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Introduction 

This IOCCG Technical report is the result of an IOCCG on the evaluation of atmospheric correction 

algorithms over optically-complex waters that started in 2014. This report aims at being a 

complementary updated report of the IOCCG report # 10.  

Optically-complex waters, especially turbid waters, have been the focus of several researches in the 

past decade and the IOCCG working group felt it was time to provide an exhaustive evaluation of the 

most common atmospheric correction used in the ocean color community but to provide guidances to 

the end-users on how and where to use a specific atmospheric correction algorithm. 

As the reader may already know, the atmospheric correction process is vital to get accurate ocean 

color radiometry, i.e. the remote sensing reflectance (Rrs). While this process is somewhat easy in the 

open ocean waters (due to the fact that the ocean can be considered totally absorbent of the Sunlight), 

it is more complicated in optically-complex waters that are often observed in coastal waters. 

Remote sensing of coastal waters is difficult as: 

 these areas are highly variable in space and time 

 the surrounding can affect the signal measured by the remote sensor (straylight contamination 

or adjacency effects) 

 the aerosols are non-maritime (dust, pollution) and can be absorbing. These cases are not 

taking into account in most of atmospheric correction algorithms 

 high values of high total suspended matter (SPM) and/or high colored dissolved organic matter 

concentrations (CDOM) can be observed. This complicates the estimation of Rrs(NIR) and the 

correction of the BRDF. Also, it can also saturate the remote sensor 

 there are anthropogenic emissions (NO2 absorption) 

In this report, the WG decided to focus mainly on the turbid waters (non-zero Rrs(NIR)). This is mainly 

due to the availability of long-term time series of in-situ measurements in these coastal areas. The 

evaluation of the atmospheric correction algorithms has been done using MODIS-AQUA images. It does 

not mean that this report is focused on MODIS-AQUA, it's just an application. The main reason why 

MODIS-AQUA has been chosen is that it was the only remote sensor to have short-wave infra-red 

(SWIR) bands over a long-time period when the WG started. Since that, Sentinel-3A and Sentinel-3B as 

well as VIIRS have been launched. However, we believe that the results of this evaluation can be 

applicable to Sentinel-3 and VIIRS as the wavelengths are very similar and the principles of the 

algorithms in principle do not change with sensors (only the quality of the sensor changes). As the 

application of this report is on MODIS-AQUA, few atmospheric correction algorithms were not taking 

into account, especially the ones developed for MERIS sensor using the 709 nm band (Moore et al., 

1999).  

After presenting the different atmospheric correction algorithms included in the round-robin (Chapter 

1), the three datasets used for the evaluation are presented in Chapter 2. Then the results over these 

three datasets including sensitivity studies (Chapter 3). The final chapter of this Technical Report 

presents the other issues that can occur when observing coastal waters (adjacency effects and 

absorbing aerosols) as well as results of other projects that evaluated atmospheric correction 

algorithms over optically-complex waters. 



I. Atmospheric correction over turbid waters 

This chapter presents the basis of the atmospheric correction and then the selected algorithms. The 

selection was based on availability of the algorithm and on the free will to share the code and to 

process the data. We tried to select algorithms that the community use or is interested in and 

algorithms that were based on different hypotheses so we could investigate the sensitivity of the 

outputs on those hypotheses. 

1) Principles of the atmospheric correction 

The purpose of the atmospheric correction process is to remove the contribution of the atmosphere 

to the signal measured by the remote sensor, leading to the estimation of the remote-sensing 

reflectance, i.e. the ocean color radiometry. The signal measured by the remote sensor at the top-of-

the atmosphere can be decomposed into several terms (Gordon and Wang 1994; Gordon, 1997, 

IOCCG, 2010; Mobley et al., 2016; Frouin et al., 2019): 

    LTOA=LR+La+Lra+T.Lg+t.Lwc+t.Lw                                     (Eq. 1) 

with 

 LTOA, the radiance measured at the top of the atmosphere 

 LR, the radiance due to the air molecules (Rayleigh scattering) 

 La, the radiance due to the aerosols (aerosols scattering) 

 Lra, the radiance due to the interaction between the aerosols and the air molecules 

(aerosols-Rayleigh scattering) 

 Lg, the radiance due to the specular reflexion of the Sun on the sea surface (Sun glint 

 Lwc, the radiance due to the white caps 

 Lw, the water-leaving radiance (the final parameter) 

 T, the direct transmittance 

 t, the diffuse transmittance 

The Rayleigh scattering, the white caps radiance and the Sun glint contributions as well as the gas 

absorption can be estimated from ancillary data (Mobley et al., 2016). 

