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Preface

This work in its present form is meant to be viewed using a PDF viewer such as Adobe
Acrobat. The equations and figures are numbered and reference to them is displayed in
the color red. Bibliographic references are displayed in the color blue. If your cursor is
placed over an equation, figure reference, bibliographic reference, or item entry page in the
index, and clicked, the viewer will take you to the particular equation, figure, bibliographic
reference, or page on which the index entry appeared. To return to the original position in
the text, use the back arrow (on the MacOS operating system; “command”+“left arrow”
in Acrobat and “command”+“[” in the Mac application Preview). Note that the actual
position of the numbered figures will usually be at the end of the individual chapters
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Chapter 0

Preliminaries

0.1 Historical Introduction

It has long been known that the sunlight that enters, is backscattered and exits a water
body, e.g., the ocean, contains information about the water body itself [Jerlov, 1968, 1975].
The spectral variation of this exiting light is referred to as the “color ” of the water.
Examples of such information are, the near absence of suspended or dissolved matter
causing the water to appear a deep blue,1 the presence of sediment causing the water to
be bright throughout the spectrum, the presence of dissolved organic material causing the
water to be dark in the blue regions of the spectrum, and the presence of phytoplankton
— the first link in the marine food chain — causing the water to appear green. Of course,
all of the latter three can be present at the same time. In the late 1960’s and early
1970’s, when Earth-orbiting satellites began to measure sea-surface temperature using the
thermal radiation emitted by the water, it became apparent that optical effects such as
those mentioned above could be observed from high altitude aircraft, and even from space.

Although there was a vast literature on the optics of natural waters before 1970, arguably
the most important work leading to the decision to develop the first satellite-borne ocean
color instrument — Coastal Zone Color Scanner (CZCS) — was that of Clarke et al. [1970].

1Interestingly, Lord Rayleigh, whose theory of molecular scattering explained the blue color of the
sky and for whom “Rayleigh” scattering is named, believed that the blue color of clear ocean water was
due to reflected skylight [Rayleigh, 1910]. It was actually C.V. Raman, for whom “Raman” scattering
was named, who correctly explained the color of ocean water as being due to the backscattering of the
water itself [Raman, 1921], which has the same spectral dependence as the Rayleigh’s molecular scattering
(wavelength−4). Raman won the Nobel Prize in 1930 for his discovery of Raman scattering — a study
began because he wanted to understand the color of the ocean.

1
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They combined spectra of the light upwelling above the water over Georges Bank (obtained
from an aircraft) with ship-based measurements of the Chlorophyll a concentration in the
surface water. Although they provided no mathematical relationship between the spectra
and the concentration, their results clearly showed that the spectra contained information
regarding the Chlorophyll concentration. They also demonstrated that the information
was degraded by the backscattering of the atmosphere between the surface and the sensor
which they referred to as “air light.”

The first satellite-borne sensor to have several spectral bands in the visible region was
Landsat-1 launched July 23, 1972. It was originally named the Earth Resources Technology
Satellite (ERTS), but was renamed Landsat 1 in 1975. Its purpose was to assess resources
on the land surface. As such its sensitivity was set for imaging the bright land surface
rather than the relatively dark (by comparison) ocean. However, even the earliest imagery
from Landsat showed that boundaries between ocean currents, e.g., the Gulf Stream and
coastal waters [Maul and Gordon, 1975], could be seen in the imagery if the contrast
was significantly stretched.2 Sediment plumes exiting rivers into the coastal waters were
clearly visible as were internal waves propagating near the coasts (seen in and near the
Sun’s glitter pattern). However, the oceanographic applications of Landsat imagery were
severely limited due to its lack of radiometric sensitivity. This lack of radiometric sensitivity
in the visible on Earth-orbiting sensors was remedied by the development and launch of the
CZCS on Nimbus 7. The CZCS had approximately an order of magnitude more radiometric
sensitivity than Landsat. It was essentially the proof-of-concept mission for ocean color
endeavors. The “concept” being that it could produce useful information to the marine
science community concerning living marine resources. Interestingly, when the CZCS was
selected to be one of the instruments on Numbus 7, algorithms for processing the data
did not exist: there were only data from aircraft and ships showing that there was a
relationship, yet to be well developed, between the color of the water and the concentration
of Chlorophyll a — the photosynthetic pigment in phytoplankton.3

After working on various aspects of ocean optics, light scattering and radiative transfer
for about seven years, I became involved in the CZCS project by virtue of being selected as a
member of the CZCS Experiment Team through a NASA “Announcement of Opportunity”
in the summer of 1975. The full CZCS Experiment Team is provided in Table 1.

2The data from the Multi-Spectral Scanner (MSS) on Landsat-1 were digitized to seven bits, meaning
there were 27 or 128 radiance values. Imagery delineating the Gulf Stream boundary was stretched so
that only digital counts 9 through 13 were displayed. For MSS Band 4 (500-600 nm) the full variation in
radiance seen in Case 1 ocean waters was only about 4 digital counts.

3Now, for a satellite sensor to be approved requires that the algorithms be throughly tested and that
there be no doubt as to the success of the mission — assuming successful launch and instrument operation.
However, Earth remote sensing from space at that time was in its infancy and some good ideas were tested
on actual satellites, after prototype aircraft instruments showed promise.
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Table 1: Members of the CZCS Experiment Team selected in 1975.

Member Affiliation

W. Hovis (Team Leader) NASA/GSFC
F. Anderson NRIO, Capetown, South Africa
R.W. Austin SIO, Visibility Lab.
E.T. Baker NOAA/PMEL
D.K. Clark NOAA/NESS
S.Z. El-Sayed Texas A&M University
H.R. Gordon University of Miami

J.L. Mueller* NASA/GSFC
B. Sturm JRC Ispra, Italy
R.C. Wrigley NASA/Ames
C.S. Yentsch Bigelow Laboratory for Ocean Sciences

* Added after initial formation of the Team.

At the time of the selection of the Team, fabrication of the CZCS was nearly complete.4

The basic responsibility of the Team was to develop the necessary scientific algorithms
to derive the concentration of Chlorophyll a from CZCS data — in other words, make
it work. My principal responsibility on the Team was to develop a method for removing
the air light from the imagery. This was later termed atmospheric correction.5 Although
funded by NASA and NOAA, there was little support for this effort from the broad oceano-
graphic community, and even hostility from some quarters because the CZCS program was
utilizing monies that perhaps could have gone to more “valuable” programs. In addition,
computational ability in the late 70’s and early 80’s was crude by standards of even the mid

4At that time there was no possibility of modifying the design of the CZCS, although by launch it was
known by many in the community that the the instrument could be significantly improved by changing the
positions and sensitivities of some of the bands to more effectively carry out atmospheric correction.

5It was during my work on atmospheric correction that I came to appreciate the necessity of good
radiometric calibration or ocean color scanners. I had developed a preliminary version of the atmospheric
correction algorithm and was keen to test the range of its validity using data from the Ocean Color Scanner
(OCS) — a NASA aircraft instrument similar to, but preceding, the CZCS. I received data from an OCS
flight over the Gulf of Mexico in early 1978 and tried to use them to see if my algorithm made sense.
After subtracting an estimate of the water component, I found that the remainder — the air light — had
a spectral variation with wavelength (λ) proportional to λ−7. Since molecular scattering is proportional
to λ−4, aerosol scattering is approximately proportional to λ−1, and there aren’t any other scatters in the
atmosphere, I was understandably concerned. Soon after I learned that the calibration of the OCS could
have been in error by as much a 30% in the blue region of the spectrum. I realized then that it would
be a waste of time to try to use the OCS data to study the validity of the algorithm. In fact, the CZCS
atmospheric correction algorithm was only tested prior to launch via modeling — not on actual data.
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80’s. Computers were slow, a 300 Mb hard drive was considered large (and was expensive),
and a few Mb of random access memory (RAM) was rare.6 Finally, by 1978 when the first
versions of the atmospheric correction and bio-optical algorithms were available, it was
apparent that the CZCS spectral band set was not optimum for atmospheric correction
— it was not designed with atmospheric correction in mind — and contrary to its name,
would probably not work well in the coastal zone.7 However, the CZCS program was ul-
timately highly successful (despite the limitations of the sensor) and its success led to the
development of the follow-on U.S. sensors: SeaWiFS, MODIS (Terra), MODIS (Aqua) and
VIIRS (Soumi), as well as the European sensors MERIS and OCM, the Indian OCI, the
Korean GOCI, and others (22 in total, and counting, as of the fall of 2017).8

0.2 Scope and Outline of the Present Work

In this work I present what I believe represents an introduction to the basic physics of
ocean color remote sensing. This project was originally conceived as a followup to the
work “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery:
A Review” that André Morel and I co-authored in the early 1980’s [Gordon and Morel,
1983]. That work followed the first “Oceanography form Space” conference in Venice, Italy,
at which the early results of the CZCS experiment were first presented to the oceano-
graphic community [Gower, 1981]. We felt that it would be useful to have a document
summarizing the algorithms and the preliminary results of what had become known as
“ocean color.” The work briefly summarized the basic ideas of radiative transfer as ap-
plied to optical oceanography, the development of the atmospheric correction algorithm
(removal of “air light”) and the in-water or bio-optical algorithms for retrieving the “pig-
ment concentration.”9 It also included a more complete discussion of the Case 1 – Case 2

6The initial processing of CZCS data was carried out using a mini-computer (PDP 11/55) to manipulate
the image, in combination with a mainframe (UNIVAC 1108) that performed the computationally intensive
part of the processing. Needless to say, it took hours to process a single 512×512 image.

7A few months prior to launch at the “IUCRM Colloquium: Passive Radiometry of the Ocean” many
researchers from the international ocean optics community were able to exchange ideas concerning the future
of ocean color from space. Most knew that the CZCS was not the optimal sensor. The algorithms [Clark
et al., 1980; Gordon and Clark, 1980a] had been well enough developed that the “Water Colour Working
Group” felt confident in recommending a set of spectral bands for future sensors — three months before the
launch of CZCS [Morel and Gordon, 1980]. The parallels between these recommendations and the spectral
band set on modern sensors — SeaWiFS and MODIS — is striking. An additional recommendation that
came out of that working group was to use CZCS to obtain a global data set of phytoplankton pigment
concentration – a difficult task because CZCS could only operate two hours per day.

8A detailed history of the NASA ocean color missions is available in Acker [2015].
9The standard method of measuring Chlorophyll a in water samples at that time involved the use of

its fluorescence near 685 nm. Phaeophytin a, a degradation product of Chlorophyll a, interfered with this
measurement, so the reported value from such an experiment was the labeled the “pigment concentration:”
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optical classification of natural waters. In addition we also presented the first “analytic”
bio-optical model that used results of radiative transfer to “explain” the form of the bio-
optical algorithms and concluded the report with early validation studies, which showed
the pigment concentration could be estimated within a factor of two with CZCS (in 1980).
In an appendix we described the (then) recent developments indicating that the factor
of two was conservative and the significantly higher accuracy for CZCS-retrieved pigment
concentration was possible in the open ocean.

In early 1984, I spent three months at André’s laboratory in Villefranch sur Mer, where
we outlined in detail a comprehensive revision of our previous work, even to the point
of assigning each other the task of writing on individual topics. However, our continuing
research commitments and advocacy for a CZCS follow-on sensor prevented taking any
real action on our plan. The present work was to be that revision. I started working on the
present manuscript in 2004 and had completed drafts of some of my writing “assignments”
at the time of André’s passing in 2012. Feeling inadequate to attempt to cover André’s
topics, I decided to reduce the scope of the work to those areas I felt were within my
expertise.

In this book I try to present the physics underlying the basic methods of ocean color
remote sensing. The goal is not only to provide the reader the basic processing algorithms
used to retrieve the desired products, but to show how the algorithms were developed and
the reasons for their present form. Also, I hope that the book will provide a basis for the
development of new algorithms for processing existing data to yield new products and for
developing future projects and sensors.

I have separated the subject into three parts: Part 1, The Interaction of Light and
Matter; Part 2, Optical Properties; and Part 3, Remote Sensing of Ocean Color. Parts
1 and 2 provide the background and the theory required for understanding ocean color
remote sensing. These are applied in Part 3 to the actual problem of reliably imaging in a
quantitative manner the radiance exiting the top of the atmosphere, and retrieving water
properties, principally the concentration of Chlorophyll a.

Part 1 (The Interaction of Light and Matter) consists of three chapters: Chapter 1,
Review of Electromagnetic Theory, Waves, and Scattering; Chapter 2. Radiometry and
Radiative Transfer; and Chapter 3. Scattering Theory. Chapter 1 is a review electromag-
netic theory describing the nature and production of light a well as its interaction with
matter. It is written at a level similar to electrodynamics in the curriculum of an un-
dergraduate physics program (3rd year). Most everything is developed from the Maxwell

the sum Chlorophyll a plus Phaeophytin a. Now, Chlorophyll a is determined by High Pressure Liquid
Chromatography (HPLC) leading to the direct use of the Chlorophyll a concentration in ocean color remote
sensing.
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equations, with the exception of the equation for the electromagnetic field of an accelerated
charge. This can be developed only after a firm foundation of electrodynamics is in place.
Thus, in the case of radiation, we have chosen to simply state the main result and then
apply it to situations that will prove useful in the study of environmental optics. Of partic-
ular interest for us are (1) the interaction of light with a refracting and absorbing material
leading to Snell’s law, the Fresnel equations, and the relationship between refraction and
absorption of matter (real and imaginary parts of the complex refractive index), (2) the
scattering of light from atoms and/or molecules, (3) the Poynting vector, which provides
the power per unit area associated with a propagating electromagnetic field, e.g., a light
beam, and (4) the polarization of electromagnetic radiation and the manner in which it is
described. This chapter requires a higher level of mathematical sophistication (multivari-
able calculus and vector analysis) than the rest of the material. A reader may skip this
chapter and just refer to it when prompted to in the text, if desired.

Chapter 2 deals with the transfer of radiation in a scattering and absorbing medium,
e.g., the atmosphere or the ocean. It contains operational definitions10 of the radiometric
quantities important in remote sensing: radiant power, radiant intensity, radiance, and
irradiance. Following the radiometric definitions, inherent optical properties (IOPs) —
the absorption coefficient, the elastic volume scattering function, and the inelastic volume
scattering function — of a homogeneous medium are defined and used to develop a phe-
nomenological derivation of the equation of radiative transfer, which relates the radiance
within the medium to its inherent optical properties and to the external (and internal)
sources. The radiative transfer equation is then specialized for a medium consisting of ho-
mogeneous plan parallel layers (which approximate the ocean and atmosphere very well),
essentially rendering the radiance in a given direction dependent only on the spatial coordi-
nate perpendicular the layers. The resulting transfer equation is still an integral-differential
equation, and except for the simplest of cases, can only be solved numerically. Numerical
methods of solution are presented11 in sufficient detail to be a starting point for readers
wishing to write their own radiative transfer code. The presentation ends with a deriva-
tion of Gershun’s law, which relates the absorption coefficient to the depth variation of
the upward and downward propagating irradiances. In an appendix to Chapter 2, the
first-order or single-scattering solution to the transfer equation is provided. It is critical
to understanding many important topics in the rest of the book, and should be studied
and mastered before continuing to the next chapter. Why is the first order solution so
important? There are three reasons. First, it provides analytical expressions for the ra-
diance as a function of the inherent optical properties. Next, these expressions applied

10An operational definition of a quantity is one in which the operations required to measure the quantity
are used to define it.

11There are many numerical solutions; however, the ones described are either used to provide examples
in the book or to prove certain results, e.g., the existence of the asymptotic light field in a homogeneous
medium.
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to the atmosphere can yield radiances that are in error by only a few (e.g., 4-5) percent.
Finally, a simple modification allows computation of accurate radiances even in media for
which single scattering is a poor approximation, e.g., the ocean, and provides simple for-
mulas that can be used to develop more complex retrieval algorithms. As there are many
excellent computer codes for solving the radiative transfer equation (including polariza-
tion), one might think I am over emphasizing the first-order solution. I am not. Aside
from its obvious pedagogical value, historically, it was actually used to effect atmospheric
correction of CZCS imagery. In addition, it served as a guide for the development of the
atmospheric correction algorithm for the follow-on sensors: SeaWiFS, MODIS, and VIIRS.
If one wants precise radiances, of course using a radiative transfer code that can produce
them is required, but if one wishes to develop an intuitive understanding of the radiative
transfer process, the simple solution can go a long way toward providing it. In fact, the
theory in much of this book is developed from the first-order solution.

Chapter 3 provides the scattering theory necessary to understand the analysis of the
inherent optical properties of the atmosphere and the water and its constituents. First,
molecular (Rayleigh) scattering by atoms and molecules (isotropic and anisotropic) is de-
scribed in detail. A simple model is then used to develop the theory of scattering by
liquids. Next the field equations for scattering by a homogeneous sphere (Mie scattering)
are provided (not derived) along with some samples of the solution for spheres of a given
size and refractive index. Approximate solutions are developed from first principles for
both “small” and “large” spheres. Finally, “exact” scattering theory for irregularly-shaped
particles is discussed using the concept of the discrete-dipole approximation. In addition,
an approximate theory for large (compared to the wavelength of the light) particles based
on geometrical optics and diffraction is provided. Selected topics are discussed in appen-
dices. The optical theorem, which is useful in many light scattering calculations is derived
in the first appendix. A second appendix describes Raman scattering, and a third develops
simple relationships between Raman and Rayleigh scattering.

Part 2 (Optical Properties) describes the optical properties of the various components
of the system under consideration. It consists of five chapters: Chapter 4, the Inherent
Optical Properties of the Atmosphere; Chapter 5, the Inherent Optical Properties of Nat-
ural Waters; Chapter 6 the Apparent Optical Properties of Natural Waters; Chapter 7 the
Optics of the Water Surface; and Chapter 8, the Relevant Properties of the Sun and Moon.

Chapter 4, provides the absorption and scattering properties of the components com-
prising the atmosphere. Topics of particular interest are the scattering by molecules in the
atmosphere, the absorption of atmospheric gases such as H2O, NO2, O3, and O2, and the
optics of aerosols. Aerosols are microscopic-sized particles suspended in the air. They both
scatter and absorb light. Their scattering is the component of the air light that presents
the most difficult problem in atmospheric correction. The principle difficulty is that the
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aerosol concentration is highly variable in space and time. This variability is manifest in
changes in the size distribution and the refractive index of the aerosol particles, mostly
reflecting their source and mode of generation. Here, the aerosol properties are discussed
in detail and the scattering theory developed in Chapter 3 is used to provide examples of
their scattering and absorption. The aerosol models used in atmospheric correction are
described in as well. The typical vertical distribution of the aerosol is illustrated with the
help of data from space-borne LIDAR, and a simple (2-layer) model of the atmosphere
is proposed for effecting the radiative transfer computations to be utilized in atmospheric
correction.

Chapter 5 is the twin of Chapter 4, but focusses on the water (principally the oceans)
rather than the atmosphere. However, the basic physics that relates the components of
the medium to its inherent optical properties is the same for both the ocean and the at-
mosphere. Molecular scattering, both Rayleigh and Raman, is developed in detail, but the
main emphasis is on the particulate component suspended in the water. The particles of
principal interest in the ocean are phytoplankton, the first link in the marine food chain,
and their absorbing and scattering detritus. Waters for which these components dominate
the optical properties are usually called “Case 1” waters. Optically, the phytoplankton
reveal their presence mainly through the absorption of light by the photosynthetic pigment
Chlorophyll a. Thus, much effort has been focussed on developing empirical relation-
ships between the absorption and scattering coefficients of the planktonic melange to the
concentration of Chlorophyll a. These relationships are reviewed, and are followed by a
theoretical discussion of the optical properties of single particles and their distribution in
size and shape, and how these affect the inherent optical properties. A two-component
model of particle scattering is developed for use in later chapters.

Chapter 6 concerns the “apparent” optical properties of natural waters (AOPs). These
are optical properties that were developed to characterize water masses because they were
originally easier to measure than the scattering and absorption properties. Among them
are the depth decay coefficients of radiance and irradiance, and the irradiance ratio — the
ratio of upwelling irradiance to downwelling irradiance in the water. Of principal interest
in remote sensing is the remote sensing ratio, the ratio of the upwelling radiance (toward
the zenith) to the downwelling irradiance, both measured just beneath the water surface.
The word “apparent” derives from the fact that the AOPs are nearly independent of depth
in a homogeneous medium, except near the surface, and thus appear to be properties of the
medium. However, the actual values of the AOPs depend on the mode of illumination, i.e.,
the solar zenith angle and the relative amount of cloud cover, as well as the IOPs of the
water. Thus, they are not solely a property of the medium. The AOPs can be derived by
solving the radiative transfer equation given the illumination and the IOPs of the water.

In Chapter 6, first, detailed definitions and examples of the various AOPs based on field
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measurements and solutions of the radiative transfer equation, are provided. Then, an ap-
proximate, simple model12 of the AOPs as a function of the IOPs that circumvents solving
the transfer equation is developed and applied to many important problems relevant to
remote sensing, e.g., the depth to which an external sensor can “see” into the water (the
penetration depth), the angular distribution of radiance exiting the water, etc. This model
forms the basis for what are termed semi-analytic algorithms for retrieving IOPs from re-
motely sensed radiance. It also illuminates the influence of vertical structure in the IOPs on
the remote sensing ratio and the penetration depth. The chapter continues with a detailed
study of the effects of inelastic processes — fluorescence and Raman scattering — on the
remote sensing ratio.13 It ends with examples of using the model and the IOPs as related
to the concentration of Chlorophyll a from Chapter 5, to delineate the remote sensing ratio
as a function of the Chlorophyll a concentration. Methods of utilizing measurements of
the AOPs to estimate the IOPs are described in an appendix. Three additional appen-
dices describe two alternative approximate solutions to the radiative transfer equation, and
provide the bio-optical algorithms actually used in ocean color remote sensing.14

Chapter 7 deals with the optics of the air-water interface. It begins with the optics
of a flat interface (much of which is based on results derived from Chapters 1 and 2),
and continues the discussion by examining the reflection and refraction of light from a
wind-ruffled water surface, e.g., Sun glitter. Incorporation of a ruffled interface in the
radiative transfer equation is described in general and for Monte Carlo simulations — the
simulation method used for most of the “‘exact” radiative transfer calculations presented
in Chapter 6. The important concept of normalized water-leaving radiance is then defined.
It was first developed to approximately relate the actual radiance leaving the water to the
radiance that would exit the water in the absence of the atmosphere and with the Sun at
the zenith.15 Finally, the radiative influence of whitecaps on the water surface is discussed.

Chapter 8 describes the relevant facts about radiation from the Sun and the reflective
properties of the Moon. The former being important because solar radiation is the ultimate
source of the water-leaving radiance, and the latter because it is used to assess the in-orbit
radiometric stability of remote sensing systems. We examine the orbital motion of the
Earth around the Sun leading to the prediction of the position of the Sun in the sky and
hence, the solar zenith and azimuth angles. The extraterrestrial solar irradiance and it’s
spectrum is then described. The radiometry of the Moon, i.e., its reflectance, and the

12This model has its roots in the single-scattering solution of the transfer equation. In fact it is a simple
modification of the single-scattering solution, and provides additional evidence of its importance.

13The single-scattering approximation is shown to be sufficiently accurate to include these processes in
the analysis of the of the remote sensing ratio.

14Algorithms relating water radiance to the concentration of Chlorophyll a (or pigment concentration)
are usually called “bio-optical ” algorithms.

15The phrase “in the absence of the atmosphere” was later modified to “in the absence of atmospheric
losses” as this more accurately describes the normalized water-leaving radiance as it is actually computed.
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method of its use in stability monitoring is discussed.

Parts 1 and 2 provide the tools necessary to understand the basic principles of ocean color
remote sensing, the topic of Part 3. In Part 3 we actually begin the study of remote sensing.
We want to use the water-leaving radiance measured from space principally to estimate the
concentration of Chlorophyll a, but also to estimate other quantities influencing the color
of the water, e.g., sediment concentration and detrital concentration. What is required?
One might think that the obvious place to start would be the instruments to measure the
radiance emanating from the atmosphere at satellite altitudes. However, before we can
specify the requirements for such an instrument, such as its radiometric sensitivity and the
signal-to-noise ratio, we need to understand in a quantitative manner the entire remote
sensing process. For example, we need to know how the measured radiance compares to the
water-leaving radiance. This requires understanding in detail the processes that produce
the radiance measured at the sensor. We also need to understand how to retrieve the desired
water-leaving radiance from the measured radiance, so as to not degrade its information
content. This retrieval is usually termed atmospheric correction and it will set some of
the requirements for the sensor’s radiometric accuracy and its noise level. Only after these
topics are covered in detail can we provide in a rational manner the attributes that must be
required of an instrument.16 Hence, Part 3 follows this plan and consists of five chapters:
Chapter 9, The Remote Sensing Problem; Chapter 10, Atmospheric Correction; Chapter
11, The Basics of Ocean Color Sensors; Chapter 12, Calibration and Characterization; and
Chapter 13, Realization and Validation.

Chapter 9 looks in detail at the components of the radiance measured from spacecraft al-
titudes: the water-leaving radiance; the solar radiation and skylight reflected from the water
surface; and the solar radiation backscattered from the atmosphere (the air light). Again,
first-order analysis (single scattering) is used to mathematically decompose the effects of
these components, and to provide an understanding of each. Then the accuracy of the
first-order analysis is demonstrated by comparison with exact computations. Remarkably,
the single-scattering development of the atmospheric components of the sensor-measured
radiance are only in error by a few percent at most. This is what allowed single scattering
theory to serve as the method of atmospheric correction for CZCS and to provide a guide
for the development of atmospheric correction of the more-sensitive follow-on sensors. Fi-
nally, the effects of the polarization of the radiance in the atmosphere is considered along
with the accuracy of the first-order solution in explaining the polarization effects.

Chapter 10 is devoted entirely to atmospheric correction, from its beginnings to more
recent developments and methods. The chapter begins with a review of the remote sens-

16Obviously this program was not followed in the design of the CZCS, as the algorithms in question did
not exist. However, what did exist were aircraft data on the effect of air light, LANDSAT imagery of coastal
phenomena and some measurements that provided estimates of water-leaving radiance.
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ing problem. It is followed by an analysis of the accuracy requirements for atmospheric
correction based on the accuracy of the bio-optical algorithm relating the concentration of
Chlorophyll a to the water-leaving radiance. Then single scattering is employed to develop
the simple algorithm used for CZCS and to adapt it to newer sensors that possess spectral
bands in the near infrared. Next, the single-scattering algorithm is modified to include the
effects of multiple scattering through the use of aerosol models and large look up tables
(LUTs) derived from exact solutions to the radiative transfer equation.17 Finally, the dif-
ficult problem of an atmosphere containing aerosols that absorb as well as scatter light is
addressed using the example of wind-blown dust as a case study.

Chapter 11 concerns ocean color satellite-borne instruments. It begins with a deter-
mination of the radiometric design requirements for such a sensor: the position of the
spectral bands; the acceptable amount of sensor noise (based on the bio-optical and atmo-
spheric correction algorithms); and the signal quantization and saturation radiances. This
is followed by conceptual methods of producing spectral images of the water surface, and
their constraints and limitations. The frequent need to address trade-off issues, requiring
collaboration between the scientist and the optical engineer is stressed. Finally, examples
of ocean color scanners are provided and compared (CZCS and MODIS). An appendix
describes the two types of satellite orbits that have been used for ocean color programs:
polar (or sun-synchronous) and geosynchronous.

The problem of on-orbit radiometric calibration of ocean color scanners is discussed in
detail in Chapter 12. This is vitally important as the processing algorithms cannot perform
properly with an inadequate radiometric calibration. We begin by defining just what we
mean by radiometric calibration and discuss two approaches: radiance based and reflectance
based. There are two principal difficulties encountered in radiometric calibration: (1)
the calibration accuracy achievable even under laboratory conditions was (at the time of
CZCS) less than required; and (2) even if sufficiently accurate calibration could be achieved
on the ground, there is no guarantee that this calibration would still be valid after the
violence of launch. Thus, on-orbit calibration, and a method of monitoring its stability,
is absolutely necessary to ensure a successful mission. Such calibration uses the signal
detected by the sensor combined with measurements from the surface. The procedure is
called vicarious calibration. Two methods of vicarious calibration are discussed in detail.
The term “characterization” in the title of Chapter 12 refers to pre-launch assessment of
instrument imperfections and peculiarities that can affect the performance of the system.

17When the author and M. Wang developed the first multiple-scattering atmospheric correction algorithm
for SeaWiFS in the early 1990’s, computers had maximum sized random-assess memories (RAM) of a few
megabytes (MB). The full set of LUTs contained about 100 MB of data and therefore could not fit in RAM
on most computers. This caused us considerable concern; however, it was not actually a problem as by the
time of launch in 1997 even small computers had the requisite amount of RAM. Several times in the ocean
color program advances in computation arrived just in time to “save the day.”
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Among these are sensitivity to the state of polarization of the radiance, out-of-spectral-
band response, and stray light within the instrument that is scattered into the detectors.

Chapter 13 provides a demonstration that all of the above actually works — measure-
ment of spectral radiance at satellite altitudes, along with the various algorithms does
enable the accurate estimation of water-leaving radiance and through this, the estimation
of the concentration of Chlorophyll a (or pigment concentration).

0.3 Some Conventions and Notation

With the exception of the present chapter, nearly all references are absent from the actual
text, being relegated to a section called “Bibliographic Notes” at the end of each chapter.
I preferred this method because it allows some annotation of the papers cited and also
allows the addition of references that are extensions or additional works of relevance to the
subject, but not described in the text.

As far as notation is concerned, it is standard for physics texts. I use arrows over a
quantity to denote a vector quantity, e.g, ~Q, and a hat to denote a unit vector, Q̂ ≡ ~Q/Q,
where Q is the magnitude of ~Q (often written as | ~Q| to explicitly remind the reader that
it is the magnitude of the vector ~Q). Bold italic symbols represent matrices, e.g., M . The
symbols “∆” for a small increment in a quantity, e.g., ∆x, and “d ” for the differential of the
same quantity, dx, are often used interchangeably; however there should be little confusion
taking into consideration the context in which they are used. Often I used ∆(n) to indicate
a quantity of nth-order in smallness, if I felt it was necessary for clarity; however, when it
is clear as in ∆A, where A is an area, I do not write this as ∆(2)A. Usually if one thinks
of the ∆ as a differential, then this notation follows immediately. In addition, sometimes I
have used ordinary derivatives where strictly partial derivatives are required. Again, there
should be little confusion taking into consideration the context in which they are used. I
have also used “,” to indicate a definition, e.g., an angle θ subtended at the center of
a circle of radius r by the arc s of the circle is defined to be s/r or θ , s/r. Standard
functional notation is used throughout the text, i.e., f(x) or f(~r, t) stands for the value of
the function f evaluated at x or at the point ~r and the time t, respectively.

For the space-time variation of electromagnetic waves, I take exp[i(κr−ωt)] as opposed
to exp[−i(κr − ωt)], which requires that the complex refractive index of the medium to
be written m = mr + imi as opposed to m = mr − imi. The literature is about equally
divided on this with Mishchenko et al. [2002a], Born and Wolf [1975] and Griffith [1989]
adopting the former, and van de Hulst [1957], Hansen and Travis [1974] and Jonasz and
Fournier [2007] adopting the latter.
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I have used MKS (meter-kilogram-second) units throughout the book, except in situa-
tions in which hybrid units are more typical or convenient, e.g. for radiance the MKS unit
would be “Watt/meter3 Steradian” (W/m3 Sr) while the hybrid “milliWatts/centimeter2

micrometer Steradian” (mW/cm2µm Sr) was used in early ocean color sensing and is more
convenient in size. The radiance exiting clear ocean water near noon in the blue part of the
spectrum is ∼ 2 mW/cm2µm Sr. Readers should beware that in books on electromagnetic
theory that use some variant of the the CGS (centimeter-gram-second) system, such as
“gaussian,” “electrostatic,” or “electromagnetic” units, e.g., Jackson [1975],18 the various
formulas will be different from those developed here.
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CZCS and the development of SeaWiFS and MODIS. The position was made permanent
and is now filled by Paula Bontempi. At Goddard Space Flight Center, the group first
known as the SeaWiFS Project (now the “Ocean Biology Processing Group” — “OBPG”),
led by Chuck McClain and Gene Feldman, developed the processing system that is second
to none. In addition, they effected the application of MOBY data to the calibration
of SeaWiFS and MODIS, and developed protocols for “ground truth” validation data
(under the direction of Jim Mueller) that are recognized worldwide. Earlier, under the
guidance of Wayne Esaias, they had produced the first global CZCS images. These images
were instrumental in the acceptance of ocean color by the broader community leading to
SeaWiFS as a CZCS follow-on.

I am grateful to NASA and the Program Managers above for their support of my own
research in ocean remote sensing, and to ONR under Program Officers Rick Spinrad, Curt
Mobley, and Steve Ackleson, for its generous support of my research in other aspects of
ocean optics.

Special thanks go to Jim Nearing for providing much-needed advice on the TEX language
(as well as many of his TEX macros) used in the original draft manuscripts, to Marco Monte
whose computer support was indispensable to my research, and to Curt Mobley for reading
the entire manuscript and suggesting several modification/additions, which significantly
improved the work.

Finally, thanks to my wife and true soul mate Toni, who has made it all possible. Toni
has been with me and supported me on my ocean color journey from the start. Our
first date was on the day news came that I had been selected as a member of the CZCS
Experiment Team, summer 1975.
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Dennis Clark aboard the R.V. Athena II, 1978.

0.5 Dedication

I dedicate this work to my friend and colleague Dennis K. Clark, with whom I collaborated
throughout my entire career in ocean color remote sensing.

Most researchers in ocean color are aware of Dennis Clark’s research focus over the
last 20 years of his life: development and deployment of the MOBY system. This was
an all-consuming project for Dennis. His goal was to make the best possible measure-
ments of upwelling radiance and water-leaving radiance on a continuing basis for vicarious
calibration of ocean color sensors.
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What many may not be aware of is the significant impact he and his work had on
satellite ocean color remote sensing in its formative years. Dennis was a member of the
experiment team (Table 1) developing the first ocean color sensor, the Coastal Zone Color
Scanner (CZCS). In the mid 70’s CZCS was not a popular program, especially with physical
oceanographers, who had their own satellite program — SeaSAT — which was focused
on deep-water oceanography, and was a competitor for funding, especially for algorithm
development, product validation, ship time, etc. The CZCS concept was largely viewed as
the brainchild of a bunch of lunatics — and certainly poor science.

The CZCS focused on U.S. and other coastal regions, which we usually refer to now as
Case 2 waters. At that time there was meager evidence that the concept was even viable
in such waters — just a few spectra showing that one might be able to measure chlorophyll
from aircraft, but there were no algorithms and very little data relating upwelling radiance
to chlorophyll. In addition, the atmosphere was known to severely degrade the contrast
between low- and high-chlorophyll waters.

The program was continually under attack from those competing for funding, and could
easily have been canceled — as many influential oceanographers advocated — or gone
on with insufficient funding. However, Dennis knew what needed to be done. With the
help of Ros Austin at the Scripps Visibility Laboratory, he built the required instruments,
developed the experimental procedures, and set out to collect data for developing a rela-
tionship between upwelled radiance and chlorophyll in the coastal waters around the U.S.
This led to the first quantitative relationship between the blue-green color ratio and the
pigment concentration — the blue-green chlorophyll algorithm. It gave the program needed
credence, and he was able to convince NOAA/NESDIS leadership that the program was
worth continuing to support, even though NOAA’s Environmental Research Laboratories
leadership remained firmly opposed to it (ERL was another, more research oriented, part
of NOAA).

Dennis’ algorithm development program was very ship-time intensive — only one station
per day — yet he was able to secure sufficient funds to carry out the program. Although
he abhorred the politics of government science, he was a master at it. In addition to the
pre-launch effort, he convinced NOAA/NESDIS to provide the funding for ship-time for
much of the CZCS validation. In the post-launch validation effort, he was able to make
fifty-five stations underneath satellite overpasses using converted U.S. Naval Gunboats from
the Vietnam War era (Athena and Athena II) that were capable of 40 knots for short pe-
riods. To understand the difficulty presented by validation, it should be noted that, for
a variety of reasons (clouds, electronic over-shoot of the sensor, etc.), only nine of these
stations provided actual validation points, although the additional fifty-five stations did
lead to significant improvement in the pigment algorithm. His validation effort proved that
the CZCS worked well in some coastal areas, but more importantly, the CZCS produced
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spectacular chlorophyll imagery in the open ocean (Case 1 waters). This open-ocean im-
agery was validated with Dennis’ data collected along-track during the validation cruises.
It eventually led to a whole series of ocean color instruments.

Following the success of CZCS and the green light for SeaWIFS as a “new start” at
NASA, Dennis started thinking about developing a system for vicarious sensor calibration,
a procedure that the CZCS experience showed was an absolute necessity. That led directly
to the present-day MOBY. It has been used to provide calibration for most ocean color
instruments launched since the mid 90’s. The rest is history.

We who care about ocean color owe a depth of gratitude to Dennis.
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Interaction of Light and Matter
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Chapter 1

Review of Electromagnetic Theory,
Waves, and Scattering

1.1 Introduction

On a fundamental level, this monograph deals with the interaction of electromagnetic waves
with matter — living and nonliving. To understand this interaction requires some knowl-
edge of electromagnetic theory. In this chapter, we provide a review of the electromagnetic
theory that we believe is required for a through understanding of this interaction, leaving
out of the discussion subject matter that by its nature is not required in either oceanic or
atmospheric optics, e.g., the properties of magnetic materials and their influence on the
fields. Simple classical or semi-classical models of the atom will be used to provide a qual-
itative description of phenomena of interest. The fact that such a description is possible,
when it is known that quantum dynamics is required for a correct treatment of many of
the phenomena, is the reason such models held a measure of credence prior to the quantum
age. In our review of the subject, we will take Maxwell’s field equations and the Lorentz
force law as given and proceed with the development using very simple solutions to the
field equations. The ultimate goal is to understand electromagnetic waves and their inter-
action with matter. In addition, knowledge of the sources of radiation, e.g., radiation for
an oscillating dipole, is essential for understanding scattering by atoms, molecules, density
fluctuations, and small particles.

We begin by presenting Maxwell’s equations, for the electric ( ~E) and magnetic ( ~B)
fields, their source densities, and the field energy densities. Then we develop Poynting’s
theorem, show that the field equations allow the existence of electromagnetic waves in

21
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vacuum, and examine their properties. Next we examine the presence of non-conducting
matter (dielectrics) on the fields to ultimately determine their influence on electromagnetic
waves. This development is facilitated by first solving four simple problems and applying
the solutions to a collection of atoms using a simplified atomic model. This leads to the
concept of a dielectric becoming a collection of electric dipoles upon exposure to an electric
field. The polarization of the dielectric is then defined as the dipole moment density and the
field inside a dielectric medium (as defined through Maxwell’s equations) is related to the
field seen by and individual atom or molecule. The presence of dielectrics leads to simple
modifications of Maxwell’s equations, which still support wave motion within dielectrics,
but with propagation at a speed less than in a vacuum. The influence of these time
varying-fields, within a dielectric medium, on the individual atoms is then developed with
a classical atomic model and yields the phenomena of complex refractive index, absorption
and dispersion. The propagation of electromagnetic waves across a plane interface between
two media (e.g., air and water), is then examined and reflection, refraction, total internal
reflection, etc., described. Finally, the field vectors ~E and ~B for a charge in motion with an
arbitrary velocity and acceleration are presented (not derived from Maxwell’s equations)
and it is shown that accelerated charges lead to electromagnetic radiation. This is used to
examine radiation from a dipole, scattering of radiation from an atom (or molecule) and
scattering of radiation from a small dielectric particle. In addition, a description of the
polarization of electromagnetic waves is provided in an appendix.1

1.2 Maxwell’s Equations

The electric field ( ~E) and the magnetic field ( ~B) in space influence the motion of a charge
q moving with a velocity ~v through the application of a force ~F given by

~F = q ~E + q~v × ~B.

This is usually referred to as the “Lorentz force.” The sources of the fields are charges and
currents. The fields are related to the sources, and to each other, through the Maxwell
equations:

(I) ∇ • ~E(~r, t) = ρ(~r, t)/ε0

(II) ∇ • ~B(~r, t) = 0

(III) ∇× ~E(~r, t) = −∂
~B(~r, t)

∂t

(IV) ∇× ~B(~r, t) = µ0
~j(~r, t) + µ0ε0

∂ ~E(~r, t)

∂t
.

(1.1)

1The mathematics required for this chapter, namely vector manipulations, vector calculus, complex
numbers, differential equations, and matrices, is reviewed in the Mathematical Appendix.
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(Note, when referring to the individual Maxwell equations we will use the roman numerals
displayed on the left of Eqs. (1.1).) In these equations, ρ(~r, t) is the charge density at
the position specified by the vector ~r (from the origin of coordinates to the point (x, y, z))
defined through

ρ(~r, t) ≡ dq(~r, t)

dV

where dq(~r, t) is the total amount of charge in an infinitesimal volume element dV =
dx dy dz centered on ~r. The quantity ~j is the density of the electric current associated with
the motion of charge, and defined as follows. Consider an infinitesimal area dA⊥ with its
normal oriented in the direction of the flow of charge. Then the magnitude of ~j is defined
by

j(~r, t) ≡ dq(3)(~r, t)

dA⊥ dt

where dq(3)(~r, t) is the charge flowing across the dA⊥ in time dt. The electric current
dI = dq/dt flowing through a surface of area dA is then dI = ~j•n̂ dA, where n̂ is the normal
to dA. In this work, we will employ the word “flux” as commonly used in geophysics, i.e.,
the flux of any quantity Q is the amount ∆Q that crosses an area ∆A⊥ (orientated normal
to the flow of Q, if there is any) in a time ∆t divided by ∆A⊥∆t. Thus, the current is the
flux of charge. The direction of ~j is in the direction of motion of the charge.

Charge is conserved, that is the rate at which charge enters (leaves) a fixed volume must
equal the rate at which the amount of charge inside increases (decreases). The rate at
which charge enters a closed volume V through its bounding surface S is

∮

S

~j(~r, t) • n̂ dA =

∫

V
∇ •~j(~r, t) dV,

where n̂ is the outward normal to the surface, and the right-hand-side of this equation
results from application of the divergence theorem (see the Mathematical Appendix). The
rate at which charge increases in V is

d

dt

∫

V
ρ(~r, t) dV =

∫

V

∂

∂t
ρ(~r, t) dV.

Combining these, and noting that the volume V is arbitrary, we have

∇ •~j(~r, t) +
∂ρ(~r, t)

∂t
= 0.

This is called the equation of continuity.

If we have a single, e.g., positive, charge carrier moving with a velocity ~v(~r, t) with charge
density ρ(~r, t), it is a simple matter to show that

~j(~r, t) = ρ(~r, t)~v(~r, t).
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Table 1.1: SI units of quantities in Maxwell’s equations.

Quantity Symbol Unit

Length ~r,x, etc. Meter [m]
Mass m Kilogram [kg]
Time t Second [s]

Force ~F Newton [N]
Charge q Coulomb [C]

Charge Density ρ [C/m3]
Current I Ampere [A = C/s]

Current Density ~j [A/m2]

Electric Field ~E [N/C]

Magnetic Field ~B Tesla [T = N/A·m]
Energy U Joules [J = N·m]

Energy Density u [J/m3]
Work W [J]
Power dW/dt Watt [J/s]

The constants ε0 and µ0 in the Maxwell equations are, respectively, the permittivity and
permeability of free space. Their values are ε0 = 8.85 × 10−12 C2/N·m2 and µ0 = 4π ×
10−7N/A2 (exactly). The SI units of all of the quantities in these equations are presented
in Table 1.1.

It is important to note that Maxwell’s equations are linear. This means that if ~E1 and
~B1 are solutions resulting from the sources ρ1 and ~j1 alone and ~E2 and ~B2 are solutions
resulting from the sources ρ2 and ~j2 alone, then ~E1 + ~E2 and ~B1 + ~B2 are solutions resulting
from the sources ρ1 + ρ2 and ~j1 + ~j2, i.e., when both sources are simultaneously present.
This is called the principle of superposition and will be used frequently in this chapter.

Consider a distribution of charges and currents that produce the fields ~E and ~B. The
charges and currents interact with these fields through the Lorentz force, and will therefore
be modified by the very fields that they produce. (Note, a charge dq = ρ dV will not interact
with the fields that it produces, but it will interact with the fields produced by all of the
other charges and currents.) The work done by the fields on dq in time dt, during which
dq moves a distance d~r, will be

dW = ~Fon dq•d~r = dq( ~E+~v× ~B)•d~r = dq( ~E+~v× ~B)•d~r
dt
dt = dq( ~E+~v× ~B)•~vdt = dq ~E•~v dt.

Now, multiply and divide the right-hand-side of this by dV , introduce the charge density
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ρ, identify ρ~v with ~j, and integrate over the entire current distribution. The result is

dW

dt
=

∫

V

~E •~j dV.

This is the rate at which the fields do work on the charge and current distributions. Notice
that the value of the integral is unchanged if the volume V is enlarged without limit as
long as it contains all of the current, i.e., as long as there is no current outside of V . Thus,
we take V to be any volume having the current distribution completely inside.

We want to write the right-hand-side of this in terms of the fields alone. This can be
done using Maxwell’s equations as follows. First, use Eq. (IV) to eliminate ~j:

~E •~j =
~E • ∇ × ~B

µ0
− ε0 ~E •

∂ ~E

∂t
,

where, for compactness of notation, we have suppressed the explicit dependence of the
fields on ~r and t. Next, use the vector identity ∇ • ( ~E × ~B) = ~B • (∇× ~E)− ~E • (∇× ~B)
and Eq. (III) to replace ~E • ∇ × ~B with

−∇ • ( ~E × ~B)− ~B • ∂
~B

∂t
.

Finally, note that

~B • ∂
~B

∂t
=

1

2

∂( ~B • ~B)

∂t
=

1

2

∂B2

∂t
,

etc., and combine all of these into

dW

dt
= −

∫

V

[
1

2µ0

∂B2

∂t
+
ε0
2

∂E2

∂t

]
dV − 1

µ0

∫

V
∇ • ( ~E × ~B) dV.

Now, if the volume V is fixed (i.e., not moving) the time derivatives can be taken out of
the first integral (and become ordinary derivatives since the integrals depend only on t).
Then applying the divergence theorem to the second term on the right-hand side, we have

dW

dt
= − d

dt

∫

V

[
1

2µ0
B2 +

ε0
2
E2

]
dV − 1

µ0

∮

S
( ~E × ~B) • n̂ dA, (1.2)

where in the last integral n̂ is the outward normal (points away from V ) and the integration
is taken over the surface S bounding the volume V . In the last term on the right-hand
side, the quantity

~S =
1

µ0

~E × ~B

is called the Poynting vector. As it has dimensions of energy divided by area times time,
i.e., a flux, it is a flux of energy. Therefore, the last term in Eq. (1.2) is the energy
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flowing through the surface bounding the volume V per unit time. Equation (1.2) is called
Poynting’s theorem. This suggests that we should identify

ue =
ε0
2
E2 and um =

1

2µ0
B2.

as the energy densities (energy per unit volume) associated with the electric and magnetic
fields within V , respectively. Then Eq. (1.2) expresses the conservation of energy: the rate
at which work is done by the fields on the charges and currents within V is equal to the
rate of decrease of energy stored in the fields within V, minus the rate at which energy is
leaving the through surface S bounding V .

1.3 Electromagnetic Waves

The electromagnetic field supports wave motion and in fact can transport energy in the form
of electromagnetic waves. To understand how waves are implicit in Maxwell’s equations,
we consider a region of space free of charges and currents, e.g., a region where ρ = 0 and
~j = 0. Then if we take ∇× Eq. (III) and use Eq. (IV), we obtain

∇×∇× ~E = −µ0ε0
∂2 ~E

∂t2
,

which, using the last entry in Eq. (14.12) from the Mathematical Appendix and noting
that ∇ • ~E = 0, becomes

∇2 ~E − µ0ε0
∂2 ~E

∂t2
= 0. (1.3)

By taking ∇× Eq. (IV) and performing similar operations, we find ~B satisfies the same
equation, i.e.,

∇2 ~B − µ0ε0
∂2 ~B

∂t2
= 0. (1.4)

Thus, we see that both ~E and ~B satisfy the three-dimensional wave equation. We now
study some of the properties of electromagnetic waves.

1.3.1 Harmonic Waves

We shall consider only harmonic waves, i.e., waves that have a sinusoidal time depen-
dence. The rational for this is that one can synthesize any time dependence from such
sinusoidal functions through Fourier analysis. Thus, we look for solutions of the form
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~E(~r, t) = ~E(~r) exp[−iωt]. (If the reader is unfamiliar with complex notation, consult the
Mathematical Appendix.) Substituting this into the wave equation yields

∇2 ~E + µ0ε0ω
2 ~E = 0.

1.3.2 One-Dimensional Plane Waves

To simplify the previous equation, lets assume that ~E(~r) = ~E(x), i.e., ~E depends only on
x. This reduces the equation to an ordinary differential equation:

d2 ~E

dx2
+ µ0ε0ω

2 ~E = 0. (1.5)

A solution of this is
~E(x) = ~E0 exp[+i

√
µ0ε0ωx], (1.6)

where ~E0 is a constant vector. The corresponding field is

~E(x, t) = ~E0 exp[+i(
√
µ0ε0ωx− ωt)].

This can be rewritten

~E(x, t) = ~E0 exp[+i
√
µ0ε0ω(x− 1√

µ0ε0
t)],

showing that a given value of ~E(x, t) moves (propagates) in the +x direction with a speed
1/
√
µ0ε0. The reader can readily verify that this speed is in fact that of light in a vacuum

(c = 2.99× 108 m/s). Henceforth, we replace µ0ε0 by 1/c2. Then the field is

~E(x, t) = ~E0 exp[+i(
ω

c
x− ωt)] = ~E0 exp[+i(κx− ωt)], (1.7)

where κ , ω/c is called the wave number (also written “wavenumber”). Writing

~E0 = ı̂E0x + ̂E0y + k̂E0z,

where ı̂, ̂, and k̂ are unit vectors in the x, y, and z directions, respectively, and applying
Eq. (I) (with ρ = 0) to ~E(x, t), yields

iκEx0 = 0,

which shows that ~E0 has no x component. Thus, this wave solution has no ~E component
in the direction of propagation. It is a transverse wave.
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For a given value of time, say t = t0, ~E(x, t0) is periodic in x repeating for values of x
given by x± 2π/κ, x± 4π/κ, etc. The quantity 2π/κ is defined to be the wavelength λ of
the wave. Similarly, fixing x at x0, ~E(x0, t) will repeat when t is increased by an integer
times 2π/ω, a quantity that defines the period T of the wave.

Note that there are other solutions of Eq. (1.5). For example, clearly

~E(x) = ~E0 exp[−i√µ0ε0ωx]

also satisfies Eq. (1.5). When combined with the time factor exp(−iωt) this solution
represents a wave propagating in the −x direction. In fact, the sum of these two waves,
one leading to propagation in the +x direction and the other to propagation in the −x
direction, with arbitrary ~E0’s for each is the general solution of Eq. (1.5).

The magnetic field associated with these waves can be found from Eq. (III). Since ~E
has no x component,

∂ ~B

∂t
= ̂

∂Ez
∂x
− k̂ ∂Ey

∂x
.

Inserting Eq. (1.7) into this, integrating over time, and setting the constants of integration
(time independent ~B and therefore, not a wave) to zero, gives

Bx = 0, By = −κ
ω
Ez and Bz = +

κ

ω
Ey.

This can be written compactly as

~B(x, t) =
κ

ω
ı̂× ~E(x, t) =

ı̂× ~E(x, t)

c
,

and the magnetic field that accompanies ~E in Eq. (1.7) is

~B(x, t) = ~B0 exp[+i(κx− ωt)], with ~B0 =
ı̂× ~E0

c
. (1.8)

This shows that (1) ~E and ~B are perpendicular to each other, (2) the plane formed by
~E and ~B is perpendicular to the direction of propagation of the wave, and (3) there is no
phase difference between ~E and ~B, i.e., they are in phase. Because the surfaces of constant
~E and ~B are planes (parallel to the y-z plane), waves of this form are called plane waves.

1.3.3 Three-Dimensional Plane Waves

It is easy to generalize plane waves to three dimensions. Letting

~κ = ı̂κx + ̂κy + k̂κz
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and
~r = ı̂x+ ̂y + k̂z,

we see that
~E(~r, t) = ~E0 exp[i(~κ • ~r − ωt)] (1.9)

satisfies Eq.s (??) and (1.4), if

κ2 = κ2
x + κ2

y + κ2
z =

ω2

c2
.

Proceeding as in the above case of waves traveling in the x direction, Eq. (I) shows that

~κ • ~E(~r, t) = 0,

and Eq. (III) shows that

~B(~r, t) =
~κ

ω
× ~E(~r, t) =

κ̂× ~E(~r, t)

c
. (Note: κ̂ not ~κ in the second equality.)

Thus,
~B(~r, t) = ~B0 exp[i(~κ • ~r − ωt)] (1.10)

with

~B0 =
~κ

ω
× ~E0 =

κ̂× ~E0

c
,

and Eq. (1.9) constitute a solution to the three-dimensional wave equation. This solution
corresponds to waves propagating in the ~κ direction, i.e., rectilinear propagation. The
surfaces of constant ~E and ~B are perpendicular to ~κ and ~E and ~B are perpendicular to
each other. The wave length is 2π/κ and the period is 2π/ω.

1.3.4 Energy Densities

The energy densities are proportional to the square of the fields, and as such we must revert
to the real representation of the fields in order to compute them, i.e., replace exp[i(~κ•~r−ωt)]
by cos(~κ • ~r − ωt) (See Mathematical Appendix). The resulting densities associated with
a plane electromagnetic wave are

ue =
ε0
2
E2

0 cos2(~κ • ~r − ωt)

and

um =
1

2µ0
B2

0 cos2(~κ • ~r − ωt),

but since B0 = E0/c and µ0ε0 = 1/c2, we see that um = ue, i.e., the energy densities asso-
ciated with the electric and the magnetic fields are equal. Thus, in a plane electromagnetic
wave, the field energy is equally divided between the electric and magnetic fields. The total
field energy density is then 2ue.
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1.3.5 The Poynting Vector

As with the energy densities, to compute the Poynting vector for a plane wave we need to
use the real representation of the fields:

~S(~r, t) =
~E0 × ~B0

µ0
cos2(~κ • ~r − ωt),

but

~E0 × ~B0 =
~E0 × (κ̂× ~E0)

c
=
E2

0

c
κ̂.

Therefore,

~S(~r, t) =
E2

0

cµ0
κ̂ cos2(~κ • ~r − ωt) = cε0E

2
0 κ̂ cos2(~κ • ~r − ωt) = κ̂ c uem(~r, t),

where uem = ue + um = 2ue, the electromagnetic energy density associated with the wave.
How do we interpret ~S(~r, t) = ~κ c uem(~r, t)? For simplicity, consider a wave propagating in
the z direction; specifically, ~κ = êzκ, so

~E(z, t) = êxE0 cos(κz − ωt).

Let this wave be incident on a disk of area A as shown below. Consider the integral of

!!êz
A 

!!c(t2 −t1)

!z
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the Poynting vector over the area A, i.e.,
∫
A
~S(z, t) • êz dA. We have

∫

A

~S(z, t) • êz dA = c

∫

A
uem(z, t) dA.

Now average this over a time interval T = t2 − t1 (long compared to the period of the
wave), i.e.,

1

T

∫ t2

t1

∫

A

~S(z, t) • êz dAdt = c
1

T

∫ t2

t1

∫

A
uem(z, t) dAdt.

Note that 1
T
∫ t2
t1
~S(z, t) • êz dt =

〈
~S(z)

〉
Avg
• êz, where

〈
~S(z)

〉
Avg

is the time-averaged

Poynting vector on the surface A. Also, note that c(t2− t1) is the length of the cylindrical
volume shown in the figure. Thus, the integral on the right is just the total electromagnetic
energy, Uem, contained within the volume Ac(t2 − t1), so

∫

A

〈
~S(z)

〉
Ave
• êz dA = Uem/T .

Since the energy associated with the wave within the volume TAc had to pass through A
in time T , Uem/AT must be the flux of energy through A. In differential form, the above
equation reads 〈

~S(z)
〉

Ave
• êz = dUem/dt dA,

so we can conclude that for an electromagnetic wave,
〈
~S(z)

〉
Avg
• êz is the time-averaged

flux of energy in the direction êz. But, as dt is a differential,
〈
~S(z)

〉
Avg
• êz = ~S(z) • êz,

and we finally conclude that we can associate ~S with the instantaneous flux of energy (for
an electromagnetic wave).2

At optical frequencies, most detectors of electromagnetic waves respond to the power
falling on their surface, which is proportional to the Poynting vector; however, those em-
ployed in remote sensing cannot respond fast enough to follow the actual oscillations of
the fields (or of the Poynting vector). Rather, they respond to the time-averaged Poynting
vector over many oscillations of the fields, i.e., they respond to

〈~S(~r)〉Ave ,
1

T

∫ t0+T

t0

~S(~r, t) dt,

where T is the period, and T � T .

2Later in this chapter, we will encounter (spherical) waves having the form

~E(~r, t) =
exp[i(κr − ωt)]

r

(
f(θ, φ)θ̂ + g(θ, φ)φ̂

)
,

in spherical coordinates. (The unit vectors are defined in the Mathematical Appendix). A similar compu-
tation with this field yields a similar result.
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The time-averaged Poynting vector can also be computed in a simple manner using the
complex representation of the fields through

〈~S(~r)〉Ave =
1

2µ0
<( ~E × ~B∗) =

κ̂

2µ0c
<( ~E • ~E∗) =

κ̂

2µ0c
E0E

∗
0 , (1.11)

where ~B∗ and ~E∗ are the complex conjugates of ~B and ~E, respectively.

1.4 Fields in Matter

We have seen how the electromagnetic field can propagate energy in the form of waves
in vacuum; however, we need to understand how the presence of matter influences these
waves, as well as understand how electromagnetic waves influence matter. We shall in-
troduce matter in the form of dielectrics, i.e., the form of matter that in general does
not conduct electricity and has no significant magnetic properties. Seawater does con-
duct electricity somewhat at low frequencies; however, at the optical frequencies of interest
in environmental optics, it does not. The electric field in a dielectric will be developed
by considering the effect of an external field on a simple model of an atom — a nucleus
surrounded by a spherically symmetric cloud of electrons.

1.4.1 Four Simple Problems

Before we begin a discussion of dielectric materials, it is useful to develop some background
ideas by solving four simple problems in electrostatics (i.e., all quantities in Maxwell’s
equations are independent of time). The solutions will result from an application of Gauss’
law. If we integrate Eq. (I) over a volume V , we can use the divergence theorem to relate
this to a surface integral, i.e.,

∫

V
∇ • ~E dV =

∮

S

~E • n̂ dA,

where S is the bounding surface of V and n̂ is the outward normal. However, from Eq. (I),
the first integral is just ∫

V
∇ • ~E dV =

∫

V

ρ

ε0
dV =

Q

ε0
,

where Q is the total charge within the volume bounded by the surface. Thus, we have the
statement of Gauss’ law: ∮

S

~E • n̂ dA =
Qinside S

ε0
.
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This equation is useful for computing ~E from charge distributions that possess enough
symmetry that ~E can be taken out of the integral on the left-hand-side.

Problem 1: ~E of a point charge.

Consider a point charge of magnitude q at the origin. Symmetry demands that the
electric field be radial, i.e., ~E(~r) is in the r̂ direction. Imagine a sphere of radius R around
the origin. Clearly, symmetry also requires that the electric field has the same magnitude
everywhere on the surface of the sphere. Thus, symmetry requires that

~E(~r) = E(r)r̂.

Now, on this sphere, n̂ = r̂, so the integral in Gauss’ law is easily evaluated:
∮

S

~E • n̂ dA = E(R)

∮

S
dA = E(R)4πR2.

Thus, E(R) = q/(4πε0R
2), showing that the field at ~r due to a point charge at the origin

is
E(~r) =

q

4πε0r2
r̂.

Problem 2: ~E of a spherical ball of uniform charge density.

Consider a spherical ball of charge with uniform density ρ centered at the origin and
having a radius R. Again, symmetry demands that ~E(~r) = E(r)r̂. Imagine a sphere of
radius r < R, also centered on the origin, and apply Gauss’ law to this sphere:

4πr2E(r) =
1

ε0

∫

V
ρ dV =

1

ε0
ρ

∫

V
dV =

1

ε0
ρ

4π

3
r3

or
~E(~r) =

ρ~r

3ε0
.

Thus, ~E is radial and increases with r inside the ball. To find the field outside the ball,
consider an imaginary sphere with r > R and do the same thing. Regardless of how large
we make r, the charge inside is the total charge Q = ρ4πR3/3, so the field is that of a
point charge with q = Q.

Problem 3: ~E in a spherical cavity inside spherical ball of uniform charge density.

Consider a ball of charge with uniform charge density everywhere except for a completely
enclosed spherical cavity that is free of charge. The ball and the cavity are not necessarily
concentric. To find the field in the cavity we will use the results of Problem 2 in conjunction
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with the principle of superposition. Clearly, the situation we are examining is identical to
the superposition of a ball of uniform charge density ρ with a smaller ball of charge density
−ρ embedded within the larger sphere, i.e., the charge density in the region common to
both spheres is ρ − ρ = 0. Now the field within each sphere due to the charge carried by
the individual spheres is

~E+(~r) =
ρ~r+

3ε0
and ~E−(~r) = −ρ~r−

3ε0
,

where ~r+ is a vector from the center of the +ρ sphere to any point within it, and ~r− is a
vector from the center of the −ρ sphere to any point within it. Note, for the formulas to
be valid, the points to which ~r± refer must be inside the respective spheres. Consider a
point that is inside the −ρ sphere, and therefore inside the cavity. The superimposed fields
there are

~E(~r) =
ρ~r+

3ε0
− ρ~r−

3ε0
=

ρ

3ε0
(~r+ − ~r−)

The difference vector
~r+ − ~r− , ~s

is simply a vector drawn from the center of the original ball to the center of the spherical
cavity. Thus, we arrive at the remarkable result that the field within the cavity is uniform
and its direction is everywhere parallel to a vector drawn from the center of the sphere to
the center of the cavity, i.e.,

~ECavity =
ρ~s

3ε0
.

Note that if the sphere and the cavity are concentric, ~s = 0, and there is no field inside the
cavity.

Problem 4: ~E of a dipole.

A dipole consists of positive and negative point charges (same magnitude) separated by
a small distance s. For specificity, let a charge q be placed at a position (0, 0,+s/2) and a
charge −q at (0, 0,−s/2) then, superimposing the fields of these charges (Problem 1) and
defining the dipole moment to be ~p , qsk̂ (note, sk̂ is a vector from the negative to the
positive charge), ~E at a point specified by ~r, with r � s, is given by

~E(~r) ≈ 1

4πε0

[
− ~p

r3
+

3~r(~r • ~p)
r5

]
. (1.12)

The approximation becomes exact in the limit that s → 0 and q → ∞ such that sq → p
(this is a “point” dipole). Note that while the field of a point charge falls off as the square
of the distance from the charge, the field of a dipole falls off as the cube of the distance.
More generally, the dipole moment of a charge distribution specified by a charge density
ρ(~r) is ~p =

∫
ρ(~r)~r dV , and far from the charge distribution the field is given by Eq. (1.12).
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Armed with these four simple results, we are now able to proceed to the study of di-
electrics.

1.4.2 Dielectrics

We know what happens when individual charges are subjected to an electromagnetic field.
They feel a force given by the Lorentz force law. However, atoms and molecules in normal
matter are uncharged. What happens when ordinary matter is subjected to electric and
magnetic fields? To try to understand this, we need a model of an atom. Consider atomic
hydrogen. The structure of this atom is determined by quantum theory to consist of a
proton of charge +e surrounded by an electron cloud of charge density

ρ(~r) =
−e
πa3

0

exp[−2r/a0] (1.13)

in the ground state. In this equation, a0 is the “Bohr” radius (0.529 × 10−10 m) and e
is the charge on the electron (1.6 × 10−19 C). In excited states, the charge is generally
distributed farther from the proton (and is not always spherically symmetric). For the
purpose of understanding the influence of fields on a hydrogen atom, we will use a slightly
simpler model for ease of computation: we assume the electron cloud is a sphere of radius
R0 and uniform charge density

ρ = − 3e

4πR3
0

,

and that excited states are similar, but with larger R0. Now, place this model atom in
a uniform electric field ~E0 and assume that the electron cloud maintains its shape and
uniform charge distribution. Clearly, the result of the field is to force the proton in the
direction of the field and the electron cloud in the opposite direction. Equilibrium will be
reached when the force on the proton from the external field is balanced by the force from
the electron cloud. If the proton has moved a distance re relative to the cloud, the cloud’s
~E at the proton’s position is given by Problem 2 above: ~E(~r) = (ρ~re/3ε0). The force on
the proton by the electron cloud is e ~E(~r) and must be balanced by the force resulting from
~E0, i.e.,

e ~E0 − e
3e

4πR3
0

~re
3ε0

= 0,

or

e~re = 4πε0R
3
0
~E0.

Thus, at equilibrium the proton is positioned a distance ~re from the center of the electron
cloud. Now, the total electric field in the medium is the sum of ~E0 and the field from the
atom. Far from the atom, the electron cloud appears as a point charge (Problem 2), so
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outside the atom the field is that of two point charges (+e and −e) separated by ~re, i.e., a
dipole of moment ~p = e~re. Placing the neutral atom in a uniform electric field caused it to
acquire a dipole moment proportional to the field:

~p = 4πε0R
3
0
~E0 , α~E0,

where α is called the polarizability. The field of this dipole is given in Problem 4, where
it is seen to be proportional to the inverse cube of the distance from the atom. The total
field

~E(~r) = ~E0 +
1

4πε0

[
− ~p

r3
+

3~r(~r • ~p)
r5

]
. (1.14)

rapidly reduces to ~E0 with increasing ~r. The polarizability,

α = 4πε0R
3
0,

given by this model is approximately 4.5 times smaller than the actual measured value
for hydrogen if R0 is taken to be a0. Were the more correct Eq. (1.13) used for the
charge density the result would be 3/4 of that above, i.e., farther from the measured value.
Evidently, there is significant distortion of the electron cloud when the atom is placed in a
field; however, this simple model does provide the essential physics as well as the correct
order of magnitude for α.

It is important to note that for typical values of ~E0, ~re is very small. For our model,

re
R0

=
4πε0R

2
0

e
E0 =

E0

E(R0)
,

where E(R0) is the magnitude of the proton’s electric field a distance R0 away, e.g., at the
edge of the electron cloud. Taking R0 = a0, gives E(R0) = 5.25× 1011 N/C, so

re
R0
≈ 1.8× 10−12E0.

How large is this when E0 is the field due to an electromagnetic wave in the visible spec-
trum? Consider a 5 mW He-Ne laser typically used as a pointer. If it has a beam cross
section of 4 mm2, the average Poynting vector is 1250 Watts/m2. This results in an electric
field of 970 N/C (Eq. (??)), so re/R0 ≈ 1.8 × 10−9 ! Furthermore even at the fields high
enough to cause dielectric breakdown of air (∼ 106 N/C), i.e., a spark during which air
ceases to be a dielectric and becomes a conductor, re/R0 ≈ 1.8 × 10−6. Thus, the proton
(or nucleus in a more complex atom) never moves a sizable fraction of the atomic radius,
and approximation of the atom as a point dipole is very realistic.

If a sufficiently dilute gas of such atoms is subjected to an external field ~E0, except for
rare near collisions, the field experienced by each atom is ~E0. This causes each atom to
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develop a dipole moment ~p. If n is the number density (atoms/m3), then in a volume dV
there will be ndV dipoles, and the dipole moment d~p of dV will be ~p n dV . It is useful to
define the dipole moment density as

~P ,
d~p

dV
= n~p.

~P is called the polarization of the medium, and for the dilute gas,

~P = nα~E0.

Note that when the gas is not dilute, or when we are are considering a liquid or solid
dielectric, then the second term in Eq. (1.14) will contribute, i.e., the one including ~r • ~p,
so the field seen by each dipole will not be the externally applied field ~E0.

If we have a region of space containing a large number of dipoles, what electric field do
these dipoles produce? It is easy to compute the ~E field produced by a sphere of uniform
polarization ~P . Such a polarization would develop if a ball of uniform positive charge
density and an identical ball of uniform negative charge density were almost, but not quite
perfectly superimposed. If their centers are displaced from one another by an amount ~s,
where ~s is pointed from the negative to the positive charge, then each element of volume
dV will develop a dipole moment3

d~p = ~sdq = ~sρdV.

The corresponding polarization in is ~P = ~sρ and it is uniform within the sphere. The
electric field in the region common to the two spheres is (Problem 3) ~E = −ρ~s/3ε0, so

~E = −
~P

3ε0
,

and the electric field in a sphere of uniform polarization is also uniform and is directed
opposite to ~P . Note that the minus sign above arises because in Problem 3, ~s was drawn
from the center of the positive sphere to the center of the negative sphere, while ~s here is
in the opposite direction.

As there is no net charge anywhere inside the sphere, the reader may be wondering
where this field originates. The answer is that there are charges at the polar caps of the
sphere (Figure 1.1). If we take the north pole of the sphere to be that toward which ~P is
directed, then when the centers of the positive and negative spheres are offset by ~s, there

3Note that in Problem 3, ~s was a vector from the center of the positively charged sphere to the center
of the negatively charged sphere. Here, the dipole moment vector ~p = q~s is from the negative charge to the
positive charge, and hence here ~s is the negative of ~s in Problem 3.
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will be a cap of positive charge on the northern polar surface and a cap of negative charge
on the southern polar surface. Recalling that in a real atom ~s is typically a small fraction
of the size of the atom, these charges appear to be residing on the surface of the sphere.
We now examine their properties.

Consider the geometry of this situation. To compute
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Figure ME-1.  Spheres of uniform positive and negative charge density are 
superimposed and the positive sphere is shifted vertically through a distance 
s. This results in thin positively and negatively charged polar caps.  
 

Figure 1.1: Spheres of uniform
positive and negative charge den-
sity are superimposed and the
positive sphere is shifted verti-
cally through a distance s rela-
tive to the negative sphere. This
results in thin positively and neg-
atively charged polar caps.

the charge on the upper cap in Figure 1.1, we need to
compute its thickness. Since the cap is thin, this is the
difference between r+ and r−. But,

r2
− = r2

+ + s2 + 2r+s cos θ,

so, noting that s� r+ or r−,

r− − r+ ≈ s cos θ.

If we look at a small area dA on the sphere, the charge
dq in the volume (r− − r+)dA is dq = ρsdA cos θ. As this
charge is on the surface of the sphere, it is useful to define
the surface charge density σ according to σ , dq/dA.
Then σ(θ) = ρs cos θ. But ρ = Q/V , where Q is the total
charge on the sphere, so ρs = Qs/V = P , since Qs is the
total dipole moment of the system of spheres. Therefore,
σ = P cos θ = ~P • n̂ and the effect of the polarization is
to cause charge to appear on the surface with a charge
density σ. Note that this formula automatically provides
correct sign for the surface charge density on the southern

cap.

The above result can be shown to be quite general, i.e., a polarized dielectric will have
a charge density

σb = ~P • n̂
on its surface. The subscript “b” on σb is remind us that, unlike charges on conductors that
can be manipulated at will using tools such as batteries (and usually referred to as “free”
charges), the charges on the surface of a dielectric are bound to the individual atoms. This
charge is usually referred to a “bound” charge. Noting that the dielectric is electrically
neutral, i.e., no charges have left their individual (neutral) atoms, any volume density ρb
of bound charge within the dielectric must satisfy

0 =

∫

V
ρb dV +

∮

S
σb dA

=

∫

V
ρb dV +

∮

S

~P • n̂ dA
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=

∫

V
ρb dV +

∫

V
∇ • ~P dV.

Since V is arbitrary, this requires that

ρb = −∇ • ~P .

ρb and σb provide the source of the field, given the polarization of the dielectric.

Typically, we will be interested in electromagnetic waves within dielectrics. In this case
~E will vary in time causing ~P to vary in time, which results in a current. To see how this
happens, consider a simple case of a slab of material oriented normal to an electric field ~E.
This field causes a polarization ~P in the material in the same direction as ~E, and results
in a charge density σb = ~P • n̂ on the surfaces. As the field changes, ~P changes and so
does σb. If we examine an area dA of the surface, there will be a current I = dq/dt in the
column of length ` and base dA. The current density in the column is j = I/dA, so

j =
dq

dtdA
=
dσb
dt

=
dP

dt
.

But ~j is in the same direction as increasing ~P , so we have

~jb =
d~P

dt

as the current density in a dielectric medium with time-varying polarization. (Note as this
is also “bound”, we use the subscript b to differentiate it from currents associated with free
charge, i.e., “free” currents.)

As an aside, we expect all currents and their associated charge densities to satisfy the
continuity equation:

∇ •~j +
∂ρ

∂t
= 0.

Is this true of ~jb? Substituting directly for ~jb and ρb shows that this is indeed the case.

1.4.3 Dense Collection of Atoms in an ~E Field

Maxwell’s equations are generally applicable to charges in a vacuum. One is led to wonder
then, what fields actually satisfy Maxwell’s equations in matter? After all, in a medium, the
field at the microscopic level can be very small, i.e., negligible, outside an atom, but a small
distance away near a nucleus ~E is enormous. Thus, in any real medium, ~E fluctuates rapidly
and strongly with position. The answer is that the fields in Maxwell’s equations are spatial
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averages of the microscopic fields over volumes that include many atoms, e.g., a sphere
100 Angstroms in diameter (for a discussion, see Jackson, Classical Electrodynamics). One
should not find this mysterious, as one would also average over a similar scale to determine
the mass density, which at smaller scales would also fluctuate wildly with position. In
such determinations, in essence, matter is being treated as a continuous distribution of
mass (or charge). A region of this size will have well-defined charge and current densities
(based on similar averaging). When we use the term electric field it will refer to this
spatially-averaged field; however, at times when emphasis is needed, we refer to it as the
“macroscopic” field. When a dilute medium is subjected to an external electric field the
spatially-averaged field and the microscopic field (the actual field at a given point in space)
will be virtually identical. This means that when a dilute gas is placed in a field ~E0, the field
seen by each atom will be ~E0, and the development of ~P easy to understand. In contrast,
in a dense medium there is no reason to believe that the field seen by an individual atom
~EMicroscopic is equal to the field ~E provided by Maxwell’s equations in the medium. That is,

at the molecular scale, the field ~EMicroscopic seen by a single atom (or molecule) will depend
on the graininess of matter in the vicinity of the atom — the continuum approximation
must break down at the atomic scale.

It is customary to relate the polarization of the medium ~P to the macroscopic field in
the medium ~E, noting of course that ~E is not the field that is externally impressed on the
dielectric (as it is for a dilute gas). That is, ~E includes any fields created by ~P as well.
It is the actual (averaged) electric field in the medium: the macroscopic field. For many
dielectrics (called linear-homogeneous-isotropic dielectrics) the relationship,

~P = ε0χe ~E, (1.15)

is satisfied to a good approximation. The constant χe is called the electric susceptibility
of the dielectric. This states that the polarization is proportional to the macroscopic field
in the dielectric. The question is how do we relate χe, which is a bulk property of the
dielectric, to α, which is a parameter associated with the individual atoms or molecules?

Consider a slab of dielectric such as shown on the left-hand-side of the equal sign in
Figure 1.2, and consider the field at a particular atom in the medium, ~EMicroscopic. We
expect that the contribution of the near-by atoms to this microscopic field will have to
be computed separately from the atoms far away. Thus, we imagine a spherical cavity of
radius R containing the atom of interest at its center and compute the field at the center
due to the atoms inside the cavity separately and add to it the field at the center due to
the rest of the medium. The latter field is treated in the continuum approximation.

Using the principle of superposition (Figure 1.2) the field in the cavity due to ~P outside
is easy to compute. On the left-hand-side of the equal sign on the figure, the field at the
center of the cavity is just ~E, the macroscopic field. In the first term on the right-hand-side
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the field at the center of the cavity is ~ECavity, while in the second it’s the field inside a

uniformly polarized sphere which we have found to be −~P/3ε0. Thus

~E = ~ECavity − ~P/3ε0

or
~ECavity = ~E + ~P/3ε0.

i.e., the field in the cavity is actually larger than the field in the medium. Now, to ~ECavity we
add the sum of the fields due to the individual dipoles within the cavity. These individual
dipole fields are given by

~EDipole(~r) =
1

4πε0

[
− ~p

r3
+

3~r(~r • ~p)
r5

]
,

where ~p is in the same direction as ~P , and −~r is the position vector of an individual
dipole referenced to the center of the sphere, i.e., relative to the atom at which we wish to
compute the field. Clearly, the superposition of the fields due to the individual dipoles is
dependent on how they are distributed within the cavity. However, there are two cases in
which the dipole field is easy to compute: a cubic lattice of identical atoms (as in a crystal)
and a random distribution of atoms (as in a liquid). For these cases the total dipole field
actually vanishes, and the field seen by the molecule ~EMicroscopic is just ~ECavity, i.e.,

~EMicroscopic = ~E + ~P/3ε0.

However, it must be noted that this is not always the case. For example, in a calcite crystal
the atoms are not arranged in a cubic lattice and the dipole field does not vanish. In fact
~E and ~P are not even in the same direction in calcite (Eq.(1.15) does not hold), which
leads to the phenomenon of double refraction.

The dipole moment of individual atoms is related to the microscopic field through

~p = α~EMicroscopic = α ( ~E + ~P/3ε0),

or using the relationship between ~E and ~P (Eq.(1.15)),

~p = α~E
(

1 +
χe
3

)
.

But, ~P = n~p, where n is the number density of atoms, so

~P = nα~E
(

1 +
χe
3

)

Using Eq.(1.15) to eliminate ~P , we have the final result:

α =
ε0χe/n

1 + χe/3
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or, defining the dielectric constant Ke , (1 + χe),

α =
3ε0
n

[
Ke − 1

Ke + 2

]
. (1.16)

This relationship between the dielectric’s microscopic (α) and macroscopic (Ke) properties
is referred to as the Clausius-Mossotti or the Lorentz-Lorenz law. In a dilute gas, χe � 1
and Ke ≈ 1, so

χe =
nα

ε0
and Ke = 1 +

nα

ε0
,

which corresponds to
~EMicroscopic = ~E.

Some molecules, e.g. water, have per-
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Figure 1.2: The field in the slab of a dielectric
with uniform polarization ~P on the left can be
formed from a superposition of the field from the
slab having a spherical cavity and a sphere of the
same polarization sized to just fit into the cavity.
This is used in the text to find the field in the
cavity.

manent dipole moments because of their
internal distribution of charge. Consider
what happens when a dipole with moment
~p is placed in a field ~E such that there
is an angle between ~E and ~p. We model
the dipole as a positive charge q separated
from a negative charge −q by a small dis-
tance. In the field, +q is forced in the di-
rection ~E and −q is forced in the opposite
direction. This tends to rotate the dipole
so that ~p aligns with ~E, i.e., the dipole is
subjected to a torque (given by ~p × ~E).
Thus, when an external field is applied to
such a medium the dipoles tend to align
with the field and the medium develops a
polarization ~P . Such media are similar in
their properties to the dielectrics we have
been discussing above.

1.4.4 Electromagnetic Waves in Dielectrics

In a dielectric medium, the current and charge densities are bound and given by, respec-
tively,

~j(~r, t) =
∂ ~P (~r, t)

∂t
and ρ = −∇ • ~P (~r, t),
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so Maxwell’s equations become

∇ •
[
ε0 ~E(~r, t) + ~P (~r, t)

]
= 0

∇ • ~B(~r, t) = 0

∇× ~E(~r, t) = −∂
~B(~r, t)

∂t

∇× ~B(~r, t) = µ0
∂

∂t

[
ε0 ~E(~r, t) + ~P (~r, t)

]

The quantity ε0 ~E + ~P is usually called the electric displacement ~D. Note that in a linear-
homogeneous-isotropic dielectric

ε0 ~E + ~P = ε0(1 + χe) ~E = ε0Ke
~E.

Then, performing the same operations on Maxwell’s equations as before in the case of
electromagnetic waves in free space, we find

∇2 ~E − µ0ε0Ke
∂2 ~E

∂t2
= 0. (1.17)

and

∇2 ~B − µ0ε0Ke
∂2 ~B

∂t2
= 0, (1.18)

i.e., the same equations as found for free space, but with ε0 replaced by ε0Ke. The propa-
gation is rectilinear, and the only change in moving from free space to a dielectric is that
the speed of the waves is now given by

v2 =
1

µ0ε0Ke
=

c2

Ke
.

The index of refraction m of the medium is defined to be m , c/v, so for a dielectric,
m =

√
Ke.

1.4.5 Dynamic Properties of Dielectrics

When an electromagnetic wave propagates in a dielectric, the ~E field is varying rapidly in
time. We have developed the theory of dielectrics assuming that the field was static. Are
the dielectric properties modified by the time variation of ~E ? To answer this question, we
need to employ a model of the atom. The correct description requires quantum mechanics;
however, it is possible to develop a qualitative understanding of most of the effects of the
time variation of the fields from the very simple classical model. We assume that the model
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of the atom described at the beginning of our discussion of dielectrics is applicable. For
atomic hydrogen this is a proton at the center of a spherical electron cloud of radius R0 and
uniform charge density. We assumed that the application of an external electric field did
not distort the electron cloud, but caused its center to move relative to the positive charge
(that was originally in equilibrium at the center of the sphere). If the positive charge is
moved a distance r from the center of the electron sphere, it will be subjected to a restoring
force of magnitude

F =
e2r

4πε0R3
0

.

The same force will act on the electron cloud, but because of its small mass compared to
the proton, the motion of the cloud will dominate that of the proton. Letting the vector
~r describe the position of the center of the electron cloud from the proton, the classical
equation of motion (Newton’s law) of the cloud when the atom is subjected to an oscillating
electric field of amplitude ~E0 is

me
d2~r

dt2
= − e2~r

4πε0R3
0

−meγ
d~r

dt
− e ~E0 cos(ωt), (1.19)

where me is the mass of the electron. This equation will lead to oscillation of the atom, in
fact the atom will become an oscillating dipole. As we shall see later, such a dipole emits
electromagnetic radiation, and therefore must continually loose energy, so we have intro-
duced such an energy loss as a damping (friction) term,4 the frictional force being −meγ~v.
In addition, the material may absorb radiation which also provides a loss mechanism.
Rewriting,

d2~r

dt2
+ γ

d~r

dt
+ ω2

0~r =
−e
me

~E0 cos(ωt),

where ω2
0 = e2/(4πε0meR

3
0). To solve this equation, we assume that the electric field is in

the x direction, i.e., ~E0 = ı̂E0. Then the y and z motions will be unforced, and if initially
excited (by some other process) will damp out, so only the x component of ~r is of interest.5

Also, the “transient” solution (solution for E0 = 0) for the x component will damp out as
well, so we only need consider the “steady state” solution of

d2x

dt2
+ γ

dx

dt
+ ω2

0x =
−e
me

E0 cos(ωt).

4In a phenomenological treatment of radiation damping, the constant γ can be shown to be
e2ω2

0/(6πε0mec
3).

5The actual force on a charge is ~F = q[ ~E + ~v × ~B], and the magnetic term can yield forces in directions
in addition to x; however, for an electromagnetic wave ~B = κ̂× ~E/c, so the magnetic force is of order v/c
times the electric force. Thus, ignoring the magnetic force is justified when v � c, i.e., when the motion is
non-relativistic. Using the example of a 5 mW He-Ne laser discussed earlier, we find |v/c| ∼ 0.01, and in
that case the magnetic force can he safely ignored compared to the electric force.
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Replacing cos(ωt) by exp(−iωt) and treating x as a complex variable, the solution is

x =
(−e/me)E0

(ω2
0 − ω2)− i(γω)

exp(−iωt).

The dipole moment of the atom is then ~p = −e~r, so ~p = −exı̂, and writing the dipole
moment as ~p = ~p0 exp(−iωt), we have

~p0 =
(e2/me)

(ω2
0 − ω2)− i(γω)

~E0.

This implies that ~E and ~p are out of phase, i.e.,

~p0 =
(e2/me)√

(ω2
0 − ω2)2 + (γω)2

~E0 exp(iφ),

where the phase angle is

φ = tan−1

[
γω

ω2
0 − ω2

]
.

Finally, since ~p = α~E, we have

α =
(e2/me)

(ω2
0 − ω2)− i(γω)

=
(e2/me)√

(ω2
0 − ω2)2 + (γω)2

exp(iφ), (1.20)

Clearly, for low frequencies fields ω � ω0, φ = 0 and the electron cloud oscillates in phase
with ~E, while for high frequencies ω � ω0, φ = π. When ω = ω0, i.e., when the frequency
of the field is the “natural” frequency of the atom, φ = π/2.

The fact that the polarizability is complex (and therefore not in phase with the applied
field), means that the dielectric constant will be complex as well. Consider a dilute gas,
for which the individual atoms see the externally applied field. Then

Ke = 1 +
nα

ε0
.

Using α from above, and writing the complex dielectric constant as Ke = Kr
e + iK i

e, we
have

Kr
e = 1 + n

e2(ω2
0 − ω2)/meε0

(ω2
0 − ω2)2 + (γω)2

(1.21)

and

K i
e = n

e2γω/meε0
(ω2

0 − ω2)2 + (γω)2
. (1.22)
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In addition, as the refractive index m =
√
Ke and Ke = 1 +nα/ε0, noting that nα/ε0 � 1,

we have m ≈ 1 +nα/2ε0, and writing the complex refractive index m = mr + imi, we have
from Eqs. (1.21) and (1.22)

mr = 1 + n
e2(ω2

0 − ω2)/2meε0
(ω2

0 − ω2)2 + (γω)2
(1.23)

and

mi = n
e2γω/2meε0

(ω2
0 − ω2)2 + (γω)2

. (1.24)

The variation of the real and imaginary parts of the refractive index with frequency is
provided in Figure 1.3. In a dense medium, (1.16) can be rewritten

Ke = 1 +
nα/ε0

1− nα/3ε0
,

and on inserting α we find that Eq. (1.21) through (5.18) still apply if ω2
0 is replaced by

ω2
0 − ne2/(3meε0).
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Figure ME-3.  Variation of mr (solid curve) and mi (dashed curve) with 
frequency ω near the natural frequency of the atom ω0 for a dilute gas.  
 
 

Figure 1.3: Variation of the real part mr (solid
curve) and the imaginary part mi (dashed curve)
of the complex refractive index with frequency
ω near the natural frequency ω0 of an atom of a
dilute gas.

1.5 Electromagnetic Wave Propagation in a Dielectric

We have seen that propagation in a dielectric is equivalent to that in a vacuum if the speed
of the vacuum waves c is replaced by c/m, where m2 = Ke is the refractive index of the
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medium. Thus, where in a vacuum, for plane waves propagating in the κ̂v direction, we
had

~E(~r, t) = ~E0 exp[i(~κv • ~r − ωt)],
with κv = ω/c, we now have

~E(~r, t) = ~E0 exp[i(~κm • ~r − ωt)],

with κm = mω/c = mκv. The subscript m on κ stands for “medium,” and the subscript v
stands for vacuum. Using the complex refractive index in the above gives

~E(~r, t) = ~E0 exp[i(mr~κv • ~r − ωt)−mi~κv • ~r]
= ~E0 exp(−mi~κv • ~r) exp[i(mr~κv • ~r − ωt)].

This is clearly a wave with an amplitude that decays exponentially with increasing ~κv • ~r.
As before,

~B0 =
m~κv × ~E0

ω
,

but since m is complex, i.e.,

m =
√
m2
r +m2

i exp(iφm) = |m| exp(iφm), where φm = tan−1(mi/mr),

~B and ~E are out of phase by φm. The time-averaged Poynting vector is easily seen to be

〈~S(~r)〉Ave =
|m|~κv
2ωµ0

E2
0 cos(φm) exp(−2mi~κv • ~r), (1.25)

and the time-average energy flux decreases as the wave propagates through the medium.
Note that ζ , κ̂•~r is the distance coordinate measured along the direction of propagation.
Then, we see that

2mi~κv • ~r = 2miκvζ =
4πmi

λv
ζ , aζ.

The absorption coefficient a is

a =
4πmi

λv
, (1.26)

where λv is the wavelength on the wave in vacuum. (Note that in the medium, the waveform
as a function of position is not sinusoidal, it is the product of a sinusoid and a decreasing
exponential. In fact, it is not even periodic, i.e., it never repeats. Because of this the
notion of a wavelength in the medium is somewhat ambiguous unless mi is small, so the
wave form is almost periodic. However, the wavelength would be λm , λv/mr if mi were
exactly zero, and this is traditionally defined to be the wavelength in the medium.) Thus,
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as the wave propagates along κ̂, it is attenuated according to exp(−aζ). An alternate way
of writing the absorption coefficient is clearly

a = − 1

〈~S(~r)〉Ave

d〈~S(~r)〉Ave

dζ
, (1.27)

i.e., the fractional loss in the energy flux per unit distance in the propagation direction.
Also, the fractional loss in 〈~S(~r)〉Ave traversing a distance of λv/4π is mi, i.e.,

mi =
λva

4π
.

Figure 1.3 shows how mi varies in the vicinity of ω0 for a dilute gas. Clearly the
electromagnetic wave will be strongly attenuated (large mi and a) if the frequency of the
wave is close to ω0. In contrast, there will be small absorption if ω differs significantly from
ω0. The variation of mr in the vicinity of ω = ω0 is interesting in that the speed of the
wave varies considerably with the frequency. This variation is called dispersion. Starting
from ω � ω0, mr increases with increasing frequency, which is typical for most materials.
A similar increase with frequency is seen for ω � ω0. This is usually referred to as normal
dispersion. However, when ω ≈ ω0, mr decreases with increasing frequency. This behavior
is usually termed anomalous dispersion. The width of the mi maximum is determined by
γ, and this constant is very small for most atomic absorption features. When γ is small,
the absorption feature is very sharp, so the region of anomalous dispersion is narrow and
usually difficult to observe in gases. However, in media such as liquids and solids, γ can
be quite large and the anomalous dispersion is then easy to observe.

It is instructive to apply Poynting’s theorem to this case where the electromagnetic
waves undergo absorption. For simplicity, we again consider a wave propagating in the z
direction; specifically, ~κ = êzκ, so

~E(z, t) = êxE0 exp(−az/2) cos(κz − ωt).

Let this wave be incident on a disk of area A as shown below, and calculate the total

!!êz
A 

!!z =0

!z

!!z = z1



1.5. ELECTROMAGNETIC WAVE PROPAGATION IN A DIELECTRIC 49

electromagnetic energy within the cylinder at any time t:

Uem(t) =

∫

V
uem(z, t) dV = ε0

∫

V

~E • ~E dV = ε0E
2
0A

∫ z1

0
exp(−az) cos2(κz − ωt) dz.

Carrying out the integral yields

Uem(t) =
ε0E

2
0A

2(a3 + 4a2κ)

[(
a2 + 4κ2 + a2 cos(2ωt) + 2aκ sin(2ωt)

)

− exp(−az1)
(
a2 + 4κ2 + a2 cos(2κz1 − 2ωt) + 2aκ sin(2κz1 − 2ωt)

)]
.

The time-average of this energy is

〈
Uem

〉
=
ε0E

2
0A

2a

[
1− exp(−az1)

]
,

and by a similar calculation, 〈
∂Uem
∂t

〉
= 0,

i.e., the time-average of the temporal variation in electromagnetic energy content of V is
unchanging. Now, Poynting’s theorem reads

dW

dt
= −∂Uem

∂t
−
∮

S
S(~r, t) • n̂ dA,

and taking the time average,
〈
dW

dt

〉
= −

〈
∂Uem
∂t

〉
−
∮

S

〈
S(~r, t)

〉
Ave
• n̂ dA,

so the integral on the right is the rate at which electromagnetic energy is being converted
to other forms. This further reinforces the interpretation that for an electromagnetic wave
the Poynting vector is the flux of electromagnetic energy. Finally, we can compute this
integral directly:

∮

S

〈
S(~r, t)

〉
Ave
• n̂ dA =

cε0AE
2
0

2
exp(−az1)− cε0AE

2
0

2

= −cε0AE
2
0

2

(
1− exp(−az1)

)

= −a c
〈
Uem

〉
.

(1.28)

Since
〈
∂Uem/∂t

〉
= 0, we see that in this case,

〈
dW

dt

〉
= a c

〈
Uem

〉
. (1.29)
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Thus, the time-average rate at which electromagnetic energy within V is being converted
to other forms of energy, e.g., heat, is proportional to the time-average electromagnetic
energy within V itself.

Although the simple classical model of the atom that we have been using to look at the
behavior of α as a function of ω is unrealistic — quantum theory is required for a detailed
quantitative description — it does provide a qualitative description of the variation of mr

and mi in the vicinity of an atomic (or molecular) absorption feature. In addition, the
coupling predicted between mr and mi is fundamental (it is actually required by causality),
not just an artifact of the model. Quantum dynamics shows that a hydrogen atom can exist
in an infinite number of discrete energy states ei with each specified by a wave function ψi.
Only radiation of a frequency ωij can be absorbed (or emitted), with

ωij =
2π(ej − ei)

h
,

where h is Planck’s constant (6.62×10−34 J·s), and the state i with energy ei has lower
energy than the state j (with ej). In addition, the correct quantum analog to Eq.(1.20)
can be obtained the replacements

γ → γij , ω0 → ωij and
e2

me
→ 4πωij |e~rij |2

3h
,

where

~rij ,
∫
ψ∗i (~r)~rψj(~r) dV,

ψi and ψj are the wave functions of the two states. Note that each transition is assumed
to have its own damping constant: γij . Thus, we have

α =
∑

i<j

4πωije
2|~rij |2/(3h)

(ω2
ij − ω2)− i(γω)

.

It is customary to write this equation in terms of the so-called oscillator strengths fij
defined as follows:

α =
∑

i<j

fij
(ω2
ij − ω2)− i(γijω)

,

in which case the refractive indices for a dilute gas
(
Eqs. (1.23) and (5.18)

)
become

mr = 1 +
1

2ε0

∑

i<j

fij(ω
2
ij − ω2)

(ω2
ij − ω2)2 + (γijω)2

(ni − nj), (1.30)

and

mi =
1

2ε0

∑

i<j

fijγijω

(ω2
ij − ω2)2 + (γijω)2

(ni − nj), (1.31)
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where ni and nj are the number densities of atoms in the lower and upper states, respec-
tively. These number densities depend on the temperature of the medium. The oscillator
strengths can be computed, in principle, for any atom (or molecule). Later, in our appli-
cation, we will fit the observed mi spectrum (determined by measuring a) to Eq. (1.31)
to estimate fij ’s, ωij ’s, and γij ’s for each absorption feature. These estimates will then be
used to estimate the mr spectrum using Eq. (1.30). This is effected by noting that for a
single absorption line, a term in the sum is significant only when ω ≈ ωij , so

(ω2
ij − ω2) = (ωij + ω)(ωij − ω) ≈ 2ωij(ωij − ω).

