct beam. The “D” stands for daylight, and the “65” indicates that it has a
“correlated color temperature” of 6,500 K. (The CIE has published many other reference
spectra for tungsten-filament lights, fluorescent lights, LED lights, etc.). The color of the
D65 spectrum is shown by the square symbol in Fig. 16.9.

Figure 16.11 shows the D65 spectrum and three spectra that are metameric to it. To
create the first of these spectra, I started with a pure white spectrum and added more
energy at 490 nm until the chromaticity coordinates of the resulting spectrum, shown
by the cyan curve in Fig. 16.11, was the same as that of the D65 spectrum. Another
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metameric spectrum was created by starting with white and removing one half of the
energy at wavelengths of 590 to 610 nm. Removing red from white leaves a spectrum with
a bluish color. Since the D65 color point lies within the gamut of the 650, 550, and 450 nm
pure colors, I then adjusted the amounts of monochromatic 650, 550, and 450 energy until
the resulting three-wavelength spectrum had the same (x, y) as the original D65 spectrum
(0.4503 parts of 450 nm, 0.6311 parts of 550 nm, and 1.000 parts of 650 nm).

Figure 16.11: The black curve is the CIE D65 reference spectrum. The cyan curve is a
white spectrum plus extra energy at 490 nm. The orange curve is white with one-half of
the energy removed for wavelengths of 590-610 nm. The blue, green, and red spikes at
450, 550, and 650 nm show the relative amounts of energy at those wavelengths for an
RGB spectrum. All spectra are normalized to 1 at their maximum values. Each of these
metameric spectra has the same color coordinates (x, y) = (0.313, 0.329).

The four spectra seen in Fig. 16.11 are entirely different spectra from the viewpoint of
radiometry, but they are identical from the viewpoint of photometry. That is, a radiometer
would measure the much different spectra seen in the figure, but the eye sees each of these
as having exactly the same color. It may seem peculiar that the eye-brain system cannot
distinguish these four spectra, but the reason goes back to the three types of pigments in
cone cells as discussed in Section 16.1. You cannot do better spectrum discrimination with
just three overlapping color sensors. Our simian ancestors no doubt found it advantageous
to be able to distinguish ripe blueberries and ripe red strawberries from unripe green ones,
so that is the ability that evolution has given us. There is no need for us to see a full
spectrum. One might imagine our eyes eventually evolving into radiometers, in which case
we might see tables of numbers or plots of spectra, instead of colors, when we look at
things. That might give us the ability to mentally extract the chlorophyll concentration
when looking at the ocean, but there was no evolutionary value of that ability on the plains
of Africa 5 million years ago.
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16.4 From XYZ to RGB

Computer monitors and TVs have light sources made of many groups of three small pixels.
One pixel in each group generates visually red light, one green, and one blue. Each group
can generate various levels of brightness for each color. Computer monitors thus use a
triplet of red, green, and blue (RGB) values to define how much of each primary color
is used to generate a desired color. In most monitors, each value of R, G, or B ranges
from 0 (no light of that color emitted; the pixel is turned off) to 28 − 1 = 255 (maximum
brightness). This is usually called “8 bits per channel” or “24 bit,” i.e. 3× 8, color. These
256 brightness levels for each primary color give a total of 2563 = 16, 777, 216 different
colors and levels of brightness that can be displayed, even though the human eye can
perceive differences in far fewer colors and brightness levels. Digital cameras likewise store
images in terms of RGB values.

As was seen in the preceding section, converting a spectrum Λ(λ) into CIE (X,Y, Z) and
then into (x, y) chromaticity values is easy. Converting between (X,Y, Z) and (R,G,B)
values is more complicated.

The personal computer (PC) industry (Microsoft and Hewlett Packard in particular,
see Stokes et al. (1996)) defined an RGB color model or color space, i.e. a gamut of colors,
for use with PC monitors. This color model, called sRGB, is the gamut of colors that can
be generated on most PC computer monitors. (Not surprisingly, Apple has its own color
model, as does Adobe, and there are at least a dozen others.)

The conversion from CIE XYZ to sRGB coordinates is given byRG
B

 =

 3.2404542 −1.5371385 −0.4985314

−0.9692660 1.8760108 0.0415560

0.0556434 −0.2040259 1.0572252


XY
Z

 (16.5)

In this equation, the (X,Y, Z) values are assumed to be scaled from 0 to 1. The conversion
matrix seen here comes from the excellent web site maintained by Bruce Lindbloom. The
Lindbloom web site gives all of the details about color spaces and conversions from one
color space to another, including online calculators and downloadable spreadsheets for
doing various calculations.

Now consider CIE reference illuminant E, which is pure white, with equal energy at
each wavelength. Setting Λ(λ) = 1 for all λ gives a values of 7.30 · 104 for each of X,Y ,
and Z. Rescaling these values to 1 and using them in Eq. (16.5) gives (R,G,B) =
(1.205, 0.948, 0.909), which can be rescaled to (255, 201, 192). This result is not (255, 255, 255)
as might be expected for a pure white color. The computed RBG color is actually a pale
red or pink. The reason for this color mismatch is that sRBG is based on the D65 refer-
ence illuminant, whereas the CIE 1931 chromaticity diagram uses reference illuminant E
to define “white.”

If we let Λ(λ) be the normalized D65 spectrum seen in Fig. 16.11, then (X,Y, Z) =
(58228.0, 61262.5, 66713.0). Rescaling these values to a maximum value of 1 and inserting
them into Eq. (16.5) then returns each of R,G, and B as 0.918. Multiplying these values
by 255 rescales them to (234, 234, 234), which is a very light gray. Keep in mind that gray is
just white that is not very bright, so these values can be rescaled to (255, 255, 255) without
changing the color. Thus the sRBG color model returns the D65 illuminant as the white

http://www.brucelindbloom.com/
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color, and it returns the equal-energy spectrum E as a pink color.

The conversion from sRGB values to XYZ is given by the inverse of Eq. (16.5):XY
Z

 =

0.4124564 0.3575761 0.1804375

0.2126729 0.7151522 0.0721750

0.0193339 0.1191920 0.9503041


RG
B

 (16.6)

The RGB values in Eq. (16.6) are considered to be between 0 and 1. If we rescale
(R,G,B) = (255, 255, 255) to (1, 1, 1) and insert into this equation, it returns (X,Y, Z) =
(0.950, 1.000, 1.089), which gives the CIE chromaticity coordinates (x, y) = (0.313, 0.329).
This is the slightly bluish color of the D65 spectrum shown by the box symbol in Fig.
16.12.

Using Eq. (16.6) to convert (R,G,B) = (1, 0, 0) gives (X,Y, Z) = (0.4125, 0.2127, 0.01933),
which gives (x, y) = (0.640, 0.330). Converting (0, 1, 0) gives (x, y) = (0.30, 0.60), and (0,
0, 1) gives (x, y) = (0.15, 0.06). These three (x,y) values define the vertices of the sRBG
gamut triangle seen in Fig. 16.12. It is clear that this gamut cannot accurately reproduce
many of the colors visible to the eye (nor can any of the other gamuts used in computer
montors and TVs). Indeed, the sRGB color space represents only 35% of the entire CIE
(x,y) color space. In other words, only 35% of the colors as seen by the human eye can be
accurately reproduced on a computer monitor using the sRBG color model.

It was seen in Fig. 16.5 that “brown is just red that is not very bright.” In that figure
the perceived color went from bright red for (R,G,B) = (255, 0, 0) to a dark reddish brown
for (R,G,B) = (125, 0, 0). Those two color patches are reproduced in Fig. 16.13. If the
RGB values for these two color patches are rescaled to (1,0,0) and (0.49,0,0), respectively,
and inserted into Eq. ( 16.6), the resulting CIE chromaticities are the same for each:
(x, y) = (0.640, 0.330). What is different is the luminance: Y = 0.2127 for the bright red
patch, and Y = 0.1043 for the dark brown patch. It is likely that most people would call
these patches different colors, but in the language of color science, they are the same color
but different brightnesses (same chromaticity but different luminances).

There are additional complications to mention in the conversion from XYZ to RGB
color specifications.

First, the eye does not respond in a linear fashion to differences in brightness. In par-
ticular, the eye is more sensitive to differences in darker color tones than it is to differences
in brighter tones. Therefore, a linear spacing of RGB values allocates more of the 0-255
range to high values, which the eye cannot distinguish well, than to low values where the
eye sees greater differences for a the same difference in RGB values. Therefore, after using
Eq. (16.5) to obtain “linear” RGB values, is it customary to apply a gamma correction to
the result. A gamma correction is a non-linear “stretching” of the RGB values so as to
make better use of the limited range of values (usually 0 to 255) available for storing the
color information. The gamma correction for the sRGB color model is given by

if R ≤ 0.0031308, then resetR to 12.92R

if R > 0.0031308, then resetR to 1.055R1/2.4 − 0.055 .

The same transformation is applied to the G and B values. Here the gamma value is
γ = 2.4. After this gamma correction, an input of (X,Y, Z) = (1, 1, 1) results in (R,G,B) =
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Figure 16.12: The CIE chromaticity diagram with the sRGB gamut shown by the triangle.
The circle is the CIE illuminant E white point, and the box is the sRGB D65 illuminant
white point.

Figure 16.13: Two color patches with the same chromaticities (x, y) = (0.64, 0.33) but with
different luminances Y = 0.2127 and Y = 0.1043.

(255, 230, 225) rather than the values of (255, 201, 192) found above using only Eq.(16.5).
Conversely, if gamma-corrected RGB values are to be converted to XYZ values, the gamma
correction needs to be undone via
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if R ≤ 0.04045, then resetR toR/12.92

if R > 0.04045, then resetR to
(R+ 0.055)

1.055

2.4

.

The same transformation is applied to the gamma-corrected G and B values. The resulting
“linear” RBG values can then be used is Eq. 16.6.

Second, you often have to make a subjective decision on how to rescale the RGB values
to get the right brightness when displayed. For example, Dierssen et al. (2006) found that
scaling (X,Y, Z) so that Y = 0.4 gave RGB values in the mid-range of brightness and
reasonable screen colors from RGB values computed by Eq. (16.5). The value of 0.4 was
an ad hoc choice determined by trial and error for visual appearance of ocean radiance
spectra colors. As was seen in Fig. 16.13, the brightness affects the perceived color.

Third, note that the 3x3 transformation matrix in Eq. (16.6) has positive elements.
Thus any (R,G,B) triplet of positive numbers generates an (X,Y, Z) triplet of positive
numbers, i.e. a valid point (x, y) in the CIE chromaticity diagram. That is to say, any
RGB color can be represented on the CIE diagram. However, some of the matrix elements
in Eq. (16.5) are negative. This means that not every valid (X,Y, Z) or (x, y) can be
represented by valid (R,G,B) values; some of the R,G, and B values may be negative.
When that happens, about all you can do is set the negative value to 0 and hope that the
displayed color is not too different from what your eye would see in nature.

Fourth, color reproduction gets even more complicated when printing. Computer
monitors are emitting light, and various colors are generated by adding together different
amounts of red, green, and blue light. Thus yellow is generated by turning on the red
and green pixels. The RGB system is an additive color system. When viewing colors on
a printed page, you are seeing reflected light. The dyes in the ink absorb, or subtract,
various colors from the incident (usually white) light. The printing industry thus deals
with subtractive colors, e.g., green is generated by subtracting (absorbing) blue and red
from white. Color printers thus use the CMYK (cyan, magenta, yellow, black) subtractive
color system, which specifies how much ink of various colors to put onto the page, rather
than how much light to generate. Some printers have additional ink colors. Thus the color
space or gamut for a printer, when plotted on a CIE diagram, will have more than three
vertices if the printer uses more than three colors of ink. This can give better coverage
of the human vision color space than can a three-color RGB system. Needless to say,
converting a computer screen image from RGB to CMYK values is a messy business, and
full account of the reference illuminants and color models for the monitor and the printer
must be taken into account. This is what is done in PhotoShop, for example, when you
select “save as CMYK” on an RGB jpeg file. The resulting printed image may or may not
be satisfactory, depending on whether or not the underlying color models are consistent
with the printer to be used.

The HydroLight radiative transfer model (Section 10.6) computes the (x, y, Y ) values
for Lw, Lu, Ed, and Eu whenever the run covers at least the 400-700 nm range. These
quantities are uniquely determined for each spectrum. However, HydroLight does not
attempt to compute corresponding RGB values because those values are device dependent
and may require subjective scaling to get good color reproduction. If you want to turn
your spectra into RGB or CMYK values, you can start with the HydroLight-computed
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(X,Y, Z) values, but beyond that you are on your own. Note that given (x, y, Y ), you can
recover (X,Y, Z) from

X =
xY

y

Y =Y

Z =
(1− x− y)Y

y

where Y is in the range [0, 1].
This is enough to say about colors. This section barely gets you started into the very

complicated business of color management and rendering on specific monitors or printers.
The previously mentioned web site maintained by Bruce Lindstrom is an excellent place
to start if you wish to dig deeper into these topics.

16.5 The Luminance Transfer Equation

The radiative transfer chapter derived the scalar radiative transfer equation (SRTE), Eq.
(9.21):

cos θ
dL(z, θ, φ, λ)

dz
=− c(z, λ)L(z, θ, φ, λ)

+

∫ 2π

0

∫ π

0
β(z; θ′, φ′ → θ, φ;λ)L(z, θ′, φ′, λ) sin θ′dθ′dφ′

+S(z, θ, φ, λ) . (16.7)

This equation governs the propagation of unpolarized monochromatic radiance at a par-
ticular wavelength λ in a one-dimensional absorbing and scattering medium.

The question now arises: Is there a similar equation for the propagation of luminance?
It is to be anticipated that a luminance transfer equation may be more complicated than
the SRTE because it of necessity must involve all visible wavelengths and the response of
the human eye.

To develop a luminance transfer equation, multiply Eq. (16.7) by the photopic lumi-
nosity function Kcd ȳ(λ) and integrate over all visible wavelengths. Let Λ denote the range
of wavelengths for which ȳ(λ) > 0. The term on the left hand side of the SRTE then
becomes

Kcd

∫
Λ

{
cos θ

dL(z, θ, φ, λ)

dz

}
ȳ(λ) dλ = cos θ

dLv(z, θ, φ)

dz
,

where the luminance Lv is defined by Eq. (16.1):

Lv , Kcd

∫
Λ
L(λ) ȳ(λ) dλ .

The first term on the right hand side of the SRTE becomes

Kcd

∫
Λ
{−c(z, λ)L(z, θ, φ, λ)} ȳ(λ) dλ .
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This term does not give a product of an integral over wavelength of the beam attenuation
coefficient times the luminance. However, we can rewrite this term as{

Kcd

∫
Λ−c(z, λ)L(z, θ, φ, λ) ȳ(λ) dλ

Kcd

∫
Λ L(λ) ȳ(λ) dλ

}
Kcd

∫
Λ
L(λ) ȳ(λ) dλ .

The term in braces is a radiance-weighted integral of the beam attenuation coefficient times
the photopic luminosity function ȳ. If we define the photopic beam attenuation coefficient
cv as

cv(z, θ, φ) ,
Kcd

∫
Λ c(z, λ)L(z, θ, φ, λ) ȳ(λ) dλ

Kcd

∫
Λ L(λ) ȳ(λ) dλ

, (16.8)

then the −cL term of the SRTE maintains the same form, −cv Lv, in the luminance transfer
equation.

A similar treatment of the path radiance term of the SRTE leads to a definition for the
photopic volume scattering function:

βv(z, θ′, φ′ → θ, φ) ,
Kcd

∫
Λ β(z, θ′, φ′ → θ, φ, λ)L(z, θ′, φ′, λ) ȳ(λ) dλ

Kcd

∫
Λ L(z, θ′, φ′, λ) ȳ(λ) dλ

. (16.9)

The source term in the SRTE leads to a photopic source term:

Sv(z, θ, φ) , Kcd

∫
Λ
S(z, θ, φ, λ) ȳ(λ) dλ .

Collecting the above results gives the desired luminance transfer equation:

cos θ
dLv(z, θ, φ)

dz
=− cv(z, θ, φ)Lv(z, θ, φ)

+

∫ 2π

0

∫ π

0
βv(z; θ′, φ′ → θ, φ)Lv(z, θ′, φ′) sin θ′dθ′dφ′

+Sv(z, θ, φ) . (16.10)

This equation governs the propagation of broadband luminance as seen by the human eye
in a one-dimensional absorbing and scattering medium. Equation (16.10) is the basis for
the classical definition of contrast as used in visibility studies.

16.5.1 Dependence of cv on the Ambient Radiance

It is important to note that the photopic beam attenuation coefficient as defined in Eq.
(16.8) depends on the ambient radiance distribution, hence on direction (θ, φ), even though
the beam attenuation c(z, λ) is an inherent optical property (IOP) that does not depend on
the ambient radiance or direction. Moreover, cv meets the definition of an apparent optical
property as defined in Chapter 4: it depends on the IOPs of the medium (here the beam
attenuation c) and on the ambient radiance distribution, and it is insensitive to external
conditions (e.g., rescaling L by a multiplicative factor does not change the value of cv).
The same holds true for the photopic volume scattering function defined in Eq. (16.9) and
for any other IOP. Thus, in going from a monochromatic radiative transfer equation to a
luminance transfer equation, inherent optical properties become apparent optical properties.
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This is the penalty to be paid for going from an equation for monochromatic radiance as
measured by instruments to an equation for luminance observed by a human eye.

However, in practice, there seems to very little dependence of cv on the ambient radi-
ance (as would be expected for a “good” AOP). The left panel of Fig. 16.14 shows the
beam attenuation c(λ) for a simulation of homogeneous Case 1 water with a chlorophyll
concentration of 0.5 mg m−3 (obtained using the new Case 1 IOP model (Section 8.9) in
HydroLight). The Sun was at a zenith angle of θsun = 40 deg in a clear sky, which gives a
transmitted solar beam of about 29 deg in the water; that beam will lie in the HydroLight
quad centered at θ = 30deg. The right panel of Fig. 16.14 shows the radiance at 10 meters
depth looking in four directions: looking upward into the Sun’s transmitted beam, looking
in the nadir and zenith directions, and looking horizontally at right angles to the solar
plane.

The spectra in this figure were used to compute the photopic beam attenuation cv via
Eq. (16.8). The values are all close to 0.31 m−1, which is close to the beam attenuation at
the peak of the photopic luminosity function: c(555 nm) = 0.313 m−1.

Figure 16.14: Left panel: Total (including water) beam attenuation c(λ) for a chlorophyll
concentration of 0.5mg m−3 (black curve), and the photopic luminosity function ȳ (green).
Right panel: Radiances at a depth of 10 m for the Sun at a zenith angle of 40 deg in a
clear sky. Lsun (red curve) is looking upward into the Sun’s refracted beam. Lu (purple)
is the upwelling (nadir-viewing) radiance; Ld (orange) is the downwelling (zenith-viewing)
radiance; and Lh90 (green) is the horizontal radiance in the direction perpendicular (az-
imuthal angle of φ = 90 deg) to the solar plane. Lu and Lh90 have been multiplied by 20
for better visibility in the plot. Numbers at the right show the photopic beam attenuation
cv for the four radiance spectra.

Figure 16.15 shows the corresponding results for a chlorophyll concentration of 10 mg m−3

and a 5 m depth. Again, the four different radiances give the same cv to within a fraction
of a percent, and these cv values are within one percent of the beam attenuation value
c(555 nm) = 2.573 m−1.

Figure 16.16 shows a chlorophyll profile consisting of a background value of 0.5 mg m−3

plus a Gaussian that gives a maximum value of 5.5mg m−3 at 10 m depth. For this profile,
an observer at 5 m depth looking upward would be looking into low-chlorophyll water,
and looking downward would be looking into high-chlorophyll water. An observer at 10



16.5. THE LUMINANCE TRANSFER EQUATION 619

Figure 16.15: Same as for Fig. 16.14, but for a chlorophyll concentration of 10mg m−3 and
a 5 m depth.

m depth looking horizontally would be looking into high-chlorophyll water, but looking
upward or downward would be looking into lower chlorophyll, clearer water. It might be
supposed that the different IOPs (c(z, λ) values in particular) would give radiances that
might give significantly different cv values for the different viewing directions at a given
depth.

However, this is not the case. Figure 16.17 shows the radiances seen by an observer
at 15 m depth. Again, the cv values differ by only about one percent from the value of
c(15 m, 555 nm) = 0.719 m−1. The same holds true at other depths (not shown).

Figure 16.16: The chlorophyll profile used
in the simulations of Fig. 16.17.

Exhaustive simulations have not been made, so it might be possible to create a con-
trived water body for which the photopic beam attenuation would be significantly different
for different viewing directions, and for which cv(z) would be significantly different from
c(z, 555 nm). However, the above simulations indicate that in many situations of practical
interest, there is little dependence of cv on viewing direction, and that cv is within a percent
or so of the beam attenuation at the 555 nm wavelength of the maximum of the photopic
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Figure 16.17: Same as for Fig. 16.14, but for the depth-dependent chlorophyll profile seen
in Fig. 16.16 and a 15 m depth.

luminosity function.
These simulations are consistent with the results of Zaneveld and Pegau (2003), who

found that the beam attenuation coefficient at 532 nm (excluding the water contribution)
is a good proxy for the photopic beam attenuation.

16.6 Contrast

The luminance transfer equation developed in the previous section provides the theoretical
structure needed to begin discussing the topic of visibility. The development here will be
in terms of luminance, as is appropriate for a human observer.

16.6.1 The Luminance Difference Law

Figure 16.18 illustrates the quantities involved with viewing an object through an absorbing
and scattering medium under ambient daytime illumination. The object, usually called the
target, is being viewed against a background. The luminance leaving the surface of the
target and heading in the direction of the observer is LvT(0, ξ̂T) (subscript “v” for visual
and “T” for target). The luminance of the background immediately adjacent to the target
is LvB(0, ξ̂B), where “B” is for background. These two luminances eventually reach the
observer, where they are focussed onto different points of the retina (or, in an instrument,
perhaps onto adjacent pixels of a CCD array).

Now assume that

1. The object is small and is illuminated by ambient daylight.

2. The luminance leaving the target does not significantly affect the ambient luminance
that is present in the absence of the target, and

3. The two directions ξ̂T and ξ̂B are almost parallel, i.e. ξ̂T ≈ ξ̂B = ξ̂, so that the
absorbing and scattering losses and additions to each beam are the same between
the target area and the imaging system. Likewise, any internal sources are the same
along each path.
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Figure 16.18: Geometry for developing the law of contrast reduction.

Equation (16.10) gives the equation governing propagation of luminance at any point r
along either path:

dLv(r, θ, φ)

dr
= − cv(r, θ, φ)Lv(r, θ, φ)

+

∫ 2π

0

∫ π

0
βv(r; θ′, φ′ → θ, φ)Lv(r, θ′, φ′) sin θ′dθ′dφ′

+ Sv(r, θ, φ)

, − cv(r)L(r, ξ̂) + L∗v(r, ξ̂) + Sv(r, ξ̂) . (16.11)

Because the ambient luminance distribution, the IOPs, and any sources are assumed
to be the same for each path, the path luminance term L∗v, which describes broad-band
scattering into the beam, and the source term Sv, will be the same for both background
and target luminances. Thus the two luminances obey

dLvT(r, ξ̂)

dr
=− cv(r)LvT(r, ξ̂) + L∗v(r, ξ̂) + Sv(r, ξ̂) (16.12)

dLvB(r, ξ̂)

dr
=− cv(r)LvB(r, ξ̂) + L∗v(r, ξ̂) + Sv(r, ξ̂) (16.13)

Subtracting Eq. (16.13) from Eq. (16.12) gives

d[LvT(r, ξ̂)− LvB(r, ξ̂)]

dr
= −cv(r) [LvT(r, ξ̂)− LvB(r, ξ̂)] .

This equation has the solution

[LvT(r, ξ̂)− LvB(r, ξ̂)] = [LvT(0, ξ̂)− LvB(0, ξ̂)] exp

[
−
∫ r

0
cv(r′) dr′

]
.

In most practical situations, cv(r) can be assumed constant along the viewing path (in the
ocean, a few tens of meters at most), in which case this solution reduces to

[LvT(r, ξ̂)− LvB(r, ξ̂)] = [LvT(0, ξ̂)− LvB(0, ξ̂)] exp[−cv r] . (16.14)

Even though each radiance LvT(r, ξ̂) and LvB(r, ξ̂) individually depends on all photopic
IOPs, their difference depends only on the photopic beam attenuation cv. This is known
as the Luminance Difference Law (e.g., Preisendorfer, 1986).



622 CHAPTER 16. PHOTOMETRY AND VISIBILITY

16.6.2 The Law of Contrast Reduction

Now define the apparent visual contrast between the target and background as seen at
distance r as the difference in the target and background luminances normalized by the
background luminance:

C(r, ξ̂) ,
LvT(r, ξ̂)− LvB(r, ξ̂)

LvB(r, ξ̂)
. (16.15)

From Eq. (16.14), this can be rewritten as

C(r, ξ̂) =
LvT(0, ξ̂)− LvB(0, ξ̂)

LvB(0, ξ̂)

LvB(0, ξ̂)

LvB(r, ξ̂)
exp[−cv(ξ̂) r] (16.16)

= C(0, ξ̂)
LvB(0, ξ̂)

LvB(r, ξ̂)
exp[−cv(ξ̂) r] . (16.17)

This result holds for any viewing direction (for the assumptions of the derivation).

C(0, ξ̂) ,
LvT(0, ξ̂)− LvB(0, ξ̂)

LvB(0, ξ̂)

is the inherent visual contrast, i.e., the contrast of the target against the background as seen
from zero distance. If the target is darker (lighter) than the background, C(0) is negative
(positive). The apparent contrast keeps the same sign as C(0) as r increases and C(r)
approaches zero. For a black target, LT(0) = 0, and C(0) = −1. For a black background,
LvB(0) = 0, and the inherent contrast becomes infinite. This situation (such as viewing
a distant light at night) violates the present assumption of viewing an object in ambient
daylight, and a different analysis is required.

Looking horizontally, the background radiance is independent of the viewing distance
if the water is horizontally homogeneous. In this case, the Eq. (16.17) reduces to

C(r, ξ̂) = C(0, ξ̂) exp[−cv(ξ̂) r] . (16.18)

Other viewing directions may also satisfy LvB(0, ξ̂) ≈ LvB(r, ξ̂). An exception to LvB(0, ξ̂) ≈
LvB(r, ξ̂) would be looking upward at a target near the sea surface from a larger depth.
The downwelling radiance could then be much brighter at the target depth than at the
viewing depth.

Either of equations (16.17) or (16.18) is called the Law of Contrast Reduction or Law
of Contrast Transmittance.

For horizontal viewing and a black target, experience shows that the target can be
detected at a visual range V R when C(r = V R) ≈ 0.02, although you can find recom-
mended minimum contrast values from 0.01 to 0.05 in the literature. Equation (16.18) can
be solved for this minimum contrast to get the corresponding visual range:

V R(ξ̂) = − ln |0.02|
cv(ξ̂)

≈ 3.9

cv(ξ̂)
. (16.19)

This result, originally developed for viewing dark targets in the atmosphere, is known as
Koschmieder’s law. In very clear water (Chl = 0.01 mg m−3), cv ≈ 0.04 m−1, which limits
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underwater visibility to less than 100 m. In a very clear atmosphere, visibility can be as
much as 200 km.

The limiting value of 0.02 for the minimum contrast depends somewhat on factors such
as the angular size of the target, whether the target is fading from view as r increases or
appearing out of the background as r decreases, and on the observer’s visual acuity. In any
case, this result is in rough agreement with the experiments of Zaneveld and Pegau (2003)
showing that the visibility range of a black Secchi disk 0.2 m in diameter, when viewed
horizontally against the background ocean, is about

r ≈ 4.8

cv
.

This range corresponds to a minimum detectable contrast of about 0.01, rather than 0.02.
Airports use a value 0.05, which gives an added safety factor when judging how far a pilot
can see.

The contrast defined by Eq. (16.15) is called the Weber contrast. This is a suitable
measure of contrast when viewing a small object against a background. If the target has
a pattern of bright and dark features with roughly equal areas of each (like the stripes on
a zebra), then a more suitable measure of contrast is the Michelson contrast:

C ,
LvT(max)− LvT(min)

LvT(max) + LvT(min)
, (16.20)

where LvT(max) and LvT(min) are respectively the maximum and minimum luminances
for the bright and dark areas of the target.

16.7 The Secchi Disk

Father Angelo Secchi, S. J., seen in Fig. 16.19, was primarily an astronomer and spectro-
copist, but he also made significant contributions to meteorology and several other fields.
Among his many accomplishments, he pioneered the use of spectroscopy as a way to clas-
sify stars by their spectal type, he was the first to realize that the Sun is a star, and he
was the first to use maps of atmospheric pressure as an aid to weather forecasting. He had
only one publication in oceanography, in 1865, but it was a good one. Pitarch (2020) gives
a nice overview of Secchi’s oceanographic work.

A Secchi disk is a white disk, typically 30 cm in diameter (in oceanographic applica-
tions), weighted and attached to a cord marked with the distance from the disk. The disk
is lowered into the water and observed as it goes deeper and deeper, as seen in Fig. 16.20.
The depth at which it disappears from view is the Secchi depth, zSD. The Secchi depth
gives an easily obtained measure of water transparency. However, there are many sources
of variability in this measurement. Sky light reflected by the water surface can reduce the
visibility (hence a dependence on solar zenith angle and sky conditions), as do waves on
the surface, which tend to break up the image of the disk as seen from above the surface.
The disk will be easier to see when well illuminated on a bright day than near twilight.
Finally, this is one of the few measurements still made in science where the human eye is
an integral part of the measurement. Thus if you have better vision that I have, you may
be able to see the disk deeper than I can. In spite of all of these uncertainties, the Secchi
depth is surprisingly reproducible for different environmental conditions and observers, so
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Figure 16.19: Angelo Secchi,
1818-1878.

Figure 16.20: A Secchi disk be-
ing lowered into greenish water.
Photo by R. Kirby from The Sec-
chi Disk Study.

it is useful for some purposes. There is also a large historical database of Secchi disk read-
ings going back to the days of sailing ships (e.g., the World Ocean Database), so proper
interpretation of Secchi depths may even be useful for studies of long-term changes in ocean
waters.

The previous sections on photometry give the background needed to derive the maxi-
mum depth at which a Secchi disk can be seen.

16.7.1 The Classical Secchi Depth Model of Preisendorfer

Consider only the case of looking straight down, and drop the direction arguments in lumi-
nances and contrasts, e.g. LvB(z, ξ̂) = LvB(z). The underlying idea is that a disk at some
depth z is illuminated by the downwelling plane illuminance Edv(z). The luminance re-
flected by the disk then propagates upward to the observer as a narrow beam of luminance.
The development then proceeds as follows.

https://www.themarinediaries.com/tmd-blog/the-secchi-disk-study-a-global-citizen-science-study
https://www.themarinediaries.com/tmd-blog/the-secchi-disk-study-a-global-citizen-science-study
https://www.nodc.noaa.gov/OC5/WOD/secchi-data-format.html
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The downwelling plane illuminance at depth z is given by

Edv(z) = Edv(0) exp[−〈Kdv〉zz] , (16.21)

where 〈· · · 〉z denotes the average over 0 to z.
The target is assumed to be a Lambertian reflector (Section 13.7) with an illuminance

reflectance of RvT. The luminance reflected by the target is then

LvT(z) = Edv(z)RvT/π . (16.22)

The background water is also assumed to be a Lambertian reflector, so that

RvB(z) =
Euv(z)

Edv(z)
. (16.23)

The luminance of the background water is then

LvB(z) = Edv(z)RvB(z)/π . (16.24)

The inherent contrast at depth z is

Cin(z) =
LvT(z)− LvB(z)

LvB(z)

=
RvT −RvB(z)

RvB(z)
(16.25)

where the last equation follows from (16.22) and (16.24).
The apparent contrast of the Secchi disk as seen from just below the sea surface is

Cap(0) =
LvT(0)− LvB(0)

LvB(0)
(16.26)

(Note that in this development the argument 0 refers to depth z, not to the distance from
the target, which is z.)

The luminance difference law

LvT(0)− LBv(0) = [LvT(z)− Lv(z)] exp[−〈cv〉z z] (16.27)

allows the apparent contrast to be written as

Cap(0) =
[LvT(z)− LvB(z)]

LvB(0)
exp[−〈cv〉z z] (16.28)

by (16.27) into (16.26).
Inserting (16.22) and (16.24) into (16.28) then gives

Cap(0) =
RvT −RvB(z)

RvB(0)

Edv(z)

Edv(0)
exp[−〈cv〉z z] (16.29)

Assuming that RvB(0) = RvB(z) and using (16.21) and (16.25) gives

Cap(0) = Cin(z) exp[−(〈Kdv〉z + 〈cv〉z) z] (16.30)
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This equation gives the apparent contrast of the Secchi disk as seen from just below the
water surface. For viewing from above the surface, we must account for loss of contrast
caused by the water surface. This loss is due both to refraction by waves and to surface-
reflected sky light. Thus

Cap(air) = T Cap(0) = T Cin(z) exp[−(〈Kdv〉z + 〈cv〉z) z]

where T denotes the transmission of contrast, not of luminance or illuminance.
The Secchi depth zSD is the depth at which the apparent contrast in air falls below a

threshold contrast CT . Solving for zSD when Cap(air) = CT gives

zSD =
ln
[
T Cin(z)
CT

]
〈Kdv〉zSD + 〈cv〉zSD

(16.31)

,
Γ

〈Kdv〉zSD + 〈cv〉zSD

. (16.32)

Studies with human observers show that CT depends on the angular subtense of the
disk and on the ambient luminance (e.g., Preisendorfer, 1986, Table 1). The values of Γ
vary from about 6 to 9 for a disk with RvT = 0.85, depending on the water reflectance RvB

(which is 0.015 to 0.1; see Preisendorfer (1986, Table 2)). HydroLight uses Γ = 8 as its
default.

Note that Eq. (16.32) must be solved interatively because 〈Kdv〉zSD and 〈cv〉zSD are
averages over the (unknown) Secchi depth zSD. This is easily done after solution of the
radiative transfer equation to some depth greater than zSD over the visible wavelengths.
The photopic Kdv(z) and cv(z) can then be computed from Ed(z, λ) and c(z, λ). The values
of Kdv and cv just below the water surface (at depth 0) are then used to get an initial
estimate of zSD, which is then used to compute an improved estimate of the depth-averaged
Kdv and cv, and so on. Convergence is obtained within a few iterations.

16.7.2 The Secchi Depth Model of Lee et al.

Preisendorfer’s analysis does not consider variability in zSD due to factors like the disk
diameter or the solar zenith angle. Therefore, Lee et al. (2015) re-examined the classic
theory of the Secchi disk. They assumed that

• The disk needs not be angularly small and can perturb the ambient light field seen
near the edge of the disk.

• Visibility is not based on target vs background luminance differences at the sharp
edge of the disk, but on on differences in target and background reflectances.

• Visibility is determined by the wavelength where the disk is most visible (which can
change with depth and between water bodies), rather than on broadband photopic
variables.

They argue that the classic analysis should

• Replace the photopic Kdv(z) with Kd(z, λmin), where λmin is the wavelength at which
Kd(z, λ) is a minimum; and

• Replace the photopic cv(z) with 1.5Kd(z, λmin).
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One end result of their analysis is a formula of the form (Eq. 28 of their paper)

zSD =
γ

2.5Kd(z, λmin)
, (16.33)

where γ depends on a difference in reflectances, rather than on contrasts as seen in Eq.
(16.31). This formula has the great virtue that Kd(z, λmin) can be estimated from multi-
or hyperspectral satellite imagery.

Comparison of zSD measured and computed by Eq. (16.33) gives reasonable agreement
(see Fig. 6 of their paper). However, comparison of Lee et al. zSD predictions with those
of the classic theory have not yet been made.

16.7.3 Black-and-White Secchi Disks

Secchi himself, and oceanographers ever since, used an all-white disk, usually 30 cm in
diameter (Secchi also measured the depths at which colored disks disappeared). However,
limnologists almost always use a black-and-white disk, usually 20 cm in diameter. An
example is seen in Fig. 16.21. The use of a disk with black and white quadrants traces
back to a civil engineer, G. C. Whipple, who described such a disk in a book published
in 1899 (Whipple, 1899, page 115). This “Whipple disk” then became the standard for
work in fresh water. There seems to be no good reason to pick an all-white versus a black-
and-white disk. A qualitative argument has been made that the black quadrants give a
“standard reference” for comparison with the white quadrants when used in shallow water
that may be affected by bottom reflectance (but if bottom reflectance is detectable, the
Secchi depth is probably deeper than the bottom and a measurement cannot be made).
Although Hou et al. (2007) give a rigorous analysis of why a Secchi disk disappears based
on spatial frequencies of the imaged disk, they treat only the all-white disk.

Oceanographers and limnologists generally live in different worlds and never speak to
each other, so I have never seen a comparison of Secchi depth measured by all-white and
black-and-white disks employed at the same time in the same water.

Figure 16.21: A black-
and-white Secchi disk as
used in limnology.
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APPENDIX A

Fourier Transforms

Jean-Baptiste Joseph Fourier (1768-1830) proved in the early 1800s that, under very gen-
eral mathematical conditions, an arbitrary function can be written as a sum of sines and
cosines of different amplitudes and wavelengths1. Fourier Transforms are today a power-
ful mathematical tool used in many areas of science to “decompose” functions of time or
space into functions depending on temporal or spatial frequency. In this text, they will
be used both to decompose random sea surfaces into sums of sinusoids of different spatial
or temporal frequencies and to simulate random sea surfaces using models for the wave
energy contained surface waves of different frequencies. They will also be fundamental to
the prediction of underwater visibility and imaging. In other fields, Fourier Transforms are
ubiquitous in electrical engineering (e.g., analysis of time-dependent currents and voltages),
economics (analysis of times series of economic indicators), and medical imaging (analysis
of 2-D imagery such as CAT scans and MRIs).

There are many texts on Fourier transforms. Bracewell (1986) is a standard reference,
and excellent sets of lecture notes and videos of lectures can be found on the web. You can
take a class in Fourier transforms and prove many beautiful theorems about their prop-
erties. However, this introduction gives all of the mathematical tools needed to describe
wind-blown sea surfaces or to analyze images. The results needed for the applications in
this book will be stated without proof.

A.1 Notation for Fourier Transforms

This Appendix on Fourier Transforms is rather mathematical, and precise notation is
needed to keep everything straight. Table A.1 therefore collects for reference the notation
used throughout the discussion of Fourier transforms and their application to the generation

1Fourier was interested in computing the temperature T (x, t) of a metal bar as a function of distance x
along the bar and time t, if the end of the bar at x = 0 is heated by an arbitrary function of time T (0, t).
He found a solution if the applied temperature is a sinusoid, T (0, t) = To sin(ωt) . He then reasoned that
if an arbitrary function T (0, t) can be written as a sum of sinusoids, each with its own solution, and if the
solutions could be linearly added, then the solution to the arbitrary problem could be written as a sum of
the solutions for sinusoids of different frequencies. This let him to study how arbitrary functions can be
written as sums of sinusoids.

629
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of random sea surfaces in Appendices B, C, and D.

Symbol Definition Units

1-D Geometry,

Continuous Transforms

x continuous spatial variable m

z(x) sea surface elevation at point x m

ν continuous spatial frequency m−1

k = 2πν continuous angular spatial frequency rad m−1

ẑ(ν) continuous Fourier transform of z(x) m2

1-D Geometry,

Discrete Transforms

L finite length of a sea surface region m

N number of grid points in spatial samples nondimen

∆x = L/N grid point spacing m

r = 0, 1, ..., N − 1 spatial index for discrete samples nondimen

xr = r∆x spatial locations of discrete samples m

z(xr) , z(r) sea surface elevation at sample point xr m

u = 0, 1, ..., N − 1 frequency index for discrete samples nondimen

∆ν = 1/L fundamental discrete frequency interval m−1

νu = u∆ν discrete spatial frequencies m−1

ku = 2πνu discrete angular spatial frequency rad m−1

ẑ(νu) , ẑ(u) discrete Fourier transform of z(xr) m

2-D Geometry,

Discrete Transforms

Lx, Ly dimensions of a 2-D sea surface region m

Nx, Ny number of grid points in (x, y) directions nondimen

(∆x,∆y) = (Lx/Nx, Ly/Ny) grid point spacing in x and y directions m

r = 0, 1, ..., Nx − 1; s = 0, 1, ..., Ny − 1 spatial indices for discrete samples nondimen

(xr = r∆x, ys = s∆y) spatial locations of discrete samples m

z(xr, ys) , z(r, s) sea surface elevation at sample point (xr, ys) m

u = 0, 1, ..., Nx − 1; v = 0, 1, ..., Ny − 1 frequency indices for discrete samples nondimen

(νu, νv) = (u/Lx, v/Ly) spatial frequencies in the (x, y) directions m−1

(ku, kv) = 2π(νu, νv) discrete angular spatial frequencies rad m−1

ẑ(νu, νv) , ẑ(u, v) discrete Fourier transform of z(xr, ys) m

Table A.1: Notation for Fourier transforms. See also page 644 and Table B.1.
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A.2 Continuous Fourier Transforms

Given a real function f(x) of a continuous variable x, the Fourier transform f̂(ν) of f(x)
is defined as

f̂(ν) , F{f(x)} ,
∫ ∞
−∞

f(x)e−i2πνxdx . (A.1)

The inverse Fourier transform is given by

f(x) , F−1{f̂(ν)} ,
∫ ∞
−∞

f̂(ν)e+i2πνxdν . (A.2)

It can be shown that if we insert the f̂(ν) integral of Eq. (A.1) into Eq. (A.2) , we
recover f(x). This is known as Fourier’s integral theorem, the proof of which is not trivial.
Equations (A.1) and (A.2) are termed a Fourier transform pair.

Understanding the units of a Fourier transform is important. Suppose that f(x) is
sea surface elevation and x is horizontal position, and that both f and x have units of
meters. Equation (A.1) shows that f̂(ν) thus has units of m2. The variance of f also has
units of m2, which gives the first hint at a profound connection between the variance of
a physical quantity and its Fourier transform. The units of m2 in the Fourier transform
can be rewritten as m/(1/m), which is units of z divided by units of spatial frequency ν.
Indeed, the transform f̂(ν) can be interpreted as showing “how much of f there is per
unit frequency interval.” The inverse transform then has units of (f over frequency) times
frequency, which returns the original units of f .

A Fourier transform is a spectral density function. The integral of a spectral density
function over a given frequency interval gives the variance in the physical quantity con-
tributed by the frequencies in the integration interval. Density functions are rather peculiar
mathematical creatures compared to point functions, which simply give the value of some-
thing at a given value of the independent variable (e.g. the temperature at location x and
time t). The blackbody radiation function is another example of a spectral density func-
tion. The blackbody radiation function discussed in Section 2.3 shows how much energy is
emitted (at a given temperature) per unit frequency interval of the emitted electromagnetic
radiation. If you are not familiar with the distinction between point and density functions,
especially regarding how to change variables in density functions, you should take a look
at Sections 2.5 and 2.3 before continuing with the present discussion.

The Fourier transform definitions above with the 2π in the exponents are those of the
“Stanford school” of Bracewell (1986) and Goodman (1996). You will see others in the
literature. For example, if we use k = 2πν as the frequency variable, then Eqs. (A.1) and
(A.2) become

f̂(k) , F{f(x)} ,
∫ ∞
−∞

f(x)e−ikxdx (A.3)

and

f(x) , F−1{f̂(k)} , 1

2π

∫ ∞
−∞

f̂(k)e+ikxdk . (A.4)

This reappearance of the 2π in the second equation is required so that the inverse transform
of the transform gets you back to where you started. In the e±ikx version, some people put
the 1/2π in front of the other integral, and some put a 1/

√
2π in front of each integral.

Some authors, e.g. Press et al. (1992), put the +i in Eq. (A.1) and the −i in Eq. (A.2).
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The choice of which sign to use on the i and where to put the 2π is almost a religion—most
people stay with what they first learned, are convinced of the superiority of their definition,
and are willing to die rather than change. Fortunately, it doesn’t matter which definitions
you use, so long as you are consistent in how the transform pair is defined so that you get
back to where you started if you inverse transform a transform, or vice versa.

In our work, f(x) is usually the sea surface elevation, which is a real number. However,
even though f(x) is real, f̂(ν) (or f̂(k)) is complex. Expanding the complex exponential
in Eq. (A.1) as the sum of a cosine and a sine, it is easy to see that f̂∗(ν) = f̂(−ν),
where the * denotes the complex conjugate2. Such functions are called Hermitian. A real
function has a Hermitian Fourier transform. Conversely, if a function is Hermitian, it
has a real inverse Fourier transform. The Hermitian property is an important constraint
in the generation of random realizations of sea surfaces by computing the inverse Fourier
transform of a complex function: we will have to conjure up a Hermitian function f̂ so
that we end up with a real sea surface.

A.3 Discrete Fourier Transforms

Now suppose that we have sampled the sea surface f(x) at a set of N evenly spaced points
xr, r = 0, 1, ..., N − 1, in a region of size L; xr = r∆x = rL/N . We want to describe
this sampled sea surface f(xr) as a sum of sinusoids. In general, these N values can be
represented as a sum of a constant term, N/2 cosine terms, and N/2− 1 sine terms (there
is no two-point sine term; see Section B.1.1):

f(xr) =
a0

2
+

N/2∑
u=1

[au cos(kuxr) + bu sin(kuxr)] , (A.5)

with bN/2 , 0. Note that the sum runs from the fundamental frequency (u = 1, k1 = 2π/L)
through the Nyquist frequency (u = N/2, kN/2 = 2π/(2∆x)), with only a cosine term for
the two-point wave. This sum is equivalent to

f(xr) =

N/2∑
u=−N/2+1

cue
ikuxr , (A.6)

which also contains a total of N independent real and imaginary parts of the cn coefficients.
(Equation B.5 of the next appendix shows that c−k = c∗k, so these coefficients are not
independent for +k and −k pairs.) These equations are the discrete-variable forms of Eqs.
(A.1) and (A.2) of the previous section.

Comment on notation: It is common to use the letters i, j, k for dummy summation
indices. However, we’ve already used i for

√
−1 and k for angular wavenumber, so the

preceding equations would be hopelessly confusing if we reused i and k for summation
indices. We will therefore use r and s for indices on spatial variables, e.g., (xr, ys), and u
and v for indices on frequency variables, e.g., ku or νv. n and m also will be used as needed
for dummy indices.

2Complex conjugation means replace i by −i. Thus the complex conjugate of x± iy is x∓ iy.
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We now have a finite number N of discrete samples f(xr) of the sea surface, so we need
a discrete form of the Fourier transform. The discrete Fourier transform (DFT) of f(xr)
is defined as

f̂(νu) , D{f(xr)} ,
1

N

N−1∑
r=0

f(xr)e
−i2πνuxr .

for u = 0, 1, ...., N − 1. Recalling that νu = u/L = u/(N∆x) and xr = r∆x = rL/N gives
νuxr = ru/N . It is also common to write f(xr) = f(r) and f̂(νu) = f̂(u), in which case
the previous equation becomes

f̂(u) , D{f(r)} , 1

N

N−1∑
r=0

f(r)e−i2πru/N . (A.7)

The corresponding inverse discrete Fourier transform is given by

f(r) , D−1{f̂(u)} ,
N−1∑
u=0

f̂(u)e+i2πru/N . (A.8)

It was emphasized above that the continuous function f̂(ν) defined by the continuous
Fourier transform (A.1) is a density function with units of f(x) per spatial frequency
interval, e.g., m/(1/m) if z is sea surface height in meters. However, the discrete function
f̂(u) defined by the discrete Fourier transform (A.7) has the same units as f(r). The
discrete Fourier transform is a point function that shows how much of f(r) is contained
in a finite frequency interval ∆ν = 1/L centered at frequency νu = u/L. Discrete Fourier
transforms convert point functions f(r) to point functions f̂(u).

The F and D notations will be used to distinguish continuous versus discrete Fourier
transforms. As just seen, the continuous and discrete transforms are different mathematical
constructs with different units and interpretations; they must not be confused. Likewise,
if necessary, a subscript can be appended to show the frequency variable, e.g., Fν{f(x)}
as in Eq. (A.1) or Fk{f(x)} as in Eq. (A.3). As always, there are competing definitions.
Equations (A.7) and (A.8) are used in Bracewell and the IDL computer language. Nu-
merical Recipes (Press et al., 1992) interchanges the i and −i. MATLAB puts the 1/N
factor on the inverse transform. Also, MATLAB does not support array indices of 0, so the
summation indices are shifted from 0 to N − 1 to 1 to N , with a corresponding shift from
ru to (r−1)(u−1) in the exponentials. The devil is in the details, and details like where to
put the 1/N factor and differences in array indexing in different computer languages can
cause great misery when it comes time to actually write computer programs or to compare
results computed by different canned subroutines.

The sums in the last two equations require computing complex exponentials (i.e., sines
and cosines), multiplying by the corresponding values of f(r) or f̂(u) and adding up the
results. These equations can be evaluated for any value of N . The number of computations
required to do this is of order N2. The computation time thus increases very rapidly for
large N .

However, a classic paper by Cooley and Tukey (1965) showed how these sums can
be computed in order N log2N computations, if N is a power of 2. Their technique is
now called the Fast Fourier Transform or FFT. The difference in computer time becomes
enormous for large N . For example, if N = 212 = 4096, then N log2N = 4096 × 12, and
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the difference in computation time is a factor of N2/(N log2N) ≈ 341. Thus in the case of
N = 4096, a roughly 6 minute computer run becomes a 1 second run. The development (or,
perhaps, reinvention, since the basic idea goes all the way back to Gauss) of the FFT was
a major advance in numerical analysis, which enables the computations on the following
sections to be performed extremely efficiently. Subroutines for computing FFTs and inverse
FFTs are available in all computer languages commonly used in science (Fortran, C, IDL,
MATLAB, Python, etc). Fortunately we do not need to concern ourselves here with the
details of how the FFT algorithm actually works, any more than we need to worry about
how a canned subroutine actually computes the cosine of a number. If you are interested
in how the FFT works, a web search will yield many detailed explanations. It is important
to remember that the FFT is not another type of transform; the FFT is a numerically
efficient way to evaluate the DFT if the number of data values is a power of two.

The one-dimensional (1-D) equations seen above are easily extended to two or more
dimensions. For two dimensions (x, y), we can sample a region of size Lx by Ly meters
over Nx points in the x direction and Ny points in the y direction, with Nx and Ny both
powers of 2 so we can use FFTs. Equations (A.5) and (A.6) then become

f(xr, ys) =
a0

2
+

Nx/2∑
u=1

Ny/2∑
v=1

[au,v cos(kuxr + kvys) + bu,v sin(kuxr + kvys)]

=

Nx/2∑
u=−Nx/2+1

Ny/2∑
v=−Ny/2+1

cu,ve
i(kuxr+kvys) . (A.9)

The corresponding 2-D DFT pair is

f̂(u, v) , D{f(r, s)} , 1

NxNy

Nx−1∑
r=0

Ny−1∑
s=0

f(r, s)e−i2π(ru/Nx+sv/Ny) (A.10)

and

f(r, s) , D−1{f̂(u, v)} ,
Nx−1∑
u=0

Ny−1∑
v=0

f̂(u, v)e+i2π(ru/Nx+sv/Ny) . (A.11)

It will be important below to keep notational track of continuous versus discrete versions
of various functions. For any variable S,

• S(k) will denote a continuous function of k,

• S(k = ku) will denote the continuous function evaluated at the discrete value ku, and

• S(ku) = S(u) will denote a discrete point function.

Keep in mind that the density function S(k = ku) and the point function S(ku) have
different units. In the next appendix, S(k) and S(ku) will denote the continuous and
discrete versions, respectively, of wave elevation variance spectra.

The differences in units between continuous and discrete Fourier amplitudes makes it
tricky to make the transition between discrete and continuous versions of the same quantity.
In particular, it will be necessary to explicitly include the frequency intervals in some of
the later calculations that involve both continuous and discrete variables. For example, if
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we have a continuous density function and we need to convert to a corresponding discrete
function, we must multiply the continuous function by the finite frequency interval, e.g.

f̂(u) = f̂(ν = νu)∆ν . (A.12)

Conversely, if we have discrete amplitudes f̂(u) and we wish to estimate the continuous
spectral density f̂(ν), then we must divide by the frequency interval:

f̂(ν) = f̂(u)/∆ν . (A.13)

If you are an optical oceanographer familiar with the scattering phase function, you
can find an analogous situation in the estimation of the scattering phase function from
measurements of scattered light. The scattering phase function is a measure of how much
light energy is scattered from an incident direction into a particular direction, per unit solid
angle; it therefore has units of 1/steradian. If you measure the scattered light using an
instrument with a finite solid angle ∆Ω, then you get the total amount of energy scattered
into the solid angle ∆Ω. To estimate the phase function from this measurement, you must
divide the measured value by the solid angle of the instrument; this gets you back to units
of 1/steradian.

A.3.1 Frequency Ordering

There is a peculiarity to most (perhaps all) FFT subroutines. The discrete FFT of Eq.
(A.7) returns an array of N complex numbers f̂(u), which are associated with N discrete
spatial frequencies. What is peculiar is the order in which the elements of the f̂(u) array
are returned by an FFT subroutine.

Let ∆f represent the fundamental frequency. If wavenumber ν is the frequency variable,
then ∆f = 1/L. If angular spatial frequency k is the frequency variable, then ∆f = 2π/L;
for temporal angular frequency ω, ∆f = 2π/T . In any case, the discrete frequencies
associated with the discrete Fourier amplitudes are equally spaced at intervals of ∆f and
are in the negative-to-positive order{

−N
2

+ 1,−N
2

+ 2, ...,−1, 0, 1, ...,
N

2
− 1,

N

2

}
∆f . (A.14)

I’ll call this the “math frequency order” because this is the natural order of arranging values
in mathematics. This frequency order is convenient for plotting all of the amplitudes. Plots
showing both negative and positive frequencies are called “two-sided,” and examples will
be seen in the discussion of modeling sea surfaces.

However, FFT routines generally return their amplitudes corresponding to frequencies
in the order of 0 first, then the positive frequencies from the smallest to the Nyquist
frequency (Section B.1.1), then the negative frequencies in reverse order:{

0, 1, ...,
N

2
− 1,

N

2
,−N

2
+ 1,−N

2
+ 2, ...,−1,

}
∆f . (A.15)

I’ll call this the “FFT frequency order.” Given the Hermitian symmetry of the amplitudes
about the 0 frequency, the FFT order is convenient for plotting amplitudes only for the
positive frequencies, with the negative-positive symmetry of f̂ understood. Such plots are
called “one-sided” or “folded.”
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Either frequency order can be obtained from the other by a repeated circular shift,
which moves an array element off of one end of an array and copies it to the other end
of the array, shifting all elements right or left by one position in the process. The detail
to watch is that different computer languages define a circular shift in different ways. For
example, the IDL routine SHIFT (and the MATLAB routine CIRCSHIFT) moves the array
elements to the right for a “positive” shift (a negative shift moves elements to the left),
whereas the Fortran 95 CSHIFT routine moves the array elements to the left for a positive
shift (a negative shift moves elements to the right). Thus

In IDL:

math order = SHIFT(FFT order, N/2-1)

FFT order = SHIFT(math order, -(N/2-1))

In Fortran 95:

math order = CSHIFT(FFT order, -(N/2-1))

FFT order = CSHIFT(math order, N/2-1)

Some FFT routines allow the user to set a flag specifying which frequency order is to be
returned. In any case, sorting out the frequency order of the amplitudes returned by a
particular FFT routine, and figuring out how to shift between math and FFT frequency
orders in a particular computer language, can drive you to tears.