So the atmospheric correction process aims at estimating the contribution of the aerosols using the 

Rayleigh-corrected radiance: 

     Lrc=LTOA- LR= La+Lra++t.Lw=LA+t.Lw                                    (Eq. 2) 

Over open ocean waters, the water-leaving radiance can be considered negligible (black pixel 

assumption) in the near-infrared (NIR) bands so the measured signal is only due to the 

aerosols. Using the NIR bands allow the estimation of the aerosol models and optical 

properties. But in more optically-complex waters, such as turbid waters (which are the main 

focus of the report), the black pixel assumption is not true anymore, as there is a contribution 

of the water to the top-of-atmosphere signal (IOCCG, 2010). To overcome this challenge, many 

atmospheric correction algorithms were developed in the past two decades for the major past 

and current ocean color remote sensors. They can be grouped into five different categories: 



(1) assignment of the hypothesis on the NIR aerosols or water contributions (Hu et al., 2010; 

Ruddick et al., 2010), (2) use of the shortwave infrared bands [Wang and Shi, 2005; Wang and 

Shi, 2007; Wang, 2007; Shi and Wang, 2009, Chen et al., 2014, He and Chen, 2014], (3) use of 

blue or ultra-violet (UV) bands (Oo et al., 2008; He et al., 2012), (4) correction or modeling of 

the non/negligible ocean in the NIR (Moore et al., 1999; Siegel et al., 2000; Stumpf et al., 2003; 

Lavender et al., 2005; Bailey et al., 2010), and (5) coupled ocean/atmosphere inversion based 

on artificial neural networks (Doerffer and Schiller, 2007; Schroeder et al., 2007; Fan et al., 

2017) or optimization techniques (Chomko et al., 2003; Stamnes et al., 2003; Jamet et al., 

2004, Brajard et al., 2006, 2012; Kuchinke et al., 2009; Steinmetz et al., 2011). 

The purpose is not to compare all existing atmospheric correction algorithms but to take the most used 

and the most different algorithms (i.e. based on different hypothesis and/or numerical methods). 

 

2) Choice of algorithms 

The algorithms used in the evaluation have been chosen on their availability and use by the ocean 

color community. The goal was not to have all published atmospheric correction algorithms but to 

have algorithms that are based on different hypothesis to try to understand how these hypothesis 

impact the accuracy of the retrievals. 

a) NASA standard AC (Bailey et al., 2010) 

The Bailey et al., (2010) approach estimates NIR reflectance through an iterative approach based on a 

reflectance retrieval in the red (670nm).  The initial condition is based on the black-pixel assumption, 

from which an estimate of the visible reflectance is obtained.  The backscatter coefficient in the red is 

estimated by inversion of the reflectance.  This inversion assumes that the dominant absorption 

component is water, although an empirical estimate particulate absorption is employed as well.  The 

backscatter slope parameter defined by Lee et al. (2010) is derived from the retrieved reflectance 

spectrum and is used to propagate the backscatter coefficient from the red into the NIR.  This 

propagated backscatter coefficient is used in a forward model to retrieve an estimate of reflectance in 

the NIR which is subtracted from the signal prior to the next iteration of the atmospheric correction.  

The iteration is continued until convergence of the red reflectance or a maximum iteration threshold 

is reached. 

b) NIR-SWIR AC (Wang and Shi, 2007) 

This method combined the standard NASA atmospheric correction algorithm (Bailey et al., 2010) for 

the open ocean waters with an atmospheric correction method using the Short-Wave-Infra-Red (SWIR) 

bands (Wang and Shi, 2005). The switch is based on a turbidity index (Shi and Wang, 2007). The 

principle of the SWIR AC is the same as Gordon and Wang (1994), with considering the ocean being 

black in the SWIR bands. The epsilon parameter is calculated in the SWIR bands to then estimating the 

aerosol optical properties and models.  

c) MUMM AC (Ruddick et al., 2000) 



This algorithm replaces the assumption that the water leaving radiance is zero in the NIR by the 

assumptions of spatial homogeneity of the 748/869 nm ratios for aerosol and water-leaving 

reflectances over the subscene of interest. The ratio of ρA reflectances at 748 and 869 nm is named ε 

and is considered as a calibration parameter to be calculated for each sub-scene of interest. In addition, 

the ratio of ρw at 748 and 869 nm, named α, is also considered as a calibration parameter and is fixed 

to a value 1.945 for the MODIS-AQUA sensor (Ruddick et al., 2000, 2006). These assumptions are used 

to extend to turbid waters the GW94. Using the definition of α and ε, the equations defining ρA(748) 

and ρA(869) become: 

    𝜌𝐴(748) = 𝜀(748,869). [
𝛼.𝜌𝑐𝑜𝑟(869)−𝜌𝑐𝑜𝑟(748)

𝛼−𝜀(748,869)
]       (2) 

                                                        𝜌𝐴(869) [
𝛼.𝜌𝑐𝑜𝑟(869)−𝜌𝑐𝑜𝑟(748)

𝛼−𝜀(748,869)
]                    (3) 

 

The atmospheric correction algorithm can be summarized thus: 

(1) Enter the atmospheric correction routine (i.e. GW94) to produce a scatter plot of Rayleigh-

corrected reflectances ρcor(765) and ρcor(785) for the region of study. Select the calibration parameter 

ε on the basis of this scatter plot as described later. 

(2) Reenter the atmospheric correction routine with data for Rayleigh-corrected reflectances ρcor(748) 

and ρcor(869) and use Eqs. (2) and (3) to determine ρA(748) and ρA(869), taking account of non-zero 

water-leaving reflectances. 

