

1.0 Agency Updates: New and Emerging Initiatives 1.1 JAXA: Update on GCOM-C/SGLI

Hiroshi Murakami JAXA/EORC IOCCG-25 Virtual Committee Meeting 13 May 2021

1. JAXA Earth observation satellite missions

GCOM-C

Ref: Advanced Land Observing Satellite-3: ALOS-3

	ALOS-3 Specifications							
Mission instrument	 Wide-swath and high-resolution optical imager Panchromatic band (black and white) Ground resolution: 0.8 m / Swath width: 70 km at nadir Wavelength: 0.52 - 0.76 µm Multi-band (color) Ground resolution: 3.2 m / Swath width: 70 km at nadir Band 1 0.40 - 0.45 µm (Coastal) Band 2 0.45 - 0.50 µm (Blue) Band 3 0.52 - 0.60 µm (Green) Band 4 0.61 - 0.69 µm (Red) Band 5 0.69 - 0.74 µm (Red Edge) Band 6 0.76 - 0.89 µm (Near-Infrared) 							
Data transmission method	Direct transmission to the ground (Ka band, X band) Optical data transmission via the optical data relay satellite							
Size	5.0 m \times 16.5 m \times 3.6 m (after the solar paddle deployed)							
Mass	Approx. 3 tons							
Design life	7 years							
Operational orbit Local solar time at descending node: 10:30 (a.m.) +/- 15 minutes								
Launch Vehicle	H3							
Launch Date	JFY2021							

✓ This mission is not dedicated for OC but can be used for coastal area research

2. GCOM-C/SGLI

Global Change Observation Mission - Climate, named "SHIKISAI"

GCOM-C SGLI characteristics								
Launch Date	23 Dec. 2017 (data since 1 Jan 2018) 💙 🗸							
Weight	2,000kg							
Orbit	Sun-synchronous (descending local time: 10:30), Altitude: 798km, Inclination: 98.6deg							
Mission Life	5 years (3 satellites; total 13 years)							
Scan	Push-broom electric scan (VNR: VN & P) Wisk-broom mechanical scan (IRS: SW & T)							
Scan width	1150km cross track (VNR: NP & POL) 1400km cross track (IRS: SWIR & TIR)							
Spatial resolution	250m, 500m, 1km							
Polarization	3 polarization angles for POL							
Along track tilt	Nadir for VN, SW and TIR, & +/-45 deg for POL							

VNR-NP Non-polarization three telescopes Each has the same 11 channels InfraRed Scanner

(SGLI-IRS)

specification of SGLI spectral ballds											
	λ	Δλ	L _{std}	L _{max}	SNR@L _{std}	IFOV					
СН			$W/m^2/$	/sr/µm	-						
	nn	1	K: K	elvin	Κ: ΝΕΔΤ	m					
VN1	380	10	60	210	250	250 /1000					
VN2	412	10	75	250	400	250 /1000					
VN3	443	10	64	400	300	250 /1000					
VN4	4 90	10	53	120	400	250 /1000					
VN5	530	20	41	350	250	250 /1000					
VN6	565	20	33	90	400	250 /1000					
VN7	673.5	20	23	62	400	250 /1000					
VN8	673.5	20	25	210	250	250 /1000					
VN9	763	12	40	350	1200*	25 0 / 1000*					
VN10	868.5	20	8	30	400	250 /1000					
VN11	868.5	20	30	300	200	250 /1000					
POL1	673.5	20	25	250	250	1000					
POL2	868.5	20	30	300	250	1000					
SW1	1050	20	57	248	500	1000					
SW2	1380	20	8	103	150	1000					
SW3	1630	200	3	50	57	250 /1000					
SW4	2210	50	1.9	20	211	1000					
TIR1	10800	700	300K	340K	0.2K	250/ 500 /1000					
TIR2	12000	700	300K	340K	0.2K	250/ 500 /1000					

A COLT

https://suzaku.eorc.jaxa.jp/GCOM_C/data/prelaunch/index.html

GCOMC

3. GCOM-C product distribution

- ✓ Ver.2 standard products (Level-1, 2, and 3) have been open to the public via JAXA data portal, "G-Portal" (data search and direct FTP)
- ✓ Some products are open via JAXA multi-sensor data site, JASMES
- ✓ GCOM-C products are evaluated by using in-situ observations and other satellite data

https://suzaku.eorc.jaxa.jp/GCOM_C/data/validation.html

https://kuroshio.eorc.jaxa.jp/JASMES/index.html https://www.eorc.jaxa.jp/cgi-bin/jasmes/sgli_nrt/index.cgi

4. SGLI calibration (Lunar cal)

- GCOM-C Ebbel Grange Observation Miliston-Allmente
- After the launch, the temporal change of SGLI gain has been evaluated by the lamp and solar light through the on-board diffusers (Urabe et al., Remote Sensing, 2020) and monthly lunar calibration with GIRO (Urabe et al., Proc. of IEEE/IGARSS, 2019)
- ✓ <u>The temporal change of the gain has been corrected in the processing of</u> <u>Ver.2 Level-1B data</u>