Note finally that in Eq. (A.7) you are simply providing an array of f(r) values and
getting back the same number of f̂(u) values. What x(r) values correspond to the f(r)
values is irrelevant. That is, x(r), r = 0, ..., N − 1 might correspond to the spatial range
from x = 0 to L, or from x = −L/2 to L/2, or to any other x range. It is only the number of
samples N and the corresponding f(u) values that matters. In other words, the amplitudes
coming out of the Fourier transform are independent of the origin of the spatial coordinate
system. The frequencies depend on both the number of points N and the physical size of
the sampled region via the presence of L (or time interval T ) in the fundamental frequency
∆f . Thus the size of the region sampled and the number of samples, along with the sample
values themselves, fully define the associated Fourier transforms.

A.3.2 Interpretation of Negative Frequencies

The appearance of negative frequencies in Fourier transforms may seem somewhat myste-
rious. Frequency, after all, is a physical quantity that is inherently a positive number, e.g.,
the number of wavelengths in a given distance. However, one way to interpret mathemat-
ically negative frequencies is that they are simply the mathematical price we pay for the
convenience of using complex numbers. Consider, for example, the representation of the
cosine as a sum of complex exponentials for the uth frequency:

cos(2πνuxr) =
1

2

(
ei2πνuxr + e−i2πνuxr

)
=

1

2

(
ei2π(+νu)xr + ei2π(−νu)xr

)
.

We can interpret the complex representation of the real cosine as having one term with a
positive frequency +νu and one term with a negative frequency −νu. A similar equation
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holds for the complex representation of sin(2πνuxr). The Fourier transform of a real func-
tion always contains both negative and positive frequencies, which arise from the complex
exponentials in the definition of the transform.

Additional comments about negative frequencies will be made in Appendix C, where it
will be seen that positive frequencies can be associated with waves propagating in the +x
direction, and negative frequencies correspond to waves propagating in the opposite, −x,
direction.

A.4 Parseval’s Relations

The physical and spectral variables of a continuous Fourier transform pair satisfy∫ ∞
−∞
|f(x)|2dx =

∫ ∞
−∞
|f̂(ν)|2dν , (A.16)

which is known as Parseval’s relation. For complex amplitudes, |f̂ |2 = f̂ f̂∗. The corre-
sponding equation for the discrete Fourier transform pair defined by Eqs (A.7) and (A.8)
is

N−1∑
r=0

|f(r)|2 = N
N−1∑
u=0

|f̂(u)|2 . (A.17)

The extension to the two-dimensional case is straightforward:

Nx−1∑
r=0

Ny−1∑
s=0

|f(r, s)|2 = NxNy

Nx−1∑
u=0

Ny−1∑
v=0

|f̂(u, v)|2 . (A.18)

The discrete forms of Parseval’s relations provide important checks on numerical cal-
culations. For example, it is easy to misplace factors of N, which appear in different places
depending on the exact form used for the definition of the discrete transforms.

A.5 Discrete Convolution Theorems

The results of this section will be needed in Appendix G on image prediction. I include this
derivation here two reasons: (1) it is exceptionally important, and (2) it is almost never
discussed in texts. For example, Bracewell (1986, page 367) merely says “The theorem is”
and writes the equivalent of Eq. (A.21) below, without any further discussion. He does
not present the 2-D equivalent of Eq. (A.22), nor is there any discussion of the importance
of this equation for applications such as image prediction. For simplicity, the derivation
in this section is given for a function of one variable. The extension to two variables as
needed for 2-D images is straightforward.

A.5.1 The 1-D Convolution Theorem

Let f(xr) = f(r) and g(xr) = g(r), r = 0, 1, ...N−1 be discrete functions of spatial location
xr with x0 = 0 and xN−1 = L. The spacing of the discrete spatial points is ∆x = L/N , so
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xr = r∆x = rL/N . Furthermore, let H(`) be the Heaviside step function defined by

H(`) ≡

 0 if ` ≤ 0

1 if ` > 0

Fourier transforms imply functions that are periodic in space. In one dimension, i.e.
f(r), r = 0, 1, ..., N − 1, this means that f(N) = f(0), f(−1) = f(N − 1), f(N + 2) = f(2),
and so on. That is, each function “wraps around” via a cyclic shift for values outside the
defined index range of 0 to N −1. For 2-D functions such as images, the x and y directions
wrap around independently. The Heaviside step function is used to wrap the indices of g
whenever r − r′ is outside the range of 0 to N − 1. For example, if r = 2 and r′ = 4, then
r − r′ = −2, but g(−2) is not defined. The value of 2− 4 +NH(4− 2) = −2 +N , so the
value of g(N − 2), which is defined, will be used.

The Discrete Fourier Transform (DFT) of f , denoted by D{f(xr)} or f̂(νu) defined by
Eq. (A.7) is

f̂(u) = D{f(r)} =
1

N

N−1∑
r=0

f(r)e−i2πur/N . (A.19)

As discussed in Sections G.3.1 and G.3.2, for discrete variables of finite length, there are
two kinds of convolution: linear or serial and circular or cyclic. We next develop the DFT
of the cyclic convolution, which is the basis for fast computations of image degradation
using the FFT. The 1-D form of the 2-D cyclic convolution of Eq. (G.6) is

f(r) ~ g(r) ,
N−1∑
r′=0

f(r′)g(r − r′ +NxH(r′ − r)) , (A.20)

which will be used for the present derivation.

The DFT of a 1-D cyclic convolution is, by Eqs. (A.19) and (G.15),

D{f(r) ~ g(r)} =
1

N

N−1∑
r=0

{
N−1∑
k=0

f(k)g(r − k)

}
e−i2πur/N ,

where the cyclic indexing of g(r − k) is understood. Now use

1 = e−i2πku/N+i2πku/N = e−i2πku/Nei2πku/N

and interchange the summation order to write the last equation as

D{f(r) ~ g(r)} =
1

N

N−1∑
k=0

f(k)

{
N−1∑
r=0

g(r − k)e−i2π(r−k)u/N

}
e−i2πku/N .

Next let ` = r − k so that the term in braces becomes

D{f(r) ~ g(r)} =
1

N

N−1∑
k=0

f(k)

{
N−1−k∑
`=−k

g(`)e−i2π`u/N

}
e−i2πku/N .
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Because g(`) is periodic, g(−k) = g(N − 1− k) and so on, so that the dummy summation
index ` includes exactly the same terms (just in a different order) as if the sum runs from
` = 0 to N − 1. Thus the last equation can be rewritten as

D{f(r) ~ g(r)} = N

{
1

N

N−1∑
k=0

f(k)e−i2πku/N

}{
1

N

N−1∑
`=0

g(`)e−i2π`u/N

}
.

The two terms in braces are the definitions of f̂(u) and ĝ(u). Thus we have the convolution
theorem for cyclic convolution of discrete functions of length N :

D{f(r) ~ g(r)} = Nf̂(u) ĝ(u) . (A.21)

The factor of N in the last equation does not occur with continuous variables. That is,
for a function f(x) of a continuous variable x, the Fourier transform f̂(ν) of f(x) is defined
as

f̂(ν) , F{f(x)} ,
∫ ∞
−∞

f(x)e−i2πνxdx .

For continuous functions f(x) and g(x), convolution is defined by

f(x) ∗ g(x) =

∫ ∞
−∞

f(x′)g(x− x′)dx′ .

The convolution theorem for continuous functions is (see Bracewell (1986, page 110) for
the derivation)

F{f(x) ∗ g(x)} = f̂(ν) ĝ(ν) .

Based on this result, you often see that statement that “the Fourier transform of the
convolution of f and g is the product of the transforms of f and g.” That is true for
continuous functions, but not for discrete, which has the extra array length factor N .

A.5.2 The 2-D Convolution Theorem

Let f(xr, ys) = f(r, s) be a discrete function defined at a set of Nx evenly spaced points
in the x direction, xr, r = 0, 1, ..., Nx − 1, and a set of Ny evenly spaced points in the y
direction, ys, s = 0, 1, ..., Ny − 1. Then the 2-D DFT of f(r, s) is defined by Eq. (A.10),
and the 2-D cyclic convolution is given by Eq. (G.6) of Section G.3.2. These 2-D equations
can be followed through in parallel to the 1-D equations above to derive the 2-D discrete
convolution theorem. The result is

D{f(r, s) ~ g(r, s)} = NxNy f̂(u, v)� ĝ(u, v) . (A.22)

As for the 1-D case, the discrete convolution theorem has factors of NxNy, which do
not occur in the continuous case. These factors are crucial when doing numerical image
prediction calculations on a digital image of size Nx ×Ny.

The functions f̂(u, v) and ĝ(u, v) are 2-D arrays of size Nx × Ny, i.e. matrices. How-
ever, the product seen in Eq. (A.22) is an element-by-element multiplication, not matrix
multiplication. This is denoted by the � symbol and is sometimes called the Hadamard
product of the arrays. This equation is the key to the use of the fast Fourier transform for
computation of image degradation. In that application f(r, s) is the image, and g(r, s) is
obtained from the point spread function.
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A.6 Orthogonality of Sines and Cosines

In general, two functions f(x) and g(x) are orthogonal over the interval a ≤ x ≤ b if∫ b

a
f(x)g(x)dx = 0 .

Although not obvious from the presentation above, the orthogonality of sines and cosines
is fundamental to the theory of Fourier series and transforms. (That is, these relations are
needed to prove the results that were stated above without proof.) For completeness, these
orthogonality results are given here.

When f(x) and g(x) are continuous sines and cosines, the following set of orthogonality
relations holds: ∫ c+2π

c
sin(mx) cos(nx)dx = 0 for all m,n

∫ c+2π

c
sin(mx) sin(nx)dx =

 0 if m 6= n

π if m = n∫ c+2π

c
cos(mx) cos(nx)dx =

 0 if m 6= n

π if m = n

A similar set of relations can be developed for discrete functions. Let ∆φ = 2π/N ,
where N is an even number, and let φv = v∆φ, v = 0, 1, ..., N − 1 be a set of points on the
interval 0 ≤ φv ≤ 2π −∆φ. Furthermore, let δk be the Kronecker delta function defined
by

δk ,

 1 if k = 0

0 if k 6= 0

or equivalently

δk−` ,

 1 if k = `

0 if k 6= `

where k and ` are integers. The discrete orthogonality relations for sines and cosines can
then be written

N−1∑
v=0

cos(mφv) sin(nφv) = 0 for all m and n .

N−1∑
v=0

sin(mφv) sin(nφv) =


0 if m 6= n

N/2 if m = n = 1, 2, ..., N/2− 1, N/2 + 1, ..., N − 1, N + 1, ...

0 if m = n = 0, N/2, N, 3N/2, 2N, ...

=
N

2
(δm−n − δm+n − δm+n−N )
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N−1∑
v=0

cos(mφv) cos(nφv) =


0 if m 6= n

N/2 if m = n = 1, 2, ..., N/2− 1, N/2 + 1, ..., N − 1, N + 1, ...

N if m = n = 0, N/2, N, 3N/2, 2N, ...

=
N

2
(δm+n + δm−n + δm+n−N )

It is difficult to find the discrete forms in textbooks even though they are widely used
in numerical calculations. For example, the discrete forms are used to decompose the
azimuthal dependence of the radiative transfer equation deep inside HydroLight (Mobley,
1994, Sections 8.3-8.5).
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APPENDIX B

Wave Variance Spectra

This Appendix discusses the fundamentals of wave variance spectra, which will be needed
for sea surface generation. This is considered “well known” material—well known, that is,
to those physical oceanographers who already know it. However, the entire business of wave
spectra can be exceedingly confusing, and journal articles always assume that the reader
already understands the underlying ideas and mathematics. It is therefore worthwhile to
review the results that will be needed. A good reference for the development of wave
spectra is Holthuijsen (2007), who is very careful in his notation and terminology. Banner
(1990) and Massel (2011) provide review articles. The notation used below is chosen to
conform to that used in Elfouhaily et al. (1997).

The discussion begins with an overview of the representation of waves as sums of si-
nusoids and the associated issues of sampling a wave at a discrete number of points. The
theory of wave variance spectra is then introduced, followed by numerical examples using
two of the most commonly used models for wave variance spectra. This material is the
foundation of modeling sea surfaces as discussed in Appendix C.

B.1 Sinusoidal Wave Representations

This section first defines the sinusoidal functions that can be used to decompose waves on
the sea surface into sums of sines and cosines. Sampling of sea surfaces at a finite number
of points is then discussed.

The sea surface can be described using a Cartesian coordinate system. Let x̂ be a unit
vector chosen to point in the downwind direction, and let ẑ be directed upward (from the
water to the air) normal to the mean sea surface at z = 0. Then ŷ = ẑ × x̂ is in the
cross-wind direction. z(x, y, t) is the surface elevation in meters at spatial location (x, y)
and time t.

As shown in Appendix A, an arbitrary function of space or time can be written as a
sum of sines and cosines of different amplitudes and wavelengths. The sea surface elevation
z(x, y, t) is usually such a function. An exception is a sea surface with waves curling over
and breaking on a beach. There can then be multiple air-water surfaces for a given (x, y, t):
the point on the surface that sees the full sky, the point above a surfer’s head as the wave
curls over her, and the point on the water that supports the surf board. However, for a

643



644 APPENDIX B. WAVE VARIANCE SPECTRA

sea surface without breaking waves, there is only one air-water surface for a given location
and time, which can be described as a sum of sinusoids.

The terms and notation needed to describe propagating sinusoidal waves are defined as
follows:

• A is the amplitude (in units of meters) of the wave. This is one-half the distance
from the trough to the crest of a sinusoidal wave. Oceanographers often talk about
the wave height, H, which is the distance from a wave trough to a wave crest. Wave
height is what most people visualize when they talk about how “big” a wave is. For
a sinusoidal wave, H = 2A.

• T is the temporal period (seconds), usually called just the period. This is the time it
takes for one wave crest to pass by a fixed point, i.e. for the argument of a sinusoid
to go through 2π radians.

• f = 1/T is the temporal frequency (1/seconds), usually called just the frequency.
This is how many waves pass by a fixed point per second.

• ω = 2π/T = 2πf is the angular temporal frequency (radians/second), usually called
the angular frequency. This is the number of waves passing a fixed point in 2π
seconds.

• Λ is the wavelength, or spatial period, (meters). This is the distance from one wave
crest to the next.

• ν = 1/Λ is the spatial frequency or wavenumber (1/meters). This is the number of
wavelengths per meter.

• k = 2π/Λ = 2πν is the angular spatial frequency or angular wavenumber (radi-
ans/meter). This is the number of wavelengths in 2π meters.

• φ is the phase (nondimensional). This fixes the location of a wave crest relative to
the origin of a coordinate system.

As was discussed in Section 1.5.9, there is no uniformity of notation in the literature.
People often refer to “the frequency” without specifying whether they mean f or ω, and
“wavenumber” or “spatial frequency” may mean either ν or k. People use ν, ν̃, or σ for
the wavenumber, some use σ for ω, and so on. You just have to figure it out on a case-
by-case basis. For pedagogic purposes, we will start with wavenumber ν as the measure of
spatial frequency, and then switch to the more common angular spatial frequency k. This
presentation will use ω as the measure of temporal frequency.

Now consider a one-dimensional sea surface with elevation z(x, t) over a spatial region
of length L, e.g. 0 ≤ x ≤ L or −L/2 ≤ x ≤ L/2. According to Fourier, z(x, t) can be
written as a sum of sinusoids, the nth one of which is

zn(x, t) = An cos

(
2πnx

L
+ φn ±

2πnt

T

)
, (B.1)

where n = 0, 1, 2, ... is simply an index for which sinusoid is being considered. (Note that
we could just as well write a sine here, which corresponds to a different value for the phase.)
For n = 0 this reduces to a constant offset z0(x, t) = A0 cos(φ0), which is usually taken to
be mean sea level and is set to a reference value of 0 via setting A0 = 0. For the moment,
take t = 0, i.e., we have a snapshot of the ocean surface at time zero. This sinusoid has
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a wavelength of Λn = L/n, i.e., the cosine returns to the same value after a distance of
x = L/n. It is a pure cosine in the chosen coordinate system if the phase is 0 or an even
integer multiple of ±π. If the phase is an odd integer multiple of ±π/2 it is a sine. If time
is included, the wave is propagating in the +x direction if the time term is −2πnt/T ; the
cosine returns to its initial value after a time of t = T/n. A wave propagating in the −x
direction is described by a +2πnt/T term. The physical angular frequency ωn , 2πn/T is
always positive, but mathematically we can write just +ωnt in the equation and then view
a wave propagating in the +x direction as having a negative temporal frequency.

With this interpretation of ωnt, Eq. B.1 is conveniently written as

zn(x, t) = An cos(knx+ φn + ωnt) , (B.2)

where kn = 2πn/L = 2π/Λn is the angular wavenumber of the nth wave of wavelength
Λn = L/n. Likewise, ωn = 2πn/T = 2π/Tn is the angular frequency of the nth wave with
period Tn = T/n. It may be intuitively easier to think of wavelengths per meter than
of wavelengths per 2π meters, but the convenience of writing k rather than 2π/Λ or 2πν
makes k rather than ν the spatial frequency variable used in most publications. A similar
comment holds for ω versus 2π/T = 2πf , so ω rather than f is the common choice for the
temporal frequency variable.

If we take t = 0, or just combine the time term with the phase, expanding the cosine
in Eq. (B.2) gives an equivalent form

zn(x) = an cos(knx) + bn sin(knx) , (B.3)

where an = An cosφn and bn = −An sinφn, n = 1, 2, ..., a0 = A0, and b0 = 0. This
equation can be written in terms of complex numbers:

zn(x) = c+ne
iknx + c−ne

−iknx , (B.4)

where i =
√
−1 and

c+n = (an − ibn)/2, c−n = (an + ibn)/2, and c0 = a0/2 . (B.5)

Recalling that e±iθ = cos θ ± i sin θ, we see that the imaginary parts of Eq. (B.4) add
to zero, so that zn(x) is still a real variable even though it is written in complex form.
Also note that c∗+n = c−n, where c∗ denotes the complex conjugate. (Complex conjugation
means replace i by −i in all terms.) Although two complex numbers in general contain four
independent real numbers, these c+n and c−n pairs contain only two independent numbers,
an and bn.

We thus have three ways to describe a sinusoidal wave: (1) The cosine of Eq. (B.2)
defined by an amplitude and a phase; (2) the cosine and sine of Eq. (B.3) defined by two
amplitudes, or (3) the complex exponentials of Eq. (B.4) defined by two complex numbers
containing two independent real numbers. These equations all give the same zn(x), so
we are free to choose whichever form is mathematically convenient for the problem at
hand. For visualization of sea surfaces, the real forms (B.2) or (B.3) are convenient, but
the calculations on the next sections are most conveniently carried out using complex
exponentials.
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Returning now to Fourier, linear wave theory says that we can write the sea surface
elevation as a Fourier series

z(x) =
∞∑
n=0

zn(x) =
a0

2
+
∞∑
n=1

[an cos(knx) + bn sin(knx)] , (B.6)

which in conjunction with Eq. (B.4) can be rewritten as

z(x) =
∞∑

n=−∞
cne

iknx . (B.7)

As previously noted, the a0 or c0 term is usually set to 0. This equation is the mathematical
heart of our subsequent descriptions sea surfaces.

Although the physics that leads to a given sea surface in general involves non-linear
interactions between waves of different wavelengths and periods, the shape of the resulting
sea surface can be written as a linear sum of sinusoids of different frequencies. Owing
to the orthogonality of sines and cosines (Section A.6) for different n values as defined
above, these wave components zn(x) are independent of each other. Thus a description of
a time-dependent surface based on an expansion like that of Eq. (B.6) (including the time-
dependent terms as seen in Eq. (B.2)) cannot be used to predict the nonlinear evolution
of a sea surface from a given initial condition. To do that, you must return to the world
of hydrodynamics in all of its nonlinear glory. For our present purposes, we only want to
model the shapes of sea surfaces, not predict their hydrodynamic development from an
initial state, so linear wave representations are adequate.

B.1.1 Sampling

Next consider the implications of sampling the sea surface at a finite number of discrete
locations or times. It is usually the case when we want to measure the sea surface elevation
that we either make measurements at discrete locations xr, r = 0, 1, ..., N − 1 at a given
time, or at discrete times tr, r = 0, 1, ..., N − 1 at a given location.

For a specific example, consider a region of sea surface L = 10 m long where we take
N = 8 evenly spaced samples. This gives a measurement every ∆x = L/N = 1.25 m at
a given time. We are going to describe this surface as a sum of sinusoids. Figure B.1
illustrates the first few sinusoids shown as cosines. The cosines in the figure all have the
same amplitude and each is offset vertically for ease of viewing. The dots show the sampled
values for each cosine component.

The longest wave that can fit into a region of length L has a wavelength of Λ = L. This
is called the fundamental wave or first harmonic. This wave is shown by the blue n = 1
curve in the figure. Note that the n = 4 cosine in the figure has a period of 2∆x. The
smallest wave that can be captured correctly in a sampling scheme has a period of twice
the sampling interval. This called the two-point wave or two-point oscillation. Note that
a sine term with period 2∆x would be sampled at arguments of 0, π, 2π, ... where the sine
is zero and is thus not detectable. The spatial frequency 1/(2∆x) (or temporal frequency
1/(2∆t) if sampling in time at a given location) is called the spatial (or temporal) Nyquist
frequency. Waves with higher frequencies than the Nyquist frequency are still sampled,
as illustrated by the dots on the wave with n = 10. Note, however, that the pattern of
sampled points for the n = 10 wave is exactly the same as for the n = 2 wave. If all we have
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Figure B.1: Illustration of sampling the harmonics of a given wave and of aliasing. The
vertical dotted lines show the sampling locations, and the dots show the sampled values
for the various cosine components.

are the measured points, we cannot distinguish between the n = 10 and the n = 2 waves
in this example. This illustrates the phenomenon of aliasing. In general, a wave with a
frequency greater than the Nyquist frequency (i.e., a wavelength or period less that twice
the sampling interval) is still sampled, but it appears as though the high frequency wave is
a wave with a frequency less than the Nyquist frequency. The information about the high
frequency (short wavelength) wave is added to or aliased into a lower frequency (longer
wavelength) wave, thereby giving incorrect information about the lower frequency wave.
Aliasing places a severe constraint on any sampling scheme. We can correctly sample only
waves with wavelengths that lie between the size of the spatial region, L, and twice the size
of the sampling interval. (In the temporal setting, the limits are the length of sampling
time and twice the temporal sampling interval.)

The relation between a sampled frequency fs greater than the Nyquist frequency, the
sampling rate or Nyquist frequency fNy, and the frequency fa receiving the aliased signal
is

fa = |mfNy − fs|

where m is the closest integer multiple of the sampling rate to the signal being sampled.
In the example of Fig. B.1, fs = fn=10 = 10 waves per 10 meters = 1 m−1, fNy = 0.4, and
either m = 2 or m = 3 gives fa = |2 × 0.4 − 1| = 0.2 (or fa = |3 × 0.4 − 1| = 0.2). Thus
the n = 10 wave is aliased into the n = 2 wave, which has a frequency of 2 waves per 10
meters, or 0.2 m−1, just as seen in the figure. Note that many other frequencies are also
aliased into this frequency. For example, a wave with fs = 1.4, corresponding to n = 14,
also gives fa = 0.2 with m = 4, and so on.
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B.2 Theory of Wave Variance Spectra

The figures of the following sections are illustrated using two commonly used wave variance
spectra. The one-dimensional surfaces of Section D.3 use the Pierson-Moskowitz spectrum
(Pierson and Moskowitz, 1964), and the two-dimensional surfaces Sections C.4 and C.7 use
the spectrum of Elfouhaily et al. (1997). After the introductory overview on this section,
the next section presents these two specific wave spectra for later reference.

B.2.1 Wave Energy

Consider a sinusoidal wave of amplitude A and wavenumber ν. It can be shown (e.g.,
Preisendorfer, 1976, Volume VI, page 72) that the total energy per unit horizontal area of
sea surface of this wave, averaged over a wavelength, is

energy

area
=

1

2
ρgA2 +

1

4
τν2A2 , (B.8)

where

ρ ≈ 103 kg m−3 is the density of water,

g ≈ 9.8 m s−2 is the acceleration of gravity,

τ ≈ 0.072 N m−1 (at 25 deg C) is the surface tension of water.

The 1
2ρgA

2 term is the sum of the kinetic and gravitational potential energy of the wave.
(The potential energy is relative to the mean sea surface at z = 0.) The 1

4τν
2A2 term

is the energy required to stretch the level surface into a sinusoid, working against surface
tension. It is easy to see that the units of these terms are J m−2.

The variance of a sinusoidal surface is the average over one wavelength Λ of the surface
elevation squared (assuming that the mean surface is at zero):

var{z} , 1

Λ

∫ Λ

0

[
A sin

(
2πx

Λ

)]2

dx =
1

2
A2 . (B.9)

Thus the energy per unit area of a sinusoidal wave also can be written in terms of its
variance:

energy

area
=

(
ρg +

1

2
τν2

)
var{z} . (B.10)

B.2.2 Wave Elevation Variance Spectra

The fundamental quantity of interest for the description of sea surfaces is a spectral density
function that tells how much of the surface wave elevation variance is contained in particular
frequencies. Other quantities of interest, in particular a spectral density function that tells
how much sea surface slope variance is contained in different frequencies, can be derived
from the elevation variance spectral density.

As just seen, the variance of the surface elevation is proportional to the amplitude
squared. Equation (B.8) shows that the energy per unit horizontal area of a sinusoidal
wave of a given amplitude and spatial frequency is also proportional to the amplitude
squared, or to the variance of the surface elevation. For a sea surface containing waves of
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many different amplitudes and spatial frequencies, the total variance of the sea surface is
the sum of the variances of in the individual waves (the variance of a sum of independent
random variables is is the sum of the variances of the individual variables). Likewise, the
total energy of the waves is the sum of the energies of the individual waves.

We thus have the following line of reasoning:

• For a discrete sample z(r) of a zero-mean sea surface, the variance is

var{z} =
1

N

N−1∑
r=0

|z(r)|2 .

(Division by N rather than N −1 in computing the sample variance is correct in this
case because it is assumed that the mean surface elevation is known and equal to 0.)

• Parseval’s identity (A.17),

N−1∑
r=0

|z(r)|2 = N

N−1∑
u=0

|ẑ(u)|2 ,

gives

var{z} =
N−1∑
u=0

|ẑ(u)|2 .

• We therefore identify S(u) , |ẑ(u)|2 as the discrete variance spectrum, with units of
m2.

Such reasoning led Arthur Schuster (Schuster, 1897, 1898) to the seminal observation
that Fourier transforms can be used to decompose the total variance contained in a signal
into the variance contained in each frequency. Schuster’s original interest was in searching
for what he call “hidden periodicities” in weather phenomena (as opposed to obvious
periodicities such as daily or seasonal cycles). He soon applied the technique to looking for
periodicities in earthquakes, sunspots, and other phenomena. Today, the computational
speed of the FFT allows his method of analysis to be widely applied in science, engineering,
economics and other fields where it is desired to know the energy or power of a signal as
a function of spatial or temporal frequency. Regardless of what physical quantity is under
consideration, the essence of a spectrum is that it gives the distribution of variance in that
quantity as a function of frequency.

Because of the proportionality (B.10) of elevation variance to wave energy, S(u) is often
loosely referred to as the discrete energy (or power) spectrum. To be precise, S(u) is not
an energy variance spectrum unless it is multiplied by the factor ρg + 1

2τν
2 to convert

elevation units to energy units. (In other applications, the variance of some quantity such
as voltage or current in an electrical circuit can be multiplied by an appropriate conversion
factor to get the spectrum of energy or power.)

Care is required to formulate wave spectra for continuous variables. As in Eqs. (B.2)
and (B.6), we can write the continuous surface as a sum of sinusoids, e.g.

z(x) =

∞∑
n=0

zn(x) =

∞∑
n=0

An cos(knx+ φn) . (B.11)
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As we saw in the Wave Energy section above, the variance of the sinusoid with frequency
kn is 1

2A
2
n. The waves of different frequencies are independent, so the total variance of the

surface can be written as the sum of the variances of the individual waves:

var{z} =

∞∑
n=0

1

2
A2
n . (B.12)

Now let ∆kn be a frequency interval centered on frequency kn, whose sinusoid has amplitude
An. We then define

S(k = kn) , lim
∆kn→0

1
2A

2
n

∆kn
. (B.13)

In this definition, keep in mind that each An is associated with a particular frequency kn,
and that the limit operation holds for each value of n. We are thus defining a function
of the spatial frequency, which becomes a continuous function of k as the bandwidth ∆kn
goes to zero.

The continuous function S(k) is called the omnidirectional elevation variance spectrum.
“Omnidirectional” means that there is no reference direction (e.g., a direction of wave
propagation relative to the wind direction) included in the quantity. This is the case if a
wave record is made at a single point as a function of time: the waves go past and their
elevations are recorded, but no information is obtained about the direction the waves are
traveling. S(k) is also called the omnidirectional elevation spectrum for obvious reasons.
As is to be expected, there is no uniformity of notation for this spectrum, but S seems
to be the most common symbol—and what is used in both Pierson and Moskowitz (1964)
and Elfouhaily et al. (1997), to be discussed in the next sections—so that is what is used
here. (E seems to be the second-most-common symbol and is used in Holthuijsen (2007).)
Equation (B.13) shows that the units of S(k) are clearly m2/(rad/m). Equations (B.12)
and (B.13) show that integrating the omnidirectional variance spectrum over all frequencies
gives the total elevation variance:

var{z} = 〈z2〉 =

∫ ∞
0
S(k)dk .

(The equations above are written in terms of spatial angular frequency k, as used for surface
generation, but the reasoning and functional form of Eq. (B.13) are the same for any other
spatial or temporal frequency variable.)

We can repeat this process for two dimensions, starting with

z(x, y) =

∞∑
n=0

∞∑
m=0

An,m cos[knx+ `my + φn,m] . (B.14)

Here k is associated with spatial frequencies in the x direction, and ` corresponds to
frequencies in the y direction. This leads to a function

Ψ(k = kn, ` = `m) , lim
∆kn→0

lim
∆`m→0

1
2A

2
n,m

∆kn∆`m
. (B.15)

The frequency intervals in the x and y directions, ∆kn and ∆`m, do not depend on the
respective frequency indices n and m. That is, the frequency intervals are equally spaced,
but they need not be the same in the x and y directions.
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The notation in the last two equations is non-standard. The convention is to use kx
for frequencies in the x direction (k above), and ky for frequencies in the y direction (`
above). The Ψ(k, `) of Eq. (B.15) is then written as Ψ(kx, ky). This leads to confusion
in the subscripts, which can denote either frequency variables kx, ky, or specific discrete
values kn, km. However, the Ψ(kx, ky) notation is standard in the literature, so that is what
is used below.

Ψ(kx, ky) (i.e., Ψ(k, `)) is the directional variance spectrum in Cartesian coordinates.
Its units are clearly m2/(rad/m)2. This spectrum is often called the “two-dimensional
wavenumber spectrum,” and its arguments are often written in vector form, Ψ(k), where
k = (kx, ky) denotes the location of the frequency point in the 2-D frequency plane.

Equation (B.15) is the conceptual definition of Ψ(k). In practice, if we have discrete
measurements of the two-dimensional sea surface elevation at a given time, z(xr, ys) =
z(r, s) = z(xrs), then the two-dimensional discrete Fourier transform of z(r, s) gives the
two-dimensional amplitudes

ẑ(kuv) = ẑ[kx(u), ky(v)] = ẑ(u, v) = D{z(r, s)} .

Dividing by the discrete frequency bandwidths gives an estimate (called a 2-D periodigram)
of the two-dimensional elevation variance spectral density

P(kuv) ,
|ẑ(kuv)|2

∆ku∆kv
,

Ψ(kuv)

∆ku∆kv
. (B.16)

The arguments of z(xrs), ẑ(kuv), and Ψ(kuv) show that these are discrete functions,
whereas Ψ(k) denotes a spectral density function of the continuous variable k. The 2-
D periodogram is an approximation of the 2-D variance spectral density, P(kuv)

.
= Ψ(k),

where the symbol “
.
=” is used to denote “is an estimate of.” As Eq. (B.16) shows, the dis-

crete function Ψ(kuv) has units of m2, whereas P(kuv) and Ψ(k) have units of m2/(rad/m)2.
A single periodogram contains statistical noise because it is computed from a single real-
ization of a random sea surface. However, if many sets of observations are made, and the
respective periodograms are averaged, then the noise tends to average out, and the average
of the periodograms approaches the conceptual limit of the spectrum Ψ(k). Questions such
as how many periodograms must be averaged to obtain a spectrum with a given level of
uncertainty lie in the domain of spectrum estimation, which need not concern us here.

A 2-D spectrum depends on direction, i.e., on the direction of the (kx, ky) point in
a two-dimensional frequency plane. Usually, the +x direction is chosen to be pointing
downwind and, correspondingly, +kx represents the spatial frequencies of the waves prop-
agating downwind. In this case, the angle ϕ = tan−1(ky/kx) gives the direction relative
to the wind direction. As Eq. (B.15) shows, the integral of Ψ(kx, ky) over all frequencies
gives the variance of the two-dimensional surface:

var{z} = 〈z2〉 =

∫ ∞
−∞

∫ ∞
−∞

Ψ(kx, ky) dkx dky .

It is also common to define a directional spectrum in terms of polar coordinates given
by the magnitude k and direction ϕ of the vector k. These are are related to kx, ky by
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k =
√
k2
x + k2

y

ϕ = tan−1

(
ky
kx

)
and inversely by

kx = k cosϕ

ky = k sinϕ .

In this case we define

Ψ̃(k, ϕ) , lim
∆k→0

lim
∆ϕ→0

1
2A

2
n,m

∆k∆ϕ
. (B.17)

This spectrum has units of m2/[(rad/m) rad]. (The tilde notation is used here to distinguish
this spectrum from the Ψ(k, ϕ) spectrum of Elfouhaily, et al. which is defined in the next
section. (Some authors reserve the name “directional spectrum” for Ψ̃(k, ϕ) and refer to
Ψ(kx, ky) as the wavenumber spectrum.) As before, definition (B.17) shows that integrating
Ψ̃(k, ϕ) over k and ϕ gives the variance:

var{z} =

∫ ∞
0

∫ 2π

0
Ψ̃(k, ϕ) dk dϕ .

The ECKV directional spectrum given in the next section is specified in terms of polar
coordinates k, ϕ. However, in the next sections we will need a spectrum in terms of Carte-
sian coordinates kx, ky for use in a rectangular FFT grid. The change of variables from
polar to Cartesian coordinates is effected by the Jacobian

Ψ(kx, ky) = Ψ̃(k, ϕ)

∣∣∣∣ ∂(k, ϕ)

∂(kx, ky)

∣∣∣∣
= Ψ̃(k, ϕ)

∣∣∣∣∣∣
∂k
∂kx

∂k
∂ky

∂ϕ
∂kx

∂ϕ
∂ky

∣∣∣∣∣∣
= Ψ̃(k, ϕ)

1

k
. (B.18)

Note that the 1/k factor converts the units of Ψ̃(k, ϕ) into the units of Ψ(kx, ky).
In Eq. (B.27) below, this last equation is partitioned as

Ψ(kx, ky) =
1

k
S(k)Φ(k, ϕ) , Ψ(k, ϕ) , [ECKV 45] (B.19)

where S(k) is an omnidirectional spectrum and Φ(k, ϕ) is a nondimensional spreading func-
tion, which shows how waves of different frequencies propagate (or “spread out”) relative
to the downwind direction at ϕ = 0. Labels such as [ECKV 45] refer to the corresponding
equations in Elfouhaily et al. (1997). The spreading function by definition satisfies∫ 2π

0
Φ(k, ϕ) dϕ = 1 (B.20)
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for all k.
Equation (B.19) shows that to obtain the ECKV variance spectrum in Cartesian coor-

dinates we need only evaluate the ECKV Ψ(k, ϕ) spectrum for the corresponding values of
k and ϕ, i.e.

Ψ(kx, ky) = Ψ
(
k =

√
k2
x + k2

y, ϕ = tan−1(ky/kx)
)
. (B.21)

Note in particular that there is no “extra” k factor involved in the conversion of Ψ(k, ϕ)
to Ψ(kx, ky); both quantities have the same units. (The k factor seen in the differentials
dkx dky = k dk dϕ is canceled by the 1/k coming from the Jacobian as seen in Eq. B.18.)

Integration of Eq. (B.19) over the respective (kx, ky) and (k, ϕ) frequency planes gives
the variance as

〈z2〉 =

∫ ∞
−∞

∫ ∞
−∞

Ψ(kx, ky) dkx dky

=

∫ ∞
0

∫ 2π

0

1

k
S(k) Φ(k, ϕ) k dk dϕ

=

∫ ∞
0
S(k) dk , [ECKV A2] (B.22)

after noting the normalization of Eq. (B.20). Thus the variance of the sea surface is
still contained in the omnidirectional spectrum, even in the two-dimensional case. The
omnidirectional spectrum S(k) is obtained from Ψ(k, ϕ) via

S(k) =

∫ π

−π
Ψ(k, ϕ) k dϕ . [ECKV A3]

Unfortunately, making measurements of 2-D sea surfaces is extremely difficult. There
are very few such data sets—obtained, for example, by laser reflectance measurements
(Huang et al., 2000)—and these do not cover the full range of spatial scales. Given the
paucity of empirical 2-D wave data from which to develop 2-D variance spectra, the com-
mon procedure is to start with a 1-D or omnidirectional spectrum S(k) and add an angular
spreading function Φ(k, ϕ) to distribute the wave energy over different directions relative
to the downwind direction. In nature, most waves travel more or less downwind, a small
amount of energy (i.e., variance) is contained in waves propagating in nearly cross-wind
directions, and almost no energy is contained in waves that by some chance (such as the
breaking of a larger wave generating smaller waves in all directions) might be propagat-
ing in upwind directions. The spreading function must capture this behavior. Although
omnidirectional wave spectra are well grounded in observations, the choice of a spreading
function is still something of a black art.

B.2.3 Wave Slope Variance Spectra

Now return to Eq. (B.11) and take the derivative to get the slope of the sea surface for
the nth wave:

dzn(x)

dx
= −Ankn sin(knx+ φn) .

As in Eq. (B.9), the variance of this slope is

var

{
dzn
dx

}
,

1

Λn

∫ Λn

0
[Ankn sin(knx+ φn)]2 dx =

1

2
A2
nk

2
n .



654 APPENDIX B. WAVE VARIANCE SPECTRA

A limit operation corresponding to Eq. (B.13) gives

lim
∆kn→0

1
2A

2
nk

2
n

∆kn
= k2S(k) . (B.23)

The quantity k2S(k) is the omnidirectional slope variance spectrum, usually called just the
slope spectrum. The units of k2S(k) are m rad. Integrating the slope spectrum over all
frequencies gives the total variance σ2 of the sea surface slope:

σ2 , var

{
dz

dx

}
=

〈(
dz

dx

)2
〉

=

∫ ∞
0

k2S(k)dk .

This variance is usually called the mean square slope or mss. The units of the mss are
rad2. Radians are nondimensional numbers, but the label of rad2 reminds us that we can
think of the slope as an angle from the horizontal measured in radians.

Comment: There is a subtle inconsistency in the units of mean square slopes as seen
in the literature. As obtained above from the slope variance spectrum, the mss has units
of radians squared. However, as defined using a finite difference of a sea surface elevation
sample z(xr), the slope of the surface between two sample points xr and xr+1 is

slope =
∆z

∆x
=
z(xr+1)− z(xr)
xr+1 − xr

.

This finite difference is a non-dimensional slope as defined in analytic geometry, and the
corresponding mss is obtained by averaging the squares of the finite differences over all
of the sample points. However, a mss computed from finite differences (∆z/∆x)2 is not
the same as a mss with units of rad2 as computed from a slope spectrum. For example, a
slope of ∆z/∆x = 0.1 corresponds to a slope angle of tan−1(0.1) = 0.09966865 rad. This
is a negligible numerical difference for this slope, which is typical of actual sea surfaces,
but there is a philosophical difference in a nondimensional slope as defined in analytic
geometry and a slope defined as an angle with units of radians. The difference would not
be negligible for large slopes: e.g., a slope of ∆z/∆x = 1 corresponds to an angle of 0.78
rad (45 deg), not 1 rad. I have never seen any reference to this distinction in the literature,
which seems to apply “mean square slope” to both forms of the surface slope. (Perhaps
a reader of this section can inform me of how this issue is resolved in the wave spectrum
community when comparing theoretical mean square slopes with measured ones.)

There is another way to view slope spectra. As we know from Eq. A.4 of Appendix A
on Fourier transforms, the 1-D surface elevation z(x) is related to the Fourier amplitude
ẑ(k) by

z(x) =
1

2π

∫ ∞
−∞

ẑ(k)e+ikxdk .

Differentiating this equation with respect to x gives the 1-D slope of the sea surface as

σ(x) ,
dz(x)

dx
=

1

2π

∫ ∞
−∞

ẑ(k)ike+ikxdk .

This leads us to identify ikẑ(k) as the Fourier amplitude corresponding to the sea surface
slope. This gives us two ways to study the slope statistics of random sea surfaces, given
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the Fourier amplitude ẑ(k) (which we will learn to create from wave variance spectra in
the following sections). The first way is to take the inverse Fourier transform of ẑ(k) to
obtain z(x), and then to differentiate z(x) to get the slope. The second way is to take the
inverse transform of ikẑ(k) to get the slope directly, without ever creating the surface z(x)
itself. These two processes will in general give different realizations of the surface slopes,
but the slope statistics, e.g. the mean square slopes σ2, will be the same.

The corresponding relations for two dimensions are derived in the same fashion and lead
to similar results. Assuming that the wind is blowing in the +x direction, the mean-square
slope in the along-wind direction is given by either of〈(∂z(x, y)

∂x

)2 〉
, σ2

x , mssx =

∫ ∞
−∞

∫ ∞
−∞

k2
x Ψ(kx, ky) dkx dky

=

∫ ∞
−∞

∫ π

−π
k2 cos2 ϕΨ(k, ϕ) k dk dϕ . [ECKV A4]

The corresponding equation for the cross-wind direction is〈(∂z(x, y)

∂y

)2 〉
, σ2

y , mssy =

∫ ∞
−∞

∫ ∞
−∞

k2
y Ψ(kx, ky) dkx dky

=

∫ ∞
−∞

∫ π

−π
k2 sin2 ϕΨ(k, ϕ) k dk dϕ . [ECKV A5]

Recalling that variances of random variables add to get the total variance due to all vari-
ables gives the total mean square slope

mss = mssx +mssy =

∫ ∞
−∞

∫ ∞
−∞

(k2
x + k2

y) Ψ(kx, ky) dkx dky

=

∫ ∞
−∞

∫ π

−π
k2 Ψ(k, ϕ) k dk dϕ

=

∫ ∞
−∞

k2 S(k) dk . [ECKV A6]

Thus, even in the 2-D case, the total slope variance can be obtained from the omnidirec-
tional slope spectrum.

Table B.1 summarizes the spectral quantities used on the following sections.

B.3 Examples of Wave Variance Spectra

This section gives two examples of wave elevation variance spectra. The Pierson-Moskowitz
omnidirectional spectrum (Pierson and Moskowitz, 1964) describes gravity waves in a “fully
developed” sea. A fully developed sea is an idealization of the statistically steady-state wave
field resulting from a steady wind blowing for an infinitely long time over an infinite fetch.
In practice, the duration and fetch required to achieve something close to a fully developed
sea depend on the wind speed. A steady wind of 5 m s−1 blowing for 10 hours over a fetch
of 60 km might be adequate; for hurricane winds of 35 m s−1, a fetch of a few thousand
kilometers and a duration of several days would be required. Thus it is much easier to
approach a fully developed sea at low wind speeds than at high.
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Spectrum Name Symbols Units

1-D or omnidirectional

variance or elevation S(k) m2/(rad/m)

slope k2S(k) m rad

2-D or directional

variance or elevation Ψ(kx, ky),Ψ(k, ϕ) m2/(rad/m)2

alongwind slope k2
x Ψ(kx, ky), k

2 cos2 ϕΨ(k, ϕ) rad2

crosswind slope k2
y Ψ(kx, ky), k

2 sin2 ϕΨ(k, ϕ) rad2

total slope (k2
x + k2

y) Ψ(kx, ky), k
2 Ψ(k, ϕ) rad2

Table B.1: Summary of wave variance spectral quantities.

The directional spectrum of Elfouhaily et al. (1997) includes both gravity and capillary
wave scales. Moreover, it has a parameter that describes the wave age, so that any sea
state from young (the wind has just started blowing) to fully developed can be simulated.
The Elfouhaily et al. spectrum will be used to generate the two-dimensional sea surface
examples in Section C.4.

B.3.1 The Pierson-Moskowitz Omnidirectional Gravity Wave Spectrum

The omnidirectional Pierson and Moskowitz (1964) spectrum, formulated in terms of an-
gular spatial frequency k, is

SPM(k) =
α

2k3
exp

[
−β
(g
k

)2 1

U4
19

]
[m2/(rad/m)] , (B.24)

where

α = 0.0081,

β = 0.74,

g = 9.82 m s−2 is the acceleration of gravity,

U19 is the wind speed in m s−1 at 19.5 m above the sea surface, and

k is the angular spatial frequency in rad m−1.

The wind speed at 19.5 m can be obtained from the more commonly used wind at 10 m
above the sea surface by the approximate formula

U19 ≈ 1.026U10 .

As has already been noted, it is often of interest to express a variance spectrum in
terms of other variables, such as the wavenumber ν or the temporal angular frequency
ω. To change variables in a spectral density function, the key is to recall that a variance
density function by definition expresses the variance per unit frequency interval. The
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variance contained in some interval dk of the spatial angular frequency equals the variance
contained in the corresponding interval dν of the wavenumber or the interval dω of the
temporal frequency. Thus we have

SPM(k)dk = SPM(ν)dν = SPM(ω)dω .

To change the variable from k = 2πν to ν, the previous equation gives

SPM(ν) = SPM(k)
dk

dν
= SPM(k = 2πν)2π ,

which results in

SPM(ν) =
α

8π2ν3
exp

[
−β
( g

2πν

)2 1

U4
19

]
[m2/(1/m)] . (B.25)

To change variables from spatial angular frequency k to temporal angular frequency ω, we
use the dispersion relation for gravity waves in deep water,

ω2 = gk ,

to evaluate
dk

dω
=

2ω

g
,

which leads to

SPM(ω) =
αg2

ω5
exp

[
−β
(

g

ωU19

)4
]

[m2/(rad/s)] . (B.26)

All of these formulas have units of meters squared over the appropriate frequency. (The
quantities dk/dν and dk/dω seen in the conversions are the Jacobians for the one-dimensional
changes of variables.) Figure B.2 shows the Pierson-Moskowitz spectrum as functions of k
and ω for wind speeds of U10 = 5, 10, and 15 m s−1.

This spectrum has withstood the test of time fairly well (Alves and Banner, 2003) as
a description of gravity waves in fully developed seas. However, it should not be used
for high-frequency (short-wavelength) gravity waves, and certainly not for capillary waves.
Likewise, it does not describe young seas, which have not had the time or fetch needed to
approach the state of a well developed sea.

Figure B.3 shows the Pierson-Moskowitz slope spectra for three wind speeds. Note that
the slope spectrum falls off much more slowly for high frequencies than does the elevation
spectrum. That means that the higher frequencies contribute much more to the total slope
variance than they do to the total elevation variance.
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Figure B.2: The Pierson-Moskowitz variance spectrum as functions of k and ω for wind
speeds of U10 = 5, 10, and 15 m s−1. The vertical dotted lines at k = 370 rad/m and
ω = 60.3 rad/s show the boundary between gravity and capillary waves.

Figure B.3: The Pierson-Moskowitz slope spectrum for wind speeds of U10 = 5, 10, 15m s−1.
The plot uses the same ordinate scale as used for the elevation spectrum in the left panel
of Fig. B.2 in order to highlight the slow falloff of the slope spectrum compared to the
elevation spectrum. The vertical dotted line is the boundary between gravity and capillary
waves.
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B.3.2 The ECKV Directional Gravity-Capillary Wave Spectrum

In order to model two-dimensional sea surfaces z(x, y), we need a 2-D wave elevation
variance spectrum that describes the distribution of wave variance for waves propagating
in difference directions. The numerical examples of 2-D sea surfaces to be seen in Appendix
C use the 2-D elevation variance spectrum of Elfouhaily et al. (1997), which is described
here for later reference. For brevity, this paper and their model are denoted here by
“ECKV,” taken from the initials of the authors’ last names.

The ECKV spectrum has an omnidirectional variance spectrum that explicitly includes
both the gravity and capillary wave scales. The boundary between gravity and capillary
waves is taken to be k =

√
ρg/τ = 370 rad/m, the angular spatial frequency at which the

restoring forces (which tend to bring a wave surface back to an unperturbed level surface)
of gravity and surface tension are equal. The corresponding wavelength is Λ = 2π/370 =
0.017m. ECKV then combine their omnidirectional spectrum with a spreading function to
obtain their one-sided, directional variance spectrum. Using their notation, the 2-D ECKV
spectrum has the form

Ψ(k, ϕ) =
1

k
S(k)Φ(k, ϕ) [ECKV 45] . (B.27)

Here S(k) is the 1-D omnidirectional spectrum with units of m2/(rad/m), and Φ(k, ϕ) is
a non-dimensional spreading function. Ψ(k, ϕ) thus has units of m2/(rad/m)2. Equation
labels such as [ECKV 45] give for reference the corresponding equation in the ECKV paper.

The ECKV omnidirectional spectrum is

S(k) =
Bl +Bh
k3

[ECKV 30] , (B.28)

whereBl is the low-frequency (long gravity wave) contribution to the variance, andBh is the
high-frequency (short gravity wave to capillary wave) contribution. (The quantity k3S(k)
is called the curvature or saturation spectrum and is of interest in physical oceanography
because it is related to the rate of variance dissipation of the waves. Thus ECKV refer
to Bl and Bh as the low and high frequency curvature spectra.) The components of the
omnidirectional spectrum are given by

LPM = exp[−1.25(kp/k)2] [ECKV 2]

Γ = exp{− 1

2σ2
[(
√
k/kp − 1)2]} [below ECKV 3]

Jp = γΓ [ECKV 3]

Fp = LPMJp exp{−0.3162Ωc(
√
k/kp − 1)} [ECKV 32]

Fm = LPMJp exp[−0.25(k/km − 1)2)] [ECKV 41]

(Note : A typo in ECKV Eq. 41 omitted the LPMJp factor in Fm)

Bl = 0.5αp(cp/c)Fp [ECKV 31]

Bh = 0.5αm(cm/c)Fm [ECKV 40]
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where

α = 0.0081,

β = 1.25,

g = 9.82 m s−2 is the acceleration of gravity,

U10 is the wind speed in m s−1 at 10 m above the sea surface

k is the angular spatial frequency in rad m−1

Ωc is defines the age of the waves for the given wind speed:

= 0.84 for a fully developed sea (corresponds to Pierson-Moskowitz)

= 1 for a “mature” sea [used in ECKV Fig 8a]

= 2 to 5 for a “young” sea; the maximum allowed value is 5

Cd10N = 0.00144 is a drag coefficient [value deduced from ECKV Fig 11]

u∗ =
√
Cd10NU10 is the friction velocity [using ECKV 61]

ao = 0.1733 (ECKV 59)

ap = 4.0

km = 370.0 rad/m

cm = 0.23 m/s is the phase speed of the wave with spatial frequency km

am = 0.13u∗/cm [ECKV 59]

γ = 1.7 if Ωc ≤ 1 else γ = 1.7 + 6 log10(Ωc)

σ = 0.08(1 + 4Ω−3
c )

αp = 0.006Ω0.55
c [ECKV Eq. 34]

αm = 0.01[1 + ln(u∗/cm)] if u∗ ≤ cm else αm = 0.01[1 + 3 ln(u∗/cm)] [ECKV 44]

ko = g/U2
10

kp = koΩ
2
c is the spatial frequency of the maximum of the spectrum

cp =
√
g/kp is the phase speed of the wave with spatial frequency kp

c =
√

(g/k)(1 + (k/km)2) is the phase speed of the wave

At the lower frequencies, the ECKV spectrum is essentially the Pierson-Moskowitz
spectrum (the LPM term above) with an enhancement (the Jp term) that adds more energy
to the lower frequencies. The highest frequencies have a cutoff due to viscous damping of
the smallest capillary waves. The ECKV omnidirectional elevation and slope spectra are
illustrated in Fig. B.4 for the case of a fully developed sea and three wind speeds. Figure
B.5 shows the spectra as a function of wave age for a wind speed of U10 = 10 m s−1.
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Figure B.4: The omnidirectional part S of the ECKV elevation variance spectrum (left
panel) and slope spectrum k2S (right panel) for fully developed seas and wind speeds of
U10 = 5, 10, 15 m s−1. The gray lines show the corresponding Pierson-Moskowitz spectra
from Fig. B.3.

Figure B.5: The omnidirectional part of the ECKV elevation spectrum (left panel) and
slope spectrum (right panel) for a wind speed of U10 = 10 m s−1 and wave ages from very
young (Ωc = 5) to mature (Ωc = 1) to fully developed (Ωc = 0.84). Compare with Fig.
B.4.
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B.3.3 Spreading Functions

The ECKV spreading function is given by

Φ(k, ϕ) =
1

2π
[1 + ∆(k) cos(2ϕ)]

=
1

2π

{
1 + tanh

[
ao + ap(c/cp)

2.5 + am(cm/c)
2.5
]

cos(2ϕ)
}

(B.29)

Note that this function is symmetric about ϕ = π/2; i.e., the function has symmetric
spreading downwind and upwind. This is consistent with a symmetric variance spectrum
Ψ(−k) = Ψ(k) as would be obtained from the Fourier transform of a snapshot of a sea
surface. This symmetry will be explained on the following sections.

A commonly used family of alternate spreading functions is given by the “cosine-2s”
functions of Longuet-Higgins et al. (1963), which have the form

Φ(k, ϕ) = Cs cos2s(ϕ/2) , (B.30)

where the normalizing coefficient is

Cs =
1

2
√
π

Γ(s+ 1)

Γ(s+ 1/2)
,

and s is a spreading parameter that in general depends on k, U10, and wave age. In
this equation Γ is the customary gamma function defined by Γ(p) ,

∫∞
0 xp−1e−xdx where

p > 0. The cosine-2s functions are asymmetric, with much stronger downwind than upwind
propagation.

The ECKV and cosine-2s spreading functions are illustrated in Fig. B.6. Both of these
functions satisfy the normalization condition (B.20). Both spreading functions transition
from strongly forward peaked at low spatial frequencies (long gravity waves; the red curves)
to curves with significant propagation at right angles to the wind at high frequencies
(capillary waves; the blue curves). The cosine-2s curves are asymmetric in ±k and have at
least a small amount of upwind propagation at all frequencies (except at exactly upwind,
ϕ = π). Not surprisingly, the real ocean is more complicated than either of these models.
In particular, observations of long-wave gravity waves tend to show a bimodal spreading
about the downwind direction, which transitions to a more isotropic, unimodal spreading at
shorter wavelengths (Heron, 2006). However, the simple models of Eqs. (B.29) and (B.30)
are adequate for the present purpose of illustrating surface-generation techniques. The
effect of the choice of spreading function on the generated waves is illustrated in Section
C.5.