(3) Continue as for the standard GW94 algorithm. 

d) SWIRE AC (He and Chen, 2014) 

A new shortwave infrared extrapolation (SWIRE) method is used to correct the NIR bands. The 

Rayleigh-corrected reflectances in the SWIR bands (1.24, 1.64, and 2.13 μm) are used to determine an 

exponential function with respect to wavelength, which is used to correct the NIR bands (0.748 and 

0.869 μm) for sediment scattering and  hence estimate the aerosol scattering reflectances in these 

bands. The Rayleigh-correction reflectances can be fitted with an exponential function in the NIR and 

SWIR bands for open ocean waters while only in SWIR for turbid waters. The fitted function is called 

the extrapolated Rayleigh-corrected reflectance and is used to calculate the epsilon parameter.  Then 

the Gordon and Wang AC approach is applied. 

e) NN-based AC (Fan et al., 2017) 

Standard atmospheric correction (AC) algorithms work well in open ocean areas where the water 

inherent optical properties (IOPs) are correlated with pigmented particles. However, the IOPs of turbid 

coastal water may vary independently with pigmented particles, suspended inorganic particles, and 

colored dissolved organic matter (CDOM). In turbid coastal water, standard AC algorithms often exhibit 

large inaccuracies that may lead to negative water-leaving radiances (Lw) or remote sensing 

reflectances (Rrs). To address this problem new algorithms for retrieval of aerosol optical depth (AOD) 

and Rrs values, based on multilayer neural network (MLNN) methods, have been developed (Fan et al., 

2017). A radiative transfer model for the coupled atmosphere-water system (AccuRT) is used to 



simulate top of the atmosphere (TOA) radiances (Ltoa) and Rrs values simultaneously, and this dataset 

is used to train MLNNs to determine AOD and Rrs values directly from Ltoa radiances. The MLNN method 

has been validated using both synthetic data and Aerosol Robotic Network – Ocean Color (AERONET–

OC) measurements. Application of these MLNN algorithms to MODIS Aqua images in several coastal 

areas shows that they are accurate (no negative Rrs values), robust, and resilient to contamination due 

to sunglint or adjacency effects of land and cloud edges. These MLNN algorithms are very fast once 

the neural networks have been properly trained and are therefore suitable for operational use. A 

significant advantage is that they do not need SWIR bands, which implies significant cost reduction for 

dedicated OC missions. These MLNN algorithms have been extended for application to extreme 

atmospheric conditions (i.e. strongly polluted continental aerosols) over turbid coastal water by 

including appropriate aerosol and ocean bio-optical models to generate the required training datasets. 

Application of these extended MLNN algorithms to VIIRS images over areas with extreme atmospheric 

and marine conditions (such as the Yellow Sea and the East China Sea) shows very promising results. 

f) NN-based AC (Schroeder et al., 2007) 

The ANN algorithm was adapted to an approach previously developed by Schroeder et al. (2007a, 

2007b) [19, 35] for MERIS but on the basis of a different learning algorithm. In contrast to atmospheric 

correction algorithms based on the Black-Pixel assumption - the ANN method does not attempt to 

decouple atmospheric and oceanic light fields. Rather, it performs the correction directly on a pixel-

by-pixel basis from the full TOA spectrum. 

A scalar version of the Matrix-Operator-MOdel (MOMO) [36, 37] was used to simulate the light field 

in a coupled ocean-atmosphere system and to build a large data base of more than 20 million 

reflectance spectra at the bottom of the atmosphere (BOA) and at the top of the atmosphere (TOA). A 

variety of different sun and observing angles as well as different concentrations of oceanic and 

atmospheric constituents were considered in the simulations, which were subsequently used to adapt 

the ANN algorithm. The only difference in this study is the adaption of MODIS spectral band settings. 

ANN was implemented as a 3-layer perceptron and in this application represents a nonlinear function 

mapping between the TOA spectral reflectance (input) and the BOA spectral reflectance (output). 

Within such a network each layer consists of neurons – which are the basic, linear or non-linear, 

processing nodes. Each neuron is connected with each neuron of the next layer by a weight. The 

weights – in statistical term the free parameters - were estimated during a supervised learning 

procedure during which the network “learned” to associate an input vector 𝑥⃗ with a given output 

vector 𝑦⃗ . The weights between two layers can be expressed as a matrix W and the complete analytic 

function represented by a 3-layer network is then given by the following equation: 

𝑦⃗ = 𝑆2 × {𝑊2 × 𝑆1(𝑊1 × 𝑥⃗)} 

In our case the activation function is linear for the output layer (S2) and non-linear (logistic) for the 

hidden layer (S1). Training of a network consisted of minimizing the sum of squared errors between all 

input and output training vectors by adapting the weight matrices (W1,W2) iteratively using a Limited 

Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [38]. The training data was extracted 

randomly from the simulated data base. In detail, we extracted 100,000 spectra at BOA and TOA, of 

which one input vector  𝑥⃗ consisted of the full TOA spectral reflectance in MODIS ocean color bands 8-

16 (λ=[412.5-869.5] nm), the angular information of the observing geometry transformed into 

Cartesian coordinates, the cosine of the sun zenith cos(θ0) and the surface pressure P.  