Using this, the contribution of a single term in the sums for mi and mr − 1 (Eq.s (1.30)
and (1.31)) is

Cij
1

1 + η2
ij

and Cij
ηij

1 + η2
ij

,

respectively, where ηij , 2(ωij − ω)/γij , Cij , fij(ni − nj)/(γijωij), and we replaced γijω
byγijωij . Thus, if in a given region of the spectrum there are N absorption features, we
can write

mi =
N∑

i=1

Ci
1 + η2

i

and mr − 1 = C0 +
N∑

i=1

Ciηi
1 + η2

i

, (1.32)

where C0 is the contribution to mr from all absorption features outside the spectral region
of the measurements and ηi , 2(ωi − ω)/γi and the subscript i labels each absorption
feature.

What are the consequences of dispersion in a dielectric medium? Recall that nearly any
wave form can be synthesized by Fourier analysis. Consider the following situation: an
electromagnetic wave is incident on a shutter that is opened for a short period of time.
By adding sinusoids of all frequencies with proper amplitudes ( ~E0) and phases, this pulse
of radiation can be synthesized. If this pulse then propagates in a dielectric medium, the
various sinusoidal components of the pulse will all travel at different speeds, and the pulse
will not maintain its shape — it will become distorted. If most of the sinusoids have
frequencies far from ω0, the variation of nr with ω is small and the pulse will propagate
with only a small change in shape — it will broaden. In a vacuum, the pulse would retain
its shape as it propagates.

1.6 Reflection of Electromagnetic Waves at a Boundary

Now, we consider what happens when an electromagnetic wave is incident on the bound-
ary between two dielectrics. This requires knowing how electric and magnetic fields change
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across such a boundary, i.e., the boundary conditions on the fields. These boundary con-
ditions can be derived directly from Maxwell’s equations. Consider Eq. (I), rewritten to
include bound charge density as well as free charge density,

∇ •
[
ε0 ~E + ~P

]
= ρfree,

and apply the divergence theorem to deduce

∮

S
(ε0 ~E + ~P ) • n̂ dA = Qfree,

where Qfree is the total free charge within S. Now consider a cylinder that straddles the

 
 
 
 
 

 
 
 
Figure ME-4(a).  A cylinder straddles the interface between two dielectric 
media, half above and half below.  The area of the top is A and the height of 
the cylinder is t.  The shaded are is the portion of the interface inside the 
cylinder.  The height will shrink to zero in such a manner that the shaded 
area is always inside the cylinder. n̂  is the normal to the surface.  
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interface between two dielectric media, half above and half below as shown in the figure
above. The area of the top is A and the height of the cylinder is t. n̂ is the normal to the
surface. The shaded area is the portion of the interface inside the cylinder. Now apply Eq.
(??) the cylindrical surface the following manner: (1) let ~Ei and ~Pi be the electric field and
polarization just above (i = 2) on below (i = 1) the interface between the two media; (2) let
the area of the cylinder be so small that these properties do not vary significantly over A;
and let the thickness (t) of the cylinder shrink to zero in such a manner that the interface
(the shades area) is always inside the cylinder. If there is free charge within the cylinder
after t → 0, it must be all on the interface, i.e. a surface charge density σfree = Qfree/A.
Carrying out these operations, we find

[
(ε0 ~E2 + ~P2)− (ε0 ~E1 + ~P1)

]
• n̂ = σfree.

Thus, if there is no free charge on the boundary, the normal component of (ε0 ~E + ~P )
is continuous across the boundary. If the dielectric is linear, homogeneous and isotropic
(the only kind we will consider), then (ε0 ~E + ~P ) = ε0Ke

~E, in which case this quantity is
continuous:

(Ke2
~E2 −Ke1

~E1) • n̂ = 0. (1.33)
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Performing exactly the same steps with Eq. (II) yields

( ~B2 − ~B1) • n̂ = 0, (1.34)

i.e., the component of ~B normal to the surface is continuous.

Equations (III) and (IV) can be used to deduce the boundary conditions on the tangential
components. From Stokes theorem,

∮

C

~E • d~r = −
∫

S

∂ ~B

∂t
• n̂ dA,

where C is the bounding curve of the area S. Apply this to the curve straddling the
interface between the dielectrics as shown below, in which the rectangular loop has length
t and width w. The interface is perpendicular to the page (it is viewed on edge) and the
plane of the loop is parallel to the page. The width of the loop will shrink to zero in such
a manner that the interface is always inside the loop. n̂ is the normal to the surface. As
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Figure ME-4(b).  A rectangular loop of length t and width w straddles the 
interface between two dielectric media, half above and half below.  The 
interface is perpendicular to the page (it is viewed on edge) and the plane of 
the loop is parallel to the page. The width will shrink to zero in such a 
manner that the interface area is always inside the loop.  is the normal to 
the surface.  
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before, we integrate ~E around the curve C and take the limit as w → 0. As w → 0 the area
of the surface S goes to zero so, unless the time derivative of ~B is infinite at the interface,
the integral on the right-hand-side is zero. Since ~E • d~r is proportional to the component
of ~E in the direction of d~r, this shows that the tangential component of ~E is continuous
across the interface, i.e.,

( ~E2 − ~E1)× n̂ = 0. (1.35)

Similarly from Eq. (IV) we can show that

n̂× ( ~B2 − ~B1) = µ0
~Kfree,

where ~Kfree is the free surface current associated with the free surface charge density. When
the latter is zero,

( ~B2 − ~B1)× n̂ = 0, (1.36)
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and the component of ~B tangent to the surface is continuous. (It should be noted that Eq.
(1.36) is modified if magnetic materials are considered.)

We have seen that in an electromagnetic wave ~E • ~κ = 0 or ~E0 • ~κ = 0 so ~E can be in
any direction normal to ~κ. We can always write ~E or ~E0 (which are in general complex)
as the sum of two vectors that are mutually perpendicular and perpendicular to ~κ, i.e.,

~E(~r, t) = (âE0a + b̂E0b) exp[i(~κ • ~r − ωt)],
with â • b̂ = 0, â • ~κ = 0 and b̂ • ~κ = 0. Thus, when the wave interacts with matter, if we
understand what happens to each component, e.g., the components along â and b̂, we can
reconstruct what happens to ~E(~r, t). The individual waves components above, e.g.,

~E(~r, t) = âE0a exp[i(~κ • ~r − ωt)],
and

~E(~r, t) = b̂E0b exp[i(~κ • ~r − ωt)],
have their ~E’s oscillating in a fixed plane: the plane formed by â and ~κ in the first instance
and b̂ and ~κ in the second. These components are said to be plane polarized, with the
direction of the ~E being referred to as the direction of polarization.

With the boundary conditions on ~E and ~B in hand, we can determine what happens
to an electromagnetic wave that is incident on the plane interface between two dielectrics,
e.g., when we shine light on the air-water interface. We define the plane of incidence to
be the plane containing the incident ~κ and the surface normal n̂. To understand what
happens to the wave, we need to understand what happens, both when ~E is in the plane
of incidence or in a plane normal to the plane of incidence. Consider the case when ~E is in
the plane of incidence as shown in Figure 1.4. We assume that there will be a transmitted
wave and a reflected wave, i.e., when energy is incident from the lower left in the figure we
expect some might be reflected from the interface and some might go through; however, we
do not expect any energy to be propagating toward the interface from the right. Referring
to the definitions in Figure 1.4, the three waves are

~Ei(~r, t) = ~E0i exp[i(~κi • ~r − ωit)],
~Er(~r, t) = ~E0r exp[i(~κr • ~r − ωrt)],
~Et(~r, t) = ~E0t exp[i(~κt • ~r − ωtt)],

where we have assumed that the wave is propagating with a frequency that is far from any
absorption lines in the medium, so the ~κ’s are all real. The associated magnetic fields are
all found from

~B0 =
~κ× ~E0

ω
.

Now we apply the boundary conditions to the fields.
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Figure 1.4: Schematic of reflection and refraction of an electromagnetic wave at the
interface between two dielectrics. The incident field is from the left propagating
toward the interface. The subscripts i, r, and t on all of the quantities refer to
the incident, reflected, and transmitted waves, respectively. The amplitudes of the
electric vectors are all in the plane of the page (the plane of incidence). As shown,
the amplitudes of the magnetic fields for the incident and transmitted waves are
out of the page, while for the reflected wave it is into the page. The latter is
determined by noting that ~B0 = ~κ× ~E0/ω for each wave.

Take the origin of ~r to the point where all the ~κ’s meet at the interface in Figure 1.4,
and apply the four boundary conditions Eq.s (1.33) through (1.36) to a general point ~r on
the interface. From Eq. (1.33), we have

[
Ke1

(
~Ei(~r, t) + ~Er(~r, t)

)
−Ke2

~Et(~r, t)
]
• n̂ = 0.

Inserting the explicit forms of the fields,
[
Ke1

(
~E0i exp[i(~κi • ~r − ωit)] + ~E0r exp[i(~κr • ~r − ωrt)]

)
−Ke2

~E0t exp[i(~κt • ~r − ωtt)]
]
•n̂ = 0.

This equation must hold for all time and every position on the interface (specified by ~r).
This is possible only if

ωt = ωr = ω , ω and ~κi • ~r = ~κr • ~r = ~κt • ~r for any ~r on the surface .

Taking ~r to be vertical in Figure 1.4, these give

κi sin θi = κr sin θr = κt sin θt.

Now, κr = κi = ω/v1 = m1ω/c, where m1 is the refractive index in the incident medium,
and κt = ω/v2 = m2ω/c, so these give

θr = θt and m1 sin θi = m2 sin θt,
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the law of reflection and Snell’s law of refraction.6 With these replacements, all of the
exponentials cancel in the application of Eq. (1.33) resulting in

Ke1 [−E0i sin θi + E0r sin θr] = Ke2E0t sin θt (1.37)

Applying Eq. (1.36), i.e., the component of ~B tangent to the surface is continuous, is easy
as all of the ~B0’s are tangent to the interface. Therefore ~B0i + ~B0r = ~B0t, and on using the
relationship between ~B0 and ~E0, we get

1

v1
(E0i − E0r) =

1

v2
E0t

or
m1(E0i − E0r) = m2E0t. (1.38)

Equations (1.37) and (1.38) can be solved for E0r and E0t in terms of E0i, the field of the
given incident wave, with the help of the law of reflection and Snell’s law. The results are

E
‖
0r =

m1 cos θt −m2 cos θi
m1 cos θt +m2 cos θi

E
‖
0i,

E
‖
0t =

2m1 cos θi
m1 cos θt +m2 cos θi

E
‖
0i,

(1.39)

where the superscript ‖ has been added to the fields as an explicit reminder that these apply
to the case when the incident electric field is polarized parallel to the plane of incidence.
These are called the Fresnel equations. The reader will note that only two of the four
boundary conditions were used. The others either give redundant or useless relationships,
e.g., 0 = 0.

Given these fields, it is a simple matter to compute the energy fluxes. For the incident
field, the flux toward the interface is 〈~Si〉Ave • n̂, where n̂ is directed into medium 2. The
energy fluxes of the transmitted and reflected waves away from the surface are 〈~St〉Ave • n̂
and 〈~Sr〉Ave • (−n̂), respectively. Using (1.25) we see that

〈~Si〉Ave • n̂ =
m1

2µ0c
E2

0i cos θi,

〈~St〉Ave • n̂ =
m2

2µ0c
E2

0t cos θt,

〈~Sr〉Ave • (−n̂) =
m1

2µ0c
E2

0r cos θr.

6The laws of reflection and refraction can be placed in vector form. The result for reflection is

κ̂r = κ̂i − 2 cos θi n̂1→2,

and for refraction
m2κ̂t = m1κ̂i + (m2 cos θt −m1 cos θi) n̂1→2,

where n̂1→2 is the unit normal to the interface directed from medium 1 toward medium 2.
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The Fresnel equations can be used to write these in terms of E0i alone, and defining the
Fresnel reflection rf and transmission tf coefficients of the interface according to

rf , −〈
~Sr〉Ave • n̂
〈~Si〉Ave • n̂

and tf ,
〈~St〉Ave • n̂
〈~Si〉Ave • n̂

,

respectively, we have that

rf =

[
E0r

E0i

]2

and tf =
m2 cos θt
m1 cos θi

[
E0t

E0i

]2

.

Inserting the Fresnel equations for ~E0i parallel to the interface in these shows that r
‖
f +t

‖
f =

1, i.e., the energy flux toward the interface equals the energy flux away from the interface.

Examination of the Fresnel equations leads one to ask if it is possible for E0r to vanish,
i.e., m1 cos θt = m2 cos θi. Combining this with Snell’s law, we find that E0r = 0 if
tan θi = m2/m1. This angle of incidence is called the Brewster angle (θB). For this angle

of incidence r
‖
f = 0 and t

‖
f = 1. Figure 1.5 provides the reflection coefficient r

‖
f as a function

of θi for light incident on the air-water interface from the air (m1 = 1 and m2 = 1.333).

For this case, θB = 53.13◦. Figure 1.5 shows r
‖
f → 0 in the vicinity of 50◦.

When the incident field is polarized perpendicular to the plane of incidence, a similar
analysis yields

E⊥0r =
m1 cos θi −m2 cos θt
m2 cos θt +m1 cos θi

E⊥0i,

E⊥0t =
2m1 cos θi

m2 cos θt +m1 cos θi
E⊥0i.

(1.40)

Is it possible for E⊥0r = 0 for some incident angle? The answer is no, E⊥0r = 0 is incompatible
with Snell’s law, so r⊥f never vanishes. If the refractive indices are eliminated from the
Fresnel equations using Snell’s law, the reflected and transmitted fields are given by

E⊥0r = −sin(θi − θt)
sin(θi + θt)

E⊥0i,

E⊥0t =
2 sin θt cos θi
sin(θi + θt)

E⊥0i,

E
‖
0r =

tan(θi − θt)
tan(θi + θt)

E
‖
0i,

E
‖
0t =

2 sin θt cos θi
sin(θi + θt) cos(θi − θt)

E
‖
0i.

(1.41)

Then the reflection coefficients are given by

r⊥f =
sin2(θi − θt)
sin2(θi + θt)

and r
‖
f =

tan2(θi − θt)
tan2(θi + θt)

.
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Figure ME-6.  The reflectance of the air-water interface as a function of the 
incidence angle in air.  The solid line is for the case with E
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Figure 1.5: The reflectance of the air-water interface as a function of the incidence
angle in air. The solid line is for the case with ~E parallel to the plane of incidence
and the dotted line is for the case with ~E perpendicular to the plane of incidence

Snell’s law tells us that when m1 < m2, θt < θi, and vice versa for m2 < m1. This
suggests that there is some incident angle for which θt = 90◦, i.e., sin θi = m2/m1 if
m2 < m1. For this incident angle, called the critical angle (θc), the transmitted field is
propagating parallel to the interface, so 〈~St〉Ave • n̂ = 0. Thus, at θi = θc, tf = 0 and

rf = 1. What happens when θi > θc? Define a second unit vector ˆ̀ in a direction parallel
to the interface and in the plane of incidence (i.e., upward in the plane of the paper in
Figure 1.4). Then

~κ =
2π

λv
(n̂ cos θt + ˆ̀sin θt).

Now, for θi > θc, sin θt is real, but cos θt is pure imaginary:

cos θt =
√

1− sin2 θt =

√
1− m2

1

m2
2

sin2 θi = i

√
m2

1

m2
2

sin2 θi − 1.

Letting

~r = ˆ̀ζ` + n̂ζn + (ˆ̀× n̂) ζ⊥,

where all of the distances are measured from the intersection of the ~κ’s in Figure 1.4, we
have

~κ • ~r =
2π

λv
(ζn cos θt + ζ` sin θt).
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Thus, the exponential factor in the transmitted field is

exp

[
−2π

λv
ζn

√
m2

1

m2
2

sin2 θi − 1

]
exp

[
i

(
2π

λv
ζ`
m1

m2
sin θi − ωt

)]
,

and the transmitted field is seen to still propagate in the ˆ̀ direction (i.e., parallel to the
interface) with an amplitude that decays in the n̂ direction. How rapid is the decay away
from the interface? For the air-water interface, θc = 48.6◦ for light incident from the water
side. If we take θi = 50◦, i.e., just slightly larger, then the quantity multiplying ζ` above is
1.3/λv, so the field decays to 0.5% of its value at the interface over a distance of ζ` = 4λv.
For larger incidence angles, the decay is even faster.

The transmitted wave provides no average energy flux into the second medium. The
easiest way to see this is to examine the reflected wave. The law of reflection, θr = θi, is
unchanged, so the reflected wave travels as in the case with θi < θc. If we substitute the

purely-imaginary cos θt into the Fresnel equations, e.g., Eq. (1.39), it is seen that E
‖
0r/E

‖
0i

can be written in the form (−a+ ib)/(a+ ib) = exp[i(π − 2φ‖)], where tanφ‖ = b/a, or

tanφ‖ =

√
sin2 θi − (m2/m1)2

(m2/m1) cos θi

Thus, E
‖
0r and E

‖
0i have the same magnitude and differ only in phase, i.e.,

~E‖r (~r, t) = ~E
‖
0r exp

[
i(~κr • ~r − ωt+ π − 2φ‖)

]
,

and

〈~S‖r 〉Ave • (−n̂) = 〈~S‖i 〉Ave • n̂,

so r
‖
f = 1, which implies that t

‖
f = 0. A similar result can be derived for the perpendicular

components resulting in r⊥f = 1, t⊥f = 0, and

tanφ⊥ =

√
sin2 θi − (m2/m1)2

cos θi
,

so φ⊥ < φ‖ because m2 < m1. Summarizing, the incident wave is totally reflected from
the interface when θi > θc: the transmitted wave carries no average energy flux in the
n̂ direction.In addition, since φ⊥ 6= φ‖, a linearly polarized wave will become elliptically
polarized when it undergoes total internal reflection (see the Appendix, 1.10).
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1.7 Production and Scattering of Electromagnetic Waves

In this section we examine how accelerating charges are a source of electromagnetic waves.
We the apply the basic results to derive the radiation emitted from an oscillating dipole.
Then, as an atom will develop an oscillating dipole moment when placed in an oscillating
electric field, we use the result to determine the radiation emitted from such an atom.
This emitted radiation is identified as the scattered radiation, as it is not traveling in the
same direction as the incident electromagnetic wave. The treatment is then extended to
the scattering from molecules which, by virtue of their shape, are electrically anisotropic.
Finally, we present the scattering of electromagnetic waves by a small dielectric sphere.

1.7.1 Radiation from an Accelerating Charge

The computation of the fields of an arbitrarily moving charge is an extremely difficult
problem and far beyond the scope of this review. Therefore, we shall only state the result-
ing fields and suggest that the reader wishing to understand how they are derived from
Maxwell’s equations consult advanced texts referenced in the Bibliographic Notes.
Consider a charge of magnitude q located at a point specified by ~r0(t), where t is time,
moving along a curve as shown in Figure 1.6. We want the electric field at the point P
specified by the vector ~r. This is given by

~E(~r, t) = ~Ev(~r, t) + ~Ea(~r, t),

where

~Ev(~r, t) =
q

4πε0

[1− v2(tr)/c
2][R̂(tr)− ~v(tr)/c]

R2(tr)[1− R̂(tr) • ~v(tr)/c]3
,

~Ea(~r, t) =
q

4πε0

R̂(tr)× [(R̂(tr)− ~v(tr)/c)× ~a(tr)/c]

cR(tr)[1− R̂(tr) • ~v(tr)/c]3
,

(1.42)

tr = t−R(tr)/c, and R̂(tr) = ~R(tr)/R(tr). The quantities ~v and ~a are, respectively,

~v(tr) =
d~R(tr)

dtr
and ~a(tr) =

d2 ~R(tr)

dt2r
,

which, since ~R(t) = ~r − ~r0(t), are related to the actual velocity and acceleration of the
charge (relative to the origin of coordinates) by

~v(tr) = −d~r0(tr)

dtr
and ~a(tr) = −d

2~r0(tr)

dt2r
.
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Figure 1.6: A charge of magnitude q moves along the curved path as shown. We
want to compute the electric field at the point P .

The time tr is known as the retarded time, i.e., the fields at time t depend on the position,
velocity, and acceleration of the charge at an earlier time tr, i.e., before the charge arrived
at ~r0(t). The associated magnetic field is given by

~B(~r, t) =
R̂(tr)× ~E(~r, t)

c
,

and the Poynting vector is easily found to be

~S =
~E × ~B

µ0
=

1

µoc
~E × (R̂× ~E) =

~E • ~E
µ0c

R̂+
( ~E • R̂) ~E

µ0c
. (1.43)

To see which of the terms in E contributes to radiation we consider a large sphere of radius
r around the origin, and the integral

∮

Sphere

~S • n̂ dA,

which gives the total rate at which energy is exiting the sphere. We assume that the charge
does not stray too far from the origin, so ~R ≈ ~r. Noting that n̂ = r̂, dA = r2 sin θ dθdφ,
Ev ∼ r−2, Ea ∼ r−1, and ~Ea • R̂ = 0, the only contribution to the integral that remains
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as r → ∞ is that originating from the ~Ea’s in the ~E • ~E term of Eq. (1.43). Thus, only
~Ea produces electromagnetic energy propagating to infinity. This is called electromagnetic
radiation. Clearly, radiation can be produced by moving charges, but only if they are
accelerating.

1.7.2 Radiation from an Oscillating Dipole.

Consider a dipole consisting of a charge +q positioned at (x, y, z) = (0, 0, z+) and a charge
−q positioned at (0, 0, z−). Let the charges oscillate according to

z+(t) = z0 cos(ωt) and z−(t) = −z0 cos(ωt).

The dipole moment of this charge distribution ~p = (qz+ − qz−)êz so

~p(t) = 2qz0êz cos(ωt) = ~p0 cos(ωt),

where ~p0 , 2qz0êz is the maximum dipole moment. To compute the radiation from this
combination of charges, we consider them individually. We assume that z0 is sufficiently
small that ~R(tr) ≈ ~r. For the positive charge,

d2z+

dt2
= −ω2z0êz cos(ωt)

so

~a(tr) = +ω2z0êz cos(ωtr) = ω2z0êz cos(ωt− ωr/c).

Noting that, since ~v and ~a are along the same line (parallel or antiparallel), ~v×~a = 0, and
taking v � c, we find

~Ea(~r, t) =
qω2z0

4πε0rc2
r̂ × (r̂ × k̂) cos(ωt− ωr/c).

An identical result is obtained for the negative charge because both ~a and q change sign,
therefore

~Ea(~r, t) =
2qω2z0

4πε0rc2
r̂ × (r̂ × k̂) cos(ωt− ωr/c) =

ω2

4πε0rc2
r̂ × (r̂ × ~p0) cos(ωt− ωr/c).

This is an electromagnetic field propagating in the r̂ direction with electric field normal to
r̂, i.e., r̂ • ~Ea = 0. It is an example of a spherical wave described in Footnote 2. The wave
propagates away from the origin except in directions for which ~κ× ~p0 = 0, i.e., directions
for which κ̂ = ±p̂0.
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The propagation vector is ~κ = r̂ω/c, so this can be rewritten

~Ea(~r, t) =
1

4πε0r
~κ× (~κ× ~p0) cos(ωt− κr),

or in complex form,

~Ea(~r, t) =
1

4πε0r
~κ× (~κ× ~p0) exp

[
i(κr − ωt)

]
.

In these equations ~κ • ~Ea = 0. This is the electric field associated with the radiation
propagating in the κ̂ direction from a dipole of moment ~p0 cos(ωt). The magnetic field is

~Ba =
r̂ × ~Ea
c

=
κ̂× ~Ea
c

=
~κ× ~Ea
ω

,

the usual relationship for an electromagnetic wave. Clearly, ~Ba • ~κ = 0 as well. Noting
that

~κ× (~κ× ~p0) = (~p0 • ~κ)~κ− κ2~p0,

we see that ~Ea is in the plane formed by the direction of propagation κ̂ and the dipole
moment ~p0. ~Ba is normal to this plane. In spherical coordinates,

κ̂ = ı̂ sin θ cosφ+ ̂ sin θ sinφ+ k̂ cos θ

so

~κ× (~κ× ~p0) =
[
ı̂ sin θ cos θ cosφ+ ̂ sin θ cos θ sinφ+ k̂(cos2 θ − 1)

]
κ2p0,

and the Poynting vector is easily seen to be

~Sa =
1

µ0c

κ4p2
0 sin2 θ

(4πε0)2r2
κ̂ cos2(ωt− ωr/c) =

cκ4p2
0

16π2ε0

sin2 θ

r2
κ̂ cos2(ωt− ωr/c),

where we have used µ0ε0 = c−2. As with a plane wave, 〈~Sa〉Ave = ~Sa/2, so the average
energy flux through a sphere of radius r is

∮

Sphere
〈~Sa〉Ave • n̂ dA =

1

4πε0

p2
0ω

4

3c3
. (1.44)

Note that this is proportional to the frequency to the fourth power.
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1.7.3 The Total Field of a Dipole

Later, we will need the total field of a dipole, i.e., ~Ev + ~Ea. This is straight forward to
compute with Eq. (1.42), but the computation is very tedious so we only provide the final
result here. Given a dipole located at the origin of coordinates with moment given by
~p(t) = ~p0 exp(−iωt), the electric field at a point specified by ~r is

~E(r, t) =
1

4πε0

{
κ2r̂ × (r̂ × ~p0)

r
+ [~p0 − 3r̂(r̂ • ~p0)]

[
iκ

r2
− 1

r3

]}
exp[i(κr − ωt)]. (1.45)

The first term in Eq. (1.45) is from ~Ea and is the radiation field computed above. The
second is from ~Ev and is sometimes called the induction field.

1.7.4 Scattering of Electromagnetic Radiation by an Atom (Molecule)

We now examine another of the consequences of illuminating an atom with an electromag-
netic wave (propagating in the z direction) given by

~E(~r, t) = ~E0 exp
[
i(~κ • ~r − ωt)

]
= ~E0 exp

[
i(κz − ωt)].

Such an atom will acquire a dipole moment ~p = α~E, and since ~E is oscillating with
frequency ω, ~p will as well. Thus, the atom becomes an oscillating dipole (of moment
α~E0) which, as we have seen above, will emit radiation in all directions.7 This radiation,
which has a frequency identical to that of the incident wave, is the scattered field. Define
the plane of scattering to be the plane containing the incident propagation vector ~κ0 and
the scattered propagation vector ~κ. This is shown in Figure 1.7. In the scattering plane
(shaded) φ is constant. Traditionally, the scattering angle is denoted by Θ, i.e., Θ = θ in
the figure. Note that the scattered electric field is parallel (perpendicular) to the scattering
plane as the incident field is parallel (perpendicular) to the scattering plane.8

The incident field ~E0 can always be decomposed into components parallel and perpendic-
ular to the scattering plane. Thus, if we understand how these components are scattered,
we can understand how a wave with ~E0 in any orientation is scattered. For the incident
radiation we define a set of unit vectors ê0r and ê0`, respectively perpendicular and paral-
lel9to the scattering plane, such that ~κ0 = ê0r × ê0`. Similarly, for the scattered radiation

7In the discussion of dielectrics earlier in this chapter, we found that if q is e (the quantum of electronic
charge, i.e., the minimum q), the corresponding z0 is a just a tiny fraction of the atomic radius.

8Note, the scattered field ~Es ∝ ~κ× (~κ× ~p0) = α~κ× (~κ× ~E0), so ~Es and ~E0 are in the same plane.
9We employ the common convention of using the last letters of perpendicular and parallel as subscripts

to distinguish such unit vectors. Sometimes we will use r̂ and ˆ̀ to represent êr and ê`, e.g., Figure. 2.17.
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Figure 1.7: An electromagnetic wave with propagation vector ~κ0 is scattered into
the direction ~κ. The plane formed by ~κ0 and ~κ is the scattering plane. In this
figure the scattering plane is a plane of constant φ. Unit vectors ê0r and ê0`

specify directions perpendicular and parallel to the scattering plane for the incident
radiation (ê0r× ê0` = κ̂0). Similarly, êr and ê` (with êr× ê` = κ̂) provide the same
function for the scattered radiation.

we define unit vectors êr and ê` perpendicular and parallel to the scattering plane, with
~κ = êr × ê`. In terms of the cartesian unit vectors,

êr = ı̂ sinφ− ̂ cosφ

ê` = ı̂ cos θ cosφ+ ̂ cos θ sinφ− k̂ sin θ

ê0r = êr

ê0` = ı̂ cosφ+ ̂ sinφ.

The incident field ~E0 and the scattered field ~E can be written

~E0 = ê0rE0r + ê0`E0`

~E = êrEr + ê`E`.

For simplicity (and with no loss in generality), we will take φ = 90◦, i.e., the scattering
plane is the x-z plane, and note that θ = Θ, the scattering angle.
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We first, consider ~E0 parallel to the scattering plane, e.g., ~E0 = E0`ê0` = E0`̂, so the
induced dipole moment is ~p0 = p0̂ = αE0`̂. Then, noting that ~κ = κ(êz cos Θ− êy sin Θ),
we have

~κ× (~κ× ~p0) = (−̂ cos2 Θ + k̂ sin Θ cos Θ)κ2p0 = −ê`κ2p0 cos Θ.

The time-averaged Poynting vector for this is

〈~Sl〉Ave =
cα2(E0`)

2κ4

32π2ε0

cos2 Θ

r2
κ̂, (1.46)

For the case where the incident field is normal to the scattering plane, ~E0 = E0rê0r =
E0rêr, so ~p0 = p0êr = αE0rêr. This gives

~κ× (~κ× ~p0) = −êrκ2p0,

and

〈~Sr〉Ave =
cα2(E0r)

2κ4

32π2ε0

1

r2
κ̂. (1.47)

Note that 〈~Sr〉Ave is independent of the scattering angle.10

Calculating the rate at which energy is scattered (radiated) by the atom out of a large
sphere, we need only use Eq. (1.44) from the previous section, replacing p0 by αE0:

∮

Sphere
〈~S〉Ave • n̂ dA =

1

4πε0

α2E2
0ω

4

3c3
.

This shows explicitly that our simple classical model of the atom used to describe α as a
function of ω required damping: the atom is continually losing energy through the emission
of radiation. However, here the energy is being continually replenished by the incident field.
If the incident field were turned off, the atom would continue to radiate, but the dipole
moment amplitude would decay exponentially with time, as would the radiated field.

10Given the incident field ~E0 = ê0rE0r + ê0`E0`, the scattered field ~Er = êrEr + ê`E`, is easily seen to
be related to the incident fields in matrix form through(

Er
E`

)
=

exp[i(κr − ωt)]
−iκr

(
A1(Θ) 0

0 A2(Θ)

)(
E0r

E0`

)
,

where

A1(Θ) = − iκ
3α

4πε0
and A2(Θ) = − iκ

3α

4πε0
cos Θ.

This result will be useful in discussing scattering by particles of arbitrary size.
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1.7.5 Influence of Molecular Anisotropy

One might expect that when a diatomic molecule, e.g., N2, is placed in an electric field,
the dipole moment will depend on the orientation of the molecule with respect to the field,
i.e., it would depend on the angle between the inter-nuclear axis and the field, having one
value for ~E normal to the axis ( ~E⊥) and another for ~E parallel to the axis ( ~E‖). This
means there would actually be two polarizabilities:

~p = α⊥ ~E⊥ + α‖ ~E‖.

If we define a molecular based coordinate system with the z axis parallel to the internuclear
axis and the x-y plane perpendicular to the internuclear axis, then we can write

~p = α⊥(Exı̂+ Ey ̂) + α‖Ezk̂,

or in matrix notation, 

px
py
pz


 =



α⊥ 0 0
0 α⊥ 0

0 0 α‖





Ex
Ey
Ez


 .

For a more general molecule, the degeneracy seen in the diatomic molecule is removed,
however, it is always possible to find a molecular-based coordinate system in which the
matrix is diagonal (usually a coordinate system reflecting the symmetry of the molecule).
In this coordinate system (called the principal axis system), the dipole moment and the
electric field are related by (see Section 14.5.3)



px
py
pz


 =



αx 0 0
0 αy 0
0 0 αz





Ex
Ey
Ez


 . (1.48)

Henceforth, we shall use a bold-face type to indicate a 3 × 3 matrix and a normal vector
sign to denote a column vector. In this notation, the above equation reads

~p = α ~E.

When such a molecule is subjected to an electromagnetic wave, the induced dipole mo-
ment will oscillate with the same frequency as the wave’s ~E field, but the direction of the
oscillating dipole will not be in the same direction as ~E.

To understand the influence of molecular anisotropy on scattering, we note that the
electric field of the wave is provided in the laboratory-fixed system, while the polarizability
matrix is diagonal only in the molecular-based system. Therefore, in order to use Eq. (1.48)
we need to either transform the polarizability matrix into the laboratory-based system or
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~E into the molecular-based system. Let the laboratory-based coordinate system’s cartesian
axes be denoted by X, Y , and Z, with unit vectors êX , êY and êZ , respectively. We shall
use upper case indices to denote these unit vectors, e.g., êI = êX , for I = 1, etc. Likewise
let the molecular-based system’s cartesian axes be denoted by x, y, and z, with unit vectors
êx, êy and êz, respectively. We shall use lower case indices to denote these unit vectors,
e.g., êi = êx, for i = 1, etc. It is shown in the Mathematical Appendix (Section 14.5.7.1)
that the êi’s and the êI ’s are related by

êi =
3∑

I=1

(êi • êI)êI ,
3∑

I=1

aiI êI

or in matrix form,


êx
êy
êz


 =



axX axY axZ
ayX ayY ayZ
azX azY azZ


 =



êX
êY
êZ


 , a



êX
êY
êZ


 .

In addition, since a−1 = ã, 

êX
êY
êZ


 = ã



êx
êy
êz


 .

The 3 × 3 matrix a, where aiI = (êi • êI), is the matrix of direction cosines relating one
coordinate system to the other. Using the subscript “Lab” for a vector ~V written in terms
of unit vectors in the laboratory-fixed system, i.e., êX , etc., and “Mol” for the same vector
written in terms of unit vectors in the molecular-fixed system, i.e., êx, etc., we have

~VMol =
3∑

i=1

Viêi and ~VLab =
3∑

i=1

VI êI .

These are related by
~VMol = a ~VLab and ~VLab = ã ~VMol.

In the case of interest here, ~pMol = α ~EMol and we want ~pLab in terms of ~ELab. The required
transformations are simple:

~EMol = a ~ELab and ~pLab = ã ~pMol, so

~pLab = ã αa ~ELab,

where, to reiterate, a is the matrix of direction cosines above and the subscript “Lab”
means the quantities are referenced to the laboratory-based system. Written out in detail,

pI =

3∑

i=1

3∑

J=1

αiaiIaiJEJ , (1.49)
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Here, and in what follows, we use the notation αi as an abbreviation for the diagonal
elements αii of the matrix α.

What influence does molecular anisotropy have on scattering? Following the derivation
in the isotropic case, we need to compute

|~κ× (~κ× ~p0)|2,

where ~p0 was α~E0; however, now ~p0 depends on the molecular orientation. In the laboratory-
based system, we know ~E0, and we need ~p0 in the same system, i.e., ~p0 = pX êX + pY êY +
pZ êZ . From Figure 1.7 with φ = 0, ~κ = êZ cos Θ + êX sin Θ, and

~κ× ~p0 = κ [−êX pY cos Θ + êY (pX cos Θ− pZ sin Θ) + êZ pY sin Θ] ,

so

|~κ× (~κ× ~p0)|2 = κ2|~κ× ~p0)|2 = κ4
[
p2
Y + p2

X cos2 Θ + p2
Z sin2 Θ− 2pX pZ sin Θ cos Θ

]
.

To proceed further we need a definite direction for ~E0, so we assume ~E is normal to the
scattering plane, i.e., ~E0 = −E0rêY (Figure 1.7, φ = 0), and then the only nonzero EJ in
Eq. (1.49) is EY . Then,

pX = −E0r

3∑

i=1

αi aiX aiY , p2
X = (E0r)

2
3∑

i=1

3∑

j=1

αi αj aiX aiY ajX ajY ;

pY = −E0r

3∑

i=1

αi aiY aiY , p2
Y = (E0r)

2
3∑

i=1

3∑

j=1

αi αj aiY aiY ajY ajY ;

pZ = −E0r

3∑

i=1

αi aiZ aiY , p2
Z = (E0r)

2
3∑

i=1

3∑

j=1

αi αj aiZ aiY ajZ ajY ;

pX pZ = (E0r)
2

3∑

i=1

3∑

j=1

αi αj aiX aiY ajZ ajY .

In a collection of such molecules in a liquid or a gas, the orientation of the individual
molecules would be completely random. Therefore any experimental measurement of the
Poynting vector would be a measure of a quantity proportional to

〈
|~κ× (~κ× ~p0)|2

〉
,

where here the angle brackets denote averages over all orientations of the molecular-based
coordinate system relative to the laboratory-based system. Thus, we need to compute
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〈p2
X〉, 〈p2

Y 〉, 〈p2
Z〉, and 〈pX pZ〉. The method of computing these averages is spelled out in

the Mathematical Appendix and the results we need are summarized in Table A-1.

Consider 〈p2
Y 〉.

〈p2
Y 〉 = (E0r)

2
3∑

i=1

3∑

j=1

αi αj 〈a2
iY a

2
jY 〉

= (E0r)
2




3∑

i=1

αi αi〈a4
iY 〉+ 2

3∑

i=1

3∑

j>i=1

αi αj 〈a2
iY a

2
jY 〉




= (E0r)
2




3∑

i=1

αi αi
5

+ 2
3∑

i=1

3∑

j>i=1

αi αj
15


 .

Likewise

〈p2
X〉 = 〈p2

Z〉 = (E0r)
2




3∑

i=1

αi αi
15
−

3∑

i=1

3∑

j>i=1

αi αj
15


 , and 〈pXpZ〉 = 0.

Now, define

α ,
1

3
(αx + αy + αz)

β2 ,
1

2

[
(αx − αy)2 + (αy − αz)2 + (αz − αx)2

]
,

so

3∑

i=1

αi αi =
9α2 + 2β2

3
,

3∑

i=1

3∑

j>i=1

αi αj =
9α2 − β2

3
.

Collecting all of these results, the time average-orientation average Poynting vector is
found to be,

〈
〈~Sr〉Ave

〉
=
c(E0r)

2κ4

32π2ε0

[
45α2 + 7β2

45

]
1

r2
κ̂, , (1.50)

which reduces to Eq. (1.47) in the isotropic case (αx = αy = αz = α, β = 0).11 This is
the power per unit area that would be observed by a detector measuring radiant power

11Note that in
〈
〈~Sr〉Ave

〉
the outside brackets indicate the average over molecular orientation.
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without regard for polarization state (i.e., there is no polarization analyzer in front of the
detector), when the incident beam is polarized perpendicular to the scattering plane.

Similarly letting ~E for the incident field be in the plane of scattering, i.e., ~E0 = E0`êX
we get12

〈
〈~S`〉Ave

〉
=
c(E0`)

2κ4

32π2ε0

[
6β2 + (45α2 + β2) cos2 Θ

45

]
1

r2
κ̂. (1.51)

In contrast to the isotropic case, in which the Poynting vector vanishes for Θ = 90◦ when
the incident field is parallel to the scattering plane, Eq. (1.51) shows that there is no value
of Θ for which

〈
〈~S`〉Ave

〉
vanishes in the anisotropic case. For Θ = 90◦, with E0r = E0`

the ratio 〈
〈~S`〉Ave

〉
〈
〈~Sr〉Ave

〉 , δ =
6β2

45α2 + 7β2
.

The quantity δ is called the depolarization (or depolarization factor)13 and is zero when
αx = αy = αz (isotropic polarizability), and 1

2 when two of the αi’s are zero (maximum

12For completeness, when ~E0 = E0`êX , we have

pX = E0`

3∑
i=1

αi aiX aiX , p2
X = (E0`)

2
3∑
i=1

3∑
j=1

αi αj aiX aiX ajX ajX ;

pY = E0`

3∑
i=1

αi aiY aiX , p2
Y = (E0`)

2
3∑
i=1

3∑
j=1

αi αj aiY aiX ajY ajX ;

pZ = E0`

3∑
i=1

αi aiZ aiX , p2
Z = (E0r)

2
3∑
i=1

3∑
j=1

αi αj aiZ aiX ajZ ajX ;

pX pZ = (E0r)
2

3∑
i=1

3∑
j=1

αi αj aiX aiX ajZ ajX .

〈p2
X〉 = (E0`)

2

[
3∑
i=1

αi αi
5

+ 2

3∑
i=1

3∑
j>i=1

αi αj
15

]
=

45α2 + 4β2

45

〈p2
Y 〉 = 〈p2

Z〉 = (E0`)
2

[
3∑
i=1

αi αi
15
−

3∑
i=1

3∑
j>i=1

αi αj
15

]
=
β2

15

〈pXpZ〉 = 0.

13There is an alternate definition of the depolarization factor: it is the ratio of light scattered at 90◦ with
its electric field parallel to the scattering plane to that scattered with electric field perpendicular to the
scattering plane, when the incident radiation’s electric field is perpendicular to the scattering plane. When
~E0 = −E0r êY this is proportional to 〈p2

Z〉/〈p2
Y 〉. Thus, the alternate depolarization factor ρ is given by

ρ =
〈p2
Z〉
〈p2
Y 〉

=
3β2

45α2 + 4β2
.
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anisotropy), i.e.,

0 ≤ δ ≤ 1

2
.

1.7.6 Scattering of Electromagnetic Radiation by a Small Dielectric Sphere

We now do one last computation, the scattering of an electromagnetic wave from a small
dielectric sphere. We shall define “small” to mean that at a given instant of time the electric
field does not vary significantly over the volume of the sphere. Therefore, we can assume
that the sphere is in a spatially uniform electric field and as the wave propagates the field
seen by the sphere is simply harmonic in time. This requires that the wavelength of the
radiation is much larger than the radius (R) of the sphere. The problem of a dielectric
sphere in an otherwise uniform ~E field is straightforward to solve by advanced methods;
however, we will provide a simple solution, that is possible only because the field inside a
uniformly polarized dielectric sphere is spatially uniform.

If we place a dielectric sphere in a uniform field ~E0, there will be induced a uniform
polarization ~P0 = χeε0 ~E0. This, in turn, produces a field inside the dielectric

~E1 = −
~P0

3ε0
= −χe

3
~E0.

But ~E1 produces additional polarization ~P1 = χeε0 ~E1, yielding

~E2 = −χe
3
~E1 = +

χ2
e

9
~E0

Continuing, and summing the various ~E’s, we have

~E =
∞∑

i=0

~Ei =

[
1− χe

3
+
χ2
e

9
+ · · ·

]
~E0 =

~E0

1 + (χe/3)
.

Thus, the field inside the sphere is uniform, and noting that Ke = 1 + χe, is

~Ein =
3

Ke + 2
~E0,

The relationship between δ and ρ is

δ =
2ρ

1 + ρ
or ρ =

δ

2− δ .
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so the polarization of the sphere is uniform and given by

~Pin = χeε0 ~Ein = 3ε0

[
Ke − 1

Ke + 2

]
~E0

But since ~Pin is uniform, the sphere will develop an induced dipole moment ~p given by ~P
times the volume of the sphere:

~p = 4πε0R
3

[
Ke − 1

Ke + 2

]
~E0. (1.52)

Since ~E0 is oscillating with a frequency ω, ~p will as well, and as such will emit radiation. As
with the case of an atom, this is the scattered radiation. The results of the computation
for scattering by an atom are then directly applicable, and the Poynting vectors of the
scattered radiation for the two incident directions are given by, Eq.s (1.46) and (1.47) with
α~E0 there replaced by ~p above.

1.8 The Quantum Nature of the Interaction of Light with
Matter

In general, to correctly describe matter, electromagnetic radiation, and their interaction,
the quantum nature of both must be recognized. Such a description exists and is called
quantum electrodynamics (QED), wherein both matter (charged particles, e.g., electrons)
and the associated fields (electric and magnetic) are quantized and governed by the laws of
quantum mechanics. In the so-called semi-classical theory of the interaction of light with
matter, the electromagnetic field is treated classically (as in this chapter), but matter is
described by quantum mechanics (as opposed to classical mechanics). This is the theory
that was actually used to relate the oscillator strengths to the refractive index in Eqs.
(1.30) and (1.31) in Section 1.5.

In the early development of the quantum theory the classical notion of electromagnetic
radiation as a continuous flow of energy was abandoned in favor of a model in which the
energy associated with radiation was deposited at its destination in discrete packets called
quanta or photons possessing an energy given by E = hν = ~ω, where ν is the frequency
of the radiation, and ω the angular frequency. The constant h = 6.62× 10−34 J·s is called
Planck’s constant, and ~ = h/2π. In 1905, Albert Einstein explained previous studies of
the photoelectric effect — the ejection of electrons from a metal by light incident on its
surface, and which we will consider in our discussion of radiation detectors (Chapter 2) —
by assuming that a single quantum of energy associated with the light (a photon) simply
gave up its energy to the electron in a mechanical-like collision. In fact, this explanation is
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not correct, and we now know that the semi-classical theory (as well as QED) can provide
an explanation of all of the details of the photoelectric effect without the photon concept.
Because a proper understanding of the photoelectric effect requires knowledge of both
quantum mechanics and electromagnetic theory, most elementary explanations still rely on
Einstein’s model of a simple collision between a photon and an electron, subject to energy
conservation. We shall follow this tradition in discussing the photoelectric effect as used for
radiation detectors (Chapter 2). Indeed, when the simplicity of associating photons with
light is desirable, we will associate the energy flux of a light beam, i.e., the time-averaged
Poynting vector, with a stream of photons, resulting in a photon flux. If we define this flux
to be N , the number of photons passing a unit area (normal to the beam) per unit time,
then

N =
1

~ω
∣∣〈~S(~r)

〉
Ave

∣∣.

For the 5 mW He-Ne laser (λ = 632.8 nm) with a beam cross section of 4 mm2, that we
discussed earlier, the average Poynting vector was 1250 Watts/m2. Each photon in the
beam has an energy of about 3.2 × 10−19 J, which results in a photon flux N of about
4× 1022 photons/m2·s. Approximately 1.6× 1016 photons pass the 4 mm2 cross section of
the beam each second. Clearly, the fluxN associated with a typical light beam is enormous.
We will find this association useful in discussing the photoelectric effect as well as in our
preliminary discussion of Monte Carlo techniques for solving radiative transfer problems;
however, for the most part we will avoid the photon concept.

1.9 Concluding Remarks

In this review, we have developed the concepts relating to electromagnetic waves that will
be needed throughout the rest of the this work. For some parts we have had to simply state
important results, e.g., fields of a moving particle, but for most, we have derived the results
from first principles — the Maxwell equations and the Lorentz force law. In summary,
for the interaction of light with matter, one should understand the basic properties of
materials (which in this context means the complex refractive index), the meaning of
the Poynting vector, the Fresnel equations for reflectance and transmittance through an
interface between two dielectrics, the radiation from an oscillating dipole and scattering by
a small dielectric sphere. Finally, the apparatus for dealing with the polarization properties
of electromagnetic radiation in the following appendix is crucial for understanding the role
of such properties in environmental optics.
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1.10 Appendix: Analysis of Polarization of Electromagnetic
Radiation

In this appendix we develop in detail the apparatus for dealing with the polarization of
electromagnetic radiation. In particular, to describe the polarization properties of radia-
tion, we define the Stokes vector and show how optical processes, such as atomic scattering
and Fresnel reflection, relate the Stokes vector of the incident radiation to the Stokes vector
of the scattered (or reflected) radiation through objects known as Mueller matrices.

1.10.1 Plane Waves

Consider a plane electromagnetic wave propagating in the κ̂ direction. Its ~E field will
be in a plane perpendicular to κ̂, and can be resolved into components in two mutually
perpendicular directions in this plane

~E = Erêr + E`ê`,

where êr × ê` = κ̂. One application of the present discussion is the analysis of polarized
light reflecting from a dielectric, in which case ê` and êr will be, respectively, parallel and
perpendicular to the plane of incidence. Likewise, in analysis of scattering they will be
parallel and perpendicular to the scattering plane. However, for the moment they are just
two orthogonal directions that can be specified by the observer and are normal to κ̂. The
electric field of a plane wave is then

~E(~r, t) = (Erêr + E`ê`) exp[i(~κ • ~r − ωt)], (1.53)

where in general the complex components Er and E` do not have the same phase, i.e.,

Er = |Er| exp(iφr) and E` = |E`| exp(iφ`)

with φr 6= φ`.

Before continuing with the formal development, it is instructive to examine some specific
cases. For example, assume that φr = φ` , φ. Consider an observer located at a fixed
position ~r0 looking toward the source. The field that would be seen is

~E(~r0, t) = (|Er|êr + |E`|ê`) exp[i(~κ • ~r0 − ωt+ φ)],

or, reverting to the real representation of fields,

~E(~r0, t) = (|Er|êr + |E`|ê`) cos(~κ • ~r0 − ωt+ φ).

This field oscillates with amplitude
√
Er

2 + E`
2 along the direction shown in Figure 1.8,

with tan γ = |Er|/|E`|. This is a linearly polarized plane wave.
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Figure POL-1:  The electric field at a given location and a given instant of 
time.  For the linearly polarized wave described in the text, as time 
increases, the tip of the field vector moves sinusoidally along the line shown 
that makes an angle γ with the  axis.   Propagation of the wave is out of 

the paper (direction of e ). 
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Figure 1.8: The electric field at a given location and a given instant of time. For
the linearly polarized wave described in the text, as time increases, the tip of the
field vector moves sinusoidally along the dashed line shown that makes an angle γ
with the ê` axis. Propagation of the wave is out of the paper (in the direction of
êr × ê`).

If we relax the requirement that φr 6= φ`, we have

~E(~r, t) =
(∣∣Er

∣∣êr exp(iφr) +
∣∣E`
∣∣ê` exp(iφ`)

)
exp[i(~κ • ~r − ωt)],

This is a rather complex wave to visualize — it is elliptically polarized. To make the
visualization more tractable, we will look at a special case that carries all of the essential
subtleties: φr = 0, φ` = −π/2,

∣∣Er
∣∣ =

∣∣E`
∣∣ , E0, and assume the wave propagates in the

z direction. Then
~E(z, t) = E0

(
êr − iê`

)
exp[i(κz − ωt)],

and reverting to the real representation of the fields,

~E(z, t) = E0

(
êr cos(κz − ωt) + ê` sin(κz − ωt)

)
.

How does this field vary in time at a given location, e.g., z = 0 ? At z = 0, the field reduces
to

~E(0, t) = E0

(
êr cos(ωt)− ê` sin(ωt)

)
.

Here, the tip of the electric vector is located on a circle of radius E0 and traverses the circle
clockwise (looking toward the source), making a complete revolution in 2π/ω seconds. This
is shown schematically in Figure 1.9 (left panel). In contrast, how does the field vary in
space at a given time, e.g., t = 0 ? At t = 0,

~E(z, 0) = E0

(
êr cos(κz) + ê` sin(κz)

)
.
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Figure 1.9: Schematic of the electric field in a right-circularly polarized wave at
a given location (left panel) and a given instant of time (right panel). At a given
location, as time increases, the tip of the field vector moves around the circle in a
clockwise sense (looking toward the source), making one revolution in a time 2π/ω
(propagation of the wave is out of the paper, i.e., in the direction of êr × ê`). At a
given time, the tip of the field vector at each location (right panel) falls on a curve
that is a right-handed helix.

In this case, the tip of the electric vector for a particular z is located on a right-handed
cylindrical helix as shown in Figure 1.9 (right panel). This wave is said to be right circularly
polarized (RCP) — because of the right-handed helix. The same result is obtained whenever
∆φ , φr − φ` = +π/2, i.e., ~E` leads ~Er at a given location by π/2. If ∆φ = −π/2, then in
the left panel of Figure 1.9 ~E rotates in the counter clockwise direction and the helix in the
right panel is left handed. This is called left circularly polarized radiation (LCP). Finally,
in the general case, arbitrary phases and amplitudes, the wave has characteristics similar
to those in Figure 1.9, except that the circle in the left panel and the cylinder in the right
panel are now both ellipses, and the eclipses are tilted relative to the êr and ê` axes (e.g.,
Figure 1.10).

1.10.2 The Stokes Vector

To completely specify the field, we need to specify two complex quantities Er and E` or
four real quantities |Er|, |E`|, φr, and φ`. Nearly all detectors, in which we have interest,
measure the time-averaged Poynting vector 〈~S〉Ave. For the general wave in Eq. (1.53) the
magnetic field is

~B(~r, t) =
Erê` − E`êr

c
exp[i(~κ • ~r − ωt)],
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Figure POL-2:  The electric field at a given location at a given instant of 
time.  For an elliptically polarized wave, as time increases the tip of the 
electric field vector field moves around the dashed ellipse, making one 
revolution in a time 2π/ω.  Propagation of the wave is out of the paper 
(direction of e ). ler ˆˆ ×
 
 

Figure 1.10: The electric field at a given location and a given instant of time for
an elliptically polarized wave. As time increases, the tip of the field vector moves
clockwise (for right-elliptical polarization) or counter clockwise (for left-elliptical
polarization) around the dashed ellipse, making one revolution in a time 2π/ω.
Propagation of the wave is out of the paper (in the direction of êr × ê`).

so the time-averaged Poynting vector is

〈~S〉Ave =
κ̂

2µ0c
(E`E`

∗ + ErEr
∗).

Measurement of this only gives the combination E`E`
∗ + ErEr

∗. Are there experiments
that can be performed to provide the full two complex or four real quantities that are
required to specify the polarization? The answer is yes, given optical devices such as linear
polarizers that only pass electric fields oscillating in a given direction (the pass direction),
and wave plates that introduce a phase difference between fields oscillating along êr and
ê`. Such devices are readily available.

Consider a linear polarizer that will totally transmit all electromagnetic waves with fields
parallel to êp and completely absorb all fields perpendicular to êp, i.e., complete absorption
in the direction of κ̂ × êp. The direction êp is the pass direction of the polarizer. Placing
the polarizer with êp = êr in the electromagnetic wave passes the field

êp

[
êp • ~E(~r, t)

]
= Erêr exp[i(~κ • ~r − ωt)],

and the associated Poynting vector is

〈~Sr〉Ave =
κ̂

2µ0c
ErEr

∗.

Likewise, with êp = ê`

〈~S`〉Ave =
κ̂

2µ0c
E`E`

∗.
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Thus, measurement of 〈~Sr〉Ave and 〈~S`〉Ave provides ErEr
∗ = |Er|2 and E`E`

∗ = |E`|2.
But, what about their phases?

Let êp = (êr + ê`)/
√

2, i.e., let the polarizer be oriented so that its pass direction is at
an angle of 45◦ with both êr and ê`. Then the transmitted field will be

~Ep(~r, t) = êp
Er + E`√

2
exp[i(~κ • ~r − ωt)],

and

2〈~Sp〉Ave =
κ̂

2µ0c
[E`E`

∗ + ErEr
∗ + ErE`

∗ + Er
∗E`] .

Thus, the measurement of 〈~Sp〉Ave along with 〈~Sr〉Ave and 〈~S`〉Ave allows the determination
of ErE`

∗ + Er
∗E`.

Finally, a device called a quarter-wave plate, when properly oriented has the ability to
shift the phase of the field along êr by ±π/2 with respect to the field along ê`. Introducing
such a device in the original wave, shifting phase of the field Er by −π/2 relative to E`,
results in the transmitted field

~E(~r, t) = (E`ê` + Erêr exp(−iπ/2)) exp[i(~κ • ~r − ωt)]
= (E`ê` − iErêr) exp[i(~κ • ~r − ωt)].

Now, follow this by a linear polarizer oriented as in the last paragraph and the transmitted
field through both is

~E(~r, t) = êp
(E` − iEr)√

2
exp[i(~κ • ~r − ωt)],

with the associated Poynting vector

2〈~Sq〉Ave =
κ̂

2µ0c
[E`E`

∗ + ErEr
∗ + i(Er

∗E` − ErE`∗)] ,

where the subscript “q” is used to indicate “quarter-wave plate.” Thus, measurement of
〈~Sq〉Ave along with 〈~Sp〉Ave, 〈~Sr〉Ave, and 〈~S`〉Ave allows the determination of Er

∗E`−ErE`∗.
These are sufficient to determine the polarization state of the wave, and allow determination
of what is known as the Stokes parameters I, Q, U , and V , given by

I =
1

2µ0c
(E`E`

∗ + ErEr
∗) = [〈S`〉+ 〈Sr〉] = 〈S〉,

Q =
1

2µ0c
(E`E`

∗ − ErEr∗) = [〈S`〉 − 〈Sr〉] ,

U =
1

2µ0c
(E`Er

∗ + E`
∗Er) = [2〈Sp〉 − 〈S`〉 − 〈Sr〉] ,

V =
1

2µ0c
i(E`Er

∗ − E`∗Er) = [2〈Sq〉 − 〈S`〉 − 〈Sr〉] ,

(1.54)
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where the notation 〈S〉 has been used for the magnitude of 〈~S〉Ave. Writing

Er = |Er| exp(iφr) and E` = |E`| exp(iφ`)

it is easy to show that

I =
1

2µ0c

[
|E`|2 + |Er|2

]
,

Q =
1

2µ0c

[
|E`|2 − |Er|2

]
,

U =
1

2µ0c
2|E`||Er| cos(φr − φ`),

V =
1

2µ0c
2|E`||Er| sin(φr − φ`),

(1.55)

or, recalling tan γ = |Er|/|E`| (Figure 1.8), sin γ = |Er|/
√
|Er|2 + |E`|2, etc.,

Q = I cos 2γ

U = I sin 2γ cos(φr − φ`)
V = I sin 2γ sin(φr − φ`).

(1.56)

Thus, measurement of 〈~Sq〉Ave along with 〈~Sp〉Ave, 〈~Sr〉Ave, and 〈~S`〉Ave allows the determi-
nation of the amplitude of, and the phase difference between, the two components. Note
that because the four parameters are written in terms of only three quantities, there must
be a relationship between them. It is

I2 = Q2 + U2 + V 2. (1.57)

It should be noted that the absolute phases of the wave components are impossible to
determine, which should not be surprising as they are arbitrary — the absolute phase
depends on how we define t = 0.

Usually the Stokes parameters are arranged in a column vector, the Stokes vector:

I =




I
Q
U
V


 =




I1

I2

I3

I4


 .

Stokes vectors are easy to evaluate by virtue of their definition, e.g., in the case of circular
polarization,

I =




I
0
0
±I


 ,

where + and − are for right and left circularly polarized light, respectively.
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1.10.3 Change in the Reference System

It is of interest to understand how the Stokes vector is modified if the reference system is
changed, i.e., how does the vector I ′ defined with respect to

ê′r = êr cosψ + ê` sinψ

ê′` = −êr sinψ + ê` cosψ,

relate to I defined with respect to ê` and êr? Note that the primed system ê′r is simply
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Figure POL-ROT:  Rotation of the primed axes with respect to the 
unprimed axes through an angle ψ counterclockwise looking at the source.  
 

rê

le′ˆ
re′ˆ

ψ 

Figure 1.11: Rotation of the primed axes with respect to the unprimed axes through
an angle ψ, counterclockwise looking at the source (κ̂ = êr × ê` = ê′r × ê′`).

rotated from êr toward ê` about an axis parallel to the propagation direction, through an
angle ψ (Figure 1.11), where, the angle ψ is positive if the rotation is counterclockwise
looking at the source. The inverse transformation is

êr = ê′r cosψ − ê′` sinψ

ê` = ê′r sinψ + ê′` cosψ,

so

~E(~r, t) = (Erêr + E`ê`) exp[i(~κ • ~r − ωt)
=
[
(Er cosψ + E` sinψ)ê′r + (E` cosψ − Er sinψ)ê′`

]
exp[i(~κ • ~r − ωt),

and the components of the field amplitudes in the primed system are

Er
′ = Er cosψ + E` sinψ

E`
′ = −Er sinψ + E` cosψ.

Inserting these into Eq. (1.54), with the primed fields replacing the unprimed fields, yields

I ′ = I,
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Q′ = Q cos 2ψ − U sin 2ψ,

U ′ = Q sin 2ψ + U cos 2ψ,

V ′ = V,

or in matrix notation, I ′ = R(ψ)I, where

R(ψ) =




1 0 0 0
0 cos 2ψ − sin 2ψ 0
0 sin 2ψ cos 2ψ 0
0 0 0 1


 . (1.58)

It will be important to remember that here the angle ψ is positive when the new axes are
rotated counterclockwise relative to the old axes, looking toward the source. This matrix
will be important in the study of radiative transfer when polarization is considered.

1.10.4 The Mueller Matrix

When a wave passes through a linear polarizer with pass axis in a general direction êp, the
transmitted field amplitude is

êp [êp • (Erêr + E`ê`)] = êp [Er sin θ + E` cos θ]

= ê`(Er sin θ cos θ + E` cos2 θ) + êr(Er sin2 θ + E` cos θ sin θ),

where θ is the angle between êp and ê` measured toward êr. Inserting these field components
into Eq. (1.54) yields for the transmitted Stokes vector It = MI, or




It
Qt
Ut
Vt


 =

1

2




1 cos 2θ sin 2θ 0
cos 2θ cos2 2θ cos 2θ sin 2θ 0
sin 2θ cos 2θ sin 2θ sin2 2θ 0

0 0 0 0







I
Q
U
V


 . (1.59)

The 4× 4 matrix M is called the Mueller matrix.

As an example of the use of Eq. (1.59), consider a consider linearly polarized light. From
Eq. (1.56) the Stokes vector is

I =




I
I cos 2γ
I sin 2γ

0


 ,
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where γ is the angle ~E makes with the ê` direction (Figure 1.8). When such a beam passes
through a linear polarizer, the resulting Stokes vector is

I =
I

2




1 + cos 2γ cos 2θ + sin 2γ sin 2θ
cos 2θ + cos2 2θ cos 2γ + cos 2θ sin 2θ sin 2γ
sin 2θ + cos 2θ sin 2θ cos 2γ + sin2 2θ sin 2γ

0


 =

I

2




1 + cos 2(γ − θ)
cos 2θ

(
1 + cos 2(γ − θ)

)

sin 2θ
(
1 + cos 2(γ − θ)

)

0


 .

Clearly, if θ = γ, I is unchanged when passing through the polarizer, but if θ = γ ± π/2,
then the beam is totally extinguished. Notably, the first component I

(
1 + cos 2(γ − θ)

)
/2,

would vary from I to 0 as γ − θ is varied for 0 to 90◦. The direction of polarization of the
original beam is defined to be the direction for which the transmission of the polarizer is
maximum, i.e., θ = γ.

The Mueller matrix can be written for any combination of optical elements. Clearly, if
a wave passes through two elements with Mueller matrices M1 and M2 (labeled in the
order of passage), the transmitted Stokes vector will be It = M2M1I. The fact that the
order of polarizing operation is important (e.g., a wave passing through a polarizer with
êp = (êr + ê`)/

√
2 and then a second with êp = ê` will emerge with field polarized along

ê`, while in reverse order the emerging field will be along (êr + ê`)/
√

2) is manifest in the
fact that in general matrices do not commute: M2M1 6= M1M2.

1.10.5 Unpolarized (Natural) Light

We know from experience that when light from a natural source, e.g., an incandescent lamp
or a candle, is passed through a perfect linear polarizer, the transmitted light’s brightness
is decreased by half, independent of the direction of êp. (Brightness is proportional to
the Poynting vector and will be defined with precision in the next chapter.) Furthermore,
we know that if a second polarizer with pass direction ê′p, that is perpendicular to êp, is
introduced after the first polarizer, the light will be completely extinguished. The first
observation suggests that the light entering the first polarizer is completely unpolarized,
i.e., ~E does not appear to be oscillating in any particular direction. However, the second
observation suggests that the wave emerging from the first polarizer is linearly polarized
with ~E along êp. In fact, if we take êp = ê`, the incident and transmitted Stokes vectors
would be found to be 



I
0
0
0


 and

1

2




I
I
0
0


 ,

respectively, when the measured Poynting vectors 〈S`〉Ave, etc., are inserted into Eq. (1.54).
Clearly, the incident radiation does not have the characteristics of the electromagnetic
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waves that we have been dealing with so far, e.g., I2 6= Q2 + U2 + V 2 = 0; however, it is
turned into a completely polarized beam by passing it through a polarizer. How can this
be?

Thus far we have been considering only monochromatic waves (single ω) which exist over
all space for all time. However, when an atom emits light, the emitted radiation has a small
spread in frequency ∆ω � ω and the associated wave at a given point ~r0 is something like
that drawn in Figure 1.12, where ∆T ∼ 1/∆ω. In reality, there are many more oscillations
in the region of more-or-less constant amplitude than shown in the figure. For an atom
undergoing spontaneous emission, ∆T in the visible is ∼ 3 × 10−6 s, while the period of
visible light is ∼ 2× 10−15 s, so there are ∼ 1.5× 109 oscillations.

A wave such as shown in Figure 1.12 can be written

~E(~r, t) = [Er(t)êr + E`(t)ê`] exp[i(~κ • ~r − ωt)],
where Er(t) and E`(t) are slowly varying functions of time, compared to the rapid variations
of the exponential factor, and vanish outside the time interval ∆T . The resulting field is
often referred to as a wave packet. For such a wave, the average Poynting vector will be
significant only within ∆T , and in that interval will be very nearly that of a plane wave
with fixed amplitudes. There will be a definite polarization state within ∆T , i.e., the ~E
vector will oscillate like that of a plane wave. Another atom in the source will emit a
similar wave, but the polarization will be different and the radiation will be emitted at
a different time so the phase will be different. Considering a collection of such atoms
emitting wave packets, each with arbitrary phase and polarization (and arrival time at ~r0),
the field amplitude and its direction at ~r0 will fluctuate. To find the Poynting vector in
this situation it is useful to examine two extreme cases. First, we assume that the time
interval ∆T is so small that none of the wave packets overlap. Then,

〈~S(~r0, t0)〉Ave =
1

T0

∫ t0+T0/2

t0−T0/2

~S(~r0, t) dt

=
1

T0

∫ t0+T0/2

t0−T0/2

N∑

i=1

~Si(~r0, t) dt

=
1

T0

N∑

i=1

∫ t0+T0/2

t0−T0/2

~Si(~r0, t) dt

=
∆T

T0

N∑

i=1

〈~Si(~r0, tic)〉Ave

where

〈~Si(~r0, tic)〉Ave =
1

∆T

∫ tic+∆T/2

tic−∆T/2

~Si(~r0, t) dt,
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Figure POL-3:  Schematic of the electric field in a light wave emitted by an 
atom.  The amplitude of the field is essentially constant over a time interval 
∆T. In reality, there are many more oscillations of the electric field during 
∆T than shown here.   
 

Figure 1.12: Schematic of the electric field of a light wave emitted by an atom. The
amplitude of the field is essentially constant over a time interval ∆T . In reality,
there are many more oscillations of the electric field during ∆T than shown here.

and tic is the time that the center of the ith packet reaches ~r0. Thus, the time-averaged
Poynting vector is proportional to the sum of the time-averaged Poynting vectors of the
individual packets. Since each term in the sum represents a different state of polarization,
if we perform the experiments required to compute the Stokes vector, we will find

〈~S`〉Ave = 〈~Sr〉Ave = 〈~Sp〉Ave = 〈~Sq〉Ave =
1

2
〈~S〉Ave, (1.60)

so Q = U = V = 0 and I(t0) = 〈~S(t0)〉Ave.

In the other extreme, assume that ∆T is so large that all of the packets overlap, e.g,
each packet is very nearly a monochromatic plane wave. In this case,

~S(~r0, t) =
1

2µ0c
~E0 • ~E∗0 , with ~E0 =

N∑

i=1

~E0i,

where ~E0i is the complex amplitude of the ith packet. To evaluate this, let ~E0i = êi|E0i| exp(iφi).
Then

~E0 • ~E∗0 =

N∑

i=1

N∑

j=1

êi • êj |E0i||E0j | exp[i(φi − φj)]

=
N∑

i=1

|E0i|2 +
N∑

i=1

N∑

j>i

2êi • êj |E0i||E0j | cos(φi − φj).
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Since the waves are all emitted by different atoms, their phases are random, so the second
sum vanishes, and

~S(~r0, t) =
1

2µ0c

N∑

i=1

|E0i|2.

(Note that this is true even if êi = êj and |E0i| = |E0j |.) Time averaging this result yields

〈~S(~r0, t0)〉Ave =
∆T

T0

N∑

i=1

〈~Si(~r0, tic)〉Ave,

where we are implicitly assuming that ∆T < T0, and as before, Q = U = V = 0, and
I = 〈~S(~r0, t0)〉Ave.

The light (radiation) we have described here, for which the average Poynting vector
of a superposition of waves is the sum of the average Poynting vector of the individual
waves, is usually called incoherent light. Incoherent light from a source such as a candle or
incandescent lamp is often called natural light and is unpolarized; however, it is important
to note that incoherent light can be fully polarized. For example, if unpolarized incoherent
light is passed through a linear polarizer, the ~E vector of the individual emerging wave
packets will all be along êp, so the stream of packets will be completely polarized, but it is
still incoherent. The polarization state of incoherent light is analyzed in the same manner
as that of a plane wave.

1.10.6 Partially Polarized Light

One can imagine situations in a source that would cause the wave packets emitted by
individual atoms to have a bias for alignment in a certain direction, e.g., the source placed
in a magnetic field. Then Eq. (1.60) would no longer be valid and the stream of packets
would have some polarization. Formally, it can be shown (e.g., Born and Wolf, Principles
of Optics) that radiation with these properties can be represented as a linear superposition
of two independent streams of unpolarized and completely polarized radiation, and that
this representation is unique. Thus, for any state of radiation,

I =




I
Q
U
V


 =




(1− P )I
0
0
0


+




PI
Q
U
V


 (1.61)

For the completely polarized part Eq. (1.57) tells us that (PI)2 = Q2 + U2 + V 2, so

P =

√
Q2 + U2 + V 2

I2
.
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The quantity P is called the degree of polarization. For completely unpolarized light P = 0
and for completely polarized light P = 1. For a partially (linearly) polarized beam, the
second term can be written 



PI
Q
U
V


 =




PI
PI cos 2γ
PI sin 2γ

0




so for such a beam

I =




I
PI cos 2γ
PI sin 2γ

0


 .

If this beam is passed through a linear polarizer, i.e., that in Eq. (1.59), the resulting
Stokes vector is

I =
I

2

(
1 + P cos 2(γ − θ)

)



1
cos 2γ
sin 2γ

0


 .

As earlier, the first (top) element of I is maximum (IMax) when θ = γ and minimum (IMin)
when θ = γ = π/2. Clearly

P =
IMax − IMin

2
,

which provides a simple method to measure P for cases where V = 0 (linearly polarized
light).14

1.10.7 Mueller Matrix for Atomic Scattering and Dielectric Reflection

We now provide examples of how to find Mueller matrices. First, we show how to derive the
Mueller matrix for atomic scattering. The resultant fields were found in the text. Figure
1.7 provides the unit vectors ê` and êr for the scattered radiation, and ê0` and ê0r for the
incident radiation. The field amplitudes were

E` =
κ2α

4πε0r
cos ΘE0` and Er =

κ2α

4πε0r
E0r,

where E0` and E0r are, respectively, the amplitudes of the incident fields parallel and
perpendicular to the scattering plane. From these, we can straightforwardly relate the

14Most light in the environment of interest in remote sensing is unpolarized or linearly partially polarized.
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scattered Stokes vector I to the incident I0, i.e., find the Mueller matrix for scattering:
I = MI0. For example, the scattered Stokes parameter Q is

Q =
1

2µ0c
[E`E

∗
` − ErEr∗]

=
κ4α2

(4πε0r)2

1

2µ0c

[
E0`E

∗
0` cos2 Θ− E0rE0r

∗]

=
κ4α2

(4πε0r)2

[
I0 +Q0

2
cos2 Θ− I0 −Q0

2

]

=
κ4α2

(4πε0r)2

[
−I0

2
sin2 Θ +

Q0

2
(1 + cos2 Θ)

]

= M21I0 +M22Q0 +M23U0 +M24V0,

so

M21 = −
[

κ4α2

(4πε0r)2

]
sin2 Θ

2
, M22 =

[
κ4α2

(4πε0r)2

]
1 + cos2 Θ

2
, and M23 = M24 = 0.

The other elements of the Mueller matrix can be found in the same manner, and the result
is

M =

[
κ4α2

(4πε0r)2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ




If the incident light is unpolarized, the scattered light is linearly partially polarized, having
a Stokes vector

[
κ4α2

(4πε0r)2

]



1
2(1 + cos2 Θ)
−1

2 sin2 Θ
0
0


 I0

and a degree of polarization P

P =

√
Q2 + U2 + V 2

I2
=

sin2 Θ

1 + cos2 Θ

Note that P = 1 for Θ = 90◦, i.e., right-angle scattered light from atoms is fully polarized.
For scattering at other angles the scattered radiation is partially polarized. Thus, scattering
can produce polarized light starting from unpolarized light.

Now consider reflection from a plane interface between two dielectrics, where mIncident <
mTransmitted. We have Ir = MIi, and the Mueller matrix M can easily be derived by using
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Eq.s (1.41). The result is

M =




ρ+ ρ− 0 0
ρ− ρ+ 0 0
0 0 ρ33 0
0 0 0 ρ33


 , (1.62)

with

ρ± =
1

2

[
tan2(θi − θt)
tan2(θi + θt)

± sin2(θi − θt)
sin2(θi + θt)

]
=

1

2

[
r
‖
f ± r⊥f

]
,

and

ρ33 = −tan(θi − θt)
tan(θi + θt)

sin(θi − θt)
sin(θi + θt)

.

We see that reflection from an interface between two dielectrics, e.g., air and water, can
also produce polarized light starting from unpolarized light.

1.10.8 An Alternative Method for Deriving the Mueller Matrix

We conclude this appendix with an alternate method for finding M . Given the 2 × 2
transformation matrix between the incident and scattered fields,15

~E =

(
Er
E`

)
=

(
Trr Tr`
T`r T``

)(
E0r

E0`

)
= T ~E0

there is a simple method of constructing the Mueller matrix. Consider the so-called co-
herency matrix

J =

(
〈ErE∗r 〉 〈ErE∗` 〉
〈E`E∗r 〉 〈E`E∗` 〉

)
=

〈(
ErE

∗
r ErE

∗
`

E`E
∗
r E`E

∗
`

)〉

and the four matrices,16

σ1 =

(
1 0
0 1

)
, σ2 =

(
1 0
0 −1

)
, σ3 =

(
0 1
1 0

)
, and σ4 =

(
0 −i
i 0

)
.

15Note, T is the transformation matrix, not the transmission matrix, i.e., it can apply equally well to
reflection, transmission, and scattering.

16The first matrix is the unit matrix, 1, the others are related to the Pauli spin matrices usually denoted
by

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

It is easily verified that any 2 × 2 matrix can be expanded as a linear combination of Pauli matrices and
the unit matrix, i.e., (

a b
c d

)
=

1

2
[(a+ d)1 + (b+ c)σx + i(b− c)σy + (a− d))σz] .
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It is easy to verify that

Tr(σiσj) = 2δij ,

σiσi = 1,

where Tr indicates the trace (the sum of the diagonal elements of the resulting matrix),
δij = 1 if i = j and zero otherwise, and 1 is the identity matrix (same as σ1). Let us write

J =
1

2

4∑

i=1

Iiσi,

form the matrix product (σ1J), and take the trace of the result:

Tr(σ1J) =
1

2

4∑

i=1

IiTr(σ1σi) = I1.

Direct calculation of Tr(σ1J) yields 〈ErE∗r 〉 + 〈E`E∗` 〉, the Stokes parameter I. In a
similar manner, we can show that

Q = −Tr(σ2J), U = +Tr(σ3J), V = −Tr(σ4J),

so, writing the Stokes vector as

S =




I
Q
U
V


 =




S1

S2

S3

S4


 ,

we have shown that

J =
1

2

4∑

i=1

(−1)i+1Siσi. (1.63)

Now, direct matrix multiplication shows that we can write J in the form

J =

〈(
Er
E`

)(
Er E`

)〉
,

and the row matrices
(
E∗r E∗`

)
=
(
Er E`

)∗
=
(
E0r E0`

)∗
T †,

where T † is the Hermitian conjugate of T :

T † =

(
T ∗rr T ∗`r
T ∗r` T ∗``

)
.
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Defining the incident coherency matrix J0 through

J0 =

〈(
E0r

E0`

)(
E∗0r E∗0`

)〉
,

direct calculation shows that
J = TJ0T

†.

Using Eq. (1.63) with J0 = 1
2

∑4
i=1(−1)i+1S0iσi, we have

1

2

4∑

i=1

(−1)i+1Siσi = T
1

2

4∑

i=1

(−1)i+1S0iσiT
†,

and multiplying by σj and taking the trace

(−1)j+1Sj =
1

2

4∑

i=1

(−1)i+1S0iTr(σjTσiT
†),

or

Sj =
1

2

4∑

i=1

(−1)i−jTr(σjTσiT
†)S0i.

This shows that the Mueller matrix element Mji is given by

Mji =
1

2
(−1)i−jTr(σjTσiT

†). (1.64)

Although formulated using notation based on scattering, this method is applicable to de-
termining the Mueller matrix for any optical element for which T is known, e.g., linear
polarizers, wave retarders, etc.

As an example of the use of Eq. (1.64), consider atomic scattering where,

T =
κ2α

4πε0r

(
1 0
0 cos Θ

)
= T †.

Then, for example

M21(Θ) = −1

2
Tr(σ2Tσ1T

†)

= −1

2

(
κ2α

4πε0r

)2

Tr

[(
1 0
0 −1

)(
1 0
0 cos Θ

)(
1 0
0 1

)(
1 0
0 cos Θ

)]

= −1

2

(
κ2α

4πε0r

)2

sin2 Θ,
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as before.17

For a second example we derive the Mueller matrix for total internal reflection, i.e.,
reflection when the incident angle is greater than the critical angle. In this case, from
Section 1.6,18

T =

(
exp[−2iφ⊥] 0

0 exp[i(π − 2φ‖)]

)
=

(
exp[−2iφ⊥] 0

0 − exp[−2iφ‖)]

)
,

and T † = T ∗. In this case, for example,

M34 = −1

2
Tr(σ3Tσ4T

∗) = sin 2(φ‖ − φ⊥)

In a similar manner the full Mueller matrix is found to be

M =




1 0 0 0
0 1 0 0

0 0 cos 2(φ‖ − φ⊥) sin 2(φ‖ − φ⊥)

0 0 − sin 2(φ‖ − φ⊥) cos 2(φ‖ − φ⊥)




Thus, if the incident light is linearly polarized with a nonzero U component and V = 0,
the reflected V component will be − sin 2(φ‖ − φ⊥)UIncident, and the reflected light will
be elliptically polarized as claimed in the text. We shall see later that when unpolarized
solar radiation is scattered in an ocean-atmosphere system consisting of only Rayleigh
scatterers, e.g., air molecules and water molecules, the only process by which elliptically
polarized light can be generated in this environment is through upward-scattered radiation
within the water undergoing total internal reflection at the surface.

1.11 Bibliographic Notes

Graduate-level texts that are usually considered “chapter and verse” of classical electrody-
namics are Jackson, Classical Electrodynamics [Jackson, 1975] and Panofsky and Phillips
Classical Electricity and Magnetism [Panofsky and Phillips, 1964]. For students specializ-
ing in physics, these provide a clear exposition of the subject. A valuable review of the
electrodynamics required for optics in general is provided in the first chapter of Principles
of Optics by Born and Wolf [Born and Wolf, 1975]. On the introductory level, there are

17It is a simple manner to show that then T12 and T21 are both equal to zero, i.e., when T is diagonal,
that Mji = 0 when j = 1 or 2 and i = 3 or 4.

18In Section 1.6 we used the superscripts ⊥ and ‖ to denote cases where the electric vector is perpendicular
or parallel to the plane of incidence, respectively
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several excellent books, the best two being the Feynman Lectures on Physics, Volume II
by Feynman, Leighton, and Sands [Feynman et al., 1964], and Introduction to Electro-
dynamics by Griffiths [Griffith, 1989]. The latter two have been used extensively in the
preparation of this chapter. In particular, the development of the properties of dielectrics
through simple charge configurations, the electric fields of which can be computed using
Gauss’ law, was based on examples in these texts. The derivation of ~P for scattering by
small spheres was taken from Griffiths’ Introduction to Electrodynamics [Griffith, 1989].
Moving from the classical to the quantum domain in electrodynamics is a large step, which
fortunately is not really needed for our purposes. For the student with a basic knowledge
of quantum mechanics, we recommend the Quantum Electronics by Yariv [Yariv, 1988],
e.g., for a discussion of the quantum theory of polarizability and quantization of the elec-
tromagnetic field. A very readable non-mathematical account of the subject is found in
QED by Feynman [Feynman, 1985].

In graduate physics courses, radiation from accelerating charges is treated only after
a firm foundation of electrodynamics is in place. Thus, we have chosen to simply state
the main result and then apply it to situations that will prove useful in the study of
environmental optics. Most texts on electrodynamics treat this particular subject well,
and we have found the development in Classical Electricity and Magnetism by Barger and
Olsson [Barger and Olssen, 1986] to be particularly valuable. Given the general formula for
the fields from accelerating charges, the discussion of the scattering by atoms and molecules
then follows with little difficulty.

Finally, the development of the Stokes representation of polarized light in the Appendix,
that was based on a set of four measurements using polarizers and quarter wave plates was
inspired by a similar development in Absorption and Scattering of Light by Small Particles,
by Bohren and Huffman [Bohren and Huffman, 1983], and the relationship between the
coherency matrix and the Stokes vector, developed from a similar approach taken by States
Waves and Photons: A Modern Introduction to Light by Simmons and Guttman [Simmons
and Guttman, 1970].
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Chapter 2

Radiometry and Radiative
Transfer

2.1 Introduction

Now we develop the framework for understanding the propagation of electromagnetic ra-
diation in an absorbing and scattering medium, e.g., the ocean-atmosphere system. This
requires characterizing the properties of the radiation and developing the basic law gov-
erning its transport through the medium. We begin by describing radiation detectors
that can be used to measure radiant power, a quantity that is proportional to the time-
averaged Poynting vector. This quantity is used to define various radiometric quantities
that characterize the radiation, the most fundamental being the radiance. Then the basic
optical properties influencing light propagation in a medium, scattering, absorption, etc.,
are defined and used to develop the radiative transfer equation. This equation governs the
transport of radiance through an absorbing-scattering-emitting medium. Several solution
techniques are described in some detail, and the first-order solution for a homogeneous slab
with plane-parallel boundaries is presented in Appendix 1. The first-order solution is the
starting point for analysis of radiative transfer in remote sensing and is used extensively
throughout the rest of this work.

95
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2.2 Detection of Electromagnetic Radiation

One of the earliest, and simplest to understand, methods of detecting electromagnetic
radiation relies on the heating that occurs upon exposure to it. Consider a small wafer,
coated with a flat black material (to reduce reflection), exposed to a beam of radiation.
The wafer will absorb a significant portion of the radiation and the associated absorbed
energy will heat the wafer causing its temperature to increase. The temperature increase
can be measured by a thermometer, e.g., a thermocouple. Assume that the radiation falls
on the wafer at normal incidence and is totally absorbed. Since the amount of energy
absorbed is proportional to the time-averaged Poynting vector, we have that the absorbed
energy will be related to the temperature change (∆T ) through

mcP∆T = |
〈
~S
〉

Ave

∣∣A∆t,

where m is the wafer mass, cP is its specific heat at constant pressure, A is its area, and
∆t is the time over which the wafer is exposed to the radiation. Clearly,

|
〈
~S
〉

Ave

∣∣ =
mcP∆T

A∆t
,

and such a sensor, and the associated thermometer, can be used to effect a straightforward
measurement of the time-averaged Poynting vector, although typically with a slow response
time.

The radiation detectors used in remote sensing are more complex. They utilize materials
that have the property that when light falls on them and is absorbed, a quantum transition
takes place within the detector material that yields an electron freed in some manner to
contribute to a flow of electricity. For example, when electromagnetic radiation is incident
on the surface of a metal, electrons are ejected from the metal by a process known as
the photoelectric effect. Albert Einstein’s explanation of the experimental observations
regarding the photoelectric effect earned him the Nobel Prize. A detector employing the
photoelectric effect is called a phototube.

Einstein hypothesized that when light falls on the surface of a metal it can give up
energy to the electron only in discrete units called quanta or photons, the energy of which
is given by ~ω, where ω is the angular frequency of the light. In this picture, light was
imagined to consist of a stream of photons, and he modeled the photoelectric effect as a
mechanical-like collision between a photon and an electron. The collision was assumed
to be elastic, i.e., the sum of the energies of the electron and photon is conserved. In
the simplest terms (Figure 2.1), the photon collides with the electron in a metal plate
(cathode), gives its energy to the electron, and the electron escapes the cathode. The
electron is then accelerated to the positively charged metal plate (the anode) constituting



2.2. DETECTION OF ELECTROMAGNETIC RADIATION 97

an electric current that will be recorded on the ammeter. The negatively charged metal is
usually referred to as the photocathode, the ejected electron as the photoelectron, and the
current as the photocurrent. The photocurrent is determined by the rate at which electrons
pass between the photocathode and anode. This photocurrent is proportional to the time-
average Poynting vector of the incident light. In Einstein’s picture, the photocurrent
was interpreted as being proportional to the rate (N) at which photons are incident on
the photocathode surface. This required the Poynting vector be interpreted as a flux of
photons as described in Chapter 1:

N =
1

~ω
∣∣〈~S(~r)

〉
Ave

∣∣,

where N is the flux of photons. So the rate at which photons fall on the surface (N) is
N = NAD, where AD is the area of the surface of the detector.1

Other types of detectors behave in essentially the same way, but are based on different
phenomena. For example, when a photon gives its energy to an electron in an insulator or
a semiconductor it can cause the electron to join the conduction electrons in the material,
increasing the material’s ability to conduct electricity. Detectors that operate on this
principal are called photoconductive detectors. In both photoelectric and photoconductive
detectors, the photon gives its energy to an electron, which is then detected in some manner.
The resulting effect is proportional to the number of photons absorbed. If the effect is a
current (it usually is) then the current is proportional to the rate at which photons fall on
the surface (N), and so, proportional to the time-averaged Poynting vector of the incident
light.

For the rest of our discussion we will take as given that detectors are available that,
when illuminated at near-normal incidence by a beam of radiation, respond in a manner
that can be calibrated to yield the time-average Poynting vector of the radiation, e.g., the
current in the detector iD is proportional to

∣∣〈~S(~r)
〉

Ave

∣∣:

iD ∝
∣∣〈~S(~r)

〉
Ave

∣∣.

Radiation detectors such as these are often referred to as square-law detectors because
they respond to the square of the electric field of the radiation. In addition to

∣∣〈~S(~r)
〉

Ave

∣∣,
in order to specify more completely the electromagnetic radiation from a source, e.g., a
candle or the sky, we need to specify its frequency distribution – its spectrum. This can be
accomplished in a variety of ways, e.g., passing the radiation through a colored filter that
absorbs all radiation incident upon it except for wavelengths in a narrow band ∆λ which

1Note that 〈~S(~r )〉Ave = ξ̂ |〈~S(~r )〉Ave|, where ξ̂ is in the direction of propagation, so we have implicitly
assumed here that the normal to the detector surface (n̂D) is parallel to ξ̂, i.e., AD is oriented perpendicular
to the beam. If |ξ̂ • n̂D| 6= 1, then N = NAD|ξ̂ • n̂D|.
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it passes completely. Thus, we will also take as given that filters are available that pass a
band of wavelengths ∆λ (or frequencies ∆ω) perfectly, and absorb radiation at all other
wavelengths.

In what follows, we consider a light detecting device. It consists of a radiation detector
that produces a current proportional to

∣∣〈~S(~r)
〉

Ave

∣∣ at the detector surface, and it has a
spectral filter that transmits only a narrow band of wavelengths ∆λ � λ. If desired, it
can also be equipped with polarizers and quarter-wave plates to determine the polarization
state of the light. The detecting surface has an area AD (∆AD or dAD, if it is considered
to be infinitesimal). For simplicity, we will refer to this arrangement as simply a detector
or the detector.

For such a detector illuminated by a plane (or spherical) wave generated by a single

source, the current is proportional to the square of the electric field amplitude
∣∣ ~E0

∣∣2;
however, except in special situations, like viewing laser light, in the natural environment
the detector will be illuminated by radiation emitted by a collection of independent sources
(e.g., radiation emitted by individual atoms in a heated gas). In this case, the current is
proportional to the sum of the individual Poynting vectors of the radiation from each source.
To justify this assertion, consider the example of a set of sources generating electromagnetic
waves propagating in the z direction. If the field of the ith source is ~Ei = ~Ei0 exp[−i(κz −
ωt+ φi)], the time-averaged Poynting vector will be

〈
~S(~r)

〉
Ave

=
1

2µ0

(
N∑

i=1

~Ei

)
×
(

N∑

i=1

~B∗i

)

=
êzcε0

2

(
N∑

i=1

~Ei

)
•
(

N∑

i=1

~E∗i

)

=
êzcε0

2




N∑

i=1

( ~Ei • ~E∗i ) +
N∑

i=1

N∑

j 6=i

~Ei • ~E∗j




=
êzcε0

2




N∑

i=1

∣∣ ~Ei0
∣∣2 +

N∑

i=1

N∑

j 6=i

~Ei0 • ~Ej0 exp[i(φi − φj)]




=
êzcε0

2




N∑

i=1

∣∣ ~Ei0
∣∣2 +

N∑

i=1

N∑

j<i

2 ~Ei0 • ~Ej0 cos(φi − φj)


 .

In the sum in the second term the cosine will randomly have values ranging between 1 and
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−1 and this term will sum to zero if there is no fixed phase between the individual sources.2

Such a field might be produced by a set of identical sources in random motion or having
random positions. The light from such a collection of sources is said to be incoherent.
When the second term is zero,

〈
~S(~r)

〉
Ave

=
N∑

i=1

〈
~Si(~r)

〉
Ave

.

All of the sources that we will deal with in this work are incoherent.

We take the current from a detector equipped with a spectral filter at λ0 to be

∆iD(λ0) = K(λ0)∆
(
|〈~S(~r, λ0)〉Ave|

)
AD,

where as above, ∆
(
|〈~S(~r, λ0)〉Ave|

)
is the sum of the time-averaged Poynting vectors having

wavelengths (or frequencies) within ∆λ0 (or ∆ω0). Note that ∆
(
|〈~S(~r, λ0)〉Ave|

)
× AD is

the radiant power ∆P(λ0) within ∆λ0 received by the detector. K is a proportionality
constant, usually called the calibration constant. It could be determined by utilizing the
simple thermal detector (described at the beginning of this section) to measure |〈~S〉Ave| for
a set of stable sources, e.g., “standard lamps,” then viewing these sources with the detector
in question. Treating |〈~S(~r )〉Ave| as a continuous function of λ, we can define the spectral
radiant power as

P (λ0) ≡ ∆P(λ0)

∆λ0
=

1

K
∆iD(λ0)

∆λ0
. (2.1)

Thus, measuring ∆iD(λ0) gives P (λ0). The total radiant power within a spectral band
from λ1 to λ2 is just

P(λ1 → λ2) =

∫ λ2

λ1

P (λ) dλ =

∫ λ2

λ1

1

K

(
diD
dλ

)
dλ.

2Perhaps this is easier to visualize if all of the sources have the same amplitude E0. In this case,

〈
~S(~r)

〉
Ave

=
êzcε0

2

N∑
i=1

∣∣ ~E0

∣∣2(1 + 2

N∑
j<i

cos(φi − φj)

)
,

and we can expect the cosine to sum to zero, when φi and φj are independent.
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Figure RAD-1: Schematic of a phototube.  A photon strikes the 
photocathode and ejects an electron.  The electron is accelerated toward the 
positively charged anode.  A stream of such photons will be recorded as a 
current through the ammeter “A.”  The current is proportional to the rate at 
which photons strike the plate.  

 A Photon 

Electron 

+ 

− 

− 

+ 

Photocathode 

Anode 

Figure 2.1: Schematic of a phototube. A photon strikes the photocathode and
ejects an electron. The electron is accelerated toward the positively charged anode.
A stream of such photons will be recorded as a current through the ammeter “A.”
The current is proportional to the rate at which photons strike the plate.

2.3 Radiometry

In the last section we defined the spectral radiant power P (λ) and related it to the totality of
the time-average Poynting vectors (from each independent source) within a narrow band of
wavelengths ∆λ. All radiometric quantities are defined though the spectral radiant power
and they will now be developed. For convenience the symbol λ will be suppressed from all
radiometric quantities, unless its deletion would result in confusion.

2.3.1 Radiant Intensity

Sources of radiation that are either very far away, e.g., the stars, or by their nature are very
small, appear as point sources to an observer. An observer can use a detector to measure
the power from the source, but the power received depends on the distance to the source.
However, to make a measurement that provides a characteristic of the source, this distance
must the taken into consideration. This is accomplished by dividing the measured spectral
radiant power by the solid angle subtended by the detector at the source.3 The radiant
intensity (J) of the source is the power per unit solid angle emitted by the source. If n̂D
is the unit normal to the detector of area dAD, as shown in Figure 2.2, then the intensity

3The solid angle is the three-dimensional analog of an ordinary angle in plane geometry. For the latter,
consider a circle of radius r and an arc of length s along the circle. Then the angle θ subtended by the arc
(at the center of the circle) is given by θ = s/r. In analogy, consider a sphere of radius R and a (closed)
curve of area A on its surface. Then the solid angle Ω subtended by A at the center of the sphere is given
by Ω = A/R2. The angle θ, although dimensionless, is usually given the unit radians and the solid angle
Ω, also dimensionless, is given the unit steradians (Sr).
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Figure RAD-2:  A point source illuminates a detector of area dAD in the 
direction ξ̂ , a distance D away. Dn̂  is the normal to the detector surface.  

The angle θD  is given by |ˆˆ|cos ξθ •= DD n . 
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ξ̂
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Figure 2.2: A point source illuminates a detector of area dAD in the direction ξ̂, a
distance D away. n̂D is the normal to the detector surface. The angle θD is given
by cos θD = |n̂D • ξ̂|.

of the source in the direction specified by the unit vector ξ̂ is given by

J(ξ̂) =
dP (ξ̂)

dΩ(ξ̂)

=
dP (ξ̂)

|n̂D • ξ̂| dAD/D2

=
dP (ξ̂)

cos θD dAD/D2

(2.2)

dP (ξ̂) is the power received by the detector in the solid angle dΩ(ξ̂) around the direction
ξ̂. (Note that ξ̂ designates the direction in which energy is propagating.) The total power
emitted by the source in all directions is

P =

∫

All ξ̂
J(ξ̂) dΩ(ξ̂).

If there are no losses of radiant power in the space between the source and the observer (in
any direction) then the total power is independent of the distance from the source. The only
way this is possible is if the power within any fixed solid angle (subtended at the source)
is independent of the distance from the source. This implies that J is independent of the
distance from the source. Thus, in the absence of losses between a point source and an
observer, the radiant intensity is independent of the distance between them, and therefore
is characteristic of the source. The most common symbol for intensity is I; however, we
will use the symbol J to avoid confusion with the first element of the Stokes vector.
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Figure RAD-3:  A surface source of area dAS and normal Sn̂  illuminates a 
detector of area dAD in the direction ξ̂ , a distance D away. Dn̂  is the normal 
to the detector surface.   
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Figure 2.3: A surface source of area dAS and normal n̂S illuminates a detector of
area dAD, in the direction ξ̂, a distance D away. n̂D is the normal to the detector
surface.