The next appendix introduces the important distinction between “one-sided” or “folded”
spectra and the associated “two-sided” spectra. The ECKV spectrum as given above is a
one-sided spectrum.
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Figure B.6: Example spreading functions according to the ECKV model (left) and the
cosine-2s model (right) for a wind speed of 10 m s−1. Small s values correspond to large
spatial frequencies k. Downwind is to the right, upwind is to the left.
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APPENDIX C

Modeling Sea Surfaces: Wave Variance Spectra

Techniques

Appendices A on Fourier transforms and B on wave variance spectra give the tools needed
for a very sophisticated and computationally efficient analysis and prediction of random,
wind-blown sea surfaces. The next sections walk step by step through the processes of how
to compute a wave elevation variance spectrum from sea surface elevation measurements
and, conversely, of how to generate a random realization of a sea surface given an elevation
variance spectrum. The algorithms are given first for a time-independent, one-dimensional
(1-D) sea surface for mathematical simplicity. Two-dimensional (2-D) time-independent
surfaces are then presented. It is then shown how to generate a time-dependent sequence
of random sea surfaces that can be used, for example, to create a movie loop of propagating
waves on the ocean surface. Such techniques are commonly employed in the movie industry.
The end result will be the ability to generate random sea surfaces that properly model both
the elevation and slope statistics of real sea surfaces. Such surfaces can then be used in
Monte Carlo ray-tracing simulations to compute the reflectance and transmission properties
(including polarization) of wind-blown sea surfaces, which is described in Appendix E.

C.1 Surfaces to Spectra: 1-D

This section uses a contrived example to illustrate the basic theory for a one-dimensional
(1-D) surface. Detailed comments on this simple example emphasize the mathematical
subtleties and physical characteristics of Fourier transforms and wave variance spectra
derived from surface elevations. A thorough understanding of this example takes us much
of the way to understanding the case of a real ocean surface.

An ad hoc, one-dimensional wave profile is constructed using the formula

z(r) = z(xr) =

N/2∑
j=0

A(j) cos[2πjxrνf + φ(j)] r = 0, ..., N − 1 . (C.1)

The xr locations are given by r∆x = rL/N , where L is the length of the sea surface region
being sampled and N is the number of samples. νf = 1/L is the fundamental spatial

665



666APPENDIX C. MODELING SEA SURFACES:WAVE VARIANCE SPECTRA TECHNIQUES

frequency, that is, the spatial frequency or wavenumber of the wave with a wavelength of
L. The amplitude of the wave at the jth frequency, j = 1, 2, ..., N/2, is chosen to be

A(j) = 0.1 exp(−3j/N) ,

and A(0) = 0. The phase of the jth wave component is randomly distributed over [0, 2π)
using

φ(j) = 2πU

where U is a uniform [0, 1) random number. A different random number is drawn for each
j value.

The upper left panel of Fig. C.1 shows the surface generated in this manner for L =
10 m, N = 16, and a particular set of random phases. Note that N is a power of 2 as will
be needed for the FFT. The thin colored lines show the N/2 + 1 = 9 waves for each of the
frequencies. The blue line is the wave for the fundamental frequency νf = 1/L = 0.1 m−1;
the thin black line is the two-point wave at the Nyquist frequency νNy = 1/(2∆x) = 0.8m−1;
the purple line is the constant j = 0 wave, which is set to z = 0 for the mean sea surface.
The black dots connected by the thick black line show the sum of the individual waves.
These points represent a discrete sampling of the continuous sea surface elevation.

In this example, the sampled region of the sea surface is L = 10 m in length, but the
N = 16 samples do not include the point at x = 10m. This is because the surface elevation
at x = L is always the same as at x = 0 when using Fourier techniques. Resolving the
surface as a sum of sinusoids that are harmonics of the fundamental frequency νf = 1/L
gives sinusoids that always return to their initial value after distance L. Real sea surfaces
are of course not periodic, but we do not know the true value at L because it was not
measured by the present sampling scheme. Likewise, we do not know the true surface
elevations at points in between the sampled locations. When we use Fourier techniques
to generate random surface realization, we are always generating a sea surface that is a
periodic tiling ; the tile dimension is L. This periodicity is useful if we want to generate a
visual rendering of a large region of sea surface from a smaller computed region; the edges
of the small tiles will match perfectly and the larger surface will often look reasonable, if
you don’t look too closely. An example of a tiled two-dimensional surface can be seen in
Mobley (2016, Fig. 3.9).

We now take the sequence of the N = 16 real wave elevations z(xr) = z(r) seen in
Fig. C.1 and feed them into an FFT routine. We soon get back 16 complex numbers, the
ẑ(νu) = ẑ(u) Fourier amplitudes, at a set of 16 corresponding frequencies νu. The upper
right panel of Fig. C.1 plots the real part of the ẑ(u) complex numbers, and the lower-left
panel plots the imaginary part1.

Note first that the FFT routine returned both negative and positive spatial frequencies:

ν = (−N
2

+ 1)∆ν = −0.7 m−1, ...,−0.1, 0, 0.1, ...,
N

2
∆ν = 0.8 m−1 ,

for a total of N = 16 discrete spatial frequencies. Note that the frequency spacing ∆ν
equals the fundamental frequency νf = 1/L. Section A.3.2 discusses the interpretation
of negative frequencies. (The order of the frequencies as returned by the FFT routine

1Here ẑ denotes a Fourier amplitude, which is not to be confused with the boldface ẑ, which is a unit
vector in the +z direction.
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Figure C.1: A one-dimensional random sea surface and its Fourier transform and variance
spectrum. The black dots in the upper-left panel show the points z(xr) of the sampled
sea surface. The light colored lines show the sinusoidal components used to create the
surface. The upper-right panel shows the real part of the complex amplitude ẑ(νu) and the
lower-left panel shows the imaginary part. The lower right panel shows the two-sided and
one-sided discrete variance spectra. Compare with Figs. C.2 and C.3.

was the “FFT order” discussed in Section A.3.1. The frequencies, and the corresponding
amplitudes, were reordered to get the “math order” used for plotting.)

Note next that the real parts of the complex amplitudes ẑ(u) are even functions of fre-
quency: Re{ẑ(−νu)} = Re{ẑ(+νu)}. The imaginary parts are odd functions of frequency:
Im{ẑ(−νu)} = −Im{ẑ(+νu)}. In Fig. C.1 the positive and negative frequencies are con-
nected by a red arrow for one particular frequency pair, νu = ±0.6 m−1. If a complex
function c(ν) = a(ν) + ib(ν) has an even real part a(ν) and an odd imaginary part b(ν),
then c∗(−ν) = c(ν), i.e. the function is Hermitian. Thus the plots verify that the ampli-
tudes are Hermitian, as is always the case for the Fourier transform of a real function. The
Hermitian character of the complex amplitudes means that these N = 16 complex numbers
contain only 16 independent real and imaginary numbers, not 32 as would be the case for
16 arbitrary complex numbers. In general the FFT of N real numbers (e.g., N spatial
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samples of a sea surface) gives back N independent numbers, so that the “information
content” of the physical and Fourier representations is the same.

The positive frequency at N
2 ∆ν = 0.8 m−1 is the Nyquist frequency (Section B.1.1).

There is, however, no value for the negative of the Nyquist frequency. Note also in the
lower left panel that the imaginary part of the amplitude is identically zero at the Nyquist
frequency. We will explain these values below.

The lower-right panel of the figure shows the values of |ẑ(νu)|2. The values at the
negative to positive frequencies are connected by the black dotted line. These points
constitute the two-sided discrete variance spectrum,

S2s(νu) = |ẑ(νu)|2 for u = −N
2

+ 1, ...,
N

2
. (C.2)

“Two-sided”, denoted by the subscript 2s, refers to spectra showing both the negative
and positive frequencies. The variance at zero frequency is the variance contained in the
constant mean sea level. This value is zero because we have set the mean sea level to zero.

Oceanographers are often concerned only with the variance at a given magnitude of the
spatial frequency, and not with whether the frequency is negative or positive. Nor is there
any reason to plot the point at zero frequency, which is usually zero by choice of zero for
the mean sea level. It is therefore customary to define the one-sided variance spectrum

S1s(νu) = S2s(−νu) + S2s(νu) , (C.3)

for u = 1, 2, ..., N2 − 1, and S1s(νNy) = S2s(νNy). Then only the positive frequencies are
plotted. The points connected by the solid black line in the lower-right panel of Fig. C.1
comprise the one-sided variance spectrum. In the present simulation, the two-sided spec-
trum is symmetric for positive and negative frequencies (except for the Nyquist frequency,
which does not have a negative counterpart and is always a special case), and the one-sided
function is simply twice the value of the two-sided function for the positive frequencies,
except for the Nyquist frequency. When you read a paper and it refers to or plots “the vari-
ance (or energy or power) spectrum” without further comment, it is always the one-sided
spectrum. However, on the next sections we will have to use two-sided spectra, in which
case we will have to account for the magnitude difference in one- and two-sided spectra.

There is an important detail to note in the computation and plotting of S(u), as in the
lower-right panel of Fig. C.1. The values of S(u) were obtained by the discrete Fourier
transform of Eq. (A.7), and S(u) gives the variance contained in a finite frequency interval
∆ν = 1/L at the discrete frequency νu. ∆ν equals the fundamental frequency and is
the frequency interval used in the calculations and the plot. As noted in the discussion
of the discrete transform, S(u) is a point function. As was seen in Eq. (A.13) of the
Fourier Transforms appendix, if we wish to convert the discrete S(u) to an estimate of the
continuous variance spectral density S(ν), we must divide by the discrete function by the
frequency interval: S(ν) = S(u)/∆ν. The units of S(ν) are then m2/(1/m), as expected
for a spectral density function of spatial frequency. It is important to distinguish between
a discrete variance point function and a continuous variance spectral density.

Now return to Eq. (C.1) and set all of the phases φ(j) to zero. We are then adding
together cosines to create the surface wave profile, which is seen in the upper left panel of
Fig. C.2. The FFT of this profile gives the real part of ẑ(νu) as positive numbers except
for the 0 frequency, and the imaginary part is identically zero for all frequencies.
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Figure C.2: A one-dimensional surface composed of cosine waves. Compare with Figs. C.1
and C.3.

If we set all of the phases φ(j) to π/2, we are then adding together sines to create the
surface wave profile, which is seen in the upper left panel of Fig. C.3. The FFT of this
profile gives the real part of ẑ(νu) identically zero and the imaginary part is nonzero except
for the 0 and Nyquist frequencies.

These two figures show that the real part of the complex amplitude ẑ(νu) tells us how
much of z(xr) is composed of cosine waves, and the imaginary part shows how much of
z(xr) is composed of sine waves. This explains why the imaginary part of the amplitude is
zero at the Nyquist frequency. The two-point wave at the Nyquist frequency is inherently
a cosine wave because, as noted previously, a two-point sine wave is sampled only at its
zero values. The general case of a wave component with a phase that is neither 0 (nor a
multiple of 2π) nor π/2 (nor an odd integer multiple of π/2) can be written as a sum of
cosine and sine waves, as in Eqs. (B.2) and (B.6) of the wave representations section. In
that case, both the real and imaginary parts of the amplitudes are nonzero (except for the
special cases of the 0 and Nyquist frequencies).

Note that in each of these three simulations, which differ only by the phases of the
component sinusoidal waves, the variance spectrum is exactly the same (except at the
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Figure C.3: A one-dimensional surface composed of sine waves. Compare with Figs. C.1
and C.2.

Nyquist frequency), as seen in the lower right panels of Figs. C.1-C.3. That is to say, the
variance contained in a wave does not depend on the reference coordinate system used to
describe it, even though the Fourier amplitudes ẑ(u) do depend on the coordinate system.
The variance depends only on the amplitude of the wave. The variance at the Nyquist
frequency is largest when cosine waves are added and is zero when sine waves are added.
In the first case, we have the maximum possible amplitude of the two-point cosine wave,
and in the latter case there is no two-point wave.

C.2 Spectra to Surfaces: 1-D

The previous section showed the major features of the Fourier analysis of a sea-surface
elevation record. We started with a sample of a random sea surface and ended with the
corresponding discrete variance spectrum (or estimate of the variance spectral density after
division by the frequency interval). This section shows how to go in the reverse direction:
start with a variance spectrum and generate a random realization of the corresponding sea
surface. We first outline the theory, and then show a specific example.
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C.2.1 Theory for 1-D Surfaces

To create a one-dimensional (1-D) slice through a sea surface, the essence of the process is
as follows:

1. Choose the domain size. To create a sea surface over a spatial domain at a given
time, we pick the length L of the region [0, L]. To generate a time series at a given
point, we pick the length of the time series.

2. Choose the number of points for the DFT. This number N is the number of
frequencies at which we will sample the variance spectrum, and equals the number
of samples of the sea surface that will be generated. In normal usage, pick N to be a
power of 2 so that an inverse FFT routine can be used to evaluate the inverse DFT.

3. Choose the frequency variable. To generate a sea surface over a spatial domain
at a given time, we can use either wavenumber ν or angular spatial frequency k. To
generate a time series at a given point, we can use either f or ω.

4. Choose a variance spectrum. The variance spectrum must be expressed in terms
of the chosen frequency variable.

5. Choose the wind speed. Pick a wind speed, and perhaps other physical parameters
such as the age of the waves to be generated if required by the chosen variance
spectrum.

6. Create random Hermitian amplitudes. This is the tricky part. We must create
an array of randomized discrete Hermitian Fourier amplitudes ẑ(u), starting with the
chosen continuous variance spectrum.

7. Take the inverse DFT of the random amplitudes. The inverse DFT converts
the Fourier amplitudes to the physical wave heights.

8. Extract the sea surface heights. The inverse DFT of the complex amplitudes
returns a complex array. The real part of this array is the random realization of the
sea surface heights, and the imaginary part is zero.

9. Check your results. This is extremely important during code development. For
example, take the DFT of the generated surface heights to see if you get back to the
Fourier amplitudes and variance spectrum you started with.

We now proceed through these steps and discuss them in detail for a specific example.
Steps 1 and 2: Let us generate a sea surface over the region from x = 0 to x = L =

100 m. The longest wavelength that can be resolved is then 100 m. We use N = 1024,
which gives a spatial grid resolution of ∆x = L/N = 0.0977 m. This means that the
shortest wavelength that can be resolved, the two-point wave or Nyquist wavelength, is
2∆x = 0.1954 m.

Step 3: We used wavenumber ν in the previous sections because of its easy interpre-
tation. Now let’s use angular spatial frequency k, which is more commonly used. The fun-
damental frequency is then kf = 2π/L = 0.0628 rad m−1. The highest frequency sampled,
the Nyquist frequency, is kNy = (N/2)kf = 32.15 rad m−1. Note that (2π)/kNy = 0.1954 m
which, as noted above, is the wavelength of the two-point wave.

Step 4: For this example, we use the Pierson-Moskowitz variance spectrum in terms
of angular spatial frequency k, which is given by Eq.(C.20). Note that this is a one-sided
spectrum, which is defined for positive k values.
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Step 5: The wind speed at 10 m elevation is U10 = 5 m s−1. The wind speed is the
only input to the Pierson-Moskowitz spectrum.

Step 6: We now discuss in detail how to generate a set of random discrete Fourier
amplitudes that are physically consistent with the chosen variance spectrum. These am-
plitudes must be defined for both positive and negative frequencies, and the amplitudes
must be Hermitian. We first define

ẑo(ku) ,
1√
2

[ρ(ku) + iσ(ku)]

√
S1s(k = ku)

2
∆k . (C.4)

Here S1s(k = ku) denotes the continuous spectral density S1s(k) evaluated at k = ku.
∆k = kf is the spatial frequency sampling interval. ẑo(ku) must be defined for both
positive and negative discrete frequencies in order to create the Hermitian amplitudes for
use in the inverse DFT. As was mentioned on the previous section, we must convert the
one-sided continuous spectrum S1s(k) into a two-sided discrete variance function by

1. dividing its magnitude by 2, assuming that S2s(−k) = S2s(k);

2. multiplying the continuous spectral density by the fundamental frequency interval
∆k, which gives the variance contained in a finite frequency interval at each frequency
ku.

To emphasize the discrete vs continuous functions, and for brevity of notation, let us write
the frequency index u for the frequency ku. Then Eq. (C.4) becomes

ẑo(u) =
1√
2

[ρ(u) + iσ(u)]
√
S2s(u) , (C.5)

where S2s(u) denotes the two-sided discrete variance spectrum at frequency ku. ẑo(u)
can now be evaluated for both positive and negative ku. The 0 and Nyquist frequencies
are always special cases: set S2s(0) = 0 and S2s(kNy) = S1s(kNy). ρ(ku) , ρ(u) and
σ(ku) , σ(u) are independent random numbers drawn from a normal distribution with
zero mean and unit variance, denoted ρ, σ ∼ N (0, 1). A different pair is drawn for each u
value.

ẑo(u) is a random variable. Let 〈...〉 denote the expectation of the enclosed variable.
The expected value of |ẑo(u)|2, 〈ẑo(u)ẑ∗o(u)〉, gives back whatever variance function is used
for S2s(u):

〈ẑo(u)ẑ∗o(u)〉 =
〈{ 1√

2
[ρ(u) + iσ(u)]

√
S2s(u)

}{
1√
2

[ρ(u)− iσ(u)]
√
S2s(u)

}〉
=
S2s(u)

2

[
〈ρ2〉+ 〈σ2〉

]
= S2s(u)

because 〈ρσ〉 = 0 and 〈ρ2〉 = 〈σ2〉 = 1 for N (0, 1) random variables. Thus ẑo(u) is
consistent with the chosen variance spectrum. However, ẑo(u) is not Hermitian, so the
inverse DFT would not give a real sea surface.

Next define ẑ(u) as

ẑ(u) ,
1√
2

[ẑo(u) + ẑ∗o(−u)] . (C.6)
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This function is clearly Hermitian, so the inverse DFT applied to ẑ(u) will give a real-valued
z(xr) , z(r). Moreover, this ẑ(u) is consistent with the variance spectrum:

〈|ẑ(u)|2〉 = 〈ẑ(u)ẑ∗(u)〉

=
〈 1√

2

[
1√
2

[ρ(u) + iσ(u)]
√
S2s(u) +

1√
2

[ρ(−u)− iσ(−u)]
√
S2s(−u)

]
×

1√
2

[
1√
2

[ρ(u)− iσ(u)]
√
S2s(u) +

1√
2

[ρ(−u) + iσ(−u)]
√
S2s(−u)

]〉
=

1

4

〈 [
ρ2(u)− iρ(u)σ(u) + iσ(u)ρ(u) + σ2(u)

]
S2s(u)+

[ρ(u)ρ(−u) + iρ(u)σ(−u) + iσ(u)ρ(−u)− σ(u)σ(−u)]
√
S2s(u)

√
S2s(−u)+

[ρ(−u)ρ(u)− iρ(−u)σ(u)− iσ(−u)ρ(u)− σ(−u)σ(u)]
√
S2s(−u)

√
S2s(u)+[

ρ2(−u) + iρ(−u)σ(−u)− iσ(−u)ρ(−u) + σ2(−u)
]
S2s(−u)

〉
=

1

2
[S2s(u) + S2s(−u)] = S2s(u) .

Here we have noted that 〈ρ(u)ρ(−u)〉 = 0, etc., because the random variables are uncorre-
lated for different u values.

Equations (C.4) and (C.6) are the key to generating random sea surfaces from variance
spectra. ẑ(u) defined by these equations contains random noise, which leads to a sea surface
with random amplitudes and phases for the component waves of different frequencies.
Any one of these surfaces has a variance spectrum that looks like the chosen spectrum
plus random noise. However, on average over many realizations, the the noise in these
spectra will average out, leaving the variance spectrum. Figure C.4 below illustrates these
important ideas, but first we must complete the surface generation.

Step 7: Compute the inverse DFT of the ẑ(u) of Eq. (C.6). The result is a complex
function Z(xr):

Z(xr) , Z(r) = D−1{ẑ(u)} .

A crucial warning to this step is that the u = 0, ..., N−1 elements of the ẑ(u) array must
be in the FFT frequency order given by Eq. (A.15) of the Fourier Transforms appendix
when using an FFT routine to evaluate the DFT. Z(r) is returned with xr values in the
order from x0 = 0 to xN−1 = (N − 1)∆x.

Step 8: Extract the surface. The inverse DFT returns a complex array Z(xr) whose real
part is the surface elevations z(xr) and whose imaginary part is 0. The surface elevations
are extracted as the real part of Z(xr):

z(xr) = Re{Z(xr)} .

Step 9: Check the results! There are many places along the way to lose a
√

2 or to
mess up array indexing. At the minimum, it is worthwhile to check that the mean of the
generated surface is zero, and that the imaginary part of Z(xr) = 0 (to within a small
amount of numerical roundoff error).

When developing computer code, or when first learning this material, it is also a good
idea to take the forward DFT of Z(xr) to make sure that the input Fourier amplitudes
ẑ(u) are recovered, and that the variance spectrum corresponding to z(xr) is consistent
with the one chosen in Step 4. Indeed, it was the failure of this check in surfaces I was
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generating using equations from the literature that led me to develop the Mobley (2016)
tutorial and this appendix.

Equations (C.4) and (C.6) are, with minor changes in notation, Eqs. (42) and (43),
respectively, of Tessendorf (2004). However, Tessendorf’s version of Eq. (C.4) appears to
use a one-sided variance spectrum (his example used the one-sided Phillips spectrum of
his Eq. (40)) without the division by 2 seen in Eq. (C.4), which is needed to convert the
one-sided spectrum to a two-sided spectrum. Nor does he show the ∆k factor needed to
convert a continuous spectral density to a discrete function. His version of Eq. (C.6) does
not contain the overall factor of 1/

√
2 seen above. These missing factors mean that in a

round-trip calculation

variance spectrum → DFT−1 → sea surface → DFT → variance spectrum ,

you do not get back to the original variance spectrum. In other words, the Tessendorf
equations do not conserve wave variance (i.e., wave energy). Even if he included the ∆k
factor in his actual computations, the missing factors of 1/

√
2 in his versions of our Eqs.

(C.4) and (C.6) give an overall factor one-half on the amplitudes, which corresponds to a
factor of four error in the variance. That is, waves generated using the Tessendorf equations
have amplitudes that are too large.

Tessendorf (2004) discusses much more than just Fourier transform techniques, and
his notes have been very influential in the computer graphics industry. In 2008 he de-
servedly received an Academy Award for Technical Achievement for showing the movie
industry how to generate and render sea surfaces, as well as for his many other pioneering
accomplishments in efficiently computing and rendering fluid motions into visually appeal-
ing images. (The first movie to use his techniques was Waterworld, followed by dozens of
others including Titanic.) When I checked with him about the missing numerical factors,
he readily acknowledged that Eqs. (C.4) and (C.6) are the correct ones, but pointed out
that “Hollywood doesn’t care about conservation of energy.” I suppose that should be no
surprise, since movies seem to have no problem with rockets going faster than the speed of
light, sound propagating through the vacuum of outer space, or time travel that violates
causality. Tessendorf’s equations are widely cited (especially in the computer graphics lit-
erature), always without comment about the missing scale factors. Even if Tessendorf had
included the needed numerical factors in his equations, graphics artists would distort the
resulting images to make them look “better,” e.g., to make the ocean waves look bigger
than nature would allow. That may be acceptable in a fantasy world, but such laxness
is not permissible if we wish to use numerically generated waves to compute sea surface
optical properties.

C.2.2 Example: A Roundtrip Calculation

Figure C.4 shows an example of 1-D surface waves generated using the Pierson-Moskowitz
spectrum for a wind speed of 5 m s−1, and the recovery of the variance spectrum from the
generated surface. The blue curve in the upper-left panel shows the Pierson-Moskowitz
spectrum as defined by Eq. (C.20) of Section B.3.1. The red dots show the frequencies
at which the continuous spectrum is sampled. Those dots blur together at the higher
frequencies because of the log scale, but the ku points are equally spaced at intervals of
the fundamental frequency ∆k = kf = 2π/L = 0.0628 rad/m. The last sampled frequency
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is kNy = 32.17 rad/m. The bottom panel shows the sea surface elevations z(xr) generated
for a particular sequence of random numbers ρ(u), σ(u).

Figure C.4: Example of a 1-D random sea surface generated from the Pierson-Moskowitz
spectrum for U10 = 5m s−1 (the wind speed at 10 m above mean sea level). The longest re-
solvable wave has wavelength L = 100m. For N = 1024, the two-point wave has wavelength
2L/N = 0.195 m. This is already less than the smallest wavelength (highest frequency) for
which the Pierson-Moskowitz spectrum should be used.

The red line in the upper-right panel shows the function

P(u) ,
|ẑ(u)|2

∆k
=

1

∆k
|D{z(r)}|2 . (C.7)

P(u) is the discrete variance function for this particular z(xr) surface. Schuster (1898)
called P(u) a periodogram. The periodogram P(u) contains random noise because z(xr) is
a random realization of the sea surface, which was generated by applying random noise to
the the variance spectrum. This particular z(xr) is analogous to a particular measurement
of the sea surface. Had we drawn a difference sequence of random numbers for use in Eq.
(C.5), we would have generated a different sea surface, and a different P(u). However, we
can expect that if we average together many different P(u), corresponding to many different
sets of z(xr), the noise would average out and we would be left with a curve close to the
variance spectrum we started with, which is shown in blue. Numerical experimentation
shows that averaging 100 P(u) generated from 100 independent sea surface realizations
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gives an average P(u) that is almost indistinguishable from the blue curve at the scale of
this plot. Thus P(u) , P(ku) is an approximation of the variance density spectrum S(k),
denoted P(ku)

.
= S(k). This averaging processes leads to the topic of spectrum estimation,

which considers such problems as how many sets of measurements of z(xr) are needed
to estimate the variance spectrum to within certain error bounds. Fortunately, we need
not pursue that here. (The noise is the upper right panel is Gaussian distributed about
the theoretical spectrum. However, the log axis makes it look asymmetric about the blue
curve.)

At the minimum, you should always check to see that Parseval’s relation, Eq. (A.17)
of the Fourier Transforms appendix, is satisfied. For the simulation of Fig. C.4, we have

N−1∑
r=0

|z(r)|2 = N
N−1∑
u=0

|ẑ(u)|2 = 19.395 m2 .

There are sometimes other checks that can be made. For example, the Pierson-
Moskowitz spectrum is simple enough that it can be analytically integrated over all fre-
quencies. This gives

〈z2〉 =

∫ ∞
0
SPM(k)dk = 3.04 · 10−3U

4
10

g2
, (C.8)

where we have recalled that the variance spectral density is related to the variance of the
sea surface. The variance of the generated zero-mean sea surface can be computed from

var(z) =
1

N

N∑
r=0

z2(xr) (C.9)

and compared with the analytical expectation. For the surface seen in Fig. C.4, Eq. (C.9)
gives var{z} = 0.0189 m2 versus the theoretical value of 〈z2〉 = 0.0197 m2 from Eq. (C.8).
This agreement to within a small amount of random noise indicates that all is probably
well with the calculations. Indeed, the average var(z)± one standard deviation for 100
independent simulations is 0.020± 0.007, which agrees well with the theoretical value.

The significant wave height H1/3 is by definition the height (trough-to-crest distance)
of the highest one-third of the waves. To a good approximation, this is related to the
expectation of the variance by

H1/3 = 4
√
〈z2〉 .

In the present example, this formula gives H1/3 = 0.55 m. The average significant wave
height for 100 simulations is 0.56± 0.09 (average ± one standard deviation). If you spend
enough time in a sea kayak to develop intuition about wave heights as a function of wind
speed, a half-meter height for the largest waves is about right for a 5m s−1 or 10 knot wind
speed.

To summarize this section: we have learned how to start with a wave variance spectral
density function and generate random discrete Fourier amplitudes. The inverse DFT of
those amplitudes gives a random realization of a sea surface that is physically consistent
with the chosen variance spectrum. That is all that we can ask of the Fourier transform
technique.
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C.3 Surfaces to Spectra: 2-D

The preceding sections have given a detailed look at one-dimensional surfaces. We now
consider the more useful case of two-dimensional sea surfaces. The extension to two di-
mensions is mathematically straight forward.

Let z(x, t) = z(x, y, t) be the sea surface elevation in meters at point x = (x, y) at time
t. The spatial extent of the sea surface is 0 ≤ x < Lx and 0 ≤ y < Ly. This surface is
sampled on a rectangular grid of Nx by Ny points, where both Nx and Ny are powers of 2
for the FFT. The spatial sampling points are then

x(r) = [0, 1, 2, ..., Nx − 1]
Lx
Nx

= r∆x, r = 0, ..., Nx − 1

y(s) = [0, 1, 2, ..., Ny − 1]
Ly
Ny

= s∆y, s = 0, ..., Ny − 1 .

This spatial sampling frequency gives Nx and Ny spatial frequencies kx and ky (in math
frequency order)

kx(u) = [−(Nx/2− 1), ...,−1, 0, 1, ..., Nx/2]
2π

Lx
= u∆kx, u = −(Nx/2− 1), ..., Nx/2

ky(v) = [−(Ny/2− 1), ...,−1, 0, 1, ..., Ny/2]
2π

Ly
= v∆ky, v = −(Ny/2− 1), ..., Ny/2 .

As before, the x-dimension 0 frequency is at array element u = Nx/2− 1 and the Nyquist
frequency is at element u = Nx − 1. Thus the positive and negative pairs of kx values are
related by kx(u) = −kx(Nx − 2− u), u = 0, ..., Nx − 2, with the Nyquist frequency always
being a special case because there is only a positive Nyquist frequency. Corresponding
relations hold for the y direction.

Let k = (kx, ky) denote a spatial frequency vector, where kx and ky are frequencies in
the x and y directions, respectively. For discrete values, we write kuv = (kx(u), ky(v)). The

magnitude of k is k =
√
k2
x + k2

y. In our (x, y) coordinate system, let the wind blow in the

+x direction. The −x direction is then upwind, and the ±y directions are the cross-wind
directions. With this choice, kx > 0 indicates frequencies of waves propagating more or less
downwind, and kx < 0 for waves propagating against the wind. kx = 0 and ky 6= 0 indicates
a wave propagating at exactly a cross-wind ±y direction. The angle of wave propagation
relative to the downwind direction for a wave of frequency (kx(u), ky(v)) is given by

ϕ(kuv) = ϕ(u, v) = tan−1

[
ky(v)

kx(u)

]
. (C.10)

We can thus write the 2-D surface as z(x), its Fourier amplitude as ẑ(k), and the associated
variance spectrum as Ψ(k). The discrete variance spectrum Ψ(kuv) = Ψ(u, v) gives the
variance of the wave with wavelength 2π/kuv propagating in direction ϕ(kuv) relative to
the downwind direction.

Even though the mathematical transition from one to two dimensions causes no prob-
lems, it is again educational to take a careful look at a couple of contrived examples.
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C.3.1 Example: A Random Sea Surface

For the first example, a sea surface area of size Lx × Ly = 10 × 10 m is sampled using
Nx = 16 and Ny = 8 points in the x and y directions. Sea surface elevations z(x, y) were
created by drawing a N (0, 1) random number at each (x, y) value.

The upper-left panel of Fig. C.5 shows a contour plot of this surface for a particular
sequence of random numbers. The spatial periodicity of the Fourier representation is used
to extend the contour plot to the full (Lx, Ly) range of the tile, which gives a good visual
appearance. Thus the elevations at x = Lx are the same as those at x = 0, those at y = Ly
equal those at y = 0, and the elevation at (Lx, Ly) duplicates the elevation at (0, 0). The
Nx×Ny grid of sample points is shown by the solid silver dots. The points at x = Lx and
y = Ly obtained by periodicity are shown by open silver circles at the right and top of the
surface plot.

The Fourier amplitudes ẑ(kuv) = ẑ(kx(u), ky(v)) are obtained from the 2-D DFT of
z(xrs) = z(x(r), y(s)):

ẑ(kuv) = D{z(xrs)} .

The usual warning on FFT frequency order applies here. The 2-D FFT gives back the
amplitudes ẑ(kuv) with the array elements corresponding the the FFT frequency order of
Eq. (A.15) of the Fourier Transforms appendix. Before plotting, the ẑ(kuv) array elements
must be shifted into the math frequency order (A.14) in both the kx and ky array directions
using the appropriate shift function for the computer language used in the plotting. For the
IDL routine used to generate Fig. C.5, the 2-D circular shift is given by the IDL command

realzhatplot = SHIFT(REAL PART(zhat),Nx/2− 1,Ny/2− 1) ,

where zhat is the complex 2-D array returned by the FFT routine, and realzhatplot is the
2-D array contoured in the upper right panel of Fig. C.5.

The upper right panel of Fig. C.5 plots the real part of ẑ(kuv), and the lower left panel
plots the imaginary part. The Nyquist frequency kNy

x = 2π/(2∆x) = 5.03 rad/m lies along
the right side of the contour plot. The Nyquist frequency kNy

y = 2π/(2∆y) = 2.51 rad/m
lies along the top of the contour plot. The white space at the left and bottom highlights
that there are no negative Nyquist frequencies. In each amplitude plot a particular pair of
±kuv values is indicated by the black arrows; the (0, 0) frequency is shown by a black dot.
Note that in the plot of the real part, Re{ẑ(−kuv)} = Re{ẑ(+kuv)}, whereas in the plot of
the imaginary part, Im{ẑ(−kuv)} = −Im{ẑ(+kuv)}. The contouring is rather low quality
for so few points, but it is easy to see in the digital output that when the kx is the Nyquist
frequency (the points along the right column of points in the plot), the symmetries are given
by Re{ẑ(kNy

x ,−ky)} = Re{ẑ(kNy
x ,+ky)} and Im{ẑ(kNy

x ,−ky)} = −Im{ẑ(kNy
x ,+ky)}. A

corresponding relation holds for ±kx when ky = kNy
y (the points along the top row of the

plot). The point at the upper right of the plot corresponds to both kx and ky being at their
respective Nyquist frequencies. As always, the array elements at the Nyquist frequencies
must be treated as special cases when writing computer programs. These symmetries show
that the 2-D amplitudes are Hermitian: ẑ∗(−kuv) = ẑ(kuv). The discrete 2-D variance
spectrum Ψ(kuv) = Ψ(u, v) = ẑ(u, v)ẑ∗(u, v) is contoured in the lower right panel of the
figure. Note the Ψ(−kuv) = Ψ(kuv) symmetry.
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Figure C.5: A two-dimensional random sea surface and its Fourier transform and two-sided
variance spectrum. The surface elevations in the upper left panel were randomly drawn
from a N (0, 1) distribution. The black arrows highlight a particular ±kuv frequency pair.
The blue-blue and red-red symmetry of the real part of the Fourier amplitudes, and the
red-blue symmetry of the imaginary part, shows the Hermitian nature of the amplitudes.
The gray dots show the locations of the discrete values that were contoured to create the
figures.

For this example, the standard check on the 2-D discrete Parseval’s relation (A.18)
gives
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Nx−1∑
r=0

Ny−1∑
s=0

|z(r, s)|2 =NxNy

Nx−1∑
u=0

Ny−1∑
v=0

|ẑ(u, v)|2

=NxNy

Nx−1∑
u=0

Ny−1∑
v=0

Ψ(u, v) = 130.90 m2 .

In all of these plots, it should be remembered that the discrete values are known only
at the locations of the silver dots. The contouring routine simply interpolates between
these points to create a visually appealing figure. The continuous color in the plots does
not imply that the values are continuous and known in between the discrete points.

C.3.2 Example: A Sea Surface of Crossing Sinusoids

For a second example, define a surface from a pair of crossing sinusoids as follows:

z(xr, ys) = A1 cos(kx1xr + ky1ys + φ1) +A2 cos(kx2xr + ky2ys + φ2) , (C.11)

where as usual r = 0, ..., Nx − 1; s = 0, ..., Ny − 1; and where

A1 = 1.0 m is the amplitude of the first wave

Nx1 = 2 is the number of wave lengths in the x direction in [0, Lx] for the first wave

kx1 = 2.0πNx1/Lx = 1.257 rad/m2 is the kx frequency of the first wave

Ny1 = 1 is the number of wave lengths in the y direction in [0, Ly] for the first wave

ky1 = 2.0πNy1/Ly = 0.628 rad/m2 is the ky frequency of the first wave

φ1 = 0 is the phase of the first wave; 0 gives a cosine wave

A2 = 0.5 m is the amplitude of the second wave

Nx2 = 4 is the number of wave lengths in the x direction in [0, Lx] for the second wave

kx2 = 2.0πNx2/Lx = 2.513 rad/m2 is the kx frequency of the second wave

Ny2 = 3 is the number of wave lengths in the y direction in [0, Ly] for the second wave

ky2 = −2.0πNy2/Ly = −1.885 rad/m2 is the ky frequency of the first wave

φ2 = π/2 is the phase of the second wave; π/2 gives a sine wave

The wavelength of the first wave is Λ1 = 2π/
√
k2
x1 + k2

y1 = 4.47 m, and that of the second

wave is Λ2 = 2.00 m. The direction of propagation of the first wave relative to the +x axis
is

ϕ1 = tan−1

(
ky1

kx1

)
= 26.57 deg ,

and the direction of propagation of the second wave relative to the +x axis is

ϕ2 = tan−1

(
ky2

kx2

)
= −36.87 deg .

The upper left panel of Fig. C.6 shows this surface elevation pattern when Eq. (C.11)
is sampled with Nx = Ny = 16. The dominant red-blue pattern shows the first wave
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oriented with the direction of propagation along either the +k1 direction at ϕ1 = 26.57deg
or the −k1 direction at ϕ1 = 26.57 + 180 = 206.57 deg. We cannot of course determine
the actual direction +k1 or −k1 of propagation from sea surface elevations at a single
time. The dominant wave pattern is modulated by the second wave, which has one half
the amplitude of the first wave.

Figure C.6: A two-dimensional sea surface composed of two crossing sinusoids, and the
resulting Fourier amplitudes and variance.

The choice above of φ1 = 0 in Eq. (C.11) makes the dominate wave a cosine in our
coordinate system, and φ2 = π/2 makes the second wave a sine. As we saw in the 1-D
examples, variance associated with cosine waves appears in the real part of the Fourier
amplitudes, and the variance in sine waves appears in the imaginary parts. We see this
again here for the first (cosine) and second (sine) waves of the surface. Since each wave
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pattern has only one frequency, there is only one pair of points at ±k1 in the plot of the real
part, and one pair at ±k2 in the plot of the imaginary part. The amplitudes at all other
frequencies are zero. The symmetries of these points again show the Hermitian nature of
the amplitudes.

The lower right panel shows the two-sided variance function Ψ2s(k) for this surface.
Note that the first wave has four times the variance of the second wave because the am-
plitude of the first wave is twice that of the second wave. Ψ2s(−k) = Ψ2s(+k). Note also
that you can look at a 2-D variance spectrum and see how much energy is propagating in
a given ±k direction.

For this simple example involving just four frequencies it is easy (from the digital
output) to hand check that the right-hand side of the 2-D discrete Parseval’s relation, Eq.
(A.18), is

NxNy

∑
u

∑
v

|ẑ(u, v)|2 = 16 · 16
[
(0.5)2 + (0.5)2 + (0.25)2 + (−0.25)2

]
= 160 m2 .

This value agrees exactly with the corresponding sums of the surface elevations,∑
r

∑
s[z(r, s)]

2, and variance values, NxNy
∑

u

∑
v Ψ(u, v).

C.4 Spectra to Surfaces: 2-D

Now, again, we face the reverse process: start with a two-dimensional, one-sided variance
density spectrum and generate a random 2-D realization of a sea surface. The first task is
to properly formulate a two-dimensional variance density spectrum, which requires some
effort.

C.4.1 Theory

Let Ψ(k) = Ψ(kx, ky) denote a 2-D elevation variance spectrum as defined in Section B.2
on the theory of wave variance spectra. This spectrum has units of m2/(rad/m)2. By
definition, the integral of Ψ(kx, ky) over all frequencies gives the elevation variance:

var{z} = 〈z2〉 =

∫ ∞
−∞

∫ ∞
−∞

Ψ(kx, ky) dkx dky .

As in the 1-D case in Section D.3, 〈...〉 indicates expectation or ensemble average over many
measurements of the sea surface.

In the discrete case, the kuv values coming out of ẑ = D{z} point both “downwind”
(positive kx(u) values) and “upwind” (negative kx(u) values), i.e. there are both positive
and negative frequencies represented in the “two-sided” variance spectrum, denoted as
Ψ2s[u, v], u = −(Nx/2 − 1), ..., Ny/2, v = −(Ny/2 − 1), ..., Ny/2 as above. In general,
Ψ2s(−kuv) 6= Ψ2s(+kuv) because more energy propagates downwind than upwind at a given
frequency. kx(Nx/2) is the Nyquist frequency for waves propagating in the x direction;
ky(Ny/2) is the Nyquist frequency for waves propagating in the y direction. Ψ2s(0, 0) is
the variance at zero frequencies, i.e., the variance of the mean sea surface; this term is
normally set to 0 so that the mean sea surface is at height 0.
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The 2-D equivalents of Eqs. (C.4) and (C.5) in Section D.3 are

ẑo(kuv) ,
1√
2

[ρ(kuv) + iσ(kuv)]

√
Ψ1s(k = kuv)

2
∆kx∆ky (C.12)

=
1√
2

[ρ(kuv) + iσ(kuv)]
√

Ψ2s(kuv) . (C.13)

Here, as before, ρ(kuv) and σ(kuv) are independent N (0, 1) random variables, with a
different random variable drawn for each kuv value. As in the 1-D case, the expected value
of ẑo(kuv) gives back whatever variance spectrum is used for Ψ2s(kuv), but is not Hermitian.
As before, the notation in these equations distinguishes between the value of the continuous
spectral density function evaluated at a discrete frequency value, Ψ1s(k = kuv), and the
discrete variance point function, Ψ2s(kuv).

We must define random Hermitian amplitudes for use in the inverse Fourier transform.
Looking ahead to the section on time dependent surfaces (Section C.7), which extends
the results of this section to time-dependent surfaces, define the time-dependent spectral
amplitude

ẑ(kuv, t) ,
1√
2

[
ẑo(kuv)e

−iωuvt + ẑ∗o(−kuv)e
+iωuvt

]
. (C.14)

This function is clearly Hermitian, so the inverse DFT applied to ẑ(kuv, t) will give a real-
valued z(xrs, t). Recall that a function of the form cos(kx−ωt) gives a wave propagating in
the +x direction. The corresponding ẑo(kuv)e

−iωt in this equation gives a wave propagating
in the +k direction, which is in the downwind half plane of all directions. In general the
temporal angular frequency ωuv is a function of the spatial frequency kuv. For example,
for deep-water gravity waves, ω2

uv = gkuv.
For simplicity of notation, let us momentarily drop the rs and uv subscripts on the

discrete variables. The ẑ(k, t) of Eq. (C.14) is also consistent with the variance spectrum:

〈|ẑ(k, t)|2〉 = 〈ẑ(k, t)ẑ∗(k, t)〉

=
〈 1√

2

[
1√
2

[ρ(k) + iσ(k)]
√

Ψ2s(k)eiωt +
1√
2

[ρ(−k)− iσ(−k)]
√

Ψ2s(−k)e−iωt
]
×

1√
2

[
1√
2

[ρ(k)− iσ(k)]
√

Ψ2s(k)e−iωt +
1√
2

[ρ(−k) + iσ(−k)]
√

Ψ2s(−k)eiωt
]〉

=
1

4

〈 [
ρ2(k)− iρ(k)σ(k) + iσ(k)ρ(k) + σ2(k)

]
Ψ2s(k)+

[ρ(k)ρ(−k) + iρ(k)σ(−k) + iσ(k)ρ(−k)− σ(k)σ(−k)]
√

Ψ2s(k)
√

Ψ2s(−k)ei2ωt+

[ρ(−k)ρ(k)− iρ(−k)σ(k)− iσ(−k)ρ(k)− σ(−k)σ(k)]
√

Ψ2s(−k)
√

Ψ2s(k)e−i2ωt+[
ρ2(−k) + iρ(−k)σ(−k)− iσ(−k)ρ(−k) + σ2(−k)

]
Ψ2s(−k)

〉
=

1

2
[Ψ2s(k) + Ψ2s(−k)] .

Here we have noted that all terms like 〈ρ(k)ρ(−k)〉 are zero because of the independence
of the random variables for different k values, as are terms like 〈ρ(k)σ(k)〉. The remaining
term is the total variance associated with waves propagating in the downwind and upwind
directions at the spatial frequency of magnitude k. It should be noted that this term is
independent of time even though the waves z(x, y, t) depend on time. This is because the
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total variance (or energy) of the wave field is the same at all times, even though the exact
shape of the sea surface varies with time.

If only a “snapshot” of the sea surface at one time is available, it is not possible to
resolve how much of the total variance is associated with waves propagating in direction
k compared to the opposite direction −k. The forward DFT, ẑ(k, t) = D{z(x, y, t)}, and
ẑ(k, t)ẑ∗(k, t) then gives Ψ2s(−k) = Ψ2s(k), in which case the last equation reduces to

〈ẑ(k, t)ẑ∗(k, t)〉 = Ψ2s(k) .

In any case, the amplitudes defined by Eq. (C.14) are Hermitian, so that the real
part of the inverse Fourier transform Z(x, t) = D−1{ẑ(k, t)} gives a real-valued sea surface
z(x, t). That sea surface is consistent with the variance spectrum Ψ2s(k) at every time
t. Wave variance (energy) is thus conserved in a round-trip calculation from variance
spectrum to sea surface and back to variance spectrum. In the time-dependent case, if
Ψ2s(k) > Ψ2s(−k), then more variance will be contained in waves propagating in the +k
direction than in the −k direction. This is all that we can ask from Fourier transform
techniques.

Although Eqs. (C.13) and (C.14) are compact representations of the random spec-
tral amplitudes, the actual evaluation of these equations in a computer program warrants
further examination. In particular, the Nyquist frequencies are always special cases be-
cause there is only a positive Nyquist frequency, kNy

x = Nx
2

2π
Lx

at array element Nx − 1,
with a corresponding equation for the Nyquist frequency in the y direction. Writing
e±iωt = cos[ω(k)t]± i sin[ω(k)t] in (C.14) and expanding Eq. (C.14) gives

2 ẑ(k, t) =
[
ρ(k)

√
Ψ2s(k) + ρ(−k)

√
Ψ2s(−k)

]
cos[ω(k)t]

−
[
σ(k)

√
Ψ2s(k) + σ(−k)

√
Ψ2s(−k)

]
sin[ω(k)t]

+i

{[
ρ(k)

√
Ψ2s(k)− ρ(−k)

√
Ψ2s(−k)

]
sin[ω(k)t]

+
[
σ(k)

√
Ψ2s(k)− σ(−k)

√
Ψ2s(−k)

]
cos[ω(k)t]

}
. (C.15)

These terms are all Nx × Ny arrays, but note that terms like ρ(k)
√

Ψ2s(k) represent
element-by-element multiplications, not matrix multiplications.

For a particular array element ẑ(kx(u), ky(v), t) = ẑ(u, v, t), and using the indexing
relation k(u) = −k(N − 2 − u), u = 0, ..., N − 2 for frequencies written in math order, we
can write
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2 ẑ(u, v, t)

=

[
ρ(u, v)

√
Ψ2s(u, v) + ρ(Nx− 2− u,Ny− 2− v)

√
Ψ2s(Nx− 2− u,Ny− 2− v)

]
cos[ω(k(u, v))t]

−
[
σ(u, v)

√
Ψ2s(u, v) + σ(Nx− 2− u,Ny− 2− v)

√
Ψ2s(Nx− 2− u,Ny− 2− v)

]
sin[ω(k(u, v))t]

+i

{[
ρ(u, v)

√
Ψ2s(u, v)− ρ(Nx− 2− u,Ny− 2− v)

√
Ψ2s(Nx− 2− u,Ny− 2− v)

]
sin[ω(k(u, v))t]

+

[
σ(u, v)

√
Ψ2s(u, v)− σ(Nx− 2− u,Ny− 2− v)

√
Ψ2s(Nx− 2− u,Ny− 2− v)

]
cos[ω(k(u, v))t]

}
.

(C.16)

This equation allows for efficient computation within loops over array elements. In par-
ticular, the code can loop over the non-positive kx(u) values, u = 0, ..., Nx/2, and over all
ky(v) values, v = 0, ..., Ny − 2 to evaluate the amplitudes for all non-Nyquist frequencies.
The positive kx(u) values are then obtained from the negative kx(u) values by Hermitian
symmetry. The Nyquist frequencies are evaluated by an equation of the same form, but
with one or the other index held fixed (e.g., u = Nx−1 while v = 0, ..., Ny−2). The ampli-
tude ẑ(kx = 0, ky = 0) at array element (u, v) = (Nx/2−1, Ny/2−1) is usually set to zero,
corresponding to the mean sea level being set to 0. For generation of time-independent
surfaces, we can set t = 0 so that the cosines are one and the sines are zero, which cuts the
number of terms to be evaluated in half.

If the frequencies are in the FFT order, then the last equation has the same general form,
but the indexing that expresses Hermitian symmetry is different: k(u) = −k(N − u), u =
1, ..., N − 1, with k = 0 being a special case. The equation corresponding to Eq. (C.16) is
then

2 ẑ(u, v, t)

=

[
ρ(u, v)

√
Ψ2s(u, v) + ρ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
cos[ω(k(u, v))t]

−
[
σ(u, v)

√
Ψ2s(u, v) + σ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
sin[ω(k(u, v))t]

+i

{[
ρ(u, v)

√
Ψ2s(u, v)− ρ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
sin[ω(k(u, v))t]

+

[
σ(u, v)

√
Ψ2s(u, v)− σ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
cos[ω(k(u, v))t]

}
.

(C.17)

However, this equation does not explicitly show the special cases. Let zhat[u,v] be the
array of ẑ(k, t) = ẑ(kx(u), ky(v), t) values at a particular time t. r[u,v] and s[u,v] are the ar-
rays of random numbers ρ(u, v) and σ(u, v), respectively. Psiroot[u,v] is 1

2

√
Ψ2s(kx(u), ky(v))

(incorporating the 2 seen on the left-hand side of Eq. (C.17)). With other obvious def-
initions, Fig. C.7 shows the pseudo code to evaluate Eq. (C.17) at a particular time
t.
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Figure C.7: Pseudocode for looping over non-zero frequencies.

Figure C.8 shows the pseudocode for looping over all ky values for the special case of
kx = 0 at frequency array index u = 0. Note that for kx = 0, the ±ky values are complex
conjugates.

Figure C.8: Pseudocode for looping over all ky values for the special case of kx = 0 at
frequency array index u = 0.

Figure C.9 shows the pseudocode for looping over all kx values for the special cases of
ky = 0 at frequency array index v = 0. Note that for ky = 0, the ±kx values are complex
conjugates.

Figure C.9: Pseudocode for looping over all kx values for the special cases of ky = 0 at
frequency array index v = 0.

Finally, set the (kx, ky) = (0, 0) value to 0, which sets the mean sea level to zero:
zhat[0,0] = COMPLEX(0.0, 0.0).
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Array zhat[u,v] = ẑ(kx(u), ky(v)) as just defined is Hermitian and has the frequencies
in FFT order ready for input to an FFT routine.

Showing this level of detail may seem tedious, but it is absolutely critical that the
ẑ(k, t) array be properly computed down to the last array element. Any error will show
up in the generated sea surface as either a non-zero imaginary part of the complex array
Z[r, s] = D{zhat[u, v]} (easy to detect) or an incorrect sea surface elevation (often much
harder to detect).

C.4.2 Example: A Two-Dimensional Sea Surface

As a specific example of the above algorithm, consider the following. Let us use a coarse
grid sampling of Nx×Ny = 64× 64 points, which makes it easier to see certain features in
the associated plots. The physical region to be simulated is Lx × Ly = 100× 100 m. The
two-dimensional, one-sided variance spectrum of Elfouhaily et al. (1997) is used. Thus we
have

Ψ(kx, ky) =
1

k
S(k)Φ(k, ϕ) , Ψ(k, ϕ)

=Ψ
(
k =

√
k2
x + k2

y, ϕ = tan−1(ky/kx)
)
.

where S(k) is the omnidirectional spectrum and Φ(k, ϕ) is the nondimensional spreading
function, as defined in Section B.3.

The upper left plot of Fig. C.10 shows this spectrum for a wind speed of 5 m s−1 and
a fully developed sea state. The contours are of Ψ1s(kx, ky) evaluated at the discrete grid
points; the 1

2∆kx∆ky factor seen in Eq. (C.13) has not yet been applied to create a discrete
two-sided spectrum. The line along ky = 0 corresponds to the spectrum plotted in Fig.
B.4 in the examples of wave variance spectra. We see in both plots that for a 5m s−1 wind,
the spectrum peaks near 0.2− 0.3 rad/m.

The plots of the real and imaginary parts of ẑ(kx(u), ky(v)) show that most of the
variance is at low frequencies and that the amplitudes have the Hermitian symmetry illus-
trated in the two figures of the previous section. The lower right panel of the plot shows
a contour plot of the sea surface generated from the inverse FFT of the amplitudes. The
significant wave height for this surface realization is 0.60 m, in good agreement with the
expected value given above for the Pierson-Moskowitz spectrum, which is similar to the
Elfouhaily et al. spectrum in the gravity-wave region.

C.5 Spreading Function Effects

Figure C.10 shows a contour plot of a two-dimensional, one-sided variance spectrum Ψ1s(kx, ky)
and a contour plot of a random surface generated from that variance spectrum. A particular
spreading function is implicitly contained in that two-dimensional variance spectrum. The
effect on the generated sea surface of the spreading function contained within Ψ1s(kx, ky)
warrants discussion.

As we have seen (e.g. Eq. (B.27)), a 2-D variance spectrum is usually partitioned as

Ψ(kx, ky) =
1

k
S(k)Φ(k, ϕ) , Ψ(k, ϕ) .
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Figure C.10: Example two-dimensional sea surface generated from a 2-D, one-sided variance
spectrum. The resolution is only 64 × 64 grid points, so as to make the features of the
underlying spectrum and the Fourier amplitudes easier to see.

Here S(k) is the omnidirectional spectrum, and Φ(k, ϕ) is the nondimensional spreading
function, which shows how waves of different frequencies propagate (or “spread out”) rel-
ative to the downwind direction at ϕ = 0.

One commonly used family of spreading functions is given by the “cosine-2S” functions
of Longuet-Higgins et al. (1963), which have the form

Φ(k, ϕ) = CS cos2S(ϕ/2) , (C.18)

where S is a spreading parameter that in general depends on k, wind speed, and wave age.
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CS is a normalizing coefficient that gives∫ 2π

0
Φ(k, ϕ) dϕ = 1 (C.19)

for all k.

Figure C.11 shows the cosine-2S spreading functions for values of S = 2 and 20. These
spreading functions are strongly asymmetric in ϕ, so that more variance (wave energy) is
associated with downwind directions (|ϕ| < 90deg) than upwind (|ϕ| > 90deg). The larger
the value of S, the more the waves propagate almost directly downwind (ϕ = 0), rather
than at large angles relative to the downwind direction. However, the cosine-2S spreading
functions always have a least a tiny bit of energy propagating in upwind directions, as can
be seen for the S = 2 curves. This is crucial for the generation of time-dependent surfaces,
as will be discussed on the next section.

Figure C.11: The cosine-2S spreading functions for S = 2 and 20. Top panel: polar plot
in ϕ; bottom panel: linear in ϕ.