The associated output vector  𝑦⃗  contains the log-transformed remote sensing reflectance at BOA in 

the MODIS bands 8-15 (λ=[412.5-748] nm) and aerosol optical thickness (AOT) at four AERONET 

wavelengths (440, 550, 670 and 870 nm). 

As there are no direct pathways to obtain the optimum network architecture, a series of 170 different 

networks were trained by varying the number of hidden layers, the number of neurons on the hidden 

layers and several noise levels. Training was stopped for each configuration after 1,000 iteration cycles 

over the full training data set of 100,000 spectra and monitored by the Mean Squared Error (MSE). The 

best performing network was selected based on the results obtained from match-up analysis – the 

ANN method therefore had the advantage in this AC comparison that it was tuned to the in-situ 

measurements. Its architecture consisted of 14 input nodes , 80 hidden layer neurons, and 12 neurons 

for the output layer trained with a random noise level of 0.8% for the TOA reflectance, 0.1% for each 

the geometry inputs and 2% for the surface pressure. 

g) Polymer AC (Steinmetz et al., 2011) 

The Polymer atmospheric correction algorithm (Steinmetz et al, 2011, Steinmetz et al, 2018) is an 

advanced full-spectrum coupled spectral matching algorithm for Ocean Colour. It was originally 

developed for the atmospheric correction of MERIS observations, in particular in presence of sun glint 

contamination, but has been extended to many other sensors. This algorithm relies firstly on a water 

reflectance model based on (Park & Ruddick, 2005) having only two unknown parameters, the 

chlorophyll concentration and the particle backscattering, to represent a large variability of the oceanic 

and coastal waters. Secondly, it relies on a model for the atmosphere and surface reflectance, whose 

particularity is to be represented as a linear combination of three terms: 𝜌𝑎𝑔(𝜆) =  𝑇0(𝜆)𝑐0 + 𝑐1𝜆−1 +

𝑐2𝜌𝑚𝑜𝑙(𝜆). This analytical formulation does not rely on aerosol models and allows fitting accurately 

not only the aerosol reflectance, but also other complex atmospheric and surface effects, in particular 

the residual sun glint. This formulation essentially relies on the general fact that atmospheric effects 

in 𝜌𝑎𝑔(𝜆) are spectrally smooth. 

An iterative optimization scheme is applied pixel by pixel, using the Nelder-Mead simplex method, to 

retrieve the water and atmospheric parameters simultaneously. The final values of 𝜌𝑎𝑔(𝜆) are 

subtracted from the observation, so that the final water reflectance is not the output of the model, 

and preserves fine spectral features from the observation. 

Polymer is freely available for non-commercial purposes on www.hygeos.com/polymer. 

h) Gaussian-spectral relationships SS14 (Singh and Shanmugam, 2014) 

Estimation of aerosol radiance remains a challenging problem in the process of atmospheric correction 

of ocean color data due to its random variability in space, time, and type that increase the complexity 

of its estimation with the conventional methods. The higher radiance values in the near infrared (NIR) 

region due to turbidity interferes with the standard aerosol correction which generally performs well 

in open ocean waters. To improve the performance of aerosol correction method, the radiance values 

must be corrected for contributions by the water constituents. To mitigate this problem, a correction 

factor, κ, is introduced which is defined in terms of band ratio to determine the extent of radiance 

contributed by various optically active water constituents in the NIR bands (Singh and Shanmugam, 

2014). The band ratio of κ is determined differently for each water type, such as green to blue band 

https://www.hygeos.com/polymer


for sediment dominated waters, fluorescence to absorption red band for in-water blooms, shorter NIR 

to red band for dense algal blooms, whereas κ is unity for clear water where no correction in NIR band 

is required. Once, the NIR band has been corrected for the elevated signal in the optically complex 

water signals, the radiance values can be extrapolated to visible bands for better estimation of aerosol 

radiance. To achieve this, Rayleigh corrected NIR band radiance and κ are employed to determine 

reference radiance (Lref) in the green region, wherein the magnitude of aerosol radiance remains 

maximum, and hence the relative error in estimation of Lref reduces to a minimum level. Due to the 

empirical relationship between the corrected NIR band and Lref, there lies a probability of over-

estimation. The elevated signal in the NIR band is generally attributed to the scattering by 

phytoplankton, which also tends to absorb in the red region. Such absorption feature in the red region 

can be utilized to reiterate the estimation of Lref and minimize the over-estimation. Using Lref, aerosol 

radiance (La(λ)) can be estimated using a Gaussian extrapolation over the entire visible spectrum. 