2.3.2 Radiance

When the source is extended, the radiant intensity is not a useful concept, e.g., which
point on the source is used as reference for the solid angle? For an extended source another
quantity is needed. This quantity is called radiance. The radiance leaving a surface is
the radiant power emitted (reflected or scattered) per unit area (projected normal to the
direction of energy flow) per unit solid angle. Consider the surface element dAS of an
extended source shown in Figure 2.3. If the power received by the detector is d2P (ξ̂), then
the radiance of the surface (assuming no loss along D) is defined to be

L(ξ̂) ≡ d2P (ξ̂)

cos θS dAS dΩD
, (2.3)

where

dΩD =
cos θD dAD

D2

is the solid angle subtended by the detector at any point on the source. Radiance is
of primary importance in radiometry because in the absence of losses, it is a conserved
quantity in the sense that it is independent of the distance from the surface. To illustrate
this, consider a surface S which consists of a set of independent4 (uniformly distributed)
point sources, each of intensity J0. Let n be the number of sources per unit area of the
surface so the total number in an area A is NA = nA. Consider two of these sources,
symmetrically spaced with respect to the origin, as shown in Figure 2.4. A detector of area
dAD is located at (0, yD, zD) and it’s normal n̂D lies in the y-z plane. The power falling

4The sources are “independent” in the sense of Section 2.2, i.e., in combination they produce incoherent
radiation.
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on the detector from these two sources is

dP = J0 dAD

[
ξ̂ • ξ̂1

r2
1

+
ξ̂ • ξ̂2

r2
2

]
,

where the ri are the distances from the individual sources to the detector. From Figure
2.4 it is seen that

ξ̂i =
xiêx + (yD − yi)êy + zDêz

ri
,

r2
i = x2

i + (yD − yi)2 + z2
D,

ξ̂ =
yDêy + zDêz

D
,

and
D2 = [y2

D + z2
D], 

 
 

 
 
Figure RAD-4:  Two point sources, symmetrically located with respect to 
the origin, illuminate a detector of area dAD in the direction ξ̂ , a distance D 

away. Dn̂  is the normal to the detector surface, with ξ̂ˆ −=Dn .  The unit 

vectors 
1̂ξ  and 

2̂ξ  are directed toward the detector.  The detector is located at 

the point (0, yD, zD). 
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(x2,y2,0) •  
 

• (x1,y1,0) 
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Figure 2.4: Two point sources, symmetrically located with respect to the origin,
illuminate a detector of area dAD in the direction ξ̂ a distance D from the origin.
n̂D is the normal to the detector surface, with n̂D = −ξ̂. The unit vectors ξ̂1 and ξ̂2
are directed toward the detector. The detector is located at the point (0, yD, zD).

where i = 1 or 2. Thus, dP becomes

dP =
J0 dAD
D

[
yD(yD − y1) + z2

D

r3
1

+
yD(yD − y2) + z2

D

r3
2

]
.
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Noting that x2 = −x1 and y2 = −y1, performing binomial expansions on r−3
1 and r−3

2 , we
find

dP =
J0 dAD
D2

[
2− 3

(x1

D

)2
− 3(1 + 2 sin2 θ)

(y1

D

)2
+ · · ·

]
. (2.4)

If the second order terms in x1/D and y1/D are ignored, i.e., x1 � D and y1 � D,

dP =
2J0 dAD
D2

,

 
 
 
 
 
 

 
 
Figure RAD-5:  A Gershun tube limits the field of view of a detector of area 
dAD to a solid angle dω.  The solid angle dω  is simply the area of the open 
end divided by the square of the length of the tube.  We shall see later that 
the radiance propagating in the direction ξ̂  is the radiant power measured by 
the detector divided by the product dAD × dω. 

dω Detector
dAD 

Gershun 
Tube 

ξ̂  

Figure 2.5: A Gershun tube limits the field of view of a detector of area dAD to a
solid angle dω. The solid angle dω is simply the area of the open end divided by the
square of the length of the tube. We shall see later that the radiance propagating
in the direction ξ̂ is the radiant power measured by the detector divided by the
product dAd × dω.

and each point source contributes the same power. Now, let’s determine the radiance of
the surface. Operationally, we want to examine an area dAS of the surface and measure
the power received by dAD from that area. Therefore, it is necessary to restrict the field of
view (FOV) of the detector. This can be accomplished most simply by means of a Gershun
tube as shown in Figure 2.5.The Gershun tube is simply a cylindrical tube through which
the detector views the surface. A detector equipped with such a tube is called a radiometer.
Attachment of the Gershun tube to the detector limits the field of view of the detector
to an area dAS of the surface (Figure 2.6), so the power received by the detector is from
ndAS sources. The radiance of the surface is by definition

L(ξ̂) =
d2P (ξ̂)

cos θ dAS dΩD
. (2.5)

Again in the absence of losses, all the power emitted toward dAD falls on the detector, so
the radiance is given by

L(ξ̂) =
ndASJ0dAD/D

2

cos θ dAS dΩD
.

But,

dΩD =
dAD
D2

,
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Figure RAD-6:  The in detector Figure RAD-4 is able to view only an area 
dAS of the x – y plane, because its field of view has been restricted to a solid 
angle dω, e.g., by a Gershun tube (not shown).  The solid angle dΩD is that 
subtended by the detector by any point in dAS.  
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Figure 2.6: The detector in Figure 2.4 is able to view only an area dAS of the x –
y plane because its field of view has been restricted to a solid angle dω, e.g., by a
Gershun tube (not shown). The solid angle dΩD is that subtended by the detector
by any point in dAS .

so,

L(ξ̂) =
nJ0

cos θ
, (2.6)

and L is independent of the solid angles, as well as the distance between the source and
the radiometer. It depends only on the properties of the individual sources.5

It is useful to try to eliminate specific references to the surface under examination from
these relationships. Consider again the power measured by the detector. This is

d2P (ξ̂) =
ndASJ0 dAD

D2

=
L(ξ̂) cos θ dAS dAD

D2
.

Since
cos θ dAS dAD

D2
= dω dAD,

d2P (ξ̂) = L(ξ̂) dAD dω

and hence, the power measured by the detector at the end of the tube is proportional to
the radiance of the surface. Note that the dω in the above equation is the solid angle of
view of the detector as shown in Figure 2.5, and should not be confused with the spectral
band pass of the filter, i.e., ∆ω. If we were unaware of the existence of the surface or if,

5If J0 is proportional to cos θ, then L(ξ̂) is independent of ξ̂, and the surface is said to be a lambertian
emitter.
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as in the case of the sky, a physical surface does not exist, this equation can be used to
provide an alternate definition of radiance based only on the properties of the radiometer:

L(ξ̂) =
d2P (ξ̂)

dAD dω
. (2.7)

The radiance defined in Eq. (2.7) is sometimes called the apparent radiance of the surface,
the aperture radiance of the detector, or the field radiance.6

There are conditions that must be met for the radiometer to provide an accurate radi-
ance. Looking back over our derivation of Eq. (2.7), we find that the validity of Eq. (2.5)
required ignoring the terms (x1/D)2 and (y1/D)2 in Eq. (2.4). Consider Eq. (2.4) for
θ = 0 and let the radius of the Gershun tube be R. Then if the tube is close to the surface,
the sources farthest from the axis have x2

1 + y2
1 = R2, and

dP =
J0 dAD
D2

[
2− 3

(
R

D

)2

− · · ·
]
,

6The basis of the definition of the field radiance in Eq. (2.7) is a result concerning the area-solid angle
product. Consider two areas and the solid angles that each subtends at the other as shown in the figure
below.

 
 
 
 

 
Figure RAD-7:  This figure shows two small areas and the solid angle each 
subtends at the other.  The solid angle subtended by dA2 at the center of dA1 
is 1from2bySubtendedΩd , and the solid angle subtended by dA1 at the center of 

dA2 is 2from1bySubtendedΩd . 

D 

ξ̂

dA2 

dA1 

1from2bySubtendedΩd

2from1bySubtendedΩd  

1n̂  2n̂  

The figure shows two small areas and the solid angles that each subtends at the other. The solid angle
subtended by dA2 at the center of dA1 is dΩSuspended by 2 from 1, and the solid angle subtended by dA1 at
the center of dA2 is dΩSuspended by 1 from 2. The individual solid angles are

dΩSubtended by 1 from 2 =
|n̂1 • ξ̂|dA1

D2
and dΩSubtended by 2 from 1 =

|n̂2 • ξ̂|dA2

D2
.

Eliminating D from these yields

|n̂2 • ξ̂| dA2 dΩSubtended by 1 from 2 = |n̂1 • ξ̂| dA1 dΩSubtended by 2 from 1, (2.8)

which leads directly to the field radiance in Eq. (2.7).
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but since ∆ω = πR2/D2,

dP =
J0 dAD
D2

[
2− 3

(
∆ω

π

)
− · · ·

]
.

Thus for Eq. (2.7) to provide the correct radiance ∆ω � 1. When this is satisfied the
radiometer can provide the correct radiance using Eq. (2.7), even when the distance
between the surface and the aperture of the radiometer is essentially zero.

Recall Eq. (2.6). It shows that as long as J0 and θ are constant, the radiance is constant
regardless of the distance from the surface. Thus, if the radiometer is aimed at a physical
surface, because the radiance it measures is independent of the distance from the surface,
it will record the actual radiance leaving the surface (in the absence of losses of power
between the radiometer and the surface, the origin of which losses will be discussed in
detail later in this chapter). For example, take a single lens reflex camera with a built-in
exposure meter and aim the camera toward a blank wall (free of pictures, etc.). Note
the exposure setting and walk toward the wall. You will find that the exposure remains
unchanged as you move toward the wall (the apparent radiance is constant), and in the
limit that you could physically place the camera on the surface without creating shadows
etc., the exposure would still remain the same. The camera exposure meter is a radiometer
and the aperture radiance is the same as the surface radiance.

The radiometric quantities we have been examining thus far all have counterparts when
the polarization of the radiation is examined. Consider a detector that is equipped with
a polarizer and quarter-wave plate, define a reference system specified by the unit vectors
êr and ê`, where ξ̂ = êr × ê`, and perform the sequence of measurements described in the
appendix to Chapter 1. Denoting by P`(ξ̂) the radiant power measured when the polarizer
has pass direction along ê`, Pr(ξ̂) when the pass direction is along êr, etc., then we can
define the Stokes vector for intensity by7

IJ(ξ̂) =




IJ(ξ̂)

QJ(ξ̂)

UJ(ξ̂)

VJ(ξ̂)


 =

1

dΩ(ξ̂)




dP`(ξ̂) + dPr(ξ̂)

dP`(ξ̂)− dPr(ξ̂)
2dPp(ξ̂)− dP`(ξ̂)− dPr(ξ̂)
2dPq(ξ̂)− dP`(ξ̂)− dPr(ξ̂)


 (2.9)

The radiance measured by a similarly equipped radiometer is

IL(ξ̂) =




IJ(ξ̂)

QL(ξ̂)

UL(ξ̂)

VL(ξ̂)


 =

1

dAD dω




d2P`(ξ̂) + d2Pr(ξ̂)

d2P`(ξ̂)− d2Pr(ξ̂)

2d2Pp(ξ̂)− d2P`(ξ̂)− d2Pr(ξ̂)

2d2Pq(ξ̂)− d2P`(ξ̂)− d2Pr(ξ̂)


 (2.10)

7Recall that the subscript “p” stands for a measurement with a linear polarizer oriented with pass
direction along êp = (êr + ê`)/

√
2 in the beam. The subscript “q” references power measured with a

quarter wave plate followed by a linear polarizer with pass direction êp in the beam.
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Figure RAD-8:  Radiant power )ˆ(2 ξdP  within a solid angle )ˆ(ξΩd  is 
incident on a element of surface area dAs from the direction ξ̂ . 
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Figure 2.7: Radiant power d2P (ξ̂) within a solid angle dΩ(ξ̂) is incident on an

element of surface area dAS from the direction ξ̂.

A radiometer that measures IL(ξ̂) is often referred to as a polarimeter.

Thus far this discussion has been centered on describing the radiance leaving a surface
due to emission (or reflection) of radiant power by (or from) the surface. It is of equal
importance to be able to describe the angular distribution of radiant power incident on
a surface. This is accomplished by defining the radiance incident on an element of the
surface (of area dAS) in a manner similar to that of the radiance emitted by an element of
the surface. The geometrical setting is given in Figure 2.7, and the radiance incident on
the surface is defined in analogy to Eq. (2.3) to be

L(ξ̂) =
d2P (ξ̂)

cos θ dAS dΩ(ξ̂)
(2.11)

where d2P (ξ̂) is now the radiant power falling on dAS from a range of directions contained
in a solid angle dΩ(ξ̂) centered on the direction ξ̂. This radiance can of course be measured
by placing a radiometer at the position of interest on the surface (and replacing cos θdAS
by dAD and dΩ by dω).

Radiance measured along a path depends on the refractive index along the path. The
easiest way of showing this is to note that when passing through an interface between two
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media of differing refractive index, such as air and water, the solid angle changes. Figure
2.8 shows radiant power propagating through an element of area dAS on the interface. The
radiance falling on dAS from medium 2 is given by

L(ξ̂2) =
d2P (ξ̂2)

cos θ2 dAS dΩ2
,

and the radiance leaving dAS into medium 1 is

L(ξ̂1) =
d2P (ξ̂1)

cos θ1 dAS dΩ1
,

where
dΩ1 = sin θ1 dθ1 dφ1,

dΩ2 = sin θ2 dθ2 dφ2.

If the radiation is unpolarized, the transmitted power is related to the incident power
through

d2P (ξ̂1) = tf d
2P (ξ̂2), (2.12)

where tf is the Fresnel transmittance of the interface for unpolarized light. The Fresnel
reflectance rf for unpolarized light is given by (Chapter 1)

rf =
1

2

(
sin2(θ1 − θ2)

sin2(θ1 + θ2)
+

tan2(θ1 − θ2)

tan2(θ1 + θ2)

)
=

1

2

(
r⊥f + r

‖
f

)
,

where θ1 and θ2 are related by Snell’s Law,

m1 sin θ1 = m2 sin θ2.

The transmittance tf = 1− rf . Hence,

L(ξ̂1) cos θ1 dAS dΩ1 = tfL(ξ̂2) cos θ2 dAS dΩ2,

or
L(ξ̂1) cos θ1 sin θ1 dθ1 dφ1 = tfL(ξ̂2) cos θ2 sin θ2 dθ2 dφ2.

Differentiating Snell’s Law

m1 cos θ1 dθ1 = m2 cos θ2 dθ2,

and multiplying by m1 sin θ1 yields

m2
1 sin θ1 cos θ1 dθ1 = m2

2 sin θ2 cos θ2 dθ2.

Since dφ1 = dφ2, we have

m2
1 cos θ1 dΩ1 = m2

2 cos θ2 dΩ2, (2.13)



110 CHAPTER 2. RADIOMETRY AND RADIATIVE TRANSFER

 
 
Figure RAD-9:  Radiance incident from medium 2 (refractive index m2) is 
propagated across the interface into medium 1 (refractive index m1). 
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Figure 2.8: Radiance incident from medium 2 (refractive index m2) is propagated
across the interface into medium 1 (refractive index m1).

which is knowns as Straubel’s invariant, leading to

L(ξ̂1)

m2
1

= tf
L(ξ̂2)

m2
2

. (2.14)

Thus in the absence of losses (tf = 1) the quantity L/m2 is constant along the path.

2.3.3 Irradiance

Irradiance incident on a surface element dAS is defined to be the radiant power falling on
(or emitted by) dAS divided by dAS , i.e.,

E =
dP

dAS
.
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For waves propagating in a single direction, ξ̂, from Eq. (2.1) this is just the time-average
Poynting vector toward the surface (energy flux within ∆λ) divided by ∆λ, i.e.,

E =
∆
(
|〈~S(~r )〉Ave|

)

∆λ
|n̂S • ξ̂|,

where n̂S is the normal to the surface. For a collection of waves incident on the surface from
all directions, E∆λ is the sum of the time-average Poynting vectors of all of the spectral
components within ∆λ, with each weighted by |n̂S • ξ̂|. The irradiance on dAS can easily
be related to the radiance on dAS by noting that

d2P (ξ̂)

dAS
= L(ξ̂) cos θ dΩ(ξ̂).

Integrating this over all directions ξ̂ in a hemisphere over dAS yields

E =
dP

dAS
=

∫

All ξ̂
L(ξ̂) cos θ dΩ(ξ̂). (2.15)

(When power is being emitted by the surface, E is called the radiant emittance.) In cases
where L(ξ̂) is independent of ξ̂, E = πL. If a parallel beam of radiance is incident on
a Fresnel-reflecting surface, dividing Eq. (2.12) by dAS tells us that E1(ξ̂1) = tfE2(ξ̂2),

where ξ̂1 and ξ̂2 are related by Snells law and tf is evaluated at the appropriate incident
angle.

We cannot in general define a Stokes vector for uncollimated irradiance, because the
radiation comes from a variety of directions, i.e., from any direction from which the detector
surface can be seen. Since the reference vectors ê` and êr must satisfy ξ̂ = êr × ê`, and
ξ̂ is not unique (or not constrained to be within a well-defined small range of directions),
it is not possible to define a unique reference system for defining the Stokes parameters.
However, if the irradiance is in the form of a well-collimated beam, it is possible to define
such a reference system, and in this case, the Stokes vector for irradiance is

IE(ξ̂) =




IE(ξ̂)

QE(ξ̂)

UE(ξ̂)

VE(ξ̂)


 =

1

dAD




d2P`(ξ̂) + d2Pr(ξ̂)

d2P`(ξ̂)− d2Pr(ξ̂)

2d2Pp(ξ̂)− d2P`(ξ̂)− d2Pr(ξ̂)

2d2Pq(ξ̂)− d2P`(ξ̂)− d2Pr(ξ̂)


 . (2.16)

2.3.4 Radiance of a near parallel beam

Many times in this work we will require the radiance associated with a beam of nearly
parallel light, e.g., the radiance associated with the irradiance from the Sun. In the case
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of the Sun, as seen from the Earth the solar disk subtends a angle of ∼ 1/2◦, so the rays
of light from the Sun actually diverge at angles up to 1/2◦. If we measure the radiance of
the Sun as a function of the angle θd from the center of the disk, it will be constant up
to θd = 1/4◦ and then fall to zero and remain there at larger θd. (Actually, the radiance
within the disk is not constant but decreases somewhat from the center to the edge — limb
darkening.) Let irradiance from the Sun on a plane normal to the solar beam be F0. Then
F0 can be written

F0 =

∫
Ls(θd) cos θd dω ≈ Ls∆Ωs, (2.17)

where ∆Ωs is the solid angle subtended by the Sun at the Earth, and we have used the fact
that cos θd ≈ 1. Thus we have the relationship between the radiance and the irradiance of
the Sun seen from the Earth

F0 = Ls∆Ωs or Ls =
F0

∆Ωs
.

At times it is useful to assume that the solar beam (or some other light beam) consists of
radiation propagating in a single direction, i.e., in the example above ∆Ωs = 0. Clearly the
associated radiance is infinite, but the irradiance is still finite. A simple mathematical way
of dealing with this is through the use of the Dirac delta function. For a beam propagating
in the direction ξ̂0, the radiance is given by

L(ξ̂) = F0δ
(2)(ξ̂ − ξ̂0), (2.18)

where F0 is the irradiance on a plane with normal n̂ parallel to ξ̂0 (actually, n̂ = −ξ̂0), and
ξ̂ is a vector in any other direction. From the properties of δ(2)(ξ̂− ξ̂0), i.e., it is zero unless
ξ̂ = ξ̂0, there is no radiance in any direction except ξ̂0, the irradiance on any surface with
normal n̂s is

E(n̂s) =

∫
|n̂s • ξ̂|L(ξ̂) dΩ(ξ̂)

=

∫
|n̂s • ξ̂|F0δ

(2)(ξ̂ − ξ̂0) dΩ(ξ̂)

= |n̂s • ξ̂0|F0

= F0 cos θ0,

where θ0 is the angle between the Sun’s rays and the surface normal. In geophysical optics,
the divergence of the solar beam can often be ignored, and the radiance of the Sun taken
to be

Ls(ξ̂) = F0δ
(2)(ξ̂ − ξ̂0),

where F0 is the extraterrestrial solar irradiance. The same approximation applies to any
beam of small angular divergence.
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2.3.5 An example: Is the Moon’s surface a lambertian reflector?

For a simple example of the application of radiometry to the analysis of a physical problem,
we examine the question — is the Moon’s surface a lambertian reflector? By a lambertian
reflector, we mean that the surface has the property that the reflected radiance is the
same for all viewing directions and the reflected irradiance is proportional to the incident
irradiance — the proportionality constant being called the albedo. A sheet of non-glossy
white paper approximates a lambertian reflector.

Consider observing the Moon near full phase (the Earth between the Sun and the Moon,
but without the Moon being eclipsed). The irradiance falling on a small area on the lunar
surface will be F0|ξ̂0 • n̂|, where ξ̂0 is the direction of propagation of the solar beam, and n̂
is the normal to the lunar surface at for the area in question. If the surface is lambertian,
the reflected radiance is the reflected irradiance divided by π. The reflected irradiance is
proportional to the incident irradiance, so the radiance of the lunar surface is

LMoon =
AF0|ξ̂0 • n̂|

π
,

where A is the albedo. Thus, were the lunar surface lambertian, the radiance should vary
as |ξ̂0 • n̂|, i.e., become darker from the center to the edge. Since this is not observed —
the Moon looks more like a disk than a ball — the surface is not lambertian.

2.4 Inherent Optical Properties of Media

In order to study the transfer of radiation through absorbing-scattering-emitting media
such as the atmosphere and ocean, it is necessary to define carefully the optically important
quantities. These quantities are related to the scattering and absorption properties of the
medium. First, we examine scattering. Consider a small volume dV that is illuminated
by a beam of collimated irradiance E0(ξ̂0) as shown in Figure 2.9. We assume that the
incident beam is unpolarized. If dJ(ξ̂) is the intensity scattered in the direction ξ̂, and
measured with a detector without polarizers, then the volume scattering function β(ξ̂0 → ξ̂)
is defined through

β(ξ̂0 → ξ̂) ,
dJ(ξ̂)

E0(ξ̂0) dV
, (2.19)

where dV = dAdl. We note that in general the intensity is described by a Stokes vector
dIJ and that when this vector is measured, the first element gives dJ , i.e., dJ = dIJ in Eq.
(2.9).
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Figure RAD-10:  Radiant power )ˆ( 00 ξP  is incident a volume dV = dA dl.  
The transmitted power is )ˆ()ˆ( 000 ξξ sdPP − , and an amount )ˆ(2 ξdP  is 
scattered into solid angle )ˆ(ξΩd  around the direction ξ̂ . 

)ˆ(2 ξPd  
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Figure 2.9: Radiant power P0(ξ̂0) is incident on a volume dV = dAdl. The trans-

mitted power is P0(ξ̂0) − dPs(ξ̂0), and an amount d2P (ξ̂) is scattered into a solid

angle dΩ(ξ̂) around the direction ξ̂.

In Chapter 1 we computed the fields scattered from a single atom. How can we use
this information to compute β? Let dJ1(ξ̂) be the intensity scattered by one atom. Then,
if there are N such atoms distributed at random, and in random motion, within dV ,
the scattered radiation from each atom will add incoherently at the sensor and the total
scattered intensity will be dJ = N dJ1. Thus,

β(ξ̂0 → ξ̂) =
NdJ1(ξ̂)

E0(ξ̂0) dV
=
ndJ1

E0
,

where n is the number density of atoms.

More generally, if the incident irradiance is polarized and described by a Stokes vector
IE , and the scattered intensity is described by a Stokes vector dIJ , then we define the 4×4
volume scattering matrix β(ξ̂0 → ξ̂) through

dIJ(ξ̂) = β(ξ̂0 → ξ̂)IE(ξ̂0) dV

=




β11(ξ̂0 → ξ̂) β12(ξ̂0 → ξ̂) β13(ξ̂0 → ξ̂) β14(ξ̂0 → ξ̂)

β21(ξ̂0 → ξ̂) β22(ξ̂0 → ξ̂) β23(ξ̂0 → ξ̂) β24(ξ̂0 → ξ̂)

β31(ξ̂0 → ξ̂) β32(ξ̂0 → ξ̂) β33(ξ̂0 → ξ̂) β34(ξ̂0 → ξ̂)

β41(ξ̂0 → ξ̂) β42(ξ̂0 → ξ̂) β43(ξ̂0 → ξ̂) β44(ξ̂0 → ξ̂)







IE(ξ̂0)

QE(ξ̂0)

UE(ξ̂0)

VE(ξ̂0)


 dV,

(2.20)
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where β is a Mueller matrix taking IE dV into dIJ . Again, if we compute dIJ1(ξ̂) for 1
particle, then we can find β from ndIJ1(ξ̂) = β(ξ̂0 → ξ̂) IE(ξ̂0). If the incident irradiance
is unpolarized, the Stokes vector of scattered intensity is




dIJ(ξ̂)

dQJ(ξ̂)

dUJ(ξ̂)

dVJ(ξ̂)


 =




β11(ξ̂0 → ξ̂)E0(ξ̂0)

β21(ξ̂0 → ξ̂)E0(ξ̂0)

β31(ξ̂0 → ξ̂)E0(ξ̂0)

β41(ξ̂0 → ξ̂)E0(ξ̂0)


 dV,

and if the scattered intensity is measured without regard for polarization, the result is

dIJ(ξ̂) = β11(ξ̂0 → ξ̂)E0(ξ̂0)dV.

Thus, the volume scattering function β in Eq. (2.19) is the upper-left element of the volume
scattering matrix in Eq. (2.20), i.e., β11.

If we write the incident irradiance E0 in Eq. (2.19) as P0(ξ̂0)/dA, where dA is the area
of the volume dV normal to ξ̂0 (so dV = dAdl) and P0(ξ̂0) is the radiant power incident
on dA, then we can rewrite the definition in terms of radiant power:

β(ξ̂0 → ξ̂) =
d2P (ξ̂)

P0(ξ̂0) dl dΩ(ξ̂)
,

or
1

P0(ξ̂0)

d2P (ξ̂)

dl
= β(ξ̂0 → ξ̂) dΩ(ξ̂).

Integrating over all directions ξ̂, we obtain

1

P0(ξ̂0)

dPs
dl

=

∫

All ξ̂
β(ξ̂0 → ξ̂) dΩ(ξ̂).

On the left-hand-side of this equation dPs is the total amount of radiant power scattered
from dV (in all directions). This power is lost from the beam of irradiance E0(ξ̂0) and
radiant power P0(ξ̂0). The fractional loss in power (or irradiance) per unit length of path
from a collimated beam by scattering is called the scattering coefficient:

b ,
1

P0(ξ̂0)

dPs
dl

=

∫

All ξ̂
β(ξ̂0 → ξ̂) dΩ(ξ̂),

(2.21)

so the scattering coefficient is the integral of the volume scattering function over all solid
angles. Notice that we have defined the scattering coefficient in terms of the total amount
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of scattering from an unpolarized beam. It is also possible to define partial scattering
coefficients for various incident irradiance polarizations.8 This is not carried out here
because to our knowledge they are of no utility in geophysical optics at present (see Bohren
and Huffman, Absorption and Scattering of Light by Small Particles for a further discussion
of partial scattering coefficients).

As an example of the use of these definitions, we consider the scattering by a dilute
atomic gas. In Chapter 1 it was found that the Stokes vector Is(Θ) scattered from an
atom was related to the incident Stokes vector I0 through

Is(Θ) = M(Θ)I0, (2.22)

where

M(Θ) =

[
κ4α2

(4πε0r)2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ


 (2.23)

In this equation, Θ is the scattering angle, and the reference vectors ê` and êr are taken,
respectively, parallel and perpendicular to the scattering plane. It is important to note the
difference between Eqs. (2.20) and (2.22). In Eq. (2.22) the elements of the Stokes vectors
are simply various combinations of time-averaged Poynting vectors. The matrix M relates
these combinations of products of the scattered field to products of the incident field. It is
dimensionless. In contrast, the elements of dIJ in Eq. (2.20) are time-averaged Poynting
vectors times the detector area dAD divided by the solid angle that the detector subtends
at the atom dΩD, and also divided by the spectral bandwidth ∆λ (see Eq. (2.9)), while the
elements of IE are simply various combinations of Poynting vectors divided by ∆λ (see Eq.
(2.16)), rendering the units of β, m−1. However, Eq. (2.21) poses a dilemma. Although
dΩ is dimensionless, we need to know its units9 in order to evaluate the integral. The
standard unit for solid angle is the “steradian” (Sr), for which dA and r2 in the defining
equation dΩ , dA/r2 are measured in the same units. Thus, the units of β are taken to be
m−1Sr−1, rather than m−1, to remove the dilemma. The Sr−1 is added to remind us that
standard units are being used for solid angle. To avoid a similar dilemma in the vector
case, we associate the units m−1Sr−1 to β, and as we shall see later in this section, this
requires assigning Sr−1 as the units of M — the dimensionless Mueller matrix relating the
incident to the scattered Stokes vector.

8Examples of b for various states of polarization of the incident light are provided in the footnote on
page 221.

9Many dimensionless quantities have units. The simplest example is a plane angle, which is defined as
the length of the arc of a circle divided by the length of the radius of the circle. It is typically given in units
of radians (wherein the two lengths have the same units) or in degrees, but could be given in some hybrid
unit such as cm/m. Clearly before using the number associated with a (dimensionless) angle, we meed to
be reminded of its units.



2.4. INHERENT OPTICAL PROPERTIES OF MEDIA 117

After moving the r2 to the left-hand-side of Eq. (2.23), we have (in the notation of
Chapter 1)




r2 [〈S`〉+ 〈Sr〉]
r2 [〈S`〉 − 〈Sr〉]

r2 [2〈Sp〉 − 〈S`〉 − 〈Sr〉]
r2 [2〈Sp〉 − 〈S`〉 − 〈Sr〉]


 =

[
κ4α2

(4πε0)2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ




×




[〈S0`〉+ 〈S0r〉]
[〈S0`〉 − 〈S0r〉]

[2〈S0p〉 − 〈S0`〉 − 〈S0r〉]
[2〈S0p〉 − 〈S0`〉 − 〈S0r〉]




Now, since r2 = dAD/dΩD, when both sides are divided by ∆λ, the equation becomes

dIJ =

[
κ4α2

(4πε0)2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ


 IE .

This describes the scattering from one atom, so

β(Θ) = n

[
κ4α2

(4πε0)2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ


 = nr2M(Θ), (2.24)

where n is the number density of atoms. It also provides the important general relationship
β(Θ) = nr2M(Θ). The volume scattering function β(Θ) = β11(Θ) = nr2M11(Θ) is then

β(Θ) = n

[
κ4α2

(4πε0)2

]
1

2
(1 + cos2 Θ). (2.25)

The scattering coefficient is

b =

∫

All ξ̂
β(ξ̂0 → ξ̂) dΩ(ξ̂)

=

∫ 2π

0
dΦ

∫ π

0
β(Θ) sin Θ dΘ

=
8π

3
n

[
κ4α2

(4πε0)2

]
.

(2.26)

Thus, we see that the scattering coefficient is proportional to the number density of atoms
(the scatterers). If we divide b by n, we get a number that is characteristic of the atom:
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σb = b/n. The quantity σb is called the scattering cross section and has units of area
(m2).10

In addition to scattering it is possible for irradiance to be lost on passing through dV
by absorption of radiant power within dV . The absorption coefficient associated with this
is

a ,
1

P0(ξ̂0)

dPa
dl

, (2.27)

where dPa is the spectral radiant power absorbed from the beam within dV . Recognizing
that the change in the radiant power in the beam after traversing dl is −dPa, this formula
agrees with Eq. (1.27) derived for an electromagnetic wave propagating in an absorbing
medium.

Given the absorption and scattering coefficients it is natural to define the total attenu-
ation coefficient c to be the sum a+ b, i.e., a coefficient characteristic of all losses from dV
regardless of the cause:

c ,
1

P0(ξ̂0)

[
dPs
dl

+
dPa
dl

]
. (2.28)

In the scattering process described above, there was no wavelength change between the
incident and the scattered radiation. This is called elastic scattering.11 In addition, there
are processes similar to scattering, but in which the wavelength of the radiation is changed.
Such processes are usually referred to as inelastic scattering. Inelastic scattering involves
the absorption of a photon at one wavelength (called the exciting wavelength λE) and the
subsequent emission of a photon at a longer wavelength λF , with a negligible time delay
(∼ 10−9 sec) between the absorption and the emission. The radiometry of the inelastic
scattering process can be formulated in a manner analogous to that for elastic scattering,
after recognizing that in general radiant power in a band wavelengths less than λF can
inelastically scatter into λF . Consider a small volume dV , illuminated by an unpolarized

10Why is σb called a “cross section” with units of area? Consider a volume of atoms in the gaseous phase
in a chamber with a macroscopic area A and a small thickness ∆`. Associate a sphere of radius R with each
atom such that if a photon passes within a distance R from the atom it will be scattered. Now illuminate
the area A with a beam of N photons that uniformly fill, and are propagating normal to, the area A. Let
the number density n of atoms be so small that no two of the volumes associated with atoms overlap. The
number of atoms in the beam is nA∆`. But, from the point of view of the beam, the atoms are just a
collection of nA∆` areas each of size σb = πR2. The total cross sectional area associated with the atoms
in the beam is σbnA∆`. The fraction of photons ∆N/N that is scattered is the total cross sectional area
associated with the atoms divided by the total area of the beam A, i.e., σbn∆`. But, from the definition of
the scattering coefficient, ∆N/N = b∆`, so b = nσb. Thus, σb is the cross sectional area of the imaginary
volume centered on each atom, with the property that if a photon passes within the area it will be scattered.

11This terminology (elastic) stems from elementary mechanics where collisions between two objects in
which the energy is conserved are referred to as elastic collisions.
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parallel beam propagating in a direction ξ̂0 with an irradiance E(ξ̂0, λE) in a band of
wavelengths between λE and λE + ∆λE . If an intensity of inelastically scattered radiation
dJ(ξ̂, λF ) is observed at a wavelength λF propagating in a direction ξ̂, the inelastic volume
scattering function βIn(ξ̂0 → ξ̂, λE → λF ) is defined by,

βIn(ξ̂0 → ξ̂, λE → λF ) ,
dJ(ξ̂, λF )

dV
∫

∆λE
E(ξ̂0, λE) dλE

. (2.29)

The units of βIn are not the same as the units of β because of the integration over the ex-
citation wavelengths ∆λE . The latter integration provides the total radiant power incident
on the sample from wavelengths within ∆λE . (Note that the measurement of dJ(ξ̂, λF )
is made with a detector equipped with a filter of bandwidth ∆λF .) The inelastic volume
scattering function is sometimes referred to as the trans-spectral scattering function, al-
though this is non-standard terminology. In a manner similar to the scattering coefficient,
one can also define the inelastic scattering coefficient bIn(λE → λF ) through

bIn(λE → λF ) ,
∫

All ξ̂
βIn(ξ̂0 → ξ̂, λE → λF )dΩ(ξ̂). (2.30)

Inelastic scattering can be formulated for polarized incident irradiance in a manner similar
to elastic scattering above, i.e., scattering without any change in wavelength as discussed
earlier in this section, simply by replacing E(ξ̂0, λE), dJ(ξ̂, λF ) and βIn(ξ̂0 → ξ̂, λE → λF ),
by their Stokes vector and Mueller matrix counterparts.

From the definitions of a, β, and βIn, it is clear that if the absorption, elastic, and
inelastic scattering functions result from N separate components (species) within dV , that
if acting independently the components would have coefficients ai, etc., we can write

a =

N∑

n=1

ai

β =

N∑

n=1

βi

(βIn) =

N∑

n=1

(βIn)i

The inherent optical properties are summable (additive) over those of the individual com-
ponents.

We now have defined all of the inherent optical properties (IOPs) needed to develop
an equation governing the transport of radiance in an absorbing-scattering medium — the
radiative transfer equation.
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2.5 The Radiative Transfer Equation

In this section we provide a derivation of the radiative transfer equation and examine some
of its properties. In later sections we provide some methods of solution.

2.5.1 A Phenomenological Derivation of the Radiative Transfer Equation

The propagation of radiance in an absorbing-scattering medium is governed by the radiative
transfer equation (RTE). We know that radiation traversing a scattering medium for any
significant distance will be incident on a given point in the medium from all directions. We
will “derive” the RTE by keeping track of how the radiance in a given direction changes from
one position to another.12 The change in radiance propagating in a direction ξ̂ between
two positions ~r1 and ~r2 within a medium is determined by placing a radiometer at ~r1 to
measure L(~r1, ξ̂) and then moving it to ~r2 to measure L(~r2, ξ̂). This is shown schematically
in Figure 2.10, where in position 1 the radiometer, with a field of view restricted to a solid

angle dω by a Gershun tube, measures L1(ξ̂). When the radiometer is moved a distance
dl in the direction ξ̂, it records L2(ξ̂). If P1 and P2 are the radiant powers measured by
the detector at positions 1 and 2, respectively, some radiant power will have been removed
between positions 1 and 2 because absorption within the volume dAs dl and because of
scattering out of dAs dl. Thus,

P2 = P1 − dP = P1(1− c dl),

or dividing by dω dAd to form the radiances,

L2(ξ̂) = L1(ξ̂)(1− c dl) or
L2(ξ̂)− L1(ξ̂)

dl
= −cL1(ξ̂),

which shows that
dL(ξ̂)

dl
= −cL(ξ̂).

Thus, absorption and scattering cause the radiance to decrease as the radiometer is moved
in the direction of propagation. However, there may be sources of radiant power within

12We neglect changes in radiance with time as they occur on vastly different time scales from those of
interest, e.g. time scales of the order of the time it takes light to propagate from the top of the atmosphere
to the water surface (∼ 100µs). Most processes encountered in environmental optics can be considered
steady state processes in radiative transfer. (An exception is LIDAR which will be discussed in a later
chapter.)
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Figure RAD-11:  A radiometer in position 1 is measuring the radiance 

)ˆ(1 ξL  propagating in the ξ̂ direction.  It is then moved a distance dl in the 
ξ̂ direction to position 2 and measures a radiance )ˆ(2 ξL , that has been 
modified from )ˆ(1 ξL  by the presence of the additional volume of medium 
dV = dAS dl. (Note that the area of the open end of the Gershun tube is dAS.) 
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ξ̂  
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Figure 2.10: A radiometer in position 1 is measuring the radiance L1(ξ̂) propagat-

ing in the ξ̂ direction. It is then moved a distance dl in the direction ξ̂ to position 2
and measures a radiance L2(ξ̂) that has been modified from L1(ξ̂) by the presence
of the additional volume of medium dV = dASdl. (Note that the area of the open
end of the Gershun tube is dAS

the volume dV = dAs dl, e.g., scattering of radiant power incident on the volume from some
other direction, ξ̂′, into the direction ξ̂. How do we include such sources? The simplest
way is to consider the case of a single point source within dV as shown in Figure 2.11.
This source causes the detector to record a radiant power J0(ξ̂)dΩD, where J0(ξ̂) is the
intensity of the source in the direction ξ̂. If there are N such sources within dV , the total
power will be NJ0(ξ̂)dΩD, which leads to a radiance

dL(ξ̂) =
NJ0(ξ̂)dΩD

dω dAD
=
NJ0(ξ̂)

dAS
,

where in the last equality we used dω dAD = dΩD dAS . Now, NJ0(ξ̂) is just the total
intensity dJ(ξ̂) generated within the volume dASdl = dV , so

dL(ξ̂) =
dJ(ξ̂)

dV
dl, or

dL(ξ̂)

dl
=
dJ(ξ̂)

dV
.

Combining this gain by sources and the loss by absorption and scattering,

dL(ξ̂)

dl
= −cL(ξ̂) +

dJ(ξ̂)

dV
. (2.31)
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Figure RAD-12:  A point source within the volume dV illuminates the 
detector of a radiometer.  Note that SDD dAddAd Ω=ω . 
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Figure 2.11: A radiometer in position 1 is measuring the radiance L1(ξ̂) propagat-

ing in the ξ̂ direction. It is then moved a distance dl in the direction ξ̂ to position 2
and measures a radiance L2(ξ̂) that has been modified from L1(ξ̂) by the presence
of the additional volume of medium dV = dASdl. (Note that the area of the open
end of the Gershun tube is dAS .)

The quantity dJ(ξ̂)/dV is the intensity density of sources within the medium.

When the intensity density of sources within dV is caused by scattering from some other
direction ξ̂′, Eq. (2.19) shows that it is related to the volume scattering function by

dJ(ξ̂)

dV
= β(ξ̂′ → ξ̂)E(ξ̂′),

where E(ξ̂′) is the irradiance incident on dV from the direction ξ̂′ (with E measured on
a plane normal to ξ̂′). In general, irradiance will be incident from many directions (many
different ξ̂′s), and this can be accommodated by noting that the irradiance on a plane
normal to ξ̂′ resulting from radiance L(ξ̂′), contained in a solid angle dΩ(ξ̂′) around ξ̂′,
is L(ξ̂′)dΩ(ξ̂′) — recall the radiance of a near-parallel beam. Because ξ̂′ can be in any
direction,

dJ(ξ̂)

dV
=

∫

All ξ̂′
β(ξ̂′ → ξ̂)L(ξ̂′) dΩ(ξ̂′).

Thus, in an absorbing-scattering medium, the radiance in the direction ξ̂ changes with
distance l (measured along ξ̂) according to

dL(ξ̂)

dl
= −cL(ξ̂) +

∫

All ξ̂′
β(ξ̂′ → ξ̂)L(ξ̂′) dΩ(ξ̂′).

Recalling from the Mathematical Appendix that the directional derivative of a scalar func-
tion f(~r ) of position along the direction ξ̂ is

df(~r )

dl
= ξ̂ • ∇f(~r ),
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and noting that L(ξ̂) is a function of position in the medium, we have (restoring all of the
functional dependencies, including wavelength)

ξ̂ • ∇L(~r, ξ̂, λ) = −c(~r, λ)L(~r, ξ̂, λ) +

∫

All ξ̂′
β(~r, ξ̂′ → ξ̂, λ)L(~r, ξ̂′, λ) dΩ(ξ̂′). (2.32)

If the medium can also undergo inelastic scattering from λE to λ, with λE < λ, there is
an additional contribution to the intensity density given by Eq. (2.29) resulting in

ξ̂ • ∇L(~r, ξ̂, λ) = −c(~r, λ)L(~r, ξ̂, λ)

+

∫

All ξ̂′
β(~r, ξ̂′ → ξ̂, λ)L(~r, ξ̂′, λ) dΩ(ξ̂′)

+

∫

λE<λ

∫

All ξ̂′
βIn(~r, ξ̂′ → ξ̂, λE → λ)L(~r, ξ̂′, λE) dΩ(ξ̂′) dλE .

(2.33)

Finally, if the measurements performed in the derivation of Eq. (2.32) are carried out with
a radiometer equipped with polarizers to measure the Stokes vector associated with L, i.e.,
IL, the same sequence of steps clearly leads to13

ξ̂ • ∇IL(~r, ξ̂, λ) = −c(~r, λ)IL(~r, ξ̂, λ) +

∫

All ξ̂′
β(~r, ξ̂′ → ξ̂, λ)IL(~r, ξ̂′, λ) dΩ(ξ̂′), (2.34)

where c(~r, λ) is the 4 × 4 extinction Mueller matrix (see Chapter 3, Section 3.6.1, page
269). Note that in Eq. (2.34) the notation on the left-hand-side means

ξ̂ • ∇IL(~r, ξ̂, λ) ,




ξ̂ • ∇IL(~r, ξ̂, λ)

ξ̂ • ∇QL(~r, ξ̂, λ)

ξ̂ • ∇UL(~r, ξ̂, λ)

ξ̂ • ∇VL(~r, ξ̂, λ)


 .

Why not derive the RTE directly from Maxwell’s equations, i.e., let a plane electromag-
netic wave fall on a collection of absorbing and scattering atoms, molecules, or physical
particles, and directly compute the Poynting vector that would be measured by a radiome-
ter? Since each scatterer is subjected to the scattered fields of all of the other scatterers as
well as to the incident field, this would be an incredibly difficult task; however, it actually
has been accomplished by M. Mishchenko and co-workers under certain restrictions (see

13Note that the transfer equation written in this fashion is not really as simple as it appears because β
is referenced to directions relative to the plane of scattering, which change with the integration variable
ξ̂′, while IL is usually referenced to a set of directions relative to the plane containing the propagation
direction ξ̂ and some fixed direction. This state of affairs is remedied in Appendix 1 (Section 2.11.3 Eq.
(2.113)) for a plane parallel medium by referencing both β and IL to the same plane. The more useful
form of the radiative transfer equation, including polarization, is then given in Eq. (2.113).
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Bibliographic Notes). The final result is identical to the RTE as derived above. Thus, even
though the development here of the radiative transfer equation is a significant departure
from the methods of electromagnetic theory, the pedagogical advantage of the phenomeno-
logical derivation is undeniable.14

2.5.2 Uniqueness of RTE Solutions

If we write the RTE in the form

ξ̂ • ∇L(~r, ξ̂, λ) = −c(~r, λ)L(~r, ξ̂, λ) +

∫

All ξ̂′
β(~r, ξ̂′ → ξ̂, λ)L(~r, ξ̂′, λ) dΩ(ξ̂′) +Q(~r, ξ̂, λ)

where Q is the intensity density of sources in the medium, e.g., inelastic scattering or actual
light sources within the medium, then the following theorem can be proved:

Consider a volume V bounded by a surface S. Let ~r represent the position of
any point in the medium, ~ρ the position of any point on the boundary, and
n̂s the outward normal to S. Then, if a(~r, λ) > 0 throughout V , the radiance
L(~r, ξ̂, λ) is uniquely determined by the radiance L(~ρ, ξ̂, λ) incident on the
boundary from the outside (i.e., ξ̂ • n̂s < 0) and the sources Q(~r, ξ̂, λ) within
V . If a(~r) = 0 everywhere in the medium, the radiance exiting V (i.e., L(~ρ, ξ̂, λ)
with ξ̂ • n̂s > 0) is still unique, but the uniqueness the interior radiance has
not been proved.

As all geophysical media will have some absorption at each wavelength, we can assume
that the interior and exiting radiance for a volume are uniquely determined by the radiance
incident on the volume and the sources within the volume.

2.5.3 Superposition of Solutions

Noting that the radiative transfer equation is linear in the radiance, it is clear that

given a volume V in which the inherent optical properties c and β are specified,
if L1 satisfies the RTE in V with source Q1 subject to a radiance L1B incident

14In Chapter 3 we will study the scattering of electromagnetic radiation from single particles. As a
prelude to the phenomenological derivation of the RTE, we operationally defined β(ξ̂′ → ξ̂) as the scattered
intensity density from a small volume divided by the irradiance of the incident (collimated) beam. In order
that β(ξ̂′ → ξ̂) be derivable from electromagnetic theory, we must require that the volume be sufficiently
small and the density of scatterers be sufficiently low, that each scatterer is subjected to only the external
(incident) field, i.e., there is negligible multiple scattering within the volume. In addition, we must assume
that all of the scatterers within the volume scatter independently (incoherently).
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on the boundary from the outside, and L2 satisfies the RTE in V with source
Q2 subject to a radiance L2B incident on the boundary from the outside, then,
L1 + L2 will satisfy the RTE in V with source Q1 +Q2 subject to L1B + L2B

incident on the boundary from the outside.

This allows one, for example, to find the radiance in a volume in the presence of both
radiance incident from the outside and an internal source by first solving the problem in
the absence of the internal source, and then adding to this the solution of the problem in
the presence of the internal source with no radiance incident from the outside. This will
be useful in the discussion of inelastic processes.

2.5.4 Continuously Varying Refractive Index

Equation (2.14) shows that across an interface between two lossless dielectric media of
different refractive indices, L/m2 decreases along the direction of propagation only through
Fresnel reflection at the interface. This reflection results from a discontinuous change in
the refractive index. If the refractive index is a continuous function of position, then tF = 1
and L/m2 is invariant along the propagation path, i.e., along a ray. Applying this, we find
that in a medium in which m is a continuous function of position, Eq. (2.31) becomes

d

dl

[
L(ξ̂)

m2

]
= −c

[
L(ξ̂)

m2

]
+

1

m2

dJ(ξ̂)

dV
,

where ξ̂ is a unit vector tangent to the (generally curved) propagation path. When this
is taken into account, the radiative transfer equations for a medium in which m is a
continuous function of position are those given in Eq. (2.32), (2.33), and (2.34), with all
of the radiances replaced by radiance divided by m2(~r).

2.5.5 The Reciprocity Principle

Consider two different radiative transfer problems on the same medium. Let the medium
have a volume V bounded by a surface S that has a normal (outward) n̂. Let any point
on the boundary of the medium be indicated by the position vector ~ρ. In Problem 1
the radiance incident on the boundary from the outside is L1(~ρ, ξ̂, λ) and the internal
sources are specified by Q1(~r, ξ̂, λ). Likewise, in Problem 2 the radiance incident on the
boundary from the outside is L2(~ρ, ξ̂, λ) and the internal sources are specified by Q2(~r, ξ̂, λ).
The inherent optical properties of the medium are identical in both problems. Under the
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assumption that the volume scattering function is time reversal invariant, i.e.,

β(~r,−ξ̂′ → −ξ̂, λ) = β(~r, ξ̂ → ξ̂′, λ),

it is possible to derive the reciprocity principle that relates the solutions L1(~r, ξ̂, λ) and
L2(~r, ξ̂, λ) of these two problems to one another:

∫

S
dS

∫

ξ̂•n̂<0
|ξ̂ • n̂|

[
L1(~ρ, ξ̂, λ)L2(~ρ,−ξ̂, λ)

m2(~ρ)
− L1(~ρ,−ξ̂, λ)L2(~ρ, ξ̂, λ)

m2(~ρ)

]
dΩ(ξ̂)

=

∫

4π
dΩ(ξ̂)

∫

V

[
Q2(~r,−ξ̂, λ)L1(~r, ξ̂, λ)

m2(~r)
− Q1(~r, ξ̂, λ)L2(~r,−ξ̂, λ)

m2(~r)

]
dV.

(2.35)

In this equation, L1(~ρ,−ξ̂, λ) and L2(~ρ,−ξ̂, λ) are the radiances exiting the medium at the
boundaries, and the ξ̂ • n̂ < 0 on the solid angle integral on the left-hand-side indicates
that the integration is restricted to directions into the medium.15 The meaning of the

15As a simple and useful example of the application of the reciprocity principle, consider two radiative
transfer problems on a plane parallel medium bounded on the top. Radiance is incident from the outside on
the boundary and there are no sources (Q’s) inside the medium. In the first problem, L1(ξ̂) = F0δ(ξ̂ − ξ̂1),
while in the second L2(ξ̂) = F0δ(ξ̂ − ξ̂2). Thus, in problem one a parallel beam of radiance is incident in
the direction ξ̂1, while in the second

 

ξ̂1  

n̂  

−ξ̂1
 

n̂  

ξ̂2  −ξ̂2  

the beam is incident in the direction ξ̂2. Applying the reciprocity principle, Eq. (2.35),

0 =

∫
S

dS

∫
ξ̂•n̂<0

|ξ̂ • n̂|
[
F0δ(ξ̂ − ξ̂1)L2(−ξ̂)− L1(−ξ̂)F0δ(ξ̂ − ξ̂2)

]
dΩ(ξ̂)

=

∫
S

dS F0

[
|ξ̂1 • n̂|L2(−ξ̂1)− |ξ̂2 • n̂|L1(−ξ̂2)

]
=⇒

[
|ξ̂1 • n̂|L2(−ξ̂1)− |ξ̂2 • n̂|L1(−ξ̂2)

]
= 0,

(2.36)

or
L1(−ξ̂2)

|ξ̂1 • n̂|
=
L2(−ξ̂1)

|ξ̂2 • n̂|
.

If we use the notation L(ξ̂a → ξ̂b) to indicate the radiance propagating in the direction ξ̂b when the source
is a beam propagating in the direction ξ̂a, then in this more explicit notation:

L(ξ̂1 → −ξ̂2)

|ξ̂1 • n̂|
=
L(ξ̂2 → −ξ̂1)

|ξ̂2 • n̂|
.
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assumption of time reversal invariance of the volume scattering function is that if we viewed
the scattering process backward in time, the same volume scattering function would apply.
We shall not provide a proof of the reciprocity principle here; however, proofs can be
found in references provided in the Bibliographic Notes. This relationship will be useful
by relating difficult-to-solve radiative transfer problems to those that are easier to solve.

2.5.6 Plane-Parallel Media and One-Dimensional Radiative Transfer

In nearly all of geophysical optics we can neglect the curvature of the earth, the oceans,
and the atmosphere.16 Thus, for example, we can treat the ocean and the atmosphere as
plane-parallel media, by which we mean surfaces of constant pressure in the atmosphere
and ocean become flat surfaces of constant altitude and depth, respectively. In addition,
because the variation in the inherent optical properties of both media with distance are
much more rapid in the vertical than in the horizontal, we assume that these properties
vary only in the vertical, i.e., the inherent optical properties are uniform in the horizontal.
We set up the coordinate axes with z directed into the medium from the boundary and
the x− y plane on the surface. The corresponding unit vectors are êz, êx and êy. Then we
have

c(~r, λ) = c(z, λ) and β(~r, ξ̂′ → ξ̂, λ) = β(z, ξ̂′ → ξ̂, λ).

In addition, if the boundary radiances (top and bottom) are independent of position in the
horizontal and internal sources are dependent only on the vertical coordinate, the interior
and exiting radiance cannot depend on horizontal position and

L(~r, ξ̂, λ) = L(z, ξ̂, λ) and ξ̂ • ∇L(~r, ξ̂, λ) = ξ̂ • êz
∂

∂z
L(z, ξ̂, λ).

Thus, the RTE in this setting is

ξ̂ • êz
∂

∂z
L(z, ξ̂, λ) = −c(z, λ)L(z, ξ̂, λ) +

∫

All ξ̂′
β(z, ξ̂′ → ξ̂, λ)L(z, ξ̂′, λ) dΩ(ξ̂′) +Q(z, ξ̂, λ),

(2.37)
and the incident boundary radiances are specified at two values of z, the top and the
bottom of the medium. Equation (2.37) is called the one-dimensional (or 1-d) radiative
transfer equation.

In many applications that we will consider, the 1-d medium will be illuminated by a
beam, e.g., the solar beam. In this case the radiance due to the beam is often treated
separately in the following manner. The radiance incident on the top of the medium is

16Exceptions to this occur when the Sun is near the horizon, when a satellite sensor views near the limb
of the Earth, or both simultaneously.
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given by Eq. (2.18), i.e., L(0, ξ̂, λ) = F0(λ)δ(2)(ξ̂ − ξ̂0), where F0 is the incident irradiance
on a plane normal to ξ̂0. The beam itself will propagate through the medium according to

Ls(z, ξ̂, λ) = L(0, ξ̂, λ) exp[−
∫ l

0
c(l′, λ) dl′],

where l is the distance along the path (ξ̂0) from the surface to a depth z: l = z/|ξ̂0 • êz|.
(Note that the solar beam is assumed here to have zero solid angle, so no radiance is ever
scattered into the beam.) Thus, at all points in the medium, the solar beam produces a
radiance

Ls(z, ξ̂, λ) = F0(λ)δ(2)(ξ̂ − ξ̂0) exp

[
−
∫ z

0

c(z′, λ)dz′

|ξ̂0 • êz|

]
.

The radiance generated by this beam through scattering is just

∫

All ξ̂′
β(z, ξ̂′ → ξ̂, λ)Ls(z, ξ̂

′, λ) dΩ(ξ̂′) = F0(λ)β(z, ξ̂0 → ξ̂, λ) exp

[
−
∫ z

0

c(z′, λ)dz′

|ξ̂0 • êz|

]
.

Including this as a source, the RTE becomes

ξ̂ • êz
∂

∂z
L(z, ξ̂, λ) = −c(z, λ)L(z, ξ̂, λ)

+

∫

All ξ̂′
β(z, ξ̂′ → ξ̂, λ)L(z, ξ̂′, λ) dΩ(ξ̂′)

+ F0(λ)β(z, ξ̂0 → ξ̂, λ) exp

[
−
∫ z

0

c(z′, λ)dz′

|ξ̂0 • êz|

]

+Q(z, ξ̂, λ),

(2.38)

where, now at the upper boundary we have L(0, ξ̂, λ) = 0 because the solar beam has been
explicitly included as an additional source of radiance within the medium, i.e., as a Q.
Equations (2.37) and (2.38) are completely equivalent. The only virtue of Eq. (2.38) over
Eq. (2.37) is that at times it is computationally preferable to have the simpler boundary
condition; L(0, ξ̂, λ) = 0.

2.5.7 Irradiances in One-Dimensional Media

In plane-parallel media such as the ocean and the atmosphere, the irradiances are useful,
particularly when referenced to a horizontal surface. The downwelling irradiance Ed(z, λ)
and the upwelling irradiance Ed(z, λ) are given by

Ed(z, λ) ,
∫

ξ̂•êz>0
|ξ̂ • êz|L(z, ξ̂, λ) dΩ(ξ̂), (2.39)
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and

Eu(z, λ) ,
∫

ξ̂•êz<0
|ξ̂ • êz|L(z, ξ̂, λ) dΩ(ξ̂), (2.40)

respectively.17 These can be combined to form the vector irradiance EV (z, λ):

EV (z, λ) , Ed(z, λ)− Eu(z, λ) =

∫

All ξ̂
ξ̂ • êz L(z, ξ̂, λ) dΩ(ξ̂). (2.41)

In addition, the downwelling (E0d) and upwelling (E0u) scalar irradiances are defined as
above but without the ξ̂ • êz factor:

E0d(z, λ) ,
∫

ξ̂•êz>0
L(z, ξ̂, λ) dΩ(ξ̂), (2.42)

E0u(z, λ) ,
∫

ξ̂•êz<0
L(z, ξ̂, λ) dΩ(ξ̂), (2.43)

E0(z, λ) , E0d(z, λ) + E0u(z, λ) =

∫

All ξ̂
L(z, ξ̂, λ) dΩ(ξ̂). (2.44)

The sum E0 is referred to as the scalar irradiance. The plane irradiances Ed and Eu are
the energy fluxes (in the interval ∆λ and divided by ∆λ) across a horizontal surface at z
propagating in the downward and upward directions, respectively. The vector irradiance
is the net downward energy flux. How do we interpret the scalar irradiance? Consider the
figure below showing radiance from the direction ξ̂, within the solid angle dΩ(ξ̂), incident

!ξ̂
!dA !!dΩ(ξ̂)

!p
•

17Sometimes these are referred to as plane irradiances to contrast them with the vector irradiance or the
scalar irradiance defined next.
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on a detector of area dA. The radiant power incident on dA from directions within dΩ(ξ̂)
is

d3P(ξ̂, λ) = L(ξ̂, λ) dAdΩ(ξ̂) dλ = d2
∣∣〈(~S(ξ̂, λ)

〉
Ave

∣∣ dA,

where ~S(ξ̂, λ) is the sum of the Poynting vectors from all of the (independent) sources of
radiant power within the field of view of the radiometer, and within the spectral interval
dλ. Thus,

L(ξ̂, λ) dΩ(ξ̂) =
d

dλ

[
d
∣∣〈(~S(ξ̂, λ)

〉
Ave

∣∣
]

=
d

dλ

[
c`
〈
duem(ξ̂, λ)

〉]
,

where c` is the speed to light18 and duem(ξ̂, λ) is the electromagnetic energy density in the
region around the point “p” due to radiation with propagation directions within dΩ(ξ̂) and
wavelengths within dλ. Now, if we integrate over dΩ, i.e., sweep the radiometer over the
surface of the sphere centered on the point “p,” so as to cover the whole imaginary sphere
around “p,” and sum the radiance-solid angle product for each position, we have

∫

All ξ̂
L(ξ̂, λ) dΩ(ξ̂) = E0(p, λ) =

d

dλ

[〈
uem(ξ̂, λ)

〉]
,

where 〈uem〉 is the time-averaged electromagnetic energy density at “p” from radiation
within dλ centered on λ, and d〈uem〉/dλ is the time-averaged spectral energy density at
“p.” Therefore, the scalar irradiance at a point is the speed of light times the time-
averaged spectral energy density at that point.19 Relabeling the spectral energy density

18We will use the notation c` for the speed of light in situations where it might be confused with the
beam attenuation coefficient c.

19One can also reach the same conclusion using the photon concept. In the figure below, radiance from
the direction ξ̂ in dΩ falls on a detector of area dA.

 
 
 
Figuure RAD-Scalar:  Radiance from the direction ξ̂  in dΩ falls on a 
detector of area dA. All of the photons that pass through dA in time Δt are 
contained within the cylinder of volume cΔt dA.  

! cℓΔt  

dA 

dΩ 

ξ̂  

• p 
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d〈uem〉/dλ , 〈usem〉, we obtain the final result

∫

All ξ̂
L(ξ̂, λ) dΩ(ξ̂) = E0(p, λ) = c`

〈
usem(p, λ)

〉
.

2.5.8 Measurement of Irradiances

Equations (6.1) – (6.6) show how the various irradiances can be determined from the ra-
diance distribution L(z, ξ̂, λ); however, in practice the radiance distribution is very rarely
measured for the full range of directions ξ̂. Is there a way of measuring the various ir-
radiances without requiring the full radiance distribution? Most measurements of plane
irradiance are made with relatively simple devices called irradiance meters. Here’s how
they work. We want to measure the spectral irradiance falling on the surface of area AS
(shaded) in the figure below. In the figure, the detector D (including the appropriate
spectral filter) views the surface AS from below within a cylindrical container. The surface
of area AS is made of an optical diffusing material that is usually translucent plastic or a
milky-looking glass (opal glass). Ideally, such a material has the property that if any point

D 

!ξ̂

!!n̂S

D 

 

θ 

sn̂
dΩ 

AS 

ξ̂
 

)ˆ(2 ξPd  

D 

During a time interval ∆t, the number, ∆n(ξ̂, λ), of photons in dλ that stream through dA are all contained
within the cylinder of volume c` ∆t dA. If the irradiance is independent of time (as we are assuming) then
the spatial distribution of photons within the cylinder is uniform and the density of photons within the
cylinder (and also in the sphere shown in the figure), d2up(ξ̂, λ) = ∆n(ξ̂, λ)/(c` ∆t dA), is uniform. The
differential d2up(ξ̂, λ) is of second order, because ξ̂ is within dΩ and λ is within dλ. The radiant power
falling on dA is

d3P =
hc`
λ

∆n(ξ̂, λ)

∆t
=
hc`
λ

[
c` d

2up(ξ̂, λ)
]
dA = L(ξ̂, λ) dAdΩ dλ.

Therefore L(ξ̂, λ) dΩ = (hc`/λ)c` d
2up(ξ̂, λ)/dλ. If we now integrate over all solid angles around “p,” we

find

E0(p, λ) =
hc`
λ

d

dλ
[c`up(λ)] ,

but since (hc`/λ)up(λ) = uem(λ), we arrive at the result in the text.
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on the surface is illuminated by a thin beam of parallel light propagating in the direction ξ̂
(left panel), and having a cross sectional area AB � AS |n̂s • ξ̂|, the output of the detector
D is independent of ξ̂,20 and proportional to PB(ξ̂), the incident spectral radiant power in
the beam,21 i.e., the current in the detector is i ∝ P (ξ̂), and independent of ξ̂. When the
sensor is illuminated by a broad beam (center panel), with AB � AS |n̂s • ξ̂|, and that can
be imagined to be made up of a large number of thin beams, the power from the photons
actually striking the surface is proportional to |n̂s • ξ̂|, so the current in the detector is
proportional to |n̂s • ξ̂|.22 Finally, when the surface is illuminated by an extended source
(right panel), if we consider the power only within the solid angle dΩ(ξ̂), i is proportional to
L(ξ̂) |n̂ • ξ̂|AS dΩ(ξ̂). Therefore, when the surface can view the entire upward hemisphere,
the actual current will be

i ∝ PTotal =

∫

Ω
L(ξ̂) |n̂ • ξ̂|AS dΩ(ξ̂) = AS E,

where E is the plane irradiance on the horizontal surface of which AS is a part. In the
orientation shown, the current in the detector is proportional to the downwelling irradi-
ance: i ∝ Ed. Turn the whole assembly upside down and i ∝ Eu. The whole assembly,
diffuser, detector, and (hopefully watertight) container is called an irradiance meter. The
proportionality constant relating i and E is referred to as the calibration constant of the
irradiance meter.23 By placing several detectors with different filters (or some equivalent
arrangement) the full spectrum of the irradiance can be obtained.

Is there a way that we can use such an approach to measure the scalar irradiance? The
answer is yes. Consider rather than a plane diffuser, a spherical diffuser with the detector

20A sheet of white paper is an example of a diffuser that is close to ideal. This can be verified by
illuminating the sheet from behind with a narrow beam formed by passing sunlight through a small hole
(or by illuminating the sheet with a laser beam, e.g., from a laser pointer) and viewing the transmitted
beam (a bright spot) from the other side. As the angle between the surface normal to the beam is varied,
it will be observed that the brightness of the spot on the back surface of the paper varies only slightly, and
with most of the variation occurring at large angles (e.g.,>∼ 80◦). What variation there is can be reduced
by using two sheets, i.e., a thicker diffuser, etc., but with a decrease in overall brightness.

21Note, PB is proportional to the number of photons falling on the surface per second (NB).
22For this dependence on angle for a broad beam, such a diffuser is ofter referred to as a cosine collector.
23It is important to note that if the radiometric calibration of the instrument is carried out in air (for

convenience), the effect of placing the instrument in water must be investigated. The performance of a
diffuser changes when it is passed from air to water because the change in the refractive index contrast at
its surface, and this effect (the immersion effect) must be assessed. In addition, the diffuser is usually not
placed flush with the surface of the container as shown in the drawing, but usually protrudes a little above
it, allowing light to come in from the sides in order to better approximate |n̂s • ξ̂| in the response to a broad
beam at low values of |n̂s • ξ̂| Details of the design and calibration of such an instrument can be found in
Tyler and Smith [1970].



2.5. THE RADIATIVE TRANSFER EQUATION 133

D 

inside as shown in the figure above. Such a diffuser/detector arrangement would behave
as the plane diffuser-detector arrangement when illuminated by a narrow pencil of light,
i.e., the response of the detector would be independent of the beam’s direction and of the
position where it struck the sphere,24 but when illuminated by a broad beam, the response
would be independent of the direction of the incident light. Viewing a diffuse scene, the
power collected by the sphere from ξ̂ would be given by L(ξ̂)πR2 dΩ(ξ̂), where R is the
radius of the sphere and πR2 is the projected area of the sphere in the ξ̂ direction. The
total spectral radiant power is found by addition (integration) and the current is therefore
proportional to

∫

Ξ
L(ξ̂) dΩ(ξ̂),

where Ξ is the range of directions ξ̂ that can influence the sphere. To provide for a well
defined Ξ a baffle can be placed over the disk on which the detector sits in the diagram,
restricting the field of view of the sphere to angles between the vertical and horizontal,
i.e., blocking most light propagating in upward directions. In that case, the current in the
detector, i ∝ E0d. Turn the assembly upside down and i ∝ E0u. Sometimes the sphere is
at the end of a thin post protruding from a small container. In this case Ξ is nearly 4π Sr
and the current in the detector is approximately proportional to E0. This is usually the
case for measurements of quantum irradiance (see Chapter 6). As with the plane irradiance
meter, calibration must be carried out to ensure that the scalar instrument performs as
desired. Of the two instruments, the plane irradiance meter is much more common than
the scalar irradiance meter.

24Some additional optics within the sphere would be required for the position independence, but clearly
the response at the center of the sphere would be independent of position on the surface.
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2.5.9 Auxiliary Optical Properties

There are several auxiliary optical properties that are useful in radiative transfer theory.
The first is the scattering phase function defined according to25

P (~r, ξ̂′ → ξ̂, λ) ,
4πβ(~r, ξ̂′ → ξ̂, λ)

b(~r, λ)
,

the second is the albedo of single scattering (also referred to as the single scattering albedo),

ω0(~r, λ)E ,
b(~r, λ)

c(~r, λ)
.

These are important, because for a collection of identical scatterers, both quantities are
independent of concentration. In addition, ω0 is the probability of scattering of a photon,
(1− ω0) is the probability of absorption, and given that scattering takes place,

P (~r, ξ̂′ → ξ̂, λ)

4π
dΩ(ξ̂)

is that probability of scattering of a photon at ~r from ξ̂′ to ξ̂ (within the range of solid
angles dΩ(ξ̂)). For atomic scattering (also called Rayleigh scattering), Eqs. (2.25) and
(2.26) show that

P (Θ) =
3

4

[
1 + cos2 Θ

]
, (2.45)

where Θ is the scattering angle.

The reduction to plane-parallel media in which the inherent optical properties depend
only on z is made by replacing ~r by z as before. In addition, in such a medium, another
useful quantity is the optical depth defined through

dτ(z, λ) = c(z, λ) dz or τ(z, λ) =

∫ z

0
c(z, λ) dz.

In terms of these auxiliary optical properties the RTE for a 1-d medium becomes

ξ̂•êz
∂

∂τ
L(τ, ξ̂, λ) = −L(τ, ξ̂, λ)+

ω0(τ, λ)

4π

∫

All ξ̂′
P (τ, ξ̂′ → ξ̂, λ)L(τ, ξ̂′, λ) dΩ(ξ̂′)+

Q(τ, ξ̂, λ)

c(τ, λ)
.

(2.46)

25Some authors define the phase function as we do here, while others define it without the 4π factor, i.e.,
β/b. This causes endless confusion. The reader should always make sure which convention is being used
when consulting the radiative transfer literature.
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2.6 Methods of Solving the RTE

There are only a few situations in which analytical solutions of the RTE have been found.
Generally, all are cases in which ω0(τ, λ) = 0 or P (τ, ξ̂′ → ξ̂, λ) ∝ δ(2)(ξ̂′ − ξ̂), i.e., there
is no scattering or only forward scattering. However, there are some special situations in
which analytical solutions can be found, namely deep within a 1-d semi-infinite medium
far from the boundary.26 When the boundary is illuminated from outside the medium, the
radiance can be found to within a multiplicative constant for scattering with the isotropic
and Rayleigh phase functions for all values of ω0. Analytic solutions can also be found for
such a medium when the source is internal with a uniform, isotropic, intensity density, i.e.,
Q(τ, ξ̂) independent of τ and ξ̂. Unfortunately, for settings of interest in remote sensing,
we must rely on numerical solutions.

There are several methods for obtaining numerical solutions of the RTE. The two that
have been most useful for our purposes are the successive order of scattering method, used
in developing the atmospheric correction algorithm, and the Monte Carlo method used to
provide solutions to the transfer equation in the water. These are discussed in this section.

2.6.1 Successive Order of Scattering

Consider a slab of a 1-d medium that extends from z = 0 to z = z1 (Figure 2.12). Assume
that there are no internal sources, i.e., Q = 0. Also assume that the inherent optical prop-
erties of the slab are independent of position, noting that if they do depend on depth, such
stratification could be represented by a set of homogeneous slabs. Under these conditions,
the RTE becomes

ξ̂ • êz
∂

∂τ
L(τ, ξ̂) = −L(τ, ξ̂) +

ω0

4π

∫

All ξ̂′
P (ξ̂′ → ξ̂)L(τ, ξ̂′) dΩ(ξ̂′), (2.47)

and the total optical thickness of the medium is τ1 = cz1. Note that for compactness we are
omitting wavelength λ from the argument list. To find the radiance L(τ, ξ̂) this equation
must be solved subject to boundary conditions at the top and bottom of the slab:

L(0, ξ̂) = LTop(ξ̂) and L(τ1, ξ̂) = LBottom(ξ̂), (2.48)

where in these expressions ξ̂ • n̂Top < 0, ξ̂ • n̂Bottom < 0, and n̂Top and n̂Bottom are the
outward normals of the top and bottom, respectively.

26Later we will refer to this as the asymptotic regime (see page ??).
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Figure RAD-14:  Geometry of a 1-d slab.  The (outward) normals for the 
top and bottom surfaces n̂ are shown.  Depth z is measured downward, and 
the radiances )ˆ,0( ξincL  and )ˆ,( 1 ξzLinc  are incident on the top and bottom of 
the slab, respectively.  
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Figure 2.12: Geometry of a 1-d slab. The (outward) normals, n̂, for the top and
bottom surfaces are shown. Depth z is measured downward, and the radiances
Linc(0, ξ̂) and Linc(z1, ξ̂) are incident on the top and bottom of the slab, respec-
tively.

We now assume that the radiance can be expanded in a series in ω0:

L(τ, ξ̂) = L(0)(τ, ξ̂) + ω0L
(1)(τ, ξ̂) + ω2

0L
(2)(τ, ξ̂) · · · =

∞∑

n=0

ωn0L
(n)(τ, ξ̂). (2.49)

Inserting this into the RTE, and rearranging the terms yields

[
ξ̂ • êz

∂

∂τ
L(0)(τ, ξ̂) + L(0)(τ, ξ̂)

]
+

ω0

[
ξ̂ • êz

∂

∂τ
L(1)(τ, ξ̂) + L(1)(τ, ξ̂)− 1

4π

∫

All ξ̂′
P (ξ̂′ → ξ̂)L(0)(τ, ξ̂′) dΩ(ξ̂′)

]
+

ω2
0

[
ξ̂ • êz

∂

∂τ
L(2)(τ, ξ̂) + L(2)(τ, ξ̂)− 1

4π

∫

All ξ̂′
P (ξ̂′ → ξ̂)L(1)(τ, ξ̂′) dΩ(ξ̂′)

]
+

· · ·
= 0.

Since ω0 is arbitrary, satisfying this equation (for any finite number of terms) requires that
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the terms in the square brackets vanish individually, i.e.,

ξ̂ • êz
∂

∂τ
L(0)(τ, ξ̂) + L(0)(τ, ξ̂) = 0,

ξ̂ • êz
∂

∂τ
L(1)(τ, ξ̂) + L(1)(τ, ξ̂) =

1

4π

∫

All ξ̂′
P (ξ̂′ → ξ̂)L(0)(τ, ξ̂′) dΩ(ξ̂′),

ξ̂ • êz
∂

∂τ
L(2)(τ, ξ̂) + L(2)(τ, ξ̂) =

1

4π

∫

All ξ̂′
P (ξ̂′ → ξ̂)L(1)(τ, ξ̂′) dΩ(ξ̂′),

· · ·

ξ̂ • êz
∂

∂τ
L(n)(τ, ξ̂) + L(n)(τ, ξ̂) =

1

4π

∫

All ξ̂′
P (ξ̂′ → ξ̂)L(n−1)(τ, ξ̂′) dΩ(ξ̂′),

· · ·

(2.50)

Thus, solving all of the individual equations in Eq. (2.50) provides a solution to Eq. (2.47).
However, to solve the problem we posed, the solution must also satisfy the boundary
conditions Eq. (2.48). There is a considerable amount of freedom on how these boundary
conditions can be spread over the various L(n)’s: the simplest choice is

L(0)(0, ξ̂) = LTop(ξ̂) and L(0)(τ1, ξ̂) = LBottom(ξ̂),

with

L(n)(0, ξ̂) = 0 and L(n)(τ1, ξ̂) = 0 for n > 0.

Clearly satisfying all of the equations in Eq. (2.50) subject to these boundary conditions
provides a solution to Eq. (2.47) subject to Eq. (2.48). All of this hinges of course on
the assumption that the series Eq. (2.49) converges. Preisendorfer [1965] has been able
to prove convergence of the series under the condition that ω0 < 1, i.e., under the same
conditions that one can prove uniqueness of the solutions of the RTE.

The method described above provides what is called the successive order of scattering
solution. The reason for this is that L(0) is the radiance from the outside that has not
been scattered, L(1) is the radiance in the medium that has undergone one scattering in
the medium, etc.27

27This interpretation allows us compute the average number of scatterings that have been undergone
to yield the radiance at a given point in the medium. Equation (2.49) shows that the probability of n
scatterings (Pn) is just ωn0Ln/L. Therefore, the mean number of scatterings is given by

〈n〉 =

∞∑
0

nPn =

∞∑
0

n
ωn0Ln
L

=
ω0

L

dL

dω0
.

Note that the average number of scatterings depends on the depth in the medium as well as the direction
of propagation of the radiance.
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Examination of the final equations of the successive order of scattering solution suggests
that stratified media can be approached in a similar manner. If we let the phase function
and ω0 be functions of τ , and formally write

ξ̂ • êz
∂

∂τ
L(0)(τ, ξ̂) + L(0)(τ, ξ̂) = 0,

ξ̂ • êz
∂

∂τ
L(1)(τ, ξ̂) + L(1)(τ, ξ̂) =

ω0(τ)

4π

∫

All ξ̂′
P (τ, ξ̂′ → ξ̂)L(0)(τ, ξ̂′) dΩ(ξ̂′),

ξ̂ • êz
∂

∂τ
L(2)(τ, ξ̂) + L(2)(τ, ξ̂) =

ω0(τ)

4π

∫

All ξ̂′
P (τ, ξ̂′ → ξ̂)L(1)(τ, ξ̂′) dΩ(ξ̂′),

· · ·

ξ̂ • êz
∂

∂τ
L(n)(τ, ξ̂) + L(n)(τ, ξ̂) =

ω0(τ)

4π

∫

All ξ̂′
P (τ, ξ̂′ → ξ̂)L(n−1)(τ, ξ̂′) dΩ(ξ̂′),

· · ·

(2.51)

Then solving these subject to the boundary conditions

L(0)(0, ξ̂) = LTop(ξ̂) and L(0)(τ1, ξ̂) = LBottom(ξ̂),

with

L(n)(0, ξ̂) = 0 and L(n)(τ1, ξ̂) = 0 for n > 0,

and summing the individual solutions

L(τ, ξ̂) = L(0)(τ, ξ̂) + L(1)(τ, ξ̂) + L(2)(τ, ξ̂) · · · =
∞∑

n=0

L(n)(τ, ξ̂), (2.52)

clearly satisfies Eq. (2.47) and Eq. (2.48) and therefore is a solution to the problem of a
stratified slab. Note that in this case

τ(z) =

∫ z

0
c(z) dz, so τ1(z1) =

∫ z1

0
c(z) dz.

The extension of the successive order of scattering method to the case when the polar-
ization of the radiance is considered, i.e., Eq. (2.34) (or really, Eq. (2.113)), is immediate
— no new concepts are required.

In general the successive order of scattering method is useful whenever the product of
ω0 and τ1 is small, in which case only a small number of terms in the series is required. It
is most useful for radiative transfer in the atmosphere in the visible region of the spectrum.
In the ocean, where τ1 is essentially ∞, the technique is only valuable for ω0 � 1.
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2.6.2 The Monte Carlo Method

The Monte Carlo solution is a direct simulation of the radiative transfer process wherein
a large number of individual photons are followed through the medium.28 Decisions con-
cerning where an individual photon interacts with the medium, what type of interaction is
involved, and the fate of photons after the interaction, are based on the probability that
these various events will occur.To explain the procedure we will discuss a solution to the
problem described in the previous section — a 1-d slab of optical thickness τ1, with a given
ω0(τ) and P (τ, ξ̂′ → ξ̂). For simplicity, we will assume that the radiance on the upper
boundary is in a narrow range of solid angles ∆Ω(ξ̂0) around a single direction ξ̂0, i.e.,
a beam, and that there is no radiance incident on the lower boundary from the outside.
This simplifying assumption results in no loss in generality because the solution for any
incident distribution of radiance on the top of the slab can be developed from a simple
superposition of such beams. Let L(0, ξ̂0) be the radiance incident on the upper boundary.
We need to relate this to a photon rate. This is straightforward as the radiant power falling
on a surface is proportional to the rate N at which photons strike the surface, i.e., Eq.
(2.1). Recall that the radiance incident on an area dAS of a surface, with normal n̂, from
a direction ξ̂ within a range of solid angles dΩS(ξ̂) is (Eq. (2.11))

L(ξ̂) =
d2P (ξ̂)

|ξ̂ • n̂| dAS dΩS(ξ̂)
∝ d2N(ξ̂)

|ξ̂ • n̂| dAS dΩS(ξ̂)
.

Letting the proportionality constant be C, and the rate at which photons are incident on
an area AS at the top of the slab (τ = 0) be N0, we have

L(0, ξ̂0) = C
N0

|ξ̂0 • êz|AS dΩS(ξ̂0)
.

In a similar manner, within the medium, if N(τ, ξ̂) is the rate at which photons propagating
in the direction ξ̂ within dΩ(ξ̂) cross a horizontal area A (normal to êz) at an optical depth
τ is

L(τ, ξ̂) = C
N(τ, ξ̂)

|ξ̂ • êz|AdΩ(ξ̂)
.

Note that we have chosen horizontal areas because L depends only on the vertical co-
ordinate z. Practically, this means that N0 ∝ AS and N(τ, ξ̂) ∝ A. Thus, if we in-
ject a number N0 of photons within dΩ(ξ̂0) into the slab from the top and trace their
life histories, the number that cross a horizontal surface at τ within dΩ(ξ̂) is propor-
tional to the radiance L(τ, ξ̂) on that surface. Since the photon rates are proportional

28In this section we make extensive use of the photon concept, as the Monte Carlo method was originally
developed to solve problems that focussed on the transport of neutrons in nuclear reactors, i.e., the multiple
scattering of physical particles. A development of the Monte Carlo method of solving the RTE without the
introduction of photons is provided in Appendix 2 to this chapter.
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to the areas, one must choose A = AS . It is customary to define F0 to be the irradi-
ance on a plane normal to the incident beam, i.e., Eq. (2.17) F0 , L(0, ξ̂0)dΩ(ξ̂0), so
F0 = L(0, ξ̂0)dΩ(ξ̂0) = CN0/(|ξ̂0 • êz|A). Then if ∆N(τ, ξ̂) is the number of photons that
cross a horizontal surface at optical depth τ within a finite range of solid angles ∆Ω(ξ̂),
the radiance falling on this surface can be estimated by

L(τ, ξ̂) = C
∆N(τ, ξ̂)

|ξ̂ • êz|A∆Ω(ξ̂)
,

or, eliminating C

L(τ, ξ̂)

F0
=
|ξ̂0 • êz|
|ξ̂ • êz|

1

N0

∆N(τ, ξ̂)

∆Ω(ξ̂)
. (2.53)

For ∆Ω(ξ̂) sufficiently small, we expect that ∆N(τ, ξ̂) ∝ ∆Ω(ξ̂), so ∆N(τ, ξ̂)/∆Ω(ξ̂) will
have a well defined limit. However, if ∆Ω(ξ̂) is too small, ∆N(τ, ξ̂) may fluctuate wildly
with ∆Ω(ξ̂) unless N0 is extremely large. In a Monte Carlo simulation the unit sphere is
divided into a finite number of solid angles ∆Ω(ξ̂i), each around a given direction ξ̂i. The
number of directions is chosen to provide an adequate ∆N(τ, ξ̂i) for each ∆Ω(ξ̂i).

Given Eq. (2.53), the irradiances are also easy to estimate:

Ed(τ) =

∫

ξ̂•êz>0
|ξ̂ • êz|L(τ, ξ̂) dΩ(ξ̂)

≈
∑

i, ξ̂i•êz>0

|ξ̂i • êz|L(τ, ξ̂i) ∆Ω(ξ̂i)

= F0

∑

i, ξ̂i•êz>0

∆N(τ, ξ̂i)

N0
,

(2.54)

with a similar expression for Eu(τ), but with ξ̂i • êz < 0. Thus, the irradiances Ed(τ) and
Eu(τ) are simply F0 times the fraction of injected photons that pass a surface at optical
depth τ traveling in the downward and upward directions, respectively. Likewise, the scalar
irradiance is

E0(τ) = F0

∑

i

1

|ξ̂i • êz|
∆N(τ, ξ̂i)

N0
. (2.55)

Equations (2.53), (2.54), and (2.55) provide the basis for Monte Carlo estimates of the
important radiometric quantities. It should be noted that if only irradiances are required
in the problem, ξ̂ can be allowed to vary continuously, and the sums can be accumulated
during the computation, e.g., each time a photon passes τ we add 1/|ξ̂ • êz| to the sum for
E0(τ) and divide by N0 at the end.
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Thus far, we have shown that, given the life histories of a large number of photons, we
can estimate the interesting radiometric quantities: L(τ, ξ̂), Ed(τ), Eu(τ), and E0(τ). Now
we consider how to develop these life histories. After injecting a photon into the medium
in the direction ξ̂0, we need to determine where it will interact. From the definition of c,
we know that the radiant power in a collimated beam satisfies the differential equation

dP = −Pc dl, so P (l) = P (0) exp(−cl).
Therefore, if there are N0 photons per second in the beam at l = 0, the number remaining
at l is

N(l) = N0 exp(−cl).
This means that the probability that a photon reaches l is exp(−cl). Having reached l,
the probability of an interaction (absorption or scattering) within dl is c dl (recall dN/N =
−c dl, where dN is the number interacting within dl). Therefore, starting from l = 0, the
probability of an interaction between l and l + dl, dPl(dl) is

dPl(dl) =
dN

N0
=
dN

N
exp(−cl) = c dl exp(−cl) , pl(l) dl,

where pl(l) is the probability density for an interaction at l. Now, assume that we have a set
of random numbers ρ uniformly distributed on the interval 0 to 1. Uniformly distributed
means that the probability of finding a given random number (ρi) between ρ and ρ +
dρ (which is pρ(ρ) dρ) is independent of ρ, i.e., pρ(ρ) = 1, and the probability of the
random number being in dρ is just dρ. So, if we divided the entire interval [0,1] into a
set of equal-width subdivisions and picked a large number (N ) of uniformly distributed
random numbers, the number in each subdivision would be the same (except for statistical
fluctuations that approach zero as N →∞). Such a distribution is usually labeled U[0,1].
Sequences of random numbers distributed according to U[0,1] are approximated by pseudo
random number generators available for most computers. Given the sequence of random
numbers we can generate photon interactions as follows. If we want a random number in
dρ to represent an interaction in dl, then we must require

pρ(ρ) dρ = pl(l) dl, or dρ = pl(l) dl.

Integrating ∫ ρ0

0
dρ =

∫ l0

0
pl(l) dl, or ρ0 = 1− exp(−cl0),

so

l0 = −1

c
`n(1− ρ0).

The path length l0 is measured along the path of the photon ξ̂0. In terms of depth the
photon interacts at z0 given by

z0 = −|ξ̂0 • êz|
c

`n(1− ρ0).
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If the medium is stratified, i.e., c = c(z), then a similar argument shows that

τ0 = −|ξ̂0 • êz|`n(1− ρ0). (2.56)

A little thought shows that these equations must also provide the distances between any
two interactions ∆l, ∆z, and ∆τ .

If τ0 > τ1 (the optical depth of the slab), the photon leaves the medium and a new photon
is injected after the various quantities in Eq. s(2.53), (2.54), and (2.55) are updated. If
τ0 < τ1 the photon interacts with the medium at τ0, and we next need to determine the
nature of the interaction. Given that an interaction takes place at z = z0 or τ = τ0, what
kind of interaction will is be, absorption or scattering? The probability of scattering is
ω0 = b/c. Thus if we choose a second random number ρ1 distributed according to U[0,1],
we have at τ = τ0

ρ1 ≤ ω0(τ) implies scattering, and

ρ1 > ω0(τ) implies absorption.
(2.57)

Clearly these inequalities hold for any interaction, not just the first.

If the photon is absorbed, it is terminated, and a new photon is injected into the medium.
If it is scattered, we need to determine the new direction of the photon’s propagation. The
new direction of propagation is provided by the scattering phase function, because

1

4π
P (τ, ξ̂′ → ξ̂) dΩ(ξ̂)

is the probability that the scattered direction will be within dΩ(ξ̂). Thus, if the unit sphere
around the interaction point is divided into a number n of solid angles ∆Ω(ξ̂i) around a
set of directions ξ̂i, the probability of scattering from a direction ξ̂j into ∆Ω(ξ̂i) is

p(ξ̂j → ξ̂i)∆Ω(ξ̂i) =
1

4π

∫

∆Ω(ξ̂i)
P (τ, ξ̂j → ξ̂) dΩ(ξ̂). (2.58)

Dividing the interval [0,1] into ρ1, ρ2 − ρ1, ρ3 − ρ2, · · · ,ρi − ρi−1, · · · , 1− ρn−1, so that for
each ξ̂j

ρi − ρi−1 = p(ξ̂j → ξ̂i)∆Ω(ξ̂i), (2.59)

given ξ̂j and a U[0,1] random number ρ, the scattered direction is ξ̂i when ρi−1 < ρ < ρi.

This is shown schematically in Figure 2.13, in which a mapping into various directions ξ̂i for
a particular ξ̂j is provided. There is a separate mapping for each ξ̂j . In the mapping shown

here, the scattering ξ̂j → ξ̂3 is highly probable, but the scattering ξ̂j → ξ̂4 is relatively
improbable.
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Figure RAD-15:  This shows the mapping between the random number ρ 
and the scattered direction iξ̂  for scattering from ij ξξ ˆˆ → .  There is a 

mapping such as this for each jξ̂ .  For the cases shown, scattering from 

3
ˆˆ ξξ →j  is highly probable (the probability being ρ3 – ρ2), but scattering 

from 4
ˆˆ ξξ →j  is very improbable.  
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Figure 2.13: This shows the mapping between the random number ρ and the
scattered direction ξ̂i for scattering from ξ̂j → ξ̂i. There is a mapping such as this

for each ξ̂j . For the cases shown, scattering from ξ̂j → ξ̂3 is highly probable (the

probability being ρ3 − ρ2), but scattering from ξ̂j → ξ̂4 is relatively improbable.

In all cases of interest to us here, the scattering phase function depends only on the
angle between the incident and the scattered directions. This considerably simplifies the
determination of the direction of propagation of the scattered photon. Consider a scattering
event from ξ̂j to ξ̂i depicted in Figure 2.14, in which the scattering is specified by the
angles Θ and Φ. The scattering phase function depends only on Θ, being independent of
Φ. Therefore,

P (ξ̂j → ξ̂i)

4π
dΩ(ξ̂i) =

P (Θ,Φ)

4π
dΩ =

P (Θ)

4π
sin Θ dΘ dΦ = pΘ(Θ)pΦ(Φ) dΘ dΦ,

where pΘ(Θ) and pΦ(Φ) are the probability densities for Θ and Φ, respectively. Since all
the Φ’s are equally probable,

pΦ(Φ) =
1

2π
.

It follows than that

pΘ(Θ) =
1

2
P (Θ) sin Θ.

Thus, given random numbers ρ distributed according to U[0,1], for ρ in dρ to represent Φ
in dΦ or Θ in dΘ, we require that

dρΦ =
dΦ

2π
and dρΘ = P (Θ) sin Θ dΘ
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Figure RAD-16:   The scattering angle Θ from jξ̂  to iξ̂ .  The angle Φ is 
azimuth of the scattering plane.   
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Figure 2.14: The scattering angle Θ from ξ̂j to ξ̂i. The angle Φ is the azimuth of
the scattering plane.

or

Φ = 2πρΦ and ρΘ =
1

2

∫ Θ

0
P (Θ′) sin Θ′ dΘ′. (2.60)

Given the initial photon direction ξ̂j and the scattering angles Θ and Φ, we next need

to determine the direction of propagation of the scattered photon, ξ̂i. Figure 2.15 provides
the geometry of the scattering in a fixed coordinate system in which z is into the slab
(medium) and the x-y plane is parallel to the surface. The simplest way of analytically
specifying ξ̂j and ξ̂i is through their direction cosines:

ξ̂j = ξxj êx + ξyj êy + ξzj êz and ξ̂i = ξxi êx + ξyi êy + ξzi êz,

where

ξxj = cosφj sin θj

ξyj = sinφj sin θj

ξzj = cos θj

and

ξxi = cosφi sin θi

ξyi = sinφi sin θi

ξzi = cos θi.

Given ξxi , ξyi , and ξzi (the incident photon’s direction) and the scattering angles Θ and Φ
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Figure RAD-17:   The scattering angle Θ ( ij ξξ ˆˆcos •=Θ ) between 

scattering from 
jξ̂  to iξ̂ . The angles θi and φi are the polar and azimuth 

angles for iξ̂  and θj and φj are the polar and azimuth angles for jξ̂ .  Φ is the 

angle between the plane formed by the z-axis and jξ̂  and the scattering 

plane.  
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Figure 2.15: The scattering angle Θ (cos Θ = ξ̂j • ξ̂i) for scattering from ξ̂j → ξ̂i.

The angles θi and φi are the polar and azimuth angle for ξ̂i, and θj and φj are the

polar and azimuth angle for ξ̂j . Φ is the angle between the plane formed by the

z-axis and ξ̂j and the scattering plane.

the scattered photon’s direction is found to be29

ξxi = ξxj cos Θ− sin Θ√
1− (ξzj )2

(
ξyj sin Φ + ξxj ξ

z
j cos Φ

)

ξyi = ξyj cos Θ +
sin Θ√

1− (ξzj )2

(
ξxj sin Φ− ξyj ξzj cos Φ

)

ξzi = ξzj cos Θ +
√

1− (ξzj )2 sin Θ cos Φ.

When ξzj is near unity (θj near zero), these should be replaced by

ξxi = sin Θ cos Φ

ξyi = sin Θ sin Φ

ξzi = cos Θ,

to avoid computational difficulties.

29The demonstration of these equations is tedious, but not difficult. One notes that in Figure 2.15 the
unit vectors ξ̂j , ξ̂i, and êz all end on a unit sphere. If we apply the law of sines and the law of cosines to
the spherical triangle formed by the ends of these vectors, the result follows after some algebra.
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Figure RAD-18:  Flow chart of Monte Carlo radiative transfer process.  
Photon enters the medium at the top.  Detectors are continually updated 
along the photon's path. The photon is terminated on absorption, or 
whenever τ < 0, and a new photon is introduced and followed.  

Choose depth 
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Figure 2.16: Flow chart of Monte Carlo radiative transfer process for the case of a
semi-infinite medium, i.e., τ1 →∞. Photon enters the medium at the top. Detec-
tors are continually updated along the photon’s path. The photon is terminated
on absorption, or whenever τ < 0, and a new photon is introduced and followed.

The entire simulation process proceeds as follows. Given the new scattering direction,
one chooses the distance to the next interaction, types it (absorption or scattering), and if
scattering, finds the new ξ̂, etc. The simulation’s “detectors” are placed at various depths
within the medium, and whenever a photon passes a given depth propagating along ξ̂
within one of the ∆Ω(ξ̂i)’s it increases ∆N(τ, ξ̂i) in Eq. (2.53) by one unit. When the
photon is absorbed or leaves the medium, a new photon is started into the medium. The
process is shown schematically in Figure 2.16 for the case of a semi-infinite medium, i.e.,
τ1 → 0.

The number ∆N(τ, ξ̂i) is subject to stochastic fluctuations, i.e., if the simulation were
run twice with different sequences of random numbers, the results would be different in
the two runs. The expected (standard) deviation in the number of photons in a detector’s
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collection range, i.e., ∆Ω(ξ̂i), is approximately the the square root of the number of photons
collected. Thus, in a Monte Carlo simulation there is always a tradeoff between resolution
(smaller ∆Ω(ξ̂i)’s) and accuracy (larger ∆N(τ, ξ̂i)’s).