Figure C.12 shows a surface generated with the omnidirectional variance spectrum of
Elfouhaily et al. (1997) (ECKV) as used in the previous section, combined with a cosine-2S
spreading function (C.18) with S = 2 for all k values. The wind speed is 10 m s−1. The
simulated region is 100 × 100 m using 512 × 512 grid points. Note in this figure that the
mean square slopes (mss) compare well with the corresponding Cox-Munk values shown in
Table C.1. The mss values for the generated surface are computed from finite differences,
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e.g.

mssx(r, s) =
z(r + 1, s)− z(r, s)
x(r + 1)− x(r)

averaged over all points of the 2-D surface grid. The 〈θx〉 and 〈θy〉 values shown in the
figure are the average angles of the surface from the horizontal in the x and y directions).
These are computed from

θx(r, s) = tan(mssx(r, s)) ,

etc., averaged over all points of the surface.

Figure C.12: A sea surface generated with the ECKV omnidirectional spectrum and a
cosine-2S spreading function with S = 2. Compare with Fig. C.13. (Same as Fig. 13.13)

slope variable DFT value Cox-Munk formula Cox-Munk value

mssx 0.031 0.0316U 0.032

mssy 0.021 0.0192U 0.019

mss 0.052 0.001(3 + 5.12U) 0.054

Table C.1: Comparison of Cox-Munk mean square slopes and values for the DFT-generated
2-D surface of Fig. C.12.

The spreading function used in Fig. C.12 was chosen (with a bit of trial and error) to
give a distribution of along-wind and cross-wind slopes in close agreement with the Cox-
Munk values (except for a small amount of Monte-Carlo noise). Figure C.13 shows a surface
generated with a cosine-2S spreading function with S = 20; all other parameters were the
same as for Fig. C.12. This S value gives wave propagation that is much more strongly in
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the downwind direction ϕ = 0, as would be expected for long-wavelength gravity waves in
a mature wave field. The surface waves thus have a visually more “linear” pattern, whereas
the waves of Fig. C.12 appear more “lumpy” because waves are propagating in a wider
range of angles ϕ from the downwind.

Figure C.13: A sea surface generated with the ECKV omnidirectional spectrum and a
cosine-2S spreading function with S = 20.

As was shown in Section B.2, the total mean square slope depends only on the omni-
directional spectrum S(k). Thus the total mss is the same (except for Monte Carlo noise)
in both figures C.12 and C.13, but most of the total slope is in the along-wind direction in
Fig. C.13.

Real spreading functions are more complicated than the cosine-2S functions used here.
In particular, some observations (Heron, 2006) of long-wave gravity waves tend to show a
bimodal spreading about the downwind direction, which transitions to a more isotropic,
unimodal spreading at shorter wavelengths. Although omnidirectional wave spectra are
well grounded in observations, the choice of a spreading function is still something of a
black art. You are free to choose any Φ(k, ϕ) so long as it satisfies the normalization
condition (B.20).

C.6 Numerical Resolution

The question naturally arises: “How large a region L and how many points N must be
used in generating sea surface realizations?” Not surprisingly, the general answer is, “It
depends on your application.” It is computationally possible to create 2-D surfaces with
sufficiently large N values in the x and y directions, but run times are prohibitive. Kay
et al. (2011) created 2-D surfaces with 216×216 = 65536×65536 points in each dimension,
which sampled the variance spectrum for wavelengths from 200 m gravity waves to 3 mm
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capillary waves. However, it took 6 hours to create just one surface on a 3 GHz computer.
Note also that the storage of this surface requires 232 = 4.3 × 109 numbers. Many ray
tracing applications need to use tens of thousands to millions of surface realizations to get
good statistical averages. Thus, the specific answer for brute-force scientific calculations is
usually, “A bigger N than you can run on your computer.” This section shows one way to
finesse certain calculations so that large-N calculations can be avoided.

For creating visually appealing sea surfaces for rendering into a movie scene, N = 210 =
1024, 211 = 2048, or perhaps at most 212 = 4096 is usually adequate. This is because the
visual impression of a sea surface is, to first order, determined by the height of the waves,
which in turn is governed by the largest gravity waves for the given wind speed. If you
are rendering an image, you don’t need to have a finer resolution for the sea surface than
maps to an image pixel. For example, if you are going to simulate what a CCD with
1024×1024 pixels would record, and you are looking down onto the sea surface from above
at an elevation where one CCD pixel sees a 0.1 m × 0.1 m patch of the sea surface, then
you need to resolve the sea surface with a grid spacing of at most 0.1 m. Modeling a
100 m × 100 m patch of sea surface with a spatial resolution of 1024 × 1024 gives a grid
spacing of 0.1 m, which would be adequate for the CCD image simulation.

Unfortunately, for accurate scientific calculations of sea surface reflectance, N may have
to be much larger. This is because the surface reflectance depends to first order on the
surface wave slope, and the slope is strongly affected by the smallest waves with spatial
scales down to capillary size of a few millimeters.

The k value of the peak of the Pierson-Moskowitz k spectrum

SPM(k) =
α

2k3
exp

[
−β
(g
k

)2 1

U4
19

]
[m2/(rad/m)] , (C.20)

is easily obtained from setting dSPM(k)/dk = 0 and solving for the value of k. This gives

kp =

(
2β

3

)0.5 g

U2
19

,

which corresponds to a wavelength of Λp = 2π/kp. Table C.2 shows the values of kp and
Λp for a few wind speeds.

U19[m/s] kp [rad/m] Λp [m]

5 0.276 23

10 0.069 91

15 0.031 205

20 0.017 364

Table C.2: Spatial frequencies and wavelengths corresponding to peak variance for the
Pierson-Moskowitz spectrum SPM(k).

If we use L ≈ 2Λp for the size of the spatial domain, we will resolve the large gravity
waves, which contain most of the wave variance. (Keep in mind that density functions do
not have a unique maximum: the location of the maximum of a density function depends on
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which frequency variable is chosen. See the discussion of this in Section 2.5.) Differentiating
the Pierson-Moskowitz ω spectrum

SPM(ω) =
αg2

ω5
exp

[
−β
(

g

ωU19

)4
]

[m2/(rad/s)] . (C.21)

and using the dispersion relation ω =
√
gk leads to Λp = 2π(1.25/β)0.25g/U2

19, which gives
73 m at U19 = 10. However, either version of Λp gives adequate guidance for our present
purpose.)

Now consider how many points it takes to almost fully resolve, or account for, the
variances of elevation and slope spectra when they are sampled for a DFT. For a specific
example, take U10 = 10 m/s and L = 200 m and use the omnidirectional, or 1-D, part S(k)
of the Elfouhaily et al. spectrum given by Eq. (B.28) and the associated equations of that
section. This variance spectrum and the corresponding slope spectrum k2S(k) are plotted
as the blue curves in the next 3 figures.

As we have learned in Section B.2, the expected variance of the sea surface is given by

〈z2〉 =

∫ ∞
0
S(k) dk , (C.22)

and the mean-square slope is given by

〈σ2〉 = mss =

∫ ∞
0

k2 S(k) dk . (C.23)

Such integrals usually must be numerically evaluated with the limits of k = 0 and∞ being
replaced by some small value k0 and some large but finite value k∞. The present example
uses k0 = 0.01 and k∞ = 104, with 106 evaluation points in between these limits. That
gives an accurate evaluation of Eqs. (C.22) and (C.23) for the U10 = 10m s−1 spectra. The
results are 〈z2〉 = 0.4296 m2 and mss = 0.06011 rad2.

Now suppose we sample the spectrum using N = 1024 points, which leads eventually to
a sea surface realization z(xr) with 1024 points. For L = 200 m the fundamental frequency
is kf = 2π/L = 0.0314 rad/m. This point is shown by the left-most red dot with the black
center in Fig. C.14. For this L and N , the Nyquist frequency is kNy = 2π/(2L/N) =
16.085 rad/m, which is shows by the right-most black and red dot. These two end points
and the N − 2 red vertical lines in between show the discrete points where the variance
spectrum is sampled.

The elevation and slope variances that are accounted for in a sampling scheme with N
points are given by

z2(N) =

∫ kNy

kf

S(k) dk ,

and

mss(N) =

∫ kNy

kf

k2 S(k) dk .

In the present example, these integrals are z2(N = 1024) = 0.4219 m2 and mss(N =
1024) = 0.02584rad2. Thus the finite range of the sampled frequencies includes the fraction

fE ,
z2(N)

〈z2〉
=

0.4219

0.4296
= 0.982
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Figure C.14: Example sampling of elevation and slope spectra for N = 1024. The red dots
and lines show the regions of the elevation and slope spectra sampled using 1024 points.
The elevation spectrum is adequately sampled, but the slope spectrum is under sampled.

of the total variance of the sea surface elevation. However, the corresponding fraction
of the sampled slope variance is just fS = 0.02584/0.06011 = 0.430. Thus N = 1024 is
sampling 98% of the elevation variance but only 43% of the slope variance. This sampling
is acceptable if we are interested only in creating a sea surface that looks realistic to the
eye. The large gravity waves will be correctly simulated, and that is what counts for visual
appearance.

However, if our interest is ray tracing to simulate the optical reflectance and transmis-
sion properties of the sea surface, then we must also sample almost all of the slope variance.
This is because, to first order, reflectance and transmission of light are governed by the
slope of the sea surface, not by its height. If we under sample the slope variance, then
the generated surface will be too smooth at the smallest spatial scales, and the computed
optical properties will be incorrect. The brute-force approach to sampling more of the
slope spectrum is to increase N .

Figure C.15 shows the sampling points when N = 216 = 65536. Now the sampled
points extend into the capillary-wave spatial scale: the smallest resolvable wave is 0.006
m. (Note that the fundamental frequency is fixed by the choice of L, which also fixes the
spacing of the samples, ∆k = kf .) The elevation variance integral over the sampled ranges is
unchanged (we are still missing a small bit of the variance from the very longest waves with
frequencies below kf . However, the slope integral is now mss(N = 65536) = 0.05909 rad2.
Thus we are now sampling a fraction fS = 0.05909/0.06011 = 0.983 of the slope variance.
The resolution of both the elevation and slope spectra are now acceptable for almost any
application. Although using a very large N is computationally feasible in one dimension,
such a large N is computationally impracticable in two dimensions, when we would need a
grid of size N ×N . In the present example, this would would require 655362 = 4.3 Gbytes
of storage for just one real array, as well as a corresponding increase in run time for the
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Figure C.15: Example sampling of elevation and slope spectra for N = 65536. The red dots
and lines show the sampled regions of the elevation and slope spectra. Both the elevation
and the slope spectra are adequately sampled.

FFT. Another approach to resolving the slope variance is therefore needed.

As we have just seen, the unsampled frequencies greater than the Nyquist frequency
can account for a large part of the slope variance. These frequencies represent the smallest
gravity and capillary waves. The amplitudes of these waves are small, so they contribute
little to the total wave variance, but their slopes can be large. One way to account for
these “missing” waves is to alias their variance into the waves of the highest frequencies.
The highest frequency waves that are sampled will then contain too much variance, i.e.,
they will have amplitudes that are too large for their wavelengths, which will increase their
slopes. One way to do this is as follows.

We seek an adjusted or re-scaled elevation spectrum

S̃(k) , [1 + δ(k)]S(k) (C.24)

such that the integral of k2S̃(k) over the sampled region equals the integral of the true
k2S(k) over the full spectral range. Then sampling the re-scaled spectrum S̃(k) will lead
to the same slope variance as would be obtained from sampling the correct spectrum S(k)
over the entire range of frequencies.

We can choose L so that the low frequencies are well sampled starting at the fundamen-
tal frequency kf = 2π/L. There is thus no need to modify the low-frequency part of the
variance spectrum, which if done, would adversely affect the total wave variance. We want
to modify only the higher frequencies of the sampled region, which contribute the most to
the wave slope but little to the wave elevation. A simple approach is to take δ(k) to be a
linear function of k between the spectrum peak kp and the highest sampled frequency kNy,
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and zero elsewhere:

δ(k) ,

 0 if k ≤ kp

δNy

(
k−kp

kNy−kp

)
if k > kp

(C.25)

δNy is a parameter that depends on the spectrum (i.e., the wind speed), the size L of
the spatial domain, and the number of samples N . We must determine the value of δNy

so that this δ(k) “adds back in” the unresolved slope variance. The added variance will
be zero at the peak frequency kp and largest at the Nyquist frequency. That is, the δ(k)
function will make only a small change to the variance spectrum at the low frequencies,
and the change will be largest near the highest sampled frequencies, which is consistent
with the idea that the high frequency waves have the largest slopes. (There is nothing
physical about the functional form of Eq. (C.25); it is simply a single-parameter ad hoc
function that works reasonably well in practice. Nonlinear functions could be used, e.g.
to concentrate more of the variance into the frequencies closest to the Nyquist frequency.
However, those functions could have more than one free parameter to determine and, in
any case, the end result is the same: a sea surface that reproduces the height and slope
variances of the fully sampled spectrum.)

To determine δNy we thus have

mss =

∫ ∞
0

k2 S(k) dk ≈
∫ k∞

k0

k2 S(k) dk =

∫ kNy

k0

k2 S(k) dk +

∫ k∞

kNy

k2 S(k) dk

,
∫ kNy

k0

k2 S̃(k) dk =

∫ kNy

k0

k2 S(k) dk + δNy

∫ kNy

kp

k2

(
k − kp

kNy − kp

)
S(k) dk .

The right-most terms of these equations give (after recalling that δ(k) = 0 for k ≤ kp)

δNy =

∫ k∞
kNy

k2 S(k) dk∫ kNy

kp
k2
(

k−kp

kNy−kp

)
S(k) dk

. (C.26)

Figure C.16 shows example 1-D surface realizations created with N = 1024 samples
and both the true and scaled variance spectra. The upper two panels reproduce Fig. C.14,
except that the sampled points of the re-scaled spectra are shown in green. It is clear that
the δ(k) function has added progressively more variance to the higher frequencies. The
re-scaled variance spectrum does of course contain somewhat more elevation variance over
the sampled region than does the true spectrum. As the green inset fE number shows,
this re-scaling has increased the fraction of sampled/true variance from 0.982 to 1.020.
However, the fS number in the upper-right panel shows that we are now sampling 99.5%
of the slope variance, as opposed to 43% for the true spectrum. Having a bit too much
total elevation variance is a good tradeoff for being able to model the optically important
slope statistics.

The row 2 panel shows random realizations of the 1-D surfaces generated from these two
spectra (with the same set of random numbers). The surface elevations z(xr) generated
using the true spectrum (red line) and the re-scaled spectrum (green line) are almost
indistinguishable at the scale of this figure. These significant wave heights for these two
surface realizations compare well with the significant wave height of H1/3 = 2.48 m for a
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Figure C.16: Example 1-D surfaces and slopes created using true and adjusted variance
spectra. See the preceding text for discussion.
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Pierson-Moskowitz spectrum. The row 3 panel shows the surface slopes computed from
finite differences of the discrete surface heights. The Cox-Munk along-wind mean square
slope is given by mssx = 0.0316U12.5, which compares well with the value of 0.032 obtained
with the re-scaled spectrum. However, the value obtained from the true spectrum is only
0.022, or 70% of the Cox-Munk value. The bottom two panels replot the 0-10 m sections
of the z and dz/dx figures for better display of the details.

We thus see that when using the δ(k) correction to a variance spectrum, we can generate
a surface that reproduces, to within a few percent of the theoretical values, both the surface
elevation and slope statistics that would be obtained from the underlying true variance
spectrum if it were sampled with enough points to fully resolve the elevation and slope
variances. The variance adjustment technique described in this section was used in Mobley
(2015). However, there are other approaches to the problem of unresolved spatial scales,
e.g., D’Alimonte and Kajiyama (2016).

C.7 Time-Dependent Surfaces

One final step remains: the addition of time dependence to generate a sequence of the sea
surface realizations. Many scientific applications do not need time dependence. This is
the case when many independent random realizations of sea surfaces are used for Monte
Carlo ray tracing to compute the average optical reflectance and transmittance properties
of wind-blown sea surfaces. However, time dependence is crucial for applications such as
computer-generated imagery for movies.

We already have the needed theory in hand from Section C.4 on Spectra to Surfaces:
2-D. The fundamental equations from that section are

ẑo(kuv) ,
1√
2

[ρ(kuv) + iσ(kuv)]

√
Ψ1s(k = kuv)

2
∆kx∆ky

=
1√
2

[ρ(kuv) + iσ(kuv)]
√

Ψ2s(kuv) , ) (C.27)

and

ẑ(kuv, t) ,
1√
2

[
ẑo(kuv)e

−iωuvt + ẑ∗o(−kuv)e
+iωuvt

]
. (C.28)

These quantities are evaluated as described in that section, but with the evaluations done
at particular times t. Most importantly, these equations make no simplifying assumptions
about the ±k symmetry of the two-sided variance spectrum Ψ2s(k).

As we have learned, the Fourier transform of a snapshot of the sea surface gives a
two-sided variance spectrum with identical values for −k and +k. This represents equal
amounts of energy propagating in the −k and +k directions, i.e., equal amounts of energy
in waves propagating upwind and downwind. Such a situation in nature gives standing
waves. Here also, if Ψ2s(−k) = Ψ2s(k), the time-dependent surface will be standing waves
composed of waves of equal energy propagating the +k and −k directions. To obtain waves
propagating downwind, as is the case in a real ocean, we must use an asymmetric two-
sided spectrum with Ψ2s(−k) << Ψ2s(+k), so that almost all of the energy is propagating
downwind. Note, however, that we cannot simply set Ψ2s(−k) = 0, which represents no
energy at all propagating upwind. This is because Ψ2s(−k) = 0 destroys the Hermitian
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property of Eq. (C.28). Thus we must conjure up an asymmetric variance spectrum that
allows a nonzero (although perhaps negligible) amount of energy to propagate upwind.

An asymmetric two-sided variance spectrum can be constructed using an asymmetric
spreading function Φ(k, ϕ) as described in Section C.5. Spreading functions of the form

Φ(k, ϕ) = Cs cos2S(k)(ϕ/2) (C.29)

described there allow some energy to propagate in −k directions, i.e. when |ϕ| > π/2.
With this choice of a spreading function, we can let the magnitude of Ψ2s(+k) equal
the magnitude of the one-sided variance function Ψ1s(+k), which gives the total variance,
because we assume that a negligible amount of the total energy propagates in −k directions.
With this assumption, there is no division of Ψ1s(+k) by 2 in the first line of Eq. (C.13).
That is, we are starting with a two-sided, asymmetric spectrum, not with a one-sided
spectrum based on the assumption of upwind-downwind symmetry.

Once an asymmetric Ψ2s(±k) has been defined, we can evaluate Eq. (C.27) for a set of
random numbers ρ(kuv) and σ(kuv). This is done only once. Then to generate a sequence
of sea surface realizations for times t = 0,∆t, 2∆t, ..., we multiply the time-independent
amplitudes by the time-dependent cosines and sines as was shown previously in Eq. (C.17):

2 ẑ(u, v, t)

=

[
ρ(u, v)

√
Ψ2s(u, v) + ρ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
cos[ω(k(u, v))t]

−
[
σ(u, v)

√
Ψ2s(u, v) + σ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
sin[ω(k(u, v))t]

+i

{[
ρ(u, v)

√
Ψ2s(u, v)− ρ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
sin[ω(k(u, v))t]

+

[
σ(u, v)

√
Ψ2s(u, v)− σ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
cos[ω(k(u, v))t]

}
.

(C.30)

We thus obtain the amplitudes ẑ(kuv, t) at the current time t. The inverse Fourier transform
of this ẑ(kuv, t) gives the sea surface z(xrs) at time t.

The physics (or lack thereof) of this process is simple. We start with a realization
of the sea surface at time zero. This surface contains waves of many discrete frequencies
kuv traveling in all directions ϕuv. Then to get the surface at any later time t, we simply
propagate the sinusoidal waves of each frequency kuv in their original direction of travel
through a phase change determined by the time step and the dispersion relation ω(kuv).
For deep-water gravity waves, the dispersion relation is ω(kuv) =

√
gkuv. It thus visually

appears that the waves are propagating and the sea surface profile is changing with time.
However, this Fourier transform technique is really just moving a collection of independent,
non-interacting sinusoids through frequency-dependent phase angles to create a new surface
realization from the sum of the phase-shifted sinusoids. In a real ocean, waves of difference
frequencies can interact with each other (redistribute energy among frequencies) in highly
complex and nonlinear ways, so that the sea surface statistics may not be time-independent.
This is, in particular, how little waves grow to big waves when the wind begins to blow over
a level surface. Modeling the nonlinear evolution of a sea surface is beyond the abilities of
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Fourier transform techniques which are, at heart, just a mathematical artifice based on a
time-independent directional variance density spectrum.

Figure C.17 shows a sequence of surface realizations for a 10 m s−1 wind speed and a
spatial grid of size Lx×Ly = 100×100m, and a grid resolution of Nx×Ny = 256×256. A
time series of images made with such a course grid could be useful for some non-scientific
purposes.

We have seen that the spatial pattern of a sea surface generated by a Fourier transform
is periodic. This is convenient for tiling a small computed region into a visually acceptable
larger region. When time dependence is included and a finite-length time series of images
is created, the sequence of images is not periodic in time because the various sinusoids
comprising the surface do not have a common period. As pointed out by Tessendorf
(2004), this can be remedied by “quantizing” the temporal frequency ω(kuv) as follows.

Let Tr be the length of time over which the time sequence of surface realizations should
exactly repeat. The number of frames Nt in the video loop determines the time step
between frames, ∆t = Tr/Nt. For a smoothly moving sea surface, Nt must be large enough
that ∆t is less than about 0.1 s. Define ωo , 2π/Tr. For deep-water gravity waves, the
true temporal frequency ω(kuv) =

√
gkuv is replaced by

ω̃(kuv) =

⌊√
gkuv
ωo

⌋
ωo , (C.31)

where bxc converts a real number x into its integer part (e.g., 15.23 is converted to 15).
This operation slightly alters the temporal frequency of each wave component so that each
component returns to exactly its initial shape after time Tr. A video loop can then be
created from the sequence of surfaces, and the loop will match perfectly when the frame
for time Tr −∆t goes to the frame for time Tr, which is the same surface as time 0, after
which the surfaces repeat. This adjustment to ω is greatest for the lowest frequencies, but
the adjustment becomes smaller and smaller as the repeat time becomes larger and larger.
It is thus easy to create a time-dependent small area of sea surface that can be tiled in
both space and time to create an image of a larger sea surface over a longer time. This is
good enough to fool movie-goers.

In order to employ a re-scaled variance spectrum as described in Section C.6, determine
the value of the δNy parameter using the omnidirectional variance spectrum, as seen in Eq.
(C.24). Then apply the δ(k) correction to the directional spectrum Ψ(kx, ky) with k = kuv
for each (kx(u), ky(v)) point of the rectangular grid.

An example of a 20-second (simulated time) video loop created using all of these tricks
can be seen on the corresponding Web Book page at Time-dependent Surfaces. This video
shows a time series of 2-D sea surface realizations generated using the Elfouhaily et al.
(1997) variance spectrum with a frequency-dependent cosine-2S spreading function. This
omnidirectional elevation variance spectrum was adjusted as described in Section C.6 at the
higher spatial frequencies so that unresolved slope variance (from frequencies higher than
the kx and ky Nyquist frequencies resolvable by a 512 by 512 DFT grid) is fully resolved.
The true dispersion relation ω =

√
gk was quantized for each discrete spatial frequency so

that the surface is exactly periodic after 20 seconds. Note in particular that the significant
wave heights H1/3 are slightly greater on average than the value of 2.25 m predicted by a
Pierson-Moskowitz spectrum, which has somewhat less energy than the Elfouhaily et al.
spectrum used here. Note also that the along-wind (mssx) and cross-wind (mssy) mean

https://oceanopticsbook.info/view/surfaces/level-2/time-dependent-surfaces
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Figure C.17: A time-dependent sequence of 2-D sea surfaces for a 10 m s−1 wind speed.
The physical domain is 100× 100 m; the sampling is 256× 256 points. The vertical scale of
the plots is -3 to +3 m. The wind is blowing in the +x direction, which is from the upper
left to the lower right of each figure.

square slopes are very close to what is expected by Cox-Munk statistics: 0.031 and 0.019
respectively.
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APPENDIX D

Modeling Sea Surfaces: Autocovariance

Techniques

The preceding appendices described the statistical properties of random sea surfaces us-
ing variance spectra. This appendix begins the exploration of an alternate path to the
specification of surface roughness properties. Clearly, wind-dependent variance spectra are
applicable only to surface waves that are generated by wind. Consider, however, the surface
of a flowing river. The river’s surface can have ripples or waves generated by turbulence
resulting from unstable shear flow induced by flow over a shallow bottom, or by eddies
created as the water flows around rocks in the river. These water surfaces do not depend
on the wind speed and can have different statistical properties, hence different optical
properties, than wind-roughened water surfaces. Such surfaces can be described by their
autocovariance functions.

Autocovariance functions can be converted to elevation variance spectra via the Wiener-
Khinchin theorem as described below. Once a given autocovariance function has been
converted to its equivalent elevation variance spectrum, the algorithms of Appendix C are
immediately applicable, even though the variance spectrum is not wind-dependent. Indeed,
this conversion enables the Fourier transform methods of the previous appendices to be
used to generate random realizations of any surface, not just water surfaces.

As is often the case, there is a large gap between textbook theory—usually developed for
continuous variables or an infinite sample size of discrete values—and its implementation
in a computer program for a finite sample size of discrete variables. In particular, careful
attention must be paid to the sampling of an autocovariance function in order to obtain the
corresponding variance spectrum, or vice versa. I find it disappointing and frustrating (but
not surprising) that numerical matters such as the effects of finite sample size, maximum
lag size, and exactly how to sample spectra or autocovariances (in particular, the material
in Section D.4) never seem to be mentioned in textbooks on digital signal processing or
related subjects. It is left to the innocent student to spend a few weeks of unfunded time
figuring out why various numerical results are not internally consistent or do not perfectly
match the textbook theory.

This appendix begins with a discussion of autocovariances, and then the Wiener-
Khinchin theorem is stated. The theorem is numerically illustrated on first using the

703
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wind-dependent Pierson-Moskowitz elevation variance spectrum, for which certain values
can be analytically calculated and used to check the numerical results. The modeling
of water surfaces generated by shear-induced turbulence is then illustrated, again using
analytical functions that allow for a rigorous check on the numerical results.

D.1 Autocovariance

The autocovariance Czz(`) of z(r) is defined as

Czz(`) , E{z(r)z(r + `)} , (D.1)

where E denotes statistical expectation and ` is the spatial lag. This definition in terms of
the expectation holds for both continuous and discrete variables. For the present discussion
with z(r) being sea surface elevation, Czz(`) shows how strongly the sea surface elevation
at one location is correlated to the elevation at a distance ` away. Czz(`) has units of m2,
and Czz(` = 0) is the variance of the surface elevation. The autocovariance is an even
function of the lag: Czz(−`) = Czz(`).

Consider an infinite sample of discrete zero-mean surface elevations spaced a distance
∆x apart. The autocovariance is then computed by (e.g., Proakis and Manolakis, 1996,
Eq. 2.6.3, with a minor change in their notation)

Czz(`) =

+∞∑
r=−∞

z(r)z(r + `), for ` = 0,±1,±2, ... .

Here ` is indexing the lag distance in units of the sample spacing ∆x. For a finite sample of
N discrete values, the same authors define the sample autocovariance by (their Eq. 2.6.11)

Czz(`) =

N−|`|−1∑
r=0

z(r)z(r + `) . (D.2)

As usual, there are competing definitions. For a finite sample of N discrete values, perhaps
with a non-zero mean m, the IDL autocorrelation function (A CORRELATE) uses

Czz(`r) =
1

N

N−|`|−1∑
r=0

[z(r)−m][z(r + `)−m] for − (N − 2) ≤ `r ≤ N − 2 , (D.3)

where

m =
1

N

N∑
r=0

z(r)

is the sample mean. MATLAB computes the autocovariance via

Czz(`) =
1

N − 1

N−|`|−1∑
r=0

[z(r)−m][z(r + `)−m] .

Note that the lag must be less than the length of the sample. (That is, the sample locations
are at xr = r∆x, r = 0, ..., N − 1 and the allowed lag distances are `r = r∆x, r = 0, ..., N −
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2.) Note also the factor of 1/N in the IDL definition (D.3), which does not appear in Eq.
(D.2), and which is a factor of 1/(N − 1) in the MATLAB version.

Nor is there even any consensus on the terms “autocovariance” and “autocorrelation.”
Some authors (and this appendix) define the nondimensional autocorrelation ρzz(`) as the
autocovariance normalized by the variance, i.e.

ρzz(`) ,
Czz(`)

Czz(0)
. (D.4)

However, Proakis and Manolakis (1996) call the autocovariance as used here the autocor-
relation, and they call the autocorrelation of Eq. (D.4) the “normalized autocorrelation.”
These sorts differences in the definitions and computations of autocovariances can can
cause much grief when comparing the numerical outputs of different computer codes, or
numerical outputs with textbook examples.

D.2 The Wiener-Khinchin Theorem

Now that the autocovariance has been defined, the Wiener-Khinchin theorem can be stated:
The Fourier transform of the autocovariance equals the variance spectral den-
sity function . Symbolically,

Fν{Czz(`)} = S2s(ν) . (D.5)

Indeed, some texts define the spectral density as the Fourier transform of the autocovari-
ance. The inverse is of course

F−1
ν {S2s(ν)} = Czz(`) . (D.6)

Here S2s is a two-sided spectral density function as discussed in Section C.1.
It is important to note (as emphasized by the ν subscript on the Fourier transform

operator F) that the theorem is written with the ν version of the Fourier transform (Eq.
(A.1) of the Fourier Transforms appendix), and the density function is written in terms of
the spatial frequency ν, which has units of 1/meters. (In the time domain, the conjugate
variables are time t in seconds and frequency f in 1/seconds = cycles/second = hertz.) The
spectral density function for the angular spatial frequency k = 2πν (or angular temporal
frequency ω = 2πf in radians per second in the time domain) can be obtained by noting
that corresponding intervals of the spectral densities contain the same amount of variance:

S2s(k)dk = S2s(ν)dν ,

which gives

S2s(k) =
1

2π
S2s(ν = k/2π) . (D.7)

Note that ` varies from −∞ to +∞ and, likewise, ν or k ranges over all negative and positive
values. The variance spectrum obtained from the Fourier transform of an autocovariance
function is therefore a two-sided spectrum.

Comment: In light of Eq. (D.7), the theorem stated in terms of angular spatial
frequency k appears to be

Fk{Czz(`)} = 2πS2s(k) , (D.8)
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with the inverse

F−1
k {S2s(k)} =

1

2π
Czz(`) . (D.9)

I say “appears to be” because I’ve never actually seen the theorem written this way because
the textbooks all seem to stick with x and ν (or t and f in the time domain). As Press
et al. (1992) say in Numerical Recipes (p. 491), “There are fewer factors of 2π to remember
if you use the (ν or) f convention, especially when we get to discretely sampled data....” In
any case, Eqs. (D.8) and (D.9) are consistent with the k spectrum of Eq. (D.17) discussed
below.

The theorem is usually proved in textbooks for continuous variables x and ν. However,
in numerical application to a finite number of discrete samples, discrete variables xr and
νu or ku are used, and proper attention must be paid to pesky factors of N , 2π, and
bandwidth, and to the array ordering required by a particular FFT routine.

The continuous-variable Fourier transform in Eq. (D.5) gives a spectral density S2s(ν)
with units of m2/(1/m). However, if the theorem is written for a DFT of discrete data
Czz(`r) = Czz(r),

Dν{Czz(r)} = S2s(νu) , (D.10)

then the resulting discrete spectrum S2s(νu) = S2s(u) has units of m2. Just as was dis-
cussed on the Fourier Transforms appendix, this discrete spectrum must be divided by the
bandwidth ∆ν in order to obtain the density at ν = νu. That is,

S2s(ν = νu) = S2s(u)/∆ν . (D.11)

D.2.1 Example

Horoshenkov et al. (2013, Eq. 4) give an analytic formula for the autocorrelation function
of surface waves generated by bottom-induced turbulence in shallow flowing water. In the
notation of this section, this function is

ρzz(`) = exp

(
− `2

2σ2
w

)
cos

(
2π

Lo
`

)
. (D.12)

In their words, “σw relates to the spatial radius of correlation (correlation length)” and
“Lo relates to the characteristic period in the surface wave pattern.” The average values
for the physical conditions of the Horoshenkov et al. study are σw = 0.22 m and Lo =
0.17 m. [Note: Eq. (D.12) is Horoshenkov’s W (ρ) as shown in their abstract and in their
conclusions, where it has a factor of 1/2 in the exponential. Their Eq (4) does not have
the 1/2. This is probably a typo since Gaussians usually have the form exp[−x2/(2σ2)].]

This autocorrelation function provides a nice example of how to use the Wiener-
Khinchin theorem to obtain the corresponding variance spectrum. Equation (D.12), when
converted to an autocovariance via a factor of the variance, 〈z2〉 = Czz(0), (as seen in Eq.
D.4) has the form

Czz(`) = Czz(0) exp

(
− `2

2σ2
w

)
cos

(
2π

Lo
`

)
= Czz(0) exp

(
−a2`2

)
cos(qo`) , (D.13)

where a = 1/(
√

2σw) and qo = 2π/Lo. This function has an easily computed analytical
Fourier transform.
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The continuous-variable Fourier transform of this Czz(`) is given by Eq. (A.1):

S2s(ν) = Fν{Czz(`)} =

∫ ∞
−∞

Czz(`) e
−i2πν` d` . (D.14)

Here ` and ν are continuous variables; S2s(ν) has units of m3, which is interpreted as
m2/(1/m) as explained before. Note that this variance spectral density is two-sided, i.e.,
∞ < ν <∞. Expanding the complex exponential via e−iθ = cos θ − i sin θ gives

S2s(ν) =

∫ ∞
−∞

Czz(0) exp
(
−a2`2

)
cos(qo`) cos(2πν`) d`

− i

∫ ∞
−∞

Czz(0) exp
(
−a2`2

)
cos(qo`) sin(2πν`) d` .

The imaginary term is zero because the integrand is an odd function of `. Using the identity

cosx cos y =
1

2
[cos(x+ y) + cos(x− y)]

gives

S2s(ν) = 2Czz(0)

∫ ∞
0

exp
(
−a2`2

) 1

2
{cos[(2πν + qo)`] + cos[(2πν − qo)`]} d` .

The integral ∫ ∞
0

exp
(
−a2`2

)
cos(b`) d` =

√
π exp[−b2/(4a2)]

2a

gives the Fourier transform of the Czz(`) of Eq. (D.13):

S2s(ν) =

√
π

2
σwCzz(0)

{
exp

[
−1

2
(2πσw)2(ν + 1/Lo)2

]
+ exp

[
−1

2
(2πσw)2(ν − 1/Lo)2

]}
.

(D.15)
This variance spectrum has maxima at ν = ±1/Lo, where the value is very close to√

π
2σwCzz(0). Figure D.1 plots this Czz(`) (Eq. D.13) and S2s(ν) (Eq. D.15) for typi-

cal values of σw = 0.22 m, Lo = 0.17 m, and Czz(0) = 2.5 · 10−7 m2. Note that the sub
peaks of the autocovariance lie at integer multiples of ±Lo, and that the peaks of the
spectrum are at ±1/Lo.

By definition, the integral over all frequencies of an elevation variance spectral density
gives the total elevation variance 〈z2〉:

〈z2〉 =

∫ ∞
−∞
S2s(ν)dν .

This can be computed analytically for the spectrum of Eq. (D.15). The S2s(ν) spectrum of
Eq. (D.15) is the sum of two identical Gaussians centered at different ν values. Consider
the one centered at ν = 1/Lo, which involves the exponential with the ν− 1/Lo term. The
total variance is then twice the integral of this Gaussian:

〈z2〉 = 2

√
π

2
σwCzz(0)

∫ ∞
−∞

exp

[
−1

2
(2πσw)2(ν − 1/Lo)2

]
dν .
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Figure D.1: The Horoshenkov autocovariance Czz(`) and elevation variance spectral density
S2s(ν) for typical parameter values taken from their Table 3.

Letting x = ν − 1/Lo gives

〈z2〉 = 2

√
π

2
σwCzz(0)

∫ ∞
−∞

exp
[
−c2x2

]
dx ,

where c2 = 1
2(2πσw)2. The integral∫ ∞

0
exp

[
−c2x2

]
dx =

√
π

2c

then gives the final result:

〈z2〉 = 4

√
π

2
σwCzz(0)

√
π

2 1√
2
2πσw

= Czz(0) . (D.16)

Thus starting with a variance of Czz(0) in the autocovariance of Eq. (D.13), obtaining
the variance spectral density from the Fourier ν-transform of the autocovarience, and then
integrating the variance spectral density over ν thus gives back the variance as originally
specified in the autocovariance function.

However, if the above process is naively carried through starting (as in Eq. D.14) with
the k-transform of Eq. (A.3), the end result (as in Eq. D.16) is 2πCzz(0). This extra
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factor of 2π is rectified by the 1/2π factor seen in Eq. (D.7). Thus the k version of the
Horeshenkov spectral density is

S2s(k) =
1

2π

√
π

2
σwCzz(0)

{
exp

[
−1

2
σ2

w(k + qo)2

]
+ exp

[
−1

2
σ2

w(k − qo)2

]}
. (D.17)

Integration of this S2s(k) over all k then results in 〈z2〉 = Czz(0), as required. The inverse
k transform of the spectral density (D.17) gives Czz(`)/(2π), as expected from Eq. (D.9).

D.3 Numerical Example of the Wiener-Khinchin Theorem

This section gives a numerical example of the Wiener-Khinchin theorem, which leads into
the details of how to sample autocovariance functions so that the resulting variance spectra
meet the needs for surface generation.

The blue curve of Panel (a) in Fig. D.2 plots the one-sided Pierson-Moskowitz spectrum
of Eq. (B.25) for wind speed of U10 = 5m s−1. Using this spectrum, surfaces are generated
at N = 1024 points over a region of length L = 100 m. Note that N is a power of 2 as
required for the use of the fast Fourier transform algorithm. The spacing of these points
is at intervals of ∆x = L/N = 0.0944 m. The red dot at ν1 = 1/L = 0.01 1/m is the
fundamental frequency. The point at νN/2 = 1/(2∆x) = 5.12 1/m is the Nyquist spatial
frequency. The green vertical ticks show the locations of the remaining N−2 points, which
are evenly spaced at intervals of ∆ν = 0.01 1/m.

These discrete samples of the variance spectrum are then used as described in Section
to create a random realization of the sea surface z(r) at N points. One such surface,
generated for a particular sequence of random variables, is shown in Fig. D.2(c). The
periodogram of this surface, computed via Eqs. (C.2) and (C.3) of Section C.1 and Eq.
(C.7), is shown in red in Fig. D.2(b). The blue curve in this panel is the one-sided spectrum
S1s(ν) of Panel (a), replotted with linear axes for reference. The statistical noise in the
periodogram is Gaussian distributed about the theoretical S1s(ν). These three panels of
the figure are the essentially the same as Fig. C.4; the only difference is that the sequence
of random numbers used to generate the surface is different and linear axes are used for
the upper-right panel.

Equation (D.3) applied to the z(r) of Panel (c) gives the autocovariance shown in
red in Panel (d). This curve contains statistical noise. To obtain a theoretical curve
for comparison, the Pierson-Moskowitz spectrum was sampled at 2048 points to insure
coverage of most of the spectrum. The discrete Wiener-Khinchin theorem of Eq. (D.10)
was then used to obtain the autocovariance from the discretely sampled spectrum:

Czz(`r) = D−1
ν {S2s(u)} = D−1

ν {S2s(ν = νu)∆ν} . (D.18)

Here the DFT D−1
ν was computed via Eq. (A.8) . Note that the discrete spectrum S2s(u)

was obtained by sampling the continuous spectral density at the desired ν values and then
multiplying by the appropriate bandwidth. Because S2s(u) is a real and even function of
νu, its Fourier transform is also real and even. The result is shown as the green curve in this
Panel (d). Equation (C.8) gives the total variance of 〈z2〉 = 0.0197 m2 for U10 = 5 m s−1.
The numerical result obtained by sampling S2s(ν) and taking the inverse Fourier transform
as just described gives Czz(0) = 〈z2〉 = 0.0178 m2.
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Figure D.2: Illustration of the Wiener-Khinchin theorem for a single realization of a random
sea surface.

Latta and Bailie (1968) analytically computed the autocorrelation of the Pierson-
Moskowitz spectrum in temporal form, but the result is a formula of horrible complexity
consisting of the sum of five slowly converging infinite series, the terms of which are them-
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selves are products of infinite series. That paper plots the numerically evaluated result in
terms of an unspecified but normalized temporal lag, which makes comparison with the
present results for spatial lag quantitatively impossible. However, de Boer (1969) obtained
the spatial covariance of the Pierson-Moskowitz spectrum in the form of integrals of Bessel
functions, which also require careful numerical evaluation. Figure D.3 shows their result for
the autocovariance function of waves in the down-wind direction. Their plot is in terms of
a nondimensional normalized lag distance ξN = (2g/U2)`. The green curve of Fig. D.2(d)
has a minimum of −0.0063 m2 at ` = ±7.96 m. This translates to an autocorrelation of
-0.31 at a normalized lag of ξN = 6.3. These value are in reasonable agreement with the
minimum seen in Fig. D.3, keeping in mind that the curves in that figure were themselves
generated on a 1960’s era computer by difficult numerical integrations of unknown accu-
racy. The agreements for the variance and the location and magnitude of the minimum
indicate that the numerically computed CPMzz (`) is probably correct for all lags. (This
numerical calculation will be verified again with greater accuracy in the discussion of the
Horoshenkov spectra below, for which the exact autocovariance is known.)

Figure D.3: Fig. 7 from de Boer (1969). The normalized lag distance is ξN = (2g/U2)`.

Taking the DFT of the green curve in Fig. D.2(d) should give the two-sided spectrum
S2s(ν) corresponding to the one-sided spectrum plotted in Panel (a). The green curve
in Panel (e) of that figure shows the result (after dividing by the finite bandwidth, as
mentioned previously), which is indeed one-half of the one-sided spectrum S1s(ν) (shown
in blue). This provides a check on the correctness of a round-trip Fourier transform.

Taking the DFT of the red curve in Panel (d) gives a sample estimate of S2s(ν), which
is shown in red in Panel (e). This curve has statistical noise, but it visually appears to be
distributed about the theoretical value given by the green curve.

The statistical noise inherent in any single random realization of the sea surface and
its autocovariance can be reduced by averaging the results from many surface realizations.
Figure D.4 is the same as Fig. D.2, except that Nsurf = 100 independent surfaces are
generated. This reduces the statistical noise by a factor of 1/

√
100. The red curve in

Panel (b) shows the ensemble average periodogram for the 100 surfaces. It is clear that
the average periodogram is in excellent agreement with the theoretical variance spectrum,
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except for a small amount of remaining statistical noise.
The red curve of Panel (d) is the average autocovariance for the 100 surfaces. This

curve is much closer to the theoretical (green) curve than the autocovariance for the single
surface of Fig. D.2(d). The DFT of this average autocovariance is shown by the red curve
in Panel (e). Again, this curve has much less noise and is closer to the (green) theoretical
spectrum.

The statistical noise in the ensemble averages can be made arbitrarily small by averaging
more and more surfaces. Figure D.5 shows that averages for 1,000 surfaces have noise levels
in the periodogram, autocovariance, and spectrum derived from the autocovariance, that
are almost unnoticeable at the scale of the figures.
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Figure D.4: Same as Fig. D.2, but for 100 surface realizations. The red curve in Panel (d)
is the average of the autocovariances of the 100 surfaces. The red curve in Panel (e) is the
Fourier transform of the 100-surface average of Panel (d). Only the first surface is plotted
in Panel (c).
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Figure D.5: Same as Fig. D.2, but for 1000 surface realizations. The red curve in Panel
(d) is the average of the autocovariances of the 1000 surfaces. The red curve in Panel (e)
is the Fourier transform of the 1000-surface average of Panel (d). Only the first surface is
plotted in Panel (c).
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D.4 Sampling Strategy and Computational Details

This section shows exactly how the calculations underlying Figs. D.2, D.4, and D.5 are
performed. The devil is in the details, and these details are seldom if ever discussed in the
literature. Consider the case of N = 8, which will allow individual points to be plotted. Of
course, with so few sample points, the variance spectrum is not adequately sampled and
the resulting sea surface is unphysical because it has far too little variance. However, the
algorithms are the same for any value of N .

Consider first the generation of the random sea surface with N points. As discussed
previously, the two-sided spectrum must be sampled at exactly N spatial frequencies, which
are given by Eq. (A.15). The green dots in Fig. D.6(b) show these points for the case of
N = 8. The frequency values, written in math order as in Eq. (A.14), are

{νu, u = 0, 1, ..., N − 1} =

[
−N

2
+ 1, ...,−1, 0, 1, ...,

N

2

]
∆ν , (D.19)

which for the choice of L = 100 m and N = 8 gives

{νu, u = 0, 1, ..., 7} = [−3,−2,−1, 0, 1, 2, 3, 4]∆ν , (D.20)

where ∆ν = 1/L = 0.01 m−1. Here braces {...} denote a set of frequencies labeled by
u values, and brackets [...] denote an array of frequency values as shown. Note that the
sampled frequencies are symmetric about ν = 0, except for one “extra” point at index
u = N − 1 or frequency (N/2)∆ν. This value is the Nyquist frequency (which in IDL is
stored as the last element of the frequency array in math order). Sampling the spectrum at
exactly this pattern of frequencies guarantees that the spectral amplitudes generated from
them are Hermitian, which in turn guarantees that the generated sea surface is real. The
red dots in Panel (c) of the figure show the 8 surface elevations generated for a particular
sequence of random numbers. The values are at xr = 0 to L − ∆x for r = 0 to N − 1.
Fourier-generated surfaces are inherently periodic, so that z(L) = z(0).

Now take the inverse DFT as in Eq. (D.18) for the discrete spectrum given by the
green dots in Panel (b). The result is the autocovariance values shown by the green dots
in Panel (d). It is important to note that these N = 8 lag values follow the same pattern
(in math order) as the frequencies:

{`r, r = 0, 1, ..., 7} = [−3,−2,−1, 0, 1, 2, 3, 4]∆x , (D.21)

where now ∆x = L/N = 12.5 m. The lags are symmetric about ` = 0, except for one
“extra” point at (N/2)∆x. This is analogous the one extra value in the frequency spectrum
at the Nyquist frequency. Taking the forward DFT of these 8 autocovariance values as in
Eqs. (D.10) and (D.11) gives the green points plotted in Panel (e). These values are of
course exactly the 8 points of the original spectrum, as shown by the green dots in Panel
(b). This is just a check on the correct implementation of the “round trip” calculation of
inverse and forward Fourier transforms.

Now suppose that we wish to compute the autocovariance of the surface elevations, and
from that obtain an estimate of the variance spectrum via the Wiener-Khinchin theorem.
This provides a more stringent test of the calculations because of the intermediate sea
surface in between the variance spectrum and the autocovariance. The crucial observation
is that when calling the IDL autocovariance routine A CORRLELATE, that routine must
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Figure D.6: Illustration of sampling strategy for N = 8 sample points.

be given an array of the requested lag indices (lags in units of ∆x) as seen in Eq. (D.21).
Thus for an array of surfaces,

zsurf = [z(r = 0), z(r = 1), ..., z(r = 7)] , (D.22)
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an array of lags

lagindex = [−3,−2,−1, 0, 1, 2, 3, 4] , (D.23)

must be defined. The call to the IDL routine is then

Czz = A CORRLELATE(zsurf, lagindex, /COVARIANCE) . (D.24)

The IDL routine then returns an array of autocovariances at the lags shown in Eq. (D.21).
These values are shown by the red dots in Fig. D.6(d). This Czz array returned by
A CORRLELATE has the same math order as the lagindex array. This array must next
be shifted into the FFT order via the IDL shift function:

CzzFFT = SHIFT(Czz,−N/2 + 1) . (D.25)

This array can now be given to the IDL FFT routine:

S2s = FFT(CzzFFT) . (D.26)

The resulting S2s array is a complex 8-element array. The real part of S2s is S2s(u), with
the frequencies in FFT order. The imaginary part is zero (to within a small roundoff error;
values are typically less than 10−10). This array is shifted back to math order and divided
by ∆ν to get the array plotted as the red dots in Panel (e) of the figure:

S2splot = REAL PART(SHIFT(S2s, N/2− 1))/∆ν . (D.27)

It is always informative to take an “information count” of such operations. We started
with a two-sided spectrum of 8 values. It is true that in the present time-independent
simulations S2s(−ν) = S2s(+ν) (except for the 0 and Nyquist frequencies, which are always
special cases). However, this symmetry need not hold in general (and indeed is not the
case when generating waves that propagate downwind, as explained previously). Thus
these spectrum values represent 8 independent “pieces” of information in the form of 8 real
numbers.

The 8 elevations of the sea surface are likewise 8 independent pieces of information.

Finally, the 8 covariances also comprise 8 pieces of information. Similarly to the variance
spectrum, there is symmetry about the 0 lag, except for the value at the largest positive lag.
However, again, the fact that Czz(−`r) = Czz(+`r) represents two pieces of information:
the value of Czz(+`r) and the fact that Czz(−`r) has the same value.

Thus the sampled variance spectrum S2s(u), the generated surface z(r), and the surface
autocovariance Czz(r) all contain the same amount of information, namely 8 real numbers.
The various Fourier transforms and autocorrelation function show how to convert the
information from one form to another.

D.4.1 Idle Speculations

It is certainly possible to sample in different ways. For example, surface correlations can
be computed for all lags from −L + ∆x to +L − ∆x, which gives 2N − 1 total Czz(`r)
values. You can then take the FFT of that covariance and get a spectrum with 2N − 1
values. However, I can guarantee you from two weeks of misery that the spectrum so
obtained does not agree with the original S2s(ν) spectrum. The N − 1 extra points added
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by taking a greater range of correlations are in some way not independent of or consistent
with the N independent pieces of information tallied above. That is to say, the sea surface
contains only N pieces of information, and you cannot create more information simply by
computing the autocovariance at more lag values. I vaguely remember reading somewhere
that you should not compute autocovariances for lags greater than one-half of the data
range. Note that the lag indices used above run from values of (−N/2+1)∆x to (N/2)∆x,
which indeed correspond to the −L/2 + ∆x to +L/2 data range. I suspect, but have never
seen stated, that there is something going on here that is analogous to sampling at greater
than the Nyquist frequency—You can do it, but it messes up the results in ways that are
not immediately obvious.

Another possible way to compute the autocovariance for a given sea surface is to com-
pute Czz(`r) only for 0 and positive lags out to a maximum possible lag of L−∆x. This
would again give N independent numbers. Autocovariances are real and even functions
of the lag (symmetric about ` = 0), which means that their Fourier transforms are also
real and even. Since eiθ = cos θ + i sin θ, a Fourier transform can be written as the sum
of a cosine transform plus i times a sine transform: F{·} = C{·}+ iS{·}. Here the cosine
transform C is defined as in Eq. (A.1) except that e−i2πνx is replaced by cos(2πνx); the
sine transfrom S is defined in the same way but with sin(2πνx) replacing e−i2πνx. For
an even function, the sine components in the Fourier transform will all be zero. Thus it
seems that Eq. (D.5) could be written as C{Czz(`)} = S2s(ν). An example of this was
seen above in the analytical computation of the Horoshenkov variance spectrum. How-
ever, there are four different algorithms for implementing the discrete cosine transform
(DCT), which differ by how the discrete, finite-N sequence of points is assumed to be
extended outside the domain for which Czz(`r) is known. It seems that the present case
of Czz(`r), which is symmetric about `r = 0, corresponds to the “Type I” DCT discussed
at https://en.wikipedia.org/wiki/Discrete cosine transform or the “y1” extension seen in
Fig. 2(a) of Makhoul (1980). The four different formulations of the DCT can be computed
in four different ways by use of FFTs. Thus the use of a DCT in Eq. (D.5) opens a new
can of worms. In any case, there is little or no penalty to be paid for sticking with a
Fourier transform evaluated by an FFT routine in order to evaluate the DFTs as needed
here. As a matter of practical necessity, the internal consistency of the spectra, surfaces,
and autocovariances seen in the preceding figures (and to be seen below) indicate that the
sampling scheme described above is correct, even it there may be equivalent ones.

D.4.2 Lessons Learned

The preceding simulations illustrated the Wiener-Khinchin theorem starting with a vari-
ance spectrum S1s(ν) (the Pierson-Moskowitz spectrum) and arriving at an autocovariance
Czz(`) in two ways. The first way was to construct the corresponding two-sided spectrum
S2s(ν) and then take the inverse Fourier transform to obtain the theoretical, noise-free
Czz(`) via the Wiener-Khinchin theorem. The second way was to use S2s(ν) to generate
a large number of random sea surfaces. The autocovariance of each random surface was
computed by Eq. (D.3), and then the ensemble-average autocovariance was computed as
the average of the individual autocovariances.

It is important to note that the size L of the spatial region and the number of sample
points N must be chosen with care. As a rule, L must be large enough to cover several
wavelengths of the longest wave that contains a significant amount of the total variance.

https://en.wikipedia.org/wiki/Discrete_cosine_transform
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N must be large enough that the sampled points on the variance spectrum then reach far
enough into the high-frequency end of the spectrum to cover the entire part of the spectrum
that contributes a significant amount to the total variance. To see the effects of inadequate
sampling, suppose we are concerned only with the short gravity and capillary waves, which
are optically the most important because they have the highest slopes. If we are interested
only in waves of wavelength ∼ 1 m down to ∼ 1 cm, it might then seem reasonable to let
L = 10 m and N = 1024, which give ∆x ≈ 1 cm. The shortest resolvable wavelength is
then 2∆x ≈ 2 cm. Figure D.7 shows an example surface and other quantities for this case.

However, now ∆ν = 1/L = 0.1 m−1 and the spectrum is sampled only at widely spaced
points (the green dots in Fig. D.7(b)) that largely miss the peak of the variance spectrum.
Consequently, the generated surface has too little variance compared to the real sea surface
described by this spectrum. Also, the sample autocovariance function, shown by the red
curve in Fig. D.7(d), computes the autocovariances only for lags up to L/2 = 5 m. This
lag range does not capture the full autocovariance features of the real surface, for which
the autocovariance is non-zero out to lags of ∼ 40 m, as shown by the green curve in Panel
(d). The spectrum estimated from the sample autocovariance (the red curve in Panel (e))
does reproduce the sampled spectrum (the green dots in Panel (b)), but this spectrum is
not representative of the real sea surface.

Picking L = 100 m, as in the previous simulations, seems adequate for a wind speed
of 5 m s−1. This can be seen from the leftmost red point in Panel (a) of the previous
plots, which is to the left of the spectrum maximum. However, N = 1024 then gives
∆ν = 0.01m−1, and the last sampled point corresponds to a shortest resolvable wavelength
of 2∆x ≈ 20 cm. If that is not adequate resolution for the problem at hand, there are
two options. One option is to increase N , which costs more computer time to evaluate the
FFTs. Increasing N by a factor of 8 to N = 8192 then gives 2∆x ≈ 2.4cm, which might be
adequate for the problem at hand. The time for an FFT is proportional to N log2N , so that
increase in N comes at a factor-of-ten increase in run time, which might be prohibitive
if many surfaces must be generated. The other option is to account for the unsampled
variance in some other way. One technique for doing that is to adjust the spectrum to
account for the missing variance while keeping N relatively small. One technique for doing
this is described in Section C.6 and in Mobley (2015).

These results can be summarized as follows:

• The size of the spatial domain, L, must be large enough to cover at least several
wavelengths of the wave of maximum variance. The value of L sets the fundamental
frequency ν1 = 1/L, which equals the frequency interval ∆ν.