However, such extrapolation fails to determine the aerosol radiance for the longer NIR band, and 

hence, the aerosol radiance is assumed to be smooth in this region and extended to the longer NIR 

band. The major benefit of the method can be attributed to the need of only standard ocean color 

bands to determine κ, which makes it widely applicable to most of the ocean color sensors.  

i) UV-based AC (He et al., 2012) 

The principle of the UV-AC algorithm is based on the fact that the water-leaving radiance at ultraviolet 

wavelengths can be neglected as compared with that at the visible light wavelengths or even near-

infrared wavelengths in most cases of highly turbid waters due to the strong absorption by detritus 

and colored dissolved organic matter [1]. In turbid waters, the water-leaving radiances increase largely 

at longer VIS wavelengths and NIR due to strong particulate scattering, yet the strong combined 

absorption by detritus and CDOM contents cause a rapid decrease of the water-leaving radiance at the 

UV band [2]. In extremely turbid waters, such as the Hangzhou Bay, the water-leaving radiance at the 

UV band is much lower than at the NIR band. In such turbid coastal and inland waters, the UV band is 

more suited than the NIR band for estimating the aerosol scattering radiance [3]. Since most of the 

launched satellite ocean color sensors have no UV band, the shortest wavelength (usually at 412nm) 

can be used. Taking the SeaWiFS for an example, the shortest waveband (412 nm) was used as the 

reference to estimate the aerosol scattering radiance. Assuming that the water-leaving reflectance at 

412 nm can be neglected in highly turbid waters, we can estimate the aerosol scattering reflectance at 

412nm [    412 412a rcnm nm 
]. Based on the extrapolation method with fairly accurate method, 

we can estimate the aerosol scattering reflectance at 865 nm. 

 

 

(865 ) (412 )exp (412 865)

ln (765 ) / (865 ) (865 765)

a rc

rc rc

nm nm c

c nm nm

 

 

 


   

For the reality applications, the UV-AC algorithm was applied to the whole target region which might 

not only cover the turbid waters, but also include some of the clear waters. To avoid the 

overestimation of the aerosol scattering reflectance in clear waters, the 
(865 )a nm

 is limited to 

(865 )rc nm . Specifically, when the estimated 
(865 )a nm

 is larger than the (865 )rc nm , it will be set 

as (865 )rc nm . Finally, a “white” aerosol scattering reflectance spectrum is assumed to the whole 

target region, and the aerosol scattering reflectance at all bands will be equal to 
(865 )a nm

. 



 

II. Dataset 

a) Simulated dataset 

An enhanced version of the simulated dataset developed in the IOCCG report #10 has been developed 

to encompass a wide range of coastal waters.  

The AccuRT radiative transfer code has been used to generate the radiances at the top-of-the-

atmosphere, at the top-of-the-atmosphere corrected from the gas absorptions, at the top-of-the-

atmosphere corrected from the gas absorptions  and the Rayleigh scattering, the aerosol and 

Rayleigh/aerosol radiance, the diffuse transmittance and the remote-sensing reflectance (Jin and 

Stamnes, 1994; Thomas and Stamnes, 1999; Cohen et al., 2013; Hamre et al., 2014).  

The aerosol model are from Ahmad et al. (2010) and the inherent optical properties of the seawater 

from the COASTCOLOUR project () 

In order to cover a wide range of atmospheric and water conditions, we generated 20,000 cases as 

follows:  

For each ocean case, 4 aerosol models were randomly selected among the 80 possible models (4 

aerosol configurations x 5,000 water configurations). For each of these 20,000 cases, the geometry 

angles were randomly selected in the following ranges: 

- Solar zenith angle (θs = SZA): 0-70°  

- Viewing zenith angle (θv = VZA): 0-70°  

- Relative azimuth angle (ΔΦ= Φs-Φv = RAA): 0-180°. 

The sun-glint geometry were avoided in the simulations. 

The simulated dataset has been generated for SeaWiFS, MODIS-AQUA, VIIRS, MERIS and OLCI sensors. 

The following files are therefore provided with the dataset: 

1. "sensor_InputParameter.txt", 

2. "sensor_RadianceTOA.txt", 

3. "sensor_RadianceTOA gas corrected.txt", 

4. "sensor_RadianceTOA gas&rayleigh corrected.txt" 

5. "sensor_Rrs.txt" 

6. "sensor_aerosolReectance.txt" 

7. "sensor_diffuseTransmittance.txt" 

The file "sensor_InputParameter.txt" contains the input parameters for the simulations. The format is 

as follows: SZA, VZA, RAA, τa(865), angstrom(443/865), fv, RH, CHL, CDOM, MIN. 



The file "sensor_RadianceTOA.txt" includes the top of atmosphere (TOA) radiances for each simulation 

case. These radiances were simulated with atmospheric gas absorption, Rayleigh scattering, aerosol 

and ocean IOPs turned on. The number of columns in the file  depends on the sensor. For example, 

there are 16 columns in each line for MODIS, one for each band. 

The file "sensor_RadianceTOA_gas_corrected.txt" contains "atmospheric-gas-corrected" TOA 

radiances for each simulation case. The radiances were simulated with atmospheric gas absorption 

turned off, but Rayleigh scattering, aerosol, and ocean IOPs turned on. The number of columns in the 

file depends on the sensor. For example, there are 16 columns in each line for MODIS, one for each 

band. These radiances can be used to validate the atmospheric gas correction algorithm. 

The file "sensor_RadianceTOA_gas&rayleigh_corrected.txt" contains "atmospheric-gas-and- Rayleigh-

corrected" TOA radiances using data from "sensor_RadianceTOA_gas_corrected.txt" with the pure 

Rayleigh scattering radiances subtracted. The pure Rayleigh scattering radiances were simulated with 

only Rayleigh scattering turned on, and atmospheric gas absorption, aerosol, and ocean IOPs turned 

off. The number of columns in the file depends on the sensor. For example, there are 16 columns in 

each line for MODIS, one for each band. 