There are many ways that have been developed to reduce the statistical fluctuations.
These are usually referred to as variance reduction techniques. A simple example will
suffice to provide the flavor of these techniques. Consider the slab problem above in the
case where ω0 is small but τ1 is large. We will be faced with serious difficulties if we want
to estimate Ed(τ1) the irradiance exiting the bottom of the slab — few, if any, photons
will make their way to the bottom, and the error in Ed will be large. To reduce this error,
i.e., to make a more statistically significant estimate of Ed(τ1), imagine that each photon
not as a single quantity, but as a group of a large number of photons. At each collision,
a fraction (1− ω0) of these are absorbed and a fraction ω0 are scattered and go on to the
next collision. After n collisions, a fraction ωn0 survive. When the group of photons pass a
detector depth, the number ∆N(τ, ξ̂i) is not augmented by one as described above, rather
it is augmented by ωn0 , where n is the number of collisions prior to passing the detector
depth. Thus, photons are never terminated in the medium, and each contributes either
to Eu(0) or Ed(τ1). Although we will not attempt to quantify, it should be clear to the
reader that the estimate of Ed(τ1) obtained in this manner is more accurate than that in
the direct simulation. Many other variance reduction techniques have been presented in
the literature.

2.7 Additional Solution Methods

In this section, we will examine three additional solution techniques for problems in plane-
parallel geometry. Our goal is to describe the basic ideas of the methods. We direct the
reader wanting more details to the appropriate sources in the literature. These meth-
ods have been used in the analysis of radiative transfer in the ocean-atmosphere system;
however, they are not used in this work30 and may be omitted if desired. We begin by
describing how the integral term in the RTE can be discretized, i.e., written as a finite or
infinite sum, but first some preliminaries.

30An exception is the proof of the existence of the asymptotic light field using the discrete-ordinate
method.



148 CHAPTER 2. RADIOMETRY AND RADIATIVE TRANSFER

2.7.1 Preliminaries

To simplify the discussion, we deal with some mathematical preliminaries that apply to
all of the methods we will examine. These involve first writing the phase function as a
Fourier series in the azimuth, which allows solving the transfer equation for each Fourier
component separately, and second replacing the integral term in the RTE by a discrete
sum. But before that, it is useful to make a notational change.

2.7.1.1 A Change in Notation

It is helpful to make a notational change when dealing with problems in plane-parallel
geometry. We have been specifying the direction of propagation by the unit vector ξ̂. In a
spherical coordinate system with the z axis normal to the surface (and pointed downward
in geophysical optics) and the x and y axes parallel to the surfaces of constant pressure, ξ̂
is given by

ξ̂ = êx cosφ sin θ + êy sinφ sin θ + êz cos θ,

so specification of θ and φ completely determines ξ̂. We will find will find it convenient not
to use θ and φ, but rather to use cos θ , u and φ. (Later in the Chapter, when u < 0 we
will use µ = |u|.) Thus, in this notation the solid angle is dΩ = du dφ, so Eq. s(2.37) and
(2.46) become

u
∂

∂z
L(z, u, φ, λ) = −c(z, λ)L(z, u, φ, λ)

+

∫ 1

−1
du′
∫ 2π

0
dφ′ β(z, u′ → u, φ′ → φ, λ)L(z, u′, φ′, λ)

+Q(z, u, φ, λ),

(2.61)

and

u
∂

∂τ
L(τ, u, φ, λ) = −L(τ, u, φ, λ)

+
ω0(τ)

4π

∫ 1

−1
du′
∫ 2π

0
dφ′ P (τ, u′ → u, φ′ → φ, λ)L(τ, u′, φ′, λ)

+
Q(τ, u, φ, λ)

c(τ)
.

(2.62)

Note that in slab geometry, radiance exiting the top of the slab has u < 0, while those
exiting the bottom of the slab have u > 0. The irradiances in Eqs. (6.1) to (6.6) are given
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by

Ed(z, λ) =

∫ 1

0
du

∫ 2π

0
uL(z, u, φ, λ) dφ,

Eu(z, λ) = −
∫ 0

−1
du

∫ 2π

0
uL(z, u, φ, λ) dφ,

Ed(z, λ)− Eu(z, λ) =

∫ 1

−1
du

∫ 2π

0
uL(z, u, φ, λ) dφ,

E0(z, λ) =

∫ 1

−1
du

∫ 2π

0
L(z, u, φ, λ) dφ.

(2.63)

2.7.1.2 Phase Function Symmetries and Fourier Analysis

When the volume scattering function only depends on the angle Θ between ξ̂′ and ξ̂, where
cos Θ = ξ̂′ • ξ̂, e.g., scattering by a collection of atoms, the scattering phase function
possesses many useful symmetries. Expressing ξ̂′ and ξ̂ in spherical coordinates,

cos Θ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′)
= uu′ +

√
(1− u2)(1− u′2) cos(φ− φ′).

(2.64)

This shows that Θ, and therefore P (Θ) is invariant under the following operations:

• interchanging u and u′: P (u′ → u, φ′ → φ) = P (u→ u′, φ′ → φ),

• interchanging φ and φ′: P (u′ → u, φ′ → φ) = P (u′ → u, φ→ φ′),

• interchanging both u’s and φ’s: P (u′ → u, φ′ → φ) = P (u→ u′, φ→ φ′),

• changing signs of all angles: P (u′ → u, φ′ → φ) = P (−u′ → −u,−φ′ → −φ).

Combining the last two symmetries shows that P (ξ̂′ → ξ̂) = P (−ξ̂ → −ξ̂′), a requirement
for the validity of the reciprocity principle. In addition, the fact that Θ depends on φ− φ′
only through cos(φ − φ′) implies that it can be expanded in a Fourier cosine series31 in
φ− φ′, i.e.,

P (u′ → u, φ′ → φ) = p0(u′ → u) + 2
∞∑

m=1

pm(u′ → u) cosm(φ− φ′). (2.65)

31Another way of justifying this is that Eq. (2.64) shows that Θ is an even function of φ−φ′, while terms
like sinm(φ− φ′) that might occur in the Fourier series are odd functions of φ− φ′.
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For the Rayleigh scattering phase function, Eq. (2.45), this series is easy to construct as
follows.

P (Θ) =
3

4

[
1 + cos2 Θ

]

=
3

4

[
1 +

(
uu′ +

√
(1− u2)(1− u′2) cos(φ− φ′)

)2
]

=
3

4

[
1 + u2u′2 + (1− u2)(1− u′2) cos2(φ− φ′) + 2uu′

√
(1− u2)(1− u′2) cos(φ− φ′)

]
.

Noting that cos2 x = (1 + cos 2x)/2, we get

P (Θ) =
3

4

(
1 + u2u′2 +

1

2
(1− u2)(1− u′2)

)

+
3

2
uu′
√

(1− u2)(1− u′2) cos(φ− φ′)

+
3

8
(1− u2)(1− u′2) cos 2(φ− φ′).

(2.66)

The Fourier coefficients in the expansion can then be read off directly and the series ter-
minates after 3 terms, i.e., pm = 0 for m > 2.

In most cases, a simple analytical expression for P (u′ → u, φ′ → φ) is not available;
however, we can use standard techniques of Fourier analysis to find the pm’s. First, note
that32

∫ 2π

0
cosm(φ− φ1) cos l(φ− φ0) dφ = πδml cosm(φ1 − φ0), m 6= 0

= 2πδml, m = 0,
∫ 2π

0
sinm(φ− φ1) sin l(φ− φ0) dφ = πδml cosm(φ1 − φ0), m 6= 0

= 0, m = 0,
∫ 2π

0
cosm(φ− φ1) sin l(φ− φ0) dφ = πδml sinm(φ1 − φ0), m 6= 0

= 0, m = 0,

(2.67)

where φ0 and φ1 are constants. Second, multiply Eq. (2.65) by cos l(φ− φ′) and integrate
over all φ (or over all φ′). Then using the first of Eqs. (2.67), we find

pl(u
′ → u) =

1

2π

∫ 2π

0
P (u′ → u, φ′ → φ) cos l(φ−φ′) dφ =

1

2π

∫ 2π

0
P (u′ → u, φ′ → φ) cos l(φ−φ′) dφ′.

32The function δij is called the Kronecker Delta. Its properties are: δij = 1 if i = j, and δij = 0 if i 6= j.
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The motivation for expanding the phase function in a Fourier series in azimuth lies in
the simplification that results if a similar expansion is made for the radiance. Consider

L(τ, u, φ) = L0(τ, u)+2
∞∑

m=1

L(c)
m (τ, u) cosm(φ−φ1)+2

∞∑

m=1

L(s)
m (τ, u) sinm(φ−φ1), (2.68)

where

L(c)
m (τ, u) =

1

2π

∫ 2π

0
L(τ, u, φ) cosm(φ− φ1) dφ,

L(s)
m (τ, u) =

1

2π

∫ 2π

0
L(τ, u, φ) sinm(φ− φ1) dφ,

and φ1 is a constant reference angle. Inserting the Fourier series into the 1-d RTE, Eq.
(2.46) with Q = 0 yields

[
u
∂

∂τ
+ 1

][
L0(τ, u) + 2

∞∑

m=1

L(c)
m (τ, u) cosm(φ− φ1) + 2

∞∑

m=1

L(s)
m (τ, u) sinm(φ− φ1)

]

=
ω0(τ)

4π

∫ 1

−1
du′
∫ 2π

0
dφ′

[
p0(u′ → u) + 2

∞∑

m=1

pm(u′ → u) cosm(φ− φ′)
]

×
[
L0(τ, u′) + 2

∞∑

m=1

L(c)
m (τ, u′) cosm(φ′ − φ1) + 2

∞∑

m=1

L(s)
m (τ, u′) sinm(φ′ − φ1)

]
.

The integral over φ′ can now be evaluated, and the right-hand-side becomes

ω0(τ)

4π

∫ 1

−1
du′
[
2πp0(u′ → u)L0(τ, u′)

+ 4π

∞∑

m=1

pm(u′ → u)

(
L(c)
m (τ, u′) cosm(φ− φ1) + L(s)

m (τ, u′) sinm(φ− φ1)

)]
.

Now, multiply the full equation by cosn(φ−φ1) dφ, integrate over φ from 0 to 2π, and use
Eqs. (2.67). This results in

[
u
∂

∂τ
+ 1

]
L(c)
m (τ, u) =

ω0

2

∫ 1

−1
du′ pm(u′ → u)L(c)

m (τ, u′),

[
u
∂

∂τ
+ 1

]
L(s)
m (τ, u) =

ω0

2

∫ 1

−1
du′ pm(u′ → u)L(s)

m (τ, u′),

(2.69)

where the second equation is derived by the same procedure, but replacing cosine by sine
in the last step. Performing the same analysis on the boundary conditions, yields for a slab

L(0, u, φ) = L0(0, u)+2

∞∑

m=1

L(c)
m (0, u) cosm(φ−φ1)+2

∞∑

m=1

L(s)
m (0, u) sinm(φ−φ1), u > 0,
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and

L(τ1, u, φ) = L0(τ1, u)+2

∞∑

m=1

L(c)
m (τ1, u) cosm(φ−φ1)+2

∞∑

m=1

L(s)
m (τ1, u) sinm(φ−φ1), u < 0,

where

L(c)
m (0, u) =

1

2π

∫ 2π

0
L(0, u, φ) cosm(φ− φ1) dφ,

etc. These provide the boundary conditions for each Fourier component L
(c)
m (τ, u) and

L
(s)
m (τ, u) of the radiance. Thus, each Fourier component of the radiance satisfies a radiative

transfer equation in which the scattering term contains only the Fourier component of the
phase function with the same Fourier order. The associated boundary conditions are the
Fourier components of the boundary conditions (of the same Fourier order). Immediate
consequences of this are

• if L
(i)
m (0, u) = 0 for u > 0 and L

(i)
m (τ1, u) = 0 for u < 0, then L

(i)
m (τ, u) = 0, where

i = c or s,33

• if pm(u′ → u) = 0, then L
(i)
m (τ, u) = L

(i)
m (0, u) exp[−τ/u] for u > 0 and L

(i)
m (τ, u) =

L
(i)
m (τ1, u) exp[−(τ − τ1)/u] for u < 0.

An additional simplification takes place in the case of a slab illuminated by a beam source
beam source, e.g., the Sun. A beam source has the property that the radiance is confined
to small solid angle, e.g., ∆Ω = ∆u∆φ. Assume that the radiance incident on the top of
the slab is L(0, u, φ) = LSun(u) for φ in the range φ0−∆φ/2 to φ0 + ∆φ/2. Then it is easy
to show that, if φ1 above is taken to be φ0, i.e., the reference azimuth is taken to be the
azimuth of the beam,

L(c)
m (0, u) =

cosm∆φ

2πm
LSun(u) and L(s)

m (0, u) = 0,

and so L
(s)
m (τ, u) = 0. In this case the radiance is symmetric with respect to φ0, i.e.,

L(τ, u, φ− φ0) = L(τ, u,−φ+ φ0).

Finally, when the Fourier expansion of the radiances is carried out, the irradiances in

33The easiest way to show this is to note that if there are no internal sources of a particular Fourier
component and if no radiance for that component is incident on the boundary, then applying the successive-
order of scattering method to Eq. (2.69) yields zero internal radiance as well for that component.
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Eq. (2.63) take a particularly simple form:

Ed(z, λ) = 2π

∫ 1

0
uL0(z, u, λ) du,

Eu(z, λ) = −2π

∫ 0

−1
uL0(z, u, λ) du,

Ed(z, λ)− Eu(z, λ) = 2π

∫ 1

−1
uL0(z, u, λ) du,

E0(z, λ) = 2π

∫ 1

−1
L0(z, u, λ) du.

(2.70)

Thus, the irradiances depend only on the lowest order Fourier coefficient L0, and if only
irradiances are required, only L0 need be computed.

2.7.1.3 Gaussian Quadratures

It is straightforward to show that the individual RTE’s for the Fourier components can be
solved using the successive-order-of-scattering technique, however, one must still evaluate
the integral of the appropriate phase function times the appropriate radiance (in one order
lower), i.e., an integral of the form

∫ 1

−1
du′ p(u′ → u)L(τ, u′),

where p and L are Fourier components. For completeness, we explain how this is effected
in a typical radiative transfer computation. The integral is always evaluated through a
sum. The most efficient way of doing this is to use Gaussian quadratures. In this case,

∫ 1

−1
du′ p(u′ → u)L(τ, u′) =

n∑

i=−n
aip(ui → u)L(τ, ui),

where the division points or quadrature points ui are determined from P2n(u) = 0, where
P2n is the Legendré polynomial of order 2n.34 It can be shown that the weights ai can be
chosen so that the sum is exactly equal to the integral if the integrand p(u′ → u)L(τ, u′) is

34The Legendré polynomials are given by

Pn(x) =
1

2nn!

dn

dxn
[
(1− x2)n

]
.

They are polynomials that are even or odd functions of x as n is even or odd. All are of the form
Pn(x) = anx

n + an−2x
n−2 + · · · .
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a polynomial of order 2n− 1 or less.35 Since 2n is even, ui = −u−i, and ai = a−i. Tables
of ui and ai for various n’s are readily available.

Other methods are obviously available for turning the integral into a sum. For example,
one could take n + 1 values of u separated by equal increments of ∆u and employ the
trapezoidal rule,

∫ 1

−1
du′ p(u′ → u)L(τ, u′) =

n∑

i=0

aip(ui → u)L(τ, ui),

where a0 = an = ∆u/2 and ai = ∆u for i 6= 0 or n. However, regardless of how the
discretization is accomplished, the result is always the sum of the product of the integrand
and weights at the division points. Gaussian quadratures provide the maximum accuracy
for a given number of division points.36

2.7.2 The Discrete-Ordinate Method

The discrete ordinate method uses Fourier analysis in azimuth and Gaussian quadratures
in the polar direction to treat the integral term in the RTE. Consider a homogeneous
slab as before, i.e., Figure 2.12, and a particular Fourier coefficient of the radiance. The

appropriate RTE for say L
(c)
m is

[
u
∂

∂τ
+ 1

]
L(c)
m (τ, u) =

ω0

2

∫ 1

−1
du′ pm(u′ → u)L(c)

m (τ, u′).

We can rewrite the integral as a sum using Gaussian quadratures to give

[
u
∂

∂τ
+ 1

]
L(c)
m (τ, u) =

ω0

2

j=n∑

j=−n
ajpm(uj → u)L(c)

m (τ, uj).

35The weights are given by

aj =
2

(1− u2
j )[P

′
n(uj)]2

,

where P ′n(x) = dPn(x)/dx.
36It can be shown that, if f(x) can be represented by a polynomial of degree 4n− 1 (or less), then

∫ 1

−1

f(x) dx =

i=+n∑
i=−n

aif(xi), exactly.
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This equation holds for all u, and therefore must hold for u = ui, i.e.,37

[
ui
d

dτ
+ 1

]
L(c)
m (τ, ui) =

ω0

2

j=n∑

j=−n
ajpm(uj → ui)L

(c)
m (τ, uj). (2.71)

We will now drop the superscript “c” and subscript “m” on L for economy of notation,
and write

L =




Ln
...
L1

L−n
...

L−1




,

where Li = L
(c)
m (τ, ui), etc. This is a set of coupled linear differential equations that can

be written
dL

dτ
+ SL = 0,

where the square matrix S has elements

Si,j =
1

ui

[
δij −

ω0

2
ajpm(uj → ui)

]
,

and so

Si,j = −S−i,−j and S−i,j = −Si,−j .
This can be solved by letting

L = C exp[kτ ], (2.72)

where C is a constant vector; however, it is more illuminating to make a change that
exploits the symmetry of S. We let

L =

(
L+

L−

)
, where L+ =




Ln
Ln−1

...
L1


 , and L− =




L−n
L−n+1

...
L−1




Then the RTE can be written

dL+

dτ
+ S++L+ + S−+L− = 0

37Here we have replaced ∂L
(c)
m /∂τ by dL

(c)
m /dτ because L

(c)
m (τ, ui) now depends on only one variable: τ .
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and
dL−

dτ
+ S+−L+ + S−−L− = 0,

where the S’s can be read directly from S:

S =

(
S++ S−+

S+− S−−

)

Now, the symmetry of S demands that

S−− = −S++ and S+− = −S−+,

so
dL+

dτ
+ S++L+ + S−+L− = 0

and
dL−

dτ
− S−+L+ − S++L− = 0.

Now, let
L+ = C+ exp[kτ ] and L− = C− exp[kτ ],

where

C =

(
C+

C−

)

and insert these into the above equations yielding

C+ + S++C+ + S−+C− = 0

kC− − S−+C+ − S++C− = 0.

Adding and subtracting these it is easy to show that

k2I − (S++ − S−+)(S++ + S−+) = 0 (2.73)

where I is the unit matrix. This is called the eigenvalue equation and provides the allowable
values of k so that Eq. (2.72) is a solution of Eq. (2.71).38 There are 2n such values of
k (eigenvalues), which we label ±k1, ±k1, . . ., ±kn. If we put the individual eigenvalues
back into Eq. (2.73) all of the 2n C’s (eigenvectors) can be found individually; however,
since Eq. (2.73) is homogeneous, the components of the individual C’s can only be found to
within an arbitrary constant. That constant can be determined by imposing the condition
that C be normalized, i.e., C̃C = 1. Then, the general solution is a linear combination of
the individual solutions

L =
n∑

j=1

[
α+jC+j exp[kjτ ] + α−jC−j exp[−kjτ ]

]
. (2.74)

38Eigenvalue problems are discussed in the Mathematical Appendix, Section 14.5.3.
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The 2n arbitrary constants α±j are then determined using the boundary conditions — the
C’s are known at this point. In the case of a slab, we are given L+ for τ = 0 and L− for
τ = τ1. If the incident radiance on the slab is along one of the ui’s, e.g., along uI , and no
radiance incident on the bottom, we have

L(0, ui) = L(0, uI)δiI , i = 1→ n and L(τ1, ui) = 0, i = −1→ −n.

It should be recalled that this solution is for a particular Fourier coefficient in the expansion
of the radiance, and the above procedure must be carried out for each Fourier coefficient.
We note that since the αi are linear combinations of the incident boundary radiances, Eq.
(2.74) shows that the radiances exiting the slab depend linearly on the radiances incident
on the slab. This fact will be used later in discussing the doubling or adding method.

We note that in the case of a slab illuminated by a beam of radiance, the discrete ordinate
method seems to require that the incident beam be along one of the ui’s, the positions of
which depend on the order of approximation. This is of no real consequence, as we can
choose n to be as large as is required to put the beam as close to a quadrature point as
desired. However, there is another approach. Since the incident radiance in the case of a
beam source is

L(0, u, φ) = F0δ(u− u0)δ(φ− φ0)

we can include its influence as an internal source as in Eq. (2.38). Then we need to solve,
not Eq. (2.71) but,

[
ui
∂

∂τ
+ 1

]
L(c)
m (τ, ui) =

ω0

2

j=n∑

j=−n
ajpm(uj → ui)L

(c)
m (τ, uj)+

ω0

2
F0pm(u0 → u) exp

[
− τ

u0

]
,

(2.75)
subject to the boundary radiances L+ = 0 at τ = 0 and L− = 0 at τ = τ1. This requires
finding a single solution Lp (the particular solution) of this inhomogeneous equation and
adding it to the general solution of the homogeneous RTE given in Eq. (2.74), i.e.,

L =
n∑

j=1

[
α+jC+j exp[kjτ ] + α−jC−j exp[−kjτ ]

]
+Lp.

The boundary radiances, L+ = 0 at τ = 0 and L− = 0 at τ = τ1, are then applied to this
equation to effect the solution. Note there is now no requirement that u0 equal any ui.

A interesting conclusion can be drawn from Eq. (2.74) in the case of a semi-infinite
medium illuminated from the top, e.g., the ocean illuminated at the surface. To prevent
the radiance from becoming infinite as τ →∞, we must require that α+j = 0, so

L =
n∑

i=j

α−jC−j exp[−kjτ ].
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Now, at great depth one term in this equation is dominant, the one with the smallest |ki|,
call it ks. Thus, as τ →∞

L→ α−sC−s exp[−ksτ ] (2.76)

and the angular distribution of the radiance for this Fourier coefficient is given by a sin-
gle eigenvector C−s corresponding to the smallest |ki|. Thus, deep within a homogeneous

medium L
(c)
m (τ, u) becomes independent of the boundary radiance L

(c)
m (0, u) and is char-

acteristic of the medium. This is of course true for all Fourier coefficients; however, of
these only one can be dominant for τ → ∞, the one with the smallest of the ks’s. So, in
fact, deep within a medium the angular distribution of radiance must become independent
of depth. It is clear on physical grounds that the m = 0 Fourier coefficient must be the
one that remains,39 i.e., the m = 0 coefficient has the smallest |ks|. This is called the
asymptotic radiance distribution. This distribution can only depend on ω0 and p0(u′ → u)
and Eq. (2.76) shows that it can be written in the form

L∞(τ, u) = U(u) exp[−Kτ ]. (2.77)

Also, L∞(τ, u) must satisfy the homogeneous RTE with m = 0,

[
u
∂

∂τ
+ 1

]
L0(τ, u) =

ω0

2

∫ 1

−1
du′ p0(u′ → u)L0(τ, u′),

and inserting Eq. (2.77) yields

[1−Ku]U(u) =
ω0

2

∫ 1

−1
du′ p0(u′ → u)U(u′). (2.78)

from which K and U can be found. Equation (2.78) provides the form of the radiance
and its decay with depth in a 1-d medium far from the boundary. These are characteristic
of ω0 and the phase function. Equation (2.78) can be solved numerically for any phase
function, and analytically for simple very simple phase functions, e.g., isotropic or Rayleigh
scattering.40

39As one proceeds into the medium, the radiance distribution must become smoother because of scat-
tering. Therefore higher-order Fourier components of L must decay more rapidly than lower-order Fourier
components.

40In the case of isotropic scattering (p0 = 1), the solution is very easy. For p0 = 1, the right-hand side of
Eq. (2.78) is a constant, call it “A.” Then U = A/(1 −Ku). Inserting this into Eq. (2.78) and removing
A yields:

1 =
ω0

2

∫ 1

−1

du

1−Ku =
ω0

2K
`n

[
1 +K

1−K

]
,

which provides K, given ω0. The radiance is then

L(τ, u) = C
exp(−Kτ)

1−Ku as τ →∞.

, where C is an arbitrary constant.
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2.7.3 Matrix Operator, Doubling, or Adding Method

In discussing these methods, for simplicity we restrict our attention to Eq. (2.71) rather
than Eq. (2.75). These methods are all based on the observation in the last section that the
solution, Eq. (2.74), of Eq. (2.71) subject to the boundary conditions depends linearly on
the boundary radiances, i.e., if we consider a slab from τa to τb, with τb > τa, the radiances
L+(τb) and L−(τa) for a given Fourier component, exiting the the bottom and the top of
the slab, respectively, are

L+(τb) = tabL
+(τa) + rbaL

−(τb)

L−(τa) = rabL
+(τa) + tbaL

−(τb)

where matrices r and t are, respectively, the n× n reflectance and transmittance matrices
for the layer with the first element of the subscript denoting the side of the slab on which
the radiance is incident, e.g., tba is the transmittance matrix for radiance propagating
through the slab from τb to τa, etc., and as in the discrete ordinate method,

L+(τ) =




L(τ, un)
L(τ, un−1)

...
L(τ, u1)


 , and L−(τ) =




L(τ, u−n)
L(τ, u−n+1)

...
L(τ, u−1)


 .

If the layer is homogeneous, rab = rba and tab = tba, because it is irrelevant if such a layer
is illuminated from above or below. Consider a second slab from τb to τc, with τc > τb,
then

L+(τc) = tbcL
+(τb) + rcbL

−(τc)

L−(τb) = rbcL
+(τb) + tcbL

−(τc)

Now for the combined layer from τa to τc we have

L+(τc) = tacL
+(τa) + rcaL

−(τc)

L−(τa) = racL
+(τa) + tcaL

−(τc)

If we eliminate L±(τb) from these expressions, we can relate the r’s and t’s for the combined
layer in terms of those for the individual layers. The result is

tac = tbc(I − rbarbc)−1tab,

rca = rcb + tbc(I − rbarbc)−1rbatcb,

tca = tba(I − rbcrba)−1tcb,

rac = rab + tba(I − rbcrba)−1rbctab,

(2.79)

where I is the unit matrix, and (I − rbarbc)−1 is the inverse of (I − rbarbc). Thus, if
we know the r and t matrices for two slabs, we can use Eq. (2.79) to find the r and t
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matrices for the combined (thicker) slab. As before, these equations apply to each Fourier
component individually. It should be noted that these equations provide more than just
the radiances exiting the slab. It is easy to show that, given the boundary radiances into
the combined slab, i.e., L+(τa) and L−(τc), one can manipulate the set of equations to find
the interior radiances L+(τb) and L−(τb) as well:

L+(τb) = (I − rbarbc)−1
[
tabL

+(τa) + rbatcbL
−(τc)

]
,

L−(τb) = (I − rbcrba)−1
[
rbctabL

+(τa) + tcbL
−(τc)

]
.

Equations (2.79) are easy to understand, if (I−rbarbc)−1 is expanded using the binomial
theorem:

(I − rbarbc)−1 = I + rbarbc + rbarbcrbarbc + rbarbcrbarbcrbarbc + · · · .

The term rbarbc represents reflection from the slab bc toward the slab ab then from the
slab ab back toward the slab bc. Each subsequent term in the sum represents this process
multiple times. So in the last equation in Eq. (2.79) the first term represents direct
reflection of radiance from slab ab, while the second term represents reflection from slab bc
including all orders of multiple reflections between the two slabs.

Equations (2.79) represent basis of the Matrix Operator method for solving the RTE.
Their value lies in the fact that for very thin layers analytical expressions can be developed
for these matrices by assuming that photons can scatter only once. Thus, if we want to
solve the RTE for a thick homogeneous slab, we need only use single scattering to find r
and t for a thin slab, then combine two such slabs to find r and t for a slab twice as thick.
Combining two of the latter slabs results in a still thicker slab, etc. Thus, at each step
in the process, the thickness of the slab for which the RTE is solved is doubled. In this
manner r and t for homogeneous slabs of any desired thickness can be generated. This is
referred to as the doubling method. Since an inhomogeneous medium can be approximated
by homogeneous slabs, and r and t for each slab can be generated through doubling, the
r and t for an inhomogeneous medium can be generated by combining such homogeneous
slabs. This is sometimes called the adding method.

All of the methods described in the previous paragraph start with t and r for a thin
layer in which single scattering is extant. But before developing the formulae for such a
layer, it is desirable to make a small notational change that will aid in understanding some
of the equations. We shall let µi = |ui| in which case

L+(τ) =




L(τ, µn)
L(τ, µn−1)

...
L(τ, µ1)


 , and L−(τ) =




L(τ,−µn)
L(τ,−µn−1)

...
L(τ,−µ1)


 .
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In this way, the direction (upward or downward) is readily apparent from the sign attached
to µi. Then using the results of the single-scattering analysis in Appendix 1 in this chapter,
we have, for a homogeneous layer of thickness ∆τ , after replacing the u’s by µ’s,

ij =
ω0∆τ

2µi
ajpm(µj → −µi),

[rba(∆τ)]ij =
ω0∆τ

2µi
ajpm(−µj → µi),

[tab(∆τ)]ij =

[
1− ∆τ

µi

]
δij +

ω0∆τ

2µi
ajpm(µj → µi),

[tba(∆τ)]ij =

[
1− ∆τ

µi

]
δij +

ω0∆τ

2µi
ajpm(−µj → −µi),

(2.80)

Note that the signs attached to µi and µj are the same in the t’s but opposite in the r’s.
The symmetry properties of the phase function imply

[rab(∆τ)]ij =[rba(∆τ)]ij ,

[tab(∆τ)]ij =[tba(∆τ)]ij .
(2.81)

This symmetry does not apply to inhomogeneous media of finite optical thickness.

We have developed these matrix methods by starting with Eq. (2.71) and assuming that
in the case of a beam source the beam was directed along a single quadrature direction.
Similar equations can be developed starting from Eq. (2.75), and the resulting equations
for r and t also include a source term for each layer. As the goal of this discussion is
to acquaint the reader with the “flavor” of the various methods of solving the RTE, as
opposed to all of the technical details, we shall not develop such equations here.

2.7.4 Invariant Imbedding

The final method that we shall describe for solving the RTE is called invariant imbedding.
It can be developed from the matrix operator method in a simple manner. Consider a 1-d
medium consisting of a slab of finite optical thickness T . If we add a second slab on the
top of the first slab, then the reflection and transmission matrices for the combined slab
are given by Eq. (2.79). Let the upper slab have a small (infinitesimal) optical thickness
∆T . Then using the last of Eq. s(2.79), we have

rac(T + ∆T ) = rab(∆T ) + tba(∆T )(I − rbc(T )rba(∆T ))−1rbc(T )tab(∆T )

= rab(∆T ) + tba(∆T )rbc(T )tab(∆T )

+ tba(∆T )rbc(T )rba(∆T )rbc(T )tab(∆T ) + · · · ,
(2.82)
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where we have explicitly indicated the optical thicknesses associated with the various oper-
ators. Note that in the present notation, T is measured from the bottom of slab bc (which
is why we changed the notation for optical depth from τ to T ). Now, from Eq. (2.80) it is
clear that we can write

rab(∆T ) = mr
ab ×∆T,

rba(∆T ) = mr
ba ×∆T,

tab(∆T ) = I +mt
ab ×∆T,

tba(∆T ) = I +mt
ba ×∆T,

(2.83)

where the m matrices are independent of (∆T ), and can be directly read from Eq. (2.80).
Thus, inserting Eq. (2.83) into Eq. (2.82) and retaining only first order terms in ∆T , we
have

rac(T + ∆T ) = mr
ab∆T + rbc(T ) +mt

barbc(T )∆T + rbc(T )mt
ab∆T + rbc(T )mr

barbc(T )∆T.

Rearranging,

rac(T + ∆T )− rbc(T )

∆T
= mr

ab +mt
barbc(T ) + rbc(T )mt

ab + rbc(T )mr
barbc(T ).

Now rbc(T ) is the reflectance r(T ) of a slab of thickness T illuminated from the top (recall
that the illumination is from b to c). We find it useful for clarity to change in notation

here and write this as r↓T . In this notation, r↓T is the reflection matrix of the original
slab for radiance incident from the top (in the direction of the arrow superscript), while

rac(T+∆T ) is the reflectance r↓T+∆T of a similar slab that is thicker by ∆T . Thus, without
confusion we can drop the ac and bc subscripts from r, take the limit as ∆T → 0 and get

dr↓T
dT

= mr
ab +mt

bar
↓
T + r↓Tm

t
ab + r↓Tm

r
bar
↓
T .

By using the symmetry properties of the phase function, we can also drop the subscripts
on the m’s (see, e.g., Eq. (??)). This gives

dr↓T
dT

= mr +mtr↓T + r↓Tm
t + r↓Tm

rr↓T .

Note that nowhere in the analysis have we assumed that the m’s are independent of
optical depth. In fact, we only assumed that the infinitesimal layer of thickness ∆T was
homogeneous, but then took the limit as ∆T → 0. Thus, the m’s may vary with optical
depth — through any dependence of ω0 and pm on optical depth — and it would be more
proper to display this dependence explicitly and replace mr and mt by mr(T ) and mt(T ),
respectively:

dr↓T
dT

= mr(T ) +mt(T )r↓T + r↓Tm
t(T ) + r↓Tm

r(T )r↓T , (2.84)
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wheremr(T ) andmt(T ) are evaluated at the top of the layer of thickness T . It is important
to note that by virtue of the way Eq. (2.84) was derived, the zero for the variable T is
at the bottom of the layer and increases upward. In our usual notation, the zero of optical
depth τ is at the top of the medium and increases downward. Thus, for a layer from τ = τ1

to τ = τ2, (τ2 > τ1), the variable T = τ2 − τ and dT = −dτ .

Equation (2.84) allows one to compute the reflectance matrix r↓ for a slab illuminated
from the top in the following manner. First, start the bottom (a slab of zero thickness)

with r↓0 = 0. Next, integrate the equation upward using the known mt and mr matrices
as a function of position in the medium. Finally, stop when the desired top of the slab is
reached. Such a procedure is amenable to numerical computation.

Applying the same reasoning to the first of the four equations in Eq. (2.79) results in
an equation for t↓:

dt↓T
dT

= t↓Tm
t(T ) + t↓Tm

r(T )r↓T . (2.85)

This equation can be integrated to find t↓ by (1) starting with at the bottom of the slab

with t↓0 = I and r↓0 = 0, (2) integrating upward using the known mt and mr matrices

as a function of position, and, after solving Eq. (2.84), the known r↓T matrices, and (3)
stopping when the top of the slab is reached.

When the medium is homogeneous, t↑ = t↓ and r↑ = r↓; however, if it is inhomogeneous
(i.e., vertically stratified) this is no longer true — think about reflection from a slab with
a thin scattering layer above a thick absorbing layer and then reverse the order of the
layers. For inhomogeneous media, the simplest approach to finding t↑ and r↑ is to invert
the medium and compute t↓ and r↓ using Eq. s(2.84) and (2.85).

The reader may be wondering why this method goes by the name “invariant imbedding.”
In this technique we have considered a slab to be imbedded in a medium, and asked how the
reflection and transmission matrices vary if the slab’s boundaries are changed. Invariant
comes from consideration of situations in which the reflectance and transmittance matrices
cannot change. For example, consider a semi-infinite homogeneous medium. If a thin layer
is added to the top of such a medium, it is clear at the reflectance matrix r↓∞ will not
change. Therefore for this,

dr↓∞
dT

= 0

and so

mr +mtr↓∞ + r↓∞m
t + r↓∞m

rr↓∞ = 0,

which can be solved for r↓∞.
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2.8 Influence of Reflecting and Transmitting Boundaries

In discussing the uniqueness theorem and the several methods of solving the RTE, the
boundary radiances play a central role. In geophysical optics we encounter three bound-
aries: the top of the atmosphere that is illuminated only by a collimated beam from the
sun; the surface of a water body that reflects and transmits radiance incident from above
and below; and the land surface or the sea bottom that reflects some radiance back into
the medium and absorbs the rest.

Consider a general reflecting and transmitting surface. If the radiance is incident from
a direction ξ̂i at a position ~ρ on the surface, the radiances reflected in the direction ξ̂r and
transmitted in the direction ξ̂t are, respectively, given by

L(~ρ, ξ̂r) =

∫

All ξ̂i

r(~ρ, ξ̂i → ξ̂r)L(~ρ, ξ̂i) dΩ(ξ̂i)

and

L(~ρ, ξ̂t) =

∫

All ξ̂i

t(~ρ, ξ̂i → ξ̂t)L(~ρ, ξ̂i) dΩ(ξ̂i),

where r and t define the reflection and transmission functions. Given r and t these are
straightforward to evaluate. If the surface were the boundary of the medium with L(~ρ, ξ̂i)
the radiance incident on the boundary from the inside, then L(~ρ, ξ̂r) would be part of the
radiance incident into the medium, and L(~ρ, ξ̂t) the totality of radiance exiting the medium
at ~ρ.

2.8.1 Determination of the Reflection and Transmission Functions

Including boundaries in the radiative transfer process when r depends on both ξ̂i and ξ̂r
and t depends on both ξ̂i and ξ̂t is difficult. Only in the Monte Carlo method is the process
straightforward. Consider the reflectance and a collimated incident beam of radiance

L(ξ̂i) = Fbδ
(2)(ξ̂ − ξ̂b),

where Fb is the irradiance that would fall on a plane normal to ξ̂b. The radiance reflected
from the surface is then

L(ξ̂r) = Fbr(ξ̂b → ξ̂r). (2.86)

Now, the irradiance incident on the reflecting surface is Fb|ξ̂b • n̂S |, where n̂S is the normal
to the reflecting surface. Recalling that the radiant power is proportional to the photon
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rate N , and using the definitions of radiance and irradiance, i.e., those leading up to Eq.
(2.53), we can rewrite Eq. (2.86) as

∆N(ξ̂r)

AS |ξ̂r • n̂S |∆Ω(ξ̂r)
=

N(ξ̂b)

AS |ξ̂b • n̂S |
r(ξ̂b → ξ̂r),

where N(ξ̂b) is the photon rate incident on an area AS of the surface and ∆N(ξ̂r) is the
rate at which photons are reflected from AS in the direction ξ̂r in ∆Ω(ξ̂r). (Note that
a prescription for measuring r(ξ̂b → ξ̂r) follows immediately from this equation.) The
quantity ∆N(ξ̂r)/N(ξ̂b) is the probability of reflection from ξ̂b into ∆Ω(ξ̂r), i.e.,

∆P(ξ̂b → ξ̂r) =
∆N(ξ̂r)

N(ξ̂b)
=
|ξ̂r • n̂S |
|ξ̂b • n̂S |

r(ξ̂b → ξ̂r) ∆Ω(ξ̂r). (2.87)

The probability of reflection (as opposed to absorption or transmission) from the surface
in any direction is

R(ξ̂b) =

∫

All ξ̂r

dP(ξ̂b → ξ̂r) =
1

|ξ̂b • n̂|

∫

All ξ̂r

|ξ̂r • n̂S |r(ξ̂b → ξ̂r) dΩ(ξ̂r) ≤ 1. (2.88)

Now, with these preliminaries, it is clear that in the Monte Carlo method, given a sequence
of random numbers ρi distributed U[0,1], a photon incident on the surface in a direction ξ̂b
will be reflected if the chosen ρi ≤ R(ξ̂b). Thus, R(ξ̂b) for a surface reflection event plays
the same role as ω0 for a scattering event. If the photon is reflected, its direction can be
determined from the probability density41

pr(ξ̂b → ξ̂r) =
1

R(ξ̂b)

|ξ̂r • n̂s|
|ξ̂b • n̂s|

r(ξ̂b → ξ̂r),

in a manner identical to determining the change in a photon’s direction on scattering, i.e.,
Eqs.(2.58) and (2.59) and Figure 2.13. So pr(ξ̂b → ξ̂r) for a surface plays the same role as
p(ξ̂j → ξ̂i) for a scattering event.

A particularly simple example of this is a lambertian surface. Recall that for such a
surface the radiance reflected when a collimated beam is incident, is independent of ξ̂r and
the irradiance that is reflected is A|ξ̂b • n̂S |Fb, where A is the surface albedo. Since the
irradiance for a uniform radiance is πL, the reflected radiance is

L(ξ̂r) =
A
π
|ξ̂b • n̂S |Fb,

41The R−1 factor in this equation is required to normalize pr, i.e., so that∫
All ξ̂r

pr(ξ̂b → ξ̂r) dΩ(ξ̂r) = 1.
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so, using Eq. (2.86)

r(ξ̂b → ξ̂r) =
A
π
|ξ̂b • n̂S |. (2.89)

Then from Eq. (2.87) and (2.88)

∆P(ξ̂b → ξ̂r) =
A
π
|ξ̂r • n̂S |∆Ω(ξ̂r),

R(ξ̂b) = A,

pr(ξ̂b → ξ̂r) =
|ξ̂r • n̂S |

π
.

Now, if we let θr and φr be the polar and azimuth angles for ξ̂r, i.e.,

ξ̂r = êx cosφr sin θr + êy sinφr sin θr + êz cos θr,

we have

pr(θr, φr) =
cos θr
π

= pθ(θr)pφ(φr).

Since pr is independent of φr, all 0 ≤ φr ≤ 2π are equally probable, so

pφ(φr) =
1

2π
and pθ(θr) = 2 cos θr.

Again, following the procedure leading to Eq. (2.60), given random numbers ρθ and ρφ
from U[0,1], we find the direction of the reflected photon from

φr = 2πρφ and ρθ = 2

∫ θr

0
cos θ′r sin θ′r dθ

′
r.

The above integral is easily evaluated to yield the reflected polar angle

cos θr = −
√

1− ρθ.

where the negative sign for the square root is chosen because θr must be > π/2 for an
upward propagating photon (θb < π/2). Of course the reflected direction is determined
only after it has been determined that the photon is not absorbed, i.e., by testing a separate
random number against R(ξ̂b) = A.

Another simple boundary is a flat Fresnel-reflecting surface, e.g., the surface of a flat
water body. For such a surface we have

L(z, ur, φr) =

∫ 2π

0
dφi

∫ 1

0
r(ui → ur, φi → φr)L(z, ui, φi) dui,
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and a similar equation for L(z, ut, φt). Letting rf (u) be the Fresnel reflectance for an
incident angle arccos(u), we have

r(ui → ur, φi → φr) = rf (ui)δ(ui + ur)δ(φi − φr),

and

t(ui → ut, φi → φt) =
(
1− rf (ui)

)
δ(ui − ut)δ(φi − φt),

where ut is related to ui through Snell’s law. Thus, the incident radiance is partially
reflected with ur = −ui and φr = φi (the law of reflection), and partially transmitted.

2.8.2 Boundaries in Plane-parallel Media

We have seen that in plane parallel media, when the phase function depends only on the
scattering angle, it is useful to decompose the radiance in a Fourier series (Eq. (2.68)).
In that case we found that each Fourier component of the radiance individually satisfied
an RTE. We might expect similar simplification if the reflectance and transmittance func-
tions are subjected to Fourier analysis; however, simplification is not obtained unless the
reflectance and transmittance functions display a considerable amount of symmetry. It is
beyond the scope of this work to examine the various symmetries that are possible, so we
will consider a specific, and useful, example.

Place the lower boundary of a 1-d slab at τb. Then the reflected radiance is

L(τb, ur, φr) =

∫ 2π

0
dφi

∫ 1

0
r(τb, ui → ur, φi → φr)L(τb, ui, φi) dui, ui > 0, ur < 0.

(2.90)
We will examine the case where the reflectance depends on azimuth through |φi−φr|, i.e.,

r(ui → ur, φi → φr) = r(ui → ur, |φi − φr|).

Such symmetry is extant when dealing with reflection from the surface of a water body
roughened by the wind (when the wind direction is ignored). In this case r is an even
function of φi − φr so the Fourier expansion becomes particularly simple:

r(ui → ur, φi → φr) = r0(ui → ur) + 2
∞∑

l=1

rl(ui → ur) cos l(φi − φr),

with

rl(ui → ur) =
1

2π

∫ 2π

0
r(ui → ur, φi → φr) cos l(φi − φr) dφi. (2.91)
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Note that the integration above could equally well be over φr. Writing the Fourier series
for the radiance incident on the boundary,

L(τb, u, φ) = L0(u)+2
∞∑

m=1

L(c)
m (τb, u) cosm(φ−φ1)+2

∞∑

m=1

L(s)
m (τb, u) sinm(φ−φ1), (2.92)

and inserting it into Eq. (2.90), we have (after again dropping the τb for economy)

L(ur, φr) =

∫ 1

0
dui

∫ 2π

0
dφi

[
[r0(ui → ur)L

(c)
0 (ui)

+ 4

∞∑

l=1

∞∑

m=1

rl(ui → ur)L
(c)
m (u) cos l(φr − φi) cosm(φi − φ1)

+ 4

∞∑

l=1

∞∑

m=1

rl(ui → ur)L
(s)
m (u) cos l(φr − φi) sinm(φi − φ1)

]

= 2π

∫ 1

0
dui

[
r0(ui → ur)L

(c)
0 (ui)

+ 2

∞∑

m=1

rm(ui → ur)L
(c)
m (u) cosm(φr − φ1)

+ 2
∞∑

m=1

rm(ui → ur)L
(s)
m (u) sinm(φr − φ1)

]
,

or

L(c)
m (ur) = 2π

∫ 1

0
rm(ui → ur)L

(c)
m (ui) dui,

L(s)
m (ur) = 2π

∫ 1

0
rm(ui → ur)L

(s)
m (ui) dui,

where ur < 0. Thus, in this case, any given Fourier component of the radiance satisfies an
RTE and bottom boundary condition separate from all of the other components. This is an
enormous simplification.

A trivial example of a surface having these properties is the lambertian reflector, for
which

L(ur) = AEd
π
,

where Ed is the downward irradiance onto the surface

Ed =

∫ 2π

0
dφi

∫ 1

0
uiL(ui, φi) dui.
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Thus,

L(ur) = 2A
∫ 1

0
uiL

(c)
0 (ui) dui,

and the reflectance is given by

r(c)
m =

Aui
π

δm0.

So for a lambertian lower boundary, L
(c)
m (ur) = 0 and L

(s)
m (ur) = 0 if m 6= 0.

For a final example of very simple boundary reflectances, we return to the flat Fresnel-
reflecting surface. From Eq. (2.91) and the properties of the δ-function, rm(ui → ur) =
rf (ui)/2π, so

L(c,s)
m (ur) = rf (ui)L

(c,s)
m (ui), ur = −ui,

with a similar equation for the transmitted radiance. In this case, every Fourier component
is reflected in the same manner at the interface.

2.8.3 A cautionary note

One must be careful not to confuse the “r” in the equation

L(τb, ur, φr) =

∫ 2π

0
dφi

∫ 1

0
r(τb, ui → ur, φi → φr)L(τb, ui, φi) dui, ui > 0, ur < 0.

with the r’s in the matrix operator and invariant imbedding methods, although we will see
below they are related. Consider for example the situation in which

r(ui → ur, φi → φr) = r(ui → ur, |φi − φr|)

discussed above. For this, the boundary condition at the surface was

L(c,s)
m (ur) = 2π

∫ 1

0
rm(ui → ur)L

(c,s)
m (ui) dui.

Now, use Gaussian quadratures to discretize the integrals as before,

L(c,s)
m (uj) = 2π

∑
airm(ui → uj)L

(c,s)
m (ui),

where ui > 0 and uj < 0. Writing for L
(c)
m or L

(s)
m

L+
m =




L(un)

L(un−1)
...

L(u1)


 , ui > 0, and L−m =




L(u−n)
L(u−n+1)

...
L(u−1)


 , u−j < 0,
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we can put the equation in matrix form

L−m = rsL
+
m,

and rs plays a role similar to rbc in Eq. (2.79). Writing out the matrix shows that the
elements of rs are

[rs]ij = airm(ui → u−j),

and the rs matrix contains the ai’s as well as the r’s. If the surface is lambertian, rm(uj →
ui) = Auiδm0/π and

[rs]ij =
A
π
aiuiδm0.

As we have seen before, only the Fourier order with m = 0 is reflected from a lambertian
surface.

2.8.4 The Bi-directional Reflectance Distribution Function — BRDF

For completeness, we define an alternative to the reflection function r(ξ̂i → ξ̂r) called
the bi-directional reflectance distribution function or the BRDF. This is often used in
describing reflection from solid surfaces. It is defined in such a manner that it is constant
for a lambertian surface, i.e.,

BRDF (ξ̂i → ξ̂r) ,
r(ξ̂i → ξ̂r)

|ξ̂i • n̂S |
Also, unlike r,

BRDF (ξ̂i → ξ̂r) = BRDF (ξ̂r → ξ̂i),

a property known as reciprocity.

In later chapters, we will define the reflectance ρ(ξ̂0 → ξ̂out) of the ocean-atmosphere
system to be

ρ(ξ̂0 → ξ̂out) =
πL(ξ̂0 → ξ̂out)

|ξ̂0 • n̂|F0

,

where ξ̂out is the direction of the radiance L exiting the top of the atmosphere, ξ̂0 is the
direction in which solar radiation propagates into the atmosphere, n̂ is the normal to the
top of the atmosphere, and F0 is the solar irradiance on a plane normal to ξ̂0. Comparing
this to Eq. (2.86) and using the definition of the BRDF, we see that

ρ(ξ̂0 → ξ̂out) = πBRDF (ξ̂0 → ξ̂out).

If the ocean-atmosphere system reflected light as a lambertian reflector of albedo A,

ρ(ξ̂out) = A.
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2.9 An Important Integral — Gershun’s Equation

Notice that in Eq. (2.61) the u in the derivative term can be placed inside the derivative,
i.e.,

u
∂

∂z
L(z, u, φ, λ) =

∂

∂z
[uL(z, u, φ, λ)] .

If we effect this, multiply Eq. (2.61) by du dφ, integrate over all u and φ (i.e., over solid
angle), and use the form of the irradiances in Eq. (2.63) we find

∂

∂z
[Ed(z, λ)− Eu(z, λ)] = −a(z, λ)E0(z, λ) +

∫ 1

−1
du

∫ 2π

0
Q(z, u, φ, λ) dφ, (2.93)

where we have used the fact that, after integrating over u and φ,

∫ 1

−1
du

∫ 2π

0
dφ

∫ 1

−1
du′
∫ 2π

0
dφ′
[
β(z, u′ → u, φ′ → φ, λ)L(z, u′, φ′, λ)

]

= b(z, λ)

∫ 1

−1
du′
∫ 2π

0
dφ′L(z, u′, φ′, λ) = b(z, λ)E0(z, λ),

and

a(z, λ) = c(z, λ)− b(z, λ).

Equation (2.93) is usually referred to as Gershun’s law. It provides a means of using
irradiances to deduce a(z, λ), if Q is known.

We can interpret Gershun’s law physically in the following manner. Consider a slab of
medium between z and z + ∆z. Gershun’s law states

Ed(z + ∆z, λ)− Ed(z, λ)− Eu(z + ∆z, λ) + Eu(z, λ) = −a(z, λ)E0(z, λ) ∆z

+

∫

All ξ̂
Q(z, ξ̂, λ) dΩ(ξ̂) ∆z.

(2.94)

If we ignore the Q term for the moment, then

Ed(z + ∆z, λ)− Ed(z, λ)− Eu(z + ∆z, λ) + Eu(z, λ)

E0(z, λ)∆z
=

1

E0(z, λ)

∆EV (z, λ)

∆z
= −a(z, λ),

(2.95)
where EV is the vector irradiance, and the measurement of Ed, Eu, and E0, provides a way
to determine the absorption coefficient within the slab. Noting the relationship between
E0 and the electromagnetic spectral energy density, i.e., E0 = c`〈usem〉, we see that in the
case of a non-scattering medium Gershun’s law is just a restatement of Poynting’s theorem.
Thus, Gershun’s law is the radiative transfer statement of the conservation of energy.
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What is the effect of the Q term? Equation (2.94) can be rewritten

Ein(λ)− Eout(λ) = a(z, λ)E0(z, λ) ∆z −
∫

All ξ̂
Q(z, ξ̂, λ) dΩ(ξ̂) ∆z,

where Ein(λ) = Ed(z, λ) + Eu(z + ∆z, λ) and Eout(λ) = Ed(z + ∆z, λ) + Eu(z, λ) are the
irradiances into and out of the slab respectively. How do we interpret the last term? Noting
that Q is the intensity density of sources, i.e., Q(z, ξ̂) = dJ(z, ξ̂)/dV , we have

∫

All ξ̂
Q(z, ξ̂, λ) dΩ(ξ̂) ∆z =

∫

All ξ̂

dP (z, ξ̂)

As
,

where As is the lateral area of the volume being examined, i.e., dV = As dz, and P (z, ξ̂) is
the spectral radiant power propagating in the direction ξ̂ within the slab. The integrand
is just the exiting boundary irradiance due to P exiting in the direction ξ̂, so the later
integral is just an out-going irradiance, i.e., EQout(λ). Simplifying this yields

Ein(λ)− Eout(λ) + EQout(λ) = a(z, λ)E0(z, λ) ∆z.

Now, since Eout(λ) already contains EQout(λ), because it was derived from the actual ra-

diances (or irradiances), when we add it to the left hand side, it cancels the −EQout(λ) in

−Eout(λ). Thus, when there are internal sources one needs to determine EQout(λ) in order
to estimate a from Gershun’s law, or to put it another way; when internal sources are
present, but ignored, Gershun’s law in the form of Eq. (2.95) will always yield a value of
a(z, λ) that is too small.

It is pedagogically useful to examine Eq. (2.94) using the photon concept, i.e., that radi-
ant power through a surface is proportional to the rate at which photons stream through the
surface. The terms in this equation contain radiant power, which is (hc`/λ)(dn/dt), energy
density, which is (hc`/λ)(dn/dV ) or intensity density (Q), which is (hc`/λ)(dnQ(ξ̂)/dV dΩ),
where the n’s are photon numbers. Thus, rather than working with radiometric units, we
can work with photon numbers — the (hc`/λ) factor occurs in each term. Ignoring Q
for the moment, if we consider a horizontal area AS of the slab, then we can relate the
irradiances on the left-hand-side to the rates at which photons enter and leave the slab,
and the scalar irradiance on the right-hand-side to the photon density within the slab, i.e.,

1

AS

[
dnin

dt
− dnout

dt

]
= a(z, λ)

[
c`
dninside

dV

]
∆z,

or

dnin − dnout = a(z, λ)c` dt

[
AS ∆z

dninside

dV

]
.
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Now, the quantity in the square brackets above is the instantaneous number of photons in
the slab. During a time dt these photons will move a distance dl = c dt, so the number of
these photons absorbed in ∆z in the time interval dt is just

dnabsorbed = a(z, λ)c` dt

[
AS ∆z

dninside

dV

]
.

Thus, as photons stream through the slab, they are absorbed at a rate
(
dn

dt

)

absorbed

= a(z, λ)c`

[
AS ∆z

dninside

dV

]
,

and in terms of photons, Gershun’s law applied to a thin slab states
(
dn

dt

)

in

−
(
dn

dt

)

out

=

(
dn

dt

)

absorbed

,

i.e., it is a mathematical statement of the conservation of photon numbers (energy). It is
readily shown that when the internal source term

∫
QdΩ is included, it leads to a term

−(dn/dt)emitted on the right-hand-side above,42 so the full Gershun equation results in
(
dn

dt

)

in

−
(
dn

dt

)

out

=

(
dn

dt

)

absorbed

−
(
dn

dt

)

emitted

.

As one expects, the conservation of energy is not restricted to slab geometry, Gershun’s
law can be derived for arbitrary geometry as well.43

2.10 Summary and Concluding Remarks

In this chapter we have presented the tools needed to understand the propagation of ra-
diation in an absorbing, scattering and refracting medium. We started by defining the

42This is easy to show:∫
All ξ̂

Q(z, ξ̂, λ) dΩ(ξ̂)→
∫

All ξ̂

dnQ(z, ξ̂)/dt

dV dΩ
dΩ ∆z =

1

As

∫
All ξ̂

dnQ(z, ξ̂)

dt
=

1

As

(
dn

dt

)
emitted

.

43Starting with Eq. (2.33) including the variable m in Eq. (2.5.4), rewriting ξ̂ •∇(L/m2) as ∇•(ξ̂L/m2),
integrating over all solid angles dΩ(ξ̂) and a volume of V of the medium, and applying the divergence
theorem yields,∮

S

n̂ • ξ̂ L(~ρ, ξ̂, λ)

m2(~ρ)
dS =

∫
V

a(~r, λ)
E0(~r, λ)

m2(~r)
dV +

∫
V

∫
All ξ̂

Q(~r, ξ̂, λ)

m2(~r)
dΩ(ξ̂) dV,

where S is the surface bounding V , n̂ is the outward normal to S, and the last term in Eq. (2.33) has been
replaced by Q(~r, ξ̂, λ). These terms have interpretations identical to the corresponding terms in Eq. (2.93).
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radiance, which is the of fundamental importance, as it is the quantity measured by remote
optical sensors. The propagation of radiance is governed by the radiative transfer equation.
After defining the inherent optical properties of the medium — the absorption coefficient
and the volume scattering functions (elastic and inelastic) — the radiative transfer equa-
tion was developed in a phenomenological manner. Unfortunately, analytical solutions of
this equation are possible only in the simplest of cases, e.g., no scattering; however several
solution methods were presented that are amenable to numerical approximations, which
can be made as accurate as desired. Two methods that were used extensively in preparing
this work, the successive order of scattering and Monte Carlo, were developed in consid-
erable detail. Three others that have also been used extensively in environmental optics
were sketched with enough detail to provide the reader a starting point for further study if
desired. In Appendix 1 an analytical first-order solution, that leads to the single-scattering
solution, is derived. As it is a good approximation to radiative transfer in the atmosphere
(actually the starting point for the atmospheric correction algorithm) and is the basis for
an excellent approximation to radiative transfer in the ocean — the quasi-single scattering
approximation — the single-scattering solution is used extensively throughout the rest of
this work and should be completely understood before proceeding further. In Appendix 2
we provide detailed derivations of various Monte Carlo estimators of solutions to the RTE
with and without consideration of the polarization properties of the radiance.

2.11 Appendix 1: First-Order Solutions for 1-d Media

In this appendix we present the first-order solutions to the radiative transfer equation in
a 1-d plane-parallel medium. By “first-order” we mean solutions utilizing only the first
two terms in Eq. (2.49) and the first two equations in Eq. (2.50). They contain ω0 only
in powers of 0 and 1. These solutions are reasonably accurate in slab geometry when the
optical thickness of the slab is � 1. We reserve the terms “single-scattering solution”
or “single-scattering approximation” for the first-order solution in which we explicitly ap-
proximate exponentials such as exp[−τ/u] by 1− τ/u, which implies only one interaction
with the medium. The cases chosen for examination are ones that will be useful in later
chapters. We also introduce the reader to the additional complexity that must be faced
when taking into account the polarization state of the radiation.

2.11.1 First-Order Scattering Solution in Slab Geometry

Consider a homogeneous slab of optical thickness τ1 illuminated from the top by an incident
radiance L(0, u, φ), u > 0. There is no illumination on the bottom, so L(τ1, u, φ) = 0 for
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u < 0. The solution provided by the successive order of scattering method follows from

u
∂

∂τ
L(0)(τ, u, φ) + L(0)(τ, u, φ) = 0

u
∂

∂τ
L(1)(τ, u, φ) + L(1)(τ, u, φ, ) =

1

4π

∫ 1

−1
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ)L(0)(τ, u′, φ′)

...,

where
L(0)(0, u, φ) = L(0, u, φ) u > 0

L(0)(τ1, u, φ) = 0 u < 0

and
L(n)(0, u, φ) = 0, u > 0

L(n)(τ1, u, φ) = 0, u < 0

}
n > 0.

The solution for L(0) satisfying the boundary conditions is

L(0)(τ, u, φ) = L(0, u, φ) exp
[
−τ
u

]
u > 0

L(0)(τ, u, φ) = 0 u < 0.

Thus,

u
∂

∂τ
L(1)(τ, u, φ)+L(1)(τ, u, φ, ) =

1

4π

∫ 1

−1
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ)L(0, u′, φ′) exp

[
−τ
u

]

The solution to the homogeneous equation (left-hand-side set to zero) is

L
(1)
h (τ, u, φ) = Ch(u, φ) exp

[
−τ
u

]
,

and it is easily verified that

L
(1)
i (τ, u, φ) =

1

4π

∫ 1

−1
du′
∫ 2π

0
dφ′

P (u′ → u, φ′ → φ)

1− u/u′ L(0, u′, φ′) exp
[
− τ
u′

]

satisfies the inhomogeneous equation, so the general solution for L(1) is

L(1)(τ, u, φ) = L
(1)
h (τ, u, φ) + L

(1)
i (τ, u, φ).

Ch(u, φ) is determined from the boundary conditions:

L(1)(0, u, φ) = 0, u > 0

L(1)(τ1, u, φ) = 0, u < 0.
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Thus, at the top

0 = L
(1)
h (0, u, φ) + L

(1)
i (0, u, φ)

= Ch(u, φ) +
1

4π

∫ 1

−1
du′
∫ 2π

0
dφ′

P (u′ → u, φ′ → φ)

1− u/u′ L(0, u′, φ′), u > 0,

so

Ch(u, φ) = − 1

4π

∫ 1

−1
du′
∫ 2π

0
dφ′

P (u′ → u, φ′ → φ)

1− u/u′ L(0, u′, φ′), u > 0.

Likewise, at the bottom

0 = L
(1)
h (τ1, u, φ) + L

(1)
i (τ1, u, φ)

= Ch(u, φ) exp
[
−τ1

u

]

+
1

4π

∫ 1

−1
du′
∫ 2π

0
dφ′

P (u′ → u, φ′ → φ)

1− u/u′ L(0, u′, φ′) exp
[
−τ1

u′

]
, u < 0,

so

Ch(u, φ) =
1

4π

∫ 1

−1
du′
∫ 2π

0
dφ′

P (u′ → u, φ′ → φ)

1− u/u′

× L(0, u′, φ′) exp

[
−τ1

(
1

u′
− 1

u

)]
, u < 0.

Combining, to first order in ω0, we have

L(τ, u, φ) = L(0)(τ, u, φ) + ω0L
(1)(τ, u, φ),

or

L(τ, u, φ) = L(0, u, φ) exp
[
−τ
u

]

+
ω0

4π

∫ 1

0
du′
∫ 2π

0
dφ′

P (u′ → u, φ′ → φ)

1− u/u′ L(0, u′, φ′)

×
{

exp
[
− τ
u′

]
− exp

[
−τ
u

]}
, u > 0,

(2.96)

L(τ, u, φ) = exp
[
−τ
u

]

× ω0

4π

∫ 1

0
du′
∫ 2π

0
dφ′

P (u′ → u, φ′ → φ)

1− u/u′ L(0, u′, φ′)

×
{

exp

[
−τ
(

1

u′
− 1

u

)]
− exp

[
−τ1

(
1

u′
− 1

u

)]}
, u < 0.

(2.97)
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2.11.2 The Single-Scattering Solution

The first-order solutions given in Eqs. (2.96) and (2.97) are rigorously correct and do
provide the first two terms in Eq. (2.49); however, they are not a good approximation to
the total radiance when the the rest of the series is omitted. A much better approximation
for media with τ1 � 1 is achieved by expanding the exponentials in a series and keeping only
the first term, i.e., replacing exp[−τ/u] by 1− τ/u. As we shall see, when this replacement
is made the resulting radiance will be proportional to terms containing ω0τ = b, i.e., first
order in b. Such terms imply only one scattering. We refer to the formulae after this
replacement as the “single-scattering solution.” It will form the basis for much of the
development of atmospheric and oceanic radiative transfer in later chapters.

When the above replacement is made, the solutions become

L(τ, u, φ) = L(0, u, φ)
[
1− τ

u

]

+
ω0τ1

4πu

∫ 1

0
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ)L(0, u′, φ′), u > 0,

(2.98)

and

L(τ, u, φ) =
ω0(τ − τ1)

4πu

∫ 1

0
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ)L(0, u′, φ′), u < 0.

(2.99)
The radiances exiting the top and bottom of the slab are, respectively,

L(0, u, φ) = −ω0τ1

4πu

∫ 1

0
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ)L(0, u′, φ′), u < 0, (2.100)

and

L(τ1, u, φ) = L(0, u, φ)
[
1− τ1

u

]

+
ω0τ1

4πu

∫ 1

0
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ)L(0, u′, φ′), u > 0.

(2.101)

If the phase function and the radiances are expanded in Fourier series in azimuth, i.e., as
in Eq. (2.65) and (2.68), then these solutions become

L(c,s)
m (0, u) = −ω0τ1

2u

∫ 1

0
du′ pm(u′ → u)L(c,s)

m (0, u′), u < 0,

and
L(c,s)
m (τ1, u) = L(c,s)

m (0, u)
[
1− τ1

u

]

+
ω0τ1

2u

∫ 1

0
du′ pm(u′ → u)L(c,s)

m (0, u′), u > 0,
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where L
(s)
0 (τ, u) = 0.

Two cases of considerable interest are that of a beam source, e.g., the Sun, for which
L(0, u, φ) = F0δ(u− u0)δ(φ− φ0), and a totally diffuse source for which L(0, u, φ) = L0, a
constant. For a beam source the integration is trivial and we have,

L(0, u, φ) = −ω0F0τ1

4πu
P (u0 → u, φ0 → φ), u < 0, (2.102)

and
L(τ1, u, φ) = F0δ(u− u0)δ(φ− φ0)

[
1− τ1

u

]

+
ω0F0τ1

4πu
P (u0 → u, φ0 → φ), u > 0.

(2.103)

The first term in Eq. (2.103) is the attenuated incident beam while the second is the
radiance created through scattering. The irradiances reflected and transmitted by the slab
are

Eu(0) =
ω0F0τ1

4π

∫ 0

−1
du′
∫ 2π

0
dφ′ P (u0 → u′, φ0 → φ′) (2.104)

and

Ed(τ1) = u0F0

[
1− τ1

u0

]
+
ω0F0τ1

4π

∫ 1

0
du′
∫ 2π

0
dφ′ P (u0 → u′, φ0 → φ′). (2.105)

Now, the integrals in Eqs. (2.104) and (2.105) are proportional to the probabilities of
scattering from ξ̂0 into upward and downward directions, respectively:

Pu(u0, φ0) ,
1

4π

∫ 0

−1
du′
∫ 2π

0
dφ′ P (u0 → u′, φ0 → φ′),

Pd(u0, φ0) ,
1

4π

∫ 1

0
du′
∫ 2π

0
dφ′ P (u0 → u′, φ0 → φ′).

(2.106)

With these definitions, we have

Eu(0) = ω0F0τ1Pu(u0, φ0)

and

Ed(τ1) = u0F0

[
1− τ1

u0

]
+ ω0F0τ1Pd(u0, φ0).

Since Pu(u0, φ0) + Pd(u0, φ0) = 1, adding these gives

Eu(0) + Ed(τ1) + (1− ω0)F0τ1 = u0F0.

The first two terms on the left-hand-side provide the flux out of the slab, the third term
is the flux absorbed by the slab, and the right-hand-side is the flux into the slab. Thus,



2.11. APPENDIX 1: FIRST-ORDER SOLUTIONS FOR 1-D MEDIA 179

the energy is conserved in this approximation. If the exponentials were not expanded, or if
more than the linear terms were retained in the expansion of exp(−τ1/u), the energy would
not be conserved because the first-order equations are not consistent, i.e., the exponentials
contain all powers of τ , which imply all orders of scattering (not just one as is implied in
L(1)).44

In the case with a totally diffuse source, Eq. s(2.98) and (2.99) yield

L(τ, u, φ) = L0

[
1− τ

u

]

+
ω0τL0

4πu

∫ 1

0
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ), u > 0,

(2.107)

and

L(τ, u, φ) =
ω0(τ − τ1)L0

4πu

∫ 1

0
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ), u < 0. (2.108)

The integrals in these expressions can be simplified if the phase function depends only on
the angle Θ between ξ̂ and ξ̂′. In that case,

P (u′ → u, φ′ → φ) = P (u→ u′, φ→ φ′)

so ∫ 1

0
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ) =

∫ 1

0
du′
∫ 2π

0
dφ′ P (u→ u′, φ→ φ′).

If u > 0, this integral represents the scattering from downward propagating radiation (u)
into the downward directions (0 < u′ < 1), so

∫ 1

0
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ) = 4πPd(u, φ).

Similarly, if u < 0, the integral represents scattering by upward propagating radiation into
downward directions, which is the same as downward propagating radiation scattered into
upward directions. Thus, for u < 0,

∫ 1

0
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ) = 4πPu(u, φ).

The radiances then become

L(τ, u, φ) = L0

[
1− τ

u

(
1− ω0Pd(u, φ)

)]
, u > 0,

L(τ, u, φ) = L0
ω0(τ − τ1)

u
Pu(u, φ), u < 0,

44Of course, it all of the terms in Eq. (2.49) were retained, energy would be conserved.
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and

L(τ1, u, φ) = L0

[
1− τ1

u

(
1− ω0Pd(u, φ)

)]
, u > 0,

L(0, u, φ) = −L0
ω0τ1

u
Pu(u, φ), u < 0.

Interestingly, the fraction of incident diffuse radiance transmitted with a totally diffuse
source is equal to the fraction of incident irradiance transmitted with a beam source, i.e.,

Ed(τ1)

u0F0
=

[
1− τ1

u0

(
1− ω0Pd(u0, φ0)

)]
=
L(τ1, u0, φ0)

L0
. (2.109)

This is no accident — we shall see later that it is demanded by the reciprocity principle.

2.11.3 The Single-Scattering Solution Including Polarization

To include polarization and find the Stokes vector I in a slab illuminated by a beam of
unpolarized light, e.g., from the Sun, we must solve

u
∂I(z, u, φ)

∂z
+ c I(τ, u, φ) =

∫ 1

−1
du′
∫ 2π

0
dφ′ β(u′ → u, φ′ → φ)I(τ, u′, φ′).

In general, the 4 × 4 extinction matrix c has no nonzero elements and the solution of
this equation is extremely difficult. However, if the scattering is due to atoms (and/or
molecules), i.e., Rayleigh scattering or particles that have high enough symmetry, e.g.,
spheres, then c is a multiple of the unit matrix, i.e.,45

c = c




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

In this case the radiative transfer equation simplifies to

u
∂I(τ, u, φ)

∂τ
+ I(τ, u, φ) =

ω0

4π

∫ 1

−1
du′
∫ 2π

0
dφ′Z(u′ → u, φ′ → φ)I(τ, u′, φ′),

where τ = cz, ω0 = b/c, and Z(u′ → u, φ′ → φ) is the Mueller phase matrix for scattering
from u′ → u and φ′ → φ: Z = 4πβ/b. (Note that we have replaced IL (used earlier) by I

45In general, if the medium contains particles and their mirror images in equal numbers, and the particles
are in random orientation, c is a multiple of the unit matrix. An example of a situation in which c is not
of this form is extinction by long, thin, absorbing cylinders that have a preferred alignment in space.
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to make the notation simpler.) The solution must satisfy the boundary conditions

I(0, u, φ) = δ(u− u0)δ(φ− φ0)




F0

0
0
0


 , u > 0, and I(τ1, u, φ) = 0, u < 0.

The successive order of scattering method is also applicable to this equation without any
changes except replacing L by I and P by Z. A computation identical to that provided
when polarization is ignored leads to the results for τ1 � 1:

I(0, u, φ) = −ω0τ1

4πu
Z(u0 → u, φ0 → φ)




F0

0
0
0


 , u < 0;

I(τ1, u, φ) = δ(u− u0)δ(φ− φ0)
[
1− τ1

u

]



F0

0
0
0




+
ω0τ1

4πu
Z(u0 → u, φ0 → φ)




F0

0
0
0


 , u > 0.

The interpretation of these equations requires considerable care. Conventionally, the ref-
erence plane for describing I in a slab is the plane formed by êz and ξ̂ — the vector ˆ̀ (also
called ê`) being in this plane and r̂ (also called êr) perpendicular to this plane, such that
r̂× ˆ̀= ξ̂. Thus, in general the incident and scattered Stokes vectors are not referenced to
the same plane. In addition, the volume scattering function takes its simplest form when
the Stokes vectors are referenced to the scattering plane — the plane formed by ξ̂ and
ξ̂0. Thus, in describing the scattering process there are three reference planes involved:
that formed by êz and ξ̂0, that formed by ξ̂0 and ξ̂, and that formed by ξ̂ and êz. Figure
2.18 shows the scattering process projected onto the surface of a sphere centered on the
scattering event, and Figure 2.17 shows the spherical triangle projected on a plane tangent
to the sphere to indicate clearly the reference directions for describing the polarizations of
the incident and scattered radiation. Let P (Θ) be the Mueller scattering phase matrix

P (Θ) = 4π
β(Θ)

b
,
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e.g., for scattering by a collection of atoms (Rayleigh scattering),

P (Θ) =
3

4




(1 + cos2 Θ) − sin2 Θ 0 0
− sin2 Θ (1 + cos2 Θ) 0 0

0 0 2 cos Θ 0
0 0 0 2 cos Θ


 . (2.110)

In this form of P (Θ) the incident and scattered Stokes vectors are referenced to the scat-
tering plane, i.e., the vectors r̂sp and ˆ̀

sp in Figure 2.17.

 
 
 
 
Figure SSA-2:  This is a planar projection of the spherical triangle that 
describes the scattering process.  Shown are the directions of the reference 
vectors r̂  and l̂  for the incident 0̂ξ  and scattered photons ξ̂ , along with 
those for the scattering plane (subscript “sp”). 
 
 

φ − φ0

i0  i  

ξ̂  

zê

l̂r̂

0l̂  

0̂r

spl̂

0̂ξ  

spr̂
Figure 2.17: This is a planar projection of the spherical triangle that describes the
scattering process. Shown are the directions of the reference vectors r̂0 and ˆ̀

0 for
the incident photon (ξ̂0), r̂ and ˆ̀ for the scattered photon (ξ̂), and r̂sp and ˆ̀

sp for
the scattering plane. (See Figure 2.18 for further explanation of the directions and
angles.)

Since the incident Stokes vector is referenced to r̂0 and ˆ̀
0 in the figure, we must transform

the reference for I(0, u0, φ0) , I0 to the scattering plane. Figure 2.17 shows that the
transformation from r̂0 to r̂sp requires a clockwise rotation of the former through an angle
i0. This is effected by R(−i0), where (Eq. (1.58))

R(ψ) =




1 0 0 0
0 cos 2ψ − sin 2ψ 0
0 sin 2ψ cos 2ψ 0
0 0 0 1


 .
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The Stokes vector of the incident radiation referenced to the scattering plane (Isp) is

Isp = R(−i0)I0,

and the scattered Stokes vector referenced to the scattering plane is

P (Θ)R(−i0)I0.

But we want the scattered Stokes vector referenced to the plane formed by ξ̂ and êz. To
get this we must perform a second rotation (r̂sp clockwise through i to r̂), resulting in the
final form for the scattered Stokes vector

R(−i)P (Θ)R(−i0)I0 = Z(u0 → u, φ0 → φ)I0.

This also provides Z in terms of P , i.e.,

Z(u0 → u, φ0 → φ) = R(−i)P (Θ)R(−i0). (2.111)

 

 
 
 
Figure SSA-1:  Spherical coordinate diagram for the scattering from 0̂ξ  to 

ξ̂ . The scattering angle is Θ, and the angles i0 and i  the angles between the 
incident photon's reference plane and the scattering plane and the scattered 
photon's reference plane and the scattering plane, respectively.   

φ − φ0 θ  
θ0  

Θ  

i0  i  

zê  

0̂ξ
ξ̂  

Figure 2.18: Spherical coordinate diagram for scattering from ξ̂0 to ξ̂. The scatter-
ing angle is Θ, and the angles i0 and i are the angles between the incident photon’s
reference plane (plane formed by êz and ξ̂0) and the scattering plane (plane formed

by ξ̂0 and ξ̂), and the scattered photon’s reference plane (plane formed by êz and

ξ̂) and the scattering plane, respectively.
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It remains to determine the angles i0 and i in terms of the known directions ξ̂0 and ξ̂ (or
θ0, φ0, θ, and φ). Applying the law of cosines and the law of sines to the spherical triangle
in Figure 2.18 provides

cos Θ = cos θ0 cos θ + sin θ0 sin θ cos(φ− φ0),

cos i0 =
cos θ − cos Θ cos θ0

sin Θ sin θ0
,

cos i =
cos θ0 − cos Θ cos θ

sin Θ sin θ
,

sin i0 =
sin θ sin(φ− φ0)

sin Θ
,

sin i =
sin θ0 sin(φ− φ0)

sin Θ
.

(2.112)

Note, the sign of the i’s is the same as the sign of φ− φ0.

Clearly, when polarization is included the resulting equations become very complicated,
even in the first-order approximation. In the case examined here, the incident beam is
unpolarized, and the results simplify because only the first column of Z is required (and
also the reference plane for the incident beam is irrelevant because the incident irradiance
is unpolarized). When the Rayleigh phase matrix describes the scattering, the equations
simplify to

I(0, u, φ) = −3ω0F0τ1

16πu




1 + cos2 Θ
cos(−2i) sin2 Θ
sin(−2i) sin2 Θ

0


 , u < 0;

I(τ1, u, φ) = δ(u− u0)δ(φ− φ0)
[
1− τ1

u

]



F0

0
0
0




+
3ω0F0τ1

16πu




1 + cos2 Θ
cos(−2i) sin2 Θ
sin(−2i) sin2 Θ

0


 , u > 0.

The degree of polarization of the diffuse light is

P =

√
Q2 + U2

I2
=

sin2 Θ

1 + cos2 Θ
,

so in first-order the radiation is partially polarized. Comparison of these solutions with
Eq. (2.102) and (2.103) for the scalar case shows that the top component of the Stokes
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vector I, i.e., I is identical to the radiance in the scalar approximation (after replacing P
by the Rayleigh phase function in the latter). It not always true that in the first-order
approximation the radiance predicted by the scalar (L) and the vector (I) radiative transfer
equations are identical for an incident beam of unpolarized radiation. For example, it does
not hold if the lower boundary is a Fresnel reflecting surface, e.g., a water surface (cf.
Chapter 9, Eq. (9.40)).

The reader should note that Eq. (2.111) holds of any incident direction ξ̂′, not just ξ̂0,
this means that the radiative transfer equation for a 1-d medium (with c a multiple of
the identity matrix) can always be written in terms of the phase matrix referenced to the
scattering plane in the following manner;

u
∂I(τ, u, φ)

∂τ
+I(τ, u, φ) =

ω0(τ)

4π

∫ 1

−1
du′
∫ 2π

0
dφ′R(−i)P (τ,Θ)R(−i′)I(τ, u′, φ′), (2.113)

where Θ and i can be determined from Eqs. (2.112) with i0, θ0, and φ0, replaced by i′, θ′,
and φ′, respectively.

2.12 Appendix 2: Monte Carlo from a Multidimensional In-
tegral for Radiance

It is possible to write the solution to any radiative transfer problem in an elastically-
scattering medium as a multidimensional integral. In this appendix we derive the integral
for the radiance in any direction in a medium given the irradiance incident on the bound-
aries. For simplicity and for application to systems of interest here, we shall consider the
geometry encountered in the ocean-atmosphere system: a medium with a flat surface (or
one smoothly varying in shape) illuminated at the boundary by a source of essentially
collimated irradiance. After derivation of the multidimensional integral, we will proceed to
evaluate it using three techniques: (1) a straightforward, but naive, application of Monte
Carlo methods as described in the Mathematical Appendix, (2) a forward Monte Carlo
evaluation that, for a horizontally-homogeneous medium and source, is identical to that
derived by heuristic means in the text and is important when the IOPs depend only on
a single spatial coordinate, e.g., depth in the medium, and (3) a backward Monte Carlo
evaluation that is very important for media in which the IOPs depend on three-dimensional
position within the medium.
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2.12.1 Radiance in a Medium as a Multidimensional Integral

Consider a detector of area ∆AD accepting radiant power ∆2PD(~rD, ξ̂D) from the direction
ξ̂D located at the position ~rD as shown in Figure 2.19. The field of view of the detector
is restricted to ∆ΩD by a Gershun tube as shown. Radiant power ∆2P ′(~r ′, ξ̂D) is shown

!ΔΩD

Δω

!ΔAD !Δ ′V

!! Δ
2 ′P ( ′
!r ,ξ̂D)

!!ξ̂D
!! Δ

2PD(
!rD ,ξ̂D)

! ′
!r

! 
!rD

!O

Figure 2.19: Radiation from sources within ∆V ′ propagating in the direction ξ̂D
within in a medium is detected by a radiometer — a detector of area ∆AD with
its field of view limited by a Gershun tube to ∆ΩD.

leaving an element of volume ∆V ′, located at ~r ′ within the detector’s field of view, prop-
agating in the ξ̂D direction. The detector subtends a solid angle ∆ω seen by the volume
element. Let I(~r ′, ξ̂D) , dI(~r ′, ξ̂D)/dV ′, where I(~r ′, ξ̂D) is the intensity associated with
∆2P ′(~r ′, ξ̂D), be the intensity density of sources within ∆V ′. Then,

∆2P ′(~r ′, ξ̂D) = I(~r ′, ξ̂D)∆ω∆V ′, where ∆ω =
∆AD∣∣~r ′ − ~rD

∣∣2 .

The radiance ∆LD(~rD, ξ̂D) at the detector due to the sources within ∆V ′ is

∆LD(~rD, ξ̂D) =
∆2PD(~rD, ξ̂D)

∆AD∆ΩD
=

exp[−c
∣∣~r ′ − ~rD

∣∣]
∆AD∆ΩD

∆2P ′(~r ′, ξ̂D)

=
exp[−c

∣∣~r ′ − ~rD
∣∣]

∣∣~r ′ − ~rD
∣∣2∆ΩD

I(~r ′, ξ̂D)∆V ′,
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or

∆LD(~rD, ξ̂D)∆ΩD =
exp[−c

∣∣~r ′ − ~rD
∣∣]

∣∣~r ′ − ~rD
∣∣2 I(~r ′, ξ̂D)∆V ′.

Here, we have assumed that c is constant along the path between ~r ′ and ~rD. If it is not,
then the argument of the exponential is

−
∫ ~rD

~r ′
c d
∣∣~r ′ − ~rD

∣∣

along the straight-line path from ~r ′ to ~rD.

Now assume that I(~r ′, ξ̂D) is due to scattering within ∆V ′ from some other direction
as shown in Figure 2.20. From the definition of β(ξ̂′ → x̂D),

!ΔΩ( ˆ ′ξ )!!ξ̂D

! ′
!r

! 
!rD

!O

! ′
!
′r

! ˆ ′ξ

Figure 2.20: The intensity density of sources within ∆V ′ in Figure 2.19 results
from light scattered into ∆V ′ from ξ̂′.

β(ξ̂′ → x̂) =
I(~r ′, ξ̂D)

E(⊥ ξ̂′)
,

where E(⊥ ξ̂′) is the source irradiance on a plane perpendicular to ξ̂′ which in this case is
just L(~r ′, ξ̂′)∆Ω(ξ̂′). Therefore,

I(~r ′, ξ̂D) = β(~r ′; ξ̂′ → ξ̂D)L(~r ′, ξ̂′)∆Ω(ξ̂′), (2.114)
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so

∆LD(~rD, ξ̂D)∆ΩD =
exp[−c

∣∣~r ′ − ~rD
∣∣]

∣∣~r ′ − ~rD
∣∣2 β(~r ′; ξ̂′ → ξ̂D)L(~r ′, ξ̂′)∆Ω(ξ̂′),∆V ′. (2.115)

But, in the same manner

L(~r ′, ξ̂′)∆Ω(ξ̂′) =
exp[−c

∣∣~r ′′ − ~r ′
∣∣]

∣∣~r ′′ − ~r ′
∣∣2 β(~r ′′; ξ̂′′ → ξ̂′)L(~r ′′, ξ̂′′)∆Ω(ξ̂′′),∆V ′′,

...

Continuing back to the first collision at which the incident solar beam enters the medium
at ~r0 propagating in the ξ̂1 direction and then is scattered in the ξ̂2 direction, we have
(Figure 2.21)

!ξ̂2
!! 
!r1

!! 
!r2

!O

!!F0

!! 
!r0

!ξ̂1 !Boundary

Figure 2.21: Irradiance F0 in the form of a parallel beam enters the medium
traveling in the direction ξ̂1. It is scattered (the first scattering) at ~r1 into the

direction ξ̂2 propagating toward ~r2.

L(~r1, ξ̂1)∆Ω(ξ̂1) = F0(~r0) exp[−c
∣∣~r1 − ~r0

∣∣],
where the incident light is assumed to be in the form of a beam whose irradiance may vary
across the beam profile. This yields

L(~r2, ξ̂2)∆Ω(ξ̂2) =
exp[−c

∣∣~r2 − ~r1

∣∣]
∣∣~r2 − ~r1

∣∣2 β(~r1; ξ̂1 → ξ̂2)F0(~r0) exp[−c
∣∣~r1 − ~r0

∣∣]∆V1,
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Thus, the contribution to the detector from the volume elements ∆V1, ∆V2, · · · , ∆VN ,
where N is the number of collisions, is

∆LD(~rD, ξ̂D)∆ΩD =
exp[−c

∣∣~r2 − ~r1

∣∣]
∣∣~r2 − ~r1

∣∣2 β(~r1; ξ̂1 → ξ̂2)F0(~r0) exp[−c
∣∣~r1 − ~r0

∣∣]∆V1

× exp[−c
∣∣~r3 − ~r2

∣∣]
∣∣~r3 − ~r2

∣∣2 β(~r2; ξ̂2 → ξ̂3)∆V2

...

× exp[−c
∣∣~rN − ~rN−1

∣∣]
∣∣~rN − ~rN−1

∣∣2 β(~rN−1; ξ̂N−1 → ξ̂N )∆VN−1

× exp[−c
∣∣~rD − ~rN

∣∣]
∣∣~rD − ~rN

∣∣2 β(~rN ; ξ̂N → ξ̂D)∆VN

The final result for the radiance at the detector due to N collisions is achieved by summing
over all of the volume elements. However, this is only for N collisions; we also have to sum
over all N , i.e., sum over the individual total number of collisions from N = 1→∞. Thus,
converting ∆Vi to dV (~ri) and the sums over the ∆V ’s to 3N integrals, we get

LD(~rD, ξ̂D)∆ΩD =

∞∑

N=1

∫
· · ·
∫

exp[−c
∣∣~r2 − ~r1

∣∣]
∣∣~r2 − ~r1

∣∣2 β(~r1; ξ̂1 → ξ̂2)F0(~r0) exp[−c
∣∣~r1 − ~r0

∣∣]dV (~r1)

× exp[−c
∣∣~r3 − ~r2

∣∣]
∣∣~r3 − ~r2

∣∣2 β(~r2; ξ̂2 → ξ̂3)dV (~r2)

...

× exp[−c
∣∣~rN − ~rN−1

∣∣]
∣∣~rN − ~rN−1

∣∣2 β(~rN−1; ξ̂N−1 → ξ̂N )dV (~rN−1)

× exp[−c
∣∣~rD − ~rN

∣∣]
∣∣~rD − ~rN

∣∣2 β(~rN ; ξ̂N → ξ̂D)dV (~rN ),

where the last integral is zero unless the point ~rN is within the field of view of the detector,
i.e., within ∆ΩD. If the medium is inhomogeneous, then c → c(~r), in which case c

∣∣~ri+1 −
~ri
∣∣→ τ(i, i+ 1), where

τ(i, i+ 1) =

∫ ~ri+1

~ri

c(~r) dr, (2.116)

and ~r is on the straight line between ~ri and ~ri+1.
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Now, we introduce the scattering phase function P through

β(~r; ξ̂i → ξ̂i+1)

b(~r)
=
P (~r; ξ̂i → ξ̂i+1)

4π
,

or

β(~r; ξ̂i → ξ̂i+1) = ω0(~r)c(~r)
P (~r; ξ̂i → ξ̂i+1)

4π
.

We note for future reference that P (~r; ξ̂i → ξ̂i+1)/4π is the probability density for scattering
from ξ̂i → ξ̂i+1 at the point ~r. With these modifications, the radiance at the detector is

LD(~rD, ξ̂D)∆ΩD =
∞∑

N=1

∫
· · ·
∫

exp[−τ(1, 2)]∣∣~r2 − ~r1

∣∣2 ω0(~r1)c(~r1)
P (~r1; ξ̂1 → ξ̂2)

4π
F0(~r0) exp[−τ(0, 1)]dV (~r1)

× exp[−τ(2, 3)]∣∣~r3 − ~r2

∣∣2 ω0(~r2)c(~r2)
P (~r2; ξ̂2 → ξ̂3)

4π
dV (~r2)

...

× exp[−τ(N − 1, N)]∣∣~rN − ~rN−1

∣∣2 ω0(~rN−1)c(~rN−1)
P (~rN−1; ξ̂N−1 → ξ̂N )

4π
dV (~rN−1)

× exp[−τ(N,D)]∣∣~rD − ~rN
∣∣2 ω0(~rN )c(~rN )

P (~rN ; ξ̂N → ξ̂D)

4π
dV (~rN ),

(2.117)
where the last term contributes only if ~rN is within the field of view of the detector.

2.12.2 Naive Monte Carlo Evaluation of the Integral

This multi-dimensional integral can be evaluated in a straightforward manner by Monte
Carlo techniques. Assume that the radiative transfer process takes place in a huge box of
dimension L in all cartesian directions. We simply pick ~r1, ~r2, . . . ~rN , which provides ξ̂2,
ξ̂3, . . . ξ̂N , from a uniform distribution.46 The estimator of the integral for this (single)

46This is accomplished by choosing xi, yi and zi from uniform distributions on the interval 0→ L.
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trial is then

Est1(N) = F0(~r0) exp[−τ(0, 1)]

× exp[−τ(1, 2)]∣∣~r2 − ~r1

∣∣2 ω0(~r1)c(~r1)
P (~r1; ξ̂1 → ξ̂2)

4π

× exp[−τ(2, 3)]∣∣~r3 − ~r2

∣∣2 ω0(~r2)c(~r2)
P (~r2; ξ̂2 → ξ̂3)

4π

...

× exp[−τ(N − 1, N)]∣∣~rN − ~rN−1

∣∣2 ω0(~rN−1)c(~rN−1)
P (~rN−1; ξ̂N−1 → ξ̂N )

4π

× exp[−τ(N,D)]∣∣~rD − ~rN
∣∣2 ω0(~rN )c(~rN )

P (~rN ; ξ̂N → ξ̂D)

4π
.

Compute Est1(N) for all N ,47 and carry this out for N trials. The Monte Carlo estimate
is then

LD(~rD, ξ̂D)∆ΩD ≈
1

N
N∑

i=1

∞∑

N=1

Esti(N).

This estimate would likely be terrible because all of the singular terms of the integrand,
e.g.,

∣∣~rD − ~rN
∣∣−2

, etc., would cause a large variation in the individual estimates, causing a
large variance in the final result.

2.12.3 Forward Monte Carlo Evaluation of the Integral

We can simplify the integrations in Eq. (2.117), and remove some of the variance, by
rewriting the integrals centering the origin for integration over dV (~ri) on ~ri−1, i.e.,48

dV (~ri) =
∣∣~ri − ~ri−1

∣∣2 d
∣∣~ri − ~ri−1

∣∣ dΩ(ξ̂i).

This substitution causes many of the singular terms in the denominators in Eq. (2.117) to

cancel out, e.g., consider the first two triple integrals. We let dV (~r2) =
∣∣~r2 − ~r1

∣∣2 d
∣∣~r2 −

~r1

∣∣ dΩ(ξ̂1), so the
∣∣~r2−~r1

∣∣ in dV (~r2) will cancel the
∣∣~r2−~r1

∣∣−1
term in the first set of triple

47This can be done with a single set ~r1, ~r2, . . . ~rN (see Section 2.12.3 for the details).
48Note that this is just a generalization of the volume element in a three-dimensional coordinate system

centered on the origin, i.e., dV = r2 dr sin θ dθ dφ, where r is the distance from the origin, θ and φ are the
polar and azimuth angles, and sin θ dθ dφ is the element of solid angle dΩ.
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integrals; however, the factor
∣∣~rD − ~rN

∣∣−2
in the last triple integral still remains. Thus,

Eq. (2.117) becomes

LD(~rD,ξ̂D)∆ΩD =

∞∑

N=1

∫
· · ·
∫

× exp[−τ(1, 2)]ω0(~r1)c(~r1)
P (~r1; ξ̂1 → ξ̂2)

4π
F0(~r0) exp[−τ(0, 1)]dAS(~r0)

∣∣ξ̂1 • n̂S
∣∣ d
∣∣~r1 − ~r0

∣∣

× exp[−τ(2, 3)]ω0(~r2)c(~r2)
P (~r2; ξ̂2 → ξ̂3)

4π
dΩ(ξ̂2) d

∣∣~r2 − ~r1

∣∣

...

× exp[−τ(N − 1, N)]ω0(~rN−1)c(~rN−1)
P (~rN−1; ξ̂N−1 → ξ̂N )

4π
dΩ(ξ̂N−1) d

∣∣~rN−1 − ~rN−2

∣∣)

× exp[−τ(N,D)]∣∣~rD − ~rN
∣∣2 ω0(~rN )c(~rN )

P (~rN ; ξ̂N → ξ̂D)

4π
dΩ(ξ̂N ) d

∣∣~rN − ~rN−1

∣∣).

(2.118)
The term with dV (~r1) = dAS(~r0)

∣∣ξ̂1 • n̂S
∣∣ d
∣∣~r1 − ~r0

∣∣ requires some comment. Here dAS is

an element of area on the boundary of the medium and dAS
∣∣ξ̂1 • n̂S

∣∣ and is the projection

of the area normal to ξ̂1. Because we assume that the incident irradiance is in the form
of a parallel beam (whose value may depend on the point ~r0), the volume element can be
reduced to this simple volume of thickness d

∣∣~r1 − ~r0

∣∣, independent of the magnitude of
~r1 − ~r0. Now, we regroup the terms differently to make Monte Carlo evaluation easier:
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2PD(
!rD ,ξ̂D)
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!r

! 
!rD

!O

!! ΔAH(
!
′r )

!zD

! ′z

Figure 2.22: Figure 2.19 redrawn to facilitate discussion of a medium and source
displaying horizontal invariance.
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LD(~rD, ξ̂D)∆ΩD =
∞∑

N=1

∫
F0(~r0)

∣∣ξ̂1 • n̂S(~r0)
∣∣ dAS(~r0)

×
∫
· · ·
∫

× exp[−τ(0, 1)]ω0(~r1)c(~r1)
P (~r1; ξ̂1 → ξ̂2)

4π
dΩ(ξ̂2) d

∣∣~r1 − ~r0

∣∣

× exp[−τ(1, 2)]ω0(~r2)c(~r2)
P (~r2; ξ̂2 → ξ̂3)

4π
dΩ(ξ̂3) d

∣∣~r2 − ~r1

∣∣

...

× exp[−τ(i− 1, i)]ω0(~ri)c(~ri)
P (~ri; ξ̂i → ξ̂i+1)

4π
dΩ(ξ̂i+1) d

∣∣~ri − ~ri−1

∣∣

...