• For the given fundamental frequency ν1, the number of spatial samples, N , must
be large enough that the highest (Nyquist) frequency, νN/2 = (N/2)∆ν covers the
domain of the variance spectrum for which the variance is non-negligible. This
highest sampled frequency must also cover the highest frequency (shortest wave-
length) needed for the problem at hand. The minimum resolvable wavelength is
2∆x = 2L/N .

Of course, the need for large L and large N comes as the cost of increased computer
time. Experimentation is necessary to determine what values are required for a particular
physical situation.
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Figure D.7: Example simulation with inadequate sampling of the variance spectrum.



D.5. TURBULENCE-GENERATED WATER SURFACES 721

D.5 Turbulence-Generated Water Surfaces

This section illustrates the generation of random water surfaces beginning with the ana-
lytical autocovariance function of Horoshenkov et al. (2013),

Czz(`) = Czz(0) exp

(
− `2

2σ2
w

)
cos

(
2π

Lo
`

)
. (D.28)

This particular autocovariance has an analytical spectrum,

S2s(ν) =

√
π

2
σwCzz(0)

{
exp

[
−1

2
(2πσw)2(ν + 1/Lo)2

]
+ exp

[
−1

2
(2πσw)2(ν − 1/Lo)2

]}
,

(D.29)
which was computed in Section D.2.1. Thus, for surface generation, the two-sided spectrum
of Eq. (D.29) simply replaces the two-sided Pierson-Moskowitz spectrum used in the pre-
vious section, and the surface-generation calculations proceed as described previously. The
autocovariance function is then not needed. However, if only the autocovariance is known
or measured, then the needed variance spectrum must be obtained via the Wiener-Khinchin
theorem. In the present study, knowing both the autocovariance and the spectral density
as analytical functions provides a powerful check on the discrete numerical calculations of
the same quantities.

The application of the above results is straightforward. If only the autocorrelation,
rather than the autocovariance, is given, then a separate value of the surface elevation
variance must be known. For the Horoshenkov study, a typical value of the surface variance
is Czz(0) = 2.5 · 10−7 m2. (This is extremely small by oceanographic standards, but the
surface waves in the Horoshenkov laboratory experiment had amplitudes of order 1 mm.)
The previously cited parameter values of σw = 0.22m and Lo = 0.17m are used here. Since
the characteristic spatial scales of σw and Lo are of order 0.2 m, a spatial region of length
L = 4 m should be adequate to capture the spatial features of these surfaces. An N value
of 1024 then gives the smallest resolvable wavelength as 2∆x ≈ 0.8 cm, which is the scale
of capillary waves. (Capillary waves have wavelengths in the range of a few millimeters to
2 cm.)

Figure D.8 shows an example simulation based on the Horoshenkov variance spectrum
(D.29). The layout is the same as for the Pierson-Moskowitz figures in Section B.3.1. Panel
(d) of the figure contains three autocovariance plots: The green curve is the inverse DFT
of the sampled variance spectrum, which is shown in green in Panel (b). The red curve is
the ensemble average autocovariance of 1000 water surface simulations. The purple curve
is the theoretical autocovariance of Eq. (D.28). These three curves are indistinguishable
at the scale of this plot. This nearly perfect agreement between autocovariance derived in
three different ways indicates that the various numerical calculations are almost without
doubt being done correctly.

The red curve in Panel (e) of the plot shows the variance spectrum derived via the
Wiener-Khinchin theorem as the DFT of the ensemble-average autocovariance (the red
curve in Panel (d)). Again, this curve is almost indistinguishable from the theoretical
autocovarinace, which is shown in green. Again, this agreement indicates that the DFTs
are being computed correctly.
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Figure D.8: Example of a turbulence-generated water surface based on the autocovariance
function of Eq. (D.13). Compare the qualitative appearance of panel (c) with the sea
surface shown in Fig. D.2.
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D.5.1 Two-dimensional Water Surfaces

The IDL codes used in previous sections for generation of two-dimensional, time-independent
water surfaces are formulated using a one-sided, two-dimensional elevation variance spec-
trum Ψ(kx, ky) of the form (recall Eq. B.27)

Ψ(kx, ky) =
1

k
S1s(k)Φ(k, ϕ) . (D.30)

Here S1s(k) is a one-sided omnidirectional spectrum and Φ(k, ϕ) is a nondimensional
spreading function. To generate a 2-D, time-independent surface using the Horoshenkov
model, the two-sided omnidirectional spectrum of Eq. (D.17) is multiplied by 2 to obtain a
one-sided spectrum, which the IDL code evaluates only for the non-negative kx values, i.e.
for −π/2 ≤ ϕ ≤ π/2. The code then divides the result by 2 to get a two-sided spectrum
and evaluates the −kx half plane of values by symmetry. Thus it is easy to replace an
omnidirectional oceanographic S1s(k) spectrum with that of Horoshenkov. There remains
only the issue of what to use for a spreading function. There is no information about the
spreading functions of turbulence-generated waves in the Horoshenkov et al. paper. There
is no doubt some flow-induced difference in the waves in the “down-river” vs “cross-river”
directions, just as there is in the “down-wind” vs “cross-wind” directions for wind-generated
waves. However, pending further information on that difference, it is probably reasonable
to use a frequency-independent, isotropic spreading function, Φ(ν, ϕ) = 1

2π . With that
assumption, two-dimensional surfaces can be generated.

Figure D.9 shows an example two-dimensional, turbulence-generated surface created
with the σw = 0.22 m, Lo = 0.17 m and Czz(0) = 2.5 · 10−7 m2 values used for Fig. D.8.
This particular 2-D surface realization has an elevation variance of 2.48 · 10−7 m2, which
is close to the value of Czz(0) value used as input to the Horoshenkov spectrum. It is also
noted that along any slice through the surface, there are about two dozen “bumps” in 4 m,
just as seen in the 1-D surface realization of Fig. D.8. Figure D.10 shows the slice through
the 2-D surface at y = 2. This surface is qualitatively like that of the middle panel of Fig.
D.8. These results indicate that the 2-D calculations are correct.

The visual appearance of the Horoshenkov surface is strikingly different from the wind-
generated sea surface seen in Fig. D.11, which is for a 5 m s−1 wind speed. In these plots,
the surfaces have a factor-of-8 difference in the scaling of the surface elevation relative
to the horizontal: 0.02 m vertical to 4 m horizontal = 0.005 for the Horoshenkov surface
compared 4 m to 100 m = 0.04 for the wind-blown surface. This is purely for the visual
appearance of the 3-D perspective plots. The Horoshenkov surface is actually quite smooth,
with an average wave facet slope of only about 0.6 deg. The wind-blown surface has an
average slope angle of about 3.7 deg in the along-wind direction and 2.9 deg in the cross-
wind direction. (Keep in mind that for this simulation ∆x = 100/1024, so the smallest
resolvable wave has a wavelength of about 20 cm. Thus the smallest waves, which can
have large slopes, are not resolved. An actual sea surface will therefore have larger average
slopes.) Thus the Horoshenkov surface is smoother than the wind-blown surface, which
suggests that turbulence-generated water surfaces may have significantly different optical
reflectances than wind-generated surfaces. That hypothesis could be tested by ray tracing
calculations based on surfaces like those of Figs. D.9 and D.11.
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Figure D.9: A 2-D turbulence-generated surface. White is large positive surface elevations
(wave crests) and dark blue is large negative values (wave troughs).

Figure D.10: A slice through the surface of Fig. D.9 at y = 2.
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Figure D.11: A wind-generated surface for a wind speed of 5 m s−1. Compare with Fig.
D.9.
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APPENDIX E

Monte Carlo Simulation

This book does not in general discuss solution methods for the RTE. However, the single-
scattering approximation (SSA; Section 10.2) and the quasi-single-scattering approxima-
tion (QSSA; Section 10.3) are often referenced in the oceanographic and remote-sensing
literature and were therefore included in the radiative transfer chapter. Monte Carlo so-
lution techniques are frequently used in optical oceanography (and in many other fields)
and therefore also warrant discussion. As an RTE solution technique, Monte Carlo tech-
niques also could be included in the radiative transfer chapter. However, because of their
importance and the amount of material to be discussed, Monte Carlo techniques deserve a
chapter unto themselves.

As used to solve the RTE, Monte Carlo techniques refer to algorithms that use proba-
bility theory and random numbers to simulate the fates of numerous light rays propagating
through a medium. Various averages over ensembles of large numbers of simulated ray tra-
jectories give statistical estimates of radiances, irradiances, and other quantities of interest.

Monte Carlo techniques were developed in the 1940s for studies of neutron transport
as needed for the design of nuclear weapons (Metropolis and Ulam, 1949; Eckhardt, 1987).
The name Monte Carlo was at first a code name for this classified research. The name
was well chosen because probability and statistics lie at the heart of both the simulation
techniques and the gambling games played at the legendary Monte Carlo Casino in Monaco.
Monte Carlo techniques are now highly developed and are used to solve many types of
problems in physical and biological sciences; finance, economics, and business; engineering;
computer graphics for movie production; and even in pure mathematics.

The essential feature of Monte Carlo simulation is that the known proba-
bility of occurrence of each separate event in a sequence of events is used to
estimate the probability of the occurrence of the entire sequence. In the ray-
tracing setting, the known probabilities that a light ray will travel a certain distance, be
scattered through a certain angle, reflect off on a surface in a certain direction, etc., are
used to estimate the probability that a ray emitted from a source at one location will travel
through the medium and eventually be recorded by a detector at a different location.

727
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The strengths of Monte Carlo techniques are that

• They are conceptually simple. The methods are based on a straightforward
mimicry of nature, which in itself endows them with a certain elegance.

• They are very general. Monte Carlo simulations can be used to solve problems for
any geometry (e.g., 3-D volumes with imbedded objects), incident lighting, scattering
phase functions, etc. It is relatively easy to include polarization and time dependence.

• They are instructive. The solution algorithms highlight the fundamental processes
of absorption and scattering, and they make clear the connections between the ray-
level and the energy-level formulations of radiative transfer theory.

• They are simple to program. The resulting computer code can be relatively
simple, and the tracing of rays is well suited to parallel processing.

The weaknesses of Monte Carlo techniques are that

• They provide no insight into the underlying mathematical structure of ra-
diative transfer theory. The simulations simply accumulate the results of tracing
large numbers of rays, each of which is independent of the others.

• They can be computationally very inefficient. Monte Carlo simulation is in-
herently a “brute force” technique. If care is not taken, much of the computational
time can be expended tracing rays that never contribute to the solution because they
never intercept a simulated detector.

• They are not well suited for some types of problems. For example, compu-
tations of radiance at large optical depths can require unacceptably large amounts
of computer time because the number of solar rays penetrating the ocean decreases
exponentially with the optical depth. Likewise, the simulation of a point source and a
point (or very small) detector is difficult. Monte Carlo techniques are based on track-
ing individual rays in the geometric optics limit of physical optics and thus cannot
address wave phenomena such as diffraction.

This appendix first discusses probability distributions and how they are sampled in
Monte Carlo simulations. Subsequent sections discuss how ray tracks are simulated and
how the statistical errors inherent in the computed results can be estimated. There are
computational tricks for speeding up calculations and improving the accuracy of the sta-
tistical estimates. Two of the most important of these tricks—importance sampling and
backward Monte Carlo ray tracing—are discussed in some detail.

The next appendix presents the mathematical details needed to carry out the ray tracing
described in the present appendix.

E.1 Probability Functions

As a light ray travels through a medium, the distance it goes between interactions with the
medium, whether it will be absorbed or scattered in a given interaction, the new direction
it will travel after a scattering event, etc. are all random variables. In mathematics it is
customary to let a capital letter, e.g. X, denote a random variable (such as the distance
a ray travels) and to let a lower case letter, x in this case, denote a particular value of X,
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e.g. x = 2.2 m if X is distance. Let X be any such random variable that is defined over
a range of values x1 to x2. If X is distance traveled, x1 = 0 and x2 = ∞; if X is a polar
scattering angle, x1 = 0 and x2 = π or 180 deg, and so on.

The probability density function (PDF) for X, denoted pX(x), is a non-negative function
such that pX(x)dx is the probability (a number between 0 and 1) thatX has a value between
x and x+ dx. A PDF must satisfy the normalization∫ x2

x1

pX(x)dx = 1 . (E.1)

That is, the probability is 1 that X will have some value in its allowed domain. The
cumulative distribution function (CDF) is a function PX(x) giving the probability that
the random variable X will have a numerical value less than or equal to x. The CDF is
obtained from the corresponding PDF via

CDF (x) = PX(x) =

∫ x

x1

pX(x′)dx′ .

Note that a PDF has units of 1/{units of x} and can have a magnitude greater than 1 for
some values of x, whereas a CDF is nondimensional and increases monotonically from 0 at
x = x1 to 1 at x = x2.

The mean or average value of X is given by

µX =

∫ x2

x1

x pX(x)dx ,

and the variance of X is given by

σ2
X =

∫ x2

x1

(x− µX)2 pX(x)dx =

∫ x2

x1

x2 pX(x)dx− µ2
X .

Thus the variance is the mean of the square minus the square of the mean.

The PDF for a random variable that can have values only between 0 and 1 is funda-
mental to Monte Carlo simulation. Let u be the value of a random variable drawn from
the unit interval between 0 and 1 such that u is equally likely to have any value 0 ≤ u ≤ 1
on the interval from 0 to 1. The PDF for u is

pU(u) =

1 if 0 ≤ u ≤ 1

0 if u < 0 or u > 1 .

(E.2)

The PDF pU is said to have a uniform 0 to 1 distribution, denoted by pU ∼ U [0, 1].

We wish to use a randomly drawn value of U to determine a value for a random variable
X. This is done by regarding going from U to X as a change of variables. Then the
probability that U lies between u and u + du is the same as the probability that X lies
between x and x+ dx. Thus ∫ u

0
pU(u′)du′ =

∫ x

x1

pX(x′)dx′
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Because pU(u) is known from Eq. (E.2), the left-hand integral can be evaluated to obtain

u =

∫ x

x1

pX(x′)dx′ = PX(x) = CDF (x) (E.3)

The fundamental principle of Monte Carlo simulation states that the equa-
tion u = PX(x) uniquely determines x in such a manner that x lies in the
interval x to x+dx with probability pX(x)dx. That is, drawing a value u from a U [0, 1]
distribution and then solving u = PX(x) for x gives a randomly determined value of x that
obeys the PDF for X.

The next sections illustrate how this principle is applied for specific examples of deter-
mining ray path lengths and scattering angles.

E.2 Determining Ray Path Lengths

Recall from the derivation of the RTE that radiance in a particular direction (θ, φ) decays
due to absorption and scattering out of the beam according to

dL(r, θ, φ)

dr
= −c(r)L(r, θ, φ) ,

which integrates to give

L(r, θ, φ) = L(0, θ, φ)e−
∫ r
0 c(r

′)dr′ ,

where c(r) is the beam attenuation coefficient and r is the distance from some starting
point. In terms of the optical path length τ =

∫ r
0 c(r

′)dr′ this is

L(τ, θ, φ) = L(0, θ, φ)e−τ .

This experimentally established exponential decay of radiance can be explained in terms
of the fate of individual rays if the probability of any particular ray being absorbed or
scattered out of the incident direction between τ and τ + dτ is

pT (τ)dτ = e−τdτ

Note that this pT (τ) satisfies the normalization condition (E.1) with x1 = 0 and x2 = ∞.
The corresponding CDF is PT (τ) = 1− e−τ . Equation (E.3) now takes the form

u = PT (τ) = 1− e−τ .

Solving for τ gives

τ = − ln(1− u) .

Because 1− u is also uniformly distributed on [0, 1], we can just as well use

τ = − ln(u)

to determine τ . Note that since u ≤ 1, τ ≥ 0. Optical distances randomly chosen in this
manner, when applied to many rays, are consistent with the exponential decay of radiance
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with distance traveled. If the water is homogeneous, so that c(r) does not depend on r,
then τ = c r and the geometric distance a ray travels is given by

r = −1

c
ln(u) . (E.4)

Note that the average distance a ray travels is given by

µT =

∫ ∞
0

τe−τdτ = 1

or, for homogeneous water,

µR =
1

c
.

The average distance a ray travels between an absorption or scattering interaction with the
water is called the mean free path between interactions. Likewise, the standard deviation
σT , which is the square root of the variance σ2

T , of the optical distance traveled is also 1,
or σR = 1/c. Thus rays travel on average one optical path length, or 1/c meters, but with
a large spread of values about that distance.

E.3 Determining Scattering Angles

Scattering is an inherently three-dimensional process and must be specified by both polar
(ψ) and azimuthal (α) scattering angles. The scattering phase function β̃(ψ′, α′ → ψ, α)
can be interpreted as a PDF for scattering from an incident direction (ψ′, α′) to a final
direction (ψ, α), per unit of solid angle. If we pick a spherical coordinate system centered
on the incident direction (ψ′, α′) and recall the expression for an element of solid angle in
spherical coordinates, then we can write

β̃(ψ′, α′ → ψ, α) dΩ(ψ, α) = β̃(ψ, α) sinψ dψ dα .

Ocean water is usually well described as isotropic medium, which means that there
are no optically preferred directions. (This is not the case, for example, in a cirrus cloud
with non-randomly oriented ice crystals.) In that case, the polar and azimuthal scattering
angles are independent, and we can write

β̃(ψ, α) sinψ dψ dα = pΨ(ψ) dψ pA(α) dα

For an unpolarized beam, the azimuthal angle is equally likely to have any value from 0
to 360 deg, or 0 to 2π radians. Thus the PDF for azimuthal scattering is pA(α) = 1/(2π),
the CDF is PS(α) = α/(2π), and α is determined by

α = 2πu . (E.5)

Using this pX(α) in the previous equation allows us to identify the PDF for the polar
angle as

pΨ(ψ) = 2πβ̃(ψ) sinψ

Recall from the discussion of the Volume Scattering Function in Section 3.1 that phase
functions satisfy the normalization

2π

∫ π

0
β̃(ψ) sinψ dψ = 1 ,
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so this function pΨ(ψ) is indeed a PDF. Therefore, to determine the polar scattering angle,
we draw a U [0, 1] random number u as always and solve

u = 2π

∫ ψ

0
β̃(ψ′) sinψ′ dψ′ (E.6)

for ψ.

In general, Eq. (E.6) must be solved numerically because of the complicated shape
of most phase functions, or when the phase function is defined by tabulated data at a
finite number of scattering angles and is fit with a spline (or other) function to generate
a continuous function of scattering angle. However, a few commonly used phase functions
allow this equation to be solved analytically. The simplest case, isotropic scattering, is
instructive.

Isotropic Scattering. The phase function for isotropic scattering is β̃(ψ) = 1
4π .

Substituting this into Eq. (E.6) leads to

ψ = cos−1(1− 2u) (E.7)

for the determination of the scattering angle. This result may look peculiar until it is
remembered that isotropic scattering means that scattering is equally likely into
any element of solid angle, not equally likely at every scattering angle ψ. Figure
E.1 illustrates this important point. Scattering from a collimated beam is simulated two
different ways. The scattering events occur at the center of a sphere, and the points plotted
on the surface of the sphere show the scattering direction. The arrow at the “north pole”
represents the direction of the unscattered beam and a scattering angle of 0. The blue
lines are lines of constant scattering angle ψ, with the thick line at the “equator” being
ψ = 90 deg. In the left panel, the polar scattering angle ψ was drawn from a U [0, 180]
distribution, i.e., any value of ψ between 0 and 180 deg was equally likely. The right panel
drew ψ from the cos−1(1− 2u) distribution. In both simulations the azimuthal scattering
angle α was drawn from a U [0, 360] distribution. It is visually clear from the left panel
that the uniform distribution of ψ values gives too many points near the north pole of the
figure, i.e., too many points with scattering angles near 0. The right panel shows an even
distribution of points per unit area of the surface of the sphere, i.e., per unit solid angle in
any direction.

The widely used Fournier-Forand phase function, Eq. (6.15) described in Section 6.7,
is

β̃FF(ψ) =
1

4π(1− δ)2δν

[
ν (1− δ)− (1− δν) + [δ(1− δν)− ν(1− δ)] sin−2

(
ψ

2

)]
+

1− δν180

16π(δ180 − 1)δν180

(3 cos2 ψ − 1) ,

where

ν =
3− µ

2
and δ =

4

3(n− 1)2
sin2

(
ψ

2

)
,

Here n is the real index of refraction of the particles, µ is the slope parameter of the
hyperbolic distribution, and δ180 is δ evaluated at ψ = 180 deg. This phase function has
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Figure E.1: Scattering directions for a collimated beam. The left panel is for a uniform
distribution of polar scattering angles ψ. The right panel is for an isotropic distributions
of scattering directions with ψ determined by Eq. (E.7).

an analytic CDF (Fournier and Jonasz, 1999)

PFF
Ψ (ψ) =

1

(1− δ)δν
[
(1− δν+1)− (1− δν) sin2(ψ/2)

]
+

1

8

1− δν180

(δ180 − 1)δν180

cosψ sin2 ψ .

(E.8)
However, solving u = PFF

Ψ (ψ) for ψ (even if possible) would give a formula so complicated
that it is numerically more efficient to use Eq. (E.6) for PFF

Ψ (ψ) to build up a table of
ψ versus PFF

Ψ (ψ) values for closely spaced values of ψ and the given n and µ parameters,
and then to interpolate within this table to obtain values of ψ as u values are drawn in the
course of a simulation. This is illustrated in Fig. E.2, which shows a Fourier-Forand CDF
for values of n and µ that give a best fit to the Petzold average particle phase function
phase function of Section 9.5.2 . The blue arrows show how drawing a value of u = 0.7 leads
to a scattering angle of about 10 deg. When working with tabulated data for highly peaked
phase functions, it is usually adequate to use linear interpolation between the tabulated
values.

Table E.3 displays various phase functions and the formulas obtained from solving
u = PΨ(ψ) used to determine the corresponding scattering angles.

Regarding the ψ formula for the cosine phase function, because sin2 ψ can be written as
1− cos2 ψ, the equation for ψ can also be written as ψ = cos−1(

√
1− u) or ψ = cos−1(

√
u)

after noting that 1− u has the same statistical distribution as u. Ray by ray the ψ values
will be different for the same value of u, but the statistical distribution of ψ values resulting
from a large number of emitted rays will be the same, which is what matters in Monte Carlo
simulations. In Section F.6, this same distribution of angles will be found for reflectance
by a Lambertian surface.
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Figure E.2: A Fournier-Forand cumulative distribution function computed using Eq. (E.8).
The horizontal blue arrow shows a value u = 0.7, which by Eq. (E.6) leads to a scattering
angle of ψ ≈ 10 deg, as shown by the downward blue arrow.

Name Phase Function β̃(ψ) ψ formula

isotropic 1
4π ψ = cos−1(1− 2u)

Henyey-
Greenstein

1
4π

1−g2

(1+g2−2g cosψ)3/2

ψ = cos−1

[
1+g2

2g −
1
2g

(
1−g2

1+g−2gu

)2
]

for −1 ≤ g ≤ 1, but g 6= 0

Rayleigh 3
16π (1 + cos2 ψ)

ψ = cos−1
[
(A+B)1/3 + (A−B)1/3

]
where A = 2(1−2u) and B =

√
1 +A2

cosine
1
π cosψ if 0 ≤ ψ ≤ π

2
0 if π

2 < ψ ≤ π ψ = sin−1(
√
u) or ψ = cos−1(

√
u)

arbitrary
any β̃(ψ) that satisfies
2π
∫ π

0 β̃(ψ) sinψ = 1

must solve
u = 2π

∫ ψ
0 β̃(ψ′) sinψ′ dψ′

numerically for ψ

Table E.1: Formulas for randomly choosing scattering angles ψ for commonly used phase
functions β̃(ψ). The PDF associated with β̃(ψ) is always 2πβ̃(ψ) sinψ. u is a U [0, 1]
random number.
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E.4 Ray Tracing Options

The previous sections showed how to determine ray path lengths and scattering angles
using the beam attenuation c, the scattering phase function β̃, and a uniform U [0, 1]
random number generator. This section shows how to combine those two processes to
create random ray paths through an absorbing and scattering medium.

There is more than one way to simulate ray paths, and each will give the same answer.
However, some techniques can be numerically much more efficient than others. Indeed, a
reasonable approach to developing a Monte Carlo algorithm for a particular problem is to

1. first figure out how to numerically simulate a process as it occurs in nature, and

2. then figure out how to simulate another, perhaps artificial, process that will give the
same answer as the “natural” process, but with less computational time.

This section illustrates this two-step development process.

Consider first how rays propagate through a medium. Loosely speaking, a ray travels
until it interacts with a particle, e.g. a molecule of water or chlorophyll. It is then either
absorbed by the particle and disappears, or it is scattered into a new direction and continues
on its way until it interacts with another particle.

Recall the albedo of single scattering, ωo = b/c. If there is no absorption, b = c and
ωo = 1. If there is no scattering, b = 0 and ωo = 0. ωo = b/c thus can be interpreted as the
probability of ray survival in any particular interaction. When a ray encounters a particle,
we can randomly decide if the ray is to be absorbed or scattered as follows:

1. Draw a random number u from a U [0, 1] distribution.

2. Compare u with ωo.

• If u ≤ ωo, then the ray is scattered.

• If u > ωo, then the ray is absorbed.

If the ray is absorbed, tracing stops and a new ray is emitted from the source and tracing
begins anew. If the ray is scattered, two new U [0, 1] random numbers are drawn and used to
determine new polar and azimuthal scattering directions ψ and α as shown in the previous
section. Another random number is used along with c to determine the distance traveled
before another interaction.

Figure E.3 illustrates this process for two rays, which also introduces the geometry to
be used in numerical simulations below. A source emits a collimated beam of rays, which
are then recorded by an annular, ring, or “bullseye” detector some distance away. The red
ray is emitted by the source, undergoes one scattering, and is then absorbed by a particle.
The green ray is emitted, undergoes two scatterings, and is recorded by a detector.

This process mimics what happens in nature. Call this “Type 1” ray tracing (there are
no standard names for ways of tracing rays). Note that all of the computations used
to trace the absorbed ray are wasted because the ray never reached the detector.
Nature can afford to trace innumerable rays and waste some by absorption, but that is not
advisable for most numerical simulations. We therefore seek other ways to trace rays.

The previous section showed that the mean free path or average distance between
interactions with the medium is 1/c. These interactions can result in either absorption or



736 APPENDIX E. MONTE CARLO SIMULATION

Figure E.3: Illustration of Type 1 ray tracing. The red ray is absorbed and the green one
reaches the target.

scattering of the ray, as just described. Rather than tracing one ray at a time as nature
does, consider a source emitting “bundles” of many rays (often called “photon packets”
in the literature). Then view each interaction as having a fraction 1 − ωo of the rays in
the bundle being absorbed, and the remaining fraction ωo being scattered, all in the same
direction. Let the bundle be emitted with an initial weight of w = 1, which can represent
one unit of energy, power, or some number of rays. At each interaction, the current weight
w is multiplied by ωo to account for the loss of energy or number of rays by absorption (that
is, a fraction ωo continues onward). The scattered bundle then carries a reduced weight.
If the ray bundle reaches the target, the current weight w is tallied. Another bundle is
then emitted from the source and traced. This tracing process, which we’ll call ”Type 2,”
is illustrated by the green ray track in Fig. E.4. After two scatterings, as illustrated, the
detected ray bundle has weight w = ω2

o.

Figure E.4: Illustration of Type 2 ray tracing in green and Type 3 in red.

A third ray-tracing process can be envisioned. The mean distance traveled between
scattering events is 1/b. We can thus use 1/b and a random number to determine the
distance between scattering interactions, and the initial weight of w = 1 is not changed
at each interaction because all rays in the bundle are viewed as being scattered. Then, if
the ray bundle reaches the target, absorption is treated as a continuous process occurring
along the entire ray path. Assuming homogeneous water, the final weight tallied is then
e(−`a), where ` is the total path length in meters and a is the absorption coefficient. The
red track in Fig. E.4 illustrates this ”Type 3” ray tracing. The red track shows a total
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path length of `1 + `2 + `3, so the final weight is e−[(`1+`2+`3)a].
The two tracks in Fig. E.4 are drawn as though each track were generated by exactly

the same sequence of random numbers. Because 1/b > 1/c, the individual Type 3 ray
paths will be greater than the Type 2 paths. The scattering angles are the same. Thus
these two tracing types clearly lead to different results, ray bundle by ray bundle. However,
numerical simulation of many ray bundles shows all three of these ray tracing types yields
the same distribution of energy at the detector.

To summarize, the three types of ray tracing considered here are

Type 1: Individual rays are tracked, and rays can be absorbed.

Type 2: Ray bundles are tracked, with a bundle weight being multipled by ωo at each
interaction.

Type 3: Ray bundles are tracked, with track lengths determined by the mean free path for
scattering, no weighting at scattering events, and absorption treated as a continuous
process based on total path length.

E.4.1 Numerical Comparison of Tracking Types

To illustrate the results obtained for different ways of tracking rays, a Monte Carlo code
was written to simulate the energy received by an annular target as illustrated in Figs.
E.3 and E.4. For the simulations shown here, the IOPs were defined by a = 0.2 m−1,
b = 0.8 m−1, and a Fournier-Forand phase function with parameter values (n, µ) = (index
of refraction, slope of Junge distribution) chosen to give a good fit to the Petzold average
particle phase function. Thus ωo = 0.8, and optical distance τ is numerically the same
as geometrical distance ` in meters. A run was made with 106 rays being sent from the
source and using Type 1 ray tracing. rays were traced until they were absorbed. Figure
E.5 shows some of the resulting statistics.

The red histogram shows the percent of rays that traveled an optical distance τ1 ≤ τ ≤
τ2 between interactions, for a bin size of τ2 − τ1 = 1. The theoretically expected fraction
of rays traveling an optical distance between τ1 and τ2 between interactions is∫ τ2

τ1

e−τdτ = e−τ1 − e−τ2 (E.9)

The red dots in the figure are the expected values given by this formula. The shortest ray
path length between interactions was τ = 1.192 · 10−7 and the longest was 16.69. The blue
histogram shows the distribution of total distances traveled until the rays were absorbed.
Thus the value for the first bar shows that about 18% of the rays were absorbed after
going a total optical distance between 0 and 1. Note that this distance can represent more
than one interaction, i.e., a ray being scattered one or more times before being absorbed.
Both the red and the blue histograms sum to 100%. As shown on the previous section,
the mean distance traveled between interactions is τ = 1, or 1/c in meters. For this
particular simulation the actual average was τ = 0.9974 (or 0.9974 m for these IOPs). The
small difference is statistical noise resulting from the finite sample size of the numerical
simulation. Likewise, the average distance traveled until the rays are absorbed is 1/a. For
the present case of a = 0.2 m−1 this gives 5 m. The average for this simulation was 4.9949
m. Since c = 1 m−1 for this simulation, another way to view this is that the rays were on
average scattered four times before being absorbed on the fifth interaction.
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Figure E.5: Example distributions of the optical distances between interactions and of the
total distances traveled before absorption for Type 1 ray tracing.

We next compare results for the three different ways of tracking rays. Because oceanic
phase functions scatter much more light at small scattering angles than at large angles, most
rays that are scattered just a few times will hit the detector near its center. To even out
the numbers of rays (or power) detected by each ring, an annular target was defined with a
logarithmic spacing for the radii of the detector rings. A logarithmic spacing is often used in
instruments (e.g., the LISST particle sizer) so that each detector ring receives roughly equal
amounts of power, which reduces the dynamic range needed for the instrument design. The
detector simulated here had Nrings = 10 rings with the smallest ring radius being rmin = 0.1
and the largest being rmax = 10. This detector is placed in a target plane some distance
zT from the source and centered on the optical axis of the source, as shown in Figs. E.3
and E.4. The rays crossing the detector plane at some distance r from the detector center
are tallied in bins as follows:

Bin 0: Unscattered rays that hit the detector at r = 0.

Bin 1: Scattered rays that hit the target plane inside the first detector ring, i.e. at 0 <
r < rmin.

Bins 2, ..., Nrings + 1: rays that hit detector rings 1 to Nrings.

Bin Nrings + 2: rays that hit the detector plane outside the outer ring, i.e. at r > rmax.

Simulations were made with Nemit = 106 rays (for Type 1) or ray bundles (Types 2
and 3) emitted from the collimated source. Figure E.6 shows the distribution of rays or
bundles received anywhere in the detector plane as a function of the number of scatterings,
for the three types of tracing and for target plane distances of zT = 5 and 15. The left
panel shows that for zT = 5 one or two percent of rays (depending on the tracing type)
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reach the target plane without being scattered. Most rays are scattered 3 or 4 times, and
very few rays are scattered more than 10 times. The right panel shows that for zT = 15,
almost no rays reach the target plane unscattered, and most undergo 5 to 25 scatterings,
with a peak around 10 or 15, depending on the way the rays are traced. For Type 1 ray
tracing, almost no rays are scattered more than 30 times. Note that the probability of
surviving 30 scatterings is ω30

o = 0.0012. For tracing Types 2 and 3, which never have ray
bundles absorbed, there are broad tails in the number of scatterings, although for Type 2
a bundle being scattered 40 times has an almost negligible weight of w = ω40

o = 0.00013.

Figure E.6: Distribution of rays reaching the target plane as a function of the number of
scatterings, for the three scattering types and two target plane distances.

The left panel of Fig. E.7 shows the intersection points of the rays reaching a 20 by 20
area of the target plane for the first 104 emitted rays, tracing Type 1, and the target plane
at zT = 5. Note that of the 104 emitted rays, only 2973 reached the target plane (of which
2966 are in the area plotted). This is less than 30% of the rays making a contribution
to the answer of how much power is detected; i.e., 70% of the calculations were wasted.
The ray-intersection dots are color-coded to show the number of times each plotted point
was scattered. The two black circles show off-axis angles of 30◦ and 60◦. Very few rays
were scattered more than about 30◦ off of the optical axis. The right-hand panel shows
the distributions of the rays reaching the target plane by number of scatterings and total
distance traveled. Every ray must of course travel a distance of at least τ = 5 before
reaching the target plane, and most rays were scattered several times.

Figure E.8 shows the same distributions for Type 2 scattering. Note than now 93% of
the emitted ray bundles eventually intersect the target plane. Only 7% of the emitted rays
were wasted. Those rays ended up being scattered into directions away from the target
plane (either by backscattering or by multiple large-angle forward scatterings). Figure E.9
shows the results for Type 3 tracing. The distributions are similar to those for Type 2, but
with over 94% of the rays reaching the target plane.
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Figure E.7: Distribution of rays reaching the target plane at zT = 5 for 104 emitted rays
and Type 1 tracing. The left panel shows the spatial distribution of points where the rays
intersected the target plane. The two black circles are drawn at 30◦ and 60◦ angles off of
the optical axis. The right panel shows the distributions of number of scatterings and total
distance traveled.

Figure E.8: Same as Fig. E.7 but for Type 2 tracing.
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Figure E.9: Same as Fig. E.7 but for Type 3 tracing.

Figures E.10-E.12 show the corresponding results when the target plane is at zT = 15.
Now, for Type 1 tracing, only 179 of 104 emitted rays ever reached the target plane. Over
98% of the ray-tracing calculations were wasted! Note also that there is obvious statistical
noise in the distributions of the right panel, due to the small number of rays used to
computed the statistics. For Types 2 and 3 about 71% and 82%, respectively, of the
emitted rays eventually reach the target plane. The statistical noise is now much smaller
(but still noticeable) because of the larger number of ray bundles.

The total optical distance distributions for Types 2 and 3 show broad tails. In both
cases, fewer than one fourth of the rays made it to the target plane after traveling a total
distance of τ = 15–16. About 30% of the rays underwent 30 or more scatterings and trav-
eled a distance of τ ≥ 30. These broad tails illustrate the phenomenon of pulse stretching
in time-dependent problems. If we think of all Nemit rays being emitted simultaneously,
then the longer distances traveled correspond directly to later arrival times at the target.
Pulse stretching is an important limiting factor in time-dependent applications such as
lidar bathymetry or communications with high-frequency light pulses.
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Figure E.10: Same as Fig. E.7 but for a target plane at zT = 15. The black ring in the
left panel is 30◦ off of the optical axis.

Figure E.11: Same as Fig. E.10 but for Type 2 tracing.



E.4. RAY TRACING OPTIONS 743

Figure E.12: Same as Fig. E.10 but for type 3 tracing.

Figure E.13 shows the distributions of numbers of rays at the target plane and the
corresponding power (or energy) for the three tracing types and the detector at zT = 5.
The left panel shows the distributions as a function of the detector ring radii, and the
right panel is the same information as a function of the bin number defined above. Recall
that the first abscissa point is unscattered rays, the second is scattered rays inside the first
detector ring, and the last plotted point is for rays outside the last detector ring. The
solid-line histogram represents the 10 detector rings for rmin = 0.1 < r < rmax = 10.

Figure E.13: Distributions of number of rays (open circles) and power (histograms) for the
target plane at zT = 5, for the three types of tracing. The left panel shows the distributions
as a function of radius from the optical axis. The right panel displays the same information
as a function of the bin number.
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There are several things to notice in Fig. E.13. First, the distributions of the numbers
of rays (open circles) are different for the three tracing types. For Type 1, the distribution
of the number of rays is the same as the power distribution because the rays all retain their
initial weight of w = 1. Thus power detected is simply the number of rays detected. For
Types 2 and 3, more rays are detected, but each is weighted less to account for absorption
along the way. Finally—and most importantly—the power distributions for these three
tracing types are identical to within a small amount of statistical noise, which is not visible
in these plots.

Figure E.14 shows the power distributions for the detector at zT = 15 but only Nemit =
104 rays emitted. There are obvious differences in the distributions for the three tracing
types. However, if Nemit = 106 rays are traced, as in Fig. E.15 these differences almost
disappear. This indicates that the three ways to trace rays all give identical predictions
of the detected power, to within some amount of statistical noise, which can be reduced by
tracing more rays.

However, the computation time required by the three tracing types can vary greatly.
Recall from Fig. E.7 that about 30% of the rays reached the target plane at zT = 5 for
Type 1 tracing, but that over 90% reached the target plane for Types 2 and 3 (Figs. E.8
and E.9). Thus, if we require a certain number of detected rays to achieve some desired
level of statistical noise, we would have to emit and trace over three times as many rays for
Type 1 tracing (hence three times the computer time) as for Type 2 or 3. For the detector
at zT = 15 and Type 1 tracing, fewer than 2% of the emitted rays reached the target plane
(Fig. E.10), whereas about 80% of the rays reached the target plane for Types 2 and 3
(Figs. E.11 and E.12). Getting the same number of rays on target would thus require
emitting over 40 times as many rays (hence 40 times the computation time) for Type 1 as
for Types 2 or 3.

Figure E.14: Energy distributions for zT = 15 and Nemit = 104, for the three tracing types.
There are obvious differences in the distributions.
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Figure E.15: Energy distributions for zT = 15 and Nemit = 106, for the three tracing types.
The differences seen in Fig. E.14 have almost disappeared.

We have now shown that several ways of tracing rays can be devised and that each gives
the same distribution of power or energy at a detector some distance away from the source.
However, an intelligent choice of the ray tracing algorithm can greatly reduce the needed
computations. Moreover, the computation differences depend on the particular problem,
e.g., on detector distance from the source as shown here (or on the IOPs, not shown here).
However, we can do still more to reduce computation times, which leads us to the topic
of variance reduction techniques, which begins in Section E.6. First, however, we consider
how to estimate the errors in Monte Carlo simulations.

E.5 Error Estimation

This section shows how to estimate the errors in Monte Carlo simulations. General results
from probability theory are illustrated with numerical examples.

To be specific, suppose that we need to estimate the fraction of power emitted by a
light source that will be received by a detector. The answer of course depends on the
water IOPs; the size, orientation, and location of the detector relative to the light source;
the angular distribution of the emitted light; and perhaps on other things like boundary
surfaces that can reflect or absorb light scattered onto the boundary. The numerical results
to be shown below use the source and detector geometry shown in Fig. E.16. The source
emits a collimated bundle of rays toward a detector that is τ = 5 optical path lengths
away and is 0.1 optical path lengths in diameter. The water IOPs have a = 0.2 m−1 and
b = 0.8m−1 so that c = 1m−1 and one meter is one optical path length. The albedo of single
scattering is ωo = 0.8. The scattering phase function is the One-Term Henyey-Greenstein
phase function of Eq. (6.12) with a scattering-angle mean cosine of g = 0.8.

In the simulations, N rays will be emitted from the source, each with an initial weight
of w = 1. Most of those rays will miss the detector, as illustrated by the blue arrows in Fig.
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Figure E.16: Source and detector geometry used for numerical simulations.

E.16. However, some rays will hit the detector, as illustrated by the red arrows, at which
time their current weight will be tallied to the accumulating total weight wd received by
the detector. After all rays have been traced, the the Monte Carlo estimate of the fraction
of emitted power received by the detector is simply fd = wd/N .

If we do only one simulation tracing, say, N = 104 ray bundles, then the resulting
estimate of fd is all we have. In particular, we have no estimate of the statistical error in
the estimated fd.

E.5.1 Probability Theory

To develop a quantitative error estimate for the result of a Monte Carlo simulation, we
begin with a review of some results from basic probability theory. Recalling the notation
introduced on in Section E.1, let pW (w) be the probability density function (PDF) for
random variable W . For concreteness, let W be the ray bundle weight received by the
detector, and lower case w represents a specific value of the weight W , e.g., w = 0.72.
In the present example, pW (w) is the PDF that a ray strikes the detector with a weight
w, 0 ≤ w ≤ 1. A value of w = 1 means that the original ray of weight 1 has lost nothing
to absorption between the source and the detector; a value of w = 0.1 means that the
ray has lost 90% of its initial weight to absorption. Rays that miss the detector do not
contribute to accumulating weight or power received by the detector and do not enter into
the calculations below; they are simply wasted computer time. Note that we have no idea
what mathematical form pW (w) has: it results from a complicated sequence of randomly
determined ray path lengths and scattering angles.

For any continuous PDF pW (w) the expected or mean value of W is defined as

mean(W ) ≡ µ ≡ E{W} =

∫
w pW (w) dw , (E.10)

where E denotes expected value and the integral is over all values for which W is defined.
If the random variable is discrete, the integral is replaced by a sum over all allowed values
of W . Similarly, the variance of W is defined as

var(W ) ≡ σ2 ≡ E{(W − µ)2} =

∫
(w − µ)2 pW (w) dw = E{W 2} − [E{W}]2 .

Note that if c is a constant, then

E{cW} = c E{W} and var(cW ) = c2 var(W ) .
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Greek letters µ and σ2 are used to denote the true or population mean and variance of a
PDF.

Suppose that Nd ray bundles actually reach the detector. The total weight received by
the detector is then given by the sum of these randomly determined weights:

SNd
=

Nd∑
i=1

wd(i) ,

where wd(i) is the weight of ray bundle i when it reached the detector.

Each of the N ray bundles emitted by the source and traced to completion is inde-
pendent of the others. In particular, a different sequence of random numbers is used to
determine the path lengths and scattering angles for each emitted bundle. Moreover, the
underlying PDFs for ray path length and scattering angles (i.e., the IOPs) are the same
for each bundle. The random variables are then said to be independent and identically
distributed (iid), and SNd

is said to be a random sample of size Nd of random variable W .

The linearity of the expectation (i.e., the integral of a sum is the sum of the integrals)
means that for iid random variables such as W ,

E{SNd
} = Nd E{W} = Nd µ and var(SNd

) = Nd var(W ) = Nd σ
2 . (E.11)

In the Monte Carlo simulation, the sample mean, i.e. the estimate of the average
detected weight obtained by from the Nd detected ray bundles is

mNd
≡ 1

Nd
SNd

=
1

Nd

Nd∑
i=1

wd(i) .

Equation (E.11) now gives two extremely important results. First,

E{mNd
} =

1

Nd
E{SNd

} = µ . (E.12)

That is, the expectation of the sample mean mNd
is equal to the true mean µ. The sample

mean is then said to be an unbiased estimator of the true mean of the PDF. Second,

var(mNd
) = var(

1

Nd
SNd

) =
1

N2
d

var(SNd
) =

σ2

Nd
. (E.13)

Thus, the variance of the sample mean goes to zero as Nd →∞, that is, as more and more
ray bundles are detected. In other words, the Monte Carlo estimate of the average
power received by the detector is guaranteed to give a result that can be made
arbitrarily close to the correct result if enough rays are detected. This result is
known as the law of large numbers. Again, you can emit and trace all the rays you want,
but if they don’t hit the detector, they don’t count.

It is often convenient to think in terms of the standard deviation, e.g., when plotting
data and showing the spread of values. The standard deviation of the error in mNd

is

sNd
=
√
var(mNd

) =
σ√
Nd

. (E.14)
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The dependence of the standard deviation of the estimate on 1/
√
Nd is a very

general and important result. However, this “approach to the correct value” is very
slow. If we want to reduce the standard deviation of the error in the estimated average
power received by the detector by a factor of 10, we must detect 100 times as many rays.
That can be computationally very expensive.

It is to be emphasized that result (E.13) that the variance of a sample mean equals the
true variance divided by the sample size holds for any situation for which the individual
samples are independent and identically distributed random variables.

Note, of course, that if we knew the PDF for the received power, pW (w), then we could
simply evaluate Eq. (E.10) to get the desired true mean µ, and no Monte Carlo simulation
would be required.

Finally, it must be remembered that the discussion here assumes that “all else is the
same” when considering the number of detected rays. For example, we emit and trace more
rays without changing the physics of the simulation. The section on importance sampling
presents ways to increase the number of detected rays and thereby reduce the variance, but
with a change in the physics that sometimes may invalidate the simple 1/

√
Nd dependence.

E.5.2 Numerical Examples

Numerical simulations were performed for the geometry and conditions described for Fig.
E.16. For these simulations, tracing type 1 of the previous section was used. That is,
ray bundles were traced until they either hit the target (still with weight w = 1) or
were absorbed. For a given number N of emitted ray bundles, various numbers Nrun of
independent runs were done. That is, N rays were traced and the numberNd of detected ray
bundles and their weights were tallied for each run. The fraction of emitted power received
by the detector was then computed by the total detected weight for the run divided by N .
Then another run was made with everything the same except that a different sequence of
random numbers was used (i.e., each run was started with a different seed for the U [0, 1]
random number generator used to determine path lengths and scattering angles).

The first set of simulations used N = 10, 000 emitted ray bundles for each run, with
Nrun = 10, 100, 1000, and 10,000 runs being made. Figure E.17 shows the distributions
of the sample means mNd

and other information for these four sets of run numbers. The
upper left panel of the figure is for only Nrun = 10 runs, or trials, or simulations. In
this panel, the histogram shows that one run, or 0.1 of the total number of runs, gave an
estimated fraction between 0.0088 and 0.0090 of the emitted power; two runs, or 0.2 of
the total, gave a fraction between 0.0104 and 0.0106, and so on. As the number of runs
increases, the estimates of the fraction of power received range from slightly less than 0.008
to slightly more than 0.014, with most estimates centering somewhere near 0.0108.

As the number of runs increases, something very remarkable happens: the distribution
of the fraction of the emitted power appears to be approaching a Gaussian or normal shape,
even though the underlying PDF pW (w) is certainly not Gaussian. This distribution can
be thought of as the distribution of errors in the estimated mean of the distribution, or
the distribution of E{mNd

− µ}, where µ is the unknown true mean of the distribution
pW (w). This approach to a Gaussian distribution is a consequence of the central limit
theorem. The central limit theorem states that the sum of a large number of independently
distributed random variables with finite means and variances is approximately normally
distributed regardless of what the distribution of the random variable itself may be. This is
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Figure E.17: Estimates of the fraction of detected power for four sets of runs with N = 104

emitted rays in each run.

one of the most profound results in probability theory. Indeed, it explains why so many
natural phenomena tend to have a Gaussian shape. Phenomena as disparate as average
student exam scores, noise in electrical circuits, daily water usage in a city, or the fraction of
people who develop cancer can all result from sums of many individual contributions. Such
sums then tend toward a Gaussian distribution as the number of individual contributions
increases. The theorem was first proved for a specific PDF in 1733, but it was not proven
to hold for all PDFs (having finite means and variances) until the early 1900’s1.

Figure E.18 shows the corresponding results for series of Nrun = 10, 100, 1000, and
10,000 runs being made, but with each run now having N = 100, 000 emitted rays. Now
the spread in the estimated values is much less, from slightly less than 0.010 to about 0.012,
again centering somewhere around 0.0108. Again, we see the approach to a Gaussian shape
as more and more runs are made, but the Gaussian has a narrower width, i.e. less variance
about the mean. The standard deviation of the sample estimates of the mean is usually
called the “standard error of the mean.”

1By the way, in spite of what you see in the tabloid press, there is nothing in probability theory called
“the law of averages.” The central limit theorem, or perhaps the law of large numbers mentioned previously,
is maybe the closest thing to the often invoked but mythical “law of averages.”
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Figure E.18: Estimates of the fraction of detected power for four sets of runs with N = 105

emitted rays in each run.

The lower right panel of Fig. E.17 shows that the sample standard deviation for the
case of 10,000 runs each with 10,000 emitted rays is sNd

= 1.186 · 10−3 and the average
number of detected rays is Nd = 107.9. The corresponding panel of Fig. E.18 shows
sNd

= 3.718 · 10−4 and Nd = 1080.5. The ratio of these sample standard deviations is

sNd
(Nd = 107.9)

sNd
(Nd = 1080.5)

=
1.186 · 10−3

3.718 · 10−4
= 3.19 .

The corresponding ratio of σ√
Nd

values is

σ√
Nd=107.9

σ√
Nd=1080.5

=

√
1080.5

107.5
= 3.16 .

This nicely illustrates the dependence of the sample standard deviation, or the standard
error of the mean, on the square root of the number of ray bundles detected, just as
predicted by Eq. (E.14).
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E.5.3 Error Estimation

In the present example of the fraction of emitted power received by a detector, the central
limit theorem guarantees that the errors in the fraction of received power computed by
many Monte Carlo runs approaches a Gaussian. We can thus use all of the results for
Gaussian, or normal, probability distributions to estimate the errors in the Monte Carlo
results.

It is often desirable to know the probability that the computed sample mean mNd
is

within some specified amount, say 1 standard deviation, of the (unknown) true mean µ.
Conversely, we may want to compute the error range so that the sample mean is within
that error range of the true mean with some specified probability. Such questions can be
answered starting with the statement

Prob{µ− β sNd
≤ mNd

≤ µ+ β sNd
} = 1− α .

This equation states that the probability is 1− α that the sample mean is within a range
β sNd

of the true mean µ; β is a fraction of the sample standard deviation sNd
. In other

words, the probability is 1−α that µ = mNd
±β sNd

. The central limit theorem guarantees
that, if the sample size is large enough, the deviation of the sample mean from the true
mean, mNd

− µ, is approximately normally distributed:

PDF (mNd
− µ) ≈ 1√

2πsNd

exp

{
−(mNd

− µ)2

2s2
Nd

}
. (E.15)

Assuming that we have enough samples to get a good approximation to the normal distri-
bution, the probability that mNd

is greater than µ by an amount β sNd
is then

Prob{mNd
− µ ≥ β sNd

} =
1√

2πsNd

∫ ∞
βsNd

exp

{
− t2

2s2
Nd

}
dt .

Letting y = t/sNd
gives

Prob{mNd
− µ ≥ β sNd

} =
1√
2π

∫ ∞
β

exp

{
−y

2

2

}
dy ≡ Q(β) . (E.16)

The Q(β) integral in the last equation cannot be performed analytically, but it is tabulated
in probability texts, and software packages such as MATLAB and IDL have routines to
compute it. In to also common to find tables and subroutines for

Φ(β) ≡ 1√
2π

∫ β

−∞
exp

{
−y

2

2

}
dy .

Note that Q(β) + Φ(β) = 1.
Let us now apply Eq. (E.16) to various examples. We first compute the probability

that the sample mean is within one standard deviation of the true mean. Letting β = 1,
we compute the probability α/2 that mNd

− µ lies in the “right-hand tail” of the normal
distribution beyond β = 1. This is the area shaded in red in Fig. E.19.

This probability is

Prob{mNd
− µ ≥ sNd

} = Q(1.0) =
α

2
.
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Figure E.19: The Gaussian or normal distribution of Eq. E.15
.

Q(1) ≈ 0.1587, so α = 2Q(β) = 0.3174. The Gaussian distribution is symmetric about the
mean, so Prob{mNd

− µ ≤ −sNd
} that mNd

− µ lies in the left-hand (green-shaded) tail
of the distribution also equals 0.1587. Thus the probability that mNd

− µ does not lie in
either tail of the distribution, i.e. that µ ≤ mNd

± sNd
is 1− α/2− α/2 = 0.6826.

For the simulations of Fig. E.17, the lower right panel shows values of mNd
= 0.0179

and sNd
= 1.186 · 10−3. Thus there is a roughly 68% chance that the true fraction of

received power is within the range 0.01079 ± 1.186 · 10−3. For the corresponding run of
Fig. E.18, which traced ten times as many ray bundles, the corresponding numbers are
0.01081 ± 3.718 · 10−4. Thus, in the last set of simulations, we are 68% certain that the
sample mean is within about ±3.4% of the true mean.

Suppose we need the probability that we are within, say, 5% of the correct value.
For the lower right simulation of Fig. E.18, 0.05 of 0.01081 is about 0.00054. From
0.00054 = β3.178 · 10−4 we get β = 1.454. Q(1.454) = 0.0729 = α/2, so the probability of
being within 5% is 1 − α = 0.854. If being 85% confident that the Monte Carlo estimate
of the mean is within 5% of the true value is adequate for your application, then you are
done. If you need to be 95% confident that you are within 5% of correct, then you need to
continue tracing rays until you get enough rays on the target to reduce the sample variance
to a value small enough to achieve the desired 95% confidence.

As a final example, we might ask how big is the error so that we can say that we are
within that range with 90% certainly. We now set 1− α = 0.9, and solve

Q(β) =
α

2
= 0.05

Again, the inverse of Q(β) is also tabulated. This equation gives β = 1.645. From the
last panel of Fig. E.18 we then get βsNd

= 1.645 · 3.718 · 10−4 = 6.12 · 10−4, so that
µ = 0.01081± 6.12 · 10−4 with 90% confidence.

As a final caveat to this section, keep in mind that the central limit theorem says
that the error becomes Gaussian as the number of samples, Nd in the present examples,
becomes very large. How large is large enough depends on the particular problem and
the user’s accuracy requirement. In the present examples, 10,000 runs each with 10,000 or
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more emitted rays, resulting in 100 or more detected rays for each run, gives distributions
that visually appear close to Gaussian (the lower right panels of the preceding two figures).
There are various ways to quantify how close a data distribution is to a Gaussian, but that
is a topic for somewhere else. Just do a search on “normality tests.”

E.6 Importance Sampling

As we saw on the Error Estimation Section E.5 , the standard error of the mean in a
Monte Carlo estimate depends on 1/

√
N , where N is the number of samples. In the

present discussion, N is the number of rays reaching a detector. In addition, we have seen
that rays that are traced but do not intersect the detector—i.e., do not generate a sample
of the underlying PDF—do not contribute to the answer and are wasted calculations.

The general topic of importance sampling considers ways to generate and trace rays so
that more rays reach the detector, thus increasing N and thereby reducing the statistical
error in the estimated quantity, while simultaneously reducing the number of wasted rays.