The file "sensor_Rrs.txt" contains the remote sensing reflectance Rrs for each simulation case. The 

remote sensing reflectance was computed as the water leaving radiance divided by the downwelling 

irradiance just above the surface. The water leaving radiance was simulated as described in Appendix 

C. The simulation was done with atmospheric gas absorption, Rayleigh scattering, and aerosols turned 

on in the atmosphere. This file includes two sets of data. The first half of the columns include nadir Rrs 

values (θ0= SZA;  θ= 0; ΔΦ = 0) and the second half of the columns include the corresponding Rrs values 

at the geometry of (θ0= SZA; θ = VZA; ΔΦ = RAA). For example, there are 32 columns in the file "MODIS 

Rrs.txt". The first 16 columns contain the nadir Rrs values (SZA, 0, 0) for each band, while the next 16 

columns contain the corresponding Rrs values at geometry (SZA, VZA, RAA). The second set of Rrs data 

can be used to validate the atmospheric correction algorithm. The first set of Rrs data can be used to 

validate the BRDF algorithm. 

The file "sensor_aerosolReflectance.txt" contains the reflectance for aerosols (no molecular scattering 

or absorption, but including molecule/aerosol interactions) at the TOA. These reflectances were 

computed as Radianceaerosol(TOA)/Ed(TOA), and correspond to ρa + ρra as defined by Gordon and Wang 

(1994). But please note that there is a factor of π difference: Gordon and Wang (1994) defines the 

reflectance as ρ= πL/( μ0F0), while we use ρ= L/(μ0F0). 

The file "sensor_diffuseTransmittance.txt" contains two-way diffuse transmittance for aerosols and 

molecular scattering (no molecular absorption). 

b) In-situ dataset 

An in-situ dataset of remote-sensing reflectance and aerosol optical thickness have been gathered. 

These measurements are from the AERONET-Ocean Color network (Zibordi et al., 2009b). AERONET-

OC is the ocean component of the Aerosol Robotic Network (AERONET, Holben et al., 1998). AERONET-

OC is a system of autonomous sun photometers distributed around the globe (mainly in the northern 

hemisphere as shown in Figure XX) providing normalized water-leaving (nLw) radiance and the aerosol 

optical thickness at multi-wavelengths in the visible. 



 

Figure : Maps of the global AERONET-OC stations. The stations used in this report are mentioned in 

table 1 

The advantage of using AERONET-OC data is that the production of the measurements is standardized 

with identical systems and protocols, with calibration from a single source or method and with 

processing using the same code (Zibordi et al., 2006; 2009). Moreover, measurements are taken 

several times a day, every day (optimally), which leads to a high number of potential match-ups.  

Table 1 presents the different AERONET-OC stations used for the match-ups exercise. 

Table 1. AERONET-OC stations names, locations and number of data used 
 

S.No Station Year Lat Lon N Nv 

1 VENISE 2002-2015 45.31 12.50 1192  

2 COVE  2006-2015 36.90 -75.71 38  

3 GDLT 2005-2015 58.59 17.46 268  

4 HLT 2006-2015 59.94 24.92 261  

5 MVCO 2004-2015 41.30 -70.55 412  

6 GLORIA 2011-2015 44.59 29.35 186  

7 LUCINDA 2009-2015 -18.50 146.30 83  

8  ZEEBRUGGE 2014 51.36 3.12 16  

 

Characteristics of the selected AERONET-OC stations are provided in Feng et al. (2008); Zibordi et al. 

(2009a); Zibordi et al. (2015); Van der Zande (2016). 

 

c) Images dataset 



It is useful to directly look at the images to observe the behaviors of the atmospheric correction 

algorithms. 

 

 

 

III. Match-ups analysis 

1) Extraction of the match-ups 

The validation of the algorithms have been done through a classic match-ups analysis (Bailey et al., 

2006). The following steps have been taken: 

1. 1-hour interval between the satellite overpass and the AERONET-OC measurement 

2. Extraction over a 3-by-3-pixel box centered over the AERONET-OC station 

3. 6 out of 9 pixels must be valid over the 3-by-3-pixel box 

4. A coefficient of variability, CV, is calculated, i.e. standard deviation/mean values over the 3-

by-3-pixel box 

5. A match-ups is valid if CV<0.2 

6. Calculation of the mean values over the valid pixels 

7. AERONET-OC data are filtered for taking into account only turbid waters as defined by 

Robinson et al. (2003): Rrs(667)>0.0012 

Considering these different steps, out of 2456 possible match-ups, only 889 remained. 