× exp[−τ(N − 2, N − 1)]ω0(~rN−1)c(~rN−1)
P (~rN−1; ξ̂N−1 → ξ̂N )

4π
dΩ(ξ̂N ) d

∣∣~rN−1 − ~rN−2

∣∣)

× exp[−τ(N − 1, N)]∣∣~rD − ~rN
∣∣2 ω0(~rN )c(~rN )

P (~rN ; ξ̂N → ξ̂D)

4π
d
∣∣~rN − ~rN−1

∣∣) exp[−τ(N,D)],

(2.119)
where, again, the point ~rN must be in the field of view of the detector. This is another form
of the multiple dimensional-integral solution to the radiative transfer problem of providing
the radiance at a detector within the medium resulting from a parallel beam (propagating
in the direction ξ̂1) of irradiance F0 (on a plane normal to the direction ξ̂1 and variable
with position) incident on the boundary of the medium. The various integrals cover the
full range of the variables provided by the boundary, i.e., in distance, area, and solid angle.

To proceed with a Monte Carlo evaluation of this multi-dimensional integral, the fol-
lowing observations are important. First, the quantity P (~ri; ξ̂i → ξ̂i+1) dΩ(ξ̂i+1)/4π is the
probability of scattering from ξ̂i to ξ̂i+1 within dΩ(ξ̂i+1) at the point ~ri, and as such, the
probability density for scattering into dΩ(ξ̂i+1) is P/4π. If the medium were homogeneous,
exp[−τ(i− 1, i)] c(~ri) d

∣∣~ri−~ri−1

∣∣ = exp[−c
∣∣~ri−~ri−1

∣∣] c d
∣∣~ri−~ri−1

∣∣, which is the probability
of an interaction within d

∣∣~ri − ~ri−1

∣∣. Thus, c exp[−τ(i − 1, i)] is the probability density
for an interaction within d

∣∣~ri − ~ri−1

∣∣. If c is not constant, the result is still true, but the
appropriate τ is given by Eq. (2.116). We can now evaluate the integrals using Monte
Carlo techniques. Consider first the integral

∫ ∫ ∫
exp[−τ(i− 1, i)]ω0(~ri)c(~ri)

P (~ri; ξ̂i → ξ̂i+1)

4π
dΩ(ξ̂i+1) d

∣∣~ri − ~ri−1

∣∣.
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Given ~ri−1 and ξ̂i, we repeatedly sample ξ̂i+1 from the density P (~ri; ξ̂i → ξ̂i+1)/4π, and
sample ~ri from c(~ri) exp[−τ(i− 1, i)]. For a given sample, the estimator for the integral is
just ω0(~ri) (see the Mathematical Appendix). Thus, for the set of integrals, if we sample
~r1, ~r2, . . . ~rN and ξ̂2, ξ̂3, . . ., ξ̂N , in a similar manner, and sample the point on the surface
~r0 from the appropriate distribution (e.g., the point ~r0 might be uniformly distributed in
area as for solar illumination, or distributed over a small area as in laser illumination),
then for the given set of samples the estimator for exactly N interaction events is

F0(~r0)
∣∣ξ̂1 • n̂S(~r0)

∣∣ω0(~r1)ω0(~r2) · · ·ω0(~rN )
P (~rN ; ξ̂N → ξ̂D)

4π
∣∣~rD − ~rN

∣∣2 exp[−τ(N,D)], (2.120)

if ~rN is within the field of view of the detector and zero otherwise. Note, that this is the
estimator for a single N .

How does one actually implement this estimation? According to the integral we are
evaluating (Eq. (2.119)) we must perform a sum over N . One way to do this is to first
pick N = 1 then, for say N trials (or photons), compute ~r0, ~r1 and ξ̂2 sampling from
the appropriate distributions (see text). If the point ~rD is within the field of view of the
detector, then evaluate the estimator:

F0(~r0)
∣∣ξ̂1 • n̂S(~r0)

∣∣ω0(~r1)
P (~r1; ξ̂1 → ξ̂D)

4π
∣∣~rD − ~r1

∣∣2 exp[−τ(1, D)]. (2.121)

Do this N times, add the values of all of the individual estimators, and divide the sum
by N (the number of trials). The result is an estimation of LD(~rD, ξ̂D)∆ΩD due to single
scattering. Then pick N = 2 and for N trials pick ~r0, ~r1, ~r2, ξ̂2, and ξ̂3, sampling from the
appropriate distributions. If the point ~rD is within the field of view of the detector, then
evaluate the estimator:

F0(~r0)
∣∣ξ̂1 • n̂S(~r0)

∣∣ω0(~r1)ω0(~r2)
P (~r2; ξ̂2 → ξ̂D)

4π
∣∣~rD − ~r2

∣∣2 exp[−τ(2, D)], (2.122)

sum the values of the individual estimators, and divide by N , yielding an estimation
of LD(~rD, ξ̂D)∆ΩD due to double scattering. Continue this process for N = 3, · · · ,∞:
however, note that the product of the ω0’s will cause the estimation of LD(~rD, ξ̂D)∆ΩD

to decrease rapidly with increasing N (unless ω0 is close to unity). When N is sufficiently
large, the contribution of the term with N scatterings will be too small to contribute
significantly and the process stops. Finally, sum the estimators for N = 1 to the final N
to yield the Monte Carlo estimate to LD(~rD, ξ̂D)∆ΩD.

There is however, a more straightforward method: accumulate the estimator sequentially.
This proceeds as follows. Carry out the process as above for N = 1 with a single trial and
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evaluate the single-scattering estimator in Eq. (2.121). Then, rather than starting over with
a new photon, continue on the path from ~r1 by choosing ~r2 and ξ̂3 from their appropriate
distributions. Now evaluate the double-scattering estimator using Eq. (2.122) and add
it to the single-scattering estimate just evaluated. Continue the process until

∏M
i=1 ω0(~ri)

becomes so small that the M th scattering contributes a negligible amount to the result.
At this point stop and start the chain over continuing to accumulate the contribution to
LD(~rD, ξ̂D)∆ΩD from the previous chain of events. Do thisN times and divide the estimate
by N . The result will be identical to that described above. With both procedures, the
uncertainty in the result is proportional to N−1/2, i.e., to decrease the uncertainty by a
factor of ten requires increasing N by a factor of 100. One may of course place many
detectors in the medium with the individual detectors being updated at each collision. It
is important note that the singular denominator

∣∣~rD−~rN
∣∣−2

in the various estimators can
become very large. This can cause large variance in the results in the general case where
all IOPs depend on ~r — the so-called 3-d case.

What if the medium plus source display horizontal invariance, i.e., β(~r, ξ̂ → ξ̂′) =
β(z, ξ̂ → ξ̂′), F0(~r0) = F0(z0), n̂S(~r0) = n̂S(z0) = êz, etc.? In this case (called 1-d
radiative transfer), L(~r, ξ̂) = L(z, ξ̂), and considerable simplification takes place. The
most important is in the computation of the contribution to the detector from the last
scattering event. In Figure 2.22 we have redrawn Figure 2.19 to reflect the invariance. In
the final result, the radiance over the entire surface at z = zD must be constant and the
radiance at z = z′ must be constant. The radiances leaving z′ and arriving at zD are

L(z′, ξ̂D) =
∆2P (z′, ξ̂D)∣∣êz • ξ̂D
∣∣∆AH(z′)∆ω

and L(zD, ξ̂D) =
∆2P (zD, ξ̂D)∣∣êz • ξ̂D
∣∣∆AH(zD)∆ΩD

If there were no losses, the numerators would be the same, so if we take AH(z) = AH(z′)
for simplicity, we must have ∆ω = ∆ΩD. Then in the presence of losses (the actual case)

L(zD, ξ̂D) =
∆2P (z′, ξ̂D)∣∣êz • ξ̂D
∣∣∆AH(zD)∆ΩD

exp[−c
∣∣zD − z′

∣∣/
∣∣êz • ξ̂D

∣∣]

or

∆L(zD, ξ̂D)∆AH(zD) =
I(z′, ξ̂D)∆V ′∣∣êz • ξ̂D

∣∣ exp[−c
∣∣zD − z′

∣∣/
∣∣êz • ξ̂D

∣∣].

Substituting for I(z′, ξ̂D) from Eq. (2.114) yields

∆L(zD, ξ̂D)∆AH(zD) =
exp[−c

∣∣zD − z′
∣∣/
∣∣êz • ξ̂D

∣∣]∣∣êz • ξ̂D
∣∣ β(~r ′; ξ̂′ → ξ̂D)L(~r ′, ξ̂′)∆Ω(ξ̂′)∆V ′,

and we see that the singular term,
∣∣~rD−~rN

∣∣−2
in Eq. (2.115) no longer appears. Completing
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the chain back to the first scattering as in Eq. (2.118), we get

LD(~rD, ξ̂D)∆AH(zD) = F0

∣∣êz • ξ̂1

∣∣
∣∣êz • ξ̂D

∣∣
∞∑

N=1

∫
dAS

×
∫
· · ·
∫

× exp[−τ(0, 1)]ω0(~r1)c(~r1)
P (~r1; ξ̂1 → ξ̂2)

4π
dΩ(ξ̂2) d

∣∣~r1 − ~r0

∣∣

× exp[−τ(1, 2)]ω0(~r2)c(~r2)
P (~r2; ξ̂2 → ξ̂3)

4π
dΩ(ξ̂3) d

∣∣~r2 − ~r1

∣∣

...

× exp[−τ(i− 1, i)]ω0(~ri)c(~ri)
P (~ri; ξ̂i → ξ̂i+1)

4π
dΩ(ξ̂i+1) d

∣∣~ri − ~ri−1

∣∣

...

× exp[−τ(N − 2, N − 1)]ω0(~rN−1)c(~rN−1)
P (~rN−1; ξ̂N−1 → ξ̂N )

4π
dΩ(ξ̂N ) d

∣∣~rN−2 − ~rN−1

∣∣)

× exp[−τ(N − 1, N)]ω0(~rN )c(~rN )
P (~rN ; ξ̂N → ξ̂D)

4π
d
∣∣~rN − ~rN−1

∣∣) exp[−τ(N,D)],

(2.123)
Picking ~r2, . . . ~rN and ξ̂2, . . . ξ̂N as before, the estimator for a single set is

LD(~rD, ξ̂D)∆AH(zD) = F0

∣∣êz • ξ̂1

∣∣
∣∣êz • ξ̂D

∣∣

∫
dAS

∞∑

N=1

(
N∏

i=1

ω0(~ri)

)
P (~rN ; ξ̂N → ξ̂D)

4π
exp[−τ(N,D)].

Note that ∆AH is completely arbitrary, so we choose it to be the integral of dAS .49 Then
the estimator becomes

LD(~rD, ξ̂D)

F0
=

∣∣êz • ξ̂1

∣∣
∣∣êz • ξ̂D

∣∣
∞∑

N=1

(
N∏

i=1

ω0(~ri)

)
P (~rN ; ξ̂N → ξ̂D)

4π
exp[−τ(N,D)], (2.124)

We can perform the computation in either of the two ways described for the 3-d case. The
simplest is to follow the second one: trace the path of a photon through the medium and
at each collision, e.g., the nth, update the estimator of LD/F0 for a particular zD and ξ̂D
by ∣∣êz • ξ̂1

∣∣
∣∣êz • ξ̂D

∣∣

(
n∏

i=1

ω0(~ri)

)
P (~rn; ξ̂n → ξ̂D)

4π
exp[−τ(n,D)],

49Actually, both
∫
dAs and ∆AH can be taken to be the full (horizontal) plane.
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and move on to the next collision.50 With the removal of the singularity, the variance of
the estimate is significantly lower for the 1-d compare with the 3-d case.

One feature of the forward Monte Carlo that is particularly appealing is the fact that
we can solve the problem for the radiance at an arbitrary number or internal points at
the same time. To effect this, at each collision we simply update the estimate for each
detector. An unappealing feature (in a 3-d medium) is the fact that the detectors only
receive contributions when the point ~ri is within the field of view of the detector.

2.12.4 Monte Carlo Solution for Irradiances

Is there a way to estimate the various irradiances using Monte Carlo? The answer is yes,
and in fact it is quite simple. Consider Eq. (2.123). Suppose we want to compute the
following integral

X(~r) =

∫

ΩX

f(~r, ξ̂)L(~r, ξ̂) dΩ(ξ̂), (2.125)

where ΩX denotes the range of ξ̂ over which the integral is to be evaluated. For example,
if f(~r, ξ̂) =

∣∣ξ̂ • êz
∣∣ , and ΩX denotes all directions for which ξ̂ • êz < 0 (downward), then

X(~r) = Ed(~r). Although the other irradiances Eu, E0, and the vector irradiance Ed − Eu
for which the f −ΩX combinations are,

∣∣ξ̂ • êz
∣∣ with ξ̂ • êz < 0, unity with all ξ̂, and ξ̂ • êz

with all ξ̂, respectively, are used extensively in the text, another used in our treatment of
Raman scattering is

〈u2〉E =

∫
All ξ̂ (ξ̂ • êz)2L(~r, ξ̂) dΩ(ξ̂)

E0(~r)
.

Still another integral in which we will have interest in later is
∫

ξ̂′•êz<0
β(~r, ξ̂′ → ξ̂)L(~r, ξ̂′) dΩ(ξ̂′),

which provides the upward scattered radiance in the ξ̂ direction at ~r resulting from upward
propagating radiance.

To show how to estimate integrals of the Eq. (2.125) type via Monte Carlo, for simplicity
we restrict ourselves to the case of a vertically stratified medium for which the radiance is

50A variant of the estimator is to pick the photon’s fate at each collision. At each interaction the
probability of the photon being scattered is ω0 and the probability of absorption is 1−ω0. Thus, one could
choose a random number ρ from a uniform distribution, U[0,1], and if ρ > ω0 the photon scatters, otherwise
it is absorbed and the chain terminates. Since the action ω0(~ri) is being chosen from its probability density,
it is left out of the estimator. In this case all of the

∏N
i=1 ω0(~r) factors are absent from the estimator, but

the chain terminates when the photon is absorbed.
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given by Eq. (2.123). Then the desired integral becomes,

1

F0

∣∣êz • ξ̂1

∣∣

∫

Ωx

f(~rD, ξ̂D)LD(~rD, ξ̂D) dΩ(ξ̂D)

=

∫
· · ·
∫ ∫

ΩX

f(~rD, ξ̂D) dΩ(ξ̂D)

× exp[−τ(0, 1)]ω0(~r1)c(~r1)
P (~r1; ξ̂1 → ξ̂2)

4π
dΩ(ξ̂2) d

∣∣~r1 − ~r0

∣∣

× exp[−τ(1, 2)]ω0(~r2)c(~r2)
P (~r2; ξ̂2 → ξ̂3)

4π
dΩ(ξ̂3) d

∣∣~r2 − ~r1

∣∣

...

× exp[−τ(i− 1, i)]ω0(~ri)c(~ri)
P (~ri; ξ̂i → ξ̂i+1)

4π
dΩ(ξ̂i+1) d

∣∣~ri − ~ri−1

∣∣

...

× exp[−τ(N − 2, N − 1)]ω0(~rN−1)c(~rN−1)
P (~rN−1; ξ̂N−1 → ξ̂N )

4π
dΩ(ξ̂N ) d

∣∣~rN−2 − ~rN−1

∣∣)

× exp[−τ(N − 1, N)]ω0(~rN )c(~rN )
P (~rN ; ξ̂N → ξ̂D)

4π
d
∣∣~rN − ~rN−1

∣∣) exp[−τ(N,D)],

If we sample ~r1, ~r2, . . . ~rN , . . . and ξ̂2, ξ̂3, . . ., ξ̂N , . . . in the usual manner, and in addition at
each collision sample ξ̂D from the probability P (~rN ; ξ̂N → ξ̂D) dΩ(ξ̂D)/4π, then the estimate
for the right hand side of the above after N collisions is just

EstN =
f(~rD, ξ̂D)∣∣êz • ξ̂D

∣∣

(
N∏

i=1

ω0(~ri)

)
exp[−τ(n,D)], (2.126)

if ξ̂D is within ΩX , and zero otherwise. Summing EstN over all the collisions in the chain
provides the estimate of the desired integral for this single trial. As before, one can carry
this out sequentially for a single trial chain of events, ~r1, ~r2, . . . ~rN , . . . and ξ̂2, ξ̂3, . . ., ξ̂N ,
. . ., by updating the irradiance estimator for a given detector sequentially, i.e., after ~r1,
after ~r2, etc., and then averaging over N trials.

2.12.5 Backward Monte Carlo Evaluation of the Integral

We will now recast Eq. (2.117) in a different manner. Rather than centering the origin of
dV (~ri) on ~ri−1, we now center it on ~ri+1, so

dV (~ri) =
∣∣~ri+1 − ~ri

∣∣2 d
∣∣~ri+1 − ~ri

∣∣ dΩ(ξ̂i+1).
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Inserting these into Eq. (2.117), we see that all of the singular terms
∣∣~ri+1 − ~ri

∣∣−2
cancel

out, and we are left with

LD(~rD, ξ̂D)∆ΩD =
∞∑

N=1

∫
· · ·
∫

F0(~r0) exp[−τ(0, 1)]

× exp[−τ(1, 2)]ω0(~r1)c(~r1)
P (~r1; ξ̂1 → ξ̂2)

4π
dΩ(ξ̂2), d

∣∣~r2 − ~r1

∣∣

× exp[−τ(2, 3)]ω0(~r2)c(~r2)
P (~r2; ξ̂2 → ξ̂3)

4π
dΩ(ξ̂3) d

∣∣~r3 − ~r2

∣∣

...

× exp[−τ(N − 1, N)]ω0(~rN−1)c(~rN−1)
P (~rN−1; ξ̂N−1 → ξ̂N )

4π
dΩ(ξ̂N ) d

∣∣~rN − ~rN−1

∣∣)

× exp[−τ(N,D)]ω0(~rN )c(~rN )
P (~rN ; ξ̂N → ξ̂D)

4π
d
∣∣~rD − ~rN

∣∣)∆ΩD.

Now, canceling the ∆Ω(ξ̂D)’s, recognizing that P (ξ̂ → ξ̂′) = P (−ξ̂′ → −ξ̂) and dΩ(ξ̂) =
dΩ(−ξ̂), and rearranging yields

LD(~rD, ξ̂D) =

∞∑

N=1

∫
· · ·
∫

F0(~r0) exp[−τ(0, 1)]

× exp[−τ(1, 2)]ω0(~r1)c(~r1)
P (~r1;−ξ̂2 → −ξ̂1)

4π
dΩ(−ξ̂2), d

∣∣~r2 − ~r1

∣∣

× exp[−τ(2, 3)]ω0(~r2)c(~r2)
P (~r2;−ξ̂3 → −ξ̂2)

4π
dΩ(−ξ̂3) d

∣∣~r3 − ~r2

∣∣

...

× exp[−τ(N − 1, N)]ω0(~rN−1)c(~rN−1)
P (~rN−1;−ξ̂N → −ξ̂N−1)

4π
dΩ(−ξ̂N ) d

∣∣~rN − ~rN−1

∣∣)

× exp[−τ(N,D)]ω0(~rN )c(~rN )
P (~rN ;−ξ̂D → −ξ̂N )

4π
d
∣∣~rD − ~rN

∣∣).

These integrals are easily seen to represent radiant power exiting the detector at ~rD and
propagating to the point ~r0 on the surface, i.e., propagating in the backward direction.
Evaluating the integrals by Monte Carlo, as above, the estimator for a single trial (e.g., a
single choice of ~r1, . . . ~rN and ξ̂2, . . . ξ̂N becomes

LD(~rD, ξ̂D) =

∞∑

N=1

F0(~r0) exp[−τ(0, 1)]

N∏

i=1

ω0(~ri).

Note, ~r0 is determined from ~r1 and ξ̂1, and τ(0, 1) from ~r0, ~r1, ξ̂1 and c(~r). One can achieve
this estimator in the following manner: (1) eject a photon from ~rD in the direction −ξ̂D.
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Determine the interaction point ~rN and the phase function for scattering toward −ξ̂1. The
estimator is

Est1 = F0(~r0)ω0(~rN ) exp[−τ(0, N)]ω0(~rN )P (~r1;−ξ̂D → −ξ̂1).

let the photon proceed to the next collision, i.e., choose the new direction −ξ̂N from the
density P (~rN ;−ξ̂N → −ξ̂N−1), etc., providing ~rN−1 and ξ̂N−1. The estimator for N = 2 is
then

Est2 = F0(~r0) exp[−τ(0, N − 1)]ω0(~rN )ω0(~rN−1)P (~rN−1;−ξ̂N−1 → −ξ̂1).

Continue this procedure and the estimate for N collisions (one trial set) is just

LD(~rD, ξ̂D) =
N∑

i=1

Esti.

The upper limit to N should be ∞, but the evaluation need not progress beyond the point∏N
i=1 ω0(~ri) becomes to small to make a significant contribution. As all photons exit the

detector in the −ξ̂D direction, the result is an estimate of L(~rD, ξ̂D) in a vanishingly small
range of solid angles, i.e., exactly at ξ̂D rather than in a non-zero ∆Ω(ξ̂D) for the so-called
“forward Monte Carlo” described earlier. Note that unlike the forward Monte Carlo the
backward Monte Carlo procedure is no more complex (or inaccurate) for a 3-d medium
compared to a 1-d medium. In fact, backward Monte Carlo has been used to assess the
shading of radiometers perturbed by 3-dimensional structures in the water, e.g., ships,
towers, the instrument itself, etc. There is, however, a tradeoff: in the backward Monte
Carlo, the radiance at only one detector can be evaluated with the series of trials described
above. A difficulty in the backward case arises when sources like lasers, where a narrow
beam is incident on the surface, are employed. In this case, the last collision in each step
in the chain must be in the field of view of the source to contribute by virtue of the F0(~r0)
term in the estimator.

2.12.6 Monte Carlo Solution Including Polarization

It is straightforward to derive integrals similar to those in Eq. (2.117), when the full
polarization state of the radiance is taken into account. One simply replaces P (~r; ξ̂ → ξ̂′)
by the Mueller scattering phase matrix Z(~r; ξ̂ → ξ̂′), noting that since Mueller matrices do
not commute, the order of the interactions must be preserved.51 In addition, F0 is replaced

51Recall that Z(~r; ξ̂ → ξ̂′) = R(−i′)P (Θ)R(−i), where P is the scattering phase matrix, cos Θ = ξ̂ • ξ̂′
and the R ’s are rotation matrices (see Section 2.10.3).
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by F0, the Stokes vector for the incident irradiance. The final result is

ID(~rD, ξ̂D)∆ΩD =
∞∑

N=1

∫
· · ·
∫

× exp[−τ(N,D)]∣∣~rD − ~rN
∣∣2 ω0(~rN )c(~rN )

Z(~rN ; ξ̂N → ξ̂D)

4π
dV (~rN ),

× exp[−τ(N − 1, N)]∣∣~rN − ~rN−1

∣∣2 ω0(~rN−1)c(~rN−1)
Z(~rN−1; ξ̂N−1 → ξ̂N )

4π
dV (~rN−1)

...

× exp[−τ(2, 3)]∣∣~r3 − ~r2

∣∣2 ω0(~r2)c(~r2)
Z(~r2; ξ̂2 → ξ̂3)

4π
dV (~r2)

× exp[−τ(1, 2)]∣∣~r2 − ~r1

∣∣2 ω0(~r1)c(~r1)
Z(~r1; ξ̂1 → ξ̂2)

4π
dV (~r1)

× exp[−τ(0, 1)]F0(~r0)

where the first term (last scattering) contributes only if ~rN is within the field of view
of the detector. This is the counterpart to Eq. (2.117) including polarization. Making
replacements as those in deriving Eq. (2.119), we have

ID(~rD, ξ̂D)∆ΩD =

∞∑

N=1

∫
· · ·
∫

× exp[−τ(N − 1, N)]∣∣~rD − ~rN
∣∣2 ω0(~rN )c(~rN )

Z(~rN ; ξ̂N → ξ̂D)

4π
d
∣∣~rN − ~rN−1

∣∣) exp[−τ(N,D)],

× exp[−τ(N − 2, N − 1)]ω0(~rN−1)c(~rN−1)
Z(~rN−1; ξ̂N−1 → ξ̂N )

4π
dΩ(ξ̂N ) d

∣∣~rN−1 − ~rN−2

∣∣)
...

× exp[−τ(i− 1, i)]ω0(~ri)c(~ri)
Z(~ri; ξ̂i → ξ̂i+1)

4π
dΩ(ξ̂i+1) d

∣∣~ri − ~ri−1

∣∣

...

× exp[−τ(1, 2)]ω0(~r2)c(~r2)
Z(~r2; ξ̂2 → ξ̂3)

4π
dΩ(ξ̂3) d

∣∣~r2 − ~r1

∣∣

× exp[−τ(0, 1)]ω0(~r1)c(~r1)
Z(~r1; ξ̂1 → ξ̂2)

4π
dΩ(ξ̂2) d

∣∣~r1 − ~r0

∣∣

×
∫
F0(~r0)

∣∣ξ̂1 • n̂S(~r0)
∣∣ dAS(~r0).
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The Monte Carlo Estimate of this multiple integral is developed in the same manner as
that for Eq. (2.119), with one exception. For the

∫ ∫ ∫
exp[−τ(i− 1, i)]ω0(~ri)c(~ri)

Z(~ri; ξ̂i → ξ̂i+1)

4π
dΩ(ξ̂i+1) d

∣∣~ri − ~ri−1

∣∣

term we cannot sample ξ̂i+1 from Z(~ri; ξ̂i → ξ̂i+1) because we cannot find the rotation
matrices without knowing ξ̂i+1. Thus, we have to sample from an alternate distribution and
then remove the bias that is introduced by the improper sampling. The obvious distribution
to sample from is the scalar phase function P (~ri; ξ̂i → ξ̂i+1)/4π = P11(~ri; ξ̂i → ξ̂i+1)/4π.
With ~ri chosen in the usual manner, the estimator for this particular integral is then

ω0(~ri)
Z(~ri; ξ̂i → ξ̂i+1)

P11(~ri; ξ̂i → ξ̂i+1)
.

With similar changes to all of the integrals, the final estimator for one trial of N scattering
events (e.g., a single choice of ~r1, . . . ~rN and ξ̂2, . . . ξ̂N ) in the forward Monte Carlo
approach becomes

exp[−τ(N,D)]

∣∣ξ̂1 • n̂S(~r0)
∣∣

∣∣~rD − ~rN
∣∣2

ω0(~rN )Z(~rN ; ξ̂N → ξ̂D)

4π

×
[
ω0(~rN−1)Z(~rN−1; ξ̂N−1 → ξ̂N )

P11(~rN−1; ξ̂N−1 → ξ̂N )
· · · ω0(~r1)Z(~r1; ξ̂1 → ξ̂2)

P11(~r1; ξ̂1 → ξ̂2)

]
F0(~r0).

(2.127)
In the case of a system possessing horizontal invariance, this estimator reduces to

ID(~rD, ξ̂D) =

∣∣êz • ξ̂1

∣∣
∣∣êz • ξ̂D

∣∣
∞∑

N=1

(
N∏

i=1

ω0(~ri)

)
Z(~rN ; ξ̂N → ξ̂D) exp[−τ(N,D)]

× Z(~rN−1; ξ̂N−1 → ξ̂N )

P11(~rN−1; ξ̂N−1 → ξ̂N )
· · · Z(~r1; ξ̂1 → ξ̂2)

P11(~r1; ξ̂1 → ξ̂2)
F0.

(2.128)

Equations (2.127) and (2.128) are the counterparts to Eqs. (2.120) and (2.124), respec-
tively, when polarization of the radiance is considered. Note that the number of matrix
multiplications required to evaluate Eq. (2.128) is N + 1 for each photon trajectory, and
recalling that when Z is replaced by the Mueller phase matrix and 2 rotation matrices,
the total number of matrix multiplications becomes 3N + 1. Further development of the
Monte Carlo method when polarization is included follows that in the scalar case in a
straightforward manner.
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2.12.7 Connection to the Monte Carlo as Described in Section 2.6.2

It is not apparent that our derivation of the Monte Carlo estimates developed here directly
from radiative transfer theory produces the same radiances, irradiances, etc., as that devel-
oped heuristically in Section 2.6.2. Actually, it will yield identical results, and likely with
less variance for a given N . We show this now using the example of estimating irradiance.

As mentioned earlier, to estimate the downward irradiance Ed(~r) we simply let f(~rD, ξ̂D) =∣∣êz • ξ̂D
∣∣ in Eq. (2.126), so the estimate for Ed from the N th collision is just

EdN (~rD) = F0

(
N∏

i=1

ω0(~ri)

)
exp[−τ(n,D)]. (2.129)

This at first sight seems to differ from Section 2.6.2, where it is stated that to estimate the
contribution to the downward irradiance from each photon, one collects the total weight(∏N

i=1 ω0(~ri)
)

of the photon only if it propagates across the plane of a given optical depth,

i.e., there is no contribution unless the photon actually passes the depth in question. Ac-
tually, both are correct, the method described earlier is an equivalent, but cruder, estimate
than that given in Eq. (2.129). To understand this, consider the simplest of examples:
that of the Monte Carlo estimation of the irradiance of a beam in a 1-d medium with no
scattering. We know that the probability of an absorption event for a photon in d`, at a
distance ` after entering the medium, is given by

dP`(d`) = a d` exp(−a`)

and, given a set of random numbers ρ, uniformly distributed on [0,1], the path length to
an absorption event (the ith) is

`i = −1

a
`n(1− ρi).

Thus, to compute the irradiance due to the beam propagating a distance D into the
medium one could inject N photons and compute the number n that have `i > D. Then
the irradiance at D is just n/N . Since we are sampling from the correct distribution of
`, n/N → exp(−aD) as N → ∞. Alternatively, we could compute the irradiance another
way. When the photon first interacts with the medium, calculate the probability that it
will travel a distance D without being absorbed (i.e., exp(−aD)). Now as the estimator,
use the probability of survival, i.e., the probability that the photon will reach D. This is
exp(−aD) and a perfect estimation is obtained with a single photon ! Execute more trials
and all photons contribute the same estimate. This example is particularly simple, but it
does show how one can use a simple estimator (i.e., one or zero for yes or no in a single
trial, and then average over trials) or one can use the probability that an event will actually
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happen in each trial (here, exp(−aD)). Note that the variances of the two estimates are
vastly different. The standard deviation (square root of the variance) of the irradiance in
the first is ∝ 1/

√
N , and in the second it is zero !

z0	  

z1	  

z2	  

z3	  

z4	  

A	  

B	  

E	  

D	  

C	  

zA	  

zB	  

zC	  

zD	  

zE	  

!!ξ̂AB

!!ξ̂BC

!!ξ̂CD!!ξ̂DE

!!n̂

Figure 2.23: Example of a photon path (a single chain of events) in a homogeneous
absorbing-scattering medium. The path continues until for N interactions, after
which ωN+1

0 becomes too small to contribute significantly to any detector.

Let us apply these two methods for computing the irradiance in a homogeneous medium
illuminated by a beam of irradiance F0 at the surface. Choose a photon path, i.e., sample
the points zA, zB, . . . zE and ξ̂AB, ξ̂BC , . . ., ξ̂DE in Figure 2.23 from their appropriate
distributions. The goal is to estimate the irradiances at z1, z2, . . . . If we use the method
in Eq. (2.129), the contribution to the irradiance Ez at z1, z2, . . ., from the interaction at
A would be

Ed(z1) = F0ω0 exp[−c(z1 − zA)/
∣∣ξ̂AB • n̂

∣∣],
Ed(z2) = F0ω0 exp[−c(z2 − zA)/

∣∣ξ̂AB • n̂
∣∣],

...

with each scattering event contributing to several detectors. Similarly, the interaction at
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B contributes

Ed(z2) = F0ω
2
0 exp[−c(z2 − zB)/

∣∣ξ̂BC • n̂
∣∣]

Ed(z3) = F0ω
2
0 exp[−c(z3 − zB)/

∣∣ξ̂BC • n̂
∣∣]

...

etc. Continuing this for N events until ωN+1
0 is too small to contribute significantly (it was

assumed that N = 4 in the figure), we have the total contribution to the irradiances from
a single chain. Do this N times, add all the contributions, and divide the result by N , and
we get the Monte Carlo estimate for the irradiances.

Alternatively, applying the procedure in Section 2.6.2 to the chain of events in Figure
2.23, the contributions to irradiances would be

Ed(z1) = F0ω0,

Ed(z2) = F0ω
2
0,

Ed(z3) = F0ω
3
0,

Ed(z4) = 0,

Eu(z3) = F0ω
4
0.

As in the earlier example with no scattering, both methods provide the correct irradiances;
however, as in the b = 0 case, the variance in the first procedure will be lower than that in
the second.

2.13 Appendix 3: Thermal Radiation

In Section 2.2 we described various methods of detecting electromagnetic radiation, but we
have yet to consider sources of electromagnetic radiation other than the oscillating dipole.
Now we examine one of the most important sources of electromagnetic radiation — the
black body. This source provides a standard for radiometric calibration of radiometers,
as it links radiance directly to the fundamental constants of physics. All objects at a
temperature above absolute zero emit radiation, thermal radiation, having some of the
characteristics of a black body. For example, the radiation incident on the atmosphere
from the Sun is close in its spectral radiance to that of a black body at a temperature of
about 6000 K.

First we describe in detail the black body. Then we develop the radiometric character-
istics of thermal radiation and its radiative transfer. Finally, in the context of radiative
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transfer, we briefly consider the problem of estimating the temperature of the Earth (ac-
tually, the oceans) from measurements of the radiance exiting the top of the atmosphere
in the thermal infrared region of the spectrum (λ > 3-5 µm).

2.13.1 Black Body Radiation

Everyday experience tells us that heated objects emit radiation, and if heated to a high
enough temperature the radiation is in the visible part of the spectrum. This radiation is
usually called thermal radiation. Consider the following experiment. A cylindrical tube of
copper is connected between two electrodes. When a sufficiently large current is passed
through the copper, it will emit red light. Now, the experiment is repeated, but with a small
hole drilled through one side of the tube. In this case the cylinder surface emits red light
as before, but the light exiting the small hole is both brighter and whiter, i.e., the spectrum
emitted from the hole is shifted to the blue. If the current in the cylinder is increased, the
temperature of the walls will increase, and the emitted light from the hole becomes bluer
and brighter still. If the copper cylinder is replaced by a graphite cylinder (or a different
metal) and the experiment repeated, it will be found that the radiation escaping the hole is
independent of the nature of the material, depending only on its absolute temperature. In
addition, if cylinders of different shape, e.g., rectangular as opposed to circular cylinders,
or even cavities with very irregular shapes, are used in the experiment, the result is that
the radiation exiting a small hole is independent of the shape as well as the nature of the
material. If portions of the cavity walls are painted different colors, the result is still the
same. The radiation emerging from a hole in the cavity depends only on the temperature
of the walls of the cavity. This implies that the radiation within the cavity depends only
on the temperature of the walls of the cavity. Finally, if the radiance exiting the hole is
measured as a function of the angle from the normal to its surface, it is found that the
radiance is uniform, i.e., it is the same in all directions. Summarizing these observations:
the radiance exiting a hole cut in the side of a cavity that is heated to a temperature T
is uniform and has a distinct spectrum (and brightness) that is independent of the shape
of the cavity and the composition of the walls — it depends only on T and varies in a
systematic manner with T .

Detailed experimental measurements show that when the walls of a cavity are heated to
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a temperature T the radiance Bλ(T, λ) exiting a small hole in the side is52

Bλ(T, λ) =
c1

λ5
[
exp(c2/λT )− 1

] , (2.130)

where

c1 = 1.1910× 104 Wattµm4/cm2 Sr, c2 = 1.43879× 104 µm K.

Using these numerical values for c1 and c2 requires that λ be in µm and T in Kelvins.
Bλ(T, λ) is called the Planck function and the symbol B (rather than L) is used for the
radiance emitted from the hole to remind us of the special nature of thermal radiation. In
fact, the nature of the radiation is so special it is given a name: black body radiation. Why
“black body?” Because for the experiment we have described, any radiation entering the
hole from the outside would likely be lost in the cavity, i.e., the cavity would absorb all
radiation incident upon it — it would be totally black. The hole in the cavity wall is called
a black body. The term is often used to refer to the cavity as well.

The Planck function is provided in Figure 2.24 for several values of T . The position of
the maximum in the Planck function is given by dBλ/dλ = 0, and is easily found from the
formula to be given by (Wien’s displacement law)53

λMaxT = 2.8978× 103 µm K,

and at the maximum,

Bλ(T, λMax) = T 5 × 4.09532× 10−16 W/cm2µm K5 Sr.

Since the radiance leaving the hole, i.e., the black body, is uniform, the emitted irradiance
(the radiant emittance) leaving the hole is given by

EBλ = πBλ(T, λ),

and the total irradiance emitted, i.e., summed over all wavelengths, is

EB =

∫ ∞

0
EBλ(T, λ)dλ = σT 4,

52The subscript λ on Bλ(T, λ) is placed as a reminder that in the experimental measurement of the
radiance, the radiant power detected within ∆λ is divided by ∆λ to form the spectral radiant power. This
is to distinguish it from Bν(T, ν), where the independent variable is frequency ν rather than wavelength
λ. Here the radiant power within ∆ν is divided by ∆ν to form the spectral radiant power that is used to
calculate the radiance. Note that Bλ(T, λ) |dλ| = Bν(T, ν) |dν|.

53If you try to derive Wien’s law from Bλ, you will obtain the transcendental equation ex(x− 5) + 5 = 0,
where x = c2/(λMaxT ). This must be solved numerically (iteration is the simplest method) to obtain
x ≈ 4.965114.
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where
σ = 5.6697× 10−12 W/cm2 K4.

From the nature of the black body radiation exiting the hole in the experiments described
above, we are led to the conclusion that the radiation inside the cavity, must have the same
properties as the radiation that escapes. The radiance is the same in all directions and at
all points within the cavity, and it is independent of the shape of the cavity and the nature
of the walls. Heating the walls of the cavity excites its atoms, which then radiate energy.
This radiation bounces around in the cavity and some will be reabsorbed by the walls. At
thermal equilibrium the temperature of the walls is constant, so any absorbed radiation
must be re-emitted. The rates at which energy enters and leaves the walls must be the
same.

One of the seminal events leading to the development of quantum theory was a theo-
retical description of the nature of black body radiation. Briefly, since the nature of the
walls is irrelevant, it was assumed that they are totally reflecting, and since the shape is
irrelevant it was assumed to be cubical. Then Maxwell’s equations were solved to find the
electromagnetic waves (modes) that can exist in the cavity. Planck assumed that these
fields are maintained by oscillators in the walls, and by postulating that the energy of the
oscillators was quantized, and that radiation was emitted and absorbed by these oscillators
only when they changed from one quantum state to another. With these assumptions he
was able to derive the form of Eq. (2.130) and explain the values of c1, c2, and σ in terms
of fundamental constants:

c1 = 2hc2, c2 =
hc

kB
, and σ =

2π5k4
B

15h3c3
,

where kB is the Boltzmann constant (1.381 × 10−23 J·K−1). In fact, there is no need to
consider the walls perfectly reflecting because, as discussed above, any radiation that the
walls absorb must be reemitted or the temperature of the walls will change. The only
requirement is that the energy flux (irradiance) toward a wall must equal the energy flux
away from a wall. It is irrelevant how the flux away from a wall is partitioned between
reflection and emission.

(
In fact, since E = πB it is also true that the radiance propagating

toward the wall equals that propagating away fom the wall, i.e., L(~r, ξ̂, λ) = L(~r,−ξ̂, λ).
)

Thus, we may assume for purposes of this discussion that the walls are totally reflecting,
partially reflecting and partially absorbing, or totally absorbing. The walls were assumed
by Planck to be totally reflecting for convenience and to simplify the enumeration of the
possible propagation modes within the cavity. Modern derivations of these equations use
photon statistics (photons are spin 1 particles and are described by Bose-Einstein statistics)
to populate the various available modes, arriving at the same result as Planck.

Given that Eq. (2.130) describes the distribution of radiation within a cavity of any
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shape and wall composition, one can determine the thermal emission from any surface
using simple arguments based on thermodynamics. Consider two black bodies insulated
from the outside world and exchanging thermal radiation as shown in Figure 2.25 (a).
(Remember the hole drawn in the side of each chamber is the black body.) The cooler one
will warm due to the excess radiation from the warmer one, which will cool. Eventually
they will come to the same temperature Te. Then, the radiation exiting the left black body
(LBB) and entering the right black body (RBB) will be identical in every way to that
leaving the RBB and entering the LBB. Now, place an object, at the same temperature
(Te), inside the RBB as shown in Figure 2.25 (b). If the radiation within, and therefore
exiting RBB, changes in any way from that before the object was inserted, then one black
body will cool and the other heat, establishing a temperature difference where one did
not exist before (without the required external work), in violation of the second law of
thermodynamics. Thus, once equilibrium at Te is established, the inserted body (also at
Te) must be essentially invisible within the cavity, i.e., the radiation is exactly as it would
be at a temperature Te without the inserted body.

How does this actually happen? It happens because all objects at a temperature T > 0
emit electromagnetic radiation, not just black bodies, e.g., the walls of the cavity. Consider
the processes at the surface of the inserted object. Figure 2.26 (a) shows a schematic of
the radiation propagating in the horizontal direction at a given point in the absence of the
object. There are equal amounts of radiance propagating to the left and to the right (and
all other directions as well). In Figure 2.26 (b) the object has been inserted. The radiance
propagating to the right is unchanged, but now that propagating to the left consists of two
parts: “r” that has been reflected from the surface of the object, and “e” that has been
emitted by the object. Together the reflected and emitted parts form radiance equivalent
to that propagating to the left in Figure 2.26 (a). If the object is removed from the
black body and placed in a vacuum, it will continue to emit the radiation shown in the
figure as long as the temperature remains at Te. (Of course, as it loses energy through
radiation it will cool.) Thus, any object heated to a temperature greater than absolute
zero, will emit radiation, and therefore be a potential source of electromagnetic radiation.
A source of particular interest to us is the Sun. It emits radiation with a spectral shape
(and magnitude) characteristic of a black body at a temperature of approximately 6000 K
(Figure 2.24).

To quantify these ideas, assume that the surface depicted in Figure 2.26 has a reflectance
r(ξ̂′ → ξ̂) so that the reflected radiance Lr(ξ̂) is

Lr(ξ̂, λ) =

∫

All ξ̂′•n̂<0
r(ξ̂′ → ξ̂)Li(ξ̂

′, λ) dΩ(ξ̂′),

where n̂ is the normal to the surface (on the same side as the incident radiation) and
Li(ξ̂

′, λ) is the incident radiance. Now, since the surface is inside the black body, Li(ξ̂, λ) =
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Bλ(T, λ), so the reflected radiance is

Lr(ξ̂, λ) = Bλ(T, λ)

∫

All ξ̂′•n̂<0
r(ξ̂′ → ξ̂) dΩ(ξ̂′).

In order that object be invisible we must have

Le(ξ̂, λ) + Lr(ξ̂, λ) = Bλ(T, λ),

or

Le(ξ̂, λ) = Bλ(T, λ)− Lr(ξ̂, λ) =

[
1−

∫

All ξ̂′•n̂<0
r(ξ̂′ → ξ̂) dΩ(ξ̂′)

]
Bλ(T, λ).

Defining the quantity in the square brackets to be ε(ξ̂, λ), we have

Le(ξ̂, λ) = ε(ξ̂, λ)Bλ(T, λ),

where

ε(ξ̂, λ) +

∫

All ξ̂′•n̂<0
r(ξ̂′ → ξ̂) dΩ(ξ̂′) = 1. (2.131)

The quantity ε(ξ̂, λ) is called the directional spectral emissivity of the surface. We note
that the smallest value of ε is zero, i.e., ε(ξ̂, λ) ≥ 0 because Le(ξ̂, λ) ≥ 0. Therefore, the
maximum value the integral is unity. Conversely, the minimum value of r(ξ̂′ → ξ̂) is zero,
so the minimum value of the integral is zero, and the maximum value of ε(ξ̂, λ) is unity.
Thus, 0 ≤ ε(ξ̂, λ) ≤ 1. Of course, if the object itself is a black body, then ε(ξ̂, λ) = 1.
Equation (2.131) takes a particularly simple form for a flat Fresnel reflecting surface, for
which r(ξ̂′ → ξ̂) is a Dirac delta function, and

ε(θ, φ, λ) + rf (θ, φ, λ) = 1, (2.132)

where θ and φ provide the direction of the reflected-emitted radiance, θ = cos−1(|ξ̂′ • n̂|) =
cos−1(|ξ̂ • n̂|), and rf is the Fresnel reflectivity. This equation allows a simple computation
of the emissivity of a specularly reflecting surface.

The emitted spectral irradiance from a surface is

E(λ) =

∫

All ξ̂•n̂<0

∣∣ξ̂′ • n̂
∣∣Le(ξ̂, λ) dΩ(ξ̂) = Bλ(λ, T )

∫

All ξ̂•n̂<0

∣∣ξ̂′ • n̂
∣∣ε(ξ̂, λ)dΩ(ξ̂)

, ε(λ)πBλ(λ, T ),

where

ε(λ) ,
1

π

∫

All ξ̂•n̂<0

∣∣ξ̂′ • n̂
∣∣ε(ξ̂, λ)dΩ(ξ̂),
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and the total irradiance emitted from a surface is

E =

∫ ∞

0
E(λ) dλ =

∫ ∞

0
ε(λ)πBλ(λ, T ) dλ , εσT 4.

Noting that

σT 4 =

∫ ∞

0
πBλ(λ, T ) dλ,

we have

ε =

∫∞
0 ε(λ)Bλ(λ, T ) dλ∫∞

0 Bλ(λ, T ) dλ
.

The quantity ε is called the emissivity of the surface, while ε(λ) is called the spectral
emissivity.

2.13.2 Radiative Transfer of Thermal Radiation

From the above discussion, we know that matter at a temperature above absolute zero
must emit radiation (thermal radiation), and that the emitted radiance can be written as
the black body radiance modulated by the directional spectral emissivity ε(ξ̂, λ). In the
radiative transfer equation,

dL(~r, ξ̂)

dl
= −c(~r )L(~r, ξ̂) +

∫

All ξ̂′
β(~r, ξ̂′ → ξ̂)L(~r, ξ̂′) dΩ(ξ̂′) +Q(~r, ξ̂),

the thermal emission is part of Q(~r, ξ̂). But, how do we actually relate Q to the emitted
radiation? Consider adding a purely absorbing (i.e., non-scattering) layer to one wall of
the cavity of a black body. For the radiance within the layer we have

dL(~r, ξ̂)

dl
= −a(~r )L(~r, ξ̂) +Q(~r, ξ̂).

Since we know that the radiation within (and exiting) the cavity is independent of the
thickness of the layer, dL(~r, ξ̂)/dl = 0 within the layer (and everywhere in the cavity). In
addition, within the layer, L(~r, ξ̂) = Bλ(λ, T ). Therefore Q(~r, ξ̂) = a(~r )Bλ(λ, T ), and in
general the radiative transfer equation becomes

dL(~r, ξ̂, λ)

dl
= −c(~r , λ)L(~r, ξ̂, λ) +

∫

All ξ̂′
β(~r, ξ̂′ → ξ̂, λ)L(~r, ξ̂′, λ) dΩ(ξ̂′)

+ a(~r )Bλ(λ, T ) +QNT(~r, ξ̂, λ),

where QNT(~r, ξ̂, λ) is the contribution to Q from non-thermal emission, e.g., fluorescence.
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In geophysical optics, thermal emission is only important for λ >∼ 3 µm (Figure 2.24). It
is the basis of the estimation of sea surface temperature measurements by Earth-orbiting
infrared imagers. Let’s see how this works. We will simplify the problem as much as
possible by (1) assuming that scattering is negligible compared to absorption and (2)
assuming that the atmosphere is homogeneous and isothermal with a temperature TA. If
the water surface has a temperature TS , then the radiative transfer problem (in a plane
parallel ocean-atmosphere system) that we need to solve for the spectral radiance L(z, u, λ)
is

u
dL(z, u, λ)

dz
= −aL(z, u, λ) + aBλ(λ, TA),

where as in our normal convention z = 0 is at the top of the atmosphere and increases
with depth into the atmosphere. Since we will be interested in the upward radiance, it will
be convenient for us to replace u by −µ, so upward radiance has µ > 0. The boundary
conditions are that the downward radiance at z = 0 vanishes, and the upward radiance at
z = zB (the bottom of the atmosphere) is ε(µ, λ)Bλ(λ, TS). A typical temperature for the
ocean surface is ∼ 300 K, so the measurement of L(zB, µ, λ) will be easiest (in the absence of
absorption) near λ = 10 µm (Figure 2.24). Therefore, to estimate ε(µ, λ) we use a nominal
wavelength of 10 µm, for which the refractive index of water is approximately 1.22−0.051i.54

This index along with the Fresnel equations (Eqs. (1.39) and (1.40)) shows that rf ≈ 0.01
at normal incidence µ = 1, so, using Eq. 2.132, we can take ε(µ, λ) ≈ 0.99 ≈ 1 for µ close
to unity,55 i.e., at z = zB we take L(zB, µ, λ) = Bλ(λ, TS). This problem is easy to solve
for the upward radiance,56 and the result is

L(0, µ, λ) =
[
Bλ(λ, TS)−Bλ(λ, TA)

]
exp

(
− azB/µ

)
+Bλ(λ, TA). (2.133)

Thus, for a spectral region with negligible absorption (azB � 1), the exponential is ap-
proximately unity and L(0, µ, λ) ≈ Bλ(λ, TS), enabling the determination of TS using the
Planck formula (Eq. (2.130)). In contrast, if azB � 1, L(0, µ, λ) ≈ Bλ(λ, TA) and the
water surface is totally obscured by the atmosphere. So, in absorption-free regions of the
spectrum, one observes Bλ(λ, TS), while in regions of strong atmospheric absorption one
measures Bλ(λ, TA). Typically the atmosphere is colder than the surface, so in the emis-
sion spectrum for the ocean atmosphere-system, the absorption bands in the atmosphere
appear as a decrease in radiance. In contrast, over polar regions (ice covered) it is possible
for Bλ(λ, TA) > Bλ(λ, TS). In this case, the absorption bands in the atmosphere appear as
an increase in radiance, i.e., they appear as emission bands on the background of radiance
from the surface.

54Recall the absorption coefficient is given by a = 4πmi/λ, so at λ = 10 µm, mi = 0.051 leads to
an absorption coefficient of approximately 64,000 m−1! This means using Bλ(λ, TS) to determine TS
provides the temperature of a layer of surface water of the order of 30 µm in thickness. This is called the
“skin” temperature, and is not the same as the bulk temperature, e.g., that measured with an immersed
thermometer (the difference can be a few tenths K).

55Note that rf is a slowly varying function of the incidence angle (Figure 1.5).
56See Chapter 14, the Mathematical Appendix.
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Figure 2.24: Planck function for a 300◦K (lower), 3000◦K (middle) and 6000◦K
(upper) black body. The Earth and Sun radiate to space at T ≈ 300 and 6000 K,
respectively..
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(a)	  

(b)	  

(a)	  

(b)	  

r	  
e	  

Figure 2.25: Two black bodies (isolated from the environment) exchange radiation
until the both come to the same equilibrium temperature Te (a). An object, also
at Te, is placed in the black body on the right (b).
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Figure 2.26: A schematic of radiation moving along the ±x axis in the absence
(a) and the presence (b) of the object within the black body of Figure 2.25.
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2.14 Bibliographic Notes

The subjects discussed in this chapter are developed in great detail in the books by
Preisendorfer (Radiative Transfer on Discrete Spaces [1965] and Hydrologic Optics [1976]
and in the book Light and Water by Mobley [1994]. The phenomenological derivation
development of the radiative transfer equation is our own. Derivation of the RTE from
electromagnetic theory, as well as criticism of the phenomenological derivation is presented
in Mishchenko [2013], Mishchenko [2014], Mishchenko [2008], and Mishchenko et al. [2016].
A proof of the uniqueness theorem and the reciprocity principle is given by Case [1957]
and in the form presented here by Yang and Gordon [1997].

Numerous methods of solving the RTE along with examples and comparisons of their
accuracies are presented in Radiative Transfer in Scattering and Absorbing Atmospheres:
Standard Computational Procedures by Lenoble [1986]. Excellent surveys are presented by
Hansen and Travis [1974] and Irvine [1976]. The book Multiple Light Scattering, Tables,
Formulas, and Approximations [van de Hulst, 1980] covers the successive order of scat-
tering in great detail as well as the approach to the asymptotic regime in a semi-infinite
medium. Monte Carlo methods are discussed by various authors, the most complete being
Monte Carlo Principles and Neutron Transport Problems by Spanier and Gelbard [1969].
Mobley [1994] provides a good introduction to the application of such methods in natural
waters. The discrete ordinate methods are presented in detail in Radiative Transfer by
Chandrasekhar [1950] and modern computer techniques employing them are presented by
Stamnes et al. [1988]. The matrix operator method has a long history and goes by various
names, doubling, adding, etc. An account of the history and a very readable development
of the method (followed here) is given by Plass et al. [1973]. Invariant imbedding forms the
basis of Chandrasekhar’s methods and is developed in detail in Radiative Transfer as well as
in Preisendorfer [1965], Preisendorfer [1976a], Preisendorfer [1976b], Preisendorfer [1976c],
Preisendorfer [1976d], Preisendorfer [1976e], Preisendorfer [1976f], and Mobley [1994]. It is
the solution technique used in the well-known HydroLight code (www.hydrolight.info). The
development of invariant imbedding we presented is our own. A technique that we have
not described is the “singular eigenvalue” method [Case and Zweifel, 1967] [McCormick,
1996], which is appealing because it connects radiative transfer to the more traditional
approaches in mathematical physics. Still other techniques can be found in Lenoble [1986].
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Chapter 3

Scattering Theory

In the previous chapter, we found that the propagation of radiance in a medium is governed
by the radiative transfer equation. The parameters in the radiative transfer equation that
determine the solution are the inherent optical properties — the absorption coefficient and
the volume scattering functions (elastic and inelastic). In the environment the scattering
is due to the interaction of electromagnetic radiation with atoms, molecules, and liquid or
solid particles with sizes that range from a fraction of the wavelength to many multiples
of the wavelength of the electromagnetic radiation. In this chapter we review the theory
of light scattering by gases, liquids, and homogeneous particles. One goal is to acquaint
the reader with exact and approximate methods of determining the scattering and absorp-
tion properties of homogeneous particles. A secondary goal is to show how their optical
properties relate to their physical properties.

We begin by reviewing the basic scattering problem by using scattering by individual
atoms in a gas as a guide. Rayleigh scattering by gases and liquids is discussed in some
detail and followed by the scattering and absorption of a homogeneous sphere (Mie theory).
Next, we examine several approximations to scattering and absorption that are applicable
to specific size ranges and particle compositions. Finally, we consider scattering by particles
with irregular shapes. In the appendices we derive the optical theorem, which is used to
determine the extinction properties of scatterers, and describe Raman scattering.

217
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3.1 Introduction

Consider a plane wave propagating in the ~κ0 direction, with electric field given by

~E(~r, t) = ~E0 exp[i(~κ0 • ~r − ωt)], (3.1)

where ~E0 = ê0rE0r + ê0`E0` and ê0r × ê0` = κ̂0. We found in Chapter 1, that when this
wave is incident on an atom of polarizability α (located at the origin of coordinates, i.e.,
r = 0), the scattered fields at a distance r from the atom, perpendicular (Er) and parallel
(E`) to the plane of scattering, are related to the incident field amplitudes through1

(
Er
E`

)
=

exp[i(κr − ωt)]
−iκr

(
A1(Θ) 0

0 A2(Θ)

)(
E0 r

E0 `

)
, (3.2)

where Θ is the scattering angle, κ = 2π/λ, λ is the wavelength in the medium,2 and

A1(Θ) =
−iκ3α

4πε0
and A2(Θ) =

−iκ3α

4πε0
cos Θ.

Since α has dimensions of ε0 times volume, A1 and A2 are dimensionless. The A’s are
called scattering amplitudes, and completely describe the scattered field in terms of the
incident field.

Recall that for any electromagnetic wave the time-averaged Poynting vector
(
Eq. (1.11)

)
,

expressed in complex notation is

〈~S〉 =
κ̂

2µ0c
<( ~E • ~E∗).

In this form the time-average Poynting vector of the scattered wave (measured without
polarizing filters) is

|〈~S〉Scatt| =
1

κ2r2

(
A1A

∗
1E0 rE

∗
0 r +A2A

∗
2E0 `E

∗
0 `

2µ0c

)
.

If the incident field is unpolarized, E0 rE
∗
0 r = E0 `E

∗
0 ` = E0E

∗
0/2, i.e., half of the irradiance

is polarized perpendicular and half parallel to the scattering plane. Then,

|〈~S〉Scatt| =
1

κ2r2

(
A1A

∗
1 +A2A

∗
2

2

)
|〈~S〉Inc|.

1The scattering plane is the plane defined by the incident and scattered directions, κ̂0 and κ̂, respectively.
The scattered field is ~Er = êrEr + ê`E`, where the unit vectors are perpendicular (r) and parallel (`) to
the scattering plane, êr × ê` is in the direction of propagation of the scattered wave. The unit vectors ê0r

and ê0` are also perpendicular and parallel to the scattering plane as well with ê0r × ê0` in the direction of
propagation of the incident field.

2Throughout this chapter ~κ is the propagation vector in the medium in which the scattering atom,
molecule, or physical particle resides.
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Following the procedure leading to Eq. (2.24), we have

β(Θ) = β11(Θ) =
n

κ2

[
A1(Θ)A∗1(Θ) +A2Θ)A∗2(Θ)

2

]
, (3.3)

where n is the number density of scatterers. Inserting the A’s for Rayleigh scattering
reproduces the volume scattering function provided in Eq. (2.25).

By analogy to Rayleigh scattering, the scattered field from any object, e.g., a small
particle, can be related to the incident field amplitudes through

(
Er
E`

)
=

exp[i(κr − ωt)]
−iκr

(
A1(Θ,Φ) A4(Θ,Φ)
A3(Θ,Φ) A2(Θ,Φ)

)(
E0 r

E0 `

)
, (3.4)

where now the scattering amplitude matrix in general depends on both scattering angles
(see Figure 2.14).

Given Eq. (3.4) and the definition of the incident and scattered Stokes vectors I0 and
I, we can find the Mueller matrix that takes one into the other, i.e.,

I = M(Θ,Φ)I0.

This is effected using the method described in Section 1.10.8:

Mji =
(−1)i−j

2κ2r2
Tr
[
σjAσiA

†
]
, (3.5)

e.g.,

M11 =
1

2κ2r2
Tr
[
σ1Aσ1A

†
]

=
1

2κ2r2
Tr
[
AA†

]

=
1

2κ2r2
Tr

[(
A1 A4

A3 A2

)(
A∗1 A∗3
A∗4 A∗2

)]

=
1

2κ2r2
[A1A

∗
1 +A2A

∗
2 +A3A

∗
3 +A4A

∗
4]

,
1

κ2r2
M ′11

In a similar manner we find

M(Θ,Φ) =
1

κ2r2




M ′11(Θ,Φ) M ′12(Θ,Φ) M ′13(Θ,Φ) M ′14(Θ,Φ)
M ′21(Θ,Φ) M ′22(Θ,Φ) M ′23(Θ,Φ) M ′24(Θ,Φ)
M ′31(Θ,Φ) M ′32(Θ,Φ) M ′33(Θ,Φ) M ′34(Θ,Φ)
M ′41(Θ,Φ) M ′42(Θ,Φ) M ′43(Θ,Φ) M ′44(Θ,Φ)


 ,
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where,

M ′11(Θ,Φ) =
1

2

(
A1(Θ,Φ)A∗1(Θ,Φ) +A2(Θ,Φ)A∗2(Θ,Φ) +A3(Θ,Φ)A∗3(Θ,Φ) +A4(Θ,Φ)A∗4(Θ,Φ)

)

M ′12(Θ,Φ) =
1

2

(
A2(Θ,Φ)A∗2(Θ,Φ)−A1(Θ,Φ)A∗1(Θ,Φ) +A4(Θ,Φ)A∗4(Θ,Φ)−A3(Θ,Φ)A∗3(Θ,Φ)

)

M ′13(Θ,Φ) = <
(
A2(Θ,Φ)A∗3(Θ,Φ) +A1(Θ,Φ)A∗4(Θ,Φ)

)

M ′14(Θ,Φ) = =
(
A2(Θ,Φ)A∗3(Θ,Φ)−A1(Θ,Φ)A∗4(Θ,Φ)

)

M ′21(Θ,Φ) =
1

2

(
A2(Θ,Φ)A∗2(Θ,Φ)−A1(Θ,Φ)A∗1(Θ,Φ)−A4(Θ,Φ)A∗4(Θ,Φ) +A3(Θ,Φ)A∗3(Θ,Φ)

)

M ′22(Θ,Φ) =
1

2

(
A2(Θ,Φ)A∗2(Θ,Φ) +A1(Θ,Φ)A∗1(Θ,Φ)−A4(Θ,Φ)A∗4(Θ,Φ)−A3(Θ,Φ)A∗3(Θ,Φ)

)

M ′23(Θ,Φ) = <
(
A2(Θ,Φ)A∗3(Θ,Φ)−A1(Θ,Φ)A∗4(Θ,Φ)

)

M ′24(Θ,Φ) = =
(
A2(Θ,Φ)A∗3(Θ,Φ) +A1(Θ,Φ)A∗4(Θ,Φ)

)

M ′31(Θ,Φ) = <
(
A2(Θ,Φ)A∗4(Θ,Φ) +A1(Θ,Φ)A∗3(Θ,Φ)

)

M ′32(Θ,Φ) = <
(
A2(Θ,Φ)A∗4(Θ,Φ)−A1(Θ,Φ)A∗3(Θ,Φ)

)

M ′33(Θ,Φ) = <
(
A1(Θ,Φ)A∗2(Θ,Φ) +A3(Θ,Φ)A∗4(Θ,Φ)

)

M ′34(Θ,Φ) = =
(
A2(Θ,Φ)A∗1(Θ,Φ) +A4(Θ,Φ)A∗3(Θ,Φ)

)

M ′41(Θ,Φ) = =
(
A4(Θ,Φ)A∗2(Θ,Φ) +A1(Θ,Φ)A∗3(Θ,Φ)

)

M ′42(Θ,Φ) = =
(
A4(Θ,Φ)A∗2(Θ,Φ)−A1(Θ,Φ)A∗3(Θ,Φ)

)

M ′43(Θ,Φ) = =
(
A1(Θ,Φ)A∗2(Θ,Φ)−A3(Θ,Φ)A∗4(Θ,Φ)

)

M ′44(Θ,Φ) = <
(
A1(Θ,Φ)A∗2(Θ,Φ)−A3(Θ,Φ)A∗4(Θ,Φ)

)
.

For scattering from an object with spherical symmetry,A3 = A4 = 0, i.e.,
(
Er
E`

)
=

exp[(iκr − ωt))]
−iκr

(
A1(Θ) 0

0 A2(Θ)

)(
E0 r

E0 `

)
, (3.6)

and the Mueller matrix reduces in form to

M(Θ) =
1

κ2r2




M ′11(Θ) M ′12(Θ) 0 0
M ′12(Θ) M ′11(Θ) 0 0

0 0 M ′33(Θ) −M ′34(Θ)
0 0 M ′34(Θ) M ′33(Θ)


 ,

where,

M ′11(Θ) =
1

2

(
A1(Θ)A∗1(Θ) +A2(Θ)A∗2(Θ)

)

M ′12(Θ) =
1

2

(
A1(Θ)A∗1(Θ)−A2(Θ)A∗2(Θ)

)

M ′33(Θ) = <
(
A1(Θ)A∗2(Θ)

)

M ′34(Θ) = =
(
A1(Θ)A∗2(Θ)

)
.

. (3.7)
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We provide formulas for A1(Θ) and A2(Θ) for a homogeneous sphere in the following
section.

Again, following the procedure leading to Eq. (2.24),, i.e., β = nr2M ,

β(Θ) =
n

κ2




M ′11(Θ,Φ) M ′12(Θ,Φ) M ′13(Θ,Φ) M ′14(Θ,Φ)
M ′21(Θ,Φ) M ′22(Θ,Φ) M ′23(Θ,Φ) M ′24(Θ,Φ)
M ′31(Θ,Φ) M ′32(Θ,Φ) M ′33(Θ,Φ) M ′34(Θ,Φ)
M ′41(Θ,Φ) M ′42(Θ,Φ) M ′43(Θ,Φ) M ′44(Θ,Φ)


 . (3.8)

The scattering coefficient b depends on the polarization of the incident irradiance. For
unpolarized irradiance,

b =
n

κ2

∫
M ′11(Θ,Φ) dΩ, (3.9)

where the integration is over the full range of solid angle.3 The scattering cross section
σb , b/n is

σb =
1

κ2

∫
M ′11(Θ,Φ) dΩ. (3.10)

Particles will in general absorb as well as scatter radiation. The absorption cross sec-
tion σa, when added to the scattering cross section σb, yields the total cross section (the
attenuation or extinction cross section), σc, i.e.,

σc = σa + σb,

3For incident irradiance described by the Stokes vector IE , the scattering coefficient is

b =
n

κ2IE

∫ [
M ′11(Θ,Φ)IE +M ′12(Θ,Φ)QE +M ′13(Θ,Φ)UE +M ′14(Θ,Φ)VE

]
dΩ.

In this equation both M and IE must be referenced to the same coordinate system, but typically the
incident Stokes vector is referenced to the laboratory coordinate “Lab,” while M is referenced to the
scattering plane. Thus, we must transform ILab from the laboratory reference to the scattering plane. This
means replacing IE above by IE = R(Φ)ILab. Then,

b =
n

κ2I

∫ [
M ′11(Θ,Φ)I+M ′12(Θ,Φ)

(
Q cos(2Φ)−U sin(2Φ)

)
+M ′13(Θ,Φ)

(
U cos(2Φ)+Q sin(2Φ)

)
+M ′14(Θ,Φ)V

]
dΩ,

where I, Q, U , and V are the (constant) components of ILab. If M is independent of Φ, when the integral
over Φ is carried out all the terms involving Q and U will integrate to zero, so for linearly polarized incident
irradiance, this reduces to

b =
n

κ2

∫
M ′11(Θ) dΩ,

i.e., the same as for unpolarized incident irradiance. However, in general b will depend on the state of
polarization of the incident irradiance. Henceforth, when we use the term “scattering coefficient,” it will
be for unpolarized incident irradiance, unless otherwise specified.
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or the equivalent in terms of coefficients

c = a+ b,

where c = nσc, etc. In Appendix 1 to this chapter we derive the optical theorem that relates
σc to the scattering amplitudes at Θ = 0. The result (for unpolarized incident radiation)
is4

σc =
4π

κ2
<
(
A1(0) +A2(0)

2

)
.

This provides σc from which σa can be found after determining σb from Eq. (3.10).

3.2 Rayleigh Scattering

In this section we develop the scattering of light by atoms and isotropic molecules (scalar
polarizability), anisotropic molecules, and liquids. Such scattering is collectively called
Rayleigh scattering, a term that is generically used for scattering by objects that are
significantly smaller than the wavelength of the radiation. In Appendix 2 (Section @@.6.2)
we explain Raman scattering — inelastic scattering similar in many respects to Rayleigh
scattering.

3.2.1 Rayleigh Scattering by Atoms and Isotropic Molecules

Based on our classical model of an atom interacting with electromagnetic radiation, we
found that the volume scattering matrix for a dilute gas of n atoms (or isotropic molecules)
per unit volume was5

β(Θ) = n

[
κ4α2

(4πε0)2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ


 .

The volume scattering function β(Θ) = β11(Θ) is

β(Θ) = n

[
κ4α2

(4πε0)2

]
1

2
(1 + cos2 Θ),

4See Appendix 1 for examples of extinction cross sections for various states of polarization of the incident
irradiance.

5It is important to note that in deriving this result it was assumed that the scattered radiant power
from each atom should be summed at the detector rather than the fields, i.e., there is no coherence between
the scattering from two atoms. Thus, the result applies only to a situation in which the scatterers are in
totally random motion, e.g., the gaseous state as opposed to the liquid or solid state.
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and the scattering coefficient,

b =

∫ 2π

0
dΦ

∫ π

0
β(Θ) sin Θ dΘ

=
8π

3
n

[
κ4α2

(4πε0)2

]
.

In these equations, κ = 2π/λ, α is the polarizability, and Θ is the scattering angle. Since α
is an atomic property, we see that the scattering coefficient is proportional to n. Sometimes
it is convenient to rewrite this by relating α to the refractive index m of the gaseous
medium.6 This is effected through (see Chapter 1, Eq. (1.16))

n
α

ε0
= 3

(
m2 − 1

m2 + 2

)
(3.11)

so,

β(Θ) =
9π2

nλ4

(
m2 − 1

m2 + 2

)2(
1 + cos2 Θ

2

)
and b =

24π3

λ4n

(
m2 − 1

m2 + 2

)2

. (3.12)

If the equation for b is divided by n, the number density of atoms, we find that the scattering
cross section per atom σb = b/n is given by

σb =
24π3

λ4n2

(
m2 − 1

m2 + 2

)2

. (3.13)

Now, both m and n depend on temperature (T ) and pressure (P ) through the ideal gas
law, P = nkBT , where kB is the Boltzmann constant (1.38 × 10−23J/◦K); however, the
quantity

1

n

(
m2 − 1

m2 + 2

)
=

α

3ε0
(3.14)

cannot depend on T and P because it is a property of a single atom. Thus, σb is indepen-
dent of P and T and

b = nσb =

(
P

kBT

)
σb (3.15)

provides the dependence of the scattering coefficient on temperature and pressure when
the gas can be treated as ideal.

6The reader should understand that this relationship provides the refractive index m of a medium
composed of individual atoms (each having a polarizability α), when the medium is treated as a continuum.
Later, we will discuss homogeneous particles of refractive index mp

(
which is related to the polarizability αp

of the atoms comprising the particle by a relationship identical to Eq. (3.11)
)
, suspended in a continuous

medium of index mm. The relative index of the particle mp/mm is then written m̃ or m̃p.
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3.2.2 Rayleigh Scattering by Anisotropic Molecules

By volume, 99% of the atmosphere consists of linear molecules (N2, O2, and CO2). Such
molecules will have a polarizability of the form

α =



α⊥ 0 0
0 α⊥ 0
0 0 α‖


 ,

where the subscripts ‖ and ⊥ refer to parallel and perpendicular to the symmetry axis of
the molecule. Thus, one should include molecular anisotropy in the derivation of molecular
scattering.

Scattering from an atom with anisotropic polarizability was discussed in Chapter 1. The
results there can be used to find β11(Θ) = β(Θ) for such an atom as follows. We note that
β11 describes the scattered Stokes parameter I for an unpolarized incident beam. Such an
incident beam is represented by an uncorrelated (incoherent) mixture of radiation polarized
parallel and perpendicular to the scattering plane with E0r = E0`. The Poynting vector
for such a beam is

|〈~SInc〉Ave| =
1

2µ0c

[
(E0r)

2 + (E0`)
2
]
.

The Stokes parameter I scattered by a single atom is proportional to the Poynting vector
measured by a radiometer without polarizing filters, i.e.,

|〈~S〉Ave| = |〈〈~Sr〉Ave〉|+ |〈〈~S`〉Ave〉|,
where 〈〈~Sr〉Ave〉 and 〈〈~S`〉Ave〉 are given by Eqs. (1.50) and (1.51) in Chapter 1. Therefore,

|〈~S〉Ave| =
κ4α2

(4πε0)2r2

[
45α2 + 13β2 + (45α2 + β2) cos2 Θ

45α2

] |〈~SInc〉Ave|
2

,

and following the definition of β(Θ) for a gas of number density n,

nr2|〈~S〉Ave| = β(Θ)|〈~SInc〉Ave|,

we have7

β11(Θ) = β(Θ) =
1

2

nκ4α2

(4πε0)2

[
45α2 + 13β2 + (45α2 + β2) cos2 Θ

45α2

]
.

7Rather than changing notation for this one page, we simply warn the reader to be cautious about
mixing β(Θ) on the left-hand side of the equation below with β2 on the right-hand side which was defined
just above (1.50).
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Integrating, the scattering coefficient is

b =
8π

3

nκ4α2

(4πε0)2

[
45α2 + 10β2

45α2

]
.

Recalling the depolarization factor at Θ = 90◦,

δ =
6β2

45α2 + 7β2
,

it is easy to verify that

45α2 + β2

45α2 + 10β2
=

2(1− δ)
2 + δ

,

45α2 + 13β2

45α2 + 10β2
=

2(1 + δ)

2 + δ
, and

45α2 + 10β2

45α2
=

6 + 3δ

6− 7δ
.

Thus,

b =
8π

3

nκ4α2

(4πε0)2

[
6 + 3δ

6− 7δ

]
, (3.16)

and

β(Θ) =
3

16π
b
[(1 + δ) + (1− δ) cos2 Θ

1 + δ/2

]
. (3.17)

The minimum value of δ is zero for β2 = 0. The maximum anisotropy would occur
when α⊥ = 0. In this case δ = 0.5. Thus, 0 ≤ δ ≤ 1

2 . The depolarization factor δ is
straightforward to measure. Illuminate a sample with light passing through a polarizing
filter and measure the light scattered at Θ = 90◦ (using a detector without polarizing filters)
first when the polarizer pass direction is parallel to the scattering plane and second when
it is perpendicular to the scattering plane. The ratio of these measurements (first:second)
is δ (See Chapter 1, Eqs. (1.50) and (1.51)). The measured value for air is near 0.03, so
(6 + 3δ)/(6− 7δ) ≈ 1.05, showing that the presence of molecular anisotropy increases b by
∼ 5%.

Earlier, the polarizability was determined by relating α to m, which can be measured
with high precision, through the Lorentz-Lorenz law, i.e., Eq. (3.14). Does this still apply
when dealing with anisotropic dielectrics? For randomly orientated molecules the answer
is yes. In the molecular frame the induced dipole moment is pi = αiEi, where i = x, y, or
z. In the laboratory frame PI = npI , where I = X, Y , or Z. From Eq. (1.49), averaging
over orientations, we have

〈pI〉 =
3∑

1=1

3∑

J=1

αi〈aiIaiJ〉EJ .
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It is shown in the Mathematical Appendix that 〈aiIaiJ〉 = δIJ/3, so 〈PI〉 = EI
∑3

i=1 αi/3 =

αEI . Thus, 〈~p〉 = α~E, and the orientationally-averaged induced dipole moment is in the
same direction as the field. The Lorentz-Lorenz law then follows as in Chapter 1. Thus,
for example, the scattering cross section per molecule becomes

σb =
24π3

λ4n2

(
m2 − 1

m2 + 2

)2 [
6 + 3δ

6− 7δ

]
. (3.18)

The full phase matrix for molecular scattering can be derived in a manner similar to β11

(note, however, that not all of the required results are derived in Chapter 1). The result is

P (Θ) =
4πβ(Θ)

b

=
3

2

[
1− δ

1 + δ/2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ




+
3

2

[
δ

1 + δ/2

]



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − cos Θ


 .

(3.19)

Henceforth, when we used the term “Rayleigh scattering by a gas” (e.g., air), we are
referring to Eqs. (3.16) through (3.19) and will use the notation br, βr, σr, and Pr,
respectively.

3.2.3 Rayleigh Scattering by Liquids

One might expect that molecular scattering by liquids could be addressed by simply re-
placing n, the number density of atoms, in Eq. (3.18) by the appropriate number density
for liquids, which is much larger than that for gases. However, experimentally it is known
that a given number of atoms (or a given mass) scatters more in the gaseous state than in
the liquid state, and in the solid state, transparent materials exhibit almost no scattering.
The reason is that, while in the gaseous state atoms (molecules) move rapidly and indepen-
dently, in the liquid state there are strong correlations between the motions of the atoms
in small volumes. These correlations of the motions lead to some coherent cancellation of
the scattering of radiation from the individual atoms. If we divide the scattering volume
into individual cells, because of the correlations and the cancellations, each cell will appear
to scatter as if there were fewer atoms than are actually present. Thus, in a reformulation
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of scattering theory for application to liquids, we will treat each cell as a scattering center
that coherently scatters light with all other cells in a sample.8

In this section we reformulate the molecular scattering theory along the lines suggested
above. We shall show that the volume scattering of a medium can be explained on the basis
of fluctuations in the number density of atoms within the cells. In addition we show that
in the case of gases, the final result is virtually identical to that obtained in the previous
section. Following this, the extension to liquids is immediate.

It is natural to divide the medium into cubic cells; however, we will use spherical cells
because the scattering by such spheres has already been described.9 From Chapter 1 we
found that in a vacuum, the scattering by a sphere with radius R � λ was the same as
that from an atom with the atomic polarizability replaced by

α = 4πε0R
3

[
Ke − 1

Ke + 2

]
,

where Ke is the dielectric constant of the sphere. Assuming that Ke−1 , ∆K � 1, α can
be written

α =
4πε0

3
R3∆K = ε0Vs∆K,

where Vs is the volume of the sphere. Now, we model a continuous medium as a collection
of N such spheres labeled by the index i, with the ith sphere having a polarizability αi =
ε0Vs∆Ki. Then the scattered field at P in Figure 3.1 from the ith sphere (centered at Oi)
is

8In a crystal lattice, each atom is essentially fixed in space, and for the scattered field of an individual
atom, say atom a, another atom (b) can always be found somewhere in the crystal (assumed infinite) that
will produce a scattered field that will exactly cancel the field of atom a in any given direction (different
atoms b will be required for different directions), except in the forward scattering direction where the fields
add. Forward scattering is simply the propagation of the incident beam.

9Within the context of Rayleigh-Gans scattering theory to be described later, one can show that the
scattering by a small cube and a small sphere are identical in the limit that the size is � λ.
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Figure 3.1: Radiation propagating in the direction κ0 in a medium represented
as a collection of spheres is incident on two representative spheres. The scattered
field is desired at point P . The vector ~r is directed from O to P and has length
OP . The vector ~ri is directed from Oi to P and has length OiP . ~Di specifies the
position of the sphere at Oi with respect to the sphere at O. The point O is taken
as the origin of the coordinate system.

(
∆Er(P,Oi)
∆E`(P,Oi)

)
=
−iκ3

4πε0
ε0Vs∆Ki

exp[i(κiri − ωt)]
−iκiri

(
1 0
0 cos Θ

)(
E0 r(Oi)
E0 `(Oi)

)
.

To find the total field at P , we need to sum contributions from each sphere. To carry this
out, it is useful to write the fields at Oi on the left-hand-side of this equation in terms
of the field at a single point in space, which we take to be the point O in Figure 3.1.
Then, with the origin of coordinates at O, Eq. (3.1) provides the incident field at ~Di:
~E( ~Di, t) = ~E0 exp[i(~κ0 • ~Di − ωt)]. But the field at O is just ~E0 exp[−iωt], so the incident
field at Oi is related to that at O by

~EInc(Oi) = ~EInc(O) exp[i~κ0 • ~Di],

where the vector ~Di is provided in Figure 3.1. Then the scattered fields are

(
∆Er(P,Oi)
∆E`(P,Oi)

)
=
−iκ3

4π
Vs∆Ki exp[i~κ0 • ~Di]

exp[i(κiri − ωt)]
−iκiri

(
1 0
0 cos Θ

)(
E0 r(O)
E0 `(O)

)
.

Now, ~r = ~ri + ~Di, so κiri = ~κi • ~ri = ~κi • (~r − ~Di), and

exp[i~κ0 • ~Di] exp[iκiri] = exp[i(~κ0 − ~κi) • ~Di] exp[iκir].



3.2. RAYLEIGH SCATTERING 229

Therefore
(

∆Er(P,Oi)
∆E`(P,Oi)

) −iκ3

4π
Vs∆Ki exp[i(~κ0 − ~κi) • ~Di]

exp[i(κir − ωt)]
−iκiri

(
1 0
0 cos Θ

)(
E0 r(O)
E0 `(O)

)
.

Noting that κ0 = κi = κ, assuming that r is so much larger than | ~Di| that ~κi = ~κ, and
replacing r′ by r in the denominator,10 we have

(
∆Er(P,Oi)
∆E`(P,Oi)

) −iκ3

4π
Vs∆Ki exp[i(~κ0 − ~κ) • ~Di]

exp[i(κr − ωt)]
−iκr

(
1 0
0 cos Θ

)(
E0 r(O)
E0 `(O)

)
.

(3.20)
Summing the fields over all N spheres, and using the definition of the scattering amplitudes,
we have

A1(Θ) =
−iκ3

4π
Vs

N∑

i=1

exp[i(~κ0 − ~κ) • ~Di] ∆Ki

A2(Θ) =
−iκ3

4π
Vs cos Θ

N∑

i=1

exp[i(~κ0 − ~κ) • ~Di] ∆Ki.

To determine the volume scattering function we must compute A1A
∗
1 and A2A

∗
2. However,

since A1 and A2 are fluctuating (in time) quantities, we actually need their time averages,
e.g., 〈A1A

∗
1〉. The first is just

〈A1A
∗
1〉 =

κ6

(4π)2
V 2
s

N∑

i=1

N∑

j=1

exp[i(~κ0 − ~κ) • ( ~Di − ~Dj)] 〈∆Ki ∆Kj〉

If we assume that the ∆K’s for the various spheres are completely random (uncorrelated),
then 〈∆Ki ∆Kj〉 = 0 when i 6= j, and

〈A1A
∗
1〉 =

κ6

(4π)2
V 2
s

N∑

i=1

〈(∆Ki)
2〉 =

κ6

(4π)2
V 2
s N〈(∆K)2〉,

where 〈(∆K)2〉 = N−1
∑N

i=1 (∆Ki)
2 is mean of (∆K)2 over all the spheres. Writing the

the sphere volume Vs = V/N = 1/n, where V is the total volume of the region under
consideration and n is the number density of spheres, we have

〈A1A
∗
1 +A2A

∗
2〉

2
=

1

2

κ6

(4π)2n
V 〈(∆K)2〉(1 + cos2 Θ)

10The reader may wonder why we replace ri with r some places but not others. When ri is a multiplicative
factor (as in the denominator) the replacement will make only a small difference in the final result, but if
it is in the phase, i.e, κiri in exp[iκiri], a small difference between ~r snd ~ri can make a large difference in
exp[iκiri].
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so

β(Θ) =
1

2

κ4

(4π)2
V 〈(∆K)2〉(1 + cos2 Θ) =

π2

2λ4
V 〈(∆K)2〉(1 + cos2 Θ).

The problem of determining the mean square fluctuation in the dielectric constant
〈(∆K)2〉 is solved by the methods of statistical thermodynamics. If the density ρ and
the absolute temperature T are taken to be the independent thermodynamic variables
specifying the state of the substance, then

∆K =

(
∂Ke

∂ρ

)

T

∆ρ+

(
∂Ke

∂T

)

ρ

∆T,

and since temperature and density fluctuations are independent, 〈∆ρ∆T 〉 = 0, and

〈(∆K)2〉 =

(
∂Ke

∂ρ

)2

T

〈(∆ρ)2〉+

(
∂Ke

∂T

)2

ρ

〈(∆T )2〉.

The fluctuations in temperature and density can be shown to be

〈(∆T )2〉 =
kBT

2

ρcvV
and 〈(∆ρ)2〉 =

ρkBT

V

(
∂ρ

∂P

)

T

,

where cv is the specific heat at constant volume. Now, using the fact that the density is
the mass of the material divided by V , we can replace the partial derivative in the last
expression by (

∂ρ

∂P

)

T

= ρβT , where βT , − 1

V

(
∂V

∂P

)

T

,

is the isothermal compressibility. Then

V 〈(∆K)2〉 =

(
∂Ke

∂ρ

)2

T

ρ2TβTkB +

(
∂Ke

∂T

)2

ρ

kBT

ρcv
.

The volume scattering function is then determined given the thermodynamic properties of
the medium.

It is easy to apply these relationships to an ideal gas. The equation of state is PV =
NkBT , where N is the number of atoms in V . Carrying out the derivative, βT = 1/P , so
kBTβT = V/N = 1/n. In addition, n and K are related by

α

3ε0
=

1

n

(
K − 1

K + 2

)
= Constant,

and (
∂Ke

∂ρ

)

T

=
1

Ma

(
∂Ke

∂n

)

T

,
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where Ma is the mass of a single atom. Differentiating α/3ε0 the result is

(
∂Ke

∂ρ

)2

T

=
1

9ρ
(K − 1)2(K + 2)2.

If the density is constant, the dielectric constant is as well, so
(
∂Ke

∂T

)

ρ

= 0,

and finally

β(Θ) =
π2

λ4

1

n

(Ke − 1)2(Ke + 2)2

9

(
1 + cos2 Θ

2

)
.

Since K − 1� 1, this is approximately

β(Θ) =
π2

λ4

1

n
(Ke − 1)2

(
1 + cos2 Θ

2

)
,

which is identical to Eq. (3.12) with m2 − 1� and m2 + 2 ≈ 3. Thus, we have been able
to re-derive the scattering by molecules in a gas by considering fluctuations in its density.

For a liquid consisting of anisotropic molecules, e.g., water, the factor relating σb to
molecular anisotropy, i.e., (6 + 3δ)/(6− 7δ), and the substitution

1 + cos2 Θ −→ 1 + δ + (1− δ) cos2 Θ

1 + δ/2

can also be deduced in a manner similar to the scattering by an anisotropic molecule
by considering fluctuations in molecular orientation within the individual cells. In the
anisotropic case, K for an individual cell is replaced by a diagonal matrix (in a reference
frame in the cell, but with axes that fluctuate continuously as anisotropic molecules enter
and leave it) with elements that differ only slightly. In this case, K in the above equation
can be taken to be the mean of the diagonal elements of the matrix.

Although we have assumed in this section that Ke − 1 � 1, an identical expression is
obtained even if this limitation is not imposed (it was here only for convenience), i.e., there
really need not be any restriction on K to obtain the final result, and it holds for all K.
In particular, for water K = m2 ≈ 1.77. Thus, the results of this section can be applied to
liquids as well as gases: for either,

β(Θ) =
π2

2λ4

[(
∂Ke

∂ρ

)2

T

ρ2TβTkB +

(
∂Ke

∂T

)2

ρ

kBT

ρcv

](
6 + 3δ

6− 7δ

)(
(1 + δ) + (1− δ) cos2 Θ

1 + δ/2

)
,

and the scattering is determined by the thermodynamic properties.
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3.3 Scattering by a Homogeneous Sphere

Most attempts to understand light scattering from particles suspended in the air or in
water assume that the particles are homogeneous spheres. In this section we examine the
scattering by such particles. We begin by presenting the exact solution for the elements of
the scattering matrix A(Θ), and then consider some useful approximations.

3.3.1 The Exact Solution (Mie Theory)

The problem of the scattering of a plane electromagnetic wave by a sphere of arbitrary
refractive index m̃, relative to the surrounding medium, and radius R, was first solved by
G. Mie in 1908. Deriving the Mie solution from first principles would take us too far afield,
so we shall simply summarize the results.

Writing the scattered field in the form of Eq. (3.6), the scattering amplitudes are given
by

A1(Θ, m̃, R) =
∞∑

`=0

2`+ 1

`(`+ 1)

[
a`(x, y)π`

(
cos(Θ)

)
+ b`(x, y)τ`

(
cos(Θ)

)]

A2(Θ, m̃, R) =
∞∑

`=0

2`+ 1

`(`+ 1)

[
a`(x, y)τ`

(
cos(Θ)

)
+ b`(x, y)π`

(
cos(Θ)

)]
,

(3.21)

where x = κR, y = m̃x = m̃κR, and ` is an integer.11 The other quantities in these
amplitudes are as follows:

a`(x, y) =
ψ′`(y)ψ`(x)− m̃ψ`(y)ψ′`(x)

ψ′`(y)ξ`(x)− m̃ψ`(y)ξ′`(x)

b`(x, y) =
m̃ψ′`(y)ψ`(x)− ψ`(y)ψ′`(x)

m̃ψ′`(y)ξ`(x)− ψ`(y)ξ′`(x)

(3.22)

where

ψ`(z) =

√
πz

2
J`+ 1

2
(z) and ξ`(z) =

√
πz

2
H

(1)

`+ 1
2

(z),

with J and H(1) representing Bessel and Hankel functions, respectively. The functions ψn

11Note that m̃ is the refractive index of the particle divided by the refractive index of the medium in
which the particle is suspended — in cases of interest to us, water or air.
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and ξn satisfy the following recursion relationships:12

g`−1(z) + g`+1(z) =
2`+ 1

z
g`(z),

`g`−1(z)− (`+ 1)g`+1(z) = (2`+ 1)g′`(z),

where g = ψ or ξ, and ′ indicates derivative with respect to the argument, i.e., g′`(z) =
dg`(z)/dz.

The π’s and τ ’s are related to the Legendre polynomials13 and satisfy the following
relationships:

π`(z) = z
2`− 1

`− 1
π`−1(z)− `

`− 1
π`−2(z), with π0(z) = 0, and π1(z) = 1,

π′`(z) = (2`− 1)π`−1(z)− π′`−2(z), with π′0(z) = 0, and π′1(z) = 0,

τ`(z) = zπ`(z)−
√

(1− z2)π′`(z).

These can be used directly to show

π`(−z) = (−1)`−1π`(z) and τ`(−z) = (−1)`τ`(z),

as well as

π`(1) = τ`(1) =
`(`+ 1)

2
. (3.23)

They also satisfy the integral relationships (with m another integer),

∫ 1

−1

[
π`(z)πm(z) + τ`(z)τm(z)

]
dz =

(
2`2(`+ 1)2

2`+ 1

)
δ`m,

∫ 1

−1

[(
π`(z)± τ`(z)

)(
πm(z)± τm(z)

)]
dz = 0, if ` 6= m,

(3.24)

and, since π`(−z)τ`(−z) = −π`(z)τ`(z),
∫ 1

−1
π`(z)τ`(z) dz = 0. (3.25)

12The Hankel function described here is H
(1)

`+1/2(z) = J`+1/2(z) + iN`+1/2(z), where N is the Bessel

function of the second kind (singular at z = 0). For large z, ξ`(z) ∝ z−1 exp[iz]. Also, the recursion
relations must be used with care, particularly in numerical computations. We refer the reader to treatises
on light scattering for detail.

13The relationships are π`(z) = dP`(z)/dz, with P`(z) = 1
2``!

d`

dz`

(
z2 − 1

)`
, where P`(z) is the Legendre

polynomial of order `.
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Direct substitution of Eq. (3.21) into Eq. (3.7) yields

β(Θ) =
n

κ2
M ′11(Θ) =

n

2κ2

(
A1(Θ)A∗1(Θ) +A2(Θ)A∗2(Θ)

)

=
n

2κ2

∑

`

∑

m

[
2`+ 1

`(`+ 1)

] [
2m+ 1

m(m+ 1)

]

×
[
(a`a

∗
m + b`b

∗
m)(π`πm + τ`τm) + 2(a`b

∗
m + a∗`bm)(π`τm)

]
(3.26)

The scattering coefficient is

b =

∫

All Ω
β(Θ) dΩ =

∫ 2π

0
dΦ

∫ π

0
β(Θ) sin Θ dΘ = 2π

∫ 1

−1
β(u) du, (3.27)

where u = cos Θ. Using Eqs. (3.24) and (3.25), we have

b =
2πn

κ2

∑

`

(2`+ 1)(|a`|2 + |b`|2), or σb =
2π

κ2

∑

`

(2`+ 1)(|a`|2 + |b`|2).

It is useful to define the scattering efficiency Qb , σb/πR
2, i.e., the ratio of the scattering

cross section to the geometrical cross section of the sphere. Thus

Qb =
2

(κR)2

∑

`

(2`+ 1)(|a`|2 + |b`|2).

The total attenuation (extinction) cross section is given by the optical theorem (Appendix
1)

σc =
4π

κ2
<
[
A1(0) +A2(0)

2

]
=

2π

κ2

∑

`

(2`+ 1)<(a` + b`),

and the absorption cross section is σa = σc − σb. Defining the absorption and attenuation
(extinction) efficiencies, Qa , σa/πR

2 and Qc , σc/πR
2, we have

Qc = Qa +Qb.

The left panel in Figure 3.2 provides an example of β(Θ) for a sphere of radius R = 5λ
and several values of m̃. Notable features are the strong oscillations as Θ is varied, the
strong scattering in the near-forward direction compared to all others, and the general
increase in scattering at large angles as m̃ increases. The right panel provides the degree
of polarization P of the scattered light when the incident light is unpolarized. Recall that

P ,

√
Q2 + U2 + V 2

I
=

√
M2

12

M2
11

= ±M12

M11
= ±β12

β11
.

It is customary to use the − sign in the definition so that for Rayleigh scattering P at
90◦ is +1. Note that for m̃ near unity, i.e., m̃− 1� 1, the degree of polarization is similar
to that for Rayleigh scattering

(
sin2(Θ)/(1 + cos2 Θ)

)
.
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Figure 3.2: Scattering by a sphere with R = 5λ for various values of m̃. Left panel:
the volume scattering function normalized to that at Θ = 0◦. Right panel: the
degree of polarization.

Figure 3.3 provides Qb as a function of the size of the sphere for the same range of m̃ as
in Figure 3.2. In this figure, the size is scaled by the parameter ρr = 2κR(m̃r − 1), where
m̃r is the real part of m̃. In the geometrical optics approximation, ρr is the phase shift
of the ray that goes through the center of the particle relative to a ray that misses the
particle. The scaling is suggested by an approximate theory for large particles discussed
later in this chapter. Note that the scattering efficiencies for the various values of m̃ all
have a similar shape when plotted in this manner. For the cases plotted in Figure 3.2
(i.e., R = 5λ), 2κR = 20π, so ρr = 0.628, 3.14, and 12.56, for m̃ = 1.01, 1.05, and 1.20,
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respectively. Thus, the scattering cross section for m̃ = 1.20 is much larger than that for
m̃ = 1.01.
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Figure 3.3: The scattering efficiency Qb, computed by the exact Mie theory, as a
function of the parameter ρr = 2κR(m̃r − 1) for various values of m̃ = m̃r + im̃i.

Finally, Figure 3.4 provides Qc and Qa for m̃ = 1.05 + im̃i. The figure shows that as
m̃i increases (increasing absorption) the oscillations in Qc in Figure 3.3 are damped, and
Qc rapidly reaches its large-sphere limit of 2. This also shows that the large-sphere limit
to Qa is 1 for m̃i 6= 0, implying that the large-sphere limit to Qb for a sphere with any
absorption at all is unity. In contrast, if there is no absorption, the large-sphere limit to
Qb is 2.
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Figure 3.4: Qc (upper curves) and Qa (lower curves), computed by the exact Mie
theory, as a function of ρr = 2κR(m̃r − 1) for m̃ = 1.05 + im̃i. Black: m̃i = 0.
Blue: m̃i = 0.0025. Red: m̃i = 0.0075.

Methods for the exact solution to the problem of scattering by particles of other simple
shapes, e.g., coated spheres, spheroids and cylinders, have been developed and are avail-
able for numerical computation. In fact, it is even possible to obtain numerical results
for particles of arbitrary shape; however, the computational burden is great (see Section
@@.4.1). Most models of scattering by marine and atmospheric particles are based on Mie
theory, i.e., the assumption that the particles are homogeneous spheres. Mie theory serves
as a useful guide to understanding how the various parameters influence light scattering.