Channel	VN01	VN02	VN03	VN04	VN05	VN06	VN07	VN08	VN09	VN10	VN11
λ (nm)	380	412	443	490)	530	566	672	672	763	867	867
k _t (day ⁻¹)	-6.204E-05	-6.059E-05	-5.793E-05	-5.049E-05	-4.202E-05	-3.063E-05	-5.042E-06	-4.339E-06	0.0	0.0	0.0

 $L_{corr}(\lambda) = L_{orig}(\lambda) \ / \ (1.0 \ + \ k_t(\lambda) \ \cdot \ D), \label{eq:corr}$

D: days from 00:00 1st Jan 2018 (D=0)

GOM JAXA

6

https://suzaku.eorc.jaxa.jp/GCOM_C/data/prelaunch/index_cal.html

4. SGLI cal/val

MOBY and **BOUSSOLE**

GCØM MOBY (Clark et al., 2003) BOUSSOLE (Antoine et al., 2006; Antoine et al., 2008)

100

WL=490nm

buoy, BRDF = on, L1B degradation corr = nonlin, Pre-vical = off 100 120 120 WL=443nm WL=380nm WL=413nm 100 100 N=88 N=88 N=88 B01 SGLI Lt [W/m²/st/um] 80 SGLI Lt [W/m²/st/um] SGLI Lt [W/m²/st/um] rmsd=1.725 rmsd=2.891 cor=0.993 80 cor=0.993 80 kvc=0.984 kvc=1.029 60 std=0.020 std=0.021 60 60 40 40 40 B02 B03 20 20 20 0 0 0 20 40 60 80 100 0 20 40 60 80 100 120 0 0 B01 simulated Lt [W/m²/st/um] B02 simulated Lt [W/m²/st/um] 80 80 40 WL=530nm WL=566nm N=88 B05 SGLI Lt [W/m²/st/um] B06 SGLI Lt [W/m²/st/um] N=88 rmsd=2.048 60 rmsd=0.920 60 30 cor=0.995 cor=0.999 kvc=1.058 kvc=1.036 std=0.018 std=0.010

40

20

0

0

20

40

60

40

20

GOM KA

0.5 0.6

80

100

4. SGLI cal/val

Aeronet-OC

90

60

30

-30

-60

-90

-180

V

*

-150

-120

-90

-60

-30

0

Lonaitude

30

60

90

120

150

180

Latitude 0

- ARIAKE_TOWER: JAXA supported
- Kemigawa_Offshore

GCØM-

4. SGLI cal/val (vical summary)

Reference data	VN01 (380nm)	VN02 (412nm)	VN03 (443nm)	VN04 (490nm)	VN05 (530nm)	VN06 (566nm)	VN07 (672nm)	VN08 (672nm)	VN09 (763nm)	VN10 (867nm)	VN11 (867nm)
MOBY+BOUSSOLE v1 N=80	0.999	1.044	1.016	1.033	1.060	1.046	1.000	0.984	0.936	1.000	0.945
MOBY+BOUSSOLE v2 N=80	0.990	1.034	1.006	1.025	1.053	1.039	1.000	0.984	0.939	1.000	0.945
AERONET-OC v1 N=1126	0.991	1.038	1.010	1.030	1.062	1.046	1.000	0.993	0.963	1.000	0.963
AERONET-OC v2 N=1115	0.974	1.020	0.993	1.015	1.050	1.037	1.000	0.994	0.963	1.000	0.965
Aqua MODIS Rrs v2	0.981	1.020	1.002	1.007	1.056	1.034	1.000	1.004	0.977	1.000	0.983

- The different aerosol LUTs caused about 1% difference of k_{v} .
- Difference from reference datasets are <2%

V1: aerosol LUT by Shettle and Fenn 1975 V2: aerosol LUT by Aeronet climatology

GCØM

· Ver. 2: Validation Results

N=659

Accuracy:

/m²/sr/um

In-situ nLw [W/m2/sr/µm]

0.9 W

nLw

Accuracy:

22%

NWLR(380nm, 490-565nm) achieved the target accuracies, NWLR(412-443nm) achieved the standard accuracies .

- NWLR(670 nm) didn't achieved the standard accuracy on coastal regions. It is a issue to be solved by version 3. However, version 2 accuracy improved than version 1 ($1.2 \rightarrow 0.9$ W/m2/sr/um).
- Number of In-situ points increased than the validation result at version 1 release

(ver.1 release: 14-102 points \rightarrow ver.2 release: 113-722 points).