2) Statistical parameters 

To quantitatively evaluate the performances of the algorithms the following statistical parameters 

have been calculated: 

 Relative Error:  𝑅𝐸 =
1

𝑁
∑ (100 ×

|𝑅𝑟𝑠
𝑠𝑎𝑡−𝑅𝑟𝑠

𝑜𝑏𝑠|

𝑅𝑟𝑠
𝑜𝑏𝑠 ) 

 

 Root-Mean-Square-Error: 𝑅𝑀𝑆𝐸 = √(
∑(𝑅𝑟𝑠

𝑠𝑎𝑡−𝑅𝑟𝑠
𝑜𝑏𝑠)

2

𝑁
) 

 

 Slope and intercept of the regression line 

 Bias: 𝐵𝐼𝐴𝑆 =
1

𝑁
∑ (100 ×

𝑅𝑟𝑠
𝑠𝑎𝑡−𝑅𝑟𝑠

𝑜𝑏𝑠

𝑅𝑟𝑠
𝑜𝑏𝑠 ) 

 

 Correlation coefficient R2 

 

3) Statistical evaluation of the retrieved spectra 



Aside the classic statistical parameters, investigations on the shape of the retrieved spectra were also 

performed through three parameters:  

 Quality Assurance Score (QAS; Wei et al., 2016): this parameter provides quantification of the 

full Rrs spectrum quality of retrievals with regards to reference spectra. The value has to be 1. 

 χ2:  this parameter provides information about the full spectrum relative errors. The value has 

to be 0. 

 the Spectral Angle Mapper (SAM; Kruse et al., 1993; Keshava, 2004): this parameter indicates 

the mean of the full spectrum difference between the retrieved Rrs and in-situ Rrs spectra. The 

values has to be 0°. 

d) Ranking of the algorithms using a score scheme 

The scoring scheme developed by Müller et al. (2015) have  been used to classify the algorithms. It is 

based on the values of the slope and intercept of the linear regression, BIAS, RMSE, RE and R2 and the 

number of valid match-ups. The highest possible score is the number of parameters times the number 

of wavelengths. In our case, the maximal value is 42. This scheme converts the statistical parameters 

into relative scores.  

 

 

IV. Results 

1) Simulated dataset 

 

2) In-situ dataset 

REMAKE THE SCATTERPLOTS BY REMOVING THE OLD ALGORITHM FROM STAMNES 

a) Global match-up analysis  



 

 

Figure XX: Scatterplots of the AC estimated Rrs vs in-situ Rrs from 412 (top left) to 667 nm (bottom 

right).  



Table 1: The statistical results derived from the remote sensing reflectance, Rrs derived from various atmospheric 

correction algorithms and AERONET data Rrs (RE - mean relative error, RMSE – root mean square error, R2- 

regression, Nvm- number of valid data/model/wavelength, CV = coefficient of variation, N = number of input 

data) 

 RE(%) RMSE Slope Intercept Bias R2 Nvm Rrs<0 CV<0.2 

NASA STD AC Model 

Rrs (412) 38 0.00168 1.02 0.000261 0.000334 0.63 703 6 180 

Rrs (443) 26 0.00144 0.98 0.00035 0.000225 0.81 775 0 114 

Rrs (488) 19 0.00155 0.98 0.000498 0.000359 0.87 819 0 70 

Rrs (531) 16 0.00169 0.96 0.000732 0.00038 0.86 803 0 86 

Rrs (547) 15 0.00165 0.94 0.000831 0.000283 0.85 788 0 101 

Rrs (667) 39 0.00074 0.85 0.000601 0.000269 0.86 582 0 307 

NIR-SWIR AC Model 

Rrs (412) 35 0.00174 1.01 0.00018 0.000233 0.62 613 3 273 

Rrs (443) 23 0.00148 0.97 0.00026 0.000106 0.80 677 0 212 

Rrs (488) 17 0.00157 0.98 0.000387 0.00023 0.86 725 0 164 

Rrs (531) 15 0.00174 0.96 0.000648 0.000282 0.84 750 0 139 

Rrs (547) 15 0.00168 0.94 0.000758 0.000197 0.85 754 0 135 

Rrs (667) 38 0.00079 0.83 0.00058 0.000189 0.86 488 0 401 

MUMM AC Model 

Rrs (412) 46 0.00203 1.06 0.000155 0.000448 0.49 552 19 318 

Rrs (443) 34 0.00169 1.01 0.000325 0.00039 0.73 665 5 219 

Rrs (488) 24 0.00168 1.00 0.000482 0.000507 0.85 720 0 169 

Rrs (531) 18 0.00178 0.99 0.000621 0.000512 0.84 726 0 163 

Rrs (547) 17 0.00173 0.96 0.000713 0.000395 0.84 714 0 175 

Rrs (667) 54 0.00083 0.89 0.000624 0.000411 0.82 529 0 360 

 SS14 AC Model  

Rrs (412) 39 0.00323 0.98 -0.00211 -0.00228 0.40 889 0 0 

Rrs (443) 28 0.00227 1.15 -0.00231 -0.00124 0.64 889 0 0 

Rrs (488) 20 0.00184 1.24 -0.00233 -0.0004 0.81 889 0 0 

Rrs (531) 17 0.00189 1.20 -0.00206 -0.00024 0.80 889 0 0 

Rrs (547) 16 0.00180 1.15 -0.00166 -0.00028 0.80 889 0 0 

Rrs (667) 27 0.00071 1.04 2.68E-05 0.000116 0.76 889 0 0 

SWIRE AC model 

Rrs (412) 45 0.00274 1.30 -0.00163 -7.3E-05 0.15 264 0 625 

Rrs (443) 29 0.00275 1.15 -0.0025 -0.00134 0.51 499 0 390 

Rrs (488) 23 0.00291 1.05 -0.00227 -0.00181 0.73 508 0 381 

Rrs (531) 18 0.00253 1.00 -0.00111 -0.00114 0.76 495 0 394 

Rrs (547) 18 0.00251 0.94 -0.0006 -0.00121 0.77 481 0 408 

Rrs (667) 30 0.00139 0.84 -0.00035 -0.00086 0.70 393 0 496 

 