E.6.1 Theory of Importance Sampling

Let PDF (x) be the probability distribution function for variable x. The basic idea of
importance sampling is to “over sample” the parts of the PDF that are most “important,”
i.e., those parts of the PDF that send rays in the direction of the detector. Those parts
of the PDF that send rays in directions away from the detector are under sampled. Thus
more rays are sent towards the detector, which increases the number detected and therefore
reduces the variance in the estimated quantity, and fewer are sent in directions that never
reach the detector. However, this process samples the PDF in a biased or incorrect manner
compared to the physical process being studied. To account for the biased sampling of the
PDF, the weight of each ray is adjusted to keep the final answer correct.

Mathematically, importance sampling is described as follows. The mean of any function
f(x) of random variable x is by definition

〈f〉 =

∫
f(x)PDF (x) dx ,

where the integration is over the full range of x (e.g., over 0 to π if x is the polar scattering
angle). This can be rewritten as

〈f〉 =

∫
f(x)

PDF (x)

PDFb(x)
PDFb(x) dx

≡
∫
f(x)w(x)PDFb(x) dx = 〈fw〉b .

PDFb(x) is the biased PDF used to generate random values of x, and w(x) is the weight
given to each biased sample of x. The weight w(x) is just the ratio of the unbiased to the
biased PDFs. Note that the estimate of the mean of f when sampled by the correct, unbiased
PDF is the same as the estimate of the weighted function, fw, when sampled with the biased
PDF. The estimate 〈f〉 = 〈fw〉b is thus unbiased, even though PDFb is biased. Because
the sampling is done using a biased PDF, importance sampling is sometimes called biased
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sampling. However, the estimate of 〈f〉 is still unbiased, even though the sampling uses a
biased PDF. The term importance sampling is therefore preferred in recent literature.

If the biased PDF is chosen well, it will increase the number of detected rays and
thereby reduce the error in the estimate. However, each detected ray will have a smaller
weight, so that the product of more detected rays times a smaller weight for each remains
the same as for a smaller number of higher weighted rays that would be generated by the
original PDF. As we will see in the following numerical examples, this basic idea often
works well. However, in practice, the biasing can sometimes be pushed to extremes and
actually increase the error in the estimate.

E.6.2 Example for an Embedded Point Source

The first numerical example is based on Gordon (1987). This paper provides a good starting
point for examining in detail the advantages and pitfalls of importance sampling.

Gordon was interested in computing the irradiance pattern of upwelling light at the
sea surface generated by an isotropic point source at some depth in the water. Figure
E.20 shows the geometry of his problem. The left panel of the figure shows an isotropic
point source at depth z emitting rays equally in all directions. For an isotropic source,
half of all rays are emitted in downward directions. Few of those rays will be scattered in
directions that eventually reach the sea surface. The same holds true for many rays emitted
in upward, but nearly horizontal directions. Such rays are illustrated by the red arrows.
Only rays emitted in nearly straight upward directions are likely to reach the surface and
contribute to the estimate of upwelling irradiance Eu(r) as a function of radial distance r
away from the source location. The green arrow illustrates such a ray.

Figure E.20: Geometry of Gordon’s simulation of irradiance at the sea surface due to an
imbedded isotropic point light source in the water. The left panel illustrates the isotropic
source, with only a few rays (green arrow) reaching the sea surface. The right panel
illustrates the biased source, with most rays being emitted into upward directions.

To increase the number of rays emitted almost straight upward, Gordon chose a biased
PDF for the probability of emission of a ray at polar angle θ, measured from θ = 0 in the
nadir direction (z is measured positive downward from the sea surface, and θ is measured
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from the +z direction). This isotropic emission is mathematically the same as isotropic
scattering. Recall from Section E.3 that the PDF for polar scattering angle ψ is 2πβ̃ sinψ.
Taking ψ for the polar angle of emission θ and recalling that the phase function for isotropic
scatter is β̃ = 1/4π shows that the PDF for the polar emission angle is PDF (θ) = 1

2 sin θ.
Gordon wished to have a biased PDF PDFb(θ) that would emit more rays into upward
directions 90 deg < θ ≤ 180 deg. There are many functions that could give such a behavior,
but the one Gordon chose is

PDFb(θ) =

√
1− ε2

π(1 + ε cos θ)
, (E.17)

where 0 ≤ ε < 1 is a parameter to be determined as described below. The weighting
function is then

w(θ) =
PDF (θ)

PDFb(θ)
=

π

2
√

1− ε2
(1 + ε cos θ) sin θ .

(Gordon did not say why he chose this particular function, nor did he give the value of ε
used in his calculations.)

The right panel of Fig. E.20 illustrates biased emission, with many more rays being
emitted into upward directions and reaching the sea surface, and relatively few rays being
emitted into downward directions.

The red curves in Fig. E.21 show the unbiased emission function PDF (θ) = 1
2 sin θ,

for which each emitted ray is given an initial weight of w = 1. The other curves show
the biased functions PDFb(θ) and the angle-dependent initial weights for several values
of ε. Note that as ε approaches 1, most rays are emitted at angles near θ = 180 deg, i.e.
in near-zenith directions. However, rays emitted at angles near 180 deg are given very
small weights, whereas the relatively few rays emitted in roughly horizontal and downward
directions are given large weights (except for rays emitted near θ = 0).

Monte Carlo simulations were performed for an unbiased isotropic source and for biased
sources with various ε values. Figure E.22 shows the results for a point source at τ = 5
optical depths below the surface and for water IOPs defined by a Fournier-Forand phase
function with a backscatter fraction of 0.02 and an albedo of single scatter of ωo = 0.8.
Independent runs were done for isotropic emission and for values of ε = 0.8 and 0.99 in Eq.
(E.17). Each run had 106 rays emitted by the source. The rays reaching the sea surface
were tallied for a ring (or “bullseye”) detector centered above the source and having equally
spaced differences in ring diameters of ∆r = 1 in optical distance.

The left panel of the figure shows the number of rays received by each detector ring.
For the isotropic source, at most about 40,000 rays were received by any ring (near radius
= 5), and fewer than 10,000 rays were received by the innermost ring. As ε increases, the
rays are emitted in a more and more vertical direction, and the numbers of rays received
by the inner rings increase. The innermost ring received about 94,000 rays for ε = 0.8
and 270,000 rays for ε = 0.99. We thus naively expect that the variance of the estimated
irradiance in the innermost ring is improved by a factor of

√
270, 000/10, 000 ≈ 5 with

ε = 0.99, compared to unbiased isotropic emitting. Or, conversely, we can get the same
number of detected rays for one-fifth of the emitted rays, i.e., for one-fifth of the computer
time.

However, there is no free lunch. The outer rings, greater than about 5 or 6 optical dis-
tances in these simulations, received fewer rays with the biased emission than for isotropic
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Figure E.21: Gordon’s probability distribution functions for polar angle of ray emission
(solid lines) and the corresponding ray packet weights for selected ε values (dashed lines).

emission. Thus the variance in the estimates of irradiance for the outer rings actually in-
creases when using a biased source emission. This is simply because the biased near-zenith
emission and subsequent near-forward scattering sends most of the rays towards the inner
rings when ε nears 1.

The middle panel of the figure shows the fraction of the emitted power that is detected
for each ring. Although the numbers of rays received by the rings varies according to
the value of ε, the power received does not (except for statistical noise, which is almost
unnoticeable in this figure). The right panel shows the irradiance Eu(r) received in each
ring normalized to the total power emitted by the source, Φemit. This is just the values
of the middle panel divided by the area of each ring. This panel corresponds to Fig. 6 in
Gordon’s paper, except that the IOPs are different.

There is more to be learned from this simple example. Suppose we are interested only
in the magnitude of the irradiance received at the ocean surface directly above the source.
We might then consider only the power received by the innermost ring of the detector seen
in the previous figure, i.e. detector radius ≤ 1 in those plots.

Consider the variance in the estimated fraction of the emitted power detected (i.e., of
the surface irradiance, after dividing by the constant collection area) by the innermost ring
of the previous figure, as a function of ε. Simulations were performed for isotropic emission
and for values of ε from 0.0 to 0.999 (note that ε = 0 in Eq. (E.17) is not the same as
isotropic emission). Each simulation comprised 100 runs with 104 photo packets emitted
for each run. The red dots in Fig. E.23 show the standard deviation in the estimated value
of the fraction of emitted power received by the innermost ring as computed from the
values in each of the 100 runs. The open red circles show the corresponding results from
an independent set of 100 runs, which started with a different seed for random number
generation. Those two sets of points give a qualitative idea of the amount of statistical
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Figure E.22: Comparison of ray counts (left), fraction of emitted power detected (middle),
and normalized irradiance (right) for a point source at 5 optical depths. Quantities are
binned into concentric rings of differing by 1 optical depth in radius.

noise in these results. For isotropic emission an average of only 99 rays reached the detector
out of the 10,000 emitted in each run (for the first set of runs with the first seed; for the
second set the average was 101). The mean of the 100 runs was 3.257 · 10−3 and the
standard deviation was 3.493 ·10−4. When biased emission is used, the number of detected
rays increases with ε as shown by the green dots and right-hand axis in the figure. The
standard deviation decreases with increasing ε up to values around ε = 0.8 or 0.9. However,
beyond ε = 0.9 the standard deviation beings to increase, and even becomes greater than
for isotropic emission when ε = 0.999, even though almost 4,000, or 40% of the emitted
rays reach the detector. This seems to contradict the idea that increasing the number of
detected rays reduces the variance.

It was already mentioned on the previous section on error estimation that the depen-
dence of the standard deviation of an estimate on 1/

√
N assumes that “all else is the

same” in the simulation. In the present case, we are changing the physics of the simulation
(namely the emission pattern of the source) by using a biased source, in which case all else
is not the same. As was shown in the theory section, this change in physics does not affect
the estimated mean value, but it does affect the variance of that estimate over many runs.
The use of a biased emission pattern does increase the number of detected rays and thereby
reduce the standard deviation of the estimated quantity, but only up to a point. When ε is
very close to 1, only a very few rays are emitted in downward directions. However, those
rays can have very large weights: for ε = 0.999 the maximum weight is 45.6. rays emitted
within 10 deg of the zenith (θ > 170 deg in Fig. E.21) have weights less than 0.07, and
those emitted within 5 deg of the zenith have weights less than 0.008. Thus the downward-
emitted rays can have weights hundreds or even thousands of times larger than the vast
majority upward-emitted rays. The large numbers of low-weight detected rays do reduce
the error in the estimate. However, when ε is very close to 1, one of the downward-emitted
but very-large-weight rays may occasionally be backscattered in just the right direction
to hit the detector and make a large contribution to the fraction of the emitted power
detected. Such rays are few in number, so their contribution fluctuates from simulation to
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Figure E.23: Variance in the estimated fraction of emitted power detected by the innermost
ring. The red dots are one set of 100 runs; the open circles are an independent set of runs.
The blue dots are the theoretical reduction in the standard deviation based on a 1/

√
N

dependence. The green dots are the numbers of detected rays from the first set of runs;
the numbers from the second set are almost identical.

simulation, and the difference of even a few rays may significantly changed the estimate.
These rare rays then increase the standard deviation of the computed quantity, and the
benefits of the biased source emission are lost.

The blue dots in Fig. E.23 show the reduction in the standard deviation as expected
due only to the increased numbers of detected rays, i.e. a dependence on 1/

√
Nε/Niso.

The actual improvement is less than the value that would be obtained if the runs were just
emitting and detecting more rays for an isotropically emitting source (i.e., for the “all else
is the same” situation). Nevertheless, the reduction in the standard deviation is roughly a
factor of two, which is significant for many applications.

Figure E.24 shows the numbers of detected rays binned by the weights of the detected
rays for three of the runs, and for ε = 0.999 and 0.8. For ε = 0.999, the left panel shows
that most of the detected rays have weights in the range of 10−5 to 0.1. However, a very
few (2, 4 and 5 ray packets in these particular runs) have weights between 1 and 10. One
ray with a weight of 1 contributes as much to the estimated irradiance as 1000 rays with a
weight of 10−3. The numbers of medium-weight rays are stable for the different runs, but
the numbers of the highest-weight rays fluctuate greatly. The fluctuation in the number of
high-weight rays begins to increase the variance for ε values very near 1. The numbers of
very-low-weight rays also varies greatly from one run to the next, but those fluctuations
have a negligible effect on the variance because the weights are so small. The right panel
of this figure shows that for ε = 0.8, most of the detected rays have weights in the range of
0.001 to 0.1, the numbers of rays in each bin is almost the same for each run, and there are
no rays with weights greater than 1. Thus ε = 0.8 gives a stable number of medium-weight
rays and a reduction in the standard deviation of the estimated detected weight, as desired.
Note that in each case the estimate of the fraction of power received is (3.27± 0.01) · 10−3,
so the estimated mean is almost independent of ε.



E.6. IMPORTANCE SAMPLING 759

Figure E.24: Numbers of rays detected in various weight bins for three runs, which are
shown by different colors.

Figure E.25 gives yet another view of this situation. The left panel shows the histogram
of the 100 estimates of the fraction of emitted power detected by the innermost ring for
isotropic emission. The middle panel shows a tighter histogram for ε = 0.8, i.e., a reduced
error in the estimate. The right panel shows the histogram for ε = 0.999; the spread is
now wider and the error in the estimate has increased.

Figure E.25: Histograms of the 100 estimates of the fraction of power detected by the
innermost ring, for isotropic emission and for ε = 0.8 and 0.999.

The behavior of the estimated error when doing importance sampling can be succinctly
summed up as the tails of the distribution matter. That is to say, importance sampling
can in many cases give more detected rays and a corresponding decrease in the error of
the estimated quantity. However, the biasing can be pushed too far. In the present case,
if ε is too close to 1, the rare but high-weight rays—those in the high-weight tail of the
distribution of ray weights in Fig. E.24—can overpower the reduction of variance obtained
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by the numerous but low-weight rays in the main part of the distribution of ray weights.
There is no general rule for determining how much biasing can be used or what value of

a parameter like ε gives the minimum error in the estimated quantity. However, the broad
near-minimum seen in Fig. E.23 shows that any value of ε ≤ 0.9 will give a better estimate
than naive isotropic emission, and fortunately the exact value used is not critical. A suitable
value of a biasing parameter such as ε must be determined by numerical experimentation
for a particular class of problems. However, this effort is worthwhile if many simulations
must be made and computer time or accuracy are critical.

E.6.3 Example for Backscattering

Now consider an example of using importance sampling in the simulation of backscatter-
ing, as might be needed for the design and evaluation of an instrument to measure the
backscatter coefficient bb. This example is inspired by the Monte Carlo simulations used
in Gainusa Bogdan and Boss (2011), who did not use importance sampling.

The generic geometry for simulating a backscattering sensor is shown in Fig. E.26.
This figure illustrates a source emitting ray packets in a collimated beam. The distance a
ray packet travels between interactions with the medium is randomly determined using the
ray path length algorithm described in Section E.2. Those ray packets are then scattered
according to the chosen phase function β̃(ψ, α), where ψ is the polar scattering angle and
α is the azimuthal scattering angle. Ray tracing is done by the “Type 2” technique of
Section E.4. That is, at each scattering, the initial ray weight w = 1 is multiplied by the
albedo of single scattering ωo = b/c, where b is the scattering coefficient and c is the beam
attenuation coefficient. This accounts for energy loss due to absorption.

Oceanic phase functions are highly peaked in the forward scattering direction. Thus
most ray packets undergo multiple forward scatterings and continue to travel away from
the source and detectors. The green arrows in Fig. E.26 illustrate such a ray trajectory.
Only rarely will a ray be backscattered in just such a manner that it is eventually detected,
as illustrated by the red arrows in the figure. For typical oceanic conditions, only 0.5% to
3% of rays are backscattered in any given interaction. For a spatially small detector, very
few of the backscattered rays will actually intersect the detector. The end result is that
almost every ray emitted from the source is wasted computation because the ray never
reaches the detector.

These simulations can be improved by use of importance sampling, as follows. The ray
packets are emitted by the source according to whatever distribution is chosen (e.g., an
idealized collimated point source or a beam profile and distribution of emitted directions
that describes a particular light source such as an LED). Those rays travel an initial distance
determined by the beam attenuation coefficient and the random number drawn. Then, on
the first scattering only, the scattered direction is determined using a biased phase function
β̃b that gives an increased number of backscattered rays. This “reverses” many of the initial
rays, all of which are traveling away from the detector. Subsequent scatterings then use the
normal phase function for the water body. This gives an increased number of ray packets
traveling in the general direction of the detector, and thus an increased number of detected
rays. This is illustrated in Fig. E.27. The green arrow is the initial ray emitted by the
source. The blue arrow is the first-scattered ray, whose direction is determined using the
biased phase function. The red arrows are subsequent scatterings of the ray.
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Figure E.26: Illustration of a source emitting a collimated beam at the center of a circular
detector array. The green arrows show a ray undergoing multiple forward scatterings and
traveling away from the detector. The red arrows show a ray being backscattered into the
detector.

Figure E.27: Illustration of an emitted ray (green arrow) being backscattered by a biased
phase function at the first scattering event (blue arrow). ψ1 is the scattering angle drawn
from the biased phase function. After the first scattering, the normal phase function is
used (red arrows).

In oceanic simulations, the unbiased PDF is highly forward scattering. To reverse some
of the initial rays, we use a biased PDF that enhances backscatter. The One-Term Henyey-
Greenstein (OTHG, Eq. 6.12) phase function with asymmetry parameter g = 〈cosψ〉,

β̃OTHG(ψ) =
1− g2

4π(1 + g2 − 2g cosψ)3/2
,

gives a convenient analytical phase function to use for β̃b. The parameter g plays the same
role as ε in the previous example. A value of g = 0 gives isotropic scattering (50% backscat-
ter); a negative g gives more backscatter than forward scatter. Numerical investigations
show that the results are not sensitive to the exact form of the biased phase function, so
long as the biasing is not pushed to extremes (such as using g = −0.9 in the OTHG, which
gives 98% backscatter). Just as in the previous example, if the biasing is pushed too far,
the small-angle forward-scattered rays have very large weights. The rare one of these rays
that is subsequently backscattered (by normal scattering) into the detector gives a large
fluctuation in the computed mean, which offsets the reduction in variance obtained by
detecting many more low-weight rays.
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The green curve of Fig. E.28 shows a Fournier-Forand phase function with a backscatter
fraction of b̃b = 0.0183; this phase function is typical of ocean water and gives a good
fit to the Petzold average-particle phase function. The red curve shows a OTHG phase
function with g = −0.3, which gives a backscatter fraction of b̃b = 0.714. When used as
the biased phase function β̃b, this OTHG gives 40 times more backscattered rays at the
first scattering event as does the Fournier-Forand phase function. The blue curve shows
the corresponding weighting function w(ψ) = β̃FF(ψ)/β̃OTHG(ψ). Note that the biased
backscattered ray packets are given weights less than 0.1, whereas the very small angle
forward scattered rays can have weights as large as 1000.

Figure E.28: Example phase functions used for normal scattering and biased backscatter-
ing. FF is a Fournier-Forand phase function as used for normal scattering; OTHG is is
a One-Term Henyey-Greenstein phase function used for biased backscatter; and w is the
weighting function used to weight the rays at the first scattering.

Figure E.29 and Table E.2 show example simulations with and without biased first
scatterings. The target was an annular (“bullseye”) detector like the one in Fig. E.26, but
with five rings each of 1 cm radial width. This is similar to the proposed sensor design in
Gainusa Bogdan and Boss (2011). The water properties were defined by a Fournier-Forand
phase function with a backscatter fraction of 0.0183, which is shown in Fig. E.28. The
absorption coefficient was a = 0.2 m−1 and the scattering coefficient was b = 0.8 m−1. The
albedo of single scattering is then ωo = 0.8, which is typical of ocean waters at blue or green
wavelengths. Three simulations were done: one without biased scattering and two with
first scatterings biased with a OTHG phase functions with either g = +0.3 or g = −0.3.
The OTHG with g = +0.3 has a backscatter fraction of b̃b = 0.286, and g = −0.3 has
b̃b = 0.714. The left panel of the figure shows the numbers of rays received by each detector
ring; the right panel is the percent of emitted power received by each ring. Note that 12.9
times more rays reach the detector when biased first scattering is used with g = +0.3
(green curve), and 52.6 times more for g = −0.3 (blue curve) than for unbiased scattering
(red curve). However, the fraction of emitted power received by the detector (over all 5
rings) remains the same, 0.0645%, to within less than 0.5% percent of Monte Carlo noise.
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Figure E.29: Comparison of the number of detected rays (left panel) and the percent of
detected power (right panel) for biased and unbiased first scatterings. Each run had 108

ray packets emitted by the source as a collimated beam.

First Scattering Ndet Increase % Emitted Power

(all rings) Factor Detected (all rings)

unbiased 84,645 — 0.0648

biased, g = +0.3 1,093,114 12.9 0.0645

biased, g = −0.3 4,451,875 52.6 0.0642

Table E.2: Comparison of detected power for biased and unbiased first scatterings. Each
run had 108 ray packets emitted by the source as a collimated beam. Ndet is the number
of ray packets that reached the detector (total for all 5 detector rings).

Conversely, for a given number of rays detected, biased first scattering allows that
number to be detected with fewer rays being emitted and traced to completion, i.e., with
less computer time. For unbiased scattering, running the Monte Carlo code with unbiased
scattering until 100,000 rays reached the detector (total over all 5 rings) required the
emission of 1.18 · 108 ray packets and a total run time of 6632 sec (on a 2.4 GHz PC).
However, use of biased scattering with g = −0.3 required emission of only 2.23 · 106 rays,
and a total run time of 105 seconds. The percent of emitted power that was detected was
the same to within 3% in both cases, but the run time savings was a factor of 63.
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E.7 Backward Monte Carlo Ray Tracing

Backward Monte Carlo (BMC) ray tracing is one of the conceptually simplest, yet most
powerful, techniques for improving the accuracy and decreasing the computer times in
Monte Carlo simulations. For simulation of a perfectly collimated source (e.g., an idealized
laser beam) it is the only simulation technique available. The BMC technique is outlined in
this section and one numerical example is shown. The mathematical details are presented
in Appendix F.

E.7.1 The Essence of Backward Monte Carlo Simulation

The essential idea of backward Monte Carlo (BMC) simulation is seen in Fig. E.30. A
detector is shown at some location in the water, oriented in some direction, and having
a field of view and response as a function of the off-axis angle. This could be a radiance
sensor with a narrow field of view (as illustrated), or it could be a plane irradiance sensor
with a hemispherical field of view and a cosine response, and so on. The red arrows in the
figure represent a light ray coming from the Sun or sky, passing through the sea surface,
scattering within the water, and reflecting off of the bottom. Note that none of these red
rays enters the detector. The computation of the red rays is therefore wasted. Undetected
rays are not a problem in Nature because an enormous number of rays (photons) is available
for detection in the near-surface region of a Sun-lit ocean, so that undetected rays are of
no concern. (Recall from Section 1.3.3 the estimate of 1021 photons m−2 s−1 near the sea
surface on a sunny day.) Numerically, however, we can generate only a relatively small
number of rays because of limited computer power. Thus in computations, every ray must,
if possible, be made to contribute to the estimate of the radiometric variable of interest.

Figure E.30: The essence of
backward Monte Carlo simula-
tion.

The Helmholtz Reciprocity Principle (which is based on the time-invariance of Maxwell’s
Equations) states that if a ray generated at some point A reaches some other point B (after
any number or kind of interactions), then a ray leaving B in the opposite direction will

https://en.wikipedia.org/wiki/Helmholtz_reciprocity
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retrace the path of the original ray back to A. Furthermore, if a fraction f of the energy
leaving A reaches B, then the same fraction of the energy of the reversed ray from B will
reach A.

Therefore, rather than trace rays from the sky to the detector, as Nature does, we can
trace rays from the detector to the sky. Rays are emitted from the detector with an angular
distribution determined by the angular response of the detector. For example, to simulate
a plane irradiance detector with a cosine response, we emit rays from the detector with
a corresponding cosine angular emission pattern. If in Nature a ray coming from some
particular sky direction still has 2% of its original energy left when it reaches the detector,
then the reversed ray emitted from the detector and reaching the sky in the same direction
will have 2% of its emitted energy left when it reaches the sky.

In BMC simulation we therefore

1. Emit a large number of rays from the sensor in an angular pattern determined by
the radiometric variable of interest.

2. Each emitted ray has an initial weight of w = 1.

3. Trace each ray to completion using standard Monte Carlo ray tracing techniques as
described in the previous sections and in Appendix F.

4. Tally the fraction of detector-emitted energy accumulated in each angular bin of a
set of (θ, φ) sky bins.

5. After computing the fraction of energy reaching each sky bin, multiply that weight
by the sky radiance of the bin and apply scale factors for the variable being computed
(Table F.2). This gives the fraction of the sky radiance from that bin that reaches
the detector.

The blue arrows in Fig. E.30 represent a ray emitted by the detector and eventually
reaching the sky within some directional bin of size ∆θ,∆φ, centered on the nominal
direction (θ, φ), where the radiance is Lsky(θ, φ).

This procedure does not guarantee that every detector-emitted ray will eventually reach
the sky. Some rays may go off in directions that never cross the sea surface, and those
computations are wasted. However, by emitting rays from the sensor, any ray that does
reach the sky contributes to the estimation of the radiometric variable. There are no wasted
rays coming from the sky and missing the sensor, as is the case for the red rays in Fig.
E.30.

The mathematical details of how these calculations are actually carried out can be
messy; they are therefore presented in Appendix F.

E.7.2 Example BMC Simulations

BMC simulations have been used extensively to compute underwater light fields in three-
dimensional geometries. A few examples are

• Gordon (1985) used BMC to evaluate the effect of ship hulls on underwater irradi-
ances. (This is the paper the brought the BMC technique to the attention of the
oceanography community.)
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• Mobley and Sundman (2003) used BMC in a study of the effects of 3-D bottoms
(both sloping bottoms and level bottoms with a non-uniform bottom reflectance) on
reflected, upwelling radiances.

• Light et al. (2003) used BMC to simulate light fields in 3-D sea ice cylindrical ge-
ometries.

• Gordon and Ding (1992) and Leathers et al. (2004) used BMC to quantify the effects
of instrument self-shading on in-water measurements of upwelling radiances.

• Lesser et al. (2018, 2021) used BMC to compute various irradiances incident onto
3-D coral reefs.

For a specific numerical example, consider the coral reef geometry seen in Fig. E.31.
(x̂, ŷ, ẑ) is an ocean coordinate system used to define reef the geometry and for ray tracing.
The green half-planes represent the horizontal top and vertical wall of an idealized coral
wall reef. The blue plane is the sea surace. The sensor (light detector) can be placed at
any location (xs, ys, zs) on the surface of the reef or within the water column. The object
labeled Sd illustrates a sensor looking upward so as to collect downward traveling rays
(e.g., to measured Ed) at some distance xs in “front” of the reef wall (e.g. at location
(xs, ys = 0, zs)). The object labeled Sh represents a sensor on the face of the reef wall and
looking horizontally away from the wall (e.g. at location (xs = 0, ys = 0, zs)). These sensors
have a normal, or viewing direction, n̂ that is defined by a polar angle θs and azimuthal
angle φs in the ocean system. The Sun can be “in front of” the reef, so that the wall
receives the Sun’s direct light. The Sun can be “behind” the reef, as shown in the figure,
so that the reef wall is in its own shadow. The Sun-shadow boundary is illustrated by the
gray half plane. In simulations, the detectors can simulate plane, hemispherical scalar, or
scalar irradiances, or radiance in any direction, depending on the angular distribution of
the emitted rays.

Those who model coral reef primary production often use PAR values derived from
open-ocean downwelling plane irradiances, denoted here as PARd, with a scale factor
applied to convert the value of PARd to a PAR value, PARh, incident onto a vertical reef
wall. The scale factor is often taken to be 0.25 based on a very limited set of measurements
(Brakel, 1979). One purpose of the Lesser et al. (2021) study was to evaluate how much
a value of PARd measured in the 1-D geometry far away from the reef wall is affected by
the wall itself, and what factors should be used to convert an open ocean PARd to PARh

at the face of the reef wall.
A series of BMC runs was made for this geometry using a BMC code developed for

simulation of light fields near 3-D coral reefs (Mobley, 2018). The BMC code has a general
3-D reef geometry “built in” (Fig. E.31 is a simplified version of the general geometry). As
described in Lesser et al. (2021), the BMC code was run with spectrally dependent IOPs
measured by Russell et al. (2019) in wall reef areas of the Pacific Ocean. The full set of
runs included Sun zenith and azimuthal angles representing sunrise to sunset. Sensors of
different types were placed at various depths and orientations. The runs covered 400 to 700
nm by 10 nm. The sensor types included plane, hemispherical scalar, and spherical scalar
irradiance detectors. The spectral irradiances from those runs (in W m−2 nm−1) were used
to compute the corresponding PAR values in (in µmol quanta m−2 s−1).
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Figure E.31: Coral wall reef 3-D geometry used in simulations.

Figure E.32 shows the results from one series of runs. The runs simulated downwelling
plane irradiance sensors (measuring Ed(λ), leading to PARd), plane irradiance sensors
looking horizontally away from the reef wall (leading to PARh) and hemispherical scalar
irradiance sensors looking horizontally away from the reef wall (leading to PARoh). These
sensors were placed from just next to the reef wall, out to a distance xs = 100m away from
the wall. For the output in this figure, the Sun was at a 30 deg zenith angle and either in
front of the reef wall (φ = 0) or behind the wall (φ = 180), in which case the reef wall is
in its own shadow. At zs = 50 m depth, the water in front of the wall is in shadow out to
about x = 20 m, which is indicated by the gray shaded area in the figure.

The solid lines in the figure show how PARd at zs = 50 m decreases as the sensor gets
close to the reef wall so that the radiance distribution becomes 3-D. The symbols show the
distances xs away from the reef wall where the BMC code computed the irradiances. At
xs = 100 m the reef is optically very far away and there is no noticeable effect on PARd ≈
23 µmol quanta m−2 s−1, which is independent of the Sun’s azimuthal angle. However, as
the sensor is moved closer to the reef wall PARd decreases to about 14µmol quanta m−2 s−1

when the Sun is in front of the reef, and to about 5µmol quanta m−2 s−1 when the reef wall
is in its own shadow. The corresponding PARh values are about 8 and 3.5, respectively.
Thus the scale factor that converts an open ocean PARd to a reef-wall PARh is 8/23 =
0.35 for the wall in the Sun and 3.5/23 = 0.15 for the wall in the shade. Although these
particular values do on average equal the commonly used value of 0.25, it is emphasized
that these conversion factors depend on the water IOPs and on the sensor depth and
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type. The figure also shows the values for a hemispherical scalar irradiance sensor, which
might be a more suitable measure of the light available to the coral. The BMC values
at xs = 100 m agree to within 2% with values computed by the 1-D HydroLight code;
the small discrepancy is due to statistical noise. Such comparisons provide a check on the
correctness of the BMC 3-D code.

This example is sufficient to show the power of backward Monte Carlo ray tracing for
3-D geometries. Many more runs are required in order to draw any general conclusion
about irradiances near a coral reef.

Figure E.32: Effect of the 3-D coral structure on various measures of PAR.

In closing it is noted that the BMC technique is computationally most efficient when
the source (the sky in the above example) has a large spatial or angular extent and the
sensor is spatially small (or even a point source) or a radiometer with a small field of view.
If both the source and the sensor are small, or well collimated, then neither forward nor
backward Monte Carlo simulation is numerically efficient.



APPENDIX F

Monte Carlo Ray Tracing

The mathematical details of Monte Carlo ray tracing are not something most oceanogra-
phers need to know. However, if you ever need to write a computer program for either
forward or backward Monte Carlo simulation, you may think this appendix is the most
useful chapter in the book.

The preceding Monte Carlo appendix explains how to determine ray path lengths (Sec-
tion E.2) and scattering angles (Section E.3), and it explains three options for weighting
and tracking rays within the water (Section E.4). However, those ray tracing calcula-
tions must be performed with reference to a coordinate system that is appropriate for the
particular problem at hand.

In most Monte Carlo simulations it is necessary repeatedly to determine whether a ray
intersects a surface (e.g., the sea bottom, the sea surface, or the surface of an object in the
water). If a ray intersects a solid surface, then a reflected ray must be created in accordance
with the BRDF of the surface. If a ray intersects the sea surface, a reflected ray is always
generated, and usually a transmitted ray is also generated). It is these calculations that
are described in this appendix.

The first step is to pick an overall “ocean” coordinate system convenient for the geom-
etry of the problem being studied. Global coordinate systems were discussed in general
in Section 1.4.1.1. An example of a global system tailored to a specific problem is seen in
Fig. E.31, where a Cartesian (x̂, ŷ, ẑ) system was used to define the 3-D geometry of a
coral reef. In that particular system, the origin of the coordinate system is at the mean sea
surface, x̂ points away from the reef wall, and ẑ is positive downward. “Local” coordinate
systems as discussed in Section 1.4.1.2 will also be needed for the calculation of scattering
within the water body and for reflection by surfaces.

There are innumerable possibilities for light ray paths and interactions with the bottom
and sea surface and within the water body. Ray tracing in a geometry like that of Fig.
E.31 boils down to repeatedly finding the intersections of lines (the rays) and planes (the
mean sea surface, the reef top or side, etc.). The needed geometric entities are now defined
in detail.

769
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F.1 General Ray-Plane Intersections

A line L refers to the set of co-linear points defined by two points r1 = [x1, y1, z1]T and
r2 = [x2, y2, z2]T in 3-D space. (A superscript T denotes transpose, which in the present
case gives column vectors.) A ray R is the directed line segment from point r1 to point
r2; the initial point of the ray is r1 and the final point is r2. A ray represents a beam
of light, which travels in a straight line between scattering or reflection events and which
is attenuated by absorption as it passes through the water. A ray is created at r1 (by
initialization, reflection by a surface, or scattering within the water) and travels to r2,
where it can be scattered again, unless it intersects a surface along the way. Note that a
line is infinitely long, whereas a ray is a line segment with finite length with a direction.

Suppose that the problem has a mean sea surface at depth z = 0 and a level sea bottom
at depth zB (ẑ is positive downward). Given an initial ray point r1, a new ray is generated
(in any of several ways, as described below), whose endpoint is r2. If z2 ≥ zB, the ray
has intersected the bottom. When that occurs, a reflected ray is generated as described
in Section F.2. If z2 ≤ 0, the ray has intersected the mean sea surface. Transmitted and
reflected rays are then computed as described in Section F.3. If 0 < z2 < zB, then the
ray is within the water column. A new ray is then generated by scattering as described in
Section F.4. The new ray generated by reflection or scattering is then traced in the same
manner as the previous ray.

A line L can be written in parametric form as

L = r1 + (r2 − r1)t, −∞ < t <∞ . (F.1)

The corresponding ray R is then

R = r1 + (r2 − r1)t, 0 < t ≤ 1 . (F.2)

A plane is determined by three non-colinear points p1,p2,p3; pi = [pix, piy, piz]
T , i = 1, 2, 3.

A plane P can be written in parametric form as

P = p1 + (p2 − p1)u+ (p3 − p1)v, −∞ < u, v < +∞ . (F.3)

The intersection of a line and a plane can be found by setting the parametric forms for
a line and a plane equal:

r1 + (r2 − r1)t = p1 + (p2 − p1)u+ (p3 − p1)v .

This can be written in matrix form asx1 − p1x

y1 − p1y

z1 − p1z

 =

x1 − x2 p2x − p1x p3x − p1x

y1 − y2 p2y − p1y p3y − p1y

z1 − z2 p2z − p1z p3z − p1z


tu
v

 . (F.4)

After solving this equation for t, u, v, the value of t gives the distance from r1 at which
the line intersects the plane. A negative value of t means that the plane lies “behind” the
starting point of the ray, i.e., the plane is in the opposite direction of the ray. For example,
if the ray is heading upward, the the sea bottom is “behind” the ray. If t > 1, the plane is
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“in front of” the ray, but the ray does not reach the plane. If 0 ≤ t ≤ 1, the associated ray
intersects the plane. Thus if t > 1 or t < 0, the line intersects the plane, but the ray does
not.

The point of intersection of the line with the plane is

LP = r1 + (r2 − r1)t . (F.5)

where the value of t is given by the solution of Eq. (F.4). The solution values of u, v, when
substituted into Eq. (F.3), give the point in the plane where the line intersects it.

We are free to choose points p1,p2,p3 as desired, so long as they lie in the plane and
are not colinear. Therefore Eq. (F.4) can be tailored to the mean sea surface and sea
bottom planes so as to simplify the matrix inversions required to obtain t, u, and v.

F.1.1 Ray-Bottom Intersections

The plane of the sea bottom can be defined by the three points

p1 = [0, 0, zB]T ,

p2 = [0, 1, zB]T ,

p3 = [1, 0, zB]T .

Equation (F.4) then simplifies to x1

y1

z1 − zB

 =

x1 − x2 0 1

y1 − y2 1 0

z1 − z2 0 0


 tBuB
vB

 , (F.6)

which has the solutiontBuB

vB

 =
1

z1 − z2

 0 0 1

0 (z1 − z2) −(y1 − y2)

(z1 − z2) 0 −(x1 − x2)


 x1

y1

z1 − zB

 .
The value of t for the ray-bottom intersection is

tB =
z1 − zB
z1 − z2

. (F.7)

Recalling Eq. (F.5), the point xB = [xB, yB, zB]T where the line intersects the bottom is

xB = x1 + (x2 − x1)

(
z1 − zB

z1 − z2

)
, (F.8a)

yB = y1 + (y2 − y1)

(
z1 − zB

z1 − z2

)
, (F.8b)

zB = zB . (F.8c)

If the ray has z1 = z2 (to within the numerical roundoff error of the calculations), the
ray is parallel to the bottom, and there is no intersection for ray tracing. This can also be
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seen from the determinant of the matrix in Eq. (F.6), D = −(z1 − z2), which is then zero,
indicating that the equation has no solution. Although such events are rare, computer
codes must always check for such rays and treat them as special cases.

If the ray intersects the bottom, then a reflected ray is generated with polar and az-
imuthal angles of reflection using the BRDF of the bottom as described in Section F.8.
Material surfaces are often assumed to be Lambertian reflectors (Section 13.48), in which
case the angles of reflection are determined as described in Section F.2.

F.1.2 Ray-Sea Surface Intersections

The plane containing the mean sea surface can be defined by the three points

p1 = [0, 0, 0]T ,

p2 = [0, 1, 0]T ,

p3 = [1, 0, 0]T .

Equation (F.4) then simplifies tox1

y1

z1

 =

x1 − x2 0 1

y1 − y2 1 0

z1 − z2 0 0


tSuS

vS

 ,
which has the solutiontSuS

vS

 =
1

z1 − z2

 0 0 1

0 (z1 − z2) −(y1 − y2)

(z1 − z2) 0 −(x1 − x2)


x1

y1

z1

 .
The value of t for the ray intersection with the air-water surface is

tS =
z1

z1 − z2
. (F.9)

Recalling Eq. (F.5), the point LS = [xS, yS, zS]T where the line intersects the mean sea
surface is

xS = x1 + (x2 − x1)

(
z1

z1 − z2

)
, (F.10a)

yS = y1 + (y2 − y1)

(
z1

z1 − z2

)
, (F.10b)

zS = 0 . (F.10c)

If the ray intersects the mean sea surface, then reflected and (perhaps) transmitted rays
are created as described in Section F.3.
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F.2 Reflection by Lambertian Surfaces

If a ray is found to intersect the bottom, it is then reflected at the point of intersection.
Assume that the bottom is a Lambertian surface (Section 13.7) with irradiance reflectance
RB. In general this reflectance depends on wavelength and is determined by the type
of bottom material being modeled. A Lambertian surface reflects an incident ray into
randomly determined polar and azimuthal angles according to Eqs. (F.52) and (F.51):

θr = cos−1(
√
u1) , (F.11)

φr = 2πu2 . (F.12)

Here u1 and u2 are independently drawn uniform [0,1] random numbers. Equation (F.11)
is certainly not intuitive, but this distribution of reflected polar angles can be understood
in the context of the discussion of Section 13.7. The polar angle θr is measured relative
to the outward normal to the Lambertian surface at θr = 0. That is, θr is measured from
the −ẑ direction. A convenient local “bottom” coordinate system then has (x̂B, ŷB, ẑB) =
(x̂,−ŷ,−ẑ) in terms of the ocean coordinate system. After computation of (θr, φr) from
the equations above, the direction of the reflected ray in the ocean system is given by

θ = π − θr (F.13)

φ = π + φr modulo π . (F.14)

The modulo π on the last equation keeps the φ values in the −π to π range, which is
equivalent to the 0 to 2π range for φr.

The distance traveled by the reflected ray is given by (E.4):

ρr = −1

c
ln u3 , (F.15)

where c is the beam attenuation coefficient of the water. This ρr is the distance the newly
created reflected ray will travel through the water body, unless it intersects another surface.

The weight wr of the reflected ray is

wr = RBwi , (F.16)

where wi is the weight of the incident ray, and RB is the irradiance reflectance of the
Lambertian bottom.

Equations (F.13) and (F.14) give the direction of the reflected ray in the ocean coor-
dinate system. The length of the ray is given by Eq. (F.15). This length is independent
of coordinate system, so we can write ρ = ρr. These (ρ, θ, φ) values give the location of
the end point of the reflected ray in spherical coordinates, relative to the point of reflection
[xB, xB, xB]T, which is computed by Eq. (F.8). The location of the reflected ray endpoint
in the ocean system is then given by

r2 =

xB

yB

zB

+ ρ

sin θ cosφ

sin θ sinφ

cos θ

 . (F.17)
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F.3 Reflection and Transmission by the Sea Surface

If a ray crosses the mean sea surface at z = 0, it is processed using the slope statistics
for a wind-blown sea surface, Snell’s law of refraction, and Fresnel’s law of reflection for
unpolarized light. The Cox-Munk wind speed-wave slope statistics of Section 13.4 are
typically used to model the sea surface and will be used here. In all cases there is a ray
reflected back into the water. The weight of the reflected ray is determined from the angle
of the incident ray onto the (usually) tilted water surface and Fresnel’s law. There is
usually a ray transmitted into the air, whose direction in the air is determined by Snell’s
law and whose weight is obtained from one minus the fraction of the reflected-ray weight.
The weight of the transmitted ray is added to an accumulating weight sum for the sky
(∆θ,∆φ) bin in the direction of the transmitted ray. In some cases there may be total
internal reflection, in which case the reflected ray has the same weight as the incident ray
and there is no transmitted ray. These calculations proceed as follows.

First, a unit vector normal to the sea surface is randomly generated in accordance with
the Cox-Munk wind speed-wave slope law for the wind speed U of the simulation. Let
η(x, y) be the elevation of the wind-blown sea surface, and let the wind be blowing in the
+x̂ direction. Then the along-wind and cross-wind slopes of the sea surface are

ηa =
∂η

∂x
and ηc =

∂η

∂y
.

The slopes ηa and ηc have a Gaussian distribution about a zero mean with variances
according to Eq. (13.41):

σ2
a = 3.16 · 10−3U and σ2

c = 1.92 · 10−3U , (F.18)

where U is in meters per second at 12.5 m above mean sea level. Let r be a random
number drawn from a Gaussian distribution with zero mean and unit variance, denoted by
r ∼ N (0, 1). Then if r1 and r2 are independently drawn random numbers from N (0, 1),

ηa = r1 σa and ηc = r2 σc (F.19)

have the required variances for sea surface slopes. The associated outward (facing the sky)
normal to the sea surface is then

n̂ =
ηax̂ + ηcŷ − ẑ

[η2
a + η2

c + 1]1/2
. (F.20)

Note that n̂ = −ẑ if the sea surface is level. When a ray crosses the mean sea surface
at z = 0, two Gaussian random numbers are drawn and used in Eq. (F.19) to generate
random values of ηa and ηc. These values are then used in Eq. (F.20) to generate the
outward normal of a random sea surface wave facet n̂, which is then used in Eqs. (F.21)
and (F.24)-(F.26) below to determine the angles of ray transmission and reflection.

Let ξ̂′, ξ̂r and ξ̂t be unit vectors in the directions of the incident, reflected, and trans-
mitted rays, respectively. (As before, a primed variable indicates the incident ray, and
unprimed variables indicate scattered (reflected or transmitted) rays.) The incident ray
that reaches the sea surface is traveling in direction (θ, φ) in the ocean coordinate system.
This direction is described by a unit vector
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ξ̂′ = ξ′x x̂ + ξ′y ŷ + ξ′z ẑ

= sin θ cosφ x̂ + sin θ sinφ ŷ + cos θ ẑ .

The dot product between n̂ and ξ̂′ gives the angle of incidence θ′ of the ray onto the sloping
sea surface:

θ′ = cos−1(ξ̂ · n̂) . (F.21)

This is the angle relative to the normal to the (generally sloping) surface at the point where
the incident ray is reflected back into the water by the underside of the sea surface. There
is also usually a transmitted ray whose direction relative to the surface normal is given by
Snell’s law

θt = sin−1
(
nw sin θ′

)
, (F.22)

where nw is the real index of refraction of the water. If the argument of the inverse sine is
greater than 1, then there is total internal reflection and no ray is transmitted into the air.

The incident and transmitted angles θ′ and θt are then used in Fresnel’s formula (13.11)
for the reflectance of the sea surface,

RF(θ′) =
1

2

([
sin(θ′ − θt)

sin(θ′ + θt)

]2

+

[
tan(θ′ − θt)

tan(θ′ + θt)

]2
)
, (F.23)

which holds for θ′ 6= 0. If θ′ = 0, the Fresnel reflectance is given by (13.12)

RF(θ′ = 0) =

(
nw − 1

nw + 1

)2

.

The weight w of the incident ray is multiplied by RF to get the weight of the reflected
ray. The weight of the transmitted ray is then (1 − RF)w. The weights of the reflected
plus transmitted rays thus equal the weight of the incident ray; in other words, energy is
conserved at the sea surface.

For a ray incident onto the surface from the water side, the directions of ξ̂r and ξ̂t

relative to the tilted wave facet are given by Eqs. (13.7)–(13.9):

ξ̂r = ξ̂′ − 2(ξ̂′ · n̂) n̂ (F.24)

ξ̂t = nw ξ̂
′ − c n̂ , (F.25)

where

c = nw ξ̂
′ · n̂−

[
(nw ξ̂

′ · n̂)2 − n2
w + 1

]1/2
. (F.26)

Note that both of these vectors lie in the plane determined by ξ̂′ and n̂.
Both ξ̂′ and n̂ are specified in the ocean coordinate system. Therefore the equations

for ξ̂r and ξ̂t give values that are also in the ocean coordinate system.
If the surface is not level (i.e., the wind speed U is not zero), it can happen that the

surface is tilted so much that a near-grazing incident ray is reflected into a slightly upward
direction, or that a transmitted ray is traveling in a slightly downward direction. In a real
ocean, these rays would encounter the sea surface again at a nearby point and be reflected
and transmitted again. In computer codes, such rays can be “wrapped around” for further
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intersections with the sea surface, or that can be flagged as anomalous and are dropped.
Simulation results show that there are only a few anomalous rays out of every 1000 rays
incident onto the sea surface, so dropping these rays has a negligible effect on the computed
radiometric values.

F.4 In-water Ray Scattering

If the ray end point r2 is within the water, then the ray is scattered at its endpoint. The
generation of new rays by in-water scattering is central to the ray-tracing process, and
these calculations are somewhat complicated because of the coordinate system transforma-
tions. It is therefore worthwhile to review in detail how ray scattering is effected in Monte
Carlo codes. Although the coordinate system transformations developed in this section
are standard (e.g. Bower, 2012; Cheston, 1964), they can be hard to find unless you know
what you are looking for. The needed equations are derived here for completeness.

Recalling Eq. (F.2), let R′ denote an initial ray with starting point r1 and ending point
r2. This ray is traveling in direction (θ, φ) in the chosen global (ocean) coordinate system,
as seen in Fig. F.1. An in-water ray can be anywhere in the water and traveling in any
direction. It is therefore necessary to define a local (at the point of scattering) coordinate
system for scattering calculations, as was described in Section 1.4.1.2 and Fig. 1.7. The
scattering angles ψ and α will then be applied in this system to determine the direction of
the scattered ray R.

Figure F.1: Coordinate systems used to describe the scattering of an in-water ray. The
initial or unscattered ray R′ is shown in red; the scattered ray R is blue. The ocean
coordinate system and angles measured in this system are in black, and the local coordinate
system and angles measured in the local system are green.
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In the ocean system, ray R′ has components (R′x, R
′
y, R

′
z):

R′ = R′x x̂ +R′y ŷ +R′z ẑ

= R′ sin θ cosφ x̂ +R′ sin θ sinφ ŷ +R′ cos θ ẑ , (F.27)

where the Cartesian components R′x etc., in terms of spherical coordinates come from
inspection of Fig. F.1. R′ is the length of the vector R′.

A convenient local coordinate system (θ̂, φ̂, r̂) for scattered rays is constructed as de-
scribed in Section 1.4.1.2; the equations developed there are repeated here for ease of
reference. The radial unit vector

r̂ =
R′

R′
=

r2 − r1

|r2 − r1|

is in the same direction as the initial ray. The azimuthal unit vector φ̂ is defined by the
cross product of the ocean coordinate system ẑ and the incident vector’s direction:

φ̂ =
ẑ× r̂

|ẑ× r̂|
.

This vector points in the direction of increasing φ values. (If the unscattered vector is in
the same direction as ẑ, the direction of φ̂ can be chosen at random.) The polar unit vector
is then given by

θ̂ = φ̂× r̂ .

This vector points in the direction of increasing θ values. The (θ̂, φ̂, r̂) system is then an
orthogonal system of coordinates in which the scattering angles can be applied to define
the direction of the scattered ray. However, these directions are not fixed in the ocean
system; they depend on the direction of the unscattered ray.

To express the local coordinate system directions in the ocean system, note that the
radial unit vector r̂ can be thought of as the normalized rate of change R′ with respect to
length R′:

r̂ =
1∣∣∂R′
∂R′

∣∣ ∂R′

∂R′
.

Equation (F.27) then gives

r̂ = sin θ cosφ x̂ + sin θ sinφ ŷ + cos θ ẑ , (F.28)

after noting from Eq. (F.27) that |∂R′/∂R′| = 1. In the same fashion, θ̂ and φ̂ can be
written as

θ̂ =
1∣∣∂R′
∂θ

∣∣ ∂R′

∂θ
and φ̂ =

1∣∣∣∂R′∂φ

∣∣∣ ∂R′

∂φ
.

After noting that |∂R′/∂θ| = R′ and |∂R′/∂φ| = R′ sin θ, the same process gives

θ̂ = cos θ cosφ x̂ + cos θ sinφ ŷ − sin θ ẑ

φ̂ = − sin θ x̂ + cos θ ŷ .
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Now consider an arbitrary vector point function G(R′). In the present case1, G(R′)
will be the end point of the scattered vector R at location R′. In the Cartesian ocean
system, G(R′) is written in component form as

G(R′) = G′x x̂ +G′y ŷ +G′z ẑ .

In the local system, G(R′) is written as

G(R′) = G′r r̂ +G′θ θ̂ +G′φ φ̂ .

The relations between the components of G(R′) in these two coordinate systems are
obtained as follows. The radial component of G(R′) is

G′r = G(R′) · r̂ = G′x(x̂ · r̂) +G′y(ŷ · r̂) +G′z(ẑ · r̂) .

However, from Eq. (F.28) x̂ · r̂
ŷ · r̂
ẑ · r̂

 =

sin θ cosφ

sin θ sinφ

cos θ

 ,
so that

G′r = G′x sin θ cosφ+G′y sin θ sinφ+G′z cos θ .

In the same fashion we find

G′θ =G′x cos θ cosφ+G′y cos θ sinφ−G′z sin θ

G′φ = −G′x sinφ+G′y cosφ .

Writing these results in matrix form gives
G′r

G′θ

G′φ

 =

sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0



G′x

G′y

G′z

 .
The inverse gives (G′x, G

′
y, G

′
z) in terms of (G′r, G

′
θ, G

′
φ):

G′x

G′y

G′z

 =

sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0



G′r

G′θ

G′φ

 . (F.29)

Now let the vector point function G(R′) be the end point of the scattered ray R at
location R′. The end point has magnitude (length of the scattered ray) ρ and direction
(ψ, α) in the local system. Inspection of Fig. F.1 shows that

G(R′) =


G′r

G′θ

G′φ

 = R =

 ρ cosψ

ρ sinψ cosα

ρ sinψ sinα

 .
1In other problems, G(R′) might be, for example, the value of an electric field at spatial point R′. Then

R would be the strength of the electric field and (ψ, α) would give the direction of the electric field at R′.
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Inserting these values into Eq. (F.29) and remembering that the origin of the (r̂, θ̂, φ̂)
system is at point r2 givesxy

z

 =

x2

y2

z2

+

sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0


 ρ cosψ

ρ sinψ cosα

ρ sinψ sinα

 . (F.30)

This equation gives the location of the end point of the scattered ray R in the ocean coordi-
nate system. To continue tracing the scattered ray, the unscattered point r2 becomes the
new r1, and the scattered ray endpoint at R = [x, y, z]T becomes the new r2.

Some readers may not be familiar with the transformation of Eq. (F.30). It is therefore
emphasized that the familiar transformation from spherical (ρ, ψ, α) to Cartesian (θ, φ, r)
coordinates (you can think of the (θ̂, φ̂, r̂) system of Fig. F.1 as a local Cartesian system),θφ

r

 = ρ

sinψ cosα

sinψ sinα

cosψ

 ,
gives the coordinates of the endpoint of the scattered ray in the local coordinate (θ, φ, r)
system used for the scattering calculations, whereas Eq. (F.30) gives the coordinates of the
endpoint of the scattered ray in the ocean (x, y, z) coordinate system used for ray tracing.

The ray length ρ is determined by Eq. (E.4), ψ is determined according to the scattering
phase function used in the simulation, and α is randomly chosen to be azimuthally isotropic.
Equation (F.30) is then used to obtain the end point of the scattered ray in the ocean
system.

As described in Section E.3, the polar scattering angle ψ is determined for an arbitrary
scattering phase function β̃(ψ) by Eq. (E.6), and the azimuthal scattering angle α is
determined by Eq. (E.5). The determination of ψ usually must the determined numerically.
In practice, this often can be done most efficiently by first building a look-up table of values
of the integral of Eq. (E.6) for closely space values of ψ from 0 to π. This look-up table
is then the cumulative distribution function for the phase function, which is viewed as a
probability distribution function for the scattering angle ψ. The random number u can
then be used in this look-up table to obtain the value of ψ.

For Type 2 ray tracing as described in Section E.4, at each scattering, the current ray
weight is multiplied by the albedo of single scattering, ωo. This multiplication of the weight
by ωo accounts for the loss of ray energy to absorption as the ray passes through the water.
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F.5 Use of the Preceding Equations

It may be worthwhile to summarize the use of the preceding equations as employed in a
Monte Carlo code. The algorithm is as follows.

Initial Ray: An initial ray starting at point r1 = [x1, y1, z1]T is predicted to reach final
point r2 = [x2, y2, z2]T, with both points expressed in the ocean coordinate system.

Testing: This ray is examined to see if it has intersected the bottom, the mean sea surface,
or is within the water. The weight is checked to see if the ray is less than the minimum
weight wmin, in which case it is dropped and new ray is initialized.

Ray-Bottom Intersection: Suppose it is found that this initial ray intersects the
bottom. The point of intersection of the ray with the bottom, pB = [xB, yB, zB]T,
is given by Eqs. (F.8). These coordinates are in the ocean system.