3.3.2 Spherical Particles Distributed in Size and Composition

Equations (3.26) and (3.27) provide the volume scattering function and the scattering
coefficient for a number (n) of spheres per unit volume of radius R and composition reflected
in the refractive index m̃.14 Consider the ith species of sphere with refractive index m̃i.
If we have a mixture of different sizes of this species of spheres, each size will contribute
independently to scattering properties, e.g., to βi(Θ), the volume scattering function for
the ith species. Let dNi(R) be the number of particles of the ith species per unit volume
with radii between R and R+ dR. Then for the ith species the volume scattering function
is

βi(Θ) =
1

κ2

∫ ∞

0
M ′11(Θ, R, m̃i) dNi(R)

=
1

κ2

∫ ∞

0
M ′11(Θ, R, m̃i)ni(R) dR,

14In a mixture of several species of particles, each species will scatter independently of the others.
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where ni(R) , dNi(R)/dR is the size distribution of the ith species, and the dependence
of M ′11 on particle size and refractive index has been explicitly displayed in the argument
list. Then for the entire collection of particles,

β(Θ) =
∑

i

βi(Θ).

Likewise,

c =
∑

i

∫ ∞

0
σc(R, m̃i)ni(R) dR =

∑

i

∫ ∞

0
πR2Qc(R, m̃i)ni(R) dR,

etc.

3.3.3 Approximations for Small and Large Spheres

Although the Mie theory provides exact equations for the scattering and extinction of light
by homogeneous spheres, they are too complex to provide a qualitative understanding of
the phenomena involved. With some restriction on size and refractive index, it is possible
to arrive at simpler, closed-form, approximate solutions that have been useful in environ-
mental optics and which, in addition, can be applied to non-spherical particles as well. We
examine several of these approximate solutions in this section.

3.3.3.1 The Rayleigh-Gans Approximation: |m̃− 1| � 1 and κR|m̃− 1| � 1

We saw in Chapter 1 that if a homogeneous sphere is sufficiently small it will scatter in
a manner identical to Rayleigh scattering with α replaced by 4πε0R

3(m2
p − 1)/(m2

p + 2),
where mp is the refractive index of the material comprising the sphere. When the sphere
is placed in a medium with refractive index mm, then one must replace mp in this formula
by m̃ = mp/mm.15 The requirement “sufficiently small” means that the sphere must be

15Clearly, the polarizability of the sphere will not change by placing it in a dielectric medium; however,
for the purposes of light scattering, the important consideration is the polarizability of the medium relative
to its surroundings. If the medium were to have the same index as the particle, there would be no scattering
(actually there would be forward scattering, which manifests as the propagation of the incident beam without
scattering). Our simple procedure for relating α to m in Chapter 1 is difficult to extend to a particle in
a dielectric medium; however, more advanced methods show that if a sphere is immersed in a medium of
dielectric constant Km, the resulting analogue to Eq. (1.52) is

~p = 4πε0R
3

[
Ke −Km

Ke + 2Km

]
~Em,

where Em is the field in the medium.
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small enough that at a given instant of time, the incident electric field (in the medium) is
spatially uniform over the particle, i.e., the electric field everywhere in the particle is the
same as at the center. What if the particle is too large to satisfy this constraint? Consider
such a particle and divide it into a collection of small volumes. If the effective polarizability
of the atoms composing the material is α, then

α =
3ε0
n

(
m̃2 − 1

m̃2 + 2

)
,

where m̃ is the refractive index of the material composing the particle, relative to that of
the medium. A volume ∆V will contain N atoms, where N = n∆V , so the dipole moment
of ∆V will be

∆~p = Nα~E = 3ε0∆V

(
m̃2 − 1

m̃2 + 2

)
~E, (3.28)

where ~E is the total field inside the particle.16 This field is difficult to calculate, but if we
assume mr ≈ 1 and mi � 1, the field inside the particle is approximately the field outside,
i.e., ~EInc. This condition can be succinctly stated as requiring |m̃− 1| � 1.17 In this case
the volume will acquire a dipole moment

∆~p = 3ε0∆V

(
m̃2 − 1

m̃2 + 2

)
~EInc. (3.29)

κ
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Figure 3.5: Radiation propagating in the direction κ0 is incident on a particle of
arbitrary shape. The scattered field is desired at point P . The vector ~r is directed
from O to P and has length OP . The vector ~ri is directed from Oi to P and has
length OiP . The volume element ∆Vi is located at Oi, and ~Di specifies the position
of Oi with respect to O. The point O is the origin of the coordinate system and
the electric field at O is taken to be ~E0 exp[−iωt].

16Since ∆V is an infinitesimal, this field will always be spatially uniform over ∆V .
17If we write m̃r = 1+δ, then |m̃−1| = δ2 +m̃2

i , so |m̃− 1|2 � 1 implies δ � 1 (or m̃r ≈ 1) and m̃i � 1.
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Since ~EInc is oscillatory, ∆V will possess an oscillating dipole moment, and radiate, i.e.,
scatter the incident radiation. The scattered fields at a point P

(
Figure 3.5

)
due to ∆Vi

will be18

(
∆Er(P,Oi)
∆E`(P,Oi)

)
=
−iκ3

4πε0
3ε0∆Vi

(
m̃2 − 1

m̃2 + 2

)
exp[iκiri − ωt)]
−iκiri

(
1 0
0 cos Θ

)(
E0r(Oi)
E0`(Oi)

)
.

To find the total field at P , we need to sum contributions from all parts of the particle. In
a manner similar to the derivation of Eq. (3.20) we find

(
∆Er(P,Oi)
∆E`(P,Oi)

)
=
−i3κ3

4π
∆Vi

(
m̃2 − 1

m̃2 + 2

)
exp[i(~κ0 − ~κ) • ~Di]

× exp[iκr − ωt)]
−iκr

(
1 0
0 cos Θ

)(
E0r(O)
E0`(O)

)
,

the vector ~Di is provided in Figure 3.5 and ri in the denominator has been replaced by r.
Summing the fields over all ∆Vi, and using the definition of the scattering amplitudes, we
have

A1(Θ) =
−i3κ3

4π

(
m̃2 − 1

m̃2 + 2

)∫
exp[i(~κ0 − ~κ) • ~Di] dV

A2(Θ) =
−i3κ3

4π

(
m̃2 − 1

m̃2 + 2

)
cos Θ

∫
exp[i(~κ0 − ~κ) • ~Di] dV

To evaluate the integral, we note that since ~κ and ~κ0 have the same magnitude, ~κ0−~κ is in
a direction that bisects the angle between the two vectors

(
Figure 3.6

)
. Volumes between

infinitesimally spaced planes that are perpendicular to ~κ0 − ~κ all have the same value of
(~κ0 − ~κ) • ~Di , δ (see Figure 3.7). Writing dV = Aδ(η) dη, where Aδ(η) is the area of the
surface of constant δ within the particle, we have

∫
exp[i(~κ0 − ~κ) • ~Di] dV =

∫
exp[iδ]Aδ(η) dη, (3.30)

with the integration covering the volume of the particle. For a homogeneous sphere of
radius R centered on O, Aδ(η) = π(R2 − η2), so

∫
exp[i(~κ0 − ~κ) • ~Di] dV =

∫
exp[iδ]π(R2 − η2) dη.

It is straightforward to relate δ to η as follows. From Figures 3.6 and 3.7

|~κ0 − ~κ| = 2κ cos

(
π −Θ

2

)
= 2κ sin

(
Θ

2

)
.

18To derive this replace α in Footnote 10 of Chapter 1 by 3ε0∆V
(
m̃2−1
m̃2+2

)
.
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Figure 3.6: Relationship between ~κ0, ~κ and ~κ − ~κ0. As usual, Θ specifies the
scattering angle.
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Figure 3.7: A slab of the particle is drawn normal to ~κ0 − ~κ. Every point on the
slab has the same value of δ.

But δ = (~κ0 − ~κ) • ~Di = |~κ0 − ~κ| times the projection of ~Di on the direction of ~κ0 − ~κ,
which is just η. Thus

δ = 2κη sin

(
Θ

2

)
,

and

∫
exp[i(~κ0−~κ)• ~Di] dV =

∫ R

−R
π(R2−η2) exp

[
i2κη sin

(
Θ

2

)]
dη =

4πR3

w3
(sinw−w cosw),
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where w = 2κR sin(Θ/2). This provides the scattering amplitudes

A1(Θ) = −iκ3R3

(
m̃2 − 1

m̃2 + 2

)
3

w3
(sinw − w cosw)

A2(Θ) = −iκ3R3

(
m̃2 − 1

m̃2 + 2

)
3

w3
(sinw − w cosw) cos Θ,

(3.31)

and the volume scattering function for unpolarized incident radiation is

β(Θ) = nκ4R6

∣∣∣∣
m̃2 − 1

m̃2 + 2

∣∣∣∣
2

G(Θ), (3.32)

where

G(Θ) =

(
3

w3
(sinw − w cosw)

)2(1 + cos2 Θ

2

)
.

Figure 3.8 shows the variation of G(Θ) for κR = 0.1, 0.5, 1 and 2. Note that as κR
increases, the volume scattering function becomes more concentrated in the forward di-
rection. This is characteristic of scattering by particles that do not satisfy the condition
κR � 1. Figure 3.9 provides the difference between the Rayleigh-Gans computation of
β(Θ)/β(0) and the exact values for m̃ = 1.01 and κR = 2. The Rayleigh-Gans approxima-
tion to this quantity is larger than the exact values. Thus, Rayleigh-Gans theory predicts
more backscattering than would actually be observed. The increasing error at larger scat-
tering angles is characteristic of this approximation. However, Figure 3.9 shows that for
even relatively large particles (R/λ = 0.318), i.e., particle diameter greater than λ/2, the
accuracy of the Rayleigh-Gans approximation is quite good for this low value of m̃.
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Figure 3.8: The function G(Θ) computed for several values of κ The curves from
top to bottom are for κR = 0.1, 0.5, 1, and 2, respectively. Note the increasing
concentration of scattering in the forward direction as κR increases.
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Figure 3.9: Percent error in the Rayleigh-Gans approximation to β(Θ)/β(0) in
Figure 3.8, with κR = 2 and m̃ = 1.01. (Rayleigh-Gans is always > exact compu-
tation.

It is important to understand the full nature of the approximations used in obtaining
Eqs. (3.31) and (3.32). The only approximation we made was to replace the total field ~E
in Eq. (3.28) by the incident field ~EInc in Eq. (3.29). The stated requirement for this was
|m̃ − 1| � 1. However, when a plane wave propagates in a medium19 of index mp, i.e.,
inside the particle, it follows

~Ep = ~E0 exp
[
i(mpκz − ωt)

]
,

rather than
~Em = ~E0 exp

[
i(mmκz − ωt)

]
,

in a medium of index mm. For the field inside the particle, ~Ep, to approximate the field in

the medium, ~Em, over the whole particle, we must require

κRmp ≈ κRmw, or |κR(mp −mw)| ≈ 0.

Another way to write this is, after division by mw

κR |m̃− 1| � 1.

Thus, we require κR |m̃− 1| � 1 in addition to |m̃− 1| � 1.20 It is possible to satisfy this
even when the particle’s size is comparable, or even larger, than the wavelength, e.g., if
m̃ = 1.01 for a sphere, the requirement is R� 16λ.

19The medium in this case being the material of which the particle is composed.
20One can think of the requirement |m̃− 1| � 1 as ensuring that there is negligible refraction of the field

at the medium-particle interface, and κR |m̃− 1| � 1 ensuring that the difference in the phase of the field
traversing the particle and the field outside the particle, is small.
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Equation (3.32) shows that in the Rayleigh-Gans approximation σb ∝ R6, so Qb ∝ R4 or
x4. How does Qa depend on R or x for particles in the Rayleigh-Gans regime? If we apply
the optical theorem (Appendix 1, Eq. (3.57)) to the Rayleigh-Gans scattering amplitudes,
we can compute the extinction cross section:21

σc =
4π

κ2
<
(
A1(0) +A2(0)

2

)

=
4π

κ2
<
[
−iκ3R3

(
m̃2 − 1

m̃2 + 2

)]

=
4π

κ2
κ3R3=

(
m̃2 − 1

m̃2 + 2

)
.

So,

Qc = 4x=
(
m̃2 − 1

m̃2 + 2

)
.

By direct integration of Eq. (3.32), we find that

Qb = x4

∣∣∣∣
m̃2 − 1

m̃2 + 2

∣∣∣∣
2

and σb = πκ4R6

∣∣∣∣
m̃2 − 1

m̃2 + 2

∣∣∣∣
2

,

which is � Qc. Thus, as x becomes � 1, Qa → Qc, i.e.,

Qa = 4x=
(
m̃2 − 1

m̃2 + 2

)
and σa = 4πκR3=

(
m̃2 − 1

m̃2 + 2

)
.

Thus, we see that in the Rayleigh-Gans approximation, σa (and a) is proportional to the
volume of the particle, while σb (and b) is proportional to the square of the volume of the
particle.22

An important aspect of the Rayleigh-Gans approximation is that it can be applied to
particles of any shape. One need only be able to evaluate the integral in Eq. (3.30). This
can always be done numerically. In the case of particles with a large or small aspect ratio,
e.g., a long thin cylinder or a thin disk, the requirement |m̃ − 1|κR � 1 applies only for
R equal to the smallest dimension. So for a long thin cylinder, R is its radius, while for a
thin disk, R is it thickness.

3.3.3.2 The van de Hulst approximation: |m̃− 1| � 1 but κR� 1

Consider a spherical particle with refractive index m̃ = m̃r + im̃i (relative to its sur-
roundings) near unity, i.e., m̃ − 1 � 1. Assume that the particle is large relative to the

21In order to evaluate the amplitudes at Θ = 0, we need to use the fact that
limw→0

[
3(sinw + w cosw)/w3

]
= 1. Also, for a complex number z, <(−iz) = =(z).

22If we expand the quantity (m̃2 − 1)/(m̃2 + 2) (noting that |m̃− 1| � 1), we find Qa = 8xmi/3.
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wavelength, so geometrical optics (ray optics) describes the propagation reasonably well.
Because m̃ ≈ 1, we assume that the individual rays (thin pencils of light) are not refracted
or reflected at the particle surface. Then as a pencil traverses the sphere, it will undergo
a phase shift (and some attenuation if m̃i 6= 0) relative to adjacent pencils.23 Consider a
plane wave propagating in the +z direction, and a pencil traversing the sphere as shown
in Figure 3.10. At z = z0 the spatial part of the wave is24

~E0 exp[iκz0],

while at z = z1 the field is

~E0 exp
[
i
(
κz0 + 2κR(1− cos θ) + 2κRm̃ cos θ

)]
= ~E0 exp

[
i
(
κz1 + 2κR(m̃− 1) cos θ

)]
.

 
 
 
 
 
 
 
 
 
 

2R 

2Rcosθ 

θ 
R 

z1 z0 

Figure 3.10: A pencil of rays traversing a sphere with m̃− 1� 1.

Thus, if the detector is located at position z, the field there will be

~E0 exp
[
i
(
κz + 2κR(m̃− 1) cos θ

)]
,

whereas in the absence of the particle, the field would be

~E0 exp[iκz].

The scattered field at the screen ~Es is the difference between these two:

~Es(x, y) = ~E0 exp
[
i
(
κz + 2κR(m̃− 1) cos θ

)]
− ~E0 exp[iκz]

= − ~E0 exp[iκz]
[
1− exp[2iκR(m̃− 1) cos θ]

]
∆(x, y),

where ∆(x, y) = 1 for x ≤ R and y ≤ R, simultaneously, and zero otherwise.

23Unlike the Rayleigh-Gans approximation, here the phase shift between the pencil traversing the particle
and the pencil missing it, need not be small. In fact it can be arbitrarily large.

24For this section all of the fields have a time factor exp(−iωt), which we leave out for convenience.
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We now employ the arguments leading to the proof of the optical theorem in Appendix
1. There it is shown there that

σc =
wExt

|E0|2 /(2µ0c)
,

with

−wExt =
1

2µ0c
<
[∫

S

[(
~Es × ~B∗Inc

)
+
(
~EInc × ~B∗s

)]
• n̂ dA

]
.

Here, S is the surface of a large imaginary volume surrounding the particle. The unit
vector n̂ is the outward normal to the volume. In Appendix 1, this volume was taken to
be spherical, but here, because of the geometry, we take it to be rectangular with sides
parallel to the cartesian axes. Applying this formula to the present calculation, and using
the expression ~B = κ̂× ~E/c, valid for electromagnetic waves, we find

(
~Es × ~B∗Inc

)
+
(
~EInc × ~B∗s

)
=
(
~Es • ~E∗Inc + ~EInc • ~E∗s

)
êz.

Noting that
~Es • ~E∗Inc = − |E0|2

[
1− exp(iρ cos θ)

]
∆(x, y)

~EInc • ~E∗s = − |E0|2
[
1− exp(−iρ∗ cos θ)

]
∆(x, y).

where ρ = 2κR(m̃− 1), wExt becomes

wExt =
|E0|2
2µ0c

<
[∫ ∞

−∞

∫ ∞

−∞

[[
1− exp(iρ cos θ)

]
+
[
1− exp(−iρ∗ cos θ)

]]
∆(x, y) • n̂ dx dy

]
.

Let x = η cos γ and y = η sin γ, then dx dy = η dη dγ, and note from Figure 3.10 that
η = R cos θ. This results in

wExt =
|E0|2
2µ0c

<
[∫ 2π

0

∫ R

0

[[
1− exp(iρ cos θ)

]
+
[
1− exp(−iρ∗ cos θ)

]]
R sin θR d(sin θ) dγ

]
,

but, since sin θ d(sin θ) = − cos θ d(cos θ) :

wExt =
|E0|2
2µ0c

2πR2<
[∫ 1

0

[[
1− exp(iρu)

]
+
[
1− exp(−iρ∗u)

]]
u du

]
,

with u = cos θ. The integral

∫ 1

0

[[
1− exp(iρu)

]
u du =

[
1

2
− exp(iρ)

iρ
− 1− exp(iρ)

)

(iρ)2

]
, f(iρ),

so

wExt =
|E0|2
2µ0c

2πR2< [f(iρ) + f(−iρ∗)] ,
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yielding extinction cross section:

σc = 2πR2< [f(iρ) + f(−iρ∗)] .

If m̃ = m̃r + im̃i is real, i.e., there is no absorption so m̃i = 0, then ρ is real, ρ =
ρr=2κR(m̃r − 1). In this case taking the real part of the above expression is easy and

σc = 2πR2

[
1− 2

sin ρr
ρr

+ 2
(1− cos ρr)

ρ2
r

]
. (3.33)

This approximate cross section for a large spherical particle with relative index near unity
is referred to as the van de Hulst approximation. If the particle is absorbing, iρ can be
written

iρ = 2iκR
[
(m̃r − 1) + im̃i

]
= iρr

[
1 + i

m̃i

m̃r − 1

]
, iρr(1 + i tan γ),

where tan γ = m̃i/(m̃r − 1). Then, after a considerable amount of algebra,

σc = 2πR2

[
1− 2

cos γ

ρr
sin(ρr − γ) exp(−ρr tan γ)

−2
cos2 γ

ρ2
r

cos(ρr − 2γ) exp(−ρr tan γ) + 2
cos2 γ

ρ2
r

cos 2γ

]
.

(3.34)

The absorption cross section for this model can be determined directly. Consider a beam
of cross sectional area AL and total power Pi. Divide it into pencils of area dx dy. Then
the power in each pencil is

Pi
dx dy

AL

In traversing the particle, the field associated with each pencil is diminished by exp(−2κRm̃i cos θ),
so the power reaching the detector is diminished to

dPD = Pi
dx dy

AL
exp(−4κRm̃i cos θ),

and the loss in power received at the detector (due to the presence of the particle) is

dPD − Pi
dx dy

AL
= Pi

dx dy

AL

[
exp(−4κRm̃i cos θ)− 1

]
.

Integrating over area,

PD − Pi =
Pi
AL

∫ ∫ [
exp(−4κRm̃i cos θ)− 1

]
dx dy,
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where the integral over the right-hand-side is taken over the area of the particle. This
integral is identical to the one encountered in the derivation of σc above, i.e.,

PD − Pi =
Pi
AL

2πR2f(−ρ′),

where ρ′ , 4κRm̃i = 2ρr tan γ. Since the absorption coefficient is defined by

a ,
PD − Pi
Pi`

,

we have

a =
1

AL`
2πR2f(−ρ′)

for one particle in AL`. For N particles in the sampling volume,

a = n2πR2f(−ρ′) and σa = 2πR2f(−ρ′),

where n = N/AL` and σa is the absorption cross section. Explicitly,

σa = πR2

[
1 + 2

exp(−ρ′)
ρ′

− 2

[
1− exp(−ρ′)

]

ρ′2

]
. (3.35)

Given σc and σa, the scattering cross section is

σb = σc − σa.

Figures 3.11 shows the extinction (Qc), absorption (Qa), and scattering (Qb) efficiencies
derived from Eqs. (3.34) and (3.35). The extinction efficiency Qc displays an oscillatory
structure that is more pronounced at low absorption. This phenomenon is due to the
interference of the various pencils traversing the sphere. As the phase shift of the central
ray through the particle is ρr, one would expect that the oscillations should be periodic in
ρr with a period of 2π. Inspection of Figure 3.11 shows that this is indeed the case. The
figures also show that the oscillations are increasingly damped as mi increases. Figure 3.12,
which compares the exact result with the van de Hulst approximation, shows the efficacy
of the latter when m̃ is near unity. It cannot, however, reproduce the small scale ripples
in Qc that become more apparent as m̃ increases (Figure 3.3).

We note that as ρr → ∞, Qc → 2, Qa → 1, and Qb → 1. Thus, a very large particle
attenuates light with a cross section that is twice its geometrical cross section. This phe-
nomenon is sometimes called the extinction paradox. The explanation is that all rays that
actually strike the sphere will be reflected or refracted (and possibly absorbed), i.e., their
directions will be changed, and these contribute πR2 to σc. In addition, rays that pass
close to the sphere will change direction slightly, i.e., will be diffracted, and this diffraction
will contribute the other πR2 to σc. We now examine diffraction.
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Figure 3.11: Left Panel: The attenuation and absorption efficiencies Qc and Qa as
a function of ρr = 2κR(m̃r−1) computed using Eqs. (3.34) and Eq. (3.35), the van
de Hulst approximation, for mi/(mr − 1) = 0 (black), 0.05 (blue), and 0.15 (red).
Solid lines are Qc and dashed lines are Qa. Compare this to the exact computations
in Figure (3.4) with identical parameters. Right Panel: The scattering efficiency
Qb as a function of ρr = 2κR(m̃r − 1) computed using Qb = Qc −Qa and the left
panel of this figure.
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Figure 3.12: The scattering efficiency Qb for non-absorbing spheres computed us-
ing the Mie equations (thin lines) from Figure 3.3 compared to the van de Hulst
approximation (thick line and bottom curve) from Figure 3.11 (top curve) as a
function of ρr. From top to bottom for the Mie calculations m̃r = 1.20, 1.10, 1.05,
and 1.01.
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3.3.3.3 Diffraction

The Huygens-Fresnel principle states that every point on a wave front (surface of constant
phase) is a secondary source of spherical waves, and that the interference of these waves
describes the propagation of the wave front. This can be formulated to describe the phe-
nomenon of diffraction. Consider a field propagating in the z direction, encountering an
opaque (totally absorbing) screen containing a circular aperture

(
Figure 3.13

)
. The field

amplitude in the aperture will be essentially that of the incident field. The Huygens-Fresnel
principle says that the field at the point (x, y, z) is25

~E(x, y, z, t) = K

∫ ∫
~E0

exp[i(κs− ωt)]
s

dx′ dy′, (3.36)

where the integral is over the aperture and K is a proportionality constant.26 Taking the

center of the aperture to be at z′ = 0,

s =
√

(x− x′)2 + (y − y′)2 + z2

=

√
r +

x′2 + y′2

r2
− 2

xx′ + yy′

r2

≈ r +
x′2 + y′2

2r
− xx′ + yy′

r

From Figure 3.13, x = r sin Θ cosφ and y = r sin Θ sinφ, so

xx′ + yy′

r
= (x′ cosφ+ y′ sinφ) sin Θ.

We assume that the radius of the aperture R � r, so we can ignore the terms in x′2 and
y′2 compared to x′ and y′. In the integral, 1/s is slowly varying compared to exp(iκs), so
we can safely replace 1/s by 1/r and remove it from the integral. Then

~E(x, y, z, t) = K
exp[i(κr − ωt)]

r

∫ ∫
exp[−iκ(x′ cosφ+ y′ sinφ) sin Θ] ~E0 dx

′ dy′.

25Recall that the field of a spherical wave emanating from a point source (at r = 0), has the form
exp[i(κr − ωt)]/r.

26The Huygens-Fresnel principle as formulated here is approximate. Clearly, contrary to Eq. (3.36)
we do not expect any radiation backscattered from the aperture. Various attempts have been made to
resolve this inconsistency by introducing so called obliquity factors; however, the basic formulation requires
inconsistent assumptions. Kirchhoff diffraction theory provides a rigorous formulation, which can be found
in most advanced texts on electromagnetic theory. Our interest here concerns the field propagating in
directions that deviate only slightly from the direction of propagation of the incident field, and Eq. (3.36)
is sufficient for this purpose. Note that if the screen were absent, the plane wave should simply propagate
unchanged. To force Eq. (3.36) to yield this result requires that we set K = −i/λ.
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 Figure 3.13: Geometry for studying diffraction. A plane wave propagates normal

to an opaque screen located at z′ = 0. A hole of radius R is cut in the screen
(shaded area) through which the wave can propagate. The field is computed at a
point (x, y) in the plane at z.

To carry out this integral, let x′ = η′ cosφ′ and y′ = η′ sinφ′ so dx′ dy′ = η′d η′ dφ′. Because
of the symmetry, the amplitude over the screen should be independent of φ, so we choose
φ = 0, and

~E(x, y, z, t) = K
exp[i(κr − ωt)]

r

∫ ∫
exp[−iκη′ cosφ′ sin Θ] ~E0 η

′d η′ dφ′.

The φ′ integral can be evaluated in terms of Bessel functions:27

~E(x, y, z, t) = 2πK
exp[i(κr − ωt)]

r

∫ R

0
η′J0(κη′ sin Θ) ~E0 dη

′

= 2πK
exp[i(κr − ωt)]

r
R2J1(κR sin Θ)

κR sin Θ
~E0.

The average Poynting vector (irradiance) on the x-y plane is

〈S(x, y, z)〉 =
4π2

2µ0c

K2

r2
R4

(
J1(κR sin Θ)

κR sin Θ

)2

E2
0 .

The function J1(x)/x is provided in Figure 3.14. Thus, radiant energy does not propagate

27The appropriate relationships that we need are

Jn(x) =

∞∑
`=0

(−1)`
1

`!(n+ `)!

(x
2

)n+2`

, J0(x) =
1

2π

∫ 2π

0

exp[±ix cosα] dα, and xJ0(x) =
d

dx

[
xJ1(x)

]
.
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Figure 3.14: Plot of the Bessel function J1(x)/x. Note the location of the first zero
at x ≈ 3.8..

straight through the aperture, but is diffracted into various angles Θ with respect to the
incident beam direction. Note, however, that [J1(x)/x]2 becomes negligible for x >∼ 10,
so for large κR the radiation is confined to small Θ. For example, for blue-green light
(λ ∼ 0.5 µm) and an aperture with R = 5 µm, most of the radiation would be contained
within a cone of half angle Θ ≈ 3.5◦.

What if the opaque screen with the aperture is replaced by an opaque disk of radius
R? If E1(x, y, z, t) is the field when the screen and aperture are in place, and E2(x, y, z, t)
is the field when the opaque disk is in place, then when both are in place simultaneously,
the field is E1(x, y, z, t) + E2(x, y, z, t). But if they are both in place, the field is zero, so
E1(x, y, z, t) = −E2(x, y, z, t), and the field diffracted (or scattered) by the disk is

~EDisk(x, y, z, t) = −2πK
exp[i(κr − ωt)]

r
R2J1(κR sin Θ)

κR sin Θ
~E0.

This is called Babinet’s principle.

It is simple to compute the scattering by a disk in the diffraction approximation. The
incident field is ~EInc = ~E0 exp[i(κz − ωt)], so

~EDisk(x, y, z, t) = −exp[i(κr − ωt))]
iκr

κ2R2J1(κR sin Θ)

κR sin Θ
~E0,

where we have used the fact that K = −i/λ (See Footnote 19). Noting that the scattered
and incident fields are in the same direction, comparison with Eq. (3.4) shows that

A1(Θ) = A2(Θ) = κ2R2J1(κR sin Θ)

κR sin Θ
,

yielding

β(Θ) = nκ2R4

[
J1(κR sin Θ)

κR sin Θ

]2
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as the volume scattering function for a collection of n disks per unit volume. The optical
theorem provides the extinction cross section

σc =
σcr + σc`

2
=

4π

κ2
<
(
A1(0) +A2(0)

2

)
= 2πR2,

where we have used the fact that J1(x)/x→ 1
2 as x→ 0. Clearly, the contribution to the

extinction cross section resulting from rays that actually strike the disk is πR2, proving
that diffraction also contributes πR2 to the extinction cross section.

3.4 Scattering by Irregularly-Shaped Particles

So far, we have discussed only particles that are very small compared to the wavelength
(Rayleigh scattering), tenuous particles that have sizes of at most a few wavelengths,
but must have refractive index near unity (Rayleigh-Gans) and possessing simple shapes
(spheres, cylinders, etc.), and spherical particles with no restriction on size (Mie theory).
However, because of their size, shape, or refractive index, many particle species found na-
ture do not fall within the range of applicability of these methods. Thus, it is of interest
to discuss the scattering of light by irregularly-shaped particles arbitrary size and compo-
sition. We start by discussing a technique (the discrete-dipole approximation: DDA) that
is capable of providing essentially exact computations of scattering for particles of any
shape, as long as they are not too much larger than λ. Then, we discuss an approximate
method (geometrical-optics/diffraction) of deriving scattering and absorption properties of
such particles as long as the size is � λ. Of course, these techniques are also applicable to
the scattering by spherical particles.

3.4.1 Discrete-Dipole Approximation (DDA)

The basic idea of the DDA is the following. Imagine the particle for which we want the
scattered field to be subdivided into a large number of small subunits. Under the action
of an incident plane wave, the ith subunit will acquire a dipole moment ~pi = αi ~Ei, where
αi is the subunit’s polarizability (which we assume here for simplicity is a scalar) and ~Ei
is the field of the incident wave plus the field due to all of the other subunits.28 Once all
of the ~pi’s have been found, it is a simple matter to compute the field at a large distance
from the particle. The key to finding the ~pi’s is finding ~Ei at each subunit.

28Note the essential difference between this and the Rayleigh-Gans approximation. Here, ~Ei is the total
field at each dipole, i.e., the incident field and the field due to all the other dipoles, while in the Rayleigh-
Gans approximation it is just the incident field.
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In Chapter 1 we found that for a dipole located at the origin of coordinates with moment
given by ~p(t) = ~p0 exp(−iωt), the electric field at a point specified by ~r is

~E(r, t) =
1

4πε0

{
κ2r̂ × (r̂ × ~p0)

r
+ [~p0 − 3r̂(r̂ • ~p0)]

[
iκ

r2
− 1

r3

]}
exp[i(κr − ωt)]. (3.37)

Thus the subunit located at ~rj with dipole moment ~pj in Figure 3.15 will produce a field
at P given by29  

 
 
 
 
 
 
 
 

 
!r

 

 
!rj  

 
!
Rj  

 
!pj

 P  

y  

x  

z
  

!pi
 

 
!
Ri

 

 
!
Rij  

 
!ri  

Figure 3.15: This shows two dipoles of moments ~pi and ~pj of subunits i and j,
respectively. It is desired to find the field at point P when these two dipoles are
induced by the field of each other and the field of a plane electromagnetic wave.

~Ej =
1

4πε0

{
κ2R̂j × (R̂j × ~pj)

Rj
+ [~pj − 3R̂j(R̂j • ~pj)]

[
iκ

R2
j

− 1

R3
j

]}
exp(iκr), (3.38)

and a field at subunit i located at ~ri given by

~Eij =
1

4πε0

{
κ2R̂ij × (R̂ij × ~pj)

Rij
+ [~pj − 3R̂ij(R̂ij • ~pj)]

[
iκ

R2
ij

− 1

R3
ij

]}
exp(iκRij). (3.39)

This latter field will contribute αi ~Eij to the dipole moment ~pi of subunit i. It is convenient
to rearrange the triple vector product

R̂× (R̂× ~p) = ~p(R̂ • R̂)− R̂(R̂ • ~p) = ~p− R̂(R̂ • ~p),
29All of the fields here will have the same time dependence, i.e., exp(−iωt), so the time factor will be

suppressed in what follows.
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which in dyadic form30 is
R̂× (R̂× ~p) = (I − R̂R̂) • ~p.

Thus, noting that ~pj = αj ~Ej , for a collection of N subunits we can write the electric field
at the ith subunit as

~Ei(~ri) =
1

4πε0

N∑

j=1
j 6=i

{
κ2(I − R̂ijR̂ij) • αj ~Ej

Rij

+ [αj ~Ej − 3R̂ij(R̂ij • αj ~Ej)]
[
iκ

R2
ij

− 1

R3
ij

]}
exp(iκRij)

+ ~E0 exp(iκ • ~ri),

(3.40)

where the sum is over all of the subunits except the ith. Note that the right-hand side of
Eq. (3.40) is linear in ~Ej , so we can write this in the form

~Ei =

N∑

j=1
j 6=i

Cij
~Ej + ~E0 exp(iκ • ~ri), (3.41)

where the 3N × 3N matrix Cij is easily derived from Eq. (3.40). These are a set of 3N
linear equations, which when solved yield Ej for all j, i.e., the total field at each subunit,

from which we can find the induced dipole moment ~pj = αj ~Ej for each subunit.31 The
scattered field (Eq. (3.37)) is

~Es(~r) =
κ2

4πε0

N∑

j=1

(I − R̂jR̂j) • ~pj
exp(iκRj)

Rj
,

and since ~r = ~Rj + ~rj with Rj � rj , we can approximate Rj by Rj ≈ r(1− ~rj • r̂), and R̂j
by r̂ so

~Es(~r) =
κ2

4πε0

exp(iκr)

r

N∑

j=1

(I − r̂r̂) • ~pj exp(−iκ~rj • r̂). (3.42)

As usual the magnetic field in the radiation zone is

~Bs(~r) =
~κ× ~Es(~r)

c
.

30The scalar product between the dyad ~A~B and the vector ~C is defined by ~A~B • ~C = ~A( ~B • ~C) or
~C • ~A~B = (~C • ~A)~C, where the quantity in the parenthesis is evaluated first. The unit dyad I has the
property that I • ~C = ~C • I = ~C.

31If we ignore the term with Cij on the right hand side of Eq. (3.41), the result, Ei = ~E0 exp(iκ • ~ri), is
just the Rayleigh-Gans approximation described earlier.
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Since we do not have the scattered field in terms of the incident field, the techniques
for finding the various scattering cross sections used earlier are not available here. From
Chapter 2, the volume scattering function is defined by

β(r̂) =
∆P (r̂)/∆Ω

e0∆V
,

where ∆P (r̂) is the radiant power scattered into a solid angle ∆Ω around the scattering
direction r̂, e0 is the incident irradiance on a plane normal to the incident beam,32 and
∆V is the (small) volume from which the scattering originates (the intersection of the
incident beam and the field of view of the sensor detecting the scattered light). Noting
that ∆Ω = ∆A/r2, where ∆A is the area of the detector (oriented normal to the scattered
light, i.e., with its surface normal in the direction r̂), we have

∆P

∆Ω
= r2 ∆P

∆A
= r2r̂ • 〈~Ss(~r)〉Avg,

where 〈~Ss(~r)〉Avg is the time-averaged Poynting vector of the scattered light at ~r. The

incident irradiance is e0 = κ̂0 • 〈~SInc〉Avg, where κ̂0 is the direction of propagation of the

incident beam, and 〈~SInc〉Avg is the time-averaged Poynting vector of the incident beam.
Therefore,

β = r2 r̂ • 〈~Ss(~r)〉Avg

∆V κ̂0 • 〈~SInc〉Avg

.

This is the volume scattering function for a single particle. The quantity multiplying 1/∆V
is called the differential scattering cross section dσb/dΩ:33

dσb
dΩ

= r2 r̂ • 〈~Ss(~r)〉Avg

κ̂0 • 〈~SInc〉Avg

.

Now, for an electromagnetic wave, the time-averaged Poynting vector is given by (Chapter
1)

〈~S〉Avg =
κ̂

2µ0c
<( ~E • ~E∗),

so finally,

dσb(r̂)

dΩ
=

(
κ2

4πε0

)2

∣∣∣
∑N

j=1(I − r̂r̂) • ~pj exp(−iκ~rj • r̂)
∣∣∣
2

|E0|2
. (3.43)

32Here we use e0, rather than E0 as the latter is used for the amplitude of the incident electric field.
33Note that if we have N particles in ∆V then

β =
N

∆V

dσb
dΩ

= n
dσb
dΩ

, and with σb =

∫
All Ω

dσb
dΩ

dΩ,

we retrieve the relationship b = nσb.
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The total extinction cross section can be found using the second form of the optical
theorem derived in Appendix 1:

σc =
4π

κ
=[ ~E∗0 • ~G(êz)].

In our case here, ~G(r̂) is given by

~G(r̂) =
κ2

4πε0

N∑

j=1

(I − r̂r̂) • ~pj exp(−iκ~rj • r̂).

Noting that for r̂ = êz, ~rj • r̂ = zj , the position of the jth subunit along the direction of

the incident beam, and that ~E0 • êz = 0,

σc =
4π

κ
=
[
κ2

4πε0
exp(−iκzi) ~E∗0 • ~pj

]

=
κ

ε0
=[ ~E∗Inc(~rj) • ~pj ],

(3.44)

where ~EInc(~rj) = ~E0 exp(iκzj) is the incident field at subunit j.

Generally, the subunits are chosen to all be of the same size and shape (and so all
have the same polarizability) and are arranged in a cubic lattice. The lattice spacing (d
– the center-to-center distance between adjacent subunits) must be a small fraction of the
wavelength, i.e., κd � 1. In practice the required value of κd is determined by trial and
error. The number of subunits can become very large. Consider cubic particle that is 1 µm
on a side and let λ = 0.5 µm. If the subunits are cubes 0.05 µm on a side (κd = 0.628, not
really� 1), then there are 1/0.05 = 20 subunits along each edge of the cube, and a total of
N = 203 = 8, 000 subunits, which means that Eq. (3.41) is a system of 24,000 simultaneous
equations that must be solved to find ~Ej . Furthermore, if one desires to average the cross
sections over particle orientation, it is usually accomplished by brute force: computing the
associated quantities for each of a large number of orientations and averaging. Clearly,
there are an enormous number of computations required to find the cross sections for even
a moderately-sized particle.

This brief sketch of the DDA method does not address its full complexity; however, it
does provide the basic principles on which it rests. Fortunately, computer codes (freely
available) exist for carrying out DDA computations with as many as 106 or more subunits.

3.4.2 Geometrical-Optics/Diffraction Approximation

In the limit of the particle size � λ, photons incident on the particle are governed by the
laws of geometrical optics (Snell’s law and the Fresnel equations). That is, photons travel
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in straight lines within a particle of uniform refractive index and refract and reflect from
boundaries where the refractive index undergoes a discontinuous change. They also diffract
around the boundary of the particle. If the particle is absorbing, some photons vanish as
they propagate through the particle.

Consider a homogeneous irregularly-shaped particle in a particular orientation with re-
spect to a beam of photons. Although it may be a trying exercise to follow the propagation
of photons through an irregularly shaped particle, it is conceptually simple. When a pho-
ton strikes the particle surface the real part of the refractive index is used with Snell’s
law to determine the transmitted direction inside the particle. The incident and transmit-
ted directions are used with the Fresnel equations to determine whether it is transmitted
through, or reflected from, the surface. If reflected it contributes to the scattering at the
appropriate scattering angle.34 If transmitted the imaginary part of the refractive index is
used to determine whether it is absorbed in the particle or propagates through the particle
all the way to the next boundary.35 Upon reaching the boundary, Snell’s law and the
Fresnel equations are again applied to determine the photon’s fate.

To determine the scattering properties, a large imaginary sphere surrounding the par-
ticle is divided into sections of solid angle ∆Ω = sin Θ∆Θ∆Φ. The number of photons
exiting in the solid angle specified by (∆Θ,∆Φ) around the direction (Θ,Φ), ∆N(Θ,Φ), is
accumulated and used to compute the geometrical-optics scattering phase function:36

PGeom(Θ,Φ) =
∆N(Θ)/N

sin Θ∆Θ∆Φ
. (3.45)

This phase function is normalized to unity if there is no absorption, i.e.,
∫ 2π

0
dΦ

∫ π

0
PGeom(Θ,Φ) sin Θ dΘ = 1,

as the ∆N ’s must sum to N . In the presence of absorption, the value of this integral is
just one minus the fraction of photons that were absorbed. Thus, as the phase function is
usually normalized to unity (or sometimes 4π), it is more consistent to rewrite Eq. (3.45)
as

ωGeomPGeom(Θ, φ) =
∆N(Θ)/N

sin Θ∆Θ∆Φ
, (3.46)

34This assumes that the particle is convex, i.e., it has no indentations. If it is not convex, then a photon
could reflect from an external surface and encounter the external surface of the particle again. In this case
the first-reflected photon does not contribute to the scattering.

35Recall that the absorption coefficient of the material, a, is related to the imaginary part of the refractive
index, mi, through a = 4πmi/λv, where λv is the vacuum wavelength of the radiation.

36When the particle is absorbing, it is best to think of photons as having a “weight,” which starts out
at unity. As the photon propagates through the particle that weight decreases due to absorption, i.e., on
propagating through a distance d in the particle the photon’s weight decreases by a factor exp(−ad). What
is accumulated as ∆N(Θ,Φ) is not the number of photons exiting, but the sum of their weights.
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where ωGeom is the single scattering albedo for the geometrical-optics portion of the scat-
tering. Note that all photons that strike the particle will be either scattered or absorbed,
i.e., leave the incident beam. Thus, the geometrical-optics extinction cross section is just
the cross sectional area of the particle G, i.e., the area of the particle’s shadow on a screen
when illuminated by light normal to the screen:

σc,Geom = σa,Geom + σb,Geom = G,

and ωGeom = σb,Geom/σc,Geom.

The geometrical-optics approximation provides the scattering and absorption effects on
photons that actually strike the particle. However, photons that pass close to the particle
undergo diffraction, and thus, also contribute to the scattering. The angular distribution
of scattering, i.e., the phase function, can be computed using the Huygens-Fresnel principle
modified by Babinet’s principle (see the discussion of diffraction earlier in this chapter).

As in the case of diffraction by a disk, the diffracted portion of the beam also contributes
an amount G to the extinction cross section, i.e., σb,Diff = G. The easiest way to show this
is to note that the diffracted fields of the particle and a screen with an aperture having
the same shape as the geometric shadow of the particle, differ only by sign (Babinet’s
principle), so their Poynting vectors are identical. Since every photon that goes through
an aperture will be diffracted (i.e., it’s path is altered), the scattering cross section of the
aperture (and the particle) due to diffraction is simply G.

Combining the geometrical-optics contribution and the diffraction contributions, we have
the following optical properties

ω0P (Θ,Φ) =
ωGeomPGeom(Θ,Φ) + PDiff(Θ,Φ)

2
(3.47)

ω0 =
σb,Geom + σb,Diff

σc,Geom + σc,Diff

=
ωGeomσc,Geom + σc,Diff

σc,Geom + σc,Diff

=
ωGeomG+G

G+G

=
ωGeom + 1

2

(3.48)

To gain an appreciation of the potential accuracy of this method, we compare the
geometrical-optics/diffraction solution to a problem that can be solved exactly: scattering
by a large, non-absorbing, spherical particle. Figure 3.16 provides the geometry. A photon
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is incident on the particle from the left and encounters the surface at an angle θi with re-
spect to the surface normal. Snell’s law is used to determine the refracted angle θt, and the
Fresnel equations determine the reflected and transmitted Poynting vectors. The reflected
part contributes to the scattering at an angle Θ1 with respect to the incident direction.
The transmitted fraction propagates through the particle and encounters the surface at an
angle θt with respect to the surface normal. Snell’s law and the Fresnel equations again de-
termine the directions of the reflected and transmitted Poynting vectors. The transmitted
portion contributes to the scattering at an angle Θ2 with respect to the incident direction,
etc. We will use the Monte Carlo approach to examine the fates of a large number of
photons uniformly distributed over the geometrical cross sectional area (G = πR2) of the
particle, and determine the angular distribution of the scattering Eq. (3.45).

Because of the spherical symmetry, the process is simplified by the fact that the photon
always remains in the plane formed by the incident direction and the center of the sphere.
Note that the incident angle θi (Figure 3.16) is given by sin θi = hi/R. Because a uniform
distribution of photons is desired on the area G, we require that
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Figure 3.16: Schematic of some interactions of a photon incident on a spherical
particle from the left and propagating according to the laws of geometrical optics.

N

πR2
=

dN(hi)

2πhi dhi
,

where N is the total number of photons incident, and dN(hi) is the number with hi −
dhi/2 ≤ hi ≤ hi + dhi/2. Thus,

dN(hi)

N
= 2

hi dhi
R2

= dP(hi) = p(hi) dhi,

where dP(hi) is the probability that hi−dhi/2 ≤ hi ≤ hi+dhi/2, and p(hi) is the associated
probability density. Now, consider a random number ρ that is distributed uniformly on
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the interval 0→ 1, i.e., U [0, 1]. Then, as in radiative transfer, we require

p(ρ) dρ = dρ = p(hi) dhi = 2
hi dhi
R2

,

so

ρi =

∫ hi

0
2
hi dhi
R2

=
h2
i

R2
= sin2 θi.

So given ρi, the incident angle is given by θi = sin−1(
√
ρi). Once θi is determined, Snell’s

law determines θt and the photon’s fate at the interface (reflection or transmission) is de-
termined by a second random number ρf , distributed U [0, 1], with the photon reflected if
ρf < rf (θi) and transmitted otherwise.37 The photon continues until it exits the particle,
at which point the scattering angle Θ is determined. Following Eq. (3.46), let the number
of photons exiting in ∆Θ be ∆N(Θ), which is independent of Φ because of the spheri-
cal symmetry. This quantity is accumulated and used to compute the geometrical-optics
scattering phase function (ωGeom = 1):

PGeom(Θ) =
∆N(Θ)/N

2π sin Θ∆Θ
.

The total scattering cross section σb,Geom is πR2.

The phase function for diffraction can be computed by noting that the diffraction by
a sphere is identical to that of a totally absorbing disk of the same R, oriented with it’s
normal parallel to the incident beam. This disk diffraction was computed earlier in this
chapter with the result that the phase function is proportional to [xJ1(x sin Θ)/x sin Θ]2,
where x = κR. If we normalize the diffraction phase function by requiring that38

2π

∫ π/2

0
PDiff(Θ) sin Θ dΘ = 1,

we find

PDiff(Θ) =
x2

π

[
J1(x sin Θ)

x sin Θ

]2

.

37If we are interested in computing the complete Mueller matrix for scattering, we need to keep track of
the polarization properties (the Stokes vector) of each photon. In that case, at this point we would have to
use the Mueller matrix for reflection at an interface given in Chapter 1. If, as here, we are interested only
in the phase function for an unpolarized incident beam, we use the Fresnel reflectance of the interface for
unpolarized light:

rf (θi) =
1

2

[
tan2(θi − θt)
tan2(θi + θt)

+
sin2(θi − θt)
sin2(θi + θt)

]
.

38Normally the upper limit in the normalization integral should be π rather than π/2; however, in our
derivation of diffraction using Huygens’ principle, it is clear that no radiation can be diffracted into the
backward hemisphere, so for consistency, the upper limit must be taken to exclude the backward hemisphere.
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Since ωGeom = 1, the scattering phase function for a sphere by a homogeneous sphere in
the limit R� λ is (Eq. (3.47))

P (Θ) =
PDiff(Θ) + PGeom(Θ)

2
,

and σb = σc = 2πR2.
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Figure 3.17: Left Panel: Comparison of the scattering phase functions computed
using Mie theory (Red) and the partial phase functions in the geometrical optics
and the diffraction approximations for 395 ≤ κR ≤ 405. The latter are PGeom(Θ)/2
(black) and PDiff(Θ)/2 (blue) for diffraction and geometrical-optics approximations
respectively. The sum of the black and blue curves should coincide with the red
curve if the approximations were exact. Right Panel: Expanded version of the left
panel covering the first 10◦ in Θ.

The efficacy of the geometrical-optics/diffraction approximation in deriving the phase
function for a non-absorbing sphere is demonstrated in Figure 3.17. This figures is for a
sphere with κR = 400 and an index of refraction 1.333.39 The geometrical-optics compo-
nent of the phase function is independent of the particle size. For the diffraction component
and the exact Mie computation, the results have been averaged over a uniform distribu-
tion of particle sizes such that 395 ≤ κR ≤ 405 to reduce the magnitude of the phase
function oscillations. The approximate computations follow the exact computations rather
well, especially for Θ <∼ 70◦; however, the geometrical-optics/diffraction approximation is
not capable of reproducing the fine scale structure of the exact phase function at larger
angles, and fails totally in reproducing the exact results near Θ = 180◦. The complicated
structure in the geometrical-optics component with maxima near Θ = 129◦ and 138◦ are

39For λ = 500 nm, the mean value of R is 31.8 µm, so the sphere is about 60 µm in diameter.
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the secondary and primary rainbows. The broad minimum between the two is known as
Alexander’s dark band.

As κR increases, Mie theory phase function more closely resembles the geometrical-
optics/diffraction phase function. Figure 3.18 (left panel) compares geometrical-optics/diffraction
with the exact computations for 3950 ≤ κR ≤ 4050. The overall accuracy is improved over
that in Figure 3.17, especially in the range 0-110◦ and in Alexander’s dark band, but
neither the oscillations near the rainbow angles nor the scattering near 180◦ can be repro-
duced.40 Conversely, for smaller particles, the geometrical-optics/diffraction approximation
becomes increasingly poorer. For example, Figure 3.18 (right panel) shows the results for
39.5 ≤ κR ≤ 40.5 plotted in the same manner as Figure 3.17. Note that the diffraction
contribution becomes exactly out of phase with the Mie result on the forth maximum, and
the rainbow structure near 130◦-140◦ is totally absent from the Mie computations.
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Figure 3.18: Same as Figure 3.17 (left panel) but with 3950 ≤ κR ≤ 4050 (left
panel) and 39.5 ≤ κR ≤ 40.5 (right panel).

3.5 Summary

In this chapter we have summarized the basic theory of light scattering by matter. The
results or relationships developed here will be used extensively in Chapters 4 and 5, which
discuss the optical properties of the atmosphere and water bodies. We began with scatter-
ing by gases consisting of single atoms and/or anisotropic molecules. Then we examined

40It should be noted that for a wider distribution of particle sizes the oscillations near the rainbow angles
will be damped and the agreement would be much better; however, the disagreement near 180◦ would still
remain.
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the theory of scattering by a homogeneous sphere (Mie theory), and showed that the two
relevant parameters are the size and the refractive index (which is determined by the mate-
rial composition). Next we derived a series or approximations aimed at developing simple
formulas or concepts that provide a more intuitive understanding than the complex for-
mulas of Mie theory. In addition, a more complete examination of the physics underlying
one of these approximations (Rayleigh-Gans) allowed development of the Discrete-Dipole
approximation for solving scattering problems that are inaccessible by other means. Fi-
nally in appendices we derived the optical theorem relating the scattering amplitude in
the forward direction to the extinction coefficient, provided a phenomenological discussion
of the mechanism leading to Raman scattering and its relationship to Rayleigh scattering,
and reviewed the salient aspects of electromagnetic scattering theory.

3.6 Appendix 1: The Optical Theorem

In this appendix we derive what is referred to as the optical theorem. It relates the extinc-
tion of a beam of radiation by a single particle to its scattering amplitude matrix

A(Θ) =

(
A1(Θ) A4(Θ)
A3(Θ) A2(Θ)

)

evaluated at Θ = 0.

Consider a single particle interacting with a plane electromagnetic wave propagating in
the +z direction, i.e., κ̂Inc = êz. Let the particle be located at the origin of coordinates.
The incident field at the particle is then ~EInc = ~E0 exp[−iωt], and the scattered field the
position ~r is41

~Es(~r) = −exp[i(κr − ωt)]
iκr

A(Θ) • ~E0 = −exp[i(κr − ωt)]
iκr

~F (Θ). (3.49)

Thus, the total electric field at the point ~r is

~E(~r) = ~EInc(~r) + ~Es(~r) = ~E0 exp[i(κz − ωt)]− exp[i(κr − ωt)]
iκr

~F .

41The notation A • ~E0 is related to the matrix notation as follows,

~F = A • ~E0 =

(
A1(Θ) A4(Θ)
A3(Θ) A2(Θ)

)(
E0r

E0`

)
=

(
A1(Θ)E0r +A4(Θ)E0`

A3(Θ)E0r +A2(Θ)E0`

)
=

(
Fr
F`

)
.

Also,

~Ei • ~F =
(
E0r E0`

)(Fr
F`

)
, ~E0 •A • ~E0 = Ẽ0AE0,

where the last equality is in the matrix notation used in the Mathematical Appendix.
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The associated magnetic field is

~B(~r) =
êz × ~EInc(~r)

c
+
r̂ × ~Es(~r)

c
.

Now consider a large sphere around the origin. We want to integrate the time-averaged
Poynting vector of the total field over this sphere, that is, we want to compute

w =

∫

Sphere
〈~S(~r)〉 • n̂ dA =

1

2µ0
<
[∫

Sphere

(
E(~r)×B∗(~r)

)
• n̂ dA

]
.

But, first let’s interpret this integral. From Poynting’s theorem
(
Eq. (1.2)

)
, the value

of the integral is the net power exiting the sphere. Thus, if w = 0, the power entering
the sphere equals that leaving, while if w < 0 more power enters than leaves, i.e., power
is absorbed by the particle within the sphere. If we call the power absorbed within the
sphere wa, then

wa = −
∫

Sphere
〈~S(~r)〉 • n̂ dA = − 1

2µ0
<
[∫

Sphere

(
~E(~r)× ~B∗(~r)

)
• n̂ dA

]
.

To evaluate this we need to compute

~S ,
(
~E(~r)× ~B∗(~r)

)
=
(
~EInc(~r) + ~Es(~r)

)
×
(
~B∗Inc(~r) + ~B∗s (~r)

)

=
(
~EInc(~r)× ~B∗Inc(~r)

)
+
(
~EInc(~r)× ~B∗s (~r)

)
+
(
~Es(~r)× ~B∗Inc(~r)

)
+
(
~Es(~r)× ~B∗s (~r)

)

, ~SInc + ~SInc,s + ~Ss,Inc + ~Ss
Now by direct calculation, or be noting that if there is no absorbing medium surrounding
the particle, ∫

Sphere

~SInc • n̂ dA = 0.

Also,

<
∫

Sphere

~Ss • n̂ dA = ws,

the total power scattered by the particle and exiting the sphere. Writing

<
∫

Sphere

~SInc,s • n̂ dA+ <
∫

Sphere

~Ss,Inc • n̂ dA , −wExt,

we see that
wExt = wa + ws,

i.e., wExt is the total power removed from the incident beam by absorption and by scattering
due to the presence of the particle (the subscript “Ext” stands for extinction). We now go
through the rather laborious process of calculating wExt.
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First,

c ~SInc,s = ~EInc × (r̂ × ~E∗s ) = r̂( ~EInc • ~E∗s )− ~E∗s (r̂ • ~EInc)

c ~Ss,Inc = ~Es × (êz × ~E∗Inc) = êz( ~E
∗
Inc • ~Es)− ~E∗Inc(êz • ~Es).

Then

(
c ~SInc,s + c ~Ss,Inc

)
• r̂ , c ~SExt • r̂ = ( ~EInc • ~E∗s ) +

(
r̂ • êz

)
( ~E∗Inc • ~Es)−

(
r̂ • ~E∗Inc

)(
êz • ~Es

)
,

where we have used the fact that r̂ • ~E∗s = 0. To proceed and calculate 2µ0wExt = −<(I),
where

I =

∫

Sphere

~SExt • r̂ dA =

∫ 2π

0
dφ

∫ π

0

(
~SExt • r̂

)
r2 sin θ dθ, (3.50)

and θ and φ are defined in Figure 1.7, we need to know ~EInc. Letting ~EInc = ~E0 exp[i(κz−
ωt), if we consider the case where ~E0 = E0êx = E0

(
êr cosφ+ ê` sinφ

)
, and note that

r̂ = êx cosφ sin θ + êy sinφ sin θ + êz cos θ,

we have,

c ~SExt • r̂ = exp[i(κz − ωt)]
(
~E0 • ~E∗s

)

+ exp[−i(κz − ωt)] cos θ
(
~E∗0 • ~Es

)

− exp[−i(κz − ωt)] cosφ sin θ
(
êz • ~Es

)
E∗Inc.

When this is inserted into Eq. (3.50), the last term will when integrated over φ will
vanish,42 and so we will ignore the

(
êz • ~Es

)
from now on. Using Eq. (3.49), i.e.,

Es(~r) = −exp[i(κr − ωt)]
iκr

~F (Θ),

where the scattering angle Θ is recognized as the polar angle θ;

c ~SExt • r̂ =
exp[−iκr]

ikr
exp[iκz]

(
~E0 • ~F ∗(θ)

)

− exp[iκr]

ikr
exp[−iκz] cos θ

(
~E∗0 • ~F (θ)

)
.

(3.51)

Inserting this into Eq. (3.50), the φ integration is trivial, and we have to evaluate θ integrals
of the form

c I = 2π
exp[−iκr]

ikr
r2

∫ π

0
exp[iκz]

(
~E0 • ~F ∗(θ)

)
sin θ dθ

− 2π
exp[+iκr]

ikr
r2

∫ π

0
exp[−iκz]

(
~E∗0 • ~F (θ)

)
cos θ sin θ dθ.

42The same can be said if ~EInc = êyE0, as the corresponding term in Eq. (3.50) will contain sinφ.
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Now, note that z = r cos θ, and change the integration variable from θ to u = cos θ. The
result is

c I = 2π
exp[−iκr]

ikr
r2

∫ +1

−1
exp[iκru]

(
~E0 • ~F ∗(u)

)
du

− 2π
exp[+iκr]

ikr
r2

∫ +1

−1
exp[−iκru]

(
~E∗0 • ~F (u)

)
u du.

(3.52)

These integrals are of the form

∫ +1

−1
exp[iκru]g(u) du,

and we want to evaluate them over a large sphere, i.e., as r →∞. If we integrate the above
by parts, we get

∫ +1

−1
exp[iκru]g(u) du =

1

iκr

(
exp[iκr]g(1)− exp[−iκr]g(−1)

)

− 1

iκr

∫ +1

−1
exp[iκr]

dg

du
du.

(3.53)

The magnitude of the second term in Eq. (3.53) can be estimated by replacing dg/du, by
its maximum value, M , i.e.,

∣∣
∫ +1

−1
exp[iκru]

dg

du
du
∣∣ ≤

∣∣M
∣∣ ∣∣
∫ +1

−1
exp[iκru] du

∣∣ =
∣∣M
∣∣∣∣ 1

iκr
sinκr

∣∣,

Thus, the first term in Eq. (3.53) is proportional to 1/r while the second is proportional
to 1/r2, so as r becomes very large,

∫ +1

−1
exp[iκru]g(u) du→ 1

iκr

(
exp[iκr]g(1)− exp[−iκr]g(−1)

)
.

Using this relationship, as r →∞

c I → 2π
1

−κ2

[(
~E0 • ~F ∗(θ = 0)

)
− exp[−2iκr]

(
~E0 • ~F ∗(θ = π)

)]

− 2π
1

−κ2

[(
~E∗0 • ~F (θ = 0)

)
+ exp[+2iκr]

(
~E∗0 • ~F (θ = π)

)]
.

Recalling that for a complex number z = a+ ib, z + z∗ = 2a = 2<(z) and z − z∗ = 2ib =
2i=(z), we see that in the above equation the terms without the exponential sum to a real
number and those with the exponential sum to a complex number, i.e.,

c I → 2π
1

−κ2

[
2<
(
~E∗0 • ~F (θ = 0)

)
+ 2i=

(
exp[+2iκr]

(
~E∗0 • ~F (θ = π)

))]
.
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Now, 2µ0wExt = −<(I), so

wExt =
1

2µ0c

4π

κ2
<
(
~E∗0 • ~F (θ = 0)

)
=

1

2µ0c

4π

κ2
<
(
~E∗0 •A(0) • ~E0

)
. (3.54)

The last equation is one form of the optical theorem.43 How is the optical theorem used?
Consider a collimated beam propagating in the êz having cross sectional area A and passing
through a sample of thickness d` (along the z direction) containing N identical particles
that scatter independently of one another. The radiant power removed from the beam by
absorption and scattering would be NwExt = nA d`wExt, where n is the particle number
density. The incident radiant power is |E0|2A/(2µ0c), so the beam attenuation coefficient
(or extinction coefficient) defined as

c ,
Power Lost in d`

Incident Power× d`
is

c =
nA d`wExt(

|E0|2 /(2µ0c)
)
A× d`

=
nwExt(

|E0|2 /(2µ0c)
) = n

4π

κ2

<
(
~E∗0 •A(0) • ~E0

)

|E0|2
, (3.55)

and finally, the extinction cross section, σc = c/n, is

σc =
4π

κ2

<
(
~E∗0 •A(0) • ~E0

)

|E0|2
. (3.56)

This is the more useful form of the theorem and is the one most often referred to as the
“optical theorem.” It provides a useful way of deriving the extinction cross section of a
single particle in terms of its scattering matrix, A(Θ) evaluated at Θ = 0, i.e., in the exact
forward scattering direction.

We now provide some examples by computing σc for various states of polarization of the
incident beam:

(a) ~E0 = êr
∣∣ ~E0

∣∣, so
(
~E∗0 •A(0) • ~E0

)
= A1(0)

∣∣ ~E0

∣∣2, and σcr = 4π
κ2<

(
A1(0)

)
,

43An alternative method of carrying out the integrations required in Eq. (3.50) to derive the optical
theorem is to use the fact that for large κr a plane wave can be represented by a combination of two
spherical waves through

exp(iκz) = exp(i~κ • ~r) −→ 2πi

κ

[
δ(r̂ + κ̂)

exp(−iκr)
r

− δ(r̂ − κ̂)
exp(+iκr)

r

]
,

as κr →∞. The presence of the δ-functions then make the integrals trivial. The method employed in the
text was used to avoid this expansion, as we will not justify it here.
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(b) ~E0 = ê`
∣∣ ~E0

∣∣, so
(
~E∗0 •A(0) • ~E0

)
= A2(0)

∣∣ ~E0

∣∣2, and σc` = 4π
κ2<

(
A2(0)

)
,

(c) unpolarized (“up”) incident radiation (equal uncorrelated mixtures of cases (a) and
(b)),

σup =
4π

κ2
<
(
A1(0) +A2(0)

2

)
, (3.57)

(d) RCP, ~E0 = (êr − iê`)
∣∣ ~E0

∣∣/
√

2, so
(
~E∗0 • A(0) • ~E0

)
= 1

2

(
A1(0) + A2(0) + iA3(0) −

iA4(0)
)∣∣ ~E0

∣∣2, and σRCP = 2π
κ2<

(
A1(0) +A2(0) + iA3(0)− iA4(0)

)
.

Note, the Stokes vectors for the incident radiation in the four cases above are

(a) :




I
−I
0
0


 (b) :




I
I
0
0


 (c) :




I
0
0
0


 (d) :




I
0
0
I


 .

Clearly, σc is a function of the state of polarization of the incident radiation. From the
definition of the components of the Stokes vector

(
Eq. (1.54)

)
, it is a straightforward

exercise to show that for any incident vector IInc,

σc =
2π

κ2

1

IInc
<
[(
A2(0) +A1(0)

)
IInc +

(
A2(0)−A1(0)

)
QInc

+
(
A3(0) +A4(0)

)
UInc + i

(
A3(0)−A4(0)

)
VInc

]
,

(3.58)

in agreement with the examples above.

Equation (3.58) provides the extinction of the total power in a beam with Stokes vector
IInc, i.e., the extinction of IInc, as a function of the state of polarization of the beam;
however, it does not tell us how the state of polarization of the beam itself is modified by
the particle, e.g., how is QInc modified by the presence of the particle? To address this
question, consider a collimated beam with Stokes vector IE . We want the 4× 4 extinction
matrix c, such that upon traversing a slab of thickness d` containing n identical particles
per unit volume and all having the same orientation in space, the change in IE is given by

dIE
d`

= −cIE .

The extinction cross section is then σc = c/n. We state without proof the resulting σc as
a function of the scattering amplitudes evaluated at Θ = 0:

σc =
2π

κ2




+<[A2(0) +A1(0)] +<[A2(0)−A1(0)] +<[A4(0) +A3(0)] +=[A4(0)−A3(0)]
+<[A2(0)−A1(0)] +<[A2(0) +A1(0)] −<[A4(0)−A3(0)] −=[A4(0) +A3(0)]
+<[A4(0) +A3(0)] +<[A4(0)−A3(0)] −<[A2(0) +A1(0)] +=[A2(0)−A1(0)]
+=[A4(0)−A3(0)] +=[A4(0) +A3(0)] −=[A2(0)−A1(0)] +<[A2(0) +A1(0)]


 .
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From this we see that, in general, a collimated beam of unpolarized radiation will become
polarized upon passage through a medium containing particles. For most of the particles
we discussed in the text, e.g., spheres, A1(0) = A2(0) and A3(Θ) = A4(Θ) = 0. In these
cases, σc is diagonal, and in fact a multiple of the unit matrix, i.e.,

σc =
2π

κ2
<[A2(0) +A1(0)]




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

For cases such as this, all of the components of the Stokes vector are extinguished at the
same rate, and the state of polarization of the beam is unaltered as it propagates in the
medium.

An alternate form of the optical theorem is useful when we are not given the scattered
field in terms of the incident field, i.e., we are not explicitly given A(Θ). Suppose instead
we are given the scattered field as

~Es(~r) =
~G(r̂) exp(ikr)

r
,

with ~G(r̂) describing the strength and the angular distribution of ~Es. This differs from Eq.
(3.49) only by a factor −iκ. When this is taken into account Eq. (3.56) becomes

σc =
4π

κ
=
[
~E∗0 • ~G(êz)

]
, (3.59)

when the incident field is propagating in the êz direction.44

3.7 Appendix 2: Raman Scattering

All of the processes that were discussed in text of this chapter fall under the heading elastic
scattering, i.e., scattering without a change in wavelength. In this appendix we consider
an inelastic scattering process in which the wavelength of the scattered photon differs from
the wavelength of the incident photon.

In Chapter 1, we examined the induced dipole moment in atoms and molecules sub-
jected to an electromagnetic wave. In particular we developed the properties of Rayleigh

44This result is easy to derive:

~F = −iκ ~G, so, 2<( ~E∗0 • ~F ) = ~E∗0 • ~F + ~E0 • ~F ∗ = −iκ( ~E∗0 • ~G− ~E0 • ~G∗) = −iκ 2i=( ~E∗0 • ~G) = 2κ=( ~E∗0 • ~G).
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scattering by atoms and molecules in terms of the polarizability tensor α, that relates the
induced dipole moment ~p to the applied electric field ~E:

~p = α ~E.

When ~E is harmonic, the induced ~p is also harmonic (at the same frequency), and the
emitted radiation from the oscillating dipole is the (Rayleigh) scattered field. In the devel-
opment, we assumed that α was a constant tensor when referenced to a coordinate system
fixed with respect to the molecule. However, consider a diatomic molecule such as N2.
The separation between the two nitrogen atoms varies harmonically in time (molecular
vibration), and it is reasonable to expect that α will vary with time as well. Thus, in the
molecular-based coordinate system (x, y, and z, with z along the internuclear axis)



px
py
pz


 =



α⊥ 0 0
0 α⊥ 0
0 0 α‖





Ex
Ey
Ez


 , (3.60)

where we expect α⊥ and α‖ to each have an harmonic component of angular frequency ωv,
the vibrational frequency of the nuclei, i.e.,

α⊥ = α
(0)
⊥ + α

(1)
⊥ cosωvt,

α‖ = α
(0)
‖ + α

(1)
‖ cosωvt.

Note that we have implicitly assumed that α(0) and α(1) have the same structure, i.e.,
both are diagonal and have two identical diagonal elements (xx and yy). This structure
is forced by the symmetry of the diatomic molecule. Therefore, if ~E is harmonic with a
frequency ω0, we have for example

px(t) =
[
α

(0)
⊥ + α

(1)
⊥ cosωvt

]
E0x cosω0t

= α⊥E0x cosω0t+ α
(1)
⊥ E0x cosωvt cosω0t

= α⊥E0x cosω0t+
α

(1)
⊥ E0x

2
[cos(ω0 + ωv)t+ cos(ω0 − ωv)t] ,

so px oscillates with frequencies ω0, ω0 + ωv and ω0 − ωv, and will emit radiation (scatter)
at these frequencies. The radiation emitted at ω0 is the familiar Rayleigh scattering, while
that emitted at ω0 ± ωv is called Raman scattering.

This treatment suggests that the scattering cross section and the polarization of Raman
scattering should be similar to those of Rayleigh scattering (Eqs. (3.16) and (3.17)), but
with the elements of α(1) replacing those of α(0):

bRam(ω0 ± ωv) =
8π

3

nκ4α′2

(4πε0)2

[
6 + 3δRam

6− 7δRam

]
, (3.61)
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and

βRam(Θ) =
3

16π
bRam

[(1 + δRam) + (1− δRam) cos2 Θ

1 + δRam/2

]
, (3.62)

where

δRam =
6β′2

45α′2 + 7β′2
,

with

α′ ,
1

3
× 1

2
(α

(1)
⊥ + α

(1)
⊥ + α

(1)
‖ )

β′2 ,
1

2
× 1

4

[
(α

(1)
⊥ − α

(1)
⊥ )2 + (α

(1)
⊥ − α

(1)
‖ )2 + (α

(1)
‖ − α

(1)
⊥ )2

]
.

There is no simple relationship between α(0) and α(1), so there is no relationship between
α and α′ or β and β′, although generally α′ � α.

The scattering at ω0−ωv is called the “Stokes line” and that at ω0+ωv, the “anti-Stokes”
line. The Stokes line occurs when the molecule in a given vibrational energy state absorbs
a photon (at ω0) increasing the molecule’s energy, and then emits a photon (at ω0−ωv) as
the molecule returns to a vibrational state of higher energy than the original. In contrast,
the anti-Stokes line occurs when the molecule in a given vibrational energy state absorbs
a photon (at ω0) increasing the molecule’s energy, and then emits a photon (at ω0 +ωv) as
the molecule returns to a vibrational state of lower energy than the original. The relative
strengths of the Stokes and anti-Stokes lines then depend on the number density of atoms
in the state that initially absorbs the photon, i.e., n in Eq. (3.61) is a function of ω0 ± ωv,
i.e., n = n(ω0 ± ωv). Since the number of molecules in high energy states is much lower
than in lower states (and a function of the temperature), n(ω0−ωv) > n(ω0 +ωv), and the
Stokes line is usually much more intense than the anti-Stokes line.

In more complex molecules, e.g., H2O, there are more vibrational modes (three in H2O)
and therefore several values of ωv. Also, the polarizability tensors in the molecular-fixed
reference frame have no identical elements, and take the form

α(0) =



α

(0)
x 0 0

0 α
(0)
y 0

0 0 α
(0)
z


 and α(1) =



α

(1)
x 0 0

0 α
(1)
y 0

0 0 α
(1)
z


 ,

In this case Eqs. (3.61) and (3.62) still apply; however, α′ and β′ become

α′ =
1

3
× 1

2
(α(1)

x + α(1)
y + α(1)

z )

β′2 =
1

2
× 1

4

[
(α(1)

x − α(1)
y )2 + (α(1)

y − α(1)
z )2 + (α(1)

z − α(1)
x )2

]
.
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In a manner similar to Rayleigh scattering, the full phase matrix for Raman scattering is

PRam(Θ) =
4πβRam(Θ)

bRam

=
3

2

[
1− δRam

1 + δRam/2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ




+
3

2

[
δRam

1 + δRam/2

]



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − cos Θ


 .

(3.63)

3.8 Appendix 3: Useful Relationships for Rayleigh and Ra-
man Scattering

The form of the Rayleigh and Raman volume scattering matrices are identical (Eqs. (3.19)
and (3.63)). We show here that for this type of scattering there are simple relationships
between b and the volume scattering functions derived with simple polarization states for
incident and scattered light. These are useful in measurement of b and δ. Recall the
definition of the volume scattering matrix (Chapter 2, Eq. (2.20)):

dIJ(ξ̂) = β(ξ̂0 → ξ̂)IE(ξ̂0) dV,

where dIJ(ξ̂) is the scattered Stokes intensity vector in the direction ξ̂ from a volume dV
when IE(ξ̂0) is the incident Stokes irradiance vector in the ξ̂0 direction. These Stokes
vectors are defined with respect to the scattering plane (the plane containing ξ̂ and ξ̂0).

Consider the case where the incident irradiance, EInc, is polarized perpendicular to the
scattering plane. Its Stokes vector is

IE =




+EInc

−EInc

0
0


 .

We want to determine the polarization state of the scattered intensities. This can be
effected with analyzing polarizers having pass directions perpendicular (r) and parallel (`)
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to the scattering plane. The Mueller matrices for these analyzers are
(
Chapter 2, Eq.

(1.59)
)

Mr =
1

2




+1 −1 0 0
−1 +1 0 0
0 0 0 0
0 0 0 0


 and M` =

1

2




+1 +1 0 0
+1 +1 0 0
0 0 0 0
0 0 0 0


 ,

respectively. The scattered Stokes intensity vector is




dIJ(ξ̂)

dQJ(ξ̂)

dUJ(ξ̂)

dVJ(ξ̂)


 = M(r or `)β(ξ̂0 → ξ̂)




+EInc(ξ̂0)
−EInc(ξ̂0)

0
0


 .

When Mr is used, we define βr→r through,

βr→r(ξ̂0 → ξ̂) =

(
dIJ(ξ̂)

)
r

EInc(ξ̂0) dV

and when M` is used

βr→`(ξ̂0 → ξ̂) =

(
dIJ(ξ̂)

)
`

EInc(ξ̂0) dV

Carrying out the various matrix multiplications with Eqs. (3.19) or (3.63) yields

βr→r(Θ) =
3b

8π

(
1− δ/2
1 + δ/2

)
, βr→`(Θ) =

3b

8π

(
δ/2

1 + δ/2

)
,

and
βr→`(Θ)

βr→r(Θ)
=

δ/2

1− δ/2 = ρ,

where ρ is the alternate definition of the depolarization ratio defined in Chapter 1.

These relationships are important because they facilitate the determination of b. First,
to determine b, given ρ or δ, one need only carry out an experimental determination of
βr→r(Θ) at any value of Θ, as βr→r is independent of Θ. To determine ρ or δ one needs,
in addition to βr→r(Θ), to measure βr→`(Θ) at any Θ, and not necessarily the same angle
for βr→r and βr→`, since neither depend on Θ. Typically both measurements are made at
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Θ = 90◦.45

3.9 Appendix 4. Short Review of Basic Scattering Theory

Let the scattering center (particle) be located at ~r = 0. The incident electric field propa-
gating in the ~κ0 direction is in the form of a plane wave given by (see figure below)

~E(0)(~r, t) = ~E(0) exp[i(~κ0 • ~r − ωt)],

where the field amplitude ~E(0) is resolved into components parallel and perpendicular to
the scattering plane

~E(0) = E(0)
r ê(0)

r + E
(0)
` ê

(0)
` =

(
E

(0)
r

E
(0)
`

)
. (3.64)
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Figure	  1.	  	  The	  plane	  formed	  by	  the	  propagation	  vector	   0κ

!
of	  the	  incident	  wave	  and	  

the	  propagation	  vector	  κ
!
of	  the	  scattered	  wave	  is	  the	  scattering	  plane.	  	  The	  incident	  

and	  scattered	  fields	  are	  resolved	  into	  components	  parallel	  and	  perpendicular	  to	  the	  
scattering	  plane,	  i.e.,	  along	   )ˆ,ˆ( )0()0(

reeℓ 	  and	   )ˆ,ˆ( reeℓ ,	  respectively.	  	  Θ	  is	  the	  
scattering	  angle.	  	  
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45There are many other relationships that can be derived in this manner. Among them are

βr→r(Θ) = Constant , βr→r

β`→r(Θ) = βr→`(Θ) = Constant , β`→r = βr→`

β`→`(Θ) = βr→` sin2 Θ + βr→r cos2 Θ

βn→r = (β`→r + βr→r) = βr→n

βn→`(Θ) =
(
βr→` + β`→`(Θ)

)
= β`→n(Θ)

βn→n(Θ) =
1

2

(
βr→` + β`→`(Θ) + β`→r + βr→r

)
In these relationships, when the argument “Θ” is omitted, it means the corresponding β is independent
of Θ. Also, the subscript “n” stands for “natural” and means that the incident or the scattered light is
not passed through a polarizer. Thus βn→n(Θ) is the volume scattering function measured without any
polarizers in the measurement path.
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The scattered field at ~r is in the form of a spherical wave and can be written

~E(s)(~r, t) =
1

−iκrA
~E(0) exp[i(κr − ωt)],

where A is the 2 × 2 (dimensionless) scattering amplitude matrix, and the field has also
been resolved in to components parallel and perpendicular to the scattering plane (note

that ê` and ê
(0)
` are not parallel):

~E(s) = E(s)
r êr + E

(s)
` ê` =

(
E

(s)
r

E
(s)
`

)
. (3.65)

To relate the scattered field to scattering cross sections, etc., we recall that the time
averaged Poynting vector of the a field in the form of Eqs. (3.64) or (3.65) is

〈
~S
〉

=
κ̂

2µ0c`

〈
ErE

∗
r + E`E

∗
`

〉
=
dP

dA
,

where dP is the power crossing and area dA oriented normal to the propagation direction
(i.e.,

〈
~S
〉

is the irradiance associated with the propagating field).46 The differential scat-
tering cross section is defined to be the power scattered into a solid angle dΩ divided by
the irradiance of the incident beam, i.e.,47

dσ(ξ̂0 → ξ̂)

dΩ(ξ̂)
=
dP (s)(ξ̂) / dΩ(ξ̂)

dP (0)(ξ̂0) / dA
= r2

∣∣∣
〈
~S(s)(ξ̂)

〉∣∣∣
∣∣∣〈~S(0)(ξ̂0)

〉∣∣∣

where the superscript “s” stands for “scattered,” the superscript “0” stands for “incident,”
r is the distance from the scattering volume to the point of observation and ξ̂0 and ξ̂ are
in the directions of κ̂0 and κ̂, respectively. The required Poynting vectors are given by

∣∣∣
〈
~S(0)(ξ̂0)

〉∣∣∣ =
1

2µ0c`

〈
~̃E(0)∗ ~E(0)

〉
and

∣∣∣
〈
~S(s)(ξ̂)

〉∣∣∣ =
1

2µ0c`

1

κ2r2

〈
~̃E(0)∗Ã∗A ~E(0)

〉

so

dσ

dΩ
=

1

κ2

〈
~̃E(0)∗Ã∗A ~E(0)

〉

〈
~̃E(0)∗ ~E(0)

〉

46Here we assume that all quantities are restricted to the spectral band ∆λ, which for compactness we
will omit from the various quantities as they will all cancel from the final equations.

47Although this definition appears different from that in Chapter 2, it is identical. Note dP (s)(ξ̂)/dΩ is
the intensity in the direction ξ̂ and dP (0)/dA is the irradiance incident on the scattering volume, ∆V . If
there is one particle in ∆V , i.e., the number density of particles in ∆V is 1/∆V , then β = ndσ/dΩ indicates
that β(ξ̂0 → ξ̂) equals the intensity in the direction ξ̂ divided by the incident irradiance (direction ξ̂0) times
∆V . This is Eq. (2.19), the definition of β.
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If the incident beam has a polarization specified by the Stokes vector I, the differential
cross section is a 4× 4 matrix, i.e.,

dσ

dΩ
= r2M ,

where
I(s) = MI(0),

with I defined as usual:

I =




I
Q
U
V


 =

1

2µ0c`




E∗`E` + E∗rEr
E∗`E` − ~E∗rEr
E∗rE` + ~E∗`Er
i(E∗rE` − ~E∗`Er)




The elements of M are given by

Mij =
(−1)(i−j)

2κ2r2
Trace

(
σiA σjÃ∗

)
.

The σi’s in this equation should not be confused with dσ. They are given by (Chapter 1),

σ1 =

(
1 0
0 1

)
, σ2 =

(
1 0
0 −1

)
, σ3 =

(
0 1
1 0

)
, and σ4 =

(
0 −i
i 0

)
.

If n is the number density of (identical) particles in the scattering volume, then β =
ndσ/dΩ. The extension to a distribution of particle sizes is immediate.
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3.10 Bibliographic Notes

A considerable amount of the material in this Chapter is derived directly from the material
presented in Chapters 1 and 2. The rest can be found in the books by Mishchenko et al.
[2002a], Bohren and Huffman [1983] and van de Hulst [1957] or in the review paper by
Hansen and Travis [1974]. Here, we have chosen to expand on those portions of scattering
theory that are of most interest in atmospheric and oceanic optics. Additional sources for
portions of various sections are provided below.

3.2.3 Rayleigh Scattering by Liquids

The thermodynamic relationships used in this derivation were taken from Morel [1974].

3.3 Scattering by a Homogeneous Sphere

There are many freely available codes for computing scattering by a sphere. One is de-
scribed in detail in Mishchenko et al. [2002a].

3.3.3.1 The Rayleigh-Gans Approximation

Gordon [2007a] provides examples showing that the Rayleigh-Gans approximation yields
excellent results for disks with diameters much greater than λ as long as the thickness
t satisfies κt|m − 1| � 1. In addition unpublished results show that the approximation
works well for cylinders with length much greater than λ as long as the radius R satisfies
κR|m−1| � 1. These are the sources of the statement that the Rayleigh-Gans requirement
κd|m− 1| � 1 need apply only to the smallest dimension d of the particle.

3.3.3.2 The van de Hulst Approximation

In addition to spheres, this approximation can be applied to particles of other morphologies.
Some are provided by Jonasz and Fournier [2007] and references therein.

3.3.3.3 Diffraction

Born and Wolf [1975] cover the Huygens-Fresnel principle in considerable detail.

3.4 Scattering by Irregularly-Shaped Particles

Of additional methods for solving the scattering problem for non spherical particles to most
famous is the T-Martix method described in detail in Mishchenko et al. [2002a]. Various
other methods are outlined in Mishchenko et al. [2000].
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3.4.1 Discrete-Dipole Approximation

The DDA was introduced by Purcell and Pennypacker [1973]. The development here follows
Draine [1988]. A DDA code is available from B. Draine, Princeton University.

3.6 The Optical Theorem

Our basic derivation of the optical theorem follows that of Bohren and Huffman [1983].
The σc Mueller matrix is derived in Mishchenko et al. [2002a]. We took their matrix and
converted it from their notation to ours. The expansion of a plane wave into two spherical
waves (Footnote 44) was also taken from this source.

3.7 Raman Scattering

The classical explanation of the Raman effect as being due to a change in the polarizability
tensor as a molecule vibrates is found in many texts. A good one is Wilson et al. [1980].
For a full quantum mechanical treatment of Raman scattering, see Placzek [1962].
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Chapter 4

Inherent Optical Properties of the
Atmosphere

4.1 Introduction

In this chapter we describe some in detail the inherent optical properties of the atmo-
sphere. The processes of interest are scattering by the air molecules (Rayleigh scattering),
scattering and absorption by aerosols (condensed liquid or solid particles suspended in the
air) and absorption by the gaseous constituents of the atmosphere. The goal is to provide
background required for later chapters regarding the influence of the atmosphere on the
radiance observed from a space-borne or air-borne sensor viewing the water.

4.2 Molecular (Rayleigh) Scattering

The scattering properties of atoms and anisotropic molecules were developed in Chapters
1 and 3. For a gas with bulk refractive index m (which is real, as we will assume there
are no absorption bands near the wavelength of interest), the scattering cross section per
molecule is

σr =
24π3

λ4n2

(
m2 − 1

m2 + 1

)2 [
6 + 3δ

6− 7δ

]
,

283
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where δ is the Rayleigh depolarization factor, and as

1

n

(
m2 − 1

m2 + 2

)
=

α

3ε0

is a property of a single atom, σr and does not depend on n. However, the scattering
coefficient does depend on temperature and pressure. For an ideal gas the scattering
coefficient is given by

br = nσr =

(
P

kBT

)
σr,

where kB is the Boltzmann constant. Finally, the phase matrix for molecular scattering is
given by

Pr(Θ) =
4πβr(Θ)

br

=
3

2

[
1− δ

1 + δ/2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ




+
3

2

[
δ

1 + δ/2

]



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − cos Θ


 .

4.2.1 Rayleigh Scattering by the Atmospheric Gas Mixture

As the atmosphere is a mixture of molecules of different species, we need to know how to
combine the various gases to form “air.” The simplest method is to note that the scattering
cross section of one molecule of species i is

(σr)i =
24π3

λ4n2
i

(
m2
i − 1

m2
i + 1

)2 [
6 + 3δi
6− 7δi

]
. (4.1)

Since the quantity

1

n2
i

(
m2
i − 1

m2
i + 1

)2

is independent of P , T , and ni, we can replace it with values measured at standard condi-
tions, i.e.,

1

n2
i

(
m2
i − 1

m2
i + 1

)2

=
1

n2
s

(
m2
i − 1

m2
i + 1

)2

STP

,
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where STP refers to standard conditions: Ts = 273.15 ◦K, Ps = 101,325 Pa and ns =
2.687 × 1019 molecules/cm3. The depolarization factor, however, δi is a property of the
species only and can be measured at any P and T . Then, the scattering coefficient and
the volume scattering matrix are

br =
∑

i

(σr)ini, βr(Θ) =
∑

i

βini.

Measurements of the refractive index of gases (mg) show that for the principal components
of the atmosphere, N2, O2, and Ar, the refractivity (mg − 1) has the values 275.9 ×10−6,
249.5 ×10−6, and 260.6 ×10−6, respectively at T = 293.15 ◦K, a pressure of 101,325 Pa
and a wavelength of 633 mn. In contrast, for CO2, mg − 1 = 413.4× 10−6 under the same
conditions. Because of the similarity of mg for N2, O2, and Ar, one usually replaces their
values with the value given for air: mg − 1 = 270.3× 10−6.1 When this is effected,

(σr)i =
24π3

λ4n2
air

(
m2

air − 1

m2
air + 1

)2 [
6 + 3δi
6− 7δi

]
=

24π3

λ4n2
air

(
m2

air − 1

m2
air + 1

)2

Fi(λ),

where Fi is called the King factor. Thus,

br =
∑

i

(σr)ini = nair
24π3

λ4n2
air

(
m2

air − 1

m2
air + 1

)2∑

i

ni
nair

Fi = nair
24π3

λ4n2
air

(
m2

air − 1

m2
air + 1

)2∑

i

viFi,

(4.2)
where vi is the fraction by volume of component i. Note that this is equivalent to defining
an overall King factor

Fair =
∑

i

viFi or

[
6 + 3δair

6− 7δair

]
=
∑

vi

[
6 + 3δi
6− 7δi

]
. (4.3)

This last equation can be solved to provide δair for any set of volume concentrations. As the
King factors Fi depend on wavelength, the depolarization factor δair will as well. Formulae
for the King factors for N2 and O2 are

F (N2) = 1.034 + (3.17× 10−4)/λ2

F (O2) = 1.096 + (1.385× 10−3)/λ2 + (1.448× 10−4)/λ4,

where λ is in µm. Since Ar is monatomic, and therefore isotropic, F (Ar) = 0. Using these,
δair is easily found to be

δair =
6Fair − 6

7Fair + 3
,

1Note that the refractive index of air is very close to the sum of the indices of N2, O2, and Ar weighted
by their volume concentrations: mg − 1 = 270.1× 10−6.
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and for a mixture (by volume) of 78.084% N2, 20.946% O2 and 0.934% Ar, yields δair =
0.02973 and 0.02758 at 400 and 900 nm, respectively. We have ignored CO2 in our es-
timates, which is justified to the accuracy we require (including it with F (CO2) = 1.15
decreases δair at 400 nm to 0.02969). Then, to the same order of approximation,

Pr(Θ) =
4πβ(Θ)

br

=
3

2

[
1− δair

1 + δair/2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ




+
3

2

[
δair

1 + δair/2

]



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − cos Θ


 .

(4.4)

The first element (11) of β is the scalar volume scattering function

βr(Θ) =
3br
16π

[
(1 + δair) + (1− δair) cos2 Θ

1 + δair/2

]
. (4.5)

Henceforth, when we used the term “Rayleigh scattering by air” we are referring to Eqs.
(4.2) through Eq. (4.5) and will use the notation br, Pr and βr, respectively.

4.2.2 The Rayleigh Optical Depth

The optical depth of the atmosphere resulting from Rayleigh scattering is

τr ,
∫ ∞

0
br(h) dh =

∫ ∞

0

∑

i

(σr)ini(h) dh

Now, ni(h) = vi(h)n(h), where n is the actual number density at altitude h. The principal
atmospheric gases are homogeneously mixed in the atmosphere (O3 and H2O are notable
exceptions), so for these vi is independent of h. Thus,

τr =
∑

i

σivi

∫ ∞

0
n(h) dh. (4.6)

This can be related to the surface pressure, which is given by

P =

∫ ∞

0
m(h)n(h)g dh,
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where m(h) is the average mass of a molecule at altitude h. It is determined from the
molecular weight of air, m∗air (28.96 g/mole), and the Avogadro number Ns (6.022 × 1023

atoms/mole): m(h) = m∗air/Ns. Note that m(h) is independent of h (true only for well
mixed gases). Thus,

P =
m∗airg

Ns

∫ ∞

0
n(h) dh, (4.7)

and eliminating the integral from Eqs. (4.6) and (4.7) yields

τr =
NsP

m∗airg

∑

i

σivi =
NsP

m∗airg
σr, (4.8)

and the optical thickness of the atmosphere is proportional to the surface pressure, and
independent of the variation of n with altitude. Note that one can compute the optical
thickness from some altitude H to the top of the atmosphere by simply replacing the
surface pressure with the pressure at the altitude H.

Most determinations of the Rayleigh optical depth of the atmosphere employ Eq. (4.2)
to compute the scattering coefficient and Eq. (4.8) to compute τr. As discussed above, the
determinations are based on precise measurements of the index of refraction of dry air and
of δi for the various atmospheric gases. Convenient fits to tabulated determinations for sea
level (P = 1013.25 mb) are

τr(λ) = 0.008569λ−4(1 + 0.0113λ−2 + 0.00013λ−4) (4.9)

and

τr(λ) = 0.002152

(
1.0455996− 341.29061λ−2 − 0.9023850λ+2

1 + 0.0027059889λ−2 − 85.968563λ+2

)
. (4.10)

The optical depth depends on the gravitational acceleration, which at sea level varies with
latitude (Lat) according to

g = 980.6160
(
1− 0.0026373 cos(2Lat) + 0.0000059 cos2(2Lat)

)
,

where Lat is in degrees, and g is in cm/sec2. Equation (4.10) is for Lat = 45◦.

Figure 4.1 shows the atmospheric direct transmittance of the solar beam from the top
of the atmosphere to the surface (Sun at the zenith) as affected by Rayleigh scattering,

Transmittance = exp[−τr(λ)].

Since the gases in the atmosphere also absorb light, this is the upper limit to the direct
transmittance of the atmosphere for any wavelength λ.
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Figure 4.1: Direct transmittance of the atmosphere resulting from Rayleigh (molec-
ular) scattering along a vertical path from the surface to space.

4.3 Scattering by Particles (Aerosols)

The various species of particulate matter suspended in the air are referred to as aerosols.
Examples of such particles are wind-blown dust usually originating in desert areas and
transported over the oceans; sea-salt aerosol, resulting from the breaking of waves on the
water surface; sulfuric acid particles formed from condensed sulfur-containing compounds
released during volcanic eruptions; carbonaceous particles released through the burning
of fossil fuels, etc. As these particles remain suspended in the air for substantial periods
of time (a few days), they are of necessity small, i.e., maximum dimension in the tens of
micrometers (microns) size range.The aerosol particles are distributed in size from this
upper limit down to a fraction of a micron.

As we shall see below, aerosols typically are present in very low concentrations (∼ 100
particles/ml), and thus very difficult to sample. In addition, the individual aerosol particles
are often complex in morphology and inhomogeneous in composition — an exception being
the maritime aerosol, which is composed of spherical, mostly homogeneous, salt-water
droplets. In order to render the optical effects of aerosols tractable, it is almost always
assumed that the aerosol is composed of homogeneous spherical particles.2 In addition,
this enables the optical observations to characterize aerosol properties; however, one must
remember that any physical property derived from optical measurements is subject to the
proviso that the particles have been assumed to be homogeneous spheres.

2This assumption is employed in this work unless otherwise indicated.
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Employing the homogeneous-spherical particle assumption, for a particular species (the
ith) of particle we define its size frequency distribution ni(D) as dNi(D)/dD, where dNi(D)
is the number of particles per unit volume with diameters between D and D + dD. The
scattering and absorption properties of this species of particle is determined by an integral
of the product of the size frequency distribution and the appropriate scattering (or absorp-
tion) quantity provided by Mie theory (Chapter 3), e.g., the volume scattering function,

βi(Θ, λ) =
λ2

4π2

∫ ∞

0
M11(Θ, D, m̃i)

dNi(D)

dD
dD, (4.11)

where m̃i is the complex refractive index of the species (i) relative to the medium (air).3

Thus, for homogeneous spheres, the two properties of the particles that determine the
optical properties are the size distribution of the species and the index of refraction of the
material of which the particles are composed.

4.3.1 Aerosol Particle Size Distributions

There are many ways of estimating particle size distributions. The most direct is to pump
air containing the particles through a small-pore filter, and to examine the filter with either
an optical microscope (for larger particles) or an electron microscope (for smaller particles).
An obvious disadvantage is the loss of volatile particles during the process.

Another method is to use a cascade impactor. It works in the following manner. Air
containing the particles to be sized flows through an orifice and immediately impinges on

3Equation (4.11) provides the seeds for estimating the physical properties from optical measurements.
Assuming there is only one component and that its refractive index is m̃, if one measures β(Θ) at several
scattering angles, Θi, at a single wavelength, then

β(Θi) =
λ2

4π2

∫ ∞
0

M11(Θi, D, m̃)
dN(D)

dD
dD.

Converting this to a sum

β(Θi) =
∑
j

Kij n(Dj), where Kij =
λ2

4π2
M11(Θi, Dj , m̃)∆Dj .

If we choose the number of Dj ’s equal to the number of Θi’s, this set linear of equations can be inverted
to yield n(Dj). This inversion is equivalent to finding the inverse of the matrix K with elements Kij .
Although straightforward, there is a difficulty to be faced with this procedure. The determinant of K is
often close to zero because β over some range of angles may be insensitive to variations in D. In this case
the system of linear equations is said to be “ill conditioned,” and this causes large fluctuations in n(Dj)
with Dj . This can be partially overcome by placing constraints on n(D), e.g., that is be “smooth” in some
quantifiable sense. This procedure is called “constrained linear inversion” or “regularization.” Note that
these ideas can be applied to other optical measurements as well, e.g., c as a function of λ.
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a flat plate obstructing the flow. The larger particles, because of their momentum strike
and stick to the plate. The smaller particles remain with the air as it flows around the
plate where it encounters a smaller orifice. The air speed increases as it flows through
the second orifice where it immediately encounters a second flat plate. This plate collects
particles smaller than the first; however, still smaller particles remain in the airstream,
which is again channeled around the plate to a still smaller orifice, etc. By cascading
several of these assemblies with smaller and smaller orifices, a fractionation of particle
sizes is effected.