In-situ nLw [W/m2/sr/µm]

SGLI nLw [W/m2/sr/µm]

SGLI nLw [W/m2/sr/µm]

N=722

- In-situ OC data are provided by GCOM-C Pis
- SST is validated by NOAA iQuam data

Due to cloud contamination in nighttime

5. Next version (Ver.3) of GCOM-C ocean product

S/R	Product	Algorithm Validation		Status				
	Normalized water leaving radiance	Toratani, Frouin,		NIR estimation, sunglint estimation will be revised				
	Atmospheric corr. parameter	JAXA, Stamnes		, ,				
ard	PAR	JAXA, Frouin Toratani, Frouin,		• No change (improved through improvement of the				
pu	Chlorophyll-a conc.	JAXA	Hirawake,	atmospheric correction)				
Sta	Suspended solid conc.	Toratani	Isnizaka, Suzuki, Kohavashi	Revised by collected in-situ data (TBD)				
	CDOM		Khahru, Antoine, Kuwahara, Isada,	• No change (improved through improvement of the atmospheric correction)				
Ļ	Inherent optical properties	Hirata	Higa, Hirata	 Investigated through the PI team workshop (FY2020-2021) 				
earc	Euphotic zone depth			 Developing by PI; to be open from JASMES 				
Rese	Phytoplankton functional type	Hirawake, Hirata		 Improved with progress of IOP algorithm; to be open from JASMES after enough evaluation and publication 				
S	Sea surface temp. JAXA		XA	Minor revision of the cloud flag				
	Ocean net primary productivity Ishizaka, Hirawak		ke, Tachiiri (model)	• Developing VGPM-type and APAR-type algorithms; to be open from JASMES				
earch	Redtide	Ishizaka, Kobayashi (Yamanashi), Higa		 Developing for Ariake bay; to be open from JASMES after validation 				
Res	multi sensor merged OC	JAXA	, Wang	 Under comparison with other sensors; model assimilation in the future 				
	multi sensor merged SST	JAXA		Assimilated by JAMSTEC JCOPE-T DA				
	APAR	Frouin		• investigating absorption of PAR for NPP estimatic				
Vev	POC, DOC,	Mat	suoka	Candidate for the new research product				
~	Floating algae index	JA	XA	Opened by JASMES around Japan				

✓ Ver.3 standard products (Level-2, and 3) will be released around the end of Nov. 2021

SGLI water-leaving reflectance spectra at redtides

6. Examples of 2020 obs: TSM time series in Tokyo Bay

Ocean color (Total suspended matter concentration, TSM) in Tokyo bay seems influenced by the river outflow increased by heavy rainfall in the drainage basin, e.g., the end of Sep. 2018, <u>Oct. 2019</u>, and the end of Jul. 2020

The river outflow data is obtained from JAXA's land surface & river simulation system, "Today's Earth (TE)": <u>https://www.eorc.jaxa.jp/water/</u>

✓ NASA/ESA/JAXA Earth Observing Dashboard (https://eodashboard.org/)

Related activity: Near Real-Time Monitoring System for Marine Coastal Eutrophication Using Google Earth Engine (GEE)

- The "Development of a Near Real-Time Monitoring System for Marine Coastal Eutrophication Using Google Earth Engine" was awarded as a winning project by the Group on Earth Observations (GEO) and Google Earth Engine (GEE) in July 2020
- The project aims to use a 250 m resolution satellite dataset on Chlorophyll-a to assess potential eutrophication areas at the global scale.
- The project will last for two years. It will produce an interactive map of potential eutr ophication area over the global ocean to help the NOWPAP (https://www.unep.org/ nowpap/) Member States and countries around the world to manage eutrophicatio n and report their progress under the 2030 UN Sustainable Development Agenda.
- The project will be led by Professor Joji Ishizaka, Nagoya University, in collaboration with the Northwest Pacific Region Environmental Cooperation Center (NPEC), the Japan Aerospace Exploration Agency, GOOGLE, Limited Liability Company (LLC), the United Nations Environment Programme (UNEP), the Northwest Pacific Action Plan (NOWPAP), and the Japan Association for the UNEP.

Assessment of eutrophication in the Northwest Pacific Region with satellite Chl-a from 1998 to 2015 using NEAT

7. Summary

- ✓ GCOM-C/SGLI data since 1st Jan. 2018 have been open(freely) through G-portal (https://gportal.jaxa.jp/gpr/)
- ✓ Temporal change of SGLI (about 2%/year degradation in the blue channels detected by GIRO) has corrected in Ver.2 L1B (released June 2020; under reprocessing until summer 2021)
- ✓ Vicarious calibration is updating by MOBY and BOUSSOLE
- ✓ Ver.3 OC products will be released in Nov. 2021
- ✓ NASA/ESA/JAXA Earth Observing Dashboard
- ✓ GEO-GEE Eutrophication Watch Project
- ✓ The next research announcement (starts from April 2022) will be open in this summer-autumn