Bottom Reflection: The ray is reflected into polar and azimuthal directions
(θr, φr) according to Eqs. (F.11) and (F.12). These directions are relative
to the bottom coordinate system at the point of intersection. The reflected
ray will travel a distance ρr given by Eq. (F.15); the weight of the reflected
ray is given by Eq. (F.16). The directions of the reflected ray are converted
to directions in the ocean system via Eqs. (F.13) and (F.14).

New Ray Initial Point: The intersection point pB becomes the initial point
r1 = [x1, y1, z1]T for the reflected ray.

New Ray Final Point: The end point of the new ray in the ocean system is
then given by Eq. (F.17).

Recursion: The new ray from r1 to r2 is now traced just as was the initial ray.

This process is the same for rays that intersect the sea surface or that are within the
water. In either case, the appropriate equations of Sections F.3 or F.4 are used to compute
new rays, either by reflection and transmission at the sea surface, or by scattering within
the water. Each new ray is then tracked in the same manner as the previous one.

F.6 Ray Initialization in Backward Monte Carlo Simulations

When a ray is initialized from a detector, values of polar and azimuthal angles (γ, α) are
randomly determined according to the detector’s angular response. These values of (γ, α)
are in a local coordinate system for the detector. If the detector is within the water water,
this will be a system defined by the detector’s orientation (θD, φD) in the ocean system.
In any case, the initial ray can be treated just as if it were a scattered ray created by
a scattering event at the location of the detector. The initial ray’s ρ value is determined
using Eq. (F.15), and the initial weight is w = 1. The initial ray endpoint is then converted
into ocean coordinates using transformation (F.30), just as for scattered rays.

A plane irradiance sensor (cosine detector) has a detecting surface material for which
each point is equally sensitive to radiance from any direction; the cosine response comes
from the change in the apparent detector surface area for off-axis viewing directions. The
detector material is assumed to be azimuthally isotropic. Let the polar (off-axis) angular
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response of the detector material be σ(γ). Then the material of a cosine detector has
σ(γ) = σo, independent of γ, which gives a cosine response of the detector as a whole,
including the geometric effect of the apparent detector surface area for different viewing
directions. In backward Monte Carlo ray tracing, rays are emitted from the detector
location in an angular pattern that mimics the response of the detector to incoming rays.

In general for an azimuthally isotropic sensor whose polar (off-axis) angular response
is σ(γ′), the random value of γ is determined by solving (Modest, 1993, Eq. 19.32)

u =

∫ γ
0 σ(γ′) cos γ′ sin γ′ dγ′∫ π/2

0 σ(γ′) cos γ′ sin γ′ dγ′
, (F.31)

where u is a uniform [0,1] random number. (See Section 13.7 for further discussion of how
a cosine-reflecting material leads to a surface whose reflected radiance is independent of
viewing direction.)

In this case of a cosine collector or emitter, the collector material response function is

σ(γ) =

 σo if 0 ≤ γ ≤ π/2

0 if π/2 < γ ≤ π .

Using this in Eq. (F.31) yields

u = sin2 γ ,

or

γ = sin−1(
√
u) . (F.32)

This peculiar looking formula for γ is precisely what is needed to make the angular distri-
bution of rays emitted from a detector in a backward Monte Carlo simulation mimic the
cosine response of a plane irradiance sensor.

Consider a “top-hat” detector with a field of view of half angle γD and whose collecting
surface is equally sensitive to radiance from any direction, like that of a cosine collector.
(In other words, we can place a Gershun tube over a cosine detector to limit the field of
view and create a radiance detector.) That is,

σ(γ) =

 σo if 0 ≤ γ ≤ γD

0 if γD < γ ≤ π .

Equation (F.31) then yields

γ = sin−1(sin γD

√
u) . (F.33)

This distribution of emission angles is used to simulate a radiance detector with a viewing
direction half-angle of γD. Note that Eq. (F.33) reduces to Eq. (F.32) if the detector field
of view opens up to γD = 90 deg.

Another way to view emission from the detector is to think of the emitted ray as a ray
that has been created by scattering at the location of the point detector. For example, one
can imagine a ray incident onto the detector surface from “behind” or “within” the surface
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material, and then being scattered (emitted) outward from the surface into the water. For
a phase function that scatters (emits) in a cosine pattern, the scattering phase function is

β̃(ψ) =


1
π cosψ if 0 ≤ ψ ≤ π/2

0 if π/2 < ψ ≤ π .

Inserting this phase function into Eq. (E.6) leads again to ψ = sin−1(
√
u), with the

scattering angle ψ now playing the role of the emission angle γ. Recall Table E.3 for a
cosine scattering angle.

The viewpoint of emission as a scattering process readily yields the formulas needed
for emission by scalar irradiance detectors. For a hemispherical scalar irradiance detector,
corresponding to isotropic emission into 0 ≤ γ ≤ π/2, the equivalent scattering phase
function is

β̃(γ) =


1

2π if 0 ≤ γ ≤ π/2

0 if π/2 < γ ≤ π .

Inserting this phase function into Eq. (E.6) gives

γ = cos−1(1− u) or γ = cos−1(u) .

Note that this γ can range from 0 to 90 deg. For a scalar irradiance detector, the equivalent
phase function is β̃(γ) = 1/(4π), 0 ≤ γ ≤ π, and the resulting equation for the emission
angle is

γ = cos−1(1− 2u) ,

which gives γ values between 0 and 180 deg.
In all cases, the azimuthal angle is determined from

α = 2πu .

For convenience of reference, Table F.1 collects these results for the functions used to
generate emission angles for various types of sensors.

F.7 Processing Ray Weights in Backward Monte Carlo
Calculations

In forward Monte Carlo calculations the final ray weights are accumulated in angular bins,
and those weights then give the fractions of total emitted power reaching each bin. That
power is then converted to the radiometric variable of interest.

The situation is more complicated in backward Monte Carlo simulations. This section
considers the common case of an in-water sensor and illumination by the sky. It has been
qualitatively stated that ray weights are accumulated in each sky angular bin, and that
these weights are used to determine how much of the sky radiance reaches the in-water
sensor. Exactly how this is done is rather subtle and warrants further comment.

The BMC technique rests on a reciprocity relation developed in Case (1957), which was
exploited in the ocean setting in Gordon (1985). The discussion here again follows Gordon
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Sensor
Response

Radiometric
Variable

Formula

cosine
0 to π/2

Ed or Eu γ = sin−1(
√
u)

cosine
0 to γD

radiance L γ = sin−1(sin γD
√
u)

isotropic
0 to π/2

Eod or Eou γ = cos−1(u)

isotropic
0 to π

Eo γ = cos−1(1− 2u)

Lambertian
reflector

bottom reflection θr = sin−1(
√
u)

Table F.1: Formulas for randomly choosing sensor emission angles γ for commonly used
radiometric variables, and for reflection angles θr for Lambertian surfaces. u is a U[0, 1]
random number.

and will start with the basic reciprocity principle and will outline the development that
leads to the simple result actually used in the BMC calculations. The presentation here
has more discussion and a somewhat different formulation of the final result than that of
Gordon.

Assume that the ocean coordinate system has depth positive downward. Let n̂ be the
unit outward normal to the mean sea surface, i.e., n̂ = −ẑ. Let ξ̂ be a unit direction vector.
For light rays traveling downward, ξ̂ · n̂ < 0, and ξ̂ · n̂ > 0 for rays traveling upward. Let ~xB

represent the spatial location of the mean sea surface (the boundary of the ocean volume),
and let ~xD represent the in-water location of the detector.

Figure F.2 shows the original (forward) and adjoint (backward) ray tracing problems
used to develop the BMC technique. This figure shows the various quantities seen in Case’s
reciprocity relation below.

Case’s general reciprocity relation is∫
ξ̂·n̂<0

dΩ(ξ̂)

∫
B
dB |ξ̂ · n̂|

[
L1(~xB, ξ̂)L2(~xB,−ξ̂)− L2(~xB, ξ̂)L1(~xB,−ξ̂)

]
=

∫
Ξ
dΩ(ξ̂)

∫
V
dV

[
1

n2
w

L1(~x,−ξ̂)S2(~x, ξ̂)− 1

n2
w

L2(~x, ξ̂)S1(~x,−ξ̂)

]
. (F.34)

In this equation, subscript 1 refers to the original problem, and subscript 2 refers to the
adjoint problem. The area integration over “B” represents an integration over the bounding
surface (the sea surface) of the ocean, and the volume integration over “V” represents an
integration over the volume of the water column. On the left hand side of the equation, the
integration over direction with ξ̂ · n̂ < 0 is an integration over all downward directions, i.e.,
directions incident onto the sea surface. nw is the water index of refraction. The radiances
and sources in this equation are as follows:
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Figure F.2: Illustration of the original (forward) and adjoint (time-reversed) problems
used to the develop the BMC method. This figure shows the in-water irradiance Ed being
computed. Reproduced from Fig. 6.2 of Light and Water.

• L1(~xB, ξ̂) is the incident sky radiance falling onto the sea surface (since the integration
over over downward directions, ξ̂ · n̂ < 0) in the original problem; thus L1(~xB, ξ̂) =
Lsky(ξ̂) 6= 0.

• L1(~xB,−ξ̂) is the water-leaving radiance in the original problem (−ξ̂ is upward for
the integration over ξ̂ · n̂ < 0).

• L2(~xB, ξ̂) is the radiance incident onto the sea surface in the adjoint problem. This
is zero because the light source in the adjoint problem is the emitting detector, not
the sky.

• L2(~xB,−ξ̂) is the water-leaving radiance in the adjoint problem. (−ξ̂ is upward
since the integration is over downward directions.) This is the water-leaving radiance
generated by the BMC ray tracing. Call L2(~xB, ξ̂) = L2w(~xB, ξ̂) as a reminder that
this is water-leaving (subscript “w”) radiance.

• L1(~x,−ξ̂) is the in-water radiance in the original problem.

• L2(~x, ξ̂) is the in-water radiance in the adjoint problem.

• S1(~x,−ξ̂) is the internal source in the original problem; this is 0.

• S2(~x, ξ̂) is the internal source in the adjoint problem. This generates the radiance
emitted by the detector.

Consider the left hand side (LHS) of Eq. (F.34). L2(~xB, ξ̂) is the radiance incident
onto the sea surface in the adjoint problem. However, in the adjoint problem, there is
water-leaving radiance from the internal source, but no incident sky radiance, so this term
is zero. Thus the LHS reduces to

LHS =

∫
ξ̂·n̂<0

dΩ(ξ̂)

∫
B
dB |ξ̂ · n̂|

[
L1(~xB, ξ̂)L2(~xB,−ξ̂)

]
.
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This can be rewritten as

LHS =

∫
B
dB

[∫
ξ̂·n̂<0

dΩ(ξ̂) |ξ̂ · n̂|L2(~xB,−ξ̂)

]
Lsky(ξ̂) .

The quantity in brackets is the irradiance leaving the sea surface in the −ξ̂ (upward)
direction from an area element dB of the sea surface at surface location ~xB. This irradiance
is weighted by the sky radiance Lsky(ξ̂) in the corresponding (ray-reversed) downward
direction. Suppose the BMC code has the sky directions are discretized into finite θ, φ
bins of size 10 deg in θ except for the polar cap and the near-horizon band, and 15 deg in
φ. Call these bins Q(u, v), with u labeling the discrete θ bins and v labeling the φ bins.
Collecting all rays from any point on the sea surface corresponds to the integration over
the boundary B in the equation.

Note that dB dΩ |ξ̂ ·n̂|L∗w(~xB,−ξ̂) has units of power. The integrals over the sea surface
(B) and direction (Ω) give the total power leaving the sea surface. The power leaving the
sea surface in the direction of each Q(u, v) bin is the weight w(u, v) accumulated during the
ray tracing. The total power leaving the sea surface is then the sum of the weights w(u, v)
over all u, v directions. Let Lsky(u, v) be the directionally averaged sky radiance over bin
Q(u, v). Then the integral over direction in the last LHS equation can be discretized as a
sum over the sky bins:

LHS =
∑
u

∑
v

w(u, v)Lsky(u, v) . (F.35)

In this equation, the weights are computed by ray tracing, and the sky radiances are
obtained from a model of sky radiance as a function of solar zenith angle and atmospheric
conditions. Note that the evaluation of the LHS of the reciprocity relation does not depend
on the type of in-water radiometric variable being computed.

Now consider the right hand side (RHS) of Eq. (F.34). The internal source in the
original problem, S1(~x,−ξ̂), is zero. This reduces the RHS to

RHS =

∫
Ξ
dΩ(ξ̂)

∫
V
dV

1

n2
w

L1(~x,−ξ̂)S2(~x, ξ̂) . (F.36)

To make further progress in evaluating the RHS, we must pick a particular source function
for the adjoint problem. This is where the type of radiometric variable being estimated
enters the problem.

Suppose we wish to compute the downwelling plane irradiance at some point ~x = ~xD
in the water body; call this Ed(~xD). We have seen in Section F.6 that simulation of Ed,
which is measured by a cosine-response detector, requires that the emission function also
have a cosine emission pattern. Let this emission or source function be

S2(~x, ξ̂)) =

 − Jo ξ̂ · ẑ δ(~x− ~xD) if ξ̂ · ẑ < 0

0 if ξ̂ · ẑ > 0 .

(F.37)

Here Jo is a scale factor (which will be determined below by the total energy emitted by the
source). For downwelling Ed, the emitted rays are upward, so ξ̂ · ẑ < 0 and the source term
is positive. The Dirac delta function δ(~x − ~xD) places the source at the detector location
~xD. Inserting this source function into Eq. (F.36), noting that the delta function when
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integrated over the volume of the ocean just picks out the detector location, and noting
that the source function is 0 for ξ̂ · ẑ > 0, the RHS becomes

RHS =

∫
ξ̂·ẑ<0

dΩ

∫
V
dV

1

n2
w

L1(~x,−ξ̂)
[
−Jo ξ̂ · ẑ δ(~x− ~xD)

]
= − Jo

n2
w

∫
ξ̂·ẑ<0

dΩL1(~xD,−ξ̂) ξ̂ · ẑ

=
Jo
n2
w

∫
ξ̂·ẑ>0

dΩL1(~xD, ξ̂) ξ̂ · ẑ

=
Jo
n2
w

Ed(~xD) . (F.38)

The last equation makes use of the definition of Ed as a cosine-weighted integral of the
radiance over the downwelling directions.

The total power emitted by the source function in the adjoint problem, P2, for the
source of Eq. (F.37) is

P2 =

∫
ξ̂·ẑ<0

dΩ

∫
V
dV S2(~x, ξ̂) (F.39)

= − Jo
∫
ξ̂·ẑ<0

dΩ ξ̂ · ẑ

= Jo

∫ π/2

0

∫ 2π

0
cos θ sin θ dθ dφ

= πJo . (F.40)

Equating the last RHS form from Eq. (F.38) and the LHS form from Eq. (F.35), and
using Jo = P2/π from the last equation, gives the desired estimate of Ed:

Ed = π n2
w

∑
u

∑
v

w(u, v)

P2
Lsky(u, v) .

The weight array w(u, v) gives the total weights accumulated in each sky bin; tracing more
rays gives larger w(u, v) values. If each emitted ray has an initial weight of 1, then the
total emitted power is P2 = Nrays, where Nrays is the total number of rays emitted by the
detector. The quantity

f(u, v) =
w(u, v)

Nrays
(F.41)

is then the fraction of the emitted power that is received by bin Q(u, v).
The procedure is similar for other radiometric variables. For estimation of Eu the source

function is chosen to be

S2(~x, ξ̂)) =

 0 if ξ̂ · ẑ < 0

Jo ξ̂ · ẑ δ(~x− ~xD) if ξ̂ · ẑ > 0 .

(F.42)

This again leads to P2 = πJo as in Eq. (F.40). For estimation of scalar irradiances Eod

and Eou, the source functions are those of Eq. (F.37) and (F.42), but without the ξ̂ · ẑ
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factors. These sources when used in Eq. (F.39) lead to P2 = 2πJo. The source function
for computation of total scalar irradiance Eo is

S2(~x, ξ̂) = Jo δ(~x− ~xD) for all ξ̂ ,

which leads to P2 = 4πJo. Finally, the source function for computation of radiance by a
sensor at location ~xD pointed in direction ξ̂D is

S2(~x, ξ̂) = Jo δ(ξ̂ − ξ̂D) δ(~x− ~xD) for all ξ̂ .

This source, when used in Eq. (F.39), leads to P2 = Jo. In this case, Jo is the total power
emitted.

Thus all of these radiometric variables are estimated by an equation of the form

Radiometric variable = fπ n
2
w

∑
u

∑
v

f(u, v)Lsky(u, v) , (F.43)

where the scale factor fπ = 1, π, 2π, or 4π, depending on the variable being estimated.
Equation (F.43) is the fundamental equation used to process the accumulated weights in

a BMC simulation. The normalized weights show what fraction of the sky radiance from
each direction contributes to the in-water radiometric variable of interest. The n2

w factor
accounts for the decrease in solid angle when crossing the sea surface from air to water
(the n2 law for radiance; see Section 13.1.2). The fπ factor accounts for the effects of the
detector angular response.

Note that no mention has been made of the inherent optical properties or their spatial
distribution. Therefore Eq. (F.43) is completely general and applicable to any water body.

For ease of reference, Table F.2 summarizes these results.

Radiometric
Quantity

Emission
Pattern

scale factor fπ

Ed cosine upward π

Eu cosine downward π

Eod isotropic upward 2π

Eou isotropic downward 2π

Eo isotropic 4π

L collimated 1

Table F.2: Emission patterns and scale factors for various radiometric quantities in back-
ward Monte Carlo calculations.
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F.8 The BRDF as a PDF

Equation (13.44) of the BRDF Section 13.6,

Lr(θr, φr) =

∫
2πi

Li(θi, φi)BRDF (θi, φi, θr, φr) cos θi dΩi ,

shows how the BRDF is used in the radiative transfer equation (e.g., in HydroLight),
which is always working with radiances. In Monte Carlo simulations, you are tracking
many individual rays as they interact with the medium and its boundary surfaces. In this
case, the BRDF must be used as a probability distribution function (PDF) to determine
the direction and weight of the reflected ray whenever a ray hits the boundary surface.
This is a tricky business, and the step-by-step process is as follows2.

F.8.1 Computing the Reflected Ray Weight and Direction from a BRDF

The problem statement is simple:

Given: A ray with weight wi is incident onto the surface in direction (θi, φi). The BRDF
of the surface is known.

Needed: The weight wr and direction (θr, φr) of the reflected ray.

Since the input direction (θi, φi) is known, BRDF (θi, φi, θr, φr) can be viewed as an
(unnormalized) bivariate PDF for the reflected angles θr and φr. Note that, in general,
these angles are correlated. Proceed as follows:

1. Compute the directional-hemispherical reflectance for the given (θi, φi):

ρdh(θi, φi) =

∫∫
2πi

BRDF (θi, φi, θr, φr) cos θr dΩr

=

∫ 2π

0

∫ π/2

0
BRDF (θi, φi, θr, φr) cos θr sin θr dθr dφr . (F.44)

2. The reflected ray weight is then

wr = ρdh(θi, φi)wi . (F.45)

3. Compute the cumulative distribution function (CDF) for φr by

CDFφ(φr) =
1

ρdh(θi, φi)

∫ φr

0

∫ π/2

0
BRDF (θi, φi, θ, φ) cos θ sin θ dθ dφ . (F.46)

Note that the directional-hemispherical reflectance is being used to convert the BRDF
into a normalized bivariate PDF for θr and φr. We are then “integrating out” the θr
dependence to leave a PDF for φr, which is then being used to construct the CDF
for φr.

2This development is based on Modest (1993).
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4. Draw a random number u from a uniform [0,1] distribution. Solve the equation

u = CDFφ(φr) (F.47)

for φr. This is the randomly determined azimuthal angle of the reflected ray.

5. Compute the CDF for angle θr from

CDFθ(θr) =

∫ θr
0 BRDF (θi, φi, θ, φr) cos θ sin θ dθ∫ π/2

0 BRDF (θi, φi, θ, φr) cos θ sin θ dθ
. (F.48)

Note that the angle φr determined in step 4 is used in the BRDF in Eq. (F.48) when
evaluating the θ integrals. This accounts for the correlation between θr and φr in the
determination of the reflection angles.

6. Draw a new random number u from a uniform [0,1] distribution and solve the equation

u = CDFθ(θr) (F.49)

for θr. This is the randomly determined polar angle of the reflected ray. You can
now send the new ray on its way.

For all but the simplest BRDFs, Eqs. (F.44) to (F.49) all must be evaluated numerically
for each ray, which can be an enormous computer cost when billions of rays are being traced.

F.8.2 A Simple BRDF Example

The Minnaert BRDF3 is

BRDFMinn(θi, φi, θr, φr) =
ρ

π
(cos θi cos θr)

k . (F.50)

Note that for k = 0 this reduces to the Lambertian BRDF of Section 13.7.
Equations (F.44) to (F.49) can be evaluated analytically for the Minnaert BRDF. Equa-

tion (F.44) evaluates to

ρdh =
2ρ

k + 2
cosk θi ,

which reduces to ρdh = ρ for a Lambertian surface. Equation (F.46) gives just

CDFφ(φr) =
φr

2π
.

Inserting this into Eq. (F.47) and solving for φr gives

φr = 2πu . (F.51)

Thus the azimuthal angle is uniformly distributed over 2π radians. The CDF for θr as
given by (F.48) is

CDFθ(θr) = 1− cosk+2 θr .

3This BRDF was invented to explain the curious fact that the full moon appears almost uniformly
bright from the center to the edge of the lunar disk. If the lunar dust were a Lambertian reflector, the full
moon would appear bright at the center and darker at the edge. However, the Minnaert BRDF agrees with
observation over only a limited range of angles.
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Equation (F.49) then gives
θr = cos−1

(
k+2
√
u
)
,

after noting that 1− u has the same uniform distribution as u.
For a Lambertian surface (k = 0 in the previous equation), the randomly generated θr

angles are determined via
θr = cos−1

(√
u
)
, (F.52)

which has been discussed in Section E.3. Although not intuitive, this distribution is pre-
cisely what is necessary to make the number of reflected rays per unit solid angle (which
leads to the reflected radiance) proportional to cos θr, as required for a Lambertian surface.



APPENDIX G

Image Prediction

Chapter 16 outlined the basics of photometry and the associated “classical” visibility the-
ory. Visibility theory as developed in Section 16.6.2 assumes a human observer, and it
implicitly assumes that there is adequate ambient lighting to see the target. Whether or
not the target is visible then depends only on the apparent visual contrast between the tar-
get and the background as given by some measure of contrast such as the Weber contrast
of Eq. (16.15) or the Michelson contrast of Eq. (16.20).

Two questions now arise:

1. How must the theory be modified if the observer is not a human eye but is, say, a
digital camera?

2. How must the theory be modified if the ambient light is very faint so that there
may not be enough light for an eye or camera to see the target regardless of its
contrast? This could be the case at night, or deep in the ocean where almost no
sunlight penetrates.

The first of these questions in principle has a simple answer. Many of the previous
results such as Eq. 16.1 can be used if the photopic luminosity function Kcd ȳ(λ) is replaced
by the calibrated spectral response of the camera. An example of a normalized camera
response curve is shown in the left panel of Fig. 16.6. However, the hard part is to get
the camera scale factor corresponding to the luminous efficacy Kcd. Good luck getting a
camera manufacturer to give you that. Those folks do not speak the language seen here,
they may not have ever determined the camera equivalent of Kcd because no customer ever
asks for it, and it would probably be a company trade secret anyway.

The best we can do here is take a closer look at the problem of predicting how a digital
image of an object will change in brightness, sharpness, and color due to the processes
of absorption and scattering as the viewing distance increases. I call this problem image
prediction, to distinguish it from image processing and image analysis. Image processing
refers to the manipulation of a given digital image, usually in order to improve some
measure of its quality. Image analysis is the extraction of information from an image, often
using image processing techniques. Image processing and image analysis are applied to a
given, usually degraded, image. Image degradation includes darkening of the original image
due to absorption of light by water, blurring of image detail due to scattering by the water,
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and changes in color due to the wavelength dependence of the water optical properties.
The job of image prediction is to compute the degraded image for a given environment,
starting with an undegraded image as would be seen at zero distance or through a vacuum.

These topics of this appendix thus include the role of the point spread function (PSF)
in image degradation, the boundary conditions commonly used in image prediction calcu-
lations, the use of Fourier transfer techniques, and various computational issues. The final
sections introduce the modulation transfer function (MTF). These sections are illustrated
with predictions of image appearance for various situations. The numerical examples are
based on simulations of images under water, but the mathematics are applicable to any
absorbing and scattering medium and to any level of ambient light.

As is too often the case, textbooks often present the theory only for continuous functions
and say little if anything about the important differences when the same ideas are applied
to discrete functions of finite spatial extents, i.e., to digital images. As seen in Section
A.5, there are important differences in the Fourier convolution theorem for continuous
and discrete cases. No publication I have found says a word about how to convert a point
spread function (PSF), which has units of inverse meters squared, into a corresponding non-
dimensional function needed for use in the Fourier convolution theorem. The literature also
says very little about boundary effects on image prediction. The following sections give
those details as I have worked them out so that the two techniques of convolution and
Fourier transforms give the same prediction—or close to the same in some cases, but with
clearly understood causes for the differences.

G.1 The Importance of the PSF in Image Prediction

The PSF plays a fundamental role in the prediction of how an object appears when seen
through an absorbing and scattering medium such as water. Suppose you are looking in a
particular direction at point (xo, yo) in Fig. G.1 from a distance zo away from the shark.
Most of the light detected in this viewing direction probably comes from point (xo, yo) in
the image. However, every other point in the scene contributes at least a small amount of
light to the detected signal in the viewing direction (xo, yo) because of scattering from those
other directions into the viewing direction. How much light those other points contribute
to a given direction is determined by the value of their PSFs at the angular distances away
from the viewing direction.

Let I(x, y, 0) represent the “bright-dark” pattern of the shark image when seen at
distance z = 0, or as seen through a vacuum. Thus for a gray-scale digital image and 8 bit
resolution, I = 0 for a black pixel and I = 28 − 1 = 255 for a white pixel. When viewing
a particular point (xo, yo) in the image through a vacuum at some distance zo from the
shark, the detected radiance comes only from point (xo, yo) and has the value I(xo, yo, 0).
However, when viewing point (xo, yo) in the through a scattering medium, every point in
the scene contributes to the radiance seen at (xo, yo) . The concentric white circles in
the figure represent contours of PSF (R,ψ). Point (x1, y1) thus contributes a radiance of
I(x1, y1, 0)PSF (R1, ψ1), where angle ψ1 = tan−1(ρ1/z) and R1 = zo/ cos(ψ1). Likewise
point (x2, y2) contributes radiance I(x2, y2, 0)PSF (R2, ψ2) , where angle ψ2 = tan−1(ρ2/z)
and R2 = zo/ cos(ψ2). The total radiance seen looking toward point (xo, yo) from a distance
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Figure G.1: Illustration of how the PSF describes the contributions of all points (x, y) in
an image to the signal at a particular point (xo, yo). The white circles surrounding points
(x1, y1) and (x2, y2) represent the PSFs of those points.

zo away is given by summing up the contributions from all points in the image:

I(xo, yo, zo) =

∫
all x

∫
all y

I(x, y, 0)PSF (xo − x, yo − y,R(xo − x, yo − y)) dx dy . (G.1)

The connection between points in the image at distance zo away and the distance and
angular variables used for PSFs is

ρ =
√

(xo − x)2 + (yo − y)2 , ψ = tan−1

(
ρ

zo

)
, R =

zo

cos(ψ)

so that
PSF (xo − x, yo − y,R) = PSF (R,ψ) .

Thus, given the inherent appearance of an object (the appearance at distance z = 0 or
through a vacuum) and the PSF of the medium, the appearance of the object as seen through
the medium can be computed. In other words, the point spread function completely
characterizes the effect of the environment on an image .

It is usually implicitly assumed that the field of view (FOV) of the camera (or eye)
taking the image is small enough that the range R from the viewing point (xo, yo, zo) to
point (x, y, 0) in the image plane is approximately the distance zo from the observer to the
image plane. A 50 mm camera lens with a “full-frame” CCD (corresponding to 35 mm
film) has a FOV of 47 deg from one corner of the image to the opposite corner. If the
coordinate system is located at the center of the image, the maximum off-axis angle is then
23.5 deg, in which case R = zo/ cos(23.5) = 1.09zo, and there is less than a 10% error for
any pixel in using R = zo. For an 80 mm lens, the error is less than 4%. The assumption
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that R ≈ zo is always hiding in the background but never seems to be mentioned. Most
publications do not even show the distance in the argument of the PSF; it is just assumed
to be the distance from the observer to the image plane. This approximation is adequate
for most image prediction. The exception would be the use of a very wide angle lens, in
which case the range from the edges of the image to a viewing direction near the center
could be much greater than zo, and the contributions from the edges of the image would
be reduced because of the longer ranges through the water. In the equations below I will
write R as the distance variable in the PSF to keep the equations general.

Note that in a vacuum and with a perfect optical system, the PSF reduces to a 2-D
Dirac delta function: PSF (xo − x, yo − y) = δ(xo − x) δ(yo − y), in which case

I(xo, yo, zo) =

∫
all x

∫
all y

I(x, y, 0) δ(xo − x) δ(yo − y) dx dy = I(xo, yo, 0) .

Thus the image at distance zo is the same as at distance 0.

G.2 Image Boundary Conditions

We now begin to dig into the ugly details that must be understood in order to write a
computer program to predict the appearance of a given digital image. It seems that these
details are never discussed in the standard texts, but they are absolutely crucial to getting
correct results.

Figure G.2 illustrates the shark of Fig. G.1, now including the surrounding ocean, as
might be seen by a diver or a camera. Suppose we are interested just in the shark, so
we take a digital photograph that includes the shark and some of the surrounding area.
The white dashed line around the shark indicates the area captured in the photograph.
This image is of size Nx by Ny pixels, captures a physical area of Lx by Ly meters at the
distance zo of the shark from the camera. I’ll refer to the plane a distance zo from the
camera as the object plane, i.e., the (x, y) plane containing the object being photographed,
with distance zo being measured along the z axis, which is pointing towards the camera.
Of course, the camera is really collecting light from the full 3-D volume of the ocean, not
just from a plane, but we can treat the light as though it is coming from a plane, and the
term object plane is well established in optics.

The inherent optical properties (IOPs) of the water are assumed known. These IOPs
are the absorption coefficient and the volume scattering function, or some equivalent such
as the beam attenuation coefficient, the albedo of single scattering, and the scattering phase
function. Knowing the complete set of IOPs, we can compute the point spread function
PSF (R,ψ) of the water as a function of off-axis viewing direction ψ and viewing range R.

Suppose that we are looking at a particular pixel in the image of the shark, say the
tip of its nose. As shown in the previous section the light received by the camera pixel
that images the tip of the shark’s nose comes not just from light directly transmitted from
the shark’s nose to the camera, but also from all points in the object plane because of
scattering. That is, light from the scuba diver, the submarine, the sea surface, and the
bottom can be scattered into the viewing direction of the shark’s nose.

Comment on notation: It is common to use the letters i, j, k for dummy summation
indices. However, I use i for

√
−1. I will therefore use r and s for indices on spatial

variables, e.g., image pixel (xr, ys) or (r, s), and u and v for indices on frequency variables,
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Figure G.2: Illustration of a shark as seen in the ocean. The white dotted lines around the
shark represent the part of the entire x, y object plane captured by a digital camera.

e.g., µu or νv. Moreover, since we are dealing with digital (discretized) images, I’ll start
with the discrete forms of the equations, and show the corresponding results for continuous
variables only as needed to point out certain differences between discrete and continuous
formulations.

G.3 Convolution

The term convolution refers to a mathematical operation that shows how two functions
“overlap” to produce a third function. However, as with Fourier transforms, there are
important differences for functions of continuous versus discrete variables, and for functions
defined on infinite versus finite domains. In the present discussion, these issues are related
to the choice of boundary conditions for extending an image beyond its boundary.

G.3.1 Serial Convolution

As before, let I(xr, ys, R) or I(r, s, R) represent the image at pixel (r, s), at physical location
(xr, ys) of the object plane, when viewed from a distance R. I(r, s, 0) is then the pattern
of bright and dark values (typically values from 0 to 255 at a given wavelength) at pixel
(r, s) of the image, when seen from zero distance. This is the “actual” or “true” image
of the object, as would be seen in the absence of the water. I(r, s, 0) is assumed given;
the problem is to predict what the object will look like when viewed from distance or
range R through water with given IOPs and given external lighting conditions (e.g., solar
zenith and azimuthal angle and sky conditions). When looking at pixel (r, s) of the scene
from a distance R away, the magnitude of the image at pixel (r, s) is given by (recall the
continuous variable form in Eq. (G.1))

I(r, s, R) =

+∞∑
r′=−∞

+∞∑
s′=−∞

I(r′, s′, 0)PSF (r − r′, s− s′, R) ∆x∆y . (G.2)
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Equation (G.2) is the fundamental equation for predicting what an object will look like when
viewed from a distance through an absorbing and scattering medium like water. This is the
equation Nature uses. Note that the summations extend over the entire object plane. This
equation is usually, although imprecisely, called a convolution1. However, there are two
variants of Eq. (G.2), so to be specific I will call Eq. (G.2) the infinite, discrete, serial
convolution or infinite, serial convolution summation.

Equation (G.2) gives exactly the correct prediction of I(r, s, R), given I(r, s, 0) and
the point spread function, but now we encounter the first problem. The camera has not
photographed the entire object plane, but just the region containing the shark as outlined in
Fig. G.2. We assume that we know what the shark looks like from distance 0, but only for
a finite region of the object plane. If we pick the origin of the (x, y) coordinate system to be
at the lower left of the image, then we know I(r, s, 0) for the pixel range of r = 0, 1, ..., Nx−1
and s = 0, 1, ..., Ny − 1. (We could just as well pick the origin of the (x, y) system at the
middle of the image, for example, in which case r = −Nx/2, ...,−1, 0, 1, ..., Nx/2 − 1 and
s = −Ny/2, ...,−1, 0, 1, ..., Ny/2− 1. The choice of the origin does not matter.) Given the
image over just a finite area of the object plane, we are forced to truncate the summations
of Eq. (G.2) to just the range where the image is available. Equation (G.2) then becomes

I(r, s, R) =

Nx−1∑
r′=0

Ny−1∑
s′=0

I(r′, s′, 0)PSF (r − r′, s− s′, R) ∆x∆y , (G.3)

for (r, s) = (0, ..., Nx−1, 0, ..., Ny−1). I will call this equation a truncated, serial convolution
summation or a truncated, discrete, serial convolution. The sums of Eq. (G.3) can be
evaluated with the understanding that whenever r′ > r or s′ > s, which would lead
to negative indices for the PSF, the term is simply set to zero. The omission of the
contributions from pixels outside the area of the image means that there is no contribution
to I(r, s, R) from the these pixels. This is equivalent to assuming that the ocean is black
outside the image, as seen in Fig. G.3. The consequences of omitting contributions from
outside of the imaged area will be seen in Section G.6.2.

The standard notation for such a summation of two non-dimensional functions f(r, s)
and g(r, s) is

f ∗ g = f(r, s) ∗ g(r, s) ,
Nx−1∑
r′=0

Ny−1∑
s′=0

f(r′, s′) g(r − r′, s− s′) . (G.4)

In the present case, f(r, s) is the image and g(r, s) is derived from the PSF in a way that
will be seen in Eq. (G.8).

G.3.2 Cyclic Convolution

Rather that just omit the contributions of the object plane lying outside of the imaged
area, another possibility is to extend the imaged area in all directions. One way to do this
is to tile the entire plane with repeated copies of the imaged area, as illustrated in Fig.
G.4.

1Equation (G.2) is the discrete version of the convolution integral for continuous functions:

I(x, y,R) =

∫ +∞

x′=−∞

∫ +∞

y′=−∞
I(x′, y′, 0)PSF (x− x′, y − y′, R) dx′ dy′ .
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Figure G.3: The object plane as modeled by a truncated discrete serial convolution. The
black area (extending to ∞ in all directions) is not included in the serial convolution
summations of Eq.(G.3).

Figure G.4: The object plane as modeled by cyclic convolution and Fourier transforms.
The multiple sharks (extending to ∞ in all directions) illustrate the periodicity inherent
in the use of cyclic convolution and Fourier transforms.

The convolution equivalent of tiling the plane as in Fig. G.4 is called cyclic convolution.
For this choice of boundary conditions, Eq. G.3 is replaced by

I(r, s, R) =

Nx−1∑
r′=0

Ny−1∑
s′=0

I(r′, s′, 0)PSF (r− r′+NxH(r′− r), s− s′+NyH(s′− s), R) ∆x∆y ,

(G.5)



798 APPENDIX G. IMAGE PREDICTION

and Eq. (G.4) is replaced by

f(r, s)~g(r, s) ,
Nx−1∑
r′=0

Ny−1∑
s′=0

f(r′, s′, 0)g(r−r′+NxH(r′−r), s−s′+NyH(s′−s), R) , (G.6)

where H(k) is the Heaviside step function defined in Section A.5 by

H(`) ,

 0 if ` ≤ 0

1 if ` > 0

We are now dealing with 2-D functions (images) that are periodic in space. For 2-D
functions, the x and y directions wrap around independently. The Heaviside step functions
are used to wrap the indices of g whenever r − r′ is outside the range of 0 to Nx − 1 or
s−s′ is outside the range of 0 to Ny−1. For example, if r = 2 and r′ = 4 (and s ≥ s′) then
r− r′ = −2, but g(−2, s− s′) is not defined. The value of 2− 4 +NxH(4− 2) = −2 +Nx,
so the value of g(Nx − 2, s− s′), which is defined, will be used.

In the present case, both f and g have the same dimensions2 Nx by Ny. Equation
G.6 is called the 2-D cyclic convolution of two discrete functions f(r, s) and g(r, s). The
symbol ~ is used to distinguish cyclic convolution from serial, which uses symbol *. Note
that two discrete functions f and g of finite size have both serial and cyclic convolutions,
but f ∗ g 6= f ~ g. This is illustrated in Fig. G.5.

Figure G.5: Illustration of the difference in discrete serial and cyclic convolutions for 1-D
functions f and g with N = 16 points in each.

As Bracewell (1986, page 363) notes in discussion of the 1-D case, the NH(r′ − r)
term is explicitly required in computations, although it is commonly omitted when writing

2In general, discrete convolutions do not need to have the same number of points for f and g; see
Bracewell (1986, Chapter 3) for a full discussion. The IDL routine CONVOL uses flags to select the type
of convolution and how to extend the data, e.g., EDGE ZERO = 1 for serial with zero values outside the
image as in Fig. G.3, EDGE WRAP = 1 for cyclic as in Fig. G.4, plus several other options for how to
extend the data, which are not relevant here.
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equations because the wrapping of indices is understood when doing cyclic convolution.
“Understood” maybe, but very confusing when it comes time to write a computer program
and you forget that you must account for negative indices when indexing arrays. I will also
usually omit the Heaviside functions for brevity of notation but they must be included in
computer programs that carry out these calculations..

The spatial periodicity implicit in the use of cyclic convolution is the same as is implicit
in the use of Fourier transforms. A Fourier transform represents an image I(r, s) as sums of
sines and cosines whose fundamental wavelengths are Lx and Ly in the x and y directions.
The use of Fourier transforms, i.e. sines and cosines, implies that the image is periodic is
space, as illustrated in Fig. G.4. In this case, there is a contribution to the image I(r, s, R)
from all points of the object plane, but the contribution comes from an infinite array of
sharks, not from the scuba diver or submarine seen in Fig. (G.2).

The computer time required to evaluate either Eq.(G.4) or (G.6) is proportional to
N2
x × N2

y . That is, there are Nx × Ny points to be predicted, each of which requires
summations over Nx × Ny points. This is computationally prohibitive for Nx and Ny

larger than a few hundred, and a typical digital image may have several thousand pixels
in each direction. The next section develops the mathematical tools needed to evaluate
the cyclic convolution summations of Eq. (G.6) using the extremely efficient fast Fourier
transform (FFT).

In summary, it must be kept in mind there are three physical problems involved in
image prediction:

1. the image as seen in the real world (Fig. G.2),

2. the image as modeled by serial convolution (Fig. G.3),

3. the image as modeled by cyclic convolution or Fourier transforms (Fig. G.4).

These are three physically different radiative transfer problems, and we cannot expect
that the serial convolution and cyclic convolution or Fourier techniques will agree exactly
with each other, and neither will agree exactly with the image in nature. However, cyclic
convolution and Fourier transforms will give identical results because both describe an
infinite tiling of the of image. In other words, there are different boundary effects for these
three problems due to the three different visual environments outside the area of interest.
The best we can hope for is that the contributions from areas of the object plane outside of
the given image will be small compared to the contributions from areas within the image.
The importance of these boundary effects will be studied in Section G.6.2.

G.4 Image Prediction Using the Convolution Theorem and
FFTs

Depending on your choice of boundary conditions, either Eq. (G.3) or Eq. (G.5) is the
basis for computing the appearance of an image seen at some distance from the object
plane. However, those equations require evaluation for each of the Nx ×Ny image pixels,
and each pixel receives a contribution from every other pixel. The computation time is
therefore proportional to N2

x×N2
y . The computer time required to evaluate these equations

is prohibitive for large images (Nx and Ny greater than 1000 or so).
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Let us choose the bounday condition corresponding to the tiling seen in Fig. G.4, which
corresponds to cyclic convolution as seen in Eq. (G.6). Combining these equations, we can
write

I(r, s, R) = I(r, s, 0) ~ {PSF (r, s, R) ∆x∆y}
, I(r, s, 0) ~ PSFnd(r, s, R) . (G.7)

The last equation defines a nondimensional PSF as the dimensional PSF times the grid
resolution ∆x∆y:

PSFnd(r, s, R) , PSF (r, s, R) ∆x∆y . (G.8)

Equation (G.7) is just compact notation for the summations seen in Eq. (G.5), so
nothing has yet been gained numerically. However, the extremely important Fourier con-
volution theorem of Eq. (A.22) states that the Discrete Fourier Transform (DFT) of a
cyclic convolution is NxNy times the product of the DFTs of the two functions being
convolved. When applied to Eq. (G.7), this gives

D{I(r, s, R)} = NxNyD{I(r, s, 0)} � D{PSFnd(r, s, R)} (G.9)

This can be written as

Î(u, v,R) = NxNyÎ(u, v, 0)� P̂SF nd(u, v,R) , (G.10)

where the hat on the symbols denotes the Fourier transform, and the (u, v) arguments

label the spatial frequencies in the (x, y) directions. Î(u, v, 0) and P̂SF nd(u, v,R) are both
2-D arrays of size Nx × Ny, i.e. matrices. However, the product seen in Eq. (G.10) is
an element-by-element (spatial frequency by spatial frequency) multiplication, not matrix
multiplication. This is denoted by the � symbol, which is sometimes called the Hadamard
product of the arrays.

The importance of Eq. (G.9) is that the 2-D DFTs can be evaluated using the Fast
Fourier Transform (FFT) algorithm. A 2-D FFT requires computer time proportional to
Nx log2Nx×Ny log2Ny. This is much faster for large Nx and Ny. For example, if processing
a Nx = 1024 × Ny = 1024 image, the brute force summations of Eq. (G.5) require the
order of 1012 calculations, whereas the FFTs require the order of 108 calculations, which
is a factor of 104 less computer time.

To predict the image as seen at a distance, the procedure can be summarized as

1. Compute the DFT of the original image I(r, s, 0) to get Î(u, v, 0)

2. Compute the DFT of the non-dimensional PSF, PSFnd(r, s, R) to get P̂SF nd(u, v,R)

3. Multiply the two DFS element by element, including the NxNy factors, to get

Î(u, v,R)

4. Take the inverse DFT of Î(u, v,R) (using the inverse FFT) to get the final image
I(r, s, R).

All of this can be summarized in one equation:

I(r, s, R) = D−1{Î(u, v,R)} = D−1{NxNy Î(u, v, 0)� P̂SF nd(u, v,R)} (G.11)

A more detailed procedure will be given in the next section.
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G.5 Computational Issues

As is usually the case when going from elegant theory to a computer program, confusing
computational details arise in the application of Eq. (G.11). These are addressed in this
section.

G.5.1 Converting PSF (R,ψ) to PSF (r, s, R)

The first issue to resolve is how to obtain the PSF in Cartesian coordinates, PSF (xr, ys, R) =
PSF (r, s, R), from a PSF given in polar coordinates, PSF (R,ψ). Point spread functions
are usually assumed to be azimuthally symmetric, in which case they are given as functions
of the off-axis angle ψ and range R. However, the FFT requires PSFs as functions of spatial
Cartesian coordinates (r, s) and range. The conversion of PSF (R,ψ) to PSF (r, s, R) leads
to ambiguities, and I can find not a single word in any publication or web site discussing
the “correct” way to obtain PSF (r, s, R) from PSF (R,ψ).

Figure G.6 shows three (x, y, z) coordinate systems that could be used to specify pixel
locations in an image. The dotted lines represent pixels in an image with Nx = 8 and
Ny = 4 pixels. The small circles in some of the lower left pixels are the pixel centers. In
the previous equations, I have placed the origin of the (x, y) system at the lower left of the
image, as shown by the black axes in the figure. This choice gives the (x, y) values of the
pixel centers as [(r + 1

2)∆x, (s+ 1
2)∆y] for r = 0, 1, ...Nx − 1 and s = 0, 1, ..., Ny − 1. The

choice of axes origin affects only the labeling of the pixel locations, it does not affect the
DFT of I(r, s) because the DFT simply takes an Nx by Ny array of numbers and carries out
the evaluation of Eq. (A.10). If the origin of the axes is placed the center of the image as
shown by the blue axes in the figure, the pixel centers would still be at [(r+ 1

2)∆x, (s+ 1
2)∆y],

but with r = −Nx/2, ...0, ...Nx/2− 1 and s = −Ny/2, ...0, ..., Ny/2− 1.
When evaluating the convolution summations (G.5), each point (r, s) is getting its own

PSF via the PSF (r′− r, s′−s,R) factor, so it is only the differences in pixel locations that
are needed, not their absolute values in any particular coordinate system. In this case, the
distance between the pixels in the object plane is

ρ(r, s, r′, s′) =
√

[(r − r′)∆x]2 + [(s− s′)∆y]2 .

Then for a viewing range of R, the angle ψ of pixel (r′, s′) as seen looking at pixel (r, s) is

ψ(r, s, r′, s′) = tan−1 ρ(r, s, r′, s′)

R
. (G.12)

This value of ψ(r, s, r′, s′) is the value of ψ to be used in PSF (R,ψ) to obtain the PSF for
that pair of pixels. No explicit conversion of PSF (R,ψ) to PSF (r, s, R) is needed.

However, in application of the DFT formulas, we must first obtain an Nx by Ny array of
PSF values PSF (r, s, R), and that requires specification of a particular coordinate system.
Consider a specific example for the (r, s) = (3, 1) pixel shown in Fig. G.6, which is where
the origin of the red system is located in the figure. If the black coordinate system seen in
the figure is used, then the value of ρ to be used in Eq. (G.12) to obtain the needed value
of ψ is

ρ(3, 1) =
√

[(3.5∆x)2 + (1.5∆y)]2 ,

This distance is shown by the longer green arrow. If the blue system centered at (x, y) =

(Lx/2, Ly/2) is used, then that same pixel has a ρ value of ρ(3, 1) =
√

[(−1
2∆x)2 + (−1

2∆y)]2,
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Figure G.6: Possible coordinate systems for labeling pixels and defining PSF (x, y).

which is shown by the shorter green arrow. If the red system is used, then this particular
pixel is at the origin, so ρ = 0 and ψ = 0 is to be used in PSF (ψ,R). Thus, depending
on the choice of origin for the coordinate system, you get a different array of numbers
for PSF (r, s, R), hence a different prediction for the degraded image I(r, s, R). This is
philosophically unsatisfactory because the image in nature cannot depend on the choice of
a coordinate system.

Numerical experimentation shows the following. If the origin is chosen at one corner
of the image, say the lower left as for the black system in Fig. G.6, then the predicted
image has a gradient of brightness from that corner to the opposite corner, which is clearly
incorrect. Moreover, this choice of origin does not reproduce the azimuthal symmetry of
the PSF; it is really capturing just one quadrant of the PSF. If the origin is chosen at
the exact center of the image, as in the blue system, then the agreement between the
convolution prediction of Eq. (G.5) and the FFT prediction of Eq. (G.11) is generally
close, but there is a difference of a few percent (at least for my test images) that seems due
to an offset of half a pixel between the two predictions. This seems to be due to the fact
that ψ = 0 occurs in the convolution sums whenever r = r′, s = s′. However, ψ is never
exactly zero for the blue system because the minimum distance from the origin to a pixel

center is
√

(1
2∆x)2 + (1

2∆y)2, as illustrated by the short green arrow in the figure. If the

origin is shifted to the center of one of the pixels nearest the center of the image, such as
the red system, then the agreement between convolution and FFT predictions is almost
perfect (discounting the effects of boundaries, to be discussed in the next section).

There is another indication that picking the origin at the center of a pixel as near as
possible to the center of the image (e.g., the red system) is the correct choice. For an
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azimuthally symmetric function, the 2-D Fourier transform is real3. With this choice, the
imaginary part of the transform of PSF (x, y), which depends only on r =

√
x2 + y2 and

not on θ = tan−1(y/x), is identically zero. With any other choice for the origin (e.g., the
blue system), the imaginary part of the transform is non-zero.

Figures in the literature (e.g., Zisserman, 2014, page 5) always show PSF (x, y) con-
toured as a “bull’s eye” in the middle of the (x, y) domain, without any further comment.
The implication is that the coordinate system for defining PSF (r, s) is chosen at the mid-
dle of the (x, y) region of interest. That choice does seem to work, so numerically things
seem to be OK. But philosophically, there is a dependence of PSF (r, s, R) on the choice of
coordinate system, which makes it difficult for me to sleep at night. I have not resolved this
issue in a way that is satisfactory to my understanding, so I would be most appreciative if
some dear reader of this section could clarify this matter for me.

Philosophy aside, PSF (r, s, R) can determined as follows. Pick an (x, y) coordinate
system centered at or near the center of the image. Then for each image pixel, obtain the
distance ρ of the pixel center from the origin via

ρ =
√
x2
r + y2

s . (G.13)

using whatever (r, s) indexing scheme is desired. Then obtain the off-axis angle ψ via

ψ = tan−1 ρ

R
. (G.14)

Use this value of ψ in the known PSF (R,ψ) to get the values of PSI(r, s, R) for use in
Eqs. (G.8) and (G.9). Note that all pixels having the same value of ρ have the same value
of PSF (r, s, R), independent of the azimuthal angle of the pixel relative to the x axis of the
coordinate system. (There will generally be 4 such pixels for each ρ value.) The generated
PSF (r, s, R) thus has the required azimuthal symmetry.

G.5.2 Image Shifting

There is a final issue to discuss before we get down to the business of image prediction.
The upper left panel of Fig. G.7 shows an Nx ×Ny = 32 × 32 test pattern used for code
debugging. The upper right panel shows this image as seen through water with particular
optical properties and rescaled so that the maximum and minimum pixel values are 255 and
0 to show the greatest detail. The lower left panel shows the final image after processing
either by the cyclic convolution of Eq. (G.6) or by the FFT Eq. (G.11), with the original
image as f(r, s) and the non-dimensional PSF of Eq. (G.8) as g(r, s). Note that the final
image has undergone a left circular shift by Nx/2 + 1 pixels and a downward circular shift
by Ny/2 + 1 pixels. This strange shifting of pixel locations does not occur when the image
is computed by serial convolution using Eq. (G.3).

The cause of this shifting is explained as follows using Fig. G.8. The 1-D equivalent of
Eqs. (G.6) and (G.7) is (omitting the distance arguments)

I(r) ~ PSF (r) ,
N−1∑
r′=0

I(r′)PSF (r − r′ +NH(r′ − r)) , (G.15)

3To show this, convert the 2-D transform in Cartesian coordinates (x, y) of a function f(x, y) to polar
coordinates (r, θ) and a function f(r, θ) = f(r). This leads to what is called a Hankel transform of zero
order.



804 APPENDIX G. IMAGE PREDICTION

Figure G.7: Effect of convolution type on image shifting. Upper left: a 32x32 test image.
Upper right: the degraded image as computed by serial the convolution of Eq. (G.3) as
seen through water with particular optical properties. Lower left: the degraded image as
computed by either cyclic convolution or FFTs, without any image shifting performed.
Lower right: the degraded image as computed by either cyclic convolution or FFTs, after
shifting of the original image.

In the upper-left panel of Fig. G.8, the green dots represent an N = 32 pixel image I(r)
increasing in brightness with increasing index r. The blue dots represent a nondimensional
PSF. The red dots show the 1-D circular convolution as computed by Eq. (G.15). With
cyclic convolution, whenever the PSF r − r′ index in Eq. (G.15) is negative, the index is
circularly shifted, or wraps around, to a positive value in the right half of the PSF before
multiplication by the image I(r). This causes the monotonically increasing I(r) to be
circularly shifted by N/2 pixels so that the larger “right half” of the convolved image is
now in the left half of the r domain, and the smaller “left half” of the convolved image is in
the right half of the r domain. The same thing happens in two dimensions. Whenever the
PSF r− r′ index in Eq. (G.6) is negative, the index is circularly shifted, or wraps around,
to a positive value in the right half of the PSF. Ditto for s− s′ being less than 0, in which
case the s− s′ value wraps around to the top half, respectively, of the PSF. This wrapping
of indices between the left/right and top/bottom halves of the PSF causes a wrapping of
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the 4 quadrants of the final image. Note that this is a shifting of the 4 quadrants of the
original image; it is not a rotation of the original image. The use of FFTs via Eq. (G.11)
is exactly equivalent to the use of cyclic convolution, so a degraded image computed by
either cyclic convolution (Eq. G.6) or FFTs (Eq. G.11) shows the shift.

Figure G.8: Illustration of image shifting cause by 1-D circular convolution. The green
dots in the upper-left panel represent an N = 32 pixel image I(r) increasing in brightness
with increasing index r. The blue dots represent a PSF. The red dots are the circular
convolution as computed by Eq. (G.15). The upper-right panel shows the green image
shifted before convolution; the lower-left panel shows the PSF shifted before convolution;
the lower-right panel shows the final convolution being shifted.

Fortunately the fix for this situation is simple: before processing the original image, do
a right circular shift of the image by Nx/2 pixels and a top circular shift by Ny/2 pixels4.
Because convolution is commutative, i.e. f ~ g = g ~ f , it does not matter whether you
shift the original image I(r, s, 0) or the PSF (r, s, R). The upper-right panel of Fig. G.8
shows the original image shifted before convolution; the convolution is now is as intuitive
expected without any shifting. The lower-left panel of the figure shows the original image
unshifted and the PSF shifted before convolution. You can also wait until the end of

4In IDL this shift is performed by the command Ishifted(r, s) = SHIFT(I(r, s), Nx/2, Ny/2). In MAT-
LAB, the command is CIRCSHIFT. However, in Fortran 95, the CSHIFT function with positive argu-
ments moves the elements left and down, rather than right and up. So in Fortran the command is
Ishifted(r, s) = CSHIFT(I(r, s),−Nx/2,−Ny/2).
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processing and shift the final image I(r, s, R); the result is shown in the lower right panel.
You get the same unshifted final result by each of these three shifting options.

However you choose to do it, shift you must or the final image will have a quadrant-
shifted layout like that in the lower left of Fig. G.7. In the following simulations using
FFTs or cyclic convolution, I shift the original image at the start of processing. Note that
no shifting is done if brute force serial convolution is being used (Eq. G.3). Only one shift
is needed; shifting both the original image and the PSF leads back to a shifted final image.