A third method is the resistive-pulse particle counter. In this apparatus, particles are
suspended in saline (salt water). Two electrodes are involved, one in the sample and one in
a test tube suspended in the sample. The suspended test tube also contains saline and has
a small hole (diameter ∼ 100µm) in its side. Both electrodes are connected to a DC power
source causing current to flow through the hole. The solution is pumped through the hole
and when a particle passes through the orifice the current is reduced in proportion to the
particle’s volume (V ). On an oscilloscope the drop in current is measured as a pulse with
height (depth) proportional to V . By analyzing the height of the pulses as a given volume
of fluid is pumped through the aperture, the distribution of particle volume is determined.
Obviously water-soluble particles are lost in the process. (However, the method is clearly
applicable to particles suspended in sea water.)

Optical methods are obviously available in which one measures the differential scattering
cross section of particles in a flow and interprets the result using light scattering theory.
One of the most popular methods (when the composition of the particles is known or can
be estimated) involves the analysis of light scattering by a volume of sample containing
many particles. One measures a light scattering quantity such as the scattering coefficient
(b) or the volume scattering function (β(Θ)), assumes a mathematical form for the size
distribution (with adjustable parameters), and uses the measurements along with relation-
ships such as Eq. (4.11), to estimate the parameters of the assumed size distribution.
Unfortunately, the concentration of aerosol particles in the marine atmosphere (our princi-
pal interest) is only of the order of a few hundred per ml, making it very difficult to obtain
measurements of c or β. A simple example will help clarify this. Consider a spherical par-
ticle with m̃ = 1.50− 0.0i and D = 1 µm. At 500 nm, Mie theory provides Qc = Qb ≈ 2.3.
Thus, for one particle, σc = σb = πD2Qc/4 ≈ 2 µm2. For 100 particles per ml, which is
10−10 particles per µm3, c = b = 2× 10−12 µm−1 = 0.002 km−1. For D = 5 µm, c ≈ 0.05
km−1. Clearly, extremely long paths (difficult to obtain in the marine environment) are
required to accurately measure b or c, and the measurement of β is virtually impossible
except at very small angles.

Very long paths are available if one uses the Sun as the source. In this case, quantities
related to c and β can be estimated by measuring the radiance of the solar disk and the sky,
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respectively, as follows. The downward radiance at the bottom of a slab (the atmosphere)
of optical thickness τ1, and illuminated by a beam source (the Sun), was derived in the
single-scattering approximation in Chapter 2

(
Eq. (2.103)

)
:

L(τ1, u, φ) = F0δ(u− u0)δ(φ− φ0)
[
1− τ1

u

]

+
ω0F0τ1

4πu
P (u0 → u, φ0 → φ).

In this equation, u = cos θ, where θ and φ are the polar and azimuth angles of the propaga-
tion vector of the radiance (ξ̂), and u0 = cos θ0, where θ0 and φ0 are the polar and azimuth
angles of the propagation vector of the solar beam (ξ̂0). The scattering phase function of
the slab is P , and the single scattering albedo is ω0. Note that the spherical coordinate
system in which these angles are measured has its z-axis directed downward. Also, the
radiometer carrying out the measurements is directed toward −ξ̂. Rewriting the equation
and noting that the δ-function term is the first order expansion of the exponential function,
we have

L(τ1, θ, φ) = F0δ(cos θ − cos θ0)δ(φ− φ0) exp

[
− τ1

cos θ0

]

+
ω0F0τ1

4π cos θ
P (Θ),

where cos Θ = cos θ cos θ0 + sin θ sin θ0 cos(φ − φ0). In the absence of absorbing gases,
τ1 = τr + τa, where τr is the optical depth of the air (the “Rayleigh” optical depth of the
atmosphere) and τa is the optical depth of the aerosol:

τa =

∫ ∞

0
ca(h) dh

with h being the altitude. Likewise, ω0τ1P (Θ) = τrPr(Θ)+ωaτaPa(Θ), where the subscripts
“r” and “a” refer to “Rayleigh” and “aerosol,” respectively. Since P = 4πβ/b, ω0 = b/c,
and for a homogeneous slab with no absorption τ1 = bz1, we have (again, assuming no
gaseous absorption and a homogeneous slab) τaωaPa(Θ) = 4πβa(Θ).4 Since aerosols from
all altitudes contribute to the sky radiance, the values of τa and τaωaPa(Θ) are referred to as
columnar optical properties, and using them in Eq. (4.11) will provide a columnar aerosol
size distribution, i.e., the aerosol size distribution for a vertical column of atmosphere. The

4The assumptions of single scattering and a homogeneous slab are not necessary to extract the aerosol
phase function from such measurements. Iterative methods are now available to effect such a retrieval in
a multiple scattering layered atmosphere, and have been extended to permit retrieval the full scattering
phase matrix. These are developed in the appendix to Chapter 12 (Section 12.5).
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columnar aerosol size distribution is most appropriate for our purposes, as the ultimate goal
is to find aerosol models that reproduce the optical properties that, when combined with
radiative transfer, can predict the radiation reflected from the Earth’s atmosphere. An
active area of research is to achieve closure between the columnar aerosol size distribution
and the aerosol size distribution in each layer forming the column.

One of the earliest proposed particle size distributions for aerosols was the power-law
(often called Junge, although strictly speaking, a Junge distribution refers only to a power
law with ν = 3, i.e., D−4 in Eq. (4.12)):

n(D) =
dN(D)

dD
=

K

Dν+1
, (4.12)

where K, and ν are constants. The parameter ν is typically between 2 and 4. This
distribution cannot of course be valid over the entire size range 0 ≤ D ≤ ∞, e.g., for
typical values of ν the total number of particles per unit volume

∫∞
0 n(D) dD would be

infinite. Thus, the distribution is usually truncated, holding only for DS ≤ D ≤ DL and
vanishing outside this range. For the truncated distribution the constant K is related to
the total number of particles:

N0 =

∫ ∞

0
dN = K

∫ DL

Ds

D−(ν+1) dD,

so

K =
N0ν

(D−νS −D−νL )
.

In aerosol studies, rather than using the distribution of the number of particles per unit
volume between D and D + dD, it is popular to use the distribution of the volume of
particles per unit volume between D and D + dD. This is

dV (D)

dD
=
πD3

6

dN(D)

dD
,

which, for a power-law distribution yields

dV (D)

dD
=
πD3

6
KD−(ν+1) , K ′D−(ν−2),

where K ′ usually related to the total volume of particles, V0, through

V0 = K ′
∫ DL

Ds

D−(ν−2) dD,
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which gives

K ′ =
(3− ν)V0

(D3−ν
L −D3−ν

S )
, ν 6= 3,

=
V0

`n(DL/DS)
, ν = 3.

Or, in terms of `nD,
dV (D)

d`nD
= K ′D3−ν .

Thus, for a particle size distribution with ν = 3, the volume distribution dV (D)/d`nD is
independent of D.

A more realistic representation of the size spectrum (no truncation is required) is the
log-normal distribution:

dN

d`nD
=

NT√
2πσ2

exp

[
−1

2

(
`nD − `nDN

σ

)2
]
, (4.13)

where NT (the total number of particles per unit volume), DN (the median or modal
diameter) and σ are constant.5 An equivalent form of this distribution is used later in this
chapter:

dN(D)

dD
=

NT

loge(10)
√

2πσ10D
exp

[
−1

2

(
log10(D/DN

σ10

)2
]
, (4.14)

where σ10 = σ log10(e). The log-normal distribution can also be converted to a volume
distribution. The result is

dV

d`nD
=

VT√
2πσ2

exp

[
−1

2

(
`nD − `nDV

σ

)2
]
, (4.15)

where VT (the total particle volume) and DV (the median diameter for volume) are related
to NT and DN through

VT =
NT

6
D3
N exp

[
9

2
σ2

]
and DV = DN exp[3σ2].

5Note the similarity between Eq. (5.28) and the Gaussian or Normal distribution of a random variable
x:

dP(x)

dx
=

1√
2πσ2

exp

[
−1

2

(x− xm
σ

)2
]
,

where dP(x) is the probability that x falls between x and x + dx. For this distribution the mean of
x, 〈x〉 = xm and the variance 〈(x − 〈x〉)2〉 = σ2. Thus, for the log-normal distribution (Eq. (5.28))
〈`nD〉 = `nDN and

〈
(`nD − 〈`nD〉)2

〉
=
〈
(`nD − `nDN )2

〉
= σ2.
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Figure 4.2: Comparison between power-law and log-normal volume distributions.
For the power-law distribution, ν = 3, DS = 0.5 µm, and DL = 5.0 µm. The log-
normal volume distribution has the same DV , σ, and total volume as the power-law
distribution.

Figure 4.2 compares the volume distribution for the power-law distribution (ν = 3, DS =
0.5 µm, and DL = 5.0 µm) and the log-normal distribution that has the same DV and σ
as the Junge distribution.

4.3.2 Aerosol Refractive Indices

Aerosol particles found in the marine atmosphere are composed of four broad types of
materials: (1) water; (2) sea salt; (3) mineral particles, e.g., dust; and (4) carbonaceous
particles usually originating from urban pollution or biomass burning, e.g., forest fires.
The refractive index of water throughout the visible spectrum is approximately 1.33, with
an insignificant imaginary part (|mi| < 4× 10−7). Sea salt (dry) has a refractive index of
about 1.5 with negligible absorption (|mi| < 10−8). Mineral particles have mr ∼ 1.53 in
the visible with mi ∼ 10−3 − 10−2. The spectral dependence of the absorption of minerals
depends significantly on their composition, e.g., minerals with a significant quantity of
hematite have a strongly increasing |mi| from λ ∼ 1 µm into the UV, whereas quartz
has low |mi| throughout the visible. Carbonaceous particles (black carbon) on the other
hand have large absorption throughout the visible (|mi| ∼ 0.1) with little dependence on
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wavelength. Thus refractive indices span the range 1.33 ≤ mr ≤ 1.53 with the absorption
index 10−8 ≤ |mi| ≤ 10−1.

4.3.3 Aerosol Models

An aerosol physical model is a combination of an aerosol size distribution, refractive index,
and shape. For simplicity, the particle shape is usually taken to be a homogeneous sphere.
This model is then used in combination with scattering theory to determine the scattering
and absorption properties of the aerosol. The combination aerosol physical model and
scattering theory is herein called an “aerosol model.”6

6The fact that extinction and absorption cross sections can be written σc,a = GQc,a, where G is the
geometric cross sectional area of the particle (the “shadow” of the particle in the geometrical optics approx-
imation: πR2) and Qc.a is approximately constant for particles that are large compared to the wavelength,
suggests that for the purpose of optical properties, the characteristic or effective radius of a spherical particle
should be defined according to

Reff =
1

G

∫ ∞
0

R[πR2n(R)] dR, where G =

∫ ∞
0

[πR2n(R)] dR.

That is, for optical purposes, the effective distribution of sizes is πR2n(R). Similarly, the effective variance,
veff is defined by

veff =
1

GR2
eff

∫ ∞
0

(R−Reff)2[πR2n(R)] dR.

For the log-normal distribution these are related to RN and σ through

RN =
Reff

(1 + veff)5/2
and σ2 = `n(1 + veff).

Empirically, it has been shown that dimensionless optical quantities such as the scattering phase function
or the size-averaged extinction efficiency

〈Qc〉 ,
〈σc〉
πR2

eff

=

∫∞
0

Qc[πR
2n(R)] dR

πR2
eff

,

are similar for size distributions with the same values of Reff and veff , but with significantly different
functional forms. This suggests that the scattering and absorption properties of a given species of particle
(i.e., a given m̃) can be characterized by the two parameters Reff and veff or equivalently Deff and veff .
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4.3.3.1 Haze C Aerosol Model

One of the earliest models used to describe aerosol scattering was the so-called “Haze C”
model for which

n(D) =
dN(D)

dD
= K,

= K
(D1

D

)ν+1
,

= 0,

D0 <D < D1,

D1 <D < D2,

D > D2,

(4.16)

with D0 = 0.06 µm, D1 = 0.20 µm, D2 = 20 µm and ν = 2, 3, or 4. This size distribution
has been used with a refractive index of 1.333 or 1.50 to examine the scattering properties
of sea salt and mineral (non-absorbing) aerosols.

One aspect of power-law size distributions is that, if the refractive index is independent
of wavelength, the scattering phase function is nearly independent of wavelength. Consider
the size distribution given by Eq. (4.12). If this size distribution was valid for the entire
size range 0 ≤ D ≤ ∞, it would lead to some interesting optical properties. The volume
scattering function would be

β(Θ, λ) =
λ2

4π2

∫ ∞

0
M11(Θ, D, m̃)K

( 1

D

)ν+1
dD

=

[
Kπν−2

4

]
λ2−ν

∫ ∞

0
M11(Θ, x, m̃)x−(ν+1) dx,

(4.17)

where we have changed the variable of integration from D to x = πD/λ. If m̃ is in-
dependent of λ then the integral is as well, and the full wavelength dependence of the
volume scattering function is provided by the λ2−ν term. Thus, for such a size-refractive
index distribution, the volume scattering function, the total scattering coefficient, and the
absorption coefficient, are all proportional to λ2−ν , and the scattering phase function is
independent of wavelength. Reviewing the derivation of this result, it is seen that, in addi-
tion to a wavelength-independent refractive index, the key ingredient is that the limits on
the integral do not depend on λ. If the size distribution were cut off at some lower size DS

and/or some large size DL, then the upper and lower limits on the second integral in (4.17)
would be πDL/λ and πDS/λ, respectively, so the integral would have a λ dependence.
Recall that for small spherical particles, the scattering is ∝ x6, while for large particles,
it is ∝ x2. Thus, the integrals for the scattering quantities will converge for 2 < ν < 6
(with integration over the full size range 0 → ∞). More importantly, if ν is significantly
smaller than 6, the integral will be relatively insensitive to the lower limit, while if ν is
significantly larger than 2 the integral will be insensitive to the upper limit.7 Thus, one

7The dependence of the scattering quantities on DS and DL is investigated for Junge distributions of
particles suspended in water in Chapter 5 (in particular, see Section 5.5.2.2).
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might reasonably expect that for some range in ν, a size distribution truncated by DS and
DL will yield scattering properties that are somewhat insensitive to the exact values of
DS and DL, i.e., a truncated power-law distribution should yield a phase function that de-
pends only weakly on wavelength and for which the scattering coefficient is approximately
∝ λ2−ν . This is in fact what is often found for aerosols. Measurements of atmospheric
transmittance processed to yield the aerosol optical depth τa(λ) =

∫∞
0 ba(h, λ) dh, usually

closely follow Ängstrom’s law:

τa(λ) = τa(λ0)

(
λ0

λ

)p

where p is a constant.8

Do the scattering properties of the Haze C distribution follow these observations, i.e.,
Ängstrom’s law with p = ν − 2? Figure 4.3 provides the scattering coefficient for the Haze
C distributions with m̃ = 1.33− 0.0i and 1.50− 0.0i. This figure shows that the scattering
coefficient follows Ängstrom’s law over the wavelength range 400-2200 nm very well. The
prediction of p = ν − 2 is certainly well approximated. The other prediction — that the
phase function should be independent of wavelength — is examine in Figure 4.4, which
compares the scattering phase functions at 412 and 865 nm. The figure shows that for
ν = 2 the phase function is indeed a weak function of wavelength; however, this is not the
case for ν = 4, especially for scattering angles >∼ 80◦. For completeness, Figure 4.5 shows
the range of variation of the phase function at 510 nm for the full range of variation of ν
and m̃. As expected, smaller values of ν (which yield relatively more large particles) show
more scattering in the near forward direction (diffraction regime), while large values of ν
(which yield relatively more small particles) produce an elevated phase function over the
angular range 30◦– 120◦. The phase function maxima near 140◦(ν = 2, m̃ = 1.33 − 0.0i)
and 160◦(ν = 2, m̃ = 1.50 − 0.0i) are near the positions of the primary rainbows for the
given m̃ (see Chapter 3).

8This explains why Junge distributions were popular in early aerosol studies: determination of one
parameter, p, that is relatively easy to measure, provided quantitative information on the columnar size
distribution.
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Figure 4.3: Spectral variation of the scattering coefficient for the Haze C models
(left, m̃ = 1.33 − 0.0i; right, m̃ = 1.50 − 0.0i). The diamonds are for ν = 2, the
squares for ν = 3, and the triangles for ν = 4. The smooth curves are regression
fits to b(λ)/b(555) = Cλ−p. The values of p and R2 from the regression fits: 0.27
and 0.9864, 1.07 and 0.9978, and 1.98 and 0.9977, respectively for ν = 2, 3, and 4,
with m̃ = 1.33− 0.0i; and 0.21 and 0.9945, 0.98 and 0.9992, and 1.84 and 0.9987,
respectively for ν = 2, 3, and 4, with m̃ = 1.50− 0.0i.
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Figure 4.4: Comparison of the phase functions at λ = 412 and 865 nm for Haze
C models. Left, m̃ = 1.33 − 0.0i; right, m̃ = 1.50 − 0.0i. In the legends, “2, 412”
stands for ν = 2 and λ = 412, etc.
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Haze C:  Wavelength = 510 nm
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Figure 4.5: Comparison of the phase functions at λ = 510 nm for Haze C models.
In the legend, “2, 1.33” stands for ν = 2 and m̃ = 1.33− 0.0i, etc.

4.3.3.2 Shettle and Fenn Aerosol Model(s)

The Shettle and Fenn models consist of particles distributed in size according to combina-
tions of log-normal distributions. The size frequency distribution n(D) is given by

n(D) =

2∑

i=1

ni(D),

where ni are given by equations of the form of Eq. (5.29). The models are based on the
hypothesis that there is a background aerosol consisting of fine particles in the size range
0.05 ≤ D ≤ 1µm. Their small size enables them to stay in suspension over an extended
period of time. This background aerosol is accompanied by a component in a larger size
range, D > 1µm, that is locally generated, and because of their larger size, settle out of
the air much more rapidly. An important example for us is the marine aerosol consisting
of small particles transported from the land and larger, sea salt, particles generated by
breaking waves. Shettle and Fenn use knowledge of the possible composition of the aerosol
to estimate their (dry) refractive indices, and the manner in which their size and refractive
index vary with relative humidity.

The background component (called “Rural 1” by Shettle and Fenn) is a mixture of 70%
water soluble material and 30% dust (quartz like). It is usually called the “Tropospheric”
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component. In urban areas this component is replaced by a carbonaceous aerosol called
“Urban 1.” The large-particle component consists of a sea-salt aerosol (“Oceanic”) in the
marine environment, a larger-sized component similar in composition to Rural 1 (“Rural
2”) in the terrestrial environment, and a large-sized component similar to Urban 1 (“Urban
2”) in the polluted air masses of the urban environment.

The particles are assumed to be hygroscopic, so both the particle size and refractive
index vary with relative humidity (RH in %). If Di(RH) is the value of Di at a given
RH, and Di(0) the value for a dry particle, then the refractive index will vary with RH
according to the volume concentrations of water and dry particles, i.e.,

mi(RH) =
mwaterVwater +mdry

i Vdry

Vwater + Vdry

= mwater + (mdry −mwater
i )

[
Di(0)

Di(RH)

]3

Thus, mi(0) = mdry and as RH approaches 100%, mi(RH) approaches that of water. The
refractive indices (dry) of the various components are provided in Figure 4.6. The dry
Oceanic is sea salt. Like water it is characterized by very low absorption throughout the
visible. In contrast, the other components have moderate to strong absorption through the
visible into the short-wave infrared (SWIR). “Mineral” is a hematite-containing mineral
(as opposed to quartz) and is characteristic of Saharan dust, but is not actually used in
the Shetttle and Fenn models. With the exception of water, all components have mr ≈ 1.5
throughout the visible and near infrared (NIR).

Figure 4.7 provides the variation of the modal diameter for each component of the size
distribution, and shows that the diameter increases rapidly with RH for RH >∼ 70%. It
also shows that there is essentially no variation in size for RH ≤ 50%. The remaining
parameter in the size distributions σ10, is 0.35 for the small fractions and 0.40 for the large
size fractions.

From these components, four basic models were constructed: the Tropospheric model
with no Oceanic contribution; the Maritime model for which 99% of the particles (in num-
ber) have the Tropospheric characteristics and 1% the Oceanic; and the Coastal model for
which 99.5% of the particles have the Tropospheric characteristics and 0.5% the Oceanic,
and the Oceanic model with no Tropospheric contribution. The Coastal model was intro-
duced to represent the aerosol over the ocean nearer the coast (relatively more Tropospheric
contribution). The Urban models are rarely used in remote sensing; usually only to show
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the effects of a very strongly absorbing aerosol. They are particles distributed in a manner
similar to the Rural models, but are composed of 80% mineral-like Rural particles and
20% carbonaceous particles. Figure 4.8 provides the volume size distributions of several
of these models. There, and henceforth, the notation M99 stands for the Maritime model
with 99% relative humidity, etc. In the figure the models are all normalized to unity at
their maximum value. At the scale of the drawing O99 and M99 are virtually identical.

Assuming again that the aerosol particles are homogeneous spheres, their optical prop-
erties can be determined using Mie theory. Figure 4.9 shows the spectral variation of the
extinction coefficient for some of these models. In the figure, the lines are regression fits to
c(λ) ∝ λ−p. Clearly, these models fit Angstrom’s law throughout the visible and NIR as
well as the Haze C models. The scattering phase functions for O99 and T80 are shown in
Figure 4.10. Note that the spectral variation of the Shettle and Fenn models is also similar
to that for the Haze C models. Figure 4.11 (left panel) provides the range of variability of
the phase function at 865 nm for the Shettle and Fenn models, and shows the progression
from a flatter to a more forward peaked phase function as one progresses from T80 to O99
in much the same manner as progressing from ν = 4 to ν = 2 with the Haze C models
(Figure 4.4).

Finally, Figure 4.11 (right panel) shows the degree of polarization (−M12(Θ)/M11(Θ)) at
865 nm for the models in Figure 4.11. Recall from Chapter 2 that, in the single scattering
approximation, the polarization properties of scattered solar irradiance (unpolarized) are
determined by M11(Θ) and M12(Θ), and in fact the degree of polarization (DOP) is just
(−M12(Θ)/M11(Θ)). The figure shows that when the large particle component is missing,
as in T80, the DOP resembles that for Rayleigh scattering (maximum at Θ = 90◦). As
more and more of the large particle component is added (M50→O99), the DOP is reduced
near Θ = 90◦ and a second maximum is developed near Θ ≈ 140◦, close to the “rainbow”
angle for m̃ close to that of water. For positive values of −M12/M11, the scattered light
will have a stronger component perpendicular to the scattering plane rather than parallel
to it, and vice versa for negative values.

The Shettle and Fenn models all have some absorption, therefore in general the single
scattering albedo, ω0 6= 1. The range of variation of ω0 for the Tropospheric and Maritime
aerosol models is shown in Figure 4.12. The Oceanic models all have ω0 = 1 (i.e., 1−ω0 <
10−4). As Figure 4.7 shows that for RH < 50% the influence of RH on the particle size
is negligible, the T50 and M50 models essentially represent dry particles. Over the visible
and NIR portions of the spectrum, the Urban models (not shown) have 0.60 ≤ ω0 ≤ 0.66
for dry particles and 0.936 ≤ ω0 ≤ 0.944 for RH = 99%.
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Figure 4.6: Real (left) and imaginary (right) parts of the complex index of refrac-
tion for the Shettle and Fenn aerosol model components. With the exception of
water, all components are in the dry state.
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Figure 4.9: Spectral variation of the extinction coefficient for the Shettle and Fenn
models: filled diamonds – T80; filled triangles – M50; open triangles – M80; filled
squares – M99; open diamonds – O99. The lines are regression fits to c(λ) ∝ λ−p.
The values of p and R2 (of the fit) are 1.35 and 0.9943, 0.49 and 0.9997, 0.22 and
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Figure 4.10: Comparison of the phase functions at λ = 412 and 865 nm for the
Shettle and Fenn T80 and O99 models.
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Shettle and Fenn Models at 865 nm
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4.3.3.3 Smirnov et al. Model

To achieve a better understanding of the aerosol in a “clean” maritime environment,
Smirnov and coworkers analyzed a large set of size distribution retrievals from three re-
mote areas: Lanai in the Pacific (Hawaii), Bermuda in the Atlantic, and Kaashidoo in the
Indian Ocean (Maldives). The size distributions were retrieved from measurements of the
sun and sky radiance made with the Aerosol Robotic Network (AERONET).9 Although
a broad distribution of aerosol optical depth at 500 nm (τa(500)) was observed (mostly
less than 0.3) the values retrieved with the highest frequency were 0.06, 0.09, and 0.11 at
Lanai, Bermuda, and Kaashidoo, respectively. Limiting their analysis to retrievals with
τa(500) ≤ 0.15, they retrieved the mean columnar volume size distribution shown in the
left panel of Figure 4.13, and fit these to a log-normal volume size distribution

dV
d`nR

=

(
dV
d`nR

)

fine

+

(
dV
d`nR

)

coarse

,

where the individual dV/d`nR’s are given by Eq. (4.15) with the diameter D replaced by
the radius R, and V replaced by V. Here V is the volume of particles contained in a vertical
column of atmosphere with a base of 1 µm2, i.e., the units of V are µm3/µm2. The right
panel of Figure 4.13 compares the average Lanai distribution with the analytical fit. Figure
4.14 compares the fine and coarse modes with the similar components from the Shettle and
Fenn models with RH ≤ 50%. We see that the modal sizes are similar; however, the
Shettle and Fenn distributions are considerably wider, especially the fine mode. It should
be noted that the measurements are for ambient RH, and the particles are expected to
increase in size with increasing RH. Figure 4.13 is for what is considered to be a pure
maritime aerosol; however, when compared to the full data set from the three locations,
most of the variability is in the relative contributions of the two modes, i.e., the relative
values of VT for the fine and coarse modes. An analysis of the correlation between the
size distribution and the wind speed at Midway Island, shows that the modal size of both
modes is virtually independent of 〈w〉, the wind speed averaged over 24 hrs, as is VT for the

9These retrievals yield the columnar size distribution. Note that the measurement of τa(λ) yields

τa(λ) =

∫ ∞
0

c(h, λ) dh =

∫ ∞
0

dh

∫ ∞
0

πr2Qc(m̃(λ, h), λ, R)
dN(h,R)

dR
dR

=

∫ ∞
0

f(h) dh

∫ ∞
0

πR2Qc(m̃(λ), λ, R)
dN(R)

dR
dR,

(a)

where we assume dN(h,R) = f(h)dN(R), i.e., a single size distribution characterizes the entire atmospheric
column, and m̃(λ, h) = m̃(λ) – the refractive index is independent of altitude. Note that

∫
f(h) dh = H,

the height of the atmospheric column containing all of the particles. Upon inverting Eq. (a) to retrieve
dN/dR, what we actually end up with is HdN/dR, which we designate as dN/dR, dN (R) being the number
of particles in dR in a column of atmosphere with a base area A. If the units of R are µm then the units
of N are µm−2. Likewise, given N we represent the volume of particles in the column by V with units
µm3/µm2.
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fine mode. In contrast, the total volume of particles of the coarse mode increases roughly
linearly with 〈w〉 at a rate of 0.0073 µm3/µm2 per m/s of wind.

More recent data from AERONET island stations provide mean values for the aerosol
optical thickness τa(500) and the Ängstrom power p for several of the world’s oceans. The
global average is τa(500) = 0.108 and p = 0.573. The Southern Ocean has the clearest
atmosphere (τa(500) = 0.060 and p = 0.380) and lowest variability, while the Atlantic
Ocean has the most turbid atmosphere (τa(500) = 0.190 and p = 0.604) and the highest
variability. An important conclusion to be drawn from these studies is that the for most
of the World oceans, τa(500) ≤ 0.2, and so with the Atlantic value of p, τa(865) ≤ 0.14.
In a later chapter, where we develop the atmospheric correction algorithm for remotely
sensing ocean color, we take the upper limit of τa to be 0.20. These results show that
τa(865) ≤ 0.20 for the open ocean is quite conservative.

The Smirnov et al. model leads to optical properties that are similar to those of Shettle
and Fenn. The scattering phase function and spectral variation of the extinction coeffi-
cient, computed assuming spherical particles with m̃ = 1.37 − 0.001i and the Lanai size
distribution are shown and compared with the same quantities for several Shettle and Fenn
models in Figures 4.15 and 4.16. The Smirnov et al. model clearly yields optical properties
that fall within the range of variability of the Shettle and Fenn models.
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Figure 4.13: Volume size distributions, dV/d`nR in units of µm3/µm2, for a pure
maritime regime. Left panel: average of measurements at three remote locations.
Right panel: comparison between the measurements at the Lanai location and the
analytic fit to the sum of two log-normal volume distributions. Note that these
plots use radius as the independent variable as opposed to diameter in most of this
text.
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Volume Size Distributions
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Figure 4.14: Comparison between the Shettle and Fenn [dV/d`nD] and the
Smirnov et al. [dV/d`nD] (Lanai) size distributions for the fine and coarse modes.
Each mode has been normalized to unity at the size of maximum dV/d`nD. The
values of VT for the fine and coarse modes at Lanai are 0.010 and 0.039 µm3/µm2,
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Figure 4.15: Phase function (865 nm) computed using the Lanai size distribution
compared with several Shettle and Fenn phase functions.
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Figure 4.16: Spectral variation of the extinction coefficient for the Lanai size
distribution (red) compared with several Shettle and Fenn models: filled diamonds
– T80; filled triangles – M50; open triangles – M80; filled squares – M99; open
diamonds – O99. The lines are regression fits to c(λ) ∝ λ−p. The regression
coefficients for the Shettle and Fenn models are given in the caption to Figure 4.9.
For the Lanai spectrum, p = 0.708 and R2 = 0.9806.

4.3.3.4 Saharan Dust Models

Massive dust storms in desert areas such as the Sahara, Sahel, and Gobi regions, provide
a source for large quantities of dust transported (thousands of km) over the oceans by the
wind. This dust is important in an optical sense due to very high particle concentrations. In
addition, the dust contains absorbing minerals, such that its absorption coefficient increases
rapidly from the green portion of the spectrum into the ultraviolet. It is through these two
properties – high concentration and strong absorption – that dust influences ocean remote
sensing.

The particle size distribution of this dust is generally represented as a combination of
three log-normal distributions as in Eq. (5.29). In the models we will discuss, DN = 0.002,
0.044, and 12.48 µm, and σ10 = 2.13, 3.20, and 1.89 for the ultrafine, fine, and coarse
models, respectively. The fraction by number in the models labeled “1” for these modes
are 54.21, 45.79, and 3.9 ×10−5%. We shall also examine two other models where the
coarse mode has been increased by factors of 10 (“2”) and 20 (“3”). These latter models
are expected to be extant near the source of the dust, and absent far from the source.
Being mineral in nature, the real part of m̃ is near 1.5. The imaginary part varies with
composition, and for Saharan dust we consider two estimates shown in Figure 4.17. The
estimate “Patterson” is based on a survey of measurements of the absorbing properties
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of dust, and the estimate “Moulin et al.” is based on comparing the reflectance of dust
clouds (as observed with space-borne sensors) with the size distribution described above and
various combinations of m̃ and the vertical distribution of the dust. (In contrast to weakly
absorbing aerosols, for strongly absorbing aerosols like dust, the reflectance is considerably
influenced by its vertical distribution.) For these two refractive indices and the three size
distribution models, we have six individual cases: “BDS1”, “BDS2”, and “BDS3”, which
use the Patterson mi along with size distributions “1” “2”, and “3”; and the corresponding
“BDB1”, “BDB2”, and “BDB3”, which use the Moulin et al. mi. Figure 4.18 provides ω0

and extinction coefficient spectra and Figure 4.19 provides examples of the phase function
for these dust models using 1.53 for mr. These were computed assuming that the particles
are spherical, which is a poor assumption for dust. Of primary importance here is the fact
that for the BDS and BDB models, the extinction coefficient spectrum and the scattering
phase functions are essentially identical, i.e., they do not depend in any important way
on mi. Note also that these parameters are quite similar to similar parameters for the
earlier models: Haze C; Shettle and Fenn; and Smirnov et al. In contrast, ω0 is strongly
dependent on mi and unlike the Shettle and Fenn models it decreases from the red to the
blue rather than increasing (Figure 4.12). Thus, the main difference between the optical
properties of dust and other aerosols is the former’s strong decrease in single scattering
albedo from near unity in the red to values close to 0.80 in the blue portions of the visible
spectrum. As we shall see later, in contrast to the aerosols discussed earlier, for aerosols
that are strongly absorbing like dust, the radiance reflected from the ocean-atmosphere
system is strongly dependent on their vertical distribution. The presence of dust, which
can be mixed to altitude of 5-6 km, considerably complicates the analysis of ocean color
as observed from space.
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Figure 4.17: Two models of the imaginary part of the refractive index of Saharan
dust, as discussed in the text.
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Figure 4.18: Spectra of the extinction coefficient (left) and ω0 (right) for the
dust models described in the text. The extinction spectra for the BDS models
(not shown) are virtually identical to the BDB models. The lines are not the fits
to Angstrom’s law as in earlier figures. The extinction coefficients do not follow
Angstrom’s law as well as the earlier models. Regression gives p = 0.3109, 0.2812,
and 0.2538, and R2 = 0.9812, 0.9818, and 0.9824, for BDB1, BDB2, and BDB3,
respectively.
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Figure 4.19: Phase functions at λ = 865 nm for the BDB1 and BDB3 dust models.
The associated BDS models are identical to these on the scale of the drawing.

4.3.3.5 Stratospheric Aerosol Models

The models discussed so far are for aerosols in the troposphere: the surface to 8-10 km.
(More on the vertical distribution of aerosols in the atmosphere later.) However, aerosols
also exist in the stratosphere: a layer extending from approximately 10 to 50 km. With the
exception of a very dilute background stratospheric aerosol (which is of little consequence
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to remote sensing), the principal components of the stratospheric aerosol are volcanically
injected particles and gases and thin cirrus clouds.

Volcanic eruptions can inject gases and particulate debris to great heights in the atmo-
sphere. The large particles settle out quickly; however, the smaller particles as well as the
aerosol created by condensing gases mixed with water vapor (principally H2SO4) can re-
main in the stratosphere for a few years, and generally spread over the entire globe. Global
mean stratospheric optical thicknesses (550 nm) from a strong eruption are in the range
0.05-0.15, comparable to the optical thickness of a clean maritime atmosphere (Section
@.3.3.3). A well-studied example is El Chichon (Chiapas, Mexico) which erupted March
28 to April 4, 1982. Three months after the eruption, spectra of aerosol optical depth at
the Mauna Loa Observatory (Hawaii, altitude 3397 m) showed a maximum of about 0.25
at 500 nm. Although the Observatory is actually in the troposphere, as we shall see in the
(pure) maritime environment, most of the aerosol is near the surface (altitude ∼ 0-1 km),
so the measurement contains very little tropospheric aerosol. Note that this optical depth
is much higher than the global averages mentioned above, as the aerosol had yet to spread
globally. Inversion of the optical depth spectrum, using methods similar to those described
in Sections @.3.1 and @.3.3.3, and assuming spherical particles of composition 25% water
and 75% H2SO4, found that the columnar particle size distribution fit the modified gamma
distribution:

dN
d`nR

= CR(1−3b)/b exp[−R/(ab)],

where R is the particle radius, rather well for a = 0.4 µm and b = 0.064.10 Using this
size distribution, the refractive index of the H2O – H2SO4 mixture (∼ 1.42 − 0.0i), and
Mie theory, yields the extinction spectrum and the scattering phase functions provided in
Figure 4.20. Of course, the extinction spectrum was already known, as it was used to derive
the size distribution; however, the phase function was not measured, and in a very direct
sense, is a product of the measurement of the extinction spectrum. Note the departure of
the extinction spectrum from Angstrom’s law, even to the extent of decreasing extinction
with decreasing wavelength for λ <∼ 550 nm. This effect is due to the narrowness of the
size distribution which also causes the considerable variation of the phase function with λ
for Θ >∼ 120◦.

Cirrus clouds are composed of ice particles, which in general have the shape of hexagonal
cylinders that are large compared to the wavelength. Their scattering can be computed

10If N0 is the total number of particles (in the column above the observations), then

C = N0
(ab)−x

Γ(x)
,

where x = (1 − 2b)/b and Γ is the gamma function. The modal radius RM = (1 − 2b)a, which for the
retrieved parameters is 0.35 µm. For the modified gamma distribution, Reff = a and veff = b.
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from a combination of geometrical optics and diffraction theory (Chapter 3). Assuming
the particles are in random orientation and m̃ ∼ 1.31 − 0.0i, the resulting phase function
is shown in Figure 4.21. The sharp maxima at Θ ∼ 22◦ and 46◦correspond to the light
entering one face of the hexagon and exiting another face (22◦), and the light entering
one face of the hexagon and exiting through the base of the column (46◦). They give
rise to often-observed atmospheric phenomena such Sun dogs, Sun halos, etc. Because the
particles are large compared to the wavelength, the extinction is essentially independent
of wavelength over the visible and NIR portions of the spectrum. This observation and
Figure 4.21 can be considered first-order approximations for examining the effects of thin
cirrus clouds on radiative transfer in the atmosphere.
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Figure 4.20: Spectral variation of the extinction coefficient (left) and the phase
function (right) for the El Chichon aerosol.
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Figure 4.21: Scattering phase function for cirrus clouds at 555 nm.
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4.3.4 Aerosol Vertical Structure

As suggested in the last section, aerosols exist at all altitudes in the atmosphere from
the surface to the stratosphere. However, it is important for us to understand how the
bulk of the aerosol is typically distributed with altitude. Although measurements have
been made from aircraft and from ship- and island-based LIDAR (Light Detection and
Ranging) instruments, for our purposes we will discuss data provided by the Lidar-In-space
Technology Experiment (LITE). LITE was a three wavelength LIDAR (355, 532, and 1064
nm) flown on the Space Shuttle (STS-64), September 9-20, 1994. Light pulses emitted
from the laser enter the top of the atmosphere and are backscattered from air molecules
and from aerosols (and clouds). The time delay between the initial pulse and the return
provide the distance from the LIDAR instrument and the scatterer, or equivalently the
distance from the scatter to the sea surface.11

For examples of the vertical distribution of aerosols over the oceans, we show samples
of data from several LITE orbits over the North Atlantic Ocean. The LITE orbits to be
examined are shown in Figure 4.22. We will discuss orbits 115, 116, and 117. All of these
orbits occurred during the time of a Saharan dust outbreak, and the portions of the orbits
colored in red are over regions containing dust. The northern portion of orbit 115 (colored
black) is free of dust and characteristic of a clean maritime environment. Figure 4.23 shows
the LIDAR return from the northern portion of orbit 115. What is shown in the figure is
proportional to the returned power as a function of altitude (see color scale at the top). At
an altitude of 20 km almost all of the return is due to Rayleigh scattering by the air and
background stratospheric aerosol. At this period of time there was little volcanic aerosol
in the stratosphere. The Rayleigh return (proportional to the atmospheric pressure, Eq.
(4.8)) increases with decreasing altitude; hence, the gradual change in color from deep blue
to a pale blue progressing downward from 20 to 5 km. The backscattered return increases
dramatically at altitudes below about 1 km (the height of the marine boundary layer). In
this layer the return is principally from clouds and aerosols. The cloud return is white
(signal > 3203) in the figure (very strong backscattering with little return from below the

11Let the laser source be located at an altitude H above the sea surface. Then, given the definition of
the volume scattering function in Chapter 2 (β(Θ) = dJ(Θ)/E0dV ), the power dPb(z) backscattered from
a layer of thickness dz located at an altitude z above the sea surface is easily found to be

dPb(z) =
β(180◦) exp[−2

∫H−z
z

c(z)dz]

(H − z)2
ARPL dz,

where AR is the area of the receiver and PL is the power emitted by the laser. The exponential term
accounts for the attenuation of the laser pulse on its way to the target and the return signal from the target
to the receiver. Now, the laser pulse emitted at time t0 will be received at time t = 2(H − z)c`, where c` is
the speed of light. Therefore, dz = 2c`|dt|, where |dt| is the time interval over which the return is measured,
so if the scattered return is broken into small time intervals, and c(z) is not too large, this provides a direct
measurement of β(180◦) as a function of z.
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clouds) and the aerosol is in the return power range of 985-1791. This figure shows that
in a clear maritime regime most of the aerosol is located in the marine boundary layer
(altitude <∼ 1 km. In contrast, Figure 4.24 shows the return from the portions of the
three orbits that contain Saharan dust. For orbit 115, the returns from latitudes greater
than about 20◦ originate over water, while those from lower latitudes are over land. Note
the particularly strong return from altitudes between about 1 and 5 km. This is from the
dust (close to the source). There is essentially no LIDAR return from below about 10 km
at the extreme right of the image, with almost all of the return coming from about 14
km. Here clouds exist that are almost opaque to the laser and to its return. This is a
characteristic of optically thick clouds. Thin cirrus clouds are not optically thick and there
is return from below the cloud. An example of thin cirrus is the strong return at a latitude
of ∼ 17.6◦ where the backscattering from below is clearly unaffected. The returns from
orbits 116 and 117 show the spread of the dust across the Atlantic. For most of its journey
across the ocean the dust is in a layer between the marine boundary layer and about 5 km.

Figure 4.22: Orbital map for STS-64 carrying the LITE instrument. In the fol-
lowing figures we examine data from orbits 115, 116, and 117. From LITE web
site: https://www-lite.larc.nasa.gov/n saharan dust.html.

The LITE data are characteristic of aerosol vertical structure over oceans. In clean
regimes, where the aerosols are in large part locally generated, they are generally confined
to the marine boundary layer, while aerosols like dust that is generated over land and
transported over the water by the winds are usually in a layer above the boundary layer
and below the stratosphere. The latter also includes aerosols derived from polluted urban
air. Dust and urban aerosols are generally strongly absorbing in some or all of the visible
spectrum. Cirrus clouds are generally in the stratosphere. These LITE data suggest
that for situations in which viewing the sea surface from space is possible (i.e., in the
absence of cloud cover), and in the absence of volcanic aerosol, dust or urban pollution,
for optical purposes the atmosphere can be modeled as a 2-layer system, with aerosols and
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air (Rayleigh scattering) in the lower layer and air alone in the upper layer. If volcanic
aerosols, dust (and/or urban pollution), and cirrus clouds need to be taken into account,
then a 3-layer model would be appropriate with air and dust (and/or urban pollution) in
a middle layer and air and cirrus and/or volcanic aerosol in the top layer.p53c_115_6.gif (GIF Image, 1135x694 pixels) http://www-lite.larc.nasa.gov/lite34/ch_532/p53c_115_6.gif

1 of 1 9/8/11 12:08 PM

Figure 4.23: LITE backscattering return for the northern portion of orbit 115
over the open ocean: The horizontal axis is latitude and longitude. From the left
to the right, latitude goes from 36.5◦N to 31.4◦N, and longitude from 30.6◦W
to 25.6◦W in 0.5◦increments. The vertical axis is the altitude of the return
from 0 to 20 km in increments of 5 km. The color scale at the top provides
a measure of the intensity of the backscattered return. From LITE web site:
https://www-lite.larc.nasa.gov/n saharan dust.html.

4.4 Absorption by Gases in the Atmosphere

We now describe the absorption of gases in the atmosphere. As we shall see, gaseous
absorption is usually confined to narrow (compared to the whole visible spectrum), well-
defined spectral regions, which are to be avoided in remote sensing systems designed to
view water bodies. Thus, gaseous absorption is less important than gaseous scattering or
aerosol scattering and absorption. Exceptions are NO2 and O3. For these, the absorption
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is more broad band, but fortunately consists of narrow, weakly absorbing spectral features,
which for a typical remote-sensing spectral band, is manifest as a simple, small increase in
the total optical thickness of the atmosphere in the band.

o115.gif (GIF Image, 1135x494 pixels) http://www-lite.larc.nasa.gov/saharan_dust_gifs/o115.gif
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o116.gif (GIF Image, 1135x494 pixels) http://www-lite.larc.nasa.gov/saharan_dust_gifs/o116.gif
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o117.gif (GIF Image, 1135x494 pixels) http://www-lite.larc.nasa.gov/saharan_dust_gifs/o117.gif

1 of 1 9/8/11 11:56 AM

Figure 4.24: LITE backscattering return for the portions of orbit 115, 116,
and 117 labeled in red in Figure 4.22: top orbit 115; middle orbit 116; bot-
tom orbit 117. The horizontal axis is latitude and longitude. From the left to
the right, latitude goes from 29.0◦N to 24.6◦N, and longitude from 23.6◦W to
12.2◦W, for orbit 115; latitude from 25.0◦N to 8.4◦N, and longitude from 43.1◦W
to 32.3◦W for orbit 116; and latitude from 25.0◦N to 8.4◦N, and longitude from
65.8◦W to 55.0◦W, for orbit 117. The vertical axes are the altitude of the re-
turns from 0 to 15 km in increments of 5 km. The color scale at the top provides
a measure of the intensity of the backscattered return. From LITE web site:
https://www-lite.larc.nasa.gov/n saharan dust.html.
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4.4.1 General Properties of Gaseous Absorption.

In Chapter 1 we found that for radiation traversing a medium the imaginary part (absorp-
tive part) of the refractive index for a transition from a single quantum state i to a single
state j was given by (Eq. (1.31)

mi =
1

2ε0

fijγijω

(ω2
ij − ω2)2 + (γijω)2

(ni − nj),

where ni and nj are the number densities of atoms (molecules) in the lower i and upper j
states, respectively, and ωij = 2π(ej − ei)/h, where ej and ei are the energies of the two
states with ej > ei. Note here that i and j refer to the full set of quantum numbers needed
to specify each state. The absorption coefficient a was (Eq. (1.26))

a(ω) =
4πmi

λv
=

2ωmi

c`
,

where c` is the speed of light, so

a(ω) =
1

2c`ε0

fijγijω
2

(ω2
ij − ω2)2 + (γijω)2

(ni − nj).

Note that a is for the given transition i → j only. Absorption features such as those
described by the equation above are referred to as absorption lines, the term originating
from the fact that in spectrographs, light enters through a slit and, after traversing a
dispersing element (prism or diffraction grating), appears as a “line” (the image of the slit)
on a photographic plate placed in the focal plane of the instrument.

From statistical thermodynamics we know that at thermal equilibrium ni = C exp[−ei/kT ],
where C is a constant. If n is the total number of atoms (molecules) per unit volume, then

ni − nj = n
(

exp[−ei/kT ]− exp[−ej/kT ]
)
/Z,

where Z is the partition function:12

Z =
∑

All i

exp[−ei/kT ].

12This is easy to show. Since ni = C exp[−ei/kT ], and ni/n = P(ni), the probability of ni, we have∑
All i

P(ni) = 1 =
C

n

∑
All i

exp[−ei/kT ] =
C

n
Z.

Thus C = n/Z and the result follows.
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Unless ω ≈ ωij , a(ω) is small, so we can use the approximation

(ω2
ij − ω2) = (ωij − ω)(ωij + ω) ≈ 2ωij(ωij − ω)

to find

a(ω) =
1

2cε0

fij/γij
X2(ω) + 1

(
exp[−ei/kT ]− exp[−ej/kT ]

)

Z
n, (4.18)

where X(ω) = 2(ωij − ω)/γij . It is important to note that a(ω) ∝ n, in fact, so important
that we define the absorption cross section, σa(ω), such that a(ω) , σa(ω)n, and so

σa(ω) =
1

2cε0

fij/γij
X2(ω) + 1

(
exp[−ei/kT ]− exp[−ej/kT ]

)

Z
.

Again, note that σa(ω) as defined here refers only to the transition from quantum state
i to quantum state j, and is a property of the atom (molecule) alone, independent of the
number of gas atoms (molecules) present.

Consider an absorption cell of length ` containing the gas (uniform density). Then the
transmittance of a beam of radiation of angular frequency ω (close to ωij) through the cell
is given by

T (ω) = exp[−a(ω)`] = exp[−σa(ω)n`] , exp[−τabs(ω)],

where τabs(ω) is the absorption optical thickness or the absorption optical depth at angular
frequency ω. Thus the absorption optical thickness τabs is the absorption cross section
(m2/molecule) times n` (molecules/m2). If the beam has a cross sectional area A, then
n`A is the the number of molecules traversed by the beam.

As there are many different (and sometimes bewildering) alternate ways of describing the
quantities that go into the determination of τabs, it is worthwhile to digress and examine
some of the more common ones. Often the cross section, rather than being specific to
one molecule, is specific to the mass, i.e., σ∗a , σa/m (m2/kg), where m is the mass of
an individual molecule of the gas. Defining n∗ = mn (the actual mass density of the gas
in kg/m3) the optical thickness in this case is σ∗an

∗`, with ` in meters. In determining
the absorption properties of gases, spectroscopists usually measure the transmittance of
gas in an absorption cell of length `. Treating the gas in the cell as ideal, n = P/kT ,
so n` = P`/kT . It is common for them to measure P in atmospheres and ` in meters,
in which case a given amount of gas is referred to by P` in units of meter-atmospheres,
with a reference temperature specified. Then σ∗∗a , σa/kT is specified in units meter-
atmospheres−1, and the absorption optical thickness is σ∗∗a P`. The number density of an
ideal gas at a pressure of 1 atmosphere and a temperature of 273◦K is 101325 N/m2/(1.38×
10−23J/molecule◦K×273◦K) = 2.69×1025 molecules/m3. Thus, measuring ` in meters, 1
meter-atmosphere is equivalent to n` = 2.69×1025` molecules/m2 at atmospheric pressure
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and a temperature of 273◦K. Also, a beam of cross sectional area A (in m2) will traverse
n`A = 2.69×1025`A molecules. If all lengths are measured in cm, then n`A = 2.69×1019`A
molecules, which corresponds to an amount of gas equivalent to 1 cm-atmosphere, i.e.,
n = 2.69×1019 molecules/cm3 when P` = 1 cm-atm. One way of specifying gas abundances
in the atmosphere is to imagine all of the gas molecules in an atmospheric column to be
brought to the Earth’s surface at atmospheric pressure and a temperature of 273◦K. The
resulting volume of gas molecules would have a height H in cm, and the gas abundance
would be specified as H cm-atmospheres. A familiar unit of abundance for those who study
Ozone in the atmosphere is the Dobson Unit (DU): 1 DU = 10−3 cm-atmospheres and is
equivalent to 2.69×1016 molecules/cm2. The abundance of Ozone in the atmosphere is ∼
200-400 DU.

It has been assumed in most of this section that the gas has a uniform number density;
however, in the atmosphere this is not true. When the density is non-uniform, it is useful
to explicitly note that it is a differential quantity, i.e., n = dη/dV , where dη is the number
of molecules in a small volume dV . Thus, in an inhomogeneous medium, where the path
through the medium is from `1 to `2, the optical depth is

τabs(ω) = σa(ω)

∫ `2

`1

dη(`)

dV
d` = σa

∫ `2

`1

n(`) d`,

or dτabs = σan(`) d`. The total number of molecules (NTotal) in a vertical column of air
with base area A is

∫ ∞

0

dη(h)

dV
dh =

1

A

∫ ∞

0

dη(h)

dh
dh =

1

A

∫ ∞

0
dη(h) =

NTotal

A
,

where h is the altitude.

We have yet to discuss the line width γij . Note from Eq. (4.18) that a(ω) is reduced to
half of its value at the absorption maximum (ω = ωij , or X(ω) = 0) when X(ω) = ±1, i.e.,
when ω − ωij = γij/2. Thus, the full width at half maximum (FWHM) of the absorption
profile is γij . This width arises in the classical theory in the following manner. An atom
excited by an electric field becomes a dipole oscillating with same frequency as the field.
An oscillating dipole loses energy through radiation and thus the oscillations are damped.
The line width is related to the damping constant (Chapter 1), which is given by

γ =
2

3

1

4πε0

q2ω2
0

mc3

and for an electron has the value γ ≈ 6.3× 10−24 × ω2
0, where ω0 is the natural frequency

of the oscillator. Near the center of the visible spectrum (500 nm), γ ≈ 8.9 × 107 s−1.
The oscillations of the unforced oscillator decay to exp[−1] of their initial energy in a time
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γ∆t = 1. This value of ∆t is called the natural lifetime of the oscillation and, again, for
an electron near the enter of the visible spectrum, ∆t ∼ 1.1 × 10−8 s. Here, γij = γ and
ωij = ω0.

In the quantum theory, the transition from i → j takes place over a finite amount of
time ∆t. By virtue of the Heisenberg uncertainty principle, this time interval leads to a
spread in energy difference ej − ei, ∆e ∼ h/(2π∆t), which in turn leads to a spread in
∆ωij ∼ 1/∆t, i.e., the transition from i to j is smeared out over an angular frequency
range of ∼ 1/∆t. The quantity ∆ωij , is also called the natural line width. Comparing
this with γij , we see that, as in the classical theory, γij ∼ 1/∆t, and is a property of the
individual atom (molecule) alone, independent of its environment.

The situation is different when the gas molecules are at a high enough density that there
are collisions between individual molecules. Collisions during the process of absorption
and/or emission of radiation also cause shifts in the energy levels which in turn leads to
a further broadening of the absorption profiles (think of it as a broadening of the energy
levels). Typically, the broadening associated with collisions is much larger than the natural
line width, γij , and of course depends on the environmental conditions. The question of
the broadening of absorption features by collisions is a very difficult and not yet totally
solved problem of quantum physics. In the following, we try to provide simple classical
arguments to suggest how the width of absorption features might depend on environmental
conditions.

Consider an atom (molecule) moving with speed v through the medium. Fix the position
of all of the other atoms. If each atom is taken to be a sphere with diameter D, then the
closest that two atoms can pass one another without colliding is 2D. Now fix all of the
other atoms, except the one in question, in position and shrink them to zero size, while
doubling the diameter of the one in question. This atom will collide with the fixed ones
at the same rate that it would if they all had the same diameter D. In a time interval
δt it will sweep out a volume V = πD2vδt. This volume will contain nV atoms. In time
δt there will be nvπD2δt collisions. Thus, the average collision rate will be nvπD2, or
the average time between collisions will be (nvπD2)−1. Assume the atom starts to absorb
radiation just after one collision has taken place. Then, on the average, there will be
another collision within a time interval ∆t = (nvπD2)−1. During collisions, the energies ei
and ej are changed, and for a given radiation frequency ω the absorption is disrupted. As
with the uncertainty principle above, this results in a spectral width γ ∼ 1/∆t = nvπD2.
According to the the equipartition of energy theorem (the average translational kinetic
energy of an atom or molecule is 3kT/2), 〈v2〉 = 3kT/m, so the average speed is of the
order of

√
3kT/m. Also, n = P/kT , so γ ∼ P/

√
T . If γ is measured at P0 and T0 yielding

γ0, then γ = γ0

√
T0/TP/P0. Because γ is proportional to pressure, this type of broadening

is usually referred to as “pressure broadening.”
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There is another source of line broadening: Doppler broadening. Atoms (molecules)
in a gas are in continuous motion. Those moving toward an observer will emit a higher
frequency of radiation than those stationary relative to the observer by an amount ωijv/c`,
where v is the component of the atom’s velocity in the direction of the observer. This is the
Doppler effect. Likewise those moving away from the observer will emit a lower frequency.
The same happens for absorption: atoms moving toward the light source will have their
ωij ’s increased, while the opposite is for those moving away. Since all of the atoms are in
random motion, the emission and absorption lines will be broadened by the Doppler effect.
Since the Doppler effect depends on the atom’s velocity, and the average speed is ∝

√
T ,

the line width is also proportional to the square root of temperature. This broadening is
relatively unimportant in the atmosphere because the temperature is low and the variation
in temperature is small.

Finally, in most remote sensing situations, the scene is viewed through an optical filter
of some type which passes a band of radiation of frequency ∆ωrs, that is much greater
than FWHM of any gaseous absorption line in the atmosphere. Thus, it is important to
know how the transmittance of a path through the gas varies when viewed through such a
filter. The mean transmittance can be defined as

〈T 〉 , 1

∆ωrs

∫

∆ωrs

T (ω) dω =
1

∆ωrs

∫

∆ωrs

exp[−σa(ω)n`] dω,

with

σa(ω)n` =
1

2cε0

fij/γij
X2(ω) + 1

(exp[−ei/kT ]− exp[−ej/kT ])

Z
n` ,

τc
X2(ω) + 1

,

where τc is the optical thickness at the center (ω = ωij) of the absorption line: τc =
σa(ωij)n`. Then,

〈T 〉 =
1

∆ωrs

∫

∆ωrs

exp[−τc/(X2(ω) + 1)] dω =
γij

2∆ωrs

∫

∆ωrs

exp[−τc/(X2 + 1)] dX

This integral can be evaluated numerically, but it is useful to have some analytical expres-
sions in certain limits. To effect this, one would like to extend the integration limits from
∆ωrs to ±∞; unfortunately, if this is done the integral diverges at both limits (because the
integrand → 1 as X → ±∞). This can be remedied by removing the divergences through
computing the average absorptance 〈A〉 = 〈1 − T 〉, for which the integral is convergent
when the limits are extended:

〈A〉 =
γij

2∆ωrs

∫ ∞

−∞

(
1− exp

[
− τc

(X2 + 1)

])
dX. (4.19)

We will examine two limits: small τc and large τc.



322 CHAPTER 4. ATMOSPHERIC OPTICAL PROPERTIES

For small τc the exponential can be expanded and keeping the first nonzero term results
in

〈A〉 → γij
2∆ωrs

∫ ∞

−∞

τc
(X2 + 1)

dX =
πγij

2∆ωrs
τc. (4.20)

Now, we can define an effective optical depth 〈τabs〉 for the observation passband ∆ωrs
through

〈A〉 = 1− 〈T 〉 = 1− exp[−〈τabs〉] ≈ 〈τabs〉,
with the last step following from the fact that if 〈A〉 is small, 〈T 〉 must be close to unity.
Thus, the final result is that when τc is small,

〈τabs〉 =
πγij

2∆ωrs
τc =

πγij
2∆ωrs

σ(ωij)n` (4.21)

so the effective optical depth 〈τabs〉 is proportional to n`. This is very important as it shows
that for weak absorption lines, the broad-band transmittance is an exponential function of
` or 〈τabs〉 (see below).

For large τc (strong absorption) Eq. (4.19) still holds, but now in X2 + 1 the “1” is of
consequence compared to X only over a negligible portion of the integral. This, we can
drop the “1” with little error and get

〈A〉 → γij
2∆ωrs

∫ ∞

−∞

(
1− exp

[
− τc

(X2)

])
dX =

γij
2∆ωrs

√
τc

∫ ∞

0

(1− exp[−y])

y(3/2)
dy,

where y = τa/X
2. The value of the integral is 2

√
π, so

〈A〉 = (γij
√
π/∆ωrs)

√
τc, and 〈T 〉 = 1− γij

∆ωrs

√
πτc. (4.22)

(Note that the unphysical fact that it appears that 〈T 〉 can be negative is an artifact of
the extension of the limits to ±∞.) Notice that now it doesn’t even make sense to define
an effective absorption optical depth, the transmittance is no longer exponential in τc.

The broad-band absorption coefficient would normally be defined as

ars = − 1

〈T 〉
d〈T 〉
d`

=
1

1− 〈A〉
d〈A〉
d`

.

In the weak absorption limit, this is

ars =
πγijσa(ωij)n/(2∆ωrs)

1− πγijσa(ωij)n`/(2∆ωrs)
→ πγij

2∆ωrs
σa(ωij)n,

which is constant for a given n. In the strong absorption limit,

ars =
1

2`

[ 〈A〉
1− 〈A〉

]
=

1

2`
[〈A〉+ 〈A〉2 · · · ],
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which depends on powers of
√
n and

√
`. Thus, in the weak absorption limit it is possible

to define a broad-band absorption coefficient, which depends linearly on n, while in the
strong absorption limit this is not possible; however, even in the strong absorption limit
one can define a meaningful absorption coefficient if small enough spectral intervals (δω �
γij) are chosen, i.e., sufficiently small spectral regions in the absorption line still undergo
exponential absorption. In the case of weak absorption, the broadband radiance will still
be governed by the radiative transfer equation developed in Chapter 2, with τabs given by
Eq. (4.21). In the strong absorption limit this is no longer the case, and the radiative
transfer equation must be solved individually for each increment in frequency δω � γij .
This underscores the difficulty encountered in radiative transfer in spectral regions with
strong absorption lines. Fortunately, we encounter such situations in ocean remote sensing
infrequently.

4.4.2 Vertical Distribution of Principal Absorbing Gases in the Atmo-
sphere

The principal absorbing gases in the atmosphere of importance to ocean color remote sens-
ing are H2O, NO2, O3 and O2. Water vapor is important because it is a strong absorber
in the visible and NIR regions and thus must be avoided. The other gases all absorb in
spectral regions in which the ocean is viewed and careful account must be taken of their
absorption. Figure 4.25 provides typical profiles of these gases as a function of altitude
according to the U.S. Standard Atmosphere. Note that the O2 density is ∼ 21 % of the
“Total” or “Density” in the top left and right panels, respectively. The “Tropical” and
“Subarctic Winter” are provided to suggest a seasonal/geographical range of variation.
Note that the water vapor is concentrated in the troposphere, while the Ozone is concen-
trated in the stratosphere. This reflects the distribution of their sources. In contrast, NO2

is more uniformly distributed with significant concentrations in both the troposphere and
the stratosphere. A principal source of NO2 in the troposphere is pollution, and this will
be the source that is most interesting for our purposes.

4.4.3 Absorption Spectra of Atmospheric Gases

All of the absorbing gases in the visible and NIR are molecular rather than atomic. To
lowest order, the individual energy levels (states) of molecules can be divided into rotational
states, vibrational states, and electronic states. The separation between adjacent energy
states of any of these components ∆ex, where x = Rot (rotational), Vib (vibrational) and
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Figure 4.25: Concentration profiles of various gases in the atmosphere (upper left)
under average conditions. Variation of the concentration of air (upper right), Ozone
(lower left) and water vapor (lower right) typically observed in the atmosphere. For
the curves in the lower two figures, the total column concentrations of Ozone (left)
are 277, 376 and 343 DU, and H2O (right) are 4.22, 0.423, and 1.45 g/cm2, for the
“Tropical,” “Subarctic Winter” and “U.S. Standard,” respectively. In the top left
panel, the column concentration of NO2 is 0.207 DU.

Elect (electronic) typically follows

∆eRot � ∆eVib � ∆eElect.

Transitions that can occur between adjacent energy states are in the far infrared (20 µm to
1000 µm) for adjacent rotational states, in the spectral range 1 µm to 10 µm for the adjacent
vibrational states, and in the visible and ultraviolet for adjacent electronic states. (Note,
these are coarse wavelength assignments.) If we indicate quantum states by nRot, nVib,
nElect, where the n’s represent the collection of quantum numbers needed to specify the
quantum state, then some of the quantum numbers must change during the transition or
the oscillator strength associated with the transition will vanish. For rotational transitions
only nRot changes, for vibrational transitions nVib and nRot but nElect does not change, and
for electronic transitions nElect must change while nRot and nVib may or may not change.
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Other than translation, the possible motions of the atoms in a diatomic molecule are
particularly simple. They can rotate (more or less rigidly) about two mutually perpendic-
ular axes through the center of mass, and their interatomic spacing (separation) can vary
(vibration). Their energies can be well approximated by

e(J, v, nElect) = B(v, nElect)J(J + 1) + hν

(
v +

1

2

)
+ eElect, (4.23)

where J and v are positive integers, B is called the rotational constant, B = h2/(8π2I),
ν is the natural frequency of of vibration of the molecule, h is Planck’s constant, and I is
the moment of inertia with respect to the center of mass of the molecule in the vibrational
state v and electronic state nElect. The quantum numbers J and v are called the rotational
and vibrational quantum numbers, respectively. The angular momentum of rotation is
proportional to

√
J(J + 1). Quantum mechanics tells us that unless the molecule has a

permanent dipole moment only energy changes with ∆J = ±1 and ∆v = ±1 are induced
by interaction with an electromagnetic field, i.e., fij 6= 0. Consider a situation in which
nElect → n′Elect, J changes by ±1, and v increases by 1. In general B(v, nElect) will not be
the same for both values of nElect and v, but will be nearly independent of v. The energy
change is

∆e = ∆eElect + hν ±Bm+ ∆Bm2, m = 1, 2 · · · ,
where

B = B(v + 1, n′Elect) +B(v, nElect), and ∆B = B(v + 1, n′Elect)−B(v, nElect),

and m is the j-value of the lower state. Radiation of frequencies centered at

ω =
2π∆e

h
=

2π∆eElect

h
+ 2πν ± 2π

h
Bm+

2π

h
∆Bm2, m = 1, 2 · · · , (4.24)

will be absorbed, resulting in a series of absorption features that are symmetrically spaced
about ω = 2π∆eElect/h+ 2πν when ∆B = 0. When ∆B 6= 0 there will be a maximum or
minimum frequency absorbed depending on whether ∆B < 0 (maximum) or ∆B > 0 (min-
imum). Such spectra are usually referred to a “band spectra” as they had the appearance
of absorption bands on photographic spectrograms taken at low spectral resolution.

In molecular spectroscopy the angular frequency ω is not the preferred unit to designate
emission or absorption. It is customary to use the wave number, ν̃, which is the number of
wavelengths present in 1 centimeter of length. The wave number is related to ω through

ν̃ =
1

λ
=
c`
ν

=
2πω

c`
=

2π

κ
,

where κ is the magnitude of the propagation vector in Chapter 1. In this equation, λ is
always in cm, so the units of ν̃ are cm−1, often referred to as reciprocal centimeters. The
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wave number corresponding to radiation with λ = 1µm is 10,000 cm−1. The frequencies
in Eq. (4.24) can range from the ultraviolet to the far infrared region of the spectrum.
If ∆eElect = 0, i.e., the electronic state of the molecule does not change, then the wave
number range associated with the transitions is ∼ 200 to 10,000 cm−1, and is known as
a vibration-rotation spectrum. If ∆eElect = 0 and ∆eVib are both zero, which requires
∆v = 0 and can only occur when the molecule has a permanent dipole moment as in CO,
HCl, etc., but not O2 or N2, the spectrum is in the far infrared or microwave region with
ν̃ ∼ 1 to 200 cm−1 and is called a pure rotational spectrum. The absorption spectra of
interest to for ocean color remote sensing are in the spectral region ∼ 0.4 to ∼ 2 µm or ∼
25,000 to ∼ 5,000 cm−1. These are either vibrational-rotational transitions or vibrational-
rotational in combination with electronic transitions. Again, for diatomic molecules they
are characterized by a simple absorption spectrum given by Eq. (4.24).

For molecules with more than two atoms the situation is much more complex, as there are
more than one mode of vibration. The spectra are further complicated when the molecule
is not linear as in the case of three of the gases of interest to us – H2O, NO2 and O3 – there
are three axes of rotation rather than two. These molecules have well understood spectra,
but there is no simple pattern, as in Eq. (4.24), to the spectrum. In fact, the spectral
absorption features in the individual electronic-vibration-rotation transition appear to the
eye to be located at random, and for some purposes can be treated as actually occurring
at random over a given spectral interval.

4.4.3.1 Molecular Oxygen

A high spectral resolution absorption spectrum of the atmosphere in the region near 760
nm is provided in Figure 4.26. The spectrum is obtained by measuring the atmospheric
transmission of direct solar radiation and shows a more or less regular spacing of lines.
Most of the lines are due to molecular Oxygen and this particular band is called the “A”
band. The m = 0 position, where the is no absorption feature is near 762 nm. Note that
the lines appear to get farther apart on the long-wave side of 762 nm and closer together on
the short-wave side. This happens because of the term proportional to m2 in the transition
energy occurs when ∆B 6= 0. The lines that are crowding together on the short-wave side
actually start appearing at longer wavelengths than about 759.5 nm as m increases, i.e., the
term proportional to m2 overtakes the term proportional to m. Since a maximum of ∆e or
ω occurs, ∆B < 0 for this band. The wavelength 759.5 nm, where features disappear on the
short-wave side of the crowding causes enhanced absorption (many transitions occurring
near the same wavelength), is the called the “band head.” We shall see later, two other
Oxygen absorption bands, called the “B” band and the “γ” band, are also present in the
visible region of the spectrum.
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Figure 4.26: The “A” band of Oxygen near 760 nm (1 nm = 10 Angstroms) at
very high spectral resolution.

4.4.3.2 Water Vapor

Water vapor is a significant absorber in the visible and NIR. Figure 4.27 provides an
example of the absorption spectrum of water vapor. The left panel shows the bands in
the visible and NIR, while the right panel is expanded to include the short-wave infrared
(SWIR). The concentration of water vapor is that of the U.S. Standard atmosphere (1.45
g/cm2). The spectral resolution of these spectra is 20 cm−1. This is considerably higher
than the spectral resolution of most ocean color sensors – normally 10-20 nm in the visible
and 20-40 nm in the NIR. (At 500 nm a spectral resolution of 10 nm corresponds to 400
cm−1.) Note the decreasing strength of the absorption with decreasing wavelength. The
bands in the visible, although very weak, are important because of the highly variable
nature of the water vapor concentration; however, because they are weak, the absorption
will be exponential with an optical depth that is proportional to the column concentration
of water vapor. In the NIR the bands are much stronger, and the absorption is a more
complex function of the concentration;13 however, this is of little concern to us because
spectral regions of strong atmospheric absorption are to be avoided in remote sensing

13If one assumes that there are a large number of lines in ∆ωrs, and that they all have the same fij and
γij but that their spacing are random, then it can be shown that

〈A〉 = 1− exp[−〈A〉1],

where 〈A〉1 is the value of 〈A〉 for a single isolated line. For a weak line 〈A〉1 is given by Eq. (4.20), while
for a strong line it is given by Eq. (4.22). Thus, for weak and strong lines

〈T 〉 ∝ exp[−cwτc] (weak) and 〈T 〉 ∝ exp[−cs
√
τc] (strong)

where the c’s are constants. Note that this is not the transmittance of a single ∆ωrs, but it is the trans-
mittance averaged over many ∆ωrs’s.
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applications.
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Figure 4.27: The spectrum of water vapor in the visible and NIR (left) and in the
visible, NIR, and SWIR (right). The concentration is that of the U.S. Standard
Atmosphere.

4.4.3.3 Ozone and NO2

Figures 4.28 provide the atmospheric transmittance for O3 and NO2. The concentrations
are for the U.S. Standard atmosphere. In both cases, the absorption is weak; however, as it
is broad band (and as such, unlike H2O, cannot be avoided) it must be considered in remote
sensing. In both cases, the optical thickness is proportional to the gas concentration, so
knowing the column amount provides the transmittance. The NO2 absorption appears to
be very low; however, in a highly polluted atmosphere the concentration can reach ten times
the U.S. Standard. In that case the transmittance near 400 nm decreases from ∼ 0.9965
to ∼ 0.9655, i.e., comparable to O3 near 600 nm.

4.4.3.4 Total Transmittance of the Atmosphere

The total transmittance of an aerosol-free U.S. Standard atmosphere is provided in Figure
4.29. The O2 “A”, “B” and “γ” bands have been specifically labeled. Most of the other
absorption bands are due to H2O. The regions between H2O bands and O2 bands are called
“atmospheric windows.” Remote sensing of ocean color of necessity must take place in the
atmospheric windows. The atmosphere is essentially opaque in the absorption bands near
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Figure 4.28: Left Panel: The spectrum of Ozone for a concentration equal to that
of the U.S. Standard Atmosphere, 343 DU. The spectral resolution is 20 cm−1.The
“A” band of Oxygen near 760 nm (1 nm = 10 Angstroms) at very high spectral
resolution. Right Panel: The spectrum of NO2 for a concentration equal to that
of the U.S. Standard Atmosphere, 0.207 DU. The spectrum is averaged over 1 nm
intervals.

1.4 and 1.85 µm; however, that does not mean such bands are useless. Because most of the
water is in the lower atmosphere (troposphere) observing the earth at these wavelengths
allows the observation of cirrus clouds and stratospheric aerosols, i.e., any radiance exiting
the atmosphere in these bands must have been scattered by the atmospheric components
located above the water vapor layer.
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Figure 4.29: The spectrum of aerosol-free transmittance the atmosphere in the
visible and NIR (left) and in the visible, NIR, and SWIR (right). The labeled
O2 bands from left to right are called “γ”, “B” and “A,” respectively. The gas
concentrations are those of the U.S. Standard Atmosphere.
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4.5 Simplified Model of the Atmosphere

The facts presented in this chapter suggest a simple atmospheric model as a basis for
treating the atmosphere in remote sensing applications. First, because of the strong nature
of water vapor absorption and its isolation in well-defined spectral bands (Figure 4.27) it
is expedient to just avoid these spectral regions as much as possible. By doing so we can
simply ignore H2O altogether. Second, in most open ocean situations, the aerosol is nearly
all in the marine boundary layer, i.e., below most of the atmosphere (Figure 4.23). In this
case, a good approximation is to place the aerosol in a layer by itself at the bottom of the
atmosphere, or in a layer at the bottom uniformly mixed with air molecules (producing
Rayleigh scattering). Next, through most of the troposphere the most important process
is Rayleigh scattering by air molecules, suggesting a second layer in which there is no
absorption and only Rayleigh scattering. Finally, in the stratosphere the main processes
are O3 absorption (Figure 4.25) and scattering by stratospheric aerosols and thin cirrus
clouds, suggesting a third layer for these processes. When the atmosphere is free of cirrus
and there have been no recent volcanic eruptions, the main process in the third layer is
O3 absorption. In cases involving dust (Figure 4.24) or urban pollution, the first layer
will thicken and have relatively more Rayleigh scattering than when the aerosol is confined
in the marine boundary layer. This accounts for the fact that these aerosols in general
are mixed into the troposphere and not confined to the marine boundary layer (relatively
more Rayleigh scattering in the lowest layer than when the aerosol is confined in the marine
boundary layer). When it becomes necessary to add NO2, i.e., when the concentration is
large, it can be taken into account by the addition of some absorption in the lowest layer;
however, it can usually be ignored at background concentrations (U.S. Standard).

Thus, as a starting point for discussion of the role of the atmosphere in ocean remote
sensing, our basic model will be a three-layer atmosphere: all the aerosols in the lower
layer, with some fraction of the Rayleigh scattering there as well; an aerosol-free, pure
Rayleigh scattering, middle layer, and a top layer with only O3 absorption. More complex
situations, e.g., dust, cirrus clouds, etc., will be built on this basic structure.

4.6 Concluding Remarks

Here we have reviewed the optical properties of the atmosphere that are important for the
remote sensing of the oceans. Of major importance is the scattering by the air molecules
and the scattering and absorption by the aerosol, which we described in detail. Specific
details of the absorption of the strongly-absorbing gases are of minor importance as spec-
tral regions displaying such absorption must be avoided — remote sensing is limited to the
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“atmospheric windows.” In contrast, some atmospheric windows contain weakly-absorbing
lines and they must be considered. Fortunately, the effects of regions of weak absorption
are relatively simple to deal with because the absorption is proportional to the total concen-
tration of the gas in the atmosphere. The three-layer model of the atmosphere described
above will be used in later chapters to investigate the effect of the atmosphere on the
remotely-sensed radiance and to develop a method to remove the aforementioned effects.

4.7 Appendix: Scattering of Spheres and Spheroids – A
Brief Comparison

In this chapter, and throughout most of this work, we have tried to understand the IOPs
of particles in the environment (aerosols and later, hydrosols) by assuming that they are
homogeneous spheres. Here, to provide the reader with a sense of the effect of this as-
sumption, we present a comparison between the scattering by homogeneous spheres and
homogeneous spheroids (in random orientation) with the same size distribution.14 The
calculations have been carried out using the T-Matrix method.15

The particles we examine here are spheroids with an axis of symmetry (the z-axis). In
polar coordinates (r, θ, φ), the surface of the particle is given by

1

r(θ, φ)
=

1

a

[
sin2 θ +

a2

b2
cos2 θ

]1/2

.

A useful parameter for describing the shape of the particle is ε = b/a. If the spheroid is
prolate (football-like), ε > 1; if it is oblate (disk-like) ε < 1; and if it is a sphere, ε = 1.
The size distribution we will use is the log-normal with RN = 1.182 µm and σ2 = 0.0953.
These give Reff = 1.5 µm and veff = 0.1. The particles within each size range all have the
same ε. The refractive index is taken to be m̃ = 1.53 − 0.006i, which is the mean of the
two model indices (in the text) for Saharan dust at 500 nm, the wavelength used in the
computation. Three values of ε are compared: ε = 1 (spheres); ε = 3/2 (prolate spheroids);
and ε = 2/3 (oblate spheroids). The resulting values for the scattering-related cross sections
are provided in the table below, and the scattering phase functions are compared in Figure
4.30. The total cross sections and the single scattering albedo for the spheroids are within

14The radius of a sphere having the same “size” as a spheroid is defined to be that of a sphere that has
the same projected area (πr2) as the spheroid, after the latter has been averaged over all orientations.

15The T-Matrix method was not discussed in Chapter 3. For smooth particles with a symmetry axis
(spheroids, finite cylinders, etc.) it is much more efficient (faster, often by orders of magnitude) and accurate
than the DDA, particularly when averaging over particle orientations is required. However, conceptually it
is much more complex than, for example the DDA, and is not particularly useful for particles with irregular
shapes.
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1% of The total cross sections and the single scattering albedo for the spheroids are within

ε σc (µm2) σs (µm2) ω0

2/3 12.21 10.01 0.820

1 12.30 10.14 0.825

3/2 12.21 10.04 0.822

1% of those for the sphere. The greatest effects of non-sphericity here occur in the scattering
phase function for Θ >∼ 45◦ (Figure 4.30). The figure shows that the oblate and prolate
spheroids follow similar patterns with respect to their deviation from the sphere: the sphere
scattering is larger for 45◦ <∼ Θ <∼ 100◦; smaller for 100◦ <∼ Θ <∼ 160◦; and finally, larger
for 160◦ <∼ Θ <∼ 180◦, except close to Θ = 180◦. This pattern is generally found when the
effective size parameter xeff = 2πReff/λ, is >∼ 5-8 (here, xeff = 18.8). It is one of the few
regularities in the IOPs of spheroids compared to spheres.
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Figure 4.30: rg = 1.1819 µm, σg = 0.0953. reff = 1.5 µm, veff = 0.10, m =
1.53− 0.006i, λ = 500 nm.
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4.8 Bibliographic Notes

4.2.1 Rayleigh Scattering by the Atmospheric Gas Mixture

The refractivity of atmospheric gases was taken from Zhang et al. [2008], and the King
factors for N2 and O2 from Bates [1984].

4.2.2 The Rayleigh Optical Depth

Eq. (4.9) is from Hansen and Travis [1974] and (4.10) is from Bodhaine et al. [1999].

4.3.1 Aerosol Particle Size Distributions

The power-law size distribution for aerosols was proposed by Junge [1958]. The work
referred to in Footnote 4 is Wang and Gordon [1993] and Zhang and Gordon [1997].

The fact that different size distributions can have similar-valued dimensionless optical
properties if the distributions have the same values of Reff and veff (defined in Footnote
6) is shown in Hansen and Travis [1974] and further discussed in Mishchenko and Travis
[1994].

4.3.3.1 Haze C Aerosol Model

The Haze C distribution is simply a power-law distribution truncated on both ends. It
is called the “Haze C” distribution as that was the term used by Deirmendjian [1969].
This distribution was also used by Fraser [1976] in computations of atmospheric radiative
transfer.

4.3.3.2 Shettle and Fenn Aerosol Model(s)

These models were developed for LOWTRAN 6 [Kenizys et al., 1983] and are throughly
described in Shettle and Fenn [1979]. The Coastal model was added by Gordon and Wang
[1994].

4.3.3.3 Smirnov et al. Aerosol Model

The Smirnov et al. model is developed in Smirnov et al. [2003] and the influence of wind
speed on the large fraction in Smirnov et al. [2003]. Smirnov et al. [2009] provides an
excellent discussion of the global distribution of aerosols over the ocean obtained from ship
and island measurements. The Smirnov et al. [2003] model has been adapted by Ahmad
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et al. [2010] for use in the Gordon and Wang [1994] atmospheric correction algorithm for
SeaWiFS and MODIS, replacing the Shettle and Fenn models. The AERONET network
is described in Holben et al. [1998].

4.3.3.4 Saharan Dust Models

The Patterson absorption index spectrum is developed in Patterson [1981] and the Moulin
et al. absorption index in Moulin et al. [2001]. The particle size distribution for the dust
model was developed by Shettle [1984].

4.3.3.5 Stratospheric Aerosol Models

The El Chichon aerosol size distribution was derived in Bandeen and Fraser [1982] and King
and Fraser [1983]. The cirrus cloud scattering phase function was computed by Takano
and Liou [1989].

4.3.4 Aerosol Vertical Structure

The lidar returns from LITE were taken from the LITE web site.

4.4.1 General Properties of Gaseous Absorption.

Most of this section follows directly from the classical model modified by the introduction
of oscillator strengths provided in Chapter 1. The development of the weak- and strong-line
average transmittance for an isolated spectrum line followed Goody and Yung [1989].

4.4.2 Vertical Distribution of Principal Absorbing Gases in the Atmosphere

For this section the vertical profiles in the AFGL Atmospheric Constituent Profiles were
used [Anderson et al., 1986]. The total concentrations (g/cm2) were computed by numerical
integration.

4.4.3 Absorption Spectra of Atmospheric Gases

Good discussions of molecular spectra can be found in almost any book on quantum chem-
istry. A classic is Quantum Chemistry by Eyring et al. [1944].

4.4.3.1 Molecular Oxygen

The data for the Oxygen “A” band absorption were obtained by Delbouille et al. [1973],
and were downloaded from http://bass2000.obspm.fr/solar spect.php.
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4.4.3.2 Water Vapor

The spectra displayed in this section were computed using the LOWTRAN 7 code [Kenizys
et al., 1988]. The material in Footnote 13 follows results in Goody and Yung [1989].

4.4.3.3 Ozone and Nitrogen Dioxide

The Ozone spectrum displayed in this section was computed using the LOWTRAN 7 code.
The Nitrogen Dioxide spectrum was computed using the absorption coefficients given by
Schneider et al. [1987] and Bogumil et al. [2003] and the concentration provided in the U.S.
Standard Atmosphere.

4.4.4 Total Transmittance of the Atmosphere

This was computed using LOWTRAN 7.

4.5 Simplified Model of the Atmosphere

This is the atmosphere structure used by Gordon and Wang [1994] in developing the
SeaWiFS atmospheric correction algorithm.

4.7 Appendix: Scattering of Spheres and Spheroids – A Brief Comparison

The T-Matrix code used in these computations was developed by M. Mishchenko and
downloaded from https://www.giss.nasa.gov/staff/mmishchenko/t matrix.html. A com-
plete derivation of the T-Matrix method, as well as many comparisons between the scatter-
ing between randomly oriented spheroids (and finite-length cylinders) and equal-projected-
area spheres, is provided in Mishchenko et al. [2002b].
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Chapter 5

Inherent Optical Properties
(IOPs) of Natural Waters

5.1 Introduction

In this chapter we discuss the inherent optical properties (IOPs) of natural waters. The
IOPs are important because they provide a direct link between constituent concentrations
(particulate and dissolved) and radiative transfer within, and out of, the water. The
determination of constituent concentrations is the ultimate goal of optical remote sensing
of water bodies. Thus, one needs to know what constituents significantly affect the IOPs
and to be equipped with quantitative relationships between the constituents and the IOPs.
Clearly, considering the range of water bodies one might want to examine, e.g., from the
open ocean to turbid estuaries and inland lakes, the scope of this endeavor is enormous.
To cut it down to a manageable exercise, we limit the discussion to the open ocean –
what is normally called Case 1 waters (see 5.3); however, the methodology of establishing
relationships between IOPs and constituents is essentially the same for all waters.

The scope of the chapter is as follows. First, we describe in detail the IOPs of pure
water and sea water. Then we provide a survey of the empirical relationships between the
IOPs and the principal constituents of most oceanic waters (Case 1): phytoplankton and
their immediate detrital material, both particulate and dissolved. Finally, we acquaint the
reader with models of the optics of particles, based on scattering theory (Chapter 3), that
shed light on some of the empirical relationships. We begin by formally defining the IOPs
and describing how they could be measured in the marine environment.

337
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5.1.1 Definitions

The inherent optical properties of natural water, comprising those quantities that enter into
the radiative transfer equation, were developed in Chapter 2. These are the elastic volume
scattering function β(~r, ξ̂′ → ξ̂, λ), the inelastic volume scattering function βIn(~r, ξ̂′ →
ξ̂, λE → λ), and the absorption coefficient a(~r, λ). Secondary quantities are the elastic and
inelastic scattering coefficients

b(~r, λ) =

∫

All ξ̂
β(~r, ξ̂′ → ξ̂, λ) dΩ(ξ̂)

and

bIn(~r, λE → λ) =

∫

All ξ̂
βIn(~r, ξ̂′ → ξ̂, λE → λ) dΩ(ξ̂),

respectively. The total or beam attenuation coefficient c(~r, λ) is given by

c(~r, λ) = a(~r, λ) + b(~r, λ) +

∫
bIn(~r, λ→ λx) dλx, (5.1)

where λx stands for all wavelengths to which photons at λ inelastically scatter and the
integral is over all λx.1

A fundamental property of the IOPs is that they are summable over the constituents.
By this we mean if, for example, the beam attenuation coefficient for pure water is denoted
by cw, and that of the ith constituent (i = 1→ N) is ci, then

c(~r, λ) = cw(λ) +

N∑

i=1

ci(~r, λ),

etc. The goal of this chapter is to describe the individual IOPs of the water itself and of its
constituents, and to relate the constituent concentrations (where possible) to their IOPs.
This will enable us to address a principle goal of water color remote sensing – relating the
constituent concentrations to the spectral radiance exiting the water and propagating to
the top of the atmosphere.

1The integral term here is a little tricky experimentally if one directly measures the loss of photons from
a beam after accounting for elastic scattering. If both the source and receiver are equipped with narrow
band spectral filters passing the same band of wavelengths, then any inelastic process represents a loss of
photons which is usually interpreted as absorption and therefore the measurement automatically includes
the last term. If the source has a broad spectral band and the receiver is equipped with a narrow band
filter, then some inelastically scattered light from shorter wavelengths in the source could be collected by
the receiver and the measurement interpreted as a smaller absorption coefficient. Finally, if the source is
narrow band but the receiver is broad band, the receiver could detect some inelastically scattered light at
a longer wavelength and, again the experimental result is interpreted as a decrease in absorption. Here, we
consider as “true” absorption, the “a” in Eq. (5.1), that in which the energy is lost in the optical sense,
e.g., it goes directly to produce heating or to stimulate photosynthesis, rather than reappearing somewhere
as “new” photons.
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5.1.2 Measurement Principles

There are various methods for measuring the absorption coefficient and the scattering
properties of natural waters. Here we describe the basic principles of all measurements
based on their operational definitions. Figure 5.1 is a schematic of what might be called
a c-β meter. In the figure photons are emitted from a “point” source P and pass through
a filter F1 to select a band of wavelengths ∆λ around a central wavelength λ. The light
is then rendered into a collimated (parallel) beam by lens L1. In the absence of scattering
and absorption in the path between lenses L1 and L2, the beam is brought to a focus
at the position of S1 (“S” stands for “stop”), passes through the small hole in the stop
and the filter F2 and is measured at the radiation detector D1. The filter F2 is identical
to F1. In this configuration, essentially all of the power passing through lens L1 will be
recorded by the detector D1. Now, let the space between the two lenses be occupied by an
absorbing-scattering medium. Clearly, photons from P that are absorbed in the medium
will not reach the detector, so the power will fall when the medium is added. Photons that
are scattered will also cause the power reaching the detector to fall. Consider the dashed
ray from the source. If a photon along this ray is scattered through a small angle but still
reaches L2 (as shown), it will not pass through the hole in the stop S1 and is not recorded.
In the limit that the size of the hole in stop S1 goes to zero, any photon that is scattered
(or absorbed) between the two lenses will not reach D1. Thus, by recording the power
detected in the absence and presence of the medium we can measure the beam attenuation
coefficient of the medium, c at the wavelength λ (Eq. (5.1)). You might wonder why
both F1 and F2 are needed. They are both needed because of the possibility of inelastic
processes in the medium. For example, if F1 were omitted the some wavelengths from the
source might cause the medium to fluoresce, which would create photons within the space
between the two lenses, and some of these could be detected by D1. Conversely, if F2 were
omitted, photons fluoresced from excitation at λ could reach the detector. Both of these
processes would cause the measurement of c(λ) to be too small.

The optical arrangement in the upper left of the figure is a radiometer aimed to mea-
sure the light that is scattered from the beam through an angle Θ. Again the lens-stop
arrangement (L3-S2) restricts the field of view of the detector D2, which views the hole in
the stop through a filter F3. The filter F3 is identical to F1 and F2, and its purpose is
also to discriminate against inelastic scattering. The power recorded by the detector D2
when the sample is in place is proportional to β(Θ), which can be obtained by combining
it with the power recorded in D1 without the scattering medium, and with the geometry of
the apparatus allowing one to determine the scattering volume, etc. (Chapter 2). Clearly,
measurement of β(Θ) at small Θ (near 0) and large Θ (near 180◦) presents experimental
challenges.
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How do we account for the last term in Eq. (5.1), i.e., the inelastic scattering? The
obvious answer is to replace filter F3 by a series of filters with transmission wavelengths
λx greater than λ. Measurement with these filters in place would provide β(Θ, λ → λx).
Fortunately, the last term in Eq. (5.1) is much smaller than the other two and is usually
ignored or considered part of a(λ); however, when one desired to study inelastic processes,
this is how βIn has to be determined.

5.2 The IOPs of Pure Water and Sea Water

In this section we describe the IOPs of pure water and sea water in sufficient detail to be
useful in water color remote sensing. We begin by presenting the absorption coefficient,
then we describe the scattering coefficient, and finally we consider Raman scattering by
water molecules.

5.2.1 The Absorption Coefficient of Pure Water and Sea Water

Water absorbs strongly throughout much of the electromagnetic spectrum. Interestingly,
the least absorption is found in the visible (the blue actually), with increasing absorption as
one moves from the visible into the ultraviolet and the infrared. Measuring the absorption
coefficient of pure water is, in principle, simple: use an apparatus as shown in Figure 5.1
to measure c and β; compute the scattering coefficient b (Section 5.2.2) and subtract it
from c along with the loss due to Raman scattering (Section 5.2.3). Figure 5.2 provides
measurements of the absorption coefficient of pure water in the visible and Figure 5.3
in the near infrared. The minimum of absorption is seen to be approximately 420 nm
where the value is approximately 0.0044 m−1. To appreciate this number note that the
transmission of 1 m of pure water (ignoring scattering) at 420 nm would be 99.56%, 10 m
– 95.7%, and 100 m – 64.4%. Clearly, measuring such small absorption with high precision
presents a significant challenge, requiring very large path lengths.2 As such, there is some
uncertainty in the literature as to the actual absorption coefficients near the minimum.
Another challenge is to purify the water to remove all constituents. This is particularly

2For the measurements provided here, the long path lengths are achieved by placing the water inside a
cavity with diffusely reflecting walls having very high reflectivity (> 99%) – an integrating cavity absorption
meter. The measurement method is as follows. Integrate the three-dimensional radiative transfer equation
over all solid angles and ignore inelastic process. This yields ∇ • ~F = −a

∫
LdΩ, where ~F =

∫
ξ̂L dΩ.

Integrating this over the volume of the medium and using the divergence theorem, we find
∫
S
~F • n̂ =

aV
∫
LdΩ, where S is the surface of the cavity, V the volume, and n̂ is the outward normal to the cavity.

The left hand side is the net power out of the cavity: POut−PIn. If L is totally diffuse, the integral is 4πL,
but πL is just the irradiance (power out per unit surface area) out of the cavity, so πL = POut/A, where A
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important in the UV where even a trace of dissolved organic material can cause a significant
absorption. Thus, one should consider the values provided in Figure 5.2 in the blue and
UV as upper limits, while for wavelengths greater than about 450 nm the results are
generally accepted as being quite accurate. In the near infrared there is a small linear
dependence on temperature (∼ 0.01 m−1/◦K at 750 nm) as well as salinity; however, these
would have negligible effects in remote sensing. In the visible, the temperature dependence
is ∼ 0.0001 m−1/◦K or less. The high absorption coefficients near 750 and 850 nm are
important because these wavelengths are in atmospheric “windows” (Chapter 4) and the
strong absorption by liquid water ensures that negligible radiance will exit the water at
these wavelengths (except at high concentrations of suspended material). This is important
in remote sensing for removal of the effects of the intervening atmosphere. In atmospheric
windows further in the infrared (the short waver infrared or SWIR) the water absorption is
even higher: ∼ 40 m−1 near 1.06 µm; ∼ 70 m−1 near 1.6 µm; and > 1000 m−1 near 2.2 µm.
In the SWIR there will be negligible radiance exiting the water except at extraordinarily
high concentrations of suspended material.

5.2.2 The Scattering of Pure Water and Sea Water

The volume scattering function for molecular scattering by a liquid was developed in Chap-
ter 3:

β(Θ) =
π2

2λ4
C

(
6 + 3δ

6− 7δ

)(
(1 + δ) + (1− δ) cos2 Θ

1 + δ/2

)
, (5.2)

where Θ is the scattering angle, δ is the depolarization factor,

C ,

(
∂Ke

∂ρ

)2

T

ρ2TβTkB +

(
∂Ke

∂T

)2

ρ

kBT

ρcv
,

kB is the Boltzmann constant, βT is the isothermal compressibility of water, Ke is the
dielectric constant, ρ is the density, T is the absolute temperature and cv is the specific
heat at constant volume. Simple integration of β over solid angle yields the total scattering

is the surface area of the cavity. The final result is

a =
PIn − POut

POut

A

4V
.

Thus measuring the P ’s and the shape of the cavity allows determination of a. Reiterating, the requirements
for this are that the radiance within the cavity is totally diffuse and independent of position. These
requirements can be met approximately if the absorption is not too large and the walls are lambertian with
a high reflectivity. An attractive feature of the integrating cavity absorption meter is the fact that it is
insensitive to scattering in the medium. Accurate measurements of the absorption coefficient are possible
even when the scattering coefficient exceeds the absorption coefficient by an order of magnitude or more.
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coefficient (b):

b =
8π

3

(
2 + δ

1 + δ

)
β(90◦). (5.3)

The full volume scattering Mueller matrix for water is

β(Θ) =
3b

8π

[
1− δ

1 + δ/2

]



1
2(1 + cos2 Θ) −1

2 sin2 Θ 0 0
−1

2 sin2 Θ 1
2(1 + cos2 Θ) 0 0

0 0 cos Θ 0
0 0 0 cos Θ




+
3b

8π

[
δ

1 + δ/2

]



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − cos Θ.