  



 RE (%) RMSE Slope Intercept Bias R2 Nvm Rrs<0 CV<0.2 

UV AC Model 

Rrs (412) 53 0.00629 0.69 -0.00219 -0.00523 0.14 793 0 96 

Rrs (443) 45 0.00537 0.82 -0.00266 -0.00445 0.35 812 0 77 

Rrs (488) 33 0.00423 0.91 -0.00237 -0.00329 0.61 819 0 70 

Rrs (531) 23 0.00301 0.93 -0.0006 -0.0013 0.62 782 0 107 

Rrs (547) 23 0.00299 0.88 -5.4E-05 -0.00124 0.61 770 0 119 

Rrs (667) 35 0.00144 0.75 0.00013 -0.00057 0.47 670 0 219 

Polymer AC Model 

Rrs (412) 21 0.00144 1.00 -0.00051 -0.00048 0.76 886 2 0 

Rrs (443) 19 0.00143 1.09 -0.00068 -0.00014 0.80 886 2 0 

Rrs (488) 17 0.00182 1.13 -0.00078 0.000196 0.80 886 2 0 

Rrs (531) 19 0.00220 1.11 -0.0004 0.000561 0.74 886 2 0 

Rrs (547) 18 0.00216 1.05 -0.00016 0.00028 0.72 886 2 0 

Rrs (667) 44 0.00087 1.00 0.000331 0.000334 0.71 886 2 0 

NN FUB AC model 

Rrs (412) 27 0.00165 1.05 -0.00031 -8.2E-05 0.63 889   

Rrs (443) 24 0.00173 1.08 -0.00046 -2.4E-05 0.71 889   

Rrs (488) 23 0.00273 0.91 -0.00089 -0.00177 0.78 889   

Rrs (531) 22 0.00330 0.83 -0.00053 -0.00243 0.80 889   

Rrs (547) 21 0.00342 0.79 4.09E-05 -0.00234 0.77 889   

Rrs (667) 27 0.00116 0.69 0.000555 -0.00026 0.73 889   

NN Fan AC model 

Rrs (412) 35 0.00208 1.01 0.000224 0.000268 0.47 888   

Rrs (443) 23 0.00165 1.09 -0.00023 0.000278 0.74 888   

Rrs (488) 15 0.00162 1.07 -0.00026 0.00029 0.85 888   

Rrs (531) 15 0.00179 1.08 -0.00013 0.000561 0.83 888   

Rrs (547) 13 0.00170 1.01 0.000151 0.000239 0.83 888   

Rrs (667) 43 0.00079 1.00 0.000415 0.000418 0.79 888   

 

 

Figure : (a) Variation of the relative error as a function of the wavelength, (b) Variation of the RMSE 

as a function of the wavelength 
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ANALYSIS OF THE RESULTS 

- NUMBER OF MATCHUPS 

- SCATTERPLOTS 

- VARIATION OF STATISTICAL PARAMETERS 

- VARIATION OF SPECTRA PARAMETERS 

 

 

b) Common match-ups analysis  



c) Sensitivity studies 

On the global match-ups 

Variation of the statistical parameters as a function of environmental parameters have been studied.  

 Turbidity (Nechad et al., 2012) 

 Aerosol optical thickness (from AERONET-OC) 

 SPM (Han et al., 2016) 

 

 

 

3) Images dataset 

V. Other issues 

1) adjacency effects (Sindy Sterckx) 

2) Absorbing aerosols (Cédric Jamet) 

Most of the atmospheric correction algorithms do not take into account absorbing aerosols (dust, 

pollution). It is especially true for the standard AC from the space agencies. The reason is that it is 

complicated to handle and all the already published method are time-consuming. Absorbing aerosols, 

especially dust, are not detectable using only NIR bands as they have a spectral dependency. 

The AC incorporating absorbing aerosols have been mostly developed for open ocean waters (Moulin 

et al., 2001a, 2001b;  Chomko and Gordon, 1998, Chomko et al., 2001; Banzon et al., 2009; Nobileau 

and Antoine, 2005) and were specifically designed to only detect absorbing aerosols. Few tackle in the 

same time non-zero Rrs(NIR) and absorbing aerosols. Most of them us spectral optimization algorithms 

to estimate Rrs (Brajard et al., 2006, 2012; Kuchinke et al., 2009). 

 

 

3) C2X and EUMETSAT Mazeran (Voir avec Carsten et Constant) 

 

 

 

 

 

 



 

VI. Conclusion 
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