G.5.3 Summary of the FFT Algorithm

The above developments give three ways to compute the degraded image I(r, s, R) given the
image at zero viewing distance, I(r, s, 0), and the PSF at distance R. The first is via brute-
force serial convolution via Eq. (G.3). The second is via brute-force cyclic convolution via
Eq. (G.6). The third is via the use of FFTs via the following steps:

1. For each pixel (r, s) of the image, compute PSF (r, s, R) via Eqs. (G.13) and (G.14),
using a coordinate system centered as near as possible to the center of the image.

2. Compute the nondimensional function PSFnd(r, s, R) using Eq. (G.8).

3. Shift the original image I(r, s, 0) to the right by Nx/2 + 1 pixels and upward by
Ny/2 + 1 pixels.

4. Compute the DFT of the shifted original image I(r, s, 0).

5. Compute the DFT of PSFnd(r, s, R).

6. Multiply these two DFTs together element by element, including the NxNy factors
seen in Eq. (G.10).

7. Take the inverse DFT of this product as seen in Eq. (G.11) to obtain the degraded
image I(r, s, R).

I can find no text or publication that presents all of the results developed above, in par-
ticular

1. the NxNy factor in the convolution theorem (G.10) (other than one line in Bracewell
(1986) for the 1-D version),

2. the ∆x∆y factors on the PSF seen in Eq. (G.8), and

3. the spatial shifting of pixels in the final image when FFTs are used.

If you do not include these NxNy and ∆x∆y factors, the FFT predictions will be off by a
factor of NxNy ∆x∆y = Lx Ly from the convolution summation predictions of Eq. (G.5).
It was this disagreement that led me to re-examine everything from scratch and to write
this appendix.

In all fairness, much image prediction is done with a PSF that is normalized to 1
at ψ = 0. In that case, and ignoring the factors just mentioned, the predicted image
I(r, s, R) does have the correct relative pattern of brightness. Using a normalized PSF and
ignoring the other factors accounts for the effects of scattering in blurring an image, which
is determined by the shape of the PSF. However, a PSF normalized to 1 at ψ = 0 cannot
account for the quantitative effect of absorption in darkening the image, which depends on
the magnitude of the PSF. If you are interested only in the ratio of the brightest pixel to the
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darkest, then you do get the correct answer. However, it costs no more in computer time
to work with a PSF in units of 1/meter2 and to include the NxNy and ∆x∆y factors, in
which case the image I(r, s, R) has the correct absolute brightness. That is, the prediction
accounts for the effects of both absorption and scattering on the final image. If all you
care about is a brightness ratio, you can obtain that from the properly computed absolute
brightness values at the last step of your analysis. Finally, if you do not account for
the circular shifting inherent in cyclic convolution and FFTs, then your final image will
be spatially shifted as seen above, although relative pixel brightnesses between particular
pixels will be correct.

G.6 Understanding Image Predictions

We now have the theory in hand. The remaining sections of this chapter compare images
I(r, s, R) computed both by the brute-force truncated serial convolution sum of Eq. (G.3)
and by the cyclic convolution/FFT algorithm just described, for different PSFs, for different
lighting environments, and so on. These simulations illustrate the effects of boundary
conditions, water IOPs, and ambient lighting on image degradation. The processing of
PNG and JPEG files will also be discussed.

G.6.1 Example Point Spread Functions

The following comparisons use PSFs corresponding to various water IOPs and viewing
distances. Figure G.9 shows PSFs computed by Monte Carlo ray tracing for a homogeneous
water body with a Petzold average particle phase function and a single-scattering albedo
of ωo = 0.8. The left panel shows the PSF for the first 15 deg of ψ and for nondimensional
optical distances between the source and detector of τ = cR = 0.1, 1, 5, 10, and 20 (c is the
beam attenuation coefficient). The colored dots are the centers of the angular bins used to
tally the simulated light rays in the Monte Carlo simulations. (The bin collecting rays from
ψ = 0 to 0.1 deg is tallied as ψ = 0, which cannot be plotted in the log scale plot.) These
curves show that the magnitude of the PSF decreases as τ increases because of absorption.
The flattening of the shape of the curves with increasing τ comes from multiple scattering.
The right panel of the figure shows the PSF values normalized to 1 at ψ = 0. These curves
show that the shape of the PSF starts out very highly peaked near ψ = 0 for small τ and
eventually becomes relatively flat in ψ as the optical distance increases.

The nearly linear shapes of these PSFs when plotted on log-log axes suggest that a
model of the form

PSF (ψ, τ) = exp [A(τ) +B(τ) ln(ψ)] (G.16)

should provide a good fit to the Monte Carlo values. The black lines in the left panel of Fig.
G.9 show the model curves when A(τ) and B(τ) are determined by fitting the PSF values
at 0.15 and 12.5 deg. The model of Eq. (G.16) blows up at ψ = 0, so for ψ < 0.001 rad,
the Monte Carlo value at ψ = 0 is used. Equation (G.16) is used to model PSFs in the
simulations to follow purely as an expedient to have a simple formula for PSF (ψ, τ), so
that interpolation does not need to be done between the Monte Carlo values. This is
more than adequate for the generic studies of this section. For comparison with actual
imagery taken in the field, PSFs can be generated using measured (or modeled) IOPs for
the particular water body, with interpolation done between the computed values.
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Figure G.9: Example point spread functions. Left panel: The colored dots show PSFs
for selected optical distances τ = cR for ψ = 0 to 15 deg, as determined by Monte Carlo
simulation. The black lines are the model fits of Eq.(G.16). Right panel: the same curves
normalized to 1 at ψ = 0.

G.6.2 Boundary Effects

As was illustrated by the figures in Section G.2, the serial convolution and cyclic convolution
or FFT calculations are actually solving different radiative transfer problems: the first for
a black background outside the image, and the second for a periodic background. This
section examines the impact of those differences on the region of interest.

A 64 by 64 pixel uniform gray-scale image with a brightness of 220 (in the range of
0 for black to 255 for white) was created and used for I(r, s, 0). The left panel of Fig.
G.10 shows the gray image I(r, s, 0). The right panel shows I(r, s, R) as computed by
the serial convolution sum (G.3) as seen at a distance of R = 5 m for water with a beam
attenuation coefficient of c = 1 m−1, so that the optical distance is τ = 5. The maximum
value (pixels near the center of the image) for I(r, s, R) is 10.385 for τ = 5, down from
220 in the original image. The minimum value (at the corners of the image) is 5.929. If
these values are rounded to the nearest gray scale levels of 10 and 6 and displayed, the
final image visually appears almost black, as can be seen in the gray-scale bar at the right
of the figure. Therefore, to show the relative appearance of the final image, I rescaled the
absolute values of the pixels so that the maximum value at the center has the original value
of 220. The right panel of the figure shows the resulting rescaled I(r, s, R). There is clearly
a darkening of the image around the border, which is caused by the surrounding black area
of the object plane. However, there is no edge darkening at all for I(r, s, R) as computed
by the FFT technique (image not shown). This is because the periodicity of the FFT has
filled the object plane with copies of the original uniformly gray image, so that the entire
object plane is uniformly gray and there is no difference between the image I(r, s, 0) and
the entire object plane. All pixels of the FFT image have the value of 10.385 for τ = 5,
the same as the center pixels of the convolution image.
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Figure G.10: The left image shows a uniformly gray image I(r, s, 0) with a gray scale level
of 220. The right panel shows the degraded I(r, s, τ = 5) computed by serial convolution,
with the center pixel normalized to 220.

Figure G.11 shows cross sections through the center of the image at y pixel s = Ny/2,
for various values of τ . That is, we are holding the viewing distance R constant at 5 m, and
changing the water properties via the value of c. The left panel shows the absolute values
of the FFT and convolution cross sections for τ = 5. The convolution pixels at r = 0 (and
at r = 63 = Nx − 1) have the value 7.587, so there is a reduction of 27% brightness from
the center to the edge of this transect. The right panel of the figure shows cross sections
of I(r, s, τ) for FFT and for serial convolution for τ = 0.1, 1, 5. The pixel values for each τ
have been normalized so that the center pixel is 220. When τ = 0.1 there is a darkening
of only about 2% from the center to the edge. The PSF for τ = 0.1 is extremely peaked
near ψ = 0, so there is very little scattering into a given direction from more than a few
pixels away; the boundaries then do not affect the central part of the image. For τ = 1
the reduction is 9%, and for τ = 5 it is 27%. For these larger τ values, the PSF is less
peaked and there is more scattering into the central part of the figure from pixels near
the boundary. For τ values larger than 5, the percent difference in the edge versus center
pixels becomes less and less: 21% at τ = 10 and 6% at τ = 20. This is because the overall
image is becoming very dark and all pixels are approaching zero absolute values because
of absorption. It is clear from these simulations that the boundary effects can be tens of
percent, depending on the image and the water IOPs.

It must be emphasized that there will also be edge effects for the FFT image in the
general case where the image is not uniformly gray. However, the FFT edge effects will
be different than the convolution edge effects. Because of these differences, the serial
convolution and FFT algorithms will never give identical final images. However, they will
agree closely near the image centers if the IOPs, image size, and viewing geometry are such
that the edge effects do not penetrate all the way to the center of the image (e.g., the case



810 APPENDIX G. IMAGE PREDICTION

Figure G.11: The left panel shows a cross section of the absolute pixel values of the degraded
image I(r, s, τ = 5) as computed by the FFT technique (red) and by serial convolution
(green). The right panel shows cross sections of degraded images for FFT and for serial
convolution with τ = 0.1, 1, 5. The pixel values for each τ have been normalized so that
the center pixel is 220.

for τ = 0.1 in the right panel of Fig. G.11. Unfortunately, it is easy to have situations
where the boundary effects influence the entire image (e.g., the τ = 5 in Fig. G.11). Only
by comparing convolution and FFT images can some idea be gained of the importance of
the boundaries on the central part of the image in any given simulation.

The image processing texts I have seen (which admittedly do not include the computer
graphics literature) say very little to nothing about boundary effects. The only comment
I’ve found on this is in Szeliski (2021, pages 114-115). He mentions several ways to extend
an image beyond its original size. Although not explicitly stated, his idea seems to be that
you add a “picture frame” around the original image to create a larger image with the
chosen boundary conditions, process the larger image, and then keep only the area of the
original image. His “padding” options, as he calls them, are

• Zero: Add zeros around the original image. This is implicit in the serial convolution
sum, as was seen in Fig. G.3, and Szeliski points out that this option leads to a
darkening of the image borders, as was seen in Fig. G.10.

• Cyclic: Wrap (repeat or tile) the original image, as was seen in Fig. G.4. This is
implicit with the use of Fourier transforms applied to the original image.

• Constant : Set all pixels outside the original image to a specified border value (other
than zero).

• Clamp: Repeat the edge pixels indefinitely. That is, what ever value the image pixel
has at (0, s) will be used for all values of (r < 0, s), and so on.

• Mirror : Reflect pixels across the image edge.

• Extend : Extend the image by subtracting the mirrored version from the edge pixel
value.

Szeliski mentions that in computer graphics, these options are called “wrapping modes.”
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G.6.3 Point Spread Function Effects

The point spread functions seen in Fig. G.9 show the highly peaked nature of oceanic
PSFs. A very sharp peak (e.g., for very small τ values) at means that only neighboring
pixels contribute significantly to the light received by a given pixel. That is, only small-
angle forward scattering is significant in the image degradation. A broad peak (large τ
values) means that pixels far from the viewing direction can contribute significant amounts
of light to the viewing direction; i.e, multiple scattering is important.

In some fields of optics, it is common to use Gaussian PSFs, e.g. to model blurring by
camera or microscope lenses. A Gaussian PSF has the form

PSF (ψ) =
1√

2πσ2
exp(− 1

2σ2
ψ2) , (G.17)

where the standard deviation σ controls the angular spread of the Gaussian. Figure G.12
compares the oceanic PSF of Fig. G.9 for τ = 5 with the Gaussian of Eq. (G.17) for
σ = 0.015. The Gaussian PSF has much more scattering at small angles (ψ less than a few
degrees), and much less at larger angles, than does the oceanic PSF for τ = 5.

Figure G.12: The oceanic PSF for τ = 5 in Fig. G.9 (aqua dots) and a Gaussian PSF for
σ = 0.015 (red line). Left panel, absolute values; right panel, normalized values.

To study the visual effects of these two PSFs, a standard United States Air Force 1951
resolution chart5 was cropped to 256 by 256 pixels for convenient processing with FFTs.
The upper left panel of Fig. G.13 shows this image, which is used as I(r, s, 0). The gray
line at s = 156 shows the location used for the transects seen in Fig. G.14. This transect
was chosen because it cuts through both high and low spatial frequency patterns. The
gray line itself was not in the image as processed. The upper right panel of the figure
shows the degraded image I(r, s, τ = 5) as obtained by brute-force serial convolution (Eq.
G.3). The lower left panel shows the corresponding result obtained by FFTs. These two
images are visually much the same, but the darkening around the edge of the final image
is noticeable in the convolution image. The lower right panel shows the result when the

5Obtained as a PNG image at https://commons.wikimedia.org/wiki/File:USAF-1951.svg

https://commons.wikimedia.org/wiki/File:USAF-1951.svg
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Gaussian PSF of the left panel of Fig. G.12 is used in the FFT processing. The images
for the ocean PSF are much sharper (retain the higher spatial frequencies) than the image
for the Gaussian PSF. The large PSF at small angles for the Gaussian blurs out the high
frequencies. Indeed, a Gaussian is sometimes used as a low-pass filter on an image for
that reason. The important details of how this image was processed and the way in which
the absolute values were converted to gray scale values between 0 and 255 is discussed in
Section G.6.5.2.

Figure G.13: USAF 1951 resolution chart degraded in various ways. Upper left: the original
image I(r, s, 0). The gray line at s = 156 shows the line of the transects plotted in Fig.
G.14. Upper right: I(r, s, τ = 5) as computed by the serial convolution sum of Eq. (G.3).
Lower left: I(r, s, τ = 5) as computed by FFTs. Lower right: I(r, s) as computed by FFTs
with the Gaussian PSF of Fig. G.12.

Figure G.14 shows the pixel values along the transect at s = 156, which is the gray
line in the upper left panel of Fig. G.13. Working from left to right in the left panel
and comparing with the upper left panel of Fig. G.13, we see that the transect first passes
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through a horizontal black bar (lower pixel values), then 3 narrow black bars, then through
an area of small features—i.e. high spatial frequencies—a white area (large values), and
finally 3 more vertical and one horizontal bar. The peaks and valleys of the transects
show that both the FFT (red) and convolution (green) degraded images preserve all but
the very highest spatial frequencies. That is, there is some blurring of the finest spatial
features in the middle of the resolution chart, but overall the bars are identifiable except
at the smallest scales. The black line at the bottom of the left panel shows the ratio of the
convolution prediction to that of the FFT. The ratio is greater than 0.97 over the center
third of the image and greater that 0.90 over the center two thirds of the image. However,
at the very edges of the image, the convolution value is only 64% of the FFT value because
of the darkening of the convolution image caused by the surrounding black boundary. The
values for the Gaussian PSF are much larger than those of the ocean PSF and are not
shown.

The right panel of the figure shows the transects for all three images, where for each
image the absolute values were rescaled so that the brightest pixel in each image is 255.
(The brightest pixels are in the whitest area below and left of the image centers, not along
the transect line.) For the Gaussian PSF, the normalized curve captures only the largest-
scale dark and bright regions, corresponding to the visual impression seen in the lower
right panel of Fig. G.13. The details of even the largest of the sets of 3 bars is lost. This
is because the Gaussian PSF has much more scattering at small angles ψ, as was seen in
Fig. G.12. The Gaussian PSF is not a realistic PSF for most ocean waters.

Figure G.14: Cross sections through the resolution chart images of Fig. G.13 at s = 156,
which is the gray line seen in the upper left panel of Fig. G.13. Left panel: Convolution
(green) versus FFT (red) for the ocean PSF for τ = 5. The black line is the ratio of
convolution to FFT. The absolute values for the Gaussian PSF are larger and are not
shown at this ordinate scale. Right panel: Normalized values computed by scaling the
absolute values so that the brightest pixel anywhere in the image is 255 for each of the
three images.
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G.6.4 Timing

As has been stated, the use of FFTs to evaluate the factors in Eq. (G.11) is much faster than
the use of either serial or cyclic convolution summations. Table G.1 gives a few examples of
run times. Both convolution and FFT times exclude the time needed to evaluate the PSF.
If the PSF is evaluated within the convolution summations, the run time roughly doubles.
The FFT times include computing the two direct transforms Î(u, v, 0) and P̂SF nd(u, v,R),
their multiplication, and the inverse transform of Î(u, v,R) to obtain the final I(r, s, R).
This table should make clear why the development of the FFT by Cooley and Tukey (1965)
was voted the most important development in applied mathematics in the 20th century.

Given the enormous speed advantage of the FFT algorithm, there is no need to consider
convolution summations as anything more than a check on the FFT computer code. The
simulations in Sec, G.7 therefore use only FFTs.

Example image size Nx ×Ny convolution time FFT time

Fig. G.7 32× 32 1.44 sec < 0.00001 sec

Fig. G.10 64× 64 25.6 sec < 0.00001 sec

Fig. G.13 256× 256 6481 sec 0.017 sec

Fig. G.17 512× 512 est. 28.8 hours 0.094 sec

Table G.1: Example run times for some of the figures in this tutorial. Run times refer to
a single panel in multipanel figures.

G.6.5 Image Formats

Image formats can be confusing. I’ll discuss only the two most relevant to underwater
imaging because these formats are what are likely to come out of a camera or be found on
the web, and which are used in this note.

G.6.5.1 JPEG files

Color JPEG files have 3 channels, which contain the amounts of red, green, and blue (RGB)
in the image, with the R, G, and B values ranging from 0 (none of that color; the pixel
is “turned off”) to 255 (maximum brightness) for each color component. A JPEG image
is fundamentally just an array of numbers dimensioned (3, Nx, Ny), where Nx and Ny are
the image size in pixels, and the 3 channels contains the brightness values for the R, G,
and B channels, respectively.

To process a color JPEG image, i.e. to predict how the image will appear through water
from a distance R, extract each of the individual color channels and process them separately
as Nx by Ny gray scale images using a PSF appropriate for the water at each of the central
R, G, B wavelengths. (I’ll use an italic R for the range, and a Latin R for red.) Note that
different colors will attenuate and blur differently because of the wavelength dependent
IOPs. Thus red will usually be absorbed fastest (due to absorption by water) but scatter
less, and green or blue may scatter more but with less absorption. After predicting how
much of each color is transmitted to range R, recombine the three components into the 3
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channels of the JPEG format, and then display that JPEG file to obtain a color rendition
of the image at range R.

It is often the case for large viewing ranges that the final pixel values are very small
numbers, in which case the final image will appear very dark with almost no detail visible.
To make an image that “looks better,” i.e., is brighter and shows more detail, the final
pixel values for each channel can be multiplied by some factor. If that is done, each channel
must be multiplied by the same factor so that the relative amounts of R, G, and B remain
the same as in the actual image. Otherwise the color of the final image will be distorted.

JPEG files also can contain metadata such as the time and location where the photo
was taken, camera settings, or an embedded color table to be used to display the image.
The image may be “true color,” which means that the R, G, B values are the amount of
each color, 0 to 255 for each channel. This is called the “decomposed” color model and
gives 2563 = 16, 777, 216 possible colors. However, an image may have “indexed color,”
which means that the number in the channel is the index of an RGB color triple in a color
table, which typically has just 256 possible colors. Moreover, image display software (such
as Windows Photo Viewer) sometimes seems to have a mind of its own and may decide to
transform an image in some unexpected way beyond the user’s control. If you expect to get
a final image that looks like a blue or green ocean but instead get a sickly yellow or lurid
purple, then the problem probably lies with the color table, not with the mathematics.

G.6.5.2 PNG files

PNG files are a bit tricker. PNG files have 4 channels. The first three are for the RGB
colors just as for JPEG files, and channel 4 is called an alpha channel. The alpha channel
is often called the “transparency” of the image, but the numbers are really “opaqueness.”
These numbers can be used to fade from one image to another in a time sequence, or to
overlay two images so that you can see both like a double exposure on film. An opaqueness
of 255 means maximum opaqueness, so that “nothing gets through;” such a pixel displays
as black. An opaqueness of 0 means that the image is transparent; such a pixel displays
as white. Image display software of course understands this, so that a PNG file displays
correctly when the alpha channel is used.

The USAF 1951 resolution chart used in Section G.6.3 is a PNG file which, when
displayed, looks black and white, as seen in the left panel of Fig. G.15 (same as in Fig.
G.13). Since this is a black and white image, the 3 color channels are not used (the values
are set to 0 for each pixel); the alpha channel is used to create the black and white image.
This channel has a pattern of 0’s and 255’s that generate the white (value 0) and black
(value 255) pixels when displayed (or values between 0 and 255 for shades of gray). If
channel 4 is extracted and used as a gray scale image, the pixel values are “reversed”
from the customary gray scale convention of 0 being black and 255 being white. The
recommended way to process such an image is as follows:

Option 1 is to reverse the opaqueness channel to get a gray scale image, process, rescale
(if needed), and reverse again to get back to opaqueness for display as a PNG image. This
is what was done in creating the images of Fig. G.13. The alpha channel of the resolution
chart PNG file was reversed via gray scale value = 255 minus alpha channel value. After
the convolution processing, the degraded gray scale image I(r, s, R) had the maximum
and minimum gray scale values 8.228 and 3.478, respectively. If these values are simply
converted to the nearest integer values of 8 and 3 for use in an image, the resulting image
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looks visually almost black and no detail can be seen. It is therefore customary to rescale
the actual pixel values to give a broader range of values, which then visually show more of
the image pattern. In the simulations of Fig. G.13, this was done by arbitrarily rescaling
the pixel values so that the lightest pixel of the degraded image I(r, s, R) has a value of
255. This was done via6

Irescaled(r, s, R) = INT{255 I(r, s, R)/MAX{I}+ 0.5} (G.18)

If this is done, the rescaled image has a maximum value of 255 and a minimum of 108.
These values were then reversed again to create opaqueness, and then inserted into a PNG
format file as the alpha channel. That PNG file was then displayed to create the images
seen in Fig. G.13 for the various processing options of convolution vs FFT and ocean vs
Gaussian PSF.

Option 2 is to process the opaqueness values as they are, rescale to the maximum value,
and display. If the opaqueness channel is extracted and processed without alteration, the
final maximum pixel value is 8.389 and the final minimum value is 5.401. As before, if
these values are simply converted to the nearest integer values of 5 and 2, the resulting
image has almost no visible detail. If the maximum image value of 8.389 is again converted
to 255 via Eq. (G.18), the minimum is 167. This is a narrower range of values than was
obtained when processing the gray scale image as just described. Keep in mind that this
analysis is based on 255 displaying as black in the PNG, so the scaling has really set the
darkest pixel to completely black, rather than setting the lightest pixel to white as in the
normal gray scale viewpoint of the first option.

The degraded images for these two processing and rescaling options are shown in Fig.
G.15. These two options do not yield the same degraded images because they are solving
different radiative transfer problems. For example, a white Secchi disk viewed against a
dark background is not the same as a black Secchi disk viewed against a light background.
Even if the maximum and minimum pixel values are in the same locations (e.g., at the
center of the Secchi disk and at the corner of the image), the brightness values at those
pixels will be different, and they won’t even have the same relative values, as was just seen.
It can be argued in the present case that the physically realistic way to process and display
the PNG data is to reverse the opaqueness values to get a gray scale that corresponds
to what the eye would see, process those values, rescale in some way if needed, and then
reverse again before display as an alpha channel in a PNG file.

However, there is no one unique way to process the data in an image, and there is no
one unique or best way to rescale the degraded image values in order to create an image
that “looks good.” Other scalings will be used in Sections G.7.1 and G.7.2. The business
of scaling data to get nice looking images requires care. IDL for example has a function
BYTSCL (byte scale) that will take your data and rescale it so that the smallest data value
maps to 0 (black) and the largest maps to 255 (white). That shows the greatest amount of
detail in the displayed image, and that’s what I used to create the images in Fig. G.7, where
I was interested only in the spatial pattern. However, use of such a function throws out
the magnitude information in the data. That is, the difference in the largest and smallest
data values might be 10%, or it might be a factor 10, but you can’t know from looking at

6INT represents a generic function that converts the floating point values of I(r, s, R) into integers, as
required for an image file. In IDL and MATLAB this is implemented via the FIX function. The 0.5 is
needed so that the value is converted to the nearest integer, because FIX rounds downward.
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the figure. My personal preference is to manually rescale my data in a way that preserves
relative magnitudes in some way. Then I know exactly what the image is showing. There
is always a trade off between getting an image that looks good and one that maintains
fidelity to the physics.

The message here is that you must understand exactly what the image data describe,
and then process in a way that makes physical sense for the problem at hand.

Figure G.15: The USAF resolution chart processed in two different ways. Left: Option 1,
using a gray scale obtained from a reversing the PNG alpha channel. The brightest pixel
of the degraded image was rescaled to 255. Right panel: the alpha channel processed as
is. The rescaling sets the darkest pixel to 0.

G.7 Example Image Simulations

We now consider two realistic simulations for objects in typical ocean waters. The first is
a simulation of a Secchi disk viewed as a gray scale image; the second simulates a color
image of a sponge.

G.7.1 Secchi Disk Gray-Scale Image Simulations

Consider the simulation of a Secchi disk as seen by a broadband instrument such as the
Teledyne Explorer Pro dim-light camera, which outputs a gray scale image. When lower-
ing a Secchi disk from above the surface, there are several complicating factors: (1) the
disk is viewed through the sea surface, (2) the IOPs may be depth dependent, and (3)
the background radiance depends on depth even if the IOPs are homogeneous. We can
eliminate these factors by viewing the disk horizontally at a given depth. The sea surface
roughness and IOP stratification are then irrelevant. Assuming that the IOPs and exter-
nal lighting are horizontally homogeneous, the background radiance is independent of the
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viewing range.

Figure G.16 shows the geometry. The camera is looking horizontally in the +x or φ = 0
azimuthal direction at a distance R from the Secchi disk. The Sun can be either in front
of the disk, as in the figure, so that the side of the disk seen by the observer is illuminated;
or the Sun can be behind the disk so that the observer sees the shaded side. The Sun
generates an ambient or background radiance Lb(θ = 90, φ = 180) as shown by the thick
green arrow in the figure (remember that θ, φ give the direction of light propagation, not
the viewing direction). Radiance L(θ, φ < 90) is incident onto the side of the disk being
observed, as shown by the dull green arrows. This radiance generates a plane irradiance
E(θ = 90, φ = 0) onto the disk. If the disk is a Lambertian reflector, the target radiance
reflected toward the observer is

Lt(θ = 90, φ = 180) =
RSD

π
E(θ = 90, φ = 0) ,

where RSD is the reflectance of the Secchi disk. The background and target radiances are
used to generate the image of the Secchi disk in the object plane, at range R = 0.

Figure G.16: Geometry for simulation of a Secchi disk when viewed horizontally within
the water.

To generate some numbers for numerical simulation, HydroLight was run for the fol-
lowing conditions. Case 1 water with a chlorophyll concentration of 2 mg m−3 was used to
define the IOPs at a wavelength of 550 nm. The Sun was at a zenith angle of 50 deg in
a clear sky. Two runs were done, one with the Sun in front of the disk and one with the
Sun in behind. The disk and viewing path were at 15 m depth. The disk was assumed to
have a typical Secchi disk reflectance of RSD = 0.80. The radiance and irradiance values
for these two runs are shown in Table 2.

When the Sun is in front of the disk, the viewing direction is away from the Sun and
the background radiance is relatively dark. The front side of the disk is illuminated and is
brighter than the background by a factor of 4.514 in the present case. Thus the disk will
appear bright against a darker background. Suppose the camera is adjusted so that when
the disk is viewed from zero distance, the disk itself has a gray scale value of GSt = 220.
The background brightness must be a factor of 4.514 less, so GSb = 220/4.514 = 49. When
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the Sun is behind the disk, the camera is looking toward the Sun and the disk is in its
own shadow. Then the background is brighter than the disk, and the disk will appear
as dark against a brighter background. If the camera is now adjusted so that the bright
background has a gray scale value of 220, the disk brightness will be 220 × 0.528 = 116.
Finally, assume that the disk has a radius of 0.15 m and that the camera field of view sees
a 2 m by 2 m region of the object plane, and that the camera image is 512 by 512 pixels.
These values were used to generate simulated gray scale images of a Secchi disk.

variable units Sun in front Sun behind

Lb W m−2 sr−1 nm−1 0.00404 0.01152

E W m−2 nm−1 0.07162 0.02638

Lt W m−2 sr−1 nm−1 0.01824 0.00608

Lt/Lb 4.514 0.528

GSt 220 116

GSb 49 220

Table G.2: Radiometric quantities used for the Secchi disk simulations. GSt and GSb are
the gray scale values of the target and background, respectively, for the disk at the object
plane at R = 0.

Figure G.17 shows the Secchi disk for the Sun in front of the disk and for viewing ranges
corresponding to optical distances of τ = 0, 2, 5 and 10. These images were computed using
the PSFs seen in Fig. G.9 and the FFT algorithm. The contrast shown in the figure panels
was computed using the gray scale values at the center of the disk and at a background
point two radii (0.3 m) from the center:

C(τ) =
GSt(τ)−GSb(τ)

GSb(τ)
.

Thus the inherent contrast at τ = 0 is C(0) = (220 − 49)/49 = 3.49. As τ increases the
image becomes darker and darker. For display, the gray scale values were rescaled so that
the background brightness at the background reference point was held constant at 49, while
the disk brightness decreases. Visually, the disk is easily detectable through τ = 5, but
there is only a faint hint of the disk at τ = 10.

Figure G.18 shows the equivalent sequence of images for the case of the Sun behind the
disk. Again, the disk is visible at τ = 5, but it is undetectable at τ = 10. Remember that
the contrast is negative if the background is brighter than the target. It is the absolute
value that is usually used to determine visibility.

Figure G.19 shows cross sections of the normalized gray scale values for these two sets
of simulations.

In these simulations the range was held constant while the water IOPs were changed.
If the camera lens is zoomed so that the size of the object plane remains constant, this is
equivalent to holding the IOPs constant and increasing the range. In practice, the water
IOPs would be constant and the range would increase. If the camera field of view is held
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Figure G.17: Images of the Secchi disk when the Sun is in front and the disk appears lighter
than the background.

fixed, the apparent size (angular extent) of the disk would then decrease with increasing
range. That brings into play another factor, which is the size of the disk. A smaller disk
corresponds to a higher spatial frequency and will thus disappear sooner as scattering blurs
out the high spatial frequencies. The effect of disk size on Secchi disk visibility has been
studied by Hou et al. (2007) using modulation transfer function (MTF; see Section G.8)
techniques equivalent to the PSF approach developed here.
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Figure G.18: Images of the Secchi disk when the Sun is behind and the disk appears darker
than the background.

Figure G.19: Normalized cross sections through the Secchi disk for the case of the Sun in
front of the disk and behind the disk.
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G.7.2 Color Image Simulation

Now consider the degradation with range of a color image. In addition to the decrease in
brightness with increasing range, there will also be a shift in the color because different
wavelengths absorb and scatter differently, and thus have different PSFs. Table 3 shows
the IOPs for 450, 550, and 650 nm computed for water with a chlorophyll concentration of
0.5 mg m−3, according to the “new Case 1” IOP model in HydroLight. The scattering phase
function is a Fournier-Forand phase function determined by the wavelength-dependent
backscatter fraction bb/b.

IOP 450 nm 550 nm 650 nm

a [1/m] 0.0469 0.0650 0.3490

b [1/m] 0.2638 0.2463 0.2335

c [1/m] 0.3107 0.3113 0.5825

bb/b 0.00968 0.0113 0.0153

Table G.3: IOPs used for generation of wavelength-dependent PSFs. Values are for Case
1 water with a chlorophyll concentration of 0.5 mg m−3.

Figure G.20 shows the PSFs for a viewing range of R = 5 m computed using the IOPs
of Table G.3. The blue and green PSFs are similar in magnitude, but the red PSF is
much less than the blue and green PSFs. Table G.3 shows that the three wavelengths have
about the same total scattering coefficient, but the red wavelength has over 5 times as
much absorption as the green, and over 7 times as much absorption as the blue. Thus the
reduced magnitude of the red PSF is due to the increased absorption by pure water at 650.

Figure G.20: Wavelength dependent PSFs for the IOPs of Table 3. Left panel: absolute
values; right panel: normalized values. The blue curves are for 450 nm, the green for 550
nm, and the red for 650 nm.
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These PSFs were used to process the blue, green, and red bands of the color image of
red sponge7 seen in the left panel of Fig. G.21. The right panel of the figure shows the
predicted image for a viewing range of 5 m. Note that the water has absorbed essentially all
of the red light, so the red sponge appears almost black. The fine detail of the background
seen in the original image has been blurred out by scattering. Figure G.22 shows a transect
across the middle of the these images. The plots at R = 5 m make clear that the high
spatial frequencies have been damped out, and that almost no red light remains. The
absolute magnitudes for the RGB bands were less than 10 at 5 m, which gives a very dark
image, so each band was rescaled by a factor or 10 in order to create the brighter image
seen on the right of Fig. G.21. This rescaling preserves the relative amounts of R, G, and
B, and is the equivalent of changing the camera sensitivity.

Figure G.21: Left panel: the original image of s red sponge, photographed from a distance
of less than 1 m. Right panel: the predicted image at a range of R = 5 m.

7Photographed, I might brag, by the author while on a sea kayak expedition along the Kuna Yala (Car-
ribean) coast of Panama. Thanks to Mike Lesser for the species identification as Amphimedon compressa.
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Figure G.22: The left panel shows a cross section at s = 256 through the initial coral image
(R = 0). The right panel shows the pixel values for a range of R = 5 m. These values are
rescaled by a factor of 10 from the actual values.

G.8 The Modulation Transfer Function (MTF)

The primary purpose of the preceding sections is to show how to predict the appearance of
an image as a function of water optical properties and distance. Deciding whether or not an
object is visible in the image is a separate but related problem. As we have seen, the point
spread function is central to image prediction, whether used in convolution summations
or Fourier transforms. The PSF is also the basis for computing the modulation transfer
function (MTF), which quantifies how well object contrast is transmitted as a function of
spatial frequency. The MTF is first explained by a description of how it can be measured.
Its relation to the PSF is then presented.

G.8.1 Measuring the MFT

Figure G.23 shows three sets of parallel lines or bars, which are shaded from black to white
in a sinusoidal brightness pattern8. The upper left panel of the plot shows 4 periods of
the bright to dark to bright pattern in a length L. The upper middle and right panels
show 8 and 16 periods in length L. The lower three panels show the signals detected by an
instrument as it scans across the sets of lines if the lines are observed at range 0 (or through
a vacuum). The signal might be digital counts or volts or irradiance, depending on the
type of measuring instrument. The distance L might be millimeters or meters. If you are
viewing the lines from a distance R, you can convert distance L to angle ψ = tan−1(L/R).
Here I’ll assume that L is in meters as might be appropriate for imaging centimeter-sized
to meter-sized objects underwater. In that case, the spatial frequencies of the three sets
of lines are 4 lines or cycles per meter, 8 cycles per meter, and 16 cycles per meter. The
spatial frequency ν would then be written as ν = 4 cycles/m, or sometimes just ν = 4m−1,
and so on, since the number of lines or cycles is a nondimensional number. In discussions

8To be honest, I created these bars in Powerpoint by making a line fuzzy, so the pattern shown here is
just an approximation to a sinusoidal brightness pattern.
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of camera lenses or microscopes, you will often see units such as lp/mm, meaning line pairs
(i.e. cycles) per millimeter, or lp/mrad, meaning line pairs per milliradian. You are free
to choose whatever measure of spatial frequency is convenient for your problem. For the
examples here, I’ll use cycles per meter.

Figure G.23: Resolution chart line pattern at range 0. Upper left: 4 cycles per length
L; upper middle: 8 cycles per length L; upper right: 16 cycles per length L. Lower three
panels: The signals recorded as an instrument scans across the line patterns. If L is one
meter, the three sets of lines corresponds to spatial frequencies of 4, 8, and 16 cycles/m.

In Fig. G.23 the instrument measures a full-amplitude signal at each spatial frequency.
As drawn, the signal has an average or background value (the “DC signal”) of 1.0 and the
deviation from the background ranges from 0.2 to 1.8 (these values of course depend on the
sensor calibration). It is the deviation from the background that determines the “visibility”
of the bars, i.e., how well the bright and dark bars can be distinguished. Let Smax(0, ν) and
Smin(0, ν) be the maximum and minimum signal strengths measured at range 0 for spatial
frequency ν. The inherent (i.e., as seen from 0 distance or through a vacuum) contrast is
defined to be

M(0, ν) ,
Smax(0, ν)− Smin(0, ν)

Smax(0, ν) + Smin(0, ν)
. (G.19)

This measure of contrast is called the Michelson contrast or the modulation depth. In
general, M(0, ν) < 1 because the recorded signal is not zero at the minimum. For the bar
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patterns of Fig. G.23, the inherent contrast at each frequency is

M(0, ν) =
1.8− 0.2

1.8 + 0.2
= 0.8 .

Figure G.24 shows how the resolution lines of Fig. G.23 might appear from a distance R
when seen through an absorbing and scattering medium. The lines of the resolution chart
of Fig. G.23 are less bright due to absorption and blurred together because of scattering.

Figure G.24: Resolution chart line pattern at range R. Now the lines of the resolution chart
of Fig. G.23 are less bright due to absorption and blurred together because of scattering.

Now the contrast is

M(R, ν) =
Smax(R, ν)− Smin(R, ν)

Smax(R, ν) + Smin(R, ν)
. (G.20)

For the examples of Fig. G.24, the contrast for a frequency of 4 cycles/m is

M(R, 4 cycles/m) ,
1.6− 0.4

1.6 + 0.4
= 0.6 .

For the other two frequencies we get M(R, 8 cycles/m) = (1.4− 0.6)/(1.4 + 0.6) = 0.4 and
M(R, 16] : cycles/m) = (1.1− 0.9)/(1.1 + 0.9) = 0.1.
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The modulation transfer function (MTF) is defined as the contrast at range R normal-
ized by the contrast at range 0:

MTF (R, ν) ,
M(R, ν)

M(0, ν)
. (G.21)

The MFT shows how well the system (water, camera lens, human eye) trans-
mits inherent contrast as a function of spatial frequency . The MTF is often
described as giving the response of the system to sinusoids of different spatial frequencies.
Yet another way of saying the same thing is that the MTF is the weighting function applied
by the system to different frequencies relative to the weighing function for zero frequency.
For the present example, using the numbers from above, we have MTF (R, 4 cycles/m)
= 0.6/0.8 = 0.75. For the examples at 8 and 16 cycles/m the MTF is 0.5 and 0.125,
respectively.

In the three panels of Fig. G.23 the lines of the three panels are each clearly distin-
guished. In the left and middle panels of Fig. G.24, the lines are still distinguishable.
However, for the pattern of lines at ν = 16 cycles/m the lines are so blurred together than
we may decide that they are not really distinguishable. Thus we conclude (for this exam-
ple) that a spatial frequency of 8cycles/m is “resolved” or “visible”, but a spatial frequency
of 16 cycles/m is not resolved. So the cutoff for resolved vs not resolved, or visible vs not
visible, is somewhere between an MTF value of 0.5 and 0.125.

G.8.2 Relation Between the MTF and the PSF

Remember that the Fourier transform takes in a function of spatial position and returns
a function of spatial frequency (or a function of angle and returns a function of angular
frequency). The MTF specifies how well contrast is transmitted as a function of spatial

frequency. The PSF (xr, ys) is a function of position and its DFT P̂SF (νu, µv) is a function
of spatial frequency. We saw in Fig. G.12 that different PSFs blur the same image differ-
ently. These observations hint that there may be a relation between the Fourier transform
of the PSF and the MTF, and indeed there is. I’ll simply give you the answer.

The Optical Transfer Function (OTF) is by definition the Fourier transform of the
point spread function:

OTF (ν, µ) , F{PSF (x, y)} ,

or for a discrete PSF, as we are using here:

OTF (u, v) , D{PSF (r, s)} .

The OTF describes how a system responds to inputs of various spatial frequencies. Here
the “system” can be a camera lens, your eye, or a slab of ocean water of thickness R. In
general the OTF is a complex function, i.e., it has both real and imaginary parts, and its
values can be positive or negative. A complex number c = a+ ib can always be written as
|c|eiφ, where the absolute value of c is |c| =

√
c∗c =

√
a2 + b2; c∗ = a − ib is the complex

conjugate of c, and φ = tan−1(b/a) is the phase angle. In the same fashion, the OTF can
be written as

OTF (ν, µ) = |OTF (ν, µ)|eiPTF (ν,µ) .

Here PTF is called the phase transfer function and—guess what!—the absolute value of
the OTF is the MTF. The MTF tells how the system responds in magnitude to inputs of
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different frequencies, and the PTF contains phase information. The PTF does not concern
us for the ocean so long as the PSF is azimuthally symmetric, as it almost always is for the
ocean9. This is because the 2-D Fourier transform of an azimuthally symmetric function
(here the PSF) is real valued, so the PTF is zero. Thus we have the very important result
that

MTF (u, v) = |D{PSF (r, s)}| = |P̂SF (u, v)|

=
[
P̂SF

∗
(u, v)� P̂SF (u, v)

] 1
2
. (G.22)

As before, the � indicates frequency-by-frequency multiplication. When computing the
MFT via Eq. (G.22) it is fine to use a normalized PSF because the MFT is normalized to
1 at zero frequency.

G.9 Numerical Examples of MTFs

Section A.3.1 discusses the order in which FFT subroutines return their values as a function
of frequency. Because FFTs are usually the based of computing MTFs, the same frequency
ordering must be considered before we can get from the 2-D MTF (u, v) to a 1-D function
of spatial frequency that corresponds to what is measured by Eqs. (G.20) and (G.21). FFT
routines return the Fourier amplitudes for the spatial frequency magnitudes ν0 = 0 (the
DC signal), the fundamental frequency ν1 = 1/Lx, and the harmonics of the fundamental
frequency through to the Nyquist frequency νNx/2 = 1/(2∆x) = 1/(2Lx/Nx), and there
are both positive and negative frequency pairs for a total of Nx frequencies. This “FFT
frequency order” is shown in Eq. (A.14). There are corresponding formulas for the y
direction. For plotting, it is convenient to use the “math frequency order”, which is shown
in Eq. (A.14).

The orders of the frequencies in the MTF (u, v) array, which come from FFTs of the
PSF, are in the FFT frequency order. Thus the (νu, µv) = (u, v) = (0, 0) value is at the
“lower left” of the matrix. This can be a confusing mess the first time you encounter it,
so a simple numerical example is warranted. Figure G.25 shows an example generated for
the case of Lx = Ly = 2 m and Nx = Ny = 8 (and for the PSF based in the Petzold phase
function with ωo = 0.8 and for τ = 5). For these values, the fundamental frequency in the
x direction is ν1 = 1/Lx = 0.5cycles/m, with the same value for µ1. The Nyquist frequency
is νNx/2 = 1/(2∆x) = 2.0cycles/m, with the same value for the y direction. Thus to extract

the MTF values corresponding to the magnitude of the frequency ν =
√
ν2
u + µ2

v, we can
use the values in the red box in the bottom row of the figure to get the MFT values from
the DC signal to the Nyquist frequency. We could also read off the same values along the
first column.

Figure G.26 shows three example PSFs and their corresponding MTFs, computed as
above. These functions all have the same Petzold phase function and ωo = 0.8, but are for
optical distances of τ = 2, 5, and 10. For these runs, Lx = Ly = 2 m and Nx = Ny = 128.
The most highly peaked PSF (τ = 2 in blue) has the least scattering at large angles. Thus
the MTF has relatively high values (greater than 0.33) over the entire range of frequencies,

9In a camera lens, aberrations may give a PSF that is not azimuthally symmetric. I can tell that my
aging eyes have PSFs that are not azimuthally symmetric simply by looking at a point light source such as
a star; I see a blurred and not azimuthally symmetric pattern of light around the star.
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Figure G.25: Example 2-D MFT showing the FFT frequency order. For this example,
Nx = Ny = 8 and Lx = Ly = 2 m.

which means that the high frequencies are transmitted well. The τ = 8 PSF is much
less peaked, indicating that multiple scattering is important. The corresponding MTF
is less than 0.1 for almost all frequencies, and less than 0.01 at the higher frequencies.
Consequently, only the very lowest frequencies are well transmitted; the high frequencies
are blurred out by scattering.

Figure G.26: Normalized PSF and MTF for optical distances of τ = 2, 5, and 8. The
spatial frequencies are in the dashed red box; the corresponding MTF values are in the
solid red box.

Figure G.27 shows the 256 by 256 pixel USAF resolution chart as processed by these
PSFs. The loss of the high spatial frequencies as τ goes from 2 to 5 to 8 is obvious and
gives some intuitive feel for the implications of the corresponding MTFs. Each of these
predicted images (other than the original image) was normalized so that the brightest pixel
in the image was set to 220 on the gray scale.
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Figure G.27: Image degradation for different optical distances of τ = 2, 5, and 8. The
corresponding PSFs and MTFs are seen in Fig. G.26.

MTFs have a very useful property. Suppose you are looking at a Secchi disk from above
the sea surface as into descends into the water. The MTF for the “optical system” of the
eye + sea surface + water column gives you information on the depth where the disk will
disappear from view (e.g., Hou et al., 2007). If the various optical components—here the
eye, the water surface, and the water column—are independent (as they are here), then
the MTF for the total system is the product of the MTFs for the individual components:

MTFtotal = MTFeye �MTFsea surface �MTFwater column .

Here, as before, the � indicates element-by-element multiplication.
Much more can be said about OTFs and MTFs. Indeed, entire books have been devoted

to measuring and modeling MTFs (e.g., Boreman, 2001). Hou (2013) gives a good overview
of models of MTFs appropriate for ocean waters.

I’ll close this section with a story. The MTF is the standard measure of “quality”
in optical components such as camera lenses. I once needed to evaluate which 1000 mm
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telephoto lens (costing several thousand dollars) would be best for an experiment that
was to measure the PSF over multi-kilometer path lengths just above the surf zone, where
breaking waves inject lots of small droplets into the atmosphere. Getting high resolution for
very small angles, i.e., for high spatial frequencies, was critical. The best lens for that job
would be the one with the highest MTF at high spatial frequencies. So I contacted Nikon,
Cannon, Pentax, et al. and asked them to send me the MTFs for particular lenses. Not a
single manufacturer would let me see the MTFs for their lenses. Bottom line: comparison
shopping based on something other than advertising hype is not allowed. In the final
analysis, it didn’t matter. The proposal wasn’t funded.
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Fourier 1-D convolution theorem, 637
Fourier convolution theorem, 799

serial, 795
Coordinate Systems, 19

for image analysis, 801
for polarization, 47
for scattering of polarized light, 49
global, 19
local, 22

Density Functions, 82
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of coastal waters, 295

of minerals, 271

of non-algal particles, 269

of phytoplankton, 259

of water, 252

operational definitions, 106

Instruments

ac-s, 110

ac9, 397

acs, 397

Forel-Ule color scale, 141

General Angle Scattering Meter (GASM),
112

ICAM, 397

LISST, 208

LISST-VSF, 113

PSICAM, 110, 397

spectrophotometer, 110, 163

Volume Scattering Meter, 113, 195, 201

Intensity

definition, 34

in definition of the VSF, 101

Irradiance

cosine law, 30

example data, 57

plane irradiance, definition, 30

r-squared law, 441

scalar irradiance, definition, 32

vector irradiance, definition, 34

Irradiance Reflectance R

dependence on IOPs and environmental
conditions, 136

Irradiance Reflectance R

defined, 132

dependence on IOPs and environmental
conditions, 135

Jablonski Diagram, 155, 222

Jerlov water type classification, 142

Kramers-Kronig Relations, 432

Lambert’s Law, 356

Lidar Equation, 348

Light

electromagnetic formulation, 332, 407



INDEX 877

historical understanding, 1
Lunar Spectrum, 80

Maxwell’s Equations
in a vacuum, 402
in dielectric media, 408
Mie’s solution, 437
overview, 332
plane wave solutions, 414

Mie Theory
examples, 448
extinction paradox, 454
geometric optics approximation, 466
geometry, 439
overview, 175
radar cross section, 447
Rayleigh’s approximation, 459
Rayleigh-Gans approximation, 463
solution, 441
statement of the problem, 438
used with particle size distributions, 447

Minerals
absorption by, 271, 300
remote sensing of, 304
scattering by, 272, 301

Modulation Transfer Function, 824
Computing the MTF from the PSF, 827
measuring the MTF, 824

Monte Carlo Simulation, 357, 727
backward ray tracing, 764
BRDFs as PDFs, 788
determining path lengths, 730
determining scattering angles, 731
error estimation, 745
importance sampling, 753
in-water scattering, 776
Lambertian surfaces, 773
probability functions, 728
ray tracing, 769
ray tracing options, 735
ray weights in BMC calculations, 782
ray-plane intersections, 770
sea-surface interactions, 774

n-squared law for radiance, 474
Non-algal Particles (NAP), 269
Nyquist Frequency, 646

Optical Density, 110
Optical Depth, 22, 329
Orthogonality of Sines and Cosines, 640

Parseval’s Relations, 637
Particle Size Distributions, 305

area and volume, 308
creating from data, 317
cumulative and number, 307
fitting a power law, 320
models for, 309
non-uniqueness of particle size, 305
parametric description, 318
Sauter mean diameter, 314
used in Mie theory, 447

Petzold’s VSF measurments, 192
Phase and Group Speeds, 421

for light in water, 427
Phase Function, 102

Fournier-Forand, 199
Henyey-Greenstein, 196
Petzold average-particle, 195
Reynolds-McCormick, 198

Photometry, 597
chromaticity, 606
CIE chromaticity coordinates, 607
contrast, 622
converting chromaticity to RGB values,

612
human color vision, 598
law of contrast transmittance, 622
luminance difference law, 620
luminance transfer equation, 616
luminosity functions, 602
metameric spectra, 610
Secchi disk, 623

Photons
as elementary particles, 10
physical properties, 18
single-photon interference, 8

Photosynthetically Available Radiation (PAR)
definition, 35

Phytoplankton, 259
absorption, 260
fluorescence, 260
pigment packaging, 260
pigments, 260
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scattering, 260
Point Functions, 82
Point Spread Function, 344

equivalence to the BSF, 347
polar to Cartesian coordinates, 801

Polarization
defined, 40
in radiative transfer equations, 333
scattering geometry, 46
Stokes vector, 39

Poynting Vector, 419

Quantum Electrodynamics (QED), 7, 331
Quasi-Single-Scattering Approximation, 366

r-squared law for irradiance, 441
Radiance, 27

asymptotic distribution, 370
conceptual definition, 30
example data, 60
limitations of, 54
n-squared law, 474
operational definition, 29
visualizing, 64

Radiative Transfer Equations
Gershun’s law solution, 387
QSSA solution technique, 366
scalar RTE, heuristic derivation, 324
scalar, rigorous derivation, 340
scalar, standard forms, 328
solution techniques, 355
SSA solution technique, 359
vector, for mirror-symmetric media, 335
vector, most general, 330

Radiative Transfer Theory, 323
closure, 395
radiative processes, 324
scalar RTE, heuristic derivation, 324
scalar RTE, rigorous derivation, 340
solving the RTE, 355

Radiometer
Gershun tube, 27
instrument types, 12
modern design, 28

Radiometry
frequency variables, 37
geometrical radiometry, 27

geometry, 19
intensity, definition, 34
plane irradiance, 30
scalar irradiance, 32
Stokes vector, 39
terminology and notation, 36
vector irradiance, 34

Raman Scattering, 213
effect on in-water irradiance, 237
effect on remote-sensing reflectance, 237
interpretation of in-water emission, 218
phase function, 216
scattering coefficient, 213
temperature and salinity dependence, 220
wavelength redistribution function, 214

Rayleigh Scattering Approximation, 459
applicability of, 461
obtained from Mie theory, 460

Rayleigh-Gans Approximation, 463
Reflectance

BRDF, 494
exact normalized, 541
Fresnel’s equations for polarized light,

477
Fresnel’s equations for unpolarized light,

476
irradiance reflectance R, defined, 132
Lambertian, 498
measures of, 132, 500
remote-sensing reflectance Rrs defined,

134
Refraction

Snell’s law, 173, 471
Remote Sensing, 505

as an inverse problems, 512
data processing levels, 509
data resolution, 508
terminology, 507
thematic mapping, 520
validation, 510

Remote-sensing Reflectance Rrs

defined, 134
dependence on IOPs and environmental

conditions, 135, 136
exact normalized, 541

Scatterance, 98
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Scattering

backscattering coefficient defined, 102

by bubbles, 274

by homogeneous spheres, 175

by irregular particles, 177

by minerals, 272, 301

by non-algal particles, 269

by phytoplankton, 263

by pure water, 178

by turbulence, 180

by water, 257

Compton scattering, 5

Einstein-Smoluchowski theory, 178

Fourier-Forand phase function, 199

Henyey-Greenstein phase function, 196

importance of, 169

index of refraction, 172

Mie theory, 437

models for, 173

Petzold’s measurements of the VSF, 192

phase function, 102

physical basis of, 172

relation to particle size and density, 302

Reynolds-McCormick phase function, 198

scattering coefficient, defined, 102

Snell’s law, 173

Scattering Angle

computed from directions, 21

Scattering Coefficient

defined, 99

measurement, 111

Secchi Disk, 623

black and white disks, 627

classical theory of Secchi depth, 624

examples of visibility, 817

Lee et al. theory of Secchi depth, 626

Single-scattering Albedo

defined, 99

Single-scattering Approximation, 359

Snell’s law, 173, 472

Solar Energy

creation, 76

spectrum, 77, 82

Solid Angle

defined, 24

differential element of, 25

of a spherical cap, 25

Source Function

for bioluminescence, 87

for CDOM fluorescence, 232

for chlorophyll fluorescence, 227

for Raman scattering, 213

general formalism, 211

in the SRTE, 328, 342

in the VRTE, 334

Spectrophotometry, 163

Successive-Order-of-Scattering Method, 359

Surfaces, 471

BRDF, 494

Cox-Munk slope statistics, 486

Lambertian, 498

level sea surface, 471

modeling resolution, 691

modeling time-dependent surfaces, 698

modeling wind-blown sea surfaces, 488

modeling with autocovariance functions,
703, 721

modeling with wave variance spectra, 665

spreading functions, 687

turbulence-generated, 721

Ternary diagrams for water classification, 145

Thematic Mapping, 520

Transmittance, 99

Turbulence

effects on water surfaces, 721

scattering by, 180

Visibility, 597, 791

contrast, 622

Secchi disk, 623

Secchi disk examples, 817

Volume Scattering Function

asymmetry parameter, 103

conceptual definition, 101

example plots, 103

measurement, 111

phase function, 102

Water, 252

absorption, 256

elastic scattering, 257

imaginary index of refraction, 255
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real index of refraction, 253
Water Classification Schemes, 140

Case 1 and Case 2, 143
Forel-Ule color classification, 141
Jerlov water type, 142
Ternary diagrams, 145

Wave Variance Spectra, 643
elevation variance spectra, 648
Elfouhaily et al. spectrum, 659
Pierson-Moskowitz spectrum, 656
slope variance spectra, 653
spreading functions, 662
theory, 648

Wiener-Khinchin Theorem, 705
analytical example, 706
numerical example, 709
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