Most measurements of scattering by liquids involve measuring the scattering at Θ = 90◦

with some combination of polarizers in the incident and scattered beams (see Chapter 3,
Appendix 3). Direct measurements of the scattering at 90◦ by pure water are provided in
Table 5.1. There is a wide range in the laboratory measurements of δ: 0.039 to 0.09. Some

Table 5.1: Measured values of β(90◦) for pure water as a function of the wavelength
λ at ∼ 20◦C. The units of λ are nm, and β and b are m−1. The values of the latter
two have been multiplied by 104. The value of b has been computed from β(90◦)
using Eq. (5.3) with δ = 0.039.

λ 366 405 436 546 578

β(90◦) 4.53 2.90 2.12 0.835 0.660

b 74.5 47.7 34.9 13.7 10.9

of this discrepancy is attributed to the difficulty in removing all of the suspended particles
the samples. The presence of particles will influence the polarization of the scattered light
– usually increasing the depolarization. In addition, internally scattered light within the
measuring instrument will also lead to an apparent increase in the measured δ. Thus, the
smallest of the measurements (0.039) is considered to be the most reliable.

If the spectral measurements of β(90◦) in Table 5.1 are fit to a power law function of
wavelength, it is found that

β(90◦, λ)

β(90◦, 546 nm)
= 0.9998

(
546

λ

)4.2

,

where λ is in nm. The deviation from the λ−4 dependence in Eq. (5.2) is due to the
variation of the dielectric constant (refractive index) of water with wavelength.
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The scattering by sea water is influenced by the dissolved ions in the water. In each
elementary volume of water the concentration of ions undergoes fluctuation just as the
concentration of water molecules. This in turn leads to a fluctuation in the dielectric
constant of the volume and hence additional scattering. Measurements of the scattering
by sea water are provided in Table 5.2. It is seen that sea water at a salinity of 38.5 parts
per thousand (0/00) scatters about 30% more than pure water. Experiments on prepared
solutions of salts suggest that, for the range of salinities mostly encountered in natural
waters, β(90◦) is approximately a linear function of the salt concentration. This suggests
that, as long as the relative concentration of the individual salts in sea water is nearly
constant, the scattering should be a linear function of the salinity S. In fact,

β(90◦)Sea Water = β(90◦)Pure Water

(
1 + 0.3

S

38.5

)
, (5.4)

where S is in 0/00.

Table 5.2: Measured values of β(90◦) for sea water (salinity = 38.5 0/00) as a
function of the wavelength λ at ∼ 20◦C. The units of λ are nm, and β and b are
m−1. The values of the latter two have been multiplied by 104. The value of b has
been computed from β(90◦) using Eq. (5.3) with δ = 0.039.

λ 366 405 436 546 578

β(90◦) 5.87 3.84 2.78 1.08 0.86

b 96.5 63.1 45.7 17.8 14.1

Of particular interest in remote sensing is the backscattering coefficient bb defined through

bb = 2π

∫ 180◦

90◦
β(Θ) sin Θ dΘ,

because the upward propagating radiance near the surface is proportional to bb/(a + bb),
where a is the absorption coefficient. The backscattering coefficient accounts for all photons
scattered from a beam with ξ̂ • ξ̂′ < 0. Although suspended particles usually scatter much
more strongly than water itself, most of the particle scattering is in the near forward
direction, and at scattering angles Θ > 90◦ the particle and water contributions to bb can
be similar. In fact, water can even be dominate for Θ > 90◦: for the data presented in
Figure 6.1 in Chapter 6 from near Hawaii, water contributes 80% of the total bb at 400 nm
and more than 70% at 450 nm. Direct integration of Eq. (5.2) shows that bb = b/2.

Theoretical computation of β(90◦) using Eq. (5.2) is possible if the measured value of δ
is used. In the case of liquid water, the second term in C is only about 1% of the first and
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can be ignored so

C =

(
∂m2

∂ρ

)2

T

ρ2TβTkB = 4m2

(
∂m

∂ρ

)2

T

ρ2TβTkB,

where the usual substitutionKe = m2 has been used. The indicated derivative is apparently
difficult to measure in practice, so the following replacement is made,

(
∂m

∂ρ

)

T

=

(
∂m

∂P

)

T

(
∂P

∂ρ

)

T

=

(
∂m

∂P

)

T

1

ρβT
,

resulting in an easier derivative to measure. Collecting all of the terms we have,

β(90◦) =
2π2m2

λ4βT
kBT

(
∂m

∂P

)2

T

(
6 + 6δ

6− 7δ

)
, (5.5)

as the final relationship between the the scattering by liquid water and thermodynamic
properties. This equation along with the measured thermodynamic properties provide
theoretical values of β(90◦) that agree with those in Table 5.1 with a difference of <
2%. Although β(90◦) appears to increase in direct proportion to temperature (Eq. (5.5)),
n, βT , and the derivative all depend on T , with the result that β(90◦) actually has a
minimum at ∼ 26◦C with a variation of 3.7% from 0 to 26◦C. Similarly, consideration of
the thermodynamics of fluctuations in salinity results in agreement between theory and
Eq. (5.4).

5.2.3 The Raman Scattering of Pure Water

As described in Chapter 3, Raman scattering involves a frequency change from the incident
to the scattered radiation. If the angular frequency of the incident wave is ω0, the Raman-
scattered waves will have frequencies ω0±ωv, where ωv is a vibrational (angular) frequency
of the molecule (here the water molecule). It is traditional in molecular spectroscopy to
use the wave number ν rather than the frequency ω. The wave number is the inverse of
the wavelength: ν = 1/λ with λ measured in cm. Thus, the wave number corresponding to
a frequency ω is ν = ω/2πc`, where c` is the speed of light (here in cm/sec), and the wave
number of the Raman-scattered light (νN , where “N” stands for “new”) is νN = ν0 ± νv.
As discussed in Chapter 3, the scattered wave number with the “+” sign (the “anti Stokes”
line) is much weaker than that with the “−” sign (the “Stokes” line) and will be ignored in
what follows. Further, we note that although classically (i.e., as in Appendix II in Chapter
3) there is only a single value of νv, quantum effects in Raman scattering are manifest in
many, closely-spaced values of νv replacing the single value. The result of this is that the
Raman scattering, rather than producing radiation at a single wave number νN , produces
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a continuum of radiation. (However, as we shall see, there is significant power in the
continuum only over a relatively narrow spectral band.)

The definitive experiment to determine the magnitude of Raman scattering by pure
water consisted of measuring the Raman scattering by a beam at a wavelength 488 nm
(the excitation wavelength). Then, using the relationships developed in Appendix III
of Chapter 3, and measuring the scattering at various states of polarization at a given
scattering angle (in this case 90◦), allows estimation of the Raman scattering coefficient
for scattering from 488 nm to longer wavelengths. We now describe the results of this
experiment.

! ℓ̂0
!!r̂0

! ̂ℓ

!!r̂

!A

! ′A
! ′B

!B

!C

!D

! ′D
! ′C

Θ

!! 
!
S(ν0) Inc

!! 
!
S(Θ ,νN ) S

The figure above shows the experimental setup. Light, linearly polarized in the r̂0

direction, is incident on a cuvette through face CC ′DD′, and is scattered at 90◦ exiting
face BB′CC ′. The incident light has a wavenumber ν0 and has a spectral spread ∆ν0.
The scattered power has a wave number νN . Its component in the r̂ direction in a wave
number band ∆νN is measured using a monochromator equipped with a polarizer with
pass direction parallel to r̂. The Raman volume scattering function in this geometry is
given by3

βR(ν0 → νN ) =
∆2P ′(in ∆νN )/∆Ω

P ′(ν0)∆ν0∆`
,

where ∆Ω is the solid angle the detector subtends at the scattering center, i.e., the solid
angle in which the scattered light is detected, and ∆2P ′ is the radiant power per wave
number in ∆νN scattered into ∆Ω. Note that the units of βR(ν0 → νN ) are m−1Sr−1/cm−1,
where the cm−1 comes from the ∆νN in ∆2P ′. With the particular experimental setup, βR
is what we referred to as βr→r in Appendix III of Chapter 3, i.e., βR(ν0 → νN ) = βr→r(90◦).

3Unlike the definition in Chapter 2, where P (λ0) = ∆P(λ0)/∆λ0, with ∆P(λ0) being the sum of all the
time-averaged Poynting vectors in a beam of radiation (times the cross sectional area of the beam) having
wavelengths between λ0 −∆λ0/2 and λ0 + ∆λ0/2, and with units Watts/µm, here P ′(ν0) = ∆P(ν0)/∆ν0,
with ∆P(ν0) the sum of all the time-averaged Poynting vectors (times the cross sectional area of the beam)
with wave numbers ν between ν0−∆ν0/2 and ν0+∆ν0/2, and units of Watts/cm−1. In this case, P ′(ν0)∆ν0

is the radiant power on a plane normal to the beam’s propagation direction, i.e., face CC′DD′.
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Using the relationships derived in Appendix III, i.e.,

βr→r(Θ) =
3b

8π

(
1− δ/2
1 + δ/2

)
=

3b

8π

(
1

1 + 2ρ

)

allows determination of the total Raman scattering coefficient from ν0 to νN (in ∆νN ),
bR(ν0 → νN )

bR(ν0 → νN ) =
8π

3
βR(ν0 → νN )

(
1 + 2ρ(νN )

)
,

once the Raman depolarization ratio ρ = β`→r/βr→r is known.4 The Raman depolariza-
tion ratio was directly measured in a different experiment, in which scattered intensities
proportional to β`→r and βr→r were individually measured at Θ = 180◦, but at λ0 = 460
nm. The results of that measurement as a function of the Raman shift νs = ν0 − νN are
provided in Figure 5.4. The value of ρ averaged over the entire Raman band is 0.161.
The value near the maximum of bR(ν0 → ν0 − νs) is ∼ 0.175. Using ρ determined in this
manner, bR(ν0 → νN ) = bR(νs), is shown in Figure 5.5. When bR(ν0 → νN ) is multiplied
by ∆νN and summed over all νN we get

∑

∆νN

bR(ν0 → νN )∆νN =
∑

∆νs

bR(ν0 → νN )∆νs , bR(ν0 → νN Band),

where bR(ν0 → νN Band) is the Raman scattering coefficient for scattering from ν0 into
the entire Raman band (with units m−1). For λ0 = 488 nm, the resulting bR(ν0 → Band)
is 2.61×10−4 m−1. This is the contribution of Raman scattering to the third term in Eq.
(5.1) at 488 nm, i.e., the contribution of Raman scattering to the extinction coefficient of
water at 488 nm.5 It is important to note that the normalized spectrum of the Raman
shift,

[bR(νs)]Norm ,
bR(νs)

bR(ν0 → νN Band)

is independent of ν0, i.e., the spectral shape of the Raman emission is independent of the
wavelength of the excitation.6 Figure 5.6 shows the value of the above sum (or

∫
bR(νs) dνs)

as a function of the upper limit. It shows that 90% of the Raman scattering is between
νs ≈ 3052 and 3625 cm−1, with a median at 3353 cm−1. There is a slight variation
in the spectral shape of the Raman spectrum with temperature: the shoulder near 3250
cm−1 decreases sightly with increasing temperature, while the peak at 3425 cm−1 increases

4The reason the b can be determined from βr→r at a single scattering angle (given ρ) is, of course, due
to the fact that the full Raman (and Rayleigh) Mueller scattering matrix is (are) known.

5For pure water at 488 nm, the coefficients associated with loss from a beam by scattering and absorption
are: the absorption 139× 10−4 m−1; the elastic scattering (Rayleigh scattering), 21.9× 10−4 m−1; Raman
scattering, 2.61× 10−4 m−1.

6This is suggested by the simple classical theory of Raman scattering provided in Appendix II of Chapter
3: the Raman emission depends on the excitation only through the κ4 term in Eq. (3.61).



5.2. THE IOPS OF PURE WATER AND SEA WATER 347

slightly. These changes tend to cancel in the above integral reducing the overall temperature
dependence. For our purposes it is safe to assume that bR is independent of temperature.
(Salinity appears to have little or no affect on bR.)

In general, what we desire to know at a given wave number or wavelength is not only the
loss of power due to Raman scattering from a beam, but also the gain of power resulting
from Raman scattering by other wavelengths into a beam. For example, suppose we are
interested in the effect of Raman scattering on radiative transfer at a wave number νI , where
the subscript “I” stands for “interest.” We might ask the question for example, what is
the contribution of Raman scattering from higher wave numbers to the radiance observed
at νI? If we ignore polarization, the relevant term in the radiative transfer equation is

Q(~r, ξ̂, νI) =

∫

ν0

∫

All ξ̂′
βR(ξ̂′ → ξ̂; ν0 → νI)L(~r, ξ̂′, ν0) dΩ(ξ̂′) dν0,

or, since ν0 = νI + νs and βR(ν0 → νI ; ξ̂
′ → ξ̂) = 4πPR(ξ̂′ → ξ̂)bR(νI + νs → νI),

Q(~r, ξ̂, νI) =

∫

ν0

∫

All ξ̂′
4πPR(ξ̂′ → ξ̂)bR(νI + νs → νI)L(~r, ξ̂′, ν0) dΩ(ξ̂′) dνs, (5.6)

where in these equations, βR and PR are the 11 elements of the associated scattering and
phase Mueller matrices. In addition, if L(~r, ξ̂′, ν0) a slowly varying function of ν0, as it
usually is, then it can be replaced by L(~r, ξ̂′, ν0), where ν0 is a representative wave number
within the Raman excitation band, and taken outside the νs integration, i.e.,

Q(~r, ξ̂, νI) =

∫

All ξ̂′
4πPR(ξ̂′ → ξ̂)L(~r, ξ̂′, ν0) dΩ(ξ̂′)

∫

νs

bR(νI + νs → νI) dνs

So, to answer questions such as this, we need bR(νI + νs → νI); however, we only have
bR(ν0 → ν0− νs), the scattering coefficient to go from a wave number ν0 to a smaller wave
number. This situation is shown schematically in the drawing below. On the left we have
b(νs) from the experiment described earlier in the text and determined according to the

!!b(ν s )

!ν s

!!(ν s )Max

!!(ν s )Min

ν
!ν0

!!ν0 −(ν s )Max

!!ν0 −(ν s )Min

!ν I

!!ν I +(ν s )Max

!!ν I +(ν s )Min
ν

drawing on the top right, where the shaded right triangle is the Raman emission band.
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The bottom right drawing depicts a band of higher wave numbers contributing Raman
emission into wave number νI . In the two drawings on the right, the effect of bR(νs) in
emission to a single νI is simply the mirror image of its effect in emission from a single ν0,
assuming that the excitation irradiance at νI + νs is independent of νs. Since the integrals
over νs of bR(νs) and its mirror image are identical, we have that the Raman scattering
coefficient from a single wave number at ν0 to a band of wave numbers near νN , is the
same as the Raman scattering coefficient into a single wave number at νN from a band of
wave numbers near ν0, i.e.,

bR(ν0 Band→ νN ) = bR(ν0 → νN Band),

For ν0 = 20, 492 cm−1 (λ0 = 488 nm) these are both equal to 2.61× 10−4m−1.

It is customary, when focus is on the visible spectrum, to use wavelength rather than wave
number. If we want to know, for example, the range of excitation wavelengths contributing
to the Raman emission at νI , we have ν0 = νs + νI , or 1/λ0 = νs + 1/λI , with 90% of
the excitation between νs = 3052 and 3625 cm−1. In this manner, Figure 5.7 provides the
excitation wavelength (and the 90% band) as a function of the emission wavelength across
the visible spectrum. Clearly, in the visible the excitation is confined to a relatively narrow
spectral band. This supports the simplification that L(~r, ξ̂′, ν0) is a slowly varying function
of ν0.

The total Raman scattering coefficient into the wavelength λI depends on λI . Experi-
mentally, this dependence is found to be approximately

bR(λ0 Band→ λI) = 2.61× 10−4m−1

(
589

λI

)4.8±0.3

.

This result demonstrates that the simple model presented in Chapter 3 has more short-
comings in explaining some aspects of Raman scattering. It predicts that the wavelength
dependence of bR should be ∝ λ−4

0 . This is remedied by the quantum mechanical theory
of Raman scattering.

Raman and Rayleigh scattering share a common functional form for the volume scat-
tering function and the Mueller phase matrix. In Chapter 3 we found that the volume
scattering function for unpolarized radiation (without regard for polarization of the scat-
tered radiation, i.e., β11 or βn→n) is

βR(Θ, νI + νs → νI) =
3

16π
bR(νI + νs → νI)

[(1 + δ(νs)
)

+
(
1− δ(νs)

)
cos2 Θ

1 + δ(νs)/2

]

=
3

16π
bR(νI + νs → νI)

(
1 + 3ρ(νs)

1 + 2ρ(νs)

)[
1 +

1− ρ(νs)

1 + 3ρ(νs)
cos2 Θ

]
,
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where δ is the alternate form of the depolarization factor: δ = 2ρ/(1 + ρ) and Θ is the
scattering angle. If L(~r, ξ̂, ν0) varies rapidly with ν0, then these detailed expressions must
be used in Eq. (5.6), with ν0 = νI + νs. Figure 5.8 provides data from which the variation
of βR with Θ can be determined. The figure shows

3

16π
bR(νI + νs → νI)

(
1 + 3ρ(νs)

1 + 2ρ(νs)

)
and

1− ρ(νs)

1 + 3ρ(νs)

as a function of νs, and indicates how the angular distribution varies across the Raman
band. However, if L(~r, ξ̂′, νI + νs) varies weakly with νs the variation of βR with ρR can be
replaced by an average as above. Data on Figures 5.4 and 5.5 provide the bR-weighted av-
erage ρ, i.e.,

∫
bR(νs)ρ(νs) dνs/

∫
bR(νs) dνs, which is ≈ 0.17, so

(
1− ρ(νs)

)
/
(
1 + 3ρ(νs)

)
≈

0.55, and

βR(Θ, νI + νs → νI) =
1

4π × 1.1835
bR(νI + νs → νs)

[
1 + 0.55 cos2 Θ

]
.

This equation should suffice to represent the volume scattering function for Raman scat-
tering except when the excitation band includes, for example, a strong solar Fraunhofer
absorption line, in which case the argument of the integrand in Eq. (5.6) will depend
strongly on νs. Thus, when the excitation is slowly varying with νI + νs or with λ0, we
will take7

bR(λ0 Band→ λI) = 2.61× 10−4

[
589

λI

]4.8

and

βR(Θ, λ0 Band→ λI) =
1

4π × 1.1835
bR(λ0 Band→ λI)

[
1 + 0.55 cos2 Θ

]
.

5.3 The IOPs of the Constituents of Natural waters

For our purposes, natural waters can be conveniently separated into two classes: Case 1
waters in which the IOPs are dominated by phytoplankton and their immediate detrital
material; and Case 2 waters in which other constituents play an important role. Specif-
ically, Case 1 waters include (1) living phytoplankton, (2) particulate detritus associated
with phytoplankton, originating from decay of nonliving phytoplankton as well as debris

7Note also that bR(λ0 Band → λI) = bR(λ0 → λI Band), where the right had side of this equation the
scattering coefficient for Raman scattering from λ0 into the entire Raman band. Thus, the attenuation
of radiation at λ0 due to Raman scattering from λ0 into the full Raman band around λI is equal to
2.61× 10−4 [589/λI ]

4.8 as well.
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originating from grazing by zooplankton, and (3) (chromophoric) dissolved organic mate-
rial (CDOM), associated with and originating from, phytoplankton. However, these are
not the only constituents one expects to find in natural waters. There can also be sediment
particles (4) resuspended from the bottom in shallow water or (5) introduced into the water
by natural runoff from land, (6) dissolved organic material also derived from natural runoff
from land, and (7) other particulate and dissolved materials introduced by the activities
of man (pollution). Case 2 waters include all seven of these sources of particulate and dis-
solve material, i.e., they include the constituents of Case 1 waters as well as the four other
sources. Case 1 waters are particularly simple in that the IOPs can usually be related to a
single measurable parameter: the concentration of the photosynthetic pigment contained
in phytoplankton – Chlorophyll a – in the water.8 Here, we will limit our discussion mostly
to Case 1 waters because (1) they comprise most of the worlds oceans and (2) the IOPs of
Case 2 waters are usually site specific, i.e., the scattering by mineral particles introduced by
a river flow will depend on the composition and size distribution of the particular particles
at that location.

5.3.1 Measurement of the Absorption of the Constituents of Case 1 wa-
ters

There are several techniques for measuring the absorption coefficient of the constituents.
First, for Case 1 waters, the absorption coefficient can be written

a = aw + aφ + ay + aNAP ,

where aw is the absorption coefficient of pure water, aφ is that due to phytoplankton, ay is
that due to CDOM, and aNAP is that due to non-algal particles. The subscript “y” is used
with CDOM because in the older literature CDOM was often referred to as gelbstoff (in
German) or “yellow substance,” due to its ever-increasing absorption into the blue. The
absorption due to particles alone is denoted ap and

ap = aφ + aNAP .

Measurement of the absorption coefficient of CDOM is straightforward. First, the sample
is filtered through a filter with a 0.22 µm pore size (traps all particles with “diameter” >

8Exception to this simplification is presented by certain phytoplankton possessing mineral shells. For
example the coccolithiphore E. Huxleyi has a shell consisting of small plates of calcite. Both the intact cells
(comprising compartment #1) and detached plates (coccoliths comprising compartment #2) scatter light
much more strongly than most phytoplankton and detrital particles. In this case, the concentration of de-
tached coccoliths in the water is also required to determine the scattering properties, and this concentration
is not in general related to the Chlorophyll a concentration in any direct manner.
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0.22 µm). The few small particles that pass through the filter are defined to be part of the
dissolved component. Then it is placed in an instrument similar to that in Figure 5.1 and
c is measured. Since the scattering by CDOM is negligible, this provides aw + ay, from
which ay can be determined.

There are two common techniques for measuring ap.
9 Obviously if the total a is mea-

sured, one simply subtracts ay and aw. Can one measure a without having to measure c
and β? The answer is yes and the technique is not difficult. Figure 5.9 provides a schematic
of the apparatus. It is similar to the “c” of the c-β meter in Figure 5.1, except that the
cylindrical beam from P is surrounded by a shiny tube, the lens-stop combination (L2,
S1) are removed, and the detector and filter are moved to the edge of the tube. In this
apparatus, any photons scattered through small angles will still strike the detector and
their power will not be lost. In addition, photons that are scattered through larger angles
will strike the shiny tube and still reach the detector (dashed path in Figure 5.9). Only
photons that are scattered at large angles (or scattered with Θ > 90◦) will be lost from
the beam. When the particles are strongly forward scattering (as marine particles are –
see below) the loss from the beam is small (and easily estimated). In addition, there is an
increase in the path length through the medium for the scattered photons (the average path
length is no longer the distance between the lens and the F2-D2 combination but is a little
larger); however, this is also easy to assess through modeling the particle scattering or by
calibration using non-absorbing particles of known scattering characteristics in a solution
having known absorption. Thus, this instrument (with an estimate of the small scattering
loss and path-length stretching) allow measurement of aw + ay + ap directly.

The second technique involves filtering the water through a 0.22 µm filter pad (as in
the measurement of ay above), placing the filter pad in front of F2 in Figure 5.9 and
measuring the light absorbed by the filter pad. (Note, in this case there is no medium
between L1 and F2 except for the filter pad containing the particles.) If τf is the optical
thickness of the filter pad containing the particles, i.e., τf = −`n(Tf ), where Tf is the
transmittance of the filter pad-particle combination, and τb is the optical thickness of an
identical blank (without particles) filter pad, then the additional optical thickness due to
the particles is τp = τf − τb. The absorption coefficient is the optical thickness times the
path length. What is the path length? Imagine the particles in the water in a cylindrical
tube of cross sectional area Af and length ` with the light entering one end and exiting
the other. The path length would be `. Now a volume of fluid Vf was filtered through a
filter of area Af , so the effective path length is just ` = Vf/Af , i.e., this is the path the
light would have take if the particles were suspended in an absorption cell between L1 and
L2 in Figure 5.1. Thus, one would expect that ap = (τf − τb)/`; however, the particles are
embedded in the filter material (usually glass fiber filters) so the light propagating through

9The integrating cavity absorption meter described in Footnote 2, although very attractive because of
its insensitivity to scattering, is not in general use.
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the filter is diffuse rather than collimated. The extinction for diffuse light kd is related to
the extinction for collimated light kc by kd = kc/〈µ〉, where 〈µ〉 is the average cosine of
the radiance distribution within the filter. (This is similar to the decay coefficient, KV for
the “vector” irradiance, Ed − Eu decribed in Chapter 6, i.e., KV = a/〈µ〉). If the light is
totally diffuse, 〈µ〉 = 0.5, and assuming this is the case in the filter pad,10

ap = 〈µ〉τf − τb
`

≈ 0.5
τf − τb
`

.

In order to decompose the ap into its component parts aφ and aNAP , it is necessary to
remove one or the other of the components. Fortunately, it is possible to remove nearly all
of the absorbing pigments within phytoplankton by soaking the filter pad in hot methanol,
i.e., remove aφ.11 Measurement of τf for the Methanol-treated filter pad yields aNAP and
aφ = ap − aNAP .

Through the methods described in this section, it is possible to measure the absorp-
tion coefficient of each of the individual absorbing components (particulate and dissolved)
present in Case 1 waters. In Case 2 waters, the same techniques allow a partial separation
of the absorption into its components; however, in this case the non-algal components in-
cludes materials over and above detritus, e.g., resuspended minerals etc., and the dissolved
component includes both phytoplankton-derived CDOM and terrestrial-originated CDOM.

5.3.2 Absorption of the Constituents of Case 1 waters

We now examine the absorption properties of constituents in Case 1 waters. Particle
absorption is complex and we will only discuss it to the extent required for our purposes
(however, we will discuss some theoretical aspects of the subject in a later section). In
most studies the absorption coefficient is measured along with the concentration (weight
per volume of water) of the photosynthetic pigment Chlorophyll a or the concentration
(dry weight per unit volume of water) of particulate organic carbon (POC) at a number
of stations and depth in the water column. Then statistical relationships are developed
among the various quantities. The apparent “noise” in such relationships represents the
natural variability in the particle population, i.e., different species of phytoplankton, etc.

10The factor 〈µ〉 in the biological literature is usually denoted by 1/β, where β is called the path length
amplification factor (not to be confused with the volume scattering function).

11This technique is usually referred to as the Kishino method..
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5.3.2.1 Absorption of Particles of Case 1 waters

A large data set from representative waters around the globe in which aφ, aNAP , and
ap were measured, along with the concentration of Chlorophyll a, has been accumulated.
Analysis shows that the particle absorption coefficient at 440 nm is statistically related to
the concentration of Chlorophyll a (C) through

ap(440) = ApC
0.635, (5.7)

where Ap = 0.0520, C is in mg/m3, and ap is in m−1. There is considerable noise in this
relationship with Ap values falling between 0.03 and 0.08 with roughly uniform probability
for C < 5.0 mg/m3. This absorption is apportioned between algae and non-algal particles
(detritus) according to

aφ(440) = AφC
0.627 and aNAP (440) = 0.0124C0.724, (5.8)

with Aφ = 0.0378 and ranging from ∼ 0.2 to 0.7 for C < 5 mg/m3. In these expressions,
the exponents of C are statistically indistinguishable. The spectral variations of aφ and ap
can be reproduced through the statistical products

aφ(λ) = Aφ(λ)CEφ(λ) and ap(λ) = Ap(λ)CEp(λ) (5.9)

The various quantities in these equations are provided in Figure 5.10. The curves for Aφ(λ)
and Ap(λ) are, of course, aφ(λ) and ap(λ) for C = 1 mg/m3.

The spectrum of aNAP is totally different from aφ(λ) which allows their separation.
Figure 5.11 shows spectra of ap, aφ and aNAP for a concentration of 1 mg/m3. The
spectrum of aNAP is featureless, with absorption increasing exponentially toward the blue:

aNAP (λ) = aNAP (440) exp[−SNAP × (λ− 440)], (5.10)

where SNAP = 0.0011± 0.002 nm−1 and λ is in nm.

5.3.2.2 Absorption by CDOM in Case 1 waters

CDOM absorption is similar to the absorption by NAP, i.e., it is also featureless and
increases exponentially into the blue with absorption given by an equation similar to Eq.
(5.10), i.e.,

ay(λ) = ay(440) exp[−Sy × (λ− 440)], (5.11)

but with a larger value of S, typically Sy ∼ 0.011 − 0.017 nm−1. For Case 1 waters,
ay(440) <∼ 0.1 m−1.



354 CHAPTER 5. INHERENT OPTICAL PROPERTIES OF NATURAL WATERS

5.3.3 Scattering by Particles in Case 1 Waters

We now turn to the scattering properties deduced for particles in Case 1 waters. As
with absorption, here we describe the results of measurements and leave the theoretical
discussion of the measurements for a later section.

5.3.3.1 Total Scattering Coefficient of Particles in Case 1 Waters

Instruments have been developed to measure the total scattering coefficient (water plus
particles). Early instruments attempted to measure b through β. An example is the c− β
meter shown schematically in Figure 5.1 which in principle allows measurement of b via
measurement of β. Other instruments make use of the fact that most of the particle
scattering is confined to small scattering angles, e.g., Θ <∼ 20◦. Thus, in Figure 5.12, if
the detector (D1) is a photographic plate or a CCD, the volume scattering function at
small angles can be retrieved (and thus b), while if it is simply a photocell, a signal related
to b (in some complex manner) is detected. Another approach is provided by scattering
theory, which suggests β at some small scattering angle (4-10◦) is proportional to b, i.e.,
the scattering phase function for particles in Case 1 waters is approximately invariant at
some small angle.

More recently, however, with the development of accurate instruments for routine mea-
surement of beam attenuation coefficient c and absorption coefficient a, most measurements
of b have been carried out by measuring the beam attenuation coefficient and subtracting
measurements of the absorption coefficient, i.e., b = c− a, or when the IOPs of the water
itself are subtracted, bp = cp − ap − ay.12 Such measurements can be carried out at any
wavelength; however, often measurement is made only in the red, where ap and ay are
small (Figure 5.11). Then, considering that the magnitude of cp at 660 nm is ∼ 0.2− 0.8
m−1 for C = 1 mg/m3, while ap ∼ 0.012 m−1 and ay is negligible, to a good approximation
cp(660) ≈ bp(660). This latter relationship has been used often to infer particle scattering
measurements from those of beam attenuation in the red without having to measure the
absorption coefficient.

Figure 5.13 provides a summary of measurements in various waters (Case 1 and Case
2) carried out in the early to mid 1970’s with bp determined by the “earlier” methods

12One needs, however, to take care in assessing such measurements, as the value of c obtained has been
shown to be significantly dependent on the acceptance angle of the c-meter (governed by the size of the
aperture in the stop S1 in Figure 5.1). The error is larger when large particles are present: much of their
strongly forward-scattered light can reach the detector rendering a too-small value for c. Thus, a correction
dependent on the particle size distribution and acceptance angle of the c-meter is required. The reader is
encouraged to be skeptical of c measurements reported without addressing this effect.
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above. CC&P here refers to the concentrations of Chlorophyll a and a degradation prod-
uct Phaeophytin a (both determined fluorometrically with the Phaeophytin contribution
probably over estimated because of the interfering presence of Chlorophyll b).13 The most
interesting aspect of this data is the fact that bp at 550 nm is related to CC&P nonlinearly.
Regression analysis yields

bp(550) = b0pC
0.62
C&P , (5.12)

where CC&P is in mg/m3, and for Case 1 waters b0p = 0.30 m−1 but ranges from 0.12 to
0.45 m−1 with smaller values being appropriate to deeper samples. Clearly, even in Case
1 waters, chlorophyll-containing phytoplankton are not the only particulate component:
there are living phytoplankton containing Chlorophyll a, detrital particles derived from
phytoplankton (fragments of cells), zooplankton, etc. (In discussing absorption, these
other particles were all lumped together as non-algal particles.) The concentration of these
particles is measured by filtering a known volume of water. It is usually referred to as
“seston” — S, the total mass per unit volume of suspended material as collected on pre-
weighed filters after they are dried. Similar analysis relating bp to S is provided in Figure
5.14, and shows the remarkably simple relationship

bp(550) ≈ S, (5.13)

where bp(550) is in m−1 and S is in g/m3. Consistency between these requires that

S ∝ C0.62
C&P or

CC&P

S
∝ C0.38

C&P , (5.14)

i.e., the chlorophyll concentration increases faster than the seston concentration: more and
more of the seston is related to the component containing chlorophyll as CC&P increases.

The scatter of points in Figure 5.13 even in the Case 1 waters (the region between the
two lines) is roughly a factor of 3 (+50% to −100%). With the newer techniques it was
believed that this “noise” in the bp − CC&P relationship would be considerably reduced;
however, this is not the case. Using measurements of c and a in Case 1 waters at 660 nm,
the new relationship is14

bp(660) = 0.347C0.766 or bp(550) ≈ 0.416C0.766, (5.15)

where C is the concentration of Chlorophyll a determined by HPLC.15 To derive this
relationship for 550 nm it was assumed that there is a λ−1 variation in bp(λ). The “noise”

13The quantity CC&P is usually referred to as the “pigment concentration.” In later chapters it will be
indicated by CP .

14But, note the caveat discussed in Footnote 11.
15This is an acronym for high-performance liquid chromatography also called high-pressure liquid chro-

matography. It is a method of analytical chemistry for analyzing the components of a mixture. Here it is
used to analyze the concentrations of the various phytoplankton pigments present in a water sample, partic-
ularly in this case, Chlorophyll a. Before HPLC, fluorescence techniques were used to measure Chlorophyll
a, but these could not separate Chlorophyll a from its degradation product Phaeophytin a, and hence the
term pigment concentration, CC&P , was reported rather than Chlorophyll a.
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in this relationship is only somewhat reduced from the earlier bp − CC&P relationship:
roughly by a factor of 2 (+50% to −60%).

Biological processes in the ocean render it a sink for CO2. In recognition of the impor-
tance of phytoplankton photosynthesis in the global carbon cycle, the interest in seston
has been replaced by interest in particulate organic carbon (POC). POC is the mass of
particulate carbon in a given mass or volume of water. It is this form of carbon, produced
through photosynthesis, that sinks through the upper layers of the oceans to the deep
ocean where it is sequestered for 500− 1000 years. To measure POC, particles are filtered
from water and the carbon concentration determined by chemical means. Typical units of
POC are mg C/m3; however another common unit is µmole C/liter (1 mg C/m3 = 0.0833
µmole C/liter).

If we assume that the particulate matter in Case 1 water is almost all organic (as it
is derived from phytoplankton), then there should be a relationship between POC and
seston.16 If the POC is in the form of carbohydrates, i.e., Cn(H2O)n, then the mass of
POC is 0.3 times the mass of seston, or the mass of seston is 3.3 times the mass of Carbon.17

If POC is measured in mg C/m3 (note, mg C not g C), Eq. (5.13) suggests

bp(550) = 0.0033× POC, or bp(660) = 0.0027× POC,

where bp is in m−1, and a λ−1 dependence is assumed in converting from 550 nm to 660
nm. This agrees well with direct measurements that yield (in the same units)

cp(660) ≈ CPOC × POC,

where 0.0007 <∼ CPOC <∼ 0.0045, with a mean near 0.003.

The spectral variation of bp is usually (as above) assumed to be proportional to λ−1. As
we shall see later in this chapter, theory suggests, and experiments verify, that cp for the
retinue of marine particles is rather featureless and varies as λ−p, where p is determined
mostly by the size distribution of the particles. If the particles have a featureless absorption
spectrum, e.g., detrital particles with a spectrum given by aNAP (λ) (Eq. (5.10)), then the
spectrum of bp will also be featureless. However, phytoplankton have a spectrum similar
to that shown in Figure 5.10, so if cφ is featureless for phytoplankton (as it usually is),
then bφ (i.e., cφ− aφ) for phytoplankton will decrease in spectral regions where absorption
is significant, i.e., in the blue and the red. This effect is actually easily observed. When a

16An exception to this assumption is a coccolithophore bloom where a significant amount of Carbon
resides in the form of CaCO3 — the composition of the coccolith shell surrounding the cell itself. This is
particulate inorganic carbon (PIC) .

17A generic chemical composition for organic matter in the oceans is (CH2O)106(NH3)16H3PO4 for which
the fraction of mass of Carbon is 0.276. The ratios C:N:P are 106:16:1, which are known as the Redfield
ratios, are similar to the C:N:P ratios of dissolved matter in the ocean.
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spectrum of c for a culture of phytoplankton is observed, the absorption features can only
weakly be seen; however, when some of the scattered light from the beam is collected, the
absorption features are more vivid, implying that the scattering is increased in the pigment
absorption bands. We shall explore this spectral dependence in a later section.

5.3.3.2 Volume Scattering Function of Particles in Case 1 Waters

Prior to the late 1990’s there were far fewer measurements of the volume scattering func-
tion βp(Θ), or the scattering phase function Pp(Θ) = 4πβ(Θ)/bp, than the total scattering
coefficient. The simple reason for this is the complexity of the measurement (Figure 5.1),
which in the past required moving parts of the instrument at large angles, and a separate
instrument for small scattering angles (Figure 5.12). In addition, most early measurements
were made before the Case 1 – Case 2 distinction was developed, and many of the mea-
surements were not in Case 1 waters. Even now there are virtually no measurements that
separate the scattering by living and detrital particles.

One of the earliest measurements of the phase function covering the full range of Θ was
carried out in the early 70’s by Petzold and referred to here as “Phase-T,” “Petzold Phase-
T” or just “Petzold.” Phase-T is provided in Figure 5.15. This was not actually measured
in Case 1 waters (in fact the water was quit turbid, bp ∼ 1.6 m−1, which actually made the
measurement more accurate); however, because of the paucity of VSF measurements, it
has frequently been used to characterize the scattering by particles even in Case 1 waters.
For Phase-T the scattering at small angles (Θ <∼ 10◦) follows a power law:

Pp(Θ) ∝ 1

Θm
,

with m ≈ 1.4. Thus, the value of the phase function at 0.1◦ is roughly 3000 times that
at 10◦. Inadequate as they may be, these measurements clearly demonstrate that marine
particles scatter very strongly in the forward direction with only a small probability (< 2%)
for scattering at angles between 90◦and 180◦. Recently (2009) Sullivan and Twardowski
(S&T) reported the results of several thousand measurements of the VSF over the angular
range 10◦ to 170◦, for a variety of waters. Analysis of the measurements showed that
the particulate component of most of the measured VSFs have a similar variation with
scattering angle for Θ > 90◦, i.e., the “shape” of βp(Θ) for Θ > 90◦ was similar over most
of the measurements, even though the numerical value of βp(90◦) showed a variation of
over 2 orders of magnitude. Here, we refer to the normalized shape of their βp as the
“WetLab Average” (abbreviated WetLab Avg.).This analysis suggests that, at least for
a first order attempt to model marine particle scattering, a universal shape (the WetLab
Avg.) should be assumed for the particle phase function P (Θ) for Θ > 90◦. As the Petzold
measurements are the only ones available for really small scattering angles, it is suggested



358 CHAPTER 5. INHERENT OPTICAL PROPERTIES OF NATURAL WATERS

that a new phase function should be adopted for modeling marine particles. This phase
function consists of Phase-T for Θ < 90◦, and the WetLab Avg. shape for Θ > 90◦. We
refer to this phase function as “Petzmas.”18

Figure 5.16 compares Phase-T with some of the other phase functions used in this work:
the “O99” phase function is that of the “Oceanic” model for aerosols with relative humidity
of 99% (Chapter 4); the “HG” curve, a one-parameter analytic approximation to the phase
function given by

Pp(Θ) =
(1− g2)

(1 + g2 − 2g cos Θ)3/2

with g = 0.9 here (HG stands for Henyey-Greenstein); and “WetLab Avg.,” here normalized
to have the same value as Phase-T at Θ = 90◦. The main messages to take for these
comparisons are (1) the similarities of the particle and aerosol phase functions suggest that
the particles occupy similar size ranges, (2) in contrast to the aerosol, the marine particles
do not show any structure at large scattering angles which indicates the particles are likely
to be absorbing (as we already know) and non-spherical, and (3) the HG phase function
is a good approximation to the particle phase function except for Θ <∼ 10 − 20◦. A more
detailed comparison between Phase-T and the WetLab Avg. at Θ ≥ 90◦ is provided in
Figure 5.17. Note that WetLab Avg. has less variation with Θ than Phase-T for Θ > 90◦.
As described above, when the WetLab Avg. is extended to small angles by requiring that
it be equivalent to Phase-T, the result we denote by Petzmas. The two particle phase
functions, Phase-T and Petzmas, are used extensively later in developing relationships
between the IOPs and the apparent optical properties (AOPs) of water bodies (Chapter
6); however, we shall see below that a further modification of the phase functions is required
to model scattering by marine particles.

Finally, another two-parameter phase function that is capable of providing an analytical
approximation to both Phase-T and Petzmas is the Fournier-Forand (FF) phase function.
It is the default phase function used in the HydroLight radiative transfer code. It is
described in some detail in Appendix 1.

5.3.3.3 The Backscattering Coefficient of Particles in Case 1 Waters

The backscattering coefficient for particles is defined by

bbp , 2π

∫ π

π/2
βp(Θ) sin Θ dΘ,

18This term originates from combining Petzold and MASCOT (MultiAngle SCattering Optical Tool), the
instrument used to carry out the S&T measurements.
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where it has been assumed that, for a given Θ, the volume scattering function is indepen-
dent of the azimuth angle around the incident beam.19 The total backscattering coefficient
of the medium is bb = bbw + bbp, where bbw is the backscattering coefficient of water (bw/2).
The backscattering coefficient is important in remote sensing because the radiance from
the Sun and sky backscattered out of the water is proportional to bb/(a + bb), where a is
the absorption coefficient.

The most direct method of measuring the backscattering coefficient is to measure β(Θ)
and perform the above integration. This is the technique used in the earliest measurements.
A second is to measure β(Θ) as a few scattering angles and perform a fit to an analytic
formula in Θ, and then integrate the formula. A good approximation to the shape of the
scattering phase function can be obtained using the formula

βBZ(Θ) =
β(90◦)

(1− ef cos Θ)4(1 + eb cos Θ)4
.

Measuring β(45◦), β(90◦) and β(135◦), for which commercial laboratory instruments were
available, allowed estimation of ef and eb, and integration of βBZ over the backward hemi-
sphere provided bb. An example of the quality of the fit of βBZ to the Petzmas phase
function is presented in Figure 5.18. Finally, newer instruments estimate bbp by measur-
ing β(Θ) at a single scattering angle (110◦ <∼ Θ <∼ 120◦), where the bbp − βp relationship
displays the least variability. This angular range was first developed from theoretical com-
putations and then confirmed by experimental measurements (e.g., those measurements
leading to WetLab Avg.). An alternative to actually measuring bbp(λ) is to try to estimate
it from measurements of the irradiance reflectance R (also proportional to bb/(a + bb)).
Methods for effecting this are described in Chapter 6.

Oceanic measurements in oligotrophic surface waters suggest that bbp ∝ bp with a pro-
portionality constant of ∼ 0.01, i.e., Bp , bbp/bp ∼ 0.01, but with a significant range of
variation 0.006 to 0.015. For reference, the backscattering probability (Bp) for the Petz-
mas phase function is 0.0181. For higher concentrations of Chlorophyll a, Bp appears to
decrease because an increase in C usually means an increase in phytoplankton concentra-
tion relative to detritus (Eq. (5.14)), and the larger phytoplankton particles (compared to
detrital particles) are less efficient backscatterers. Indeed, the examination of the spectrum
of irradiance reflectance (R) in a variety of waters (Case 1) and a large range in C suggests
that

Bp ≈ 0.002 + 0.01
(

1/2 − 1/4 log10C
)
, (5.16)

approximately independent of wavelength. This gives Bp = 0.012 for C = 0.01 mg/m3

and 0.002 for C = 100 mg/m3. Combining this with Eq. (5.15) and fitting the result to a

19This assumption is valid for spherical particles and for a suspension of non-spherical particles, e.g.,
cylinders, spheroids, etc., in random orientation.
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power-law in C yields

bbp(550) = 0.00279C0.624.

Note that the closeness of the exponents of C for bp and bbp suggest that if one is pro-
portional to POC, the other is also. Recognizing that larger particles like phytoplankton
tend to scatter with a smaller spectral variation, and that the high-C waters have more
phytoplankton (larger particles) compared to detritus (smaller particles) than the low-C
waters, improved agreement between measured and reconstructed spectra of R is obtained
if the spectral variation of bp, rather than assumed to be simply proportional to λ−1, is
guessed, but reasonably though, to vary with C according to

bp(λ,C) = bp(550, C)

(
λ

550

)v
,

with v = 0.5(log10C−0.3) for C < 2 mg/m3, and v = 0 otherwise. Accordingly, the particle
scattering coefficient varies as λ−1.15 for C = 0.01 mg/m3 and λ0 for C ≥ 2 mg/m3. Thus,

bbp(λ,C) =
{

0.002 + 0.01
(

1/2 − 1/4 log10C
)}

bp(550, C)

(
λ

550

)v
.

5.3.3.4 Polarization of Scattering in Case 1 Waters

We complete our discussion of the observed scattering properties of Case 1 waters with
examples of the polarization properties of the scattered light as manifest in the scattering
Mueller matrix (Chapter 3). Write the volume scattering Mueller matrix β(Θ) as

β(Θ) =




β11(Θ) β12(Θ) β13(Θ) β14(Θ)
β21(Θ) β22(Θ) β23(Θ) β24(Θ)
β31(Θ) β32(Θ) β33(Θ) β34(Θ)
β41(Θ) β42(Θ) β43(Θ) β44(Θ)


 ,

and normalize it by dividing very element by β11(Θ) to form

β(Θ)

β11(Θ)
=




1 N12(Θ) N13(Θ) N14(Θ)
N21(Θ) N22(Θ) N23(Θ) N24(Θ)
N31(Θ) N32(Θ) N33(Θ) N34(Θ)
N41(Θ) N42(Θ) N43(Θ) N44(Θ)


 =

P (Θ)

P11(Θ)
,

where Nij = βij/β11 and P and P11 are, respectively, the Mueller phase matrix and its
11 element (also called the phase function). Measurements of the Mueller matrix in the
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open ocean show that, within the accuracy of the measurements, the matrix has a block
diagonal structure, i.e.,

β(Θ)

β11(Θ)
=




1 N12(Θ) 0 0
N21(Θ) N22(Θ) 0 0

0 0 N33(Θ) 0
0 0 0 N44(Θ)


 =

P (Θ)

P11(Θ)
. (5.17)

This overall structure of the scattering matrix is similar to that of Rayleigh scattering, as
well as to scattering by larger particles in the Rayleigh-Gans approximation.20 In fact, the
matrix elements Nij are quantitatively similar to those in the Rayleigh-Gans approximation
for anisotropic particles in random orientation.

Figure 5.19 shows the average N12 and N21 for sixty samples from Atlantic and Pa-
cific waters. Included for comparison are the corresponding Rayleigh-Gans elements for
an isotropic (δ = 0, dashed curve) and an anisotropic (δ = 0.2, indicted by solid trian-
gles) particle of arbitrary shape and random orientation. The most obvious feature of
the phase matrix elements shown in Figure 5.19 is the fact that N12 ≈ N21. (Note that
N21 = N12 for homogeneous spherical particles.) In addition, we see that N12 and N21

can be approximated by anisotropic Rayleigh-Gans scattering with a depolarization ratio
of approximately 0.2.

Figure 5.20 shows the average N33 and N44 along with that for Rayleigh-Gans scatter-
ing. Again, we see N33 ≈ N44. Both N33 and N44 follow their isotropic Rayleigh-Gans
counterpart reasonably well in forward directions, while both are larger than the corre-
sponding element in backward directions. Unlike N33, N44 for anisotropic Rayleigh-Gans
scattering depends on the depolarization factor δ. In the case of δ = 0.2, for which the
Rayleigh-Gans scattering element fit the oceanic averaged N12 and N21 quite well (Figure
5.19), the agreement with the measured N44 is not as good, and is especially poor for
Θ < 90◦. However, it should be noted that N44 is of little importance in radiative transfer
in the ocean-atmosphere system, as it governs the scattering of elliptically polarized light
into elliptically polarized light — a process that is of little importance in environmental
optics.

The oceanic-averaged element N22 is provided in Figure 5.21. For isotropic Rayleigh,
isotropic Rayleigh-Gans, and scattering by homogeneous isotropic spherical particles of
any size, N22 = N11 = 1; however, in Figure 5.21 one sees a departure of N22 from

20The elements Nij(Θ) for randomly oriented anisotropic Rayleigh scattering particles, and for scattering
by a collection of randomly oriented anisotropic homogeneous particles of arbitrary shape, but constant
values of αx, αy, and αz, in the Rayleigh-Gans approximation, are identical. Note that this is not to say
that the full scattering matrices are identical: only the scattering matrices normalized by β11, i.e., βij/β11.
The latter provide all of the polarization properties of the scattering.
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unity. This is thought to be the result of the non-sphericity of the particles, as exact
scattering computations of Nij(Θ) for randomly oriented isotropic spheroids and cylinders
show N22(Θ) < 1 for at least some range of scattering angles.

As we have seen above, certain matrix elements in Eq. (5.17) for the oceanic average can
be well-represented by the results of the Rayleigh-Gans approximation for particles with
anisotropic (but constant) polarizability (Figures 5.19-5.21). For example, an excellent
approximation to N12 is the Rayleigh-Gans result

N12(Θ) = N21(Θ) = − (1− δ) sin2 Θ

(1 + δ) + (1− δ) cos2 Θ
,

and, while not a good as for N12 and N21,

N22(Θ) =
1 + cos2 Θ

1 + cos2 Θ + 2δ/(1− δ) , N33(Θ) ≈ 2 cos Θ

1 + cos2 Θ
,

and

N44(Θ) =
1− 2δ

1 + δ/2
N33(Θ).

In these equations δ, the depolarization ratio, is given by

δ =
1−DOP (90◦)

1 +DOP (90◦)
,

where DOP (90◦) = −N12(90◦). The fact that the normalized scattering matrix of partic-
ulates in the open ocean resembles that scattering in the Rayleigh-Gans approximation is
a manifestation of the low refractive index of such particulates — a requirement for the
validity of the Rayleigh-Gans approximation.

Samples of cultured phytoplankton have normalized scattering matrices that are re-
markably similar to the oceanic averages. For example, Figure 5.22 provides the result
of measurement of the degree of (linear) polarization, −N12 = P12(Θ)/P11(Θ), for several
species of phytoplankton. On the figure the species labeled “S” are approximately spheri-
cal in shape, while those labeled with “F” have a filamentous structure, i.e., cylindrical in
shape. The species Sb, Sc, Fc, and Fe contain gas vacuoles, while the others do not. The
oceanic average −N12 from Figure 5.19 is presented as well (the thick black curve). Note
that there is no characteristic of the curves that distinguishes the shape or the presence (or
absence) of gas vacuoles, i.e., there appear to be no features in the DOP data for various
species that are characteristic of their shape (or size) or internal structure.
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5.3.3.5 Empirical Model for the Particle Phase Function in Case 1 Waters

The fact that measurements show that Bp varies with C demands that the particle phase
function Pp(Θ) must also vary with C. However, the variation with Θ for Θ > 90◦ must
still retain the WetLab Average shape. A simple (empirical) two component model that
can accomplish the desired behavior of Pp(Θ), and satisfy the variation of Bp with C, is
easy to develop.

We start with the Petzmas phase function, which has the desired angular behavior for
Θ > 90◦. Then, we can produce a phase function that has any desired backscattering
probability (less than Phase-T) by increasing the Phase-T small angle scattering by an
appropriate amount. Table 5.3 provides the factor f that the Petzmas phase function
must be increased by in order to provide the given backscattering probability Bp. For
completeness, we have also included the factors for Phase-T as well.

Table 5.3: The factor f by which the indicated phase function must be augmented
at scattering angles between 0 and 2◦ in order to yield the given backscattering
probability Bp. The result after the multiplication must be renormalized so that
the integral of the modified P (Θ) over all solid angles is still 4π.

Bp Petzmas Petzold

0.0019 35.862 35.522

0.0020 33.917 33.594

0.0050 11.741 11.612

0.0070 7.517 7.426

0.0100 4.348 4.285

0.0140 2.237 2.192

0.0181 1.000 1.000

Ideally, for a two component model one would like the detrital component (smaller
particles) to have a B-value a little higher than 0.012, and the phytoplankton component
(larger particles) a little smaller than 0.002 (Section 5.3.3.3). The choice Bpn = 0.0140,
where “pn” stands for the nonliving (detrital) particle component and Bpl = 0.0019, where
“pl” stands for the living (phytoplankton) particle component meet these desires. Letting
αn represent the fraction of Bp due to the nonliving component, then

Bp = αnBpn + (1− αn)Bpl.

For consistency with Eq. (5.16),

αn =
0.002 + 0.01( 1/2 − 1/4 log10C)−Bpl

Bpn −Bpl
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or for our choice of the backscattering probabilities,

αn = 0.00826 + 0.826( 1/2 − 1/4 log10C).

The particle phase function for a given C is

Pp(Θ) = αnPpn(Θ) + (1− αn)Ppl(Θ),

where Ppn and Ppl are the nonliving and living particle phase functions developed using
the results in Table 5.3. These end member phase functions, Ppn and Ppl, are provided
in Figure 5.23. To reiterate, this proposed phase function model (1) expresses what we
expect for the phase functions of detritus and phytoplankton, and (2) directly provides the
modeled Bp, i.e., Eq. (5.16), as a function of C.

5.4 Influence of Single Particle Properties – Size, Composi-
tion, Shape – on IOPs

Now that we have described the experimental studies regarding the IOPs of the constituents
of Case 1 waters, we will try to develop an understanding of some of the experimental
observations, based on the properties of the individual particles, through the use of light
scattering theory. In addition we will describe how to employ the measurements to develop
a more fundamental understanding of some of the particle properties.

The physical properties determining particle IOPs are their size, composition and shape.
The goal of this section is to gain an understanding of how these factors influence absorp-
tion, scattering, and backscattering. We have already examined some of these questions
in Chapters 3 and 4 in the case of spherical particles. Clearly, the shape of most phy-
toplankton departs considerably from spherical; however, examining the IOPs for spheres
represents a first step in understanding the optics of phytoplankton. Here we will apply
that theory to particles in Case 1 waters: phytoplankton and detrital particles. We will
use Mie theory (or its anomalous diffraction approximation) for spherical particles, and the
DDA for cylindrically-shaped particles, when we to try to understand some of the effects
of departures from sphericity.

5.4.1 The Absorption Coefficient

Our main particle of interest, phytoplankton, contains absorbing pigments (Chlorophyll
a, etc.). For electromagnetic waves, absorption is manifest in the imaginary part of the
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refractive index. The complex index of refraction is m = mr + imi, with mr governing the
reflection and refraction from surfaces and mi the loss in irradiance along the path. As
developed in Chapter 1, the imaginary part, mi is related to the absorption coefficient of
the pigment material ai by

mi =
aiλVacuum

4π
. (5.18)

Note that, here the subscript i on mi stands for “imaginary,” i.e., the imaginary part of
the complex refractive index, while, on ai it stands for “internal,” i.e., it is the absorption
coefficient of the material inside the particle. The particles in our case are suspended in
water, so we must use the indices relative to water, i.e., m̃ = m/mWater, then

m̃i =
aiλVacuum

4πmWater
=
aiλWater

4π
. (5.19)

Thus, given the absorption coefficient of the absorbing material (at a given wavelength),
the value of m̃i required to apply scattering theory is provided. Consider a single absorbing
component, and let ci be its volume concentration within the particle (mass of pigment ÷
particle volume). The absorption coefficient can be written ai = a∗i ci, where a∗i is called
the specific absorption coefficient with respect to the absorbing pigment.21 For a volume
V of solution containing N such particles, the total concentration of the pigment is

C =
N

V
vci, (5.20)

where v is the volume of one particle. Combining these ideas we have

ai =
V a∗i
Nv

C and m̃i =

(
V a∗i
Nv

)(
CλWater

4π

)
.

Now, in general we need to know m̃r as well as m̃i to apply Mie scattering theory (spherical
particles) to determine the absorption properties of the solution; however, knowing m̃r is
not necessary if we use the van de Hulst approximation to Mie theory (Chapter 3).In this
approximation we can compute the absorption efficiency of the particle, Qa = σa/Ap, where
σa is the absorption cross section22 of the particle and Ap is the particle’s projected area
on a plane normal to the direction of the incident beam (πR2, with R the radius), from a
knowledge of m̃i alone. In this approximation,

Qa = 1 + 2
exp(−ρ′)

ρ′
− 2

1− exp(−ρ′)
ρ′2

, (5.21)

21The specific absorption coefficient is also called the absorption cross section, with units m2/kg or an
equivalent.

22Recall that the absorption cross section σa is related to the absorption coefficient a through the number
density of particles n: a = nσa.
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where

ρ′ =
4πD

λWater
m̃i =

4πD

λWater

aiλWater

4π
= Dai, (5.22)

and D is the diameter of the particle. Thus, ρ′ is the absorption optical thickness associated
with a light ray that would pass through the center of the particle. Clearly, Qa approaches
unity as ρ′ becomes large, meaning that the absorption cross section is just the projected
area of the sphere. Figure 5.24 provides Qa as a function of ρ′.

The particle absorption coefficient aPart of a sample containing N particles in a volume
V is

aPart =
N

V
σa =

N

V

πD2

4
Qa.

If the concentration of the pigment in V is C, and the specific (to C) absorption coefficient
of the collection of particles is defined as a∗Part , aPart/C, then

a∗Part =
N

V

πD2

4C
Qa =

N

V

πD2

4ci(N/V )vi
Qa =

3

2

ai
ci

Qa
ρ′

=
3

2
a∗i
Qa
ρ′

or
a∗Part

a∗i
=

3

2

Qa
ρ′
. (5.23)

The quantity Qa/ρ
′ is plotted in Figure 5.25. The figure shows the relationship between

a∗Part/a
∗
i and the internal concentration ci, or equivalently the internal absorption coeffi-

cient. For a given particle diameter D, the greater the internal pigment concentration, the
smaller the ratio of a∗Part to a∗i . This makes sense physically as can be seen if we consider
two extreme cases with the same C in a large macroscopic volume V : (1) the absorbing
pigment is within a large number of very small particles (D → 0); and (2) the absorbing
pigment is all within a single large particle. Let the incident beam be cylindrical with cross
sectional A. Then if L is the thickness of the sample, V = AL. The first case is equivalent
to having the pigment uniformly dispersed within the volume, and the absorption coeffi-
cient of V , aSample 1 is just a∗iC. Thus, in the first case a∗Sample 1 = a∗i , and the optical
thickness of the sample is aSample 1L = aiL, which need not be small compared to unity.

The second case is more complicated. For simplicity, let us assume that ci within the
particle is so high that cia

∗
iD � 1, then all of the light incident on the particle is absorbed.23

Then the fraction of light removed from the beam is the scattering cross section of the
particle divided by A. This fraction (assumed small because πD2/4� A) is the absorption
coefficient of the sample aSample 2 times L, i.e.,

aSample 2L =
πD2

4A
or a∗Sample 2 =

πD2

4ALC
.

23This assumption is not necessary, but simplifies matters. If we do not make it, then the final result
must be multiplied by 1 − exp(−2aiD/3), where 2D/3 is the mean path of photons through the sphere.
This factor is the fraction of photons, incident on the sphere, that are absorbed.
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Therefore,
a∗Sample 2

a∗i
=

πD2

4ALCa∗i
=
πD2

4A

1

aSample 1L

which, because πD2/4 � A, is � 1. Thus, in the first case a∗Sample 1/a
∗
i ≈ 1, and in the

second a∗Sample 2/a
∗
i � 1. These predictions follow Eq. (5.23).

5.4.1.1 Applications

These simple formulae can be applied to the analysis of actual absorption data to obtain
a deeper understanding of their properties. Here we examine several applications: (1)
estimate of the spectrum of ai and of m̃i; (2) demonstration of the so-called “package
effect;” and (3) possibly understanding some aspects of the detrital absorption spectrum.

5.4.1.1.1 Estimation of ai and m̃i from aPart

Suppose that we measure the absorption spectrum aPart(λ) in a given sample of, say,
a cultured species of phytoplankton, which we assume to be of uniform size. (Here, and
henceforth in this chapter by the symbol λ we mean λVacuum.) In addition, assume we also
measure their diameter (assumed spherical, but see below) and the number per unit volume
(n = N/V , where N is the number in V ), both of which can be determined with a Coulter
counter.24 Then we can determine Qa(λ) = 4aPart(λ)V/NπD2, and using Figure 5.24 or
Eqs. (5.21) and (5.22), we can derive ρ′, and thus ai(λ) the true absorption spectrum of
the absorbing pigments within the cells. From this we can determine m̃i(λ) from

m̃i(λ) =
λ ai(λ)

4πmWater
.

This is the method used to estimate the m̃i(λ) from particle absorption measurements.

To get an idea of the range of values for m̃i that we can expect, we need to look at ab-
sorption spectra for phytoplankton pigments. Figure 5.26 provides the specific absorption
coefficient (specific to the concentration of each pigment) of several absorbing pigments that
are found in phytoplankton, and Figure 5.27 provides the specific absorption coefficient of
Chlorophyll a. Chlorophyll a is the principal photosynthetic pigment and the dominate
absorber in spectral regions near 440 and 675 nm. Measurement of the Chlorophyll a con-
centration in addition to the measurements of N and D, which provides v, determines ci
for Chlorophyll a.25 It is found that the intercellular concentration ci is in the range 0.01 to

24The Coulter counter is a commercial resistive pulse particle counter that measures the volume of
individual particles suspended in a conducting fluid, e.g., sea water. It is described in Chapter 4.

25Since the Coulter counter measures the particle volume, if the cells are all the same size and shape,
such measurements (along with C) yield ci without even assuming that the particles are spherical.
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15 kg/m3, or in units more appropriate for Figure 5.27, 0.01×106 to 15×106 mg/m3. Near
440 nm, a∗i ≈ 0.025 m2/mg, so ai there is in the range 250 to 3.75× 105 m−1, or 2.5× 10−4

to 0.375 µm−1. Inserting these into Eq. (5.19) yields 6.6× 10−6 <∼ m̃i <∼ 0.01 at 440 nm.
Thus, considering the pigment Chlorophyll a, for modeling phytoplankton scattering and
absorption, it is likely unreasonable to employ an m̃i that exceeds 0.01 by very much.

In general, as can be seen in Figure 5.26, there are several pigments that contribute to
the particle absorption. How are these handled? Let (ci)j be the concentration of the jth

pigment and (a∗i )j the specific absorption coefficient of the jth pigment. Then the internal
absorption coefficient is

ai =
∑

j

(ci)j(a
∗
i )j .

Given (a∗i )j (Figure 5.26) and measurement of aPart at several wavelengths, the (ci)j could
be estimated from linear regression. Or conversely, given (ci)j , the ai spectrum could be
computed and m̃i(λ) determined:26

m̃i(λ) =
λ

4πmWater

∑

j

(ci)j(a
∗
i (λ))j . (5.24)

Interestingly, Eq. (5.24) can also be used to learn something about m̃r(λ). Recall from
Chapter 1 that if the spectrum can be decomposed into N absorption features, Eqs. (1.32)
relate the real and imaginary parts of the refractive index (here relative to water):

m̃i =
N∑

i=1

C̃i
1 + η2

i

and m̃r − 1 = C̃0 +
N∑

i=1

C̃iηi
1 + η2

i

. (5.25)

In these equations, the C̃’s are constants, ηi = 2(ωi−ω)/γi, ωi = 2πc`/λi, ω = 2πc`/λ and
γi is the “width” of the ith absorption feature. The absorption features are centered on the
λi’s. We achieve the same result by letting ηi = αi(λ−λi)/λ and fitting the spectrum to the
absorption features by choosing N sets of λi, αi, and C̃i. When this is accomplished, m̃r

is known to within a single constant C̃0, i.e., the complete spectral shape of m̃r is known.27

26Although not particularly useful, one could compute the contribution to m̃i from each pigment using,

(m̃i)j = λ
(ci)j(a

∗
i )j

4πmWater
,

and then m̃i =
∑
j (m̃i)j . The contribution to m̃i at 440 nm from Chlorophyll a is 6.6 ×

10−6 <∼ (m̃i)Chl <∼ 0.01.
27It is not really necessary to decompose the spectrum of m̃i into individual oscillators. It can be shown

that

m̃r(λ0) = 1 +
2λ2

0

π
℘

∫ ∞
0

m̃i(λ)

λ(λ2
0 − λ2)

dλ,
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All that remains to find m̃ is the determination of C̃0. We shall see that in some cases this
can be accomplished by measuring the spectrum of the extinction or scattering coefficient.

5.4.1.1.2 The “Package Effect”

Consider a cell with a single absorbing pigment. Figure 5.25 shows that the particle
absorption coefficient specific to that pigment a∗Part is a non-linear and decreasing function
of ρ′ = ciDa

∗
i . Thus, for a given ci, a

∗
Part decreases (increases) as the particle size increases

(decreases), or for a given particle size, a∗Part decreases (increases) as the intracellular
concentration ci increases (decreases). Thus, a∗Part depends how the absorbing pigment
is “packaged.” In addition, consider intracellular absorption at two different wavelengths
with two different a∗i ’s. For example, let a∗i (λ2) = 2a∗i (λ1). Then ρ′(λ2) = 2ρ′(λ1). If the
cells are tiny, i.e., ρ′ � 1, then

a∗Part(λ2)

a∗Part(λ1)
=
a∗i (λ2)

a∗i (λ1)
= 2.

However, if ρ′(λ1) = 1, then ρ′(λ2) = 2, and calculating Qa(ρ
′)/ρ′, we find

a∗Part(λ2)

a∗Part(λ1)
≈ 0.73

a∗i (λ2)

a∗i (λ1)
≈ 1.5,

while if ρ′(λ1) = 20, the corresponding ratio is approximately 1. Thus, as the particles
increase in size from tiny to very large, the ratio a∗Part(λ2)/a∗Part(λ1) varies from 2 (the actual
pigment ratio) to 1, and the absorption difference in the spectrum of a∗Partthat is seen in
the tiny particles is missing in the large particles. This “flattening” of the spectrum of
a∗Part with increasing particle size (or increasing intracellular concentration) is also referred
to as the “package effect.”

5.4.1.1.3 Detrital Absorption

The package effect can also, partially at least, explain the detrital particle (non-algal
particle) absorption spectrum: aNAP (λ). Let’s assume that ai(λ) for detrital particles has
the same spectrum as CDOM, i.e., the same spectral shape as ay(λ) (Eq. (5.11)). If we are

where the λ’s are the wavelengths in the water, and ℘ indicates that the principle value of the integral be
used at the singularity (λ = λ0). This is called the Kronig-Kramers dispersion relationship. Note that it
unfortunately requires knowing m̃i at all wavelengths 0 to∞. Usually m̃i is known only over a small portion
of the spectrum, e.g., in studying plankton cultures, the visible spectrum. In such a case, the difference
formula

m̃r(λ0) = m̃r(λ1) +
2(λ2

1 − λ2
0)

π
℘

∫ ∞
0

λm̃i(λ)

(λ2
0 − λ2)(λ2

1 − λ2)
dλ,

obtained from the above equation by simple subtraction, has been shown to be more insensitive to the
assumptions that must be made about the spectrum outside the region of measurements in order to carry
out the integration; however, it leaves undetermined the constant m̃r(λ1), the analog to C0.
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given Sy, then, noting that Dai = ρ′ and inserting this spectral shape for ρ′ into Eq. (5.21),
the result is the spectral shape of aNAP as a function of Dai(440). Taking Dai(440) = 1
and Sy = 0.018 nm−1 yields an approximately exponential spectral shape for aNAP , with
SNAP ≈ 0.015 nm−1 (Sy = 0.014 nm−1 yields SNAP ≈ 0.011 nm−1). For smaller Dai(440),
SNAP will be closer to Sy, but, if ai(λ) ∝ ay(λ) for non-algal particles, the package effect
will yield an aNAP spectrum that is approximately exponential, with SNAP < Sy.

5.4.2 The Extinction (Attenuation) and Scattering Coefficient

Consider a homogeneous spherical particle of diameter D with index m̃ = m̃r + m̃ii. Let
ρ = 2x(m̃r − 1), where x = πD/λWater, and tan γ = m̃i/(m̃r − 1).28 The extinction
efficiency (Qc = 4σc/πD

2, where σc is the extinction cross section) in the van de Hulst
approximation is

Qc = 2

[
1− 2

cos γ

ρ
sin(ρ− γ) exp(−ρ tan γ)

−2
cos2 γ

ρ2
cos(ρ− 2γ) exp(−ρ tan γ) + 2

cos2 γ

ρ2
cos 2γ

]
.

(5.26)

Figure 5.28 compares the result of Eq. (5.26) with exact computations provided by Mie
theory (Chapter 3) for particles with no absorption. The approximation is clearly more
accurate as m̃r → 1; however, even for indices as high as 1.2, the error rarely exceeds 10%.
Clearly, the approximation describes the general features of the extinction and can be used
to investigate the general behavior of extinction with the size and refractive index. Figure
5.29 provides the exact extinction efficiency as a function of ρ for absorbing spheres with
a low value of m̃r (similar to that of phytoplankton). Note that the oscillations in Qc are
increasingly damped as m̃i increases. Also plotted on Figure 5.29 are the approximate
values of Qc and Qa derived from Eqs. (5.26) and (5.21), respectively. These give an
indication of the error to be expected using the approximate formulas (usually less than
10% in the efficiencies). Note that when the particle is absorbing, at large values of ρ,
Qc → 2 and Qa → 1, so the scattering efficiency Qb = Qc − Qa → 1, and the extinction
is equally produced by absorption and scattering. The scattering efficiency Qb determined
from Qc −Qa in Figure 5.28 is provided in Figure 5.30. The most efficient scatterers have
ρ ≈ 4 or D ≈ 2λWater/π(m̃r − 1). At 500 nm (in vacuum) this yields D ≈ 4.8 µm for
m̃r = 1.05.

It is important to note that Figure 5.29 shows that the variation in Qc from non-
absorbing to strongly-absorbing particles is very weak: basically just a damping of the
oscillations. In contrast, Figure 5.30 shows that Qb is considerably reduced by absorption.

28Note that ρ and ρ′ are related through ρ′/ρ = m̃i/(m̃r − 1) = tan γ.
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This suggests that for particles with a strong absorption feature (e.g., phytoplankton near
670 nm – Figure 5.10) the spectral scattering coefficient would be depressed over the fea-
ture, and so the feature may be nearly missing entirely in the beam attenuation coefficient.
This is precisely what is observed. Furthermore, Figure 5.29 suggest that m̃r and the
particle size determine the beam attenuation coefficient, with m̃i having only a secondary
affect.

If the extinction coefficient for a spherical particle at a particular wavelength and particle
diameter are measured, then Qc can be determined. Assuming that the absorption coeffi-
cient at the same wavelength has also been measured, then m̃i is determined as described
earlier. In this case Eq. (5.26) can be used to determine m̃r, and so, the complex refractive
index of the particle could be determined from measurements of c and a. Unfortunately,
examination of Figures 5.28 and 5.29 show that for a given Qc > 1.75 there are multiple
values of ρ, so in this case the determination of m̃r is not unique. For Qc > 1.75, spectral
information concerning σc is required to resolve this ambiguity. If the spectral absorption
cross section σa(λ) is available, then the spectrum of m̃i(λ) can be determined, and the
spectrum of m̃r(λ) found from Eq. (5.25) to within an additive constant C̃0. The constant
C̃0 can then be estimated by fitting the Qc(λ) spectrum to that computed from

ρ(λ) =
πD

λWater

[
C̃0 +

N∑

i=1

C̃iηi
1 + η2

i

]
,

using Eq. (5.26). This is how it is known that for phytoplankton m̃r ∼ 1.05 and
m̃i <∼ 0.01.29 Note that if the particle is too large, or if the absorption is too large, then
Qc and Qa are very insensitive to ρ′ and ρ, respectively, and these methods for estimating
m̃ fail.

Given an absorbing pigment within the cell, e.g., Chlorophyll a, and following arguments
similar to those leading to Eq. (5.23), we can derive the specific (to the given pigment)
scattering coefficient of particles through30

b∗Part =
bPart

C
=

3

2

Qb
ciD

.

Replacing D by its dependence on ρ, we can write this as

b∗Part =

(
3π(m̃r − 1)

ciλWater

)
Qb
ρ
, (5.27)

29If higher accuracy is required (which is usually not the case for phytoplankton) then Eqs. (5.26) and
(5.21) can be used to approximate m̃ and Mie theory can then be used to provide better determinations.

30The relationships between a∗Part, b
∗
Part, Qa and Qb can also be put in the useful form

Qa =
2

3
ciDa

∗
Part and Qb =

2

3
ciDb

∗
Part.
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and see that the variation of the specific absorption coefficient with particle size is governed
by Qb/ρ. Figure 5.31 provides Qb/ρ as a function of ρ for three values of m̃i with m̃r = 1.05.
It shows that, for ρ >∼ 4, the specific scattering coefficient decreases as the the particle size
increases for a given intracellular concentration ci, while for ρ <∼ 4, it increases as the
particle size increases. Measurements of b∗Part for cultured suspensions of phytoplankton
confirm these observations.

5.4.3 The Backscattering Coefficient

Because of the direct significance of backscattering to remote sensing, we now discuss gen-
eral aspects of the backscattering of spherical particles in relation to particle size and
refractive index. Later, we briefly consider the effect of particle shape by examining
cylindrically-shaped particles.

The backscattering properties of non-absorbing homogeneous spherical particles are pro-
vided in Figure 5.32. They were computed using the Mie scattering theory described in
Chapter 3. The abscissa is the size parameter x = πD/λWater. The ordinates describe
the scattering in several different ways: the backscattering probability B; the scattering
efficiency Qb; the backscattering efficiency Qbb = BQb; and the non-dimensional backscat-
tering scattering cross section σbb = x2Qbb.

31 To put the size scale in perspective, note
that for a particle that is one micrometer in diameter, at λVacuum = 500 nm, x ≈ 8.4, and
thus phytoplankton would fall in the range x ≈ 8 to 80 or somewhat larger (or smaller)
depending on λ.

One sees that the backscattering probability B is 0.5 for very small particles (Rayleigh
scattering), and then decreases as the particle size increases.32 Clearly low-index particles
backscatter much less than high-index particles. Note that the minimum observed in B
(x ≈ 10 for m = 1.15 and x ≈ 100 for m = 1.025) corresponds approximately to the
first maximum in the scattering efficiency Qb. The backscattering efficiency Qbb reaches a
maximum and then rapidly falls to about half that maximum as the particle size increases.33

31The actual backscattering cross section is Qbb × πR2 where R is the particle radius. Since x =
2πR/λWater, the actual σbb is x2Qbb × (λ2

Water/2π). So the actual backscattering cross section is that
given in the lower right panel of Figure 5.32 (and Figures 5.33 and 5.34) multiplied by λ2

Water/2π. If λWater

is in µm, σbb is in µm2.
32For the very low index particles (m = 1.025) the Rayleigh-Gans theory (Chapter 3) agrees well with

these computations of B up to x <∼ 10, while for the high index (m = 1.15) the Rayleigh-Gans computation
agrees with Mie only up to x <∼ 2.

33The strong oscillations seen in the Qbb and B are real but not well represented in these graphs. Correctly
characterizing the oscillations requires high resolution in x. Here the resolution in x, i.e., ∆x, is 0.1 for
0 ≤ x ≤ 500 and 1 for x ≥ 500. The strange behavior of Qbb for 200 ≤ x ≤ 500 is due to “beats” between
the frequency of the oscillation and the frequency of the calculation.
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The position of the maximum depends strongly on the refractive index with the higher
indices moving the maximum to smaller particle sizes. For very large particles, B, Qbb
and σbb differ by approximately an order of magnitude from the low to the high refractive
index. It is important to note that regardless of their refractive indices, larger particles
always backscatter more strongly than smaller particles with the same index, i.e., they
have a larger σbb.

The effect of particle absorption on scattering is provided in Figure 5.33. The most
obvious difference between absorbing and non-absorbing particles is the absence of the high
frequency oscillations in the former. Also, B and Qbb become essentially constant for large
x, and absorption strongly attenuates the backscattering for larger particles. In addition
increasing absorption moves the maximum of Qbb to smaller particle sizes. Note that for
this case where the real part of m̃ is 1.075 (perhaps near the upper limit for phytoplankton)
the maximum (with absorption) is near x = 100, close to that of a particle with D = 12
µm, e.g., a large phytoplankter. For lower values of m̃r this maximum will shift to still
larger particle sizes. Figure 5.33 suggests that the range of B for phytoplankton is likely to
be about 0.001 to 0.003, as was assumed for Bpl in the empirical models in Section 5.3.3.4.

Finally, it is interesting to understand the effect of internal structure on scattering by
particles. Mie-like calculations are possible for coated spherical particles. One might imag-
ine phytoplankton having an interior that is mostly water-like (with absorbing pigments)
surrounded by a membrane that keeps the cell intact. We provide here computations for a
coated sphere in which the core of the sphere is absorbing (m = 1.075 + 0.0050i) and the
coating is a higher-index non-absorbing material (m = 1.15).34 Figure 5.34 provides results
similar to those in Figures 5.32 and 5.33. In Figure 5.34 x = 2πR/λWater, where here R is
the overall radius of the sphere – core plus coating). The parameter t is the thickness of
the coating in micrometers (t = 0, 0.04, 0.08, 0.16, 0.24, 0.32, 0.48, 0.64 µm). The overall
radius of the particle is R = Rc + t, where Rc is the radius of the core, so x = xc + 2πt/λ.
For λVacuum = 500 nm and t = 0.08 µm, x = xc + 1.33. Thus, for a given value of x at a
different wavelength, the physical thickness of the coating will be different, so it is best to
think of these results as being only for a single wavelength, i.e., λVacuum = 500 nm.

The most obvious effect of the coating is to significantly increase the backscattering
and move the maximum of Qbb to smaller particle sizes. It is interesting to note that the
increase in Qbb is so large in some cases that σbb is no longer a monotonically increasing
function of x. Also, for large x the particles with various coatings tend to constant B
and Qbb such that t = 0.08, 0.16, 0.32, and 0.64 µm approach asymptotes of similar value
(“similar” meaning within approximately 20%), t = 0.04 and 0.48 µm similar values, and

34The refractive index of the coating used in the computations is much higher that one might expect;
however, the results are presented here for illustrating the possible effects of a cell membrane, not as a
realistic model of phytoplankton.
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t = 0 and 0.24 µm similar values. We have no quantitative explanation of this behavior;
however, qualitatively the effect must be due to interference among multiple reflections
within the coating. Figure 5.35 compares the backscattering efficiency Qbb of the coated
sphere with successively thicker coatings to that of a homogeneous sphere with the same
index as the coating. Interestingly, for 10 <∼ x <∼ 60, the backscattering for a sphere with
a 0.64 µm coating is very close to the backscattering of the homogeneous sphere with the
coating index.35 As the sphere becomes larger (x > 60), Qbb falls by more than one order
of magnitude.

In sum, the message here is clear: a high-index coating on a low-index particle can
significantly increase the backscattering, even if the coating thickness is significantly less
than λ.

5.4.4 The Scattering Phase Function

We will not discuss in detail the dependence of the scattering phase function on size and
refractive index as these are discussed in some detail in Chapters 3 and 4. In addition, the
phase functions are considerably changed when a distribution of particle sizes is considered
(later in this chapter) rather than a single size. However, we do provide one example just
to show the general nature of the variation of the phase function with scattering angle and
with the strength of absorption (m̃i). Figure 5.36 shows the phase function computed for
a particle with x = 20 and m̃r = 1.05. The three curves shown are for m̃i = 0, 0.0075,
and 0.0150, i.e., no absorption to strong absorption. There are two effects that are evident
from the figure: (1) the large variation in the magnitude of the phase function over the
range of scattering angles (8 orders of magnitude); and (2) the strong oscillations with
an angular frequency of approximately 1 oscillation per 15◦. Both of these are strongly
influenced by the particle size. Larger particles show a larger range of variation and more
oscillations in a given angular range (higher angular frequency of oscillations). This figure
also shows that, at least for x = 20, the influence of absorption is small. Absorption damps
out the oscillations, lowering the peaks and increasing the troughs. As we have seen earlier,
absorption causes the backscattering to decrease. When a wide distribution of particle sizes
is considered, the oscillations are completely smoothed out.

35At the maximum in Figure 5.35 x ≈ 40 so, at a vacuum wavelength of 500 nm, the overall radius of
the particle is about 2.75 µm. The thickest coating (0.64 µm) is then 23% of the particles radius at the
maximum of Qbb.
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5.4.5 Influence of Particle Shape on IOPs

Phytoplankton (and most marine particles) have shapes that deviate significantly from
spheres. To try to demonstrate the influence of shape on the IOPs, we take the example of a
collection of homogeneous cylinders in random orientation. (Some species of phytoplankton
collect in long chains that are actually reasonable to model as homogeneous cylinders.) The
aspect ratio of the cylinder is defined by AR = L/D, where L is the length and D is the
diameter. The IOPs for finite cylinders can be computed using the DDA described in some
detail in Chapter 3. In addition, a computation method similar to Mie theory for spheres
is available for infinitely long cylinders. We will compute the IOPs as a function of D and
AR for cylinders with 1/3 ≤ AR ≤ 30 and compare these to those of spheres and infinite
cylinders.

5.4.5.1 Absorption

We begin by looking at the absorption coefficient of cylinders. For an infinite cylinder, the
only dimensions in the electromagnetic scattering problem are the diameter of the cylinder
D and the vacuum wavelength λ. Taking a clue from spheres, we take the size parameter
for cylinders to be x = mWater(πD/λ), i.e., the IOPs of infinite cylinders can depend on
size only through x. For finite cylinders, the IOPs will depend on both x and AR.

Figure 5.37 (left panel) provides the absorption efficiencyQa for finite absorbing-cylinders
as a function of ρ′ = 4xm̃i. The value of Qa is determined by computing the absorption
cross section σa for the particle and dividing it by the orientationally-averaged projected
area36 of the cylinder: πD(L+D/2)/4. As with spheres, ρ′ is the absorption optical thick-
ness of the cylinder for a ray passing through the axis, normal to the surface, i.e., Dai.
The computations (symbols) are for refractive indices m̃ = 1.05 + 0.002i and 1.05 + 0.010i,
i.e., m̃r in the midrange for phytoplankton and m̃i values representing (relatively) weak
and strong absorption for phytoplankton. The solid curves are the computed values of Qa
for an infinite cylinder, while the dotted curve is Qa for a homogeneous sphere with index
m̃ = 1.05 + 0.002i and the given value of x. There are several points for each ρ′, and
these correspond to different values of AR, with the largest AR values closest to the solid
lines (infinite cylinders). Points with AR < 1 are all below the dotted line (homogeneous
spheres). These are disk-shaped particles. The points very close to the dotted line all have
AR = 1. These are the most compact cylinders (minimum surface area for a given volume)

36The projected area of an object in a given orientation is just the area of the geometric shadow of the
object when illuminated by a parallel beam (neglecting diffraction). The orientationally-averaged projected
area is the average area of the shadows over orientation. For an object that is convex (no indentations) the
orientationally-averaged projected area is the object’s actual surface area divided by 4.
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and, in this respect, the closest to spheres. All points above the dotted line have AR > 1,
with AR increasing as Qa becomes larger for a given ρ′.

The right panel of Figure 5.37 is the same as the left panel except that all points with
AR < 3 have been removed (and Qa for spheres as well). The removed values include
AR = 1/3, 1/2, 1, and 2 (note that not all values of AR are computed for each D).
It shows that Qa can be computed for a cylinder with AR > 3 with an error less than
about 10%, by assuming that the cylinder is infinite. Conversely, given Qa (i.e., through
measurement of σa and the particle’s L and D), when AR ≥ 3, m̃i can be deduced from
measurements with an error of roughly the same order (nominally 10%, but dependent on
the actual value of Qa) by assuming that the cylinder is infinite.

Can we deduce m̃i if D and L are unknown, but the (cylindrically shaped) particle
volume is known, e.g., from Coulter counter measurements?In this case, all one can do is
assume a particle shape – traditionally spherical. From the volume measurement, one can
compute the diameter of the equal-volume sphere DEquiv. Then from the measurement of
the absorption cross section σa (the absorption coefficient divided by the number density
in the beam through the sample volume) one can form the volume equivalent absorption
efficiency Qa = 4σa/πD

2
Equiv. The volume-equivalent size parameter is x = πDEquiv/λWater

and ρ′ = 4xm̃i. Thus, all computed quantities from σa and the particle volume assume
a spherical shape. Figure 5.38 shows the result of this exercise. The solid lines on the
figure are Qa for m̃ = 1.05 + 0.002i (black) and m̃ = 1.05 + 0.010i (red) computed from
Mie theory (spheres), and the dotted line is Eq. (5.21) (spheres). Again we see that m̃i

could be estimated with an error <∼ 10% by analyzing the experimental data assuming
the particles are homogeneous, volume-equivalent spheres.37

5.4.5.2 Extinction and Scattering

The extinction efficiency Qc of non-absorbing finite cylinders (m̃ = 1.2) is presented in
Figure 5.39. Again, ρ = 2πD(m̃r − 1)/λWater, where D is the diameter of the cylinder.
The left panel shows the results for all aspect ratios, while the right panel is restricted
to AR ≥ 3. The solid curve is Qc for an infinite cylinder. As in the case of absorption,
when AR ≥ 3, treating the particle as being infinitely long results in only a small error
in Qc. Figure 5.40 compares Qc for a non-absorbing cylinder with that for a sphere with
the same m̃ and shows that the extinction efficiency for each varies in a similar manner,
but with a phase shift in the oscillations between the two. The case of absorbing cylinders

37Noting that there is error associated with Eq. (5.21), one could employ Mie theory instead for higher
accuracy. In the cases examined here, the dependence of Qa on m̃r (unknown) is quite weak, so higher
accuracy is possible.
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is presented in Figure 5.41 with the left panel including all AR and the right panel only
AR ≥ 3. All of the cases in Figure 5.37 are included on Figure 5.41. Clearly, when AR ≥ 3
the particle’s extinction efficiency can be computed with reasonable accuracy by using the
infinite-L assumption.38

Finally, what if we interpret extinction data for cylinders by assuming they are spheres
with the same volume (the volume-equivalent sphere approximation)? Figure 5.42 pro-
vides the result of such an exercise. Here, the diameter DEquiv of the sphere having
the same volume as the cylinder is computed, σc is divided by πD2

Equiv/4 to form Qc,
and ρ = 2xEquiv(m̃r − 1), where xEquiv = πDEquiv/λWater. Clearly, treating absorption-
scattering process using the volume-equivalent sphere approximation does not work as well
for extinction as it does for absorption (Figure 5.38). One method for estimating m̃r from
σc and particle volume data is to use DEquiv to form Qc. Then from Qc, try to find a value
of m̃r that is consistent between the two. For example, consider the large open diamond
point on Figure 5.42 (ρ ≈ 2.36, Qc ≈ 1.40). Using this value of Qc one would assume
from the extinction efficiency curves for spheres that ρ should be approximately 1.8. This
means that the ρ estimated from Qc is too small by a factor of about 3/4, hence the es-
timated value of m̃r − 1 will be too small by the same factor, and the derived m̃r will be
approximately 1.037 instead of the correct 1.050. Thus, all the points to the right of the
curves in Figure 5.42 will yield m̃r values that are too small. Note that not knowing the
precise value of m̃i leads to a much smaller error in m̃r than we are discussing here. In fact
we could assume m̃i = 0 with little additional error in m̃r. For large values of m̃r or for
larger cylinders, this method of finding the index for cylinders fails completely. It is easy
to understand why. Since Qc → 2 for large particles, we have σc → 2πD(L+D/2) for large

L. Now, let QSph
c be the extinction efficiency computed by assuming that the cylinder is a

sphere of equal volume, i.e., as sphere with diameter DEquiv, where πD3
Equiv/6 = πD2L/4.

Then, for large L

QSph
c ,

4σc
πD2

Equiv

→ 2πD(L+D/2)

(
π

(
3

2

)2/3

D4/3L2/3

)−1

≈ 1.5(AR)1/3,

which shows that QSph
c has no upper bound, while Qc for spheres does not exceed 4 (Figure

5.28). Thus, care must be taken when trying to use the equivalent sphere approximation
to derive refractive indices for cylinders from extinction measurements. Note that similar
considerations apply to deriving m̃i from QSph

a . These methods can only be used when

38If we assume that the cylinder contains an absorbing pigment of concentration ci within the cylinder,
the equations such as Eqs. (5.23) and (5.27) can be derived for cylinders:

a∗Part

a∗i
=

(
1 +

1

2AR

)
Qa
ρ′

and b∗Part =
2π(m̃r − 1)

ciλWater

(
1 +

1

2AR

)
Qb
ρ
,

and Qa and Qb can be computed assuming the cylinder is infinite if AR ≥ 3.
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QSph
c < 4 and QSph

a < 1, and then, only when ρ is sufficiently small to avoid the multivalued
nature of ρ given Qc.

5.4.5.3 Backscattering

How much does shape influence particle backscattering? To look at this question we again
consider homogeneous cylinders. As in the case of Qc and Qa, the backscattering proba-
bility becomes independent of the length of the cylinder (and equal to that of an infinite
cylinder) as the aspect ratio becomes large. Figure 5.43 shows B as a function of AR
for low index absorbing and non-absorbing cylinders to demonstrate the influence of (or
lack of influence of) absorption on backscattering probability and Figure 5.44 shows the
influence of m̃r for non-absorbing cylinders. Clearly AR need only be larger than 3 to 5
in order that B is effectively independent of AR. Figure 5.45 provides examples of B and
Qbb as a function of the size parameter. Included for comparison are the same quantities
for homogeneous spheres.39 In these figures, the points for cylinders at a given x cluster
together when the AR is large (see Figure 5.43). Thus, in the case of B, the points falling
farthest below the curves for spheres correspond to cylinders with the largest aspect ratios,
and for these B for cylinders is about half that of spheres. For the low index cylinders
computations were also carried out for aspect ratios smaller than one (disk-shaped) and
equal to one (maximum volume cylinder for a given surface area, i.e., most compact). The
open symbols are all for AR < 1, while all the AR = 1 cases are very close to the curve
for spheres, as one might expect. For low index cylinders, Qbb values are roughly the same
for spheres and cylinders; however, that does not mean the backscattering cross sections
σbb are similar, because they are related to Qbb through σbb = Qbb × Ap, where Ap is the
orientationally-averaged projected area of the cylinder, πD(L+D/2)/4, which is directly
proportional to L for large AR. However, there is a simplification that is particularly useful
in the low-index case, where QCylinder

bb ≈ QSphere
bb . The backscattering cross section can be

written

σCylinder
bb =

πD

4
(L+D/2) QCylinder

bb =
πD2

4
(AR+ 1/2) QCylinder

bb ,

while

σSphere
bb =

πD2

4
QSphere
bb .

Therefore, for the low-index case

σCylinder
bb ≈ (AR+ 1/2) σSphere

bb ,

39It is important to emphasize again that the size parameter here for the cylinder has nothing to do
with it’s length, it depends only the diameter, i.e., it is not the size parameter for the volume-equivalent or
surface area-equivalent sphere, as is often used in comparison of scattering by particles of different shapes.
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and the backscattering cross section of a cylinder of aspect ratio AR is approximately
equal to the backscattering cross section of a sphere with the same diameter times AR.
For the high index case, Qbb increases more slowly with x than for spheres; however, a
similar approximation for the high-index cylinders suggests that this result still holds for
them to well within a factor of 2. One should also note that for the largest x here, the
backscattering efficiency of the high-index cylinder is roughly a factor of 50 times that
of the low-index cylinder, indicating the very strong dependence of backscattering on the
refractive index.

5.4.5.4 The Scattering Phase Function

In this subsection we compare the scattering phase function for spheres and cylinders
and the dependence of the phase function for cylinders on their aspect ratio. Figure 5.46
provides the phase function for a non-absorbing cylinder with x = 2.6 and m̃r = 1.20 as a
function of the aspect ratio.40 Note that for AR ≥ 5 there is very little difference between
the various phase functions except at very small angles, where the longer cylinders have
increasingly larger values.41 It is remarkable how quickly with increasing AR the phase
function (except at small angle) becomes essentially static. The phase function for the
sphere is somewhat similar to that for the cylinder with AR = 1. We have already seen
this similarity in the variation of B with AR (Figures 5.43 and 5.44). Figures 5.47 and 5.48
compare the phase function and degree of linear polarization, respectively, for an absorbing
cylinder with x = 7, m̃r = 1.05 and m̃i = 0.002, with that of a similar diameter sphere.
Note that the similarity between the two aspect ratios and the deeper minima for the larger
AR.42 The phase function for the sphere is similar in magnitude to the cylinder, but differs
in detail.

The motivation behind this section was to show some of the differences and the sim-
ilarities between IOPs computed for spheres (the usual assumption) and cylinders (used
as an example of non-spherical particles). The cylindrical shape was used only because
of its simplicity. Ellipsoidal shapes (spheroids) could have been used as well. The main
conclusion is that, although there are significant quantitative differences between particles
of different shapes, there are qualitative similarities. Also, scattering and absorption for

40In Figure 5.46, Qc = 0.487, 0.410, 0.999, 1.007, 1.032, 1.033, and 1.033, and B = 0.0326, 0.0349, 0.0212,
0.0212, 0.0209, 0.0218, and 0.0220, for the sphere, AR = 1, 5, 10, 100, 200, and 250, respectively, i.e., for
the sphere Qc = 0.487 and B = 0.0326, etc.

41For AR > 10 the apparent noise in the computations is due to using an insufficient number of ori-
entations in the orientational averaging. The computation time is directly proportional to the number of
orientations and excessive time would be required to produce smooth curves a high AR.

42In Figure 5.47, Qc = 0.271, 0.464, and 0.537, and B = 0.00300, 0.00176, and 0.00153, for the sphere,
AR = 3 and 20, respectively.
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cylinders has been shown to be similar in magnitude to those of some associated sphere,
i.e., an equal volume sphere in the case of absorption and AR+ 1/2 times the backscatter-
ing cross section of a sphere with the same diameter in the case of backscattering. In this
respect, the optics of spherical particles can serve as a “guide” toward understanding the
IOPs of particles of other shapes.

5.5 Influence of The Distribution of Particle Size on IOPs

In the previous subsection we discussed the theory of the IOPs for a particle with a specific
size and composition; however, a suspension of single-size particles in nature is very difficult
to come by. Even the particles in a suspension of cultured phytoplankton have a distribution
of particles sizes (sometimes rather wide compared to the mean size). In natural waters
the range encountered for particle sizes can cover many orders of magnitude. Figure 5.49
provides the size distribution of particles in the surface waters of the Tongue of the Ocean,
Bahamas, measured with a Coulter counter.In the figure, the abscissa is the number of
particles with diameter (D) greater that a given value (ordinate). The measurements
range from 0.5 ≤ D ≤ 8 µm, but the distribution undoubtably continues to smaller and
larger particles. Clearly, it is critical to understand the influence of the distribution of
particle sizes on the IOPs.

5.5.1 Analytical Representations of the Size Distribution

The solid lines in Figure 5.49 piecewise represent functions of the form N>D = kD−ν ,
where k and ν are constant for each segment. If D is in µm, then k is the number of
particles per ml with D > 1 µm. For a case like Figure 5.49 with multiple straight line
segments, then each must be extrapolated to D = 1 µm to determine the associated k. For
example, in Figure 5.49 for 3 segments, the smallest- and the middle-size segments have
k ≈ 17, 000 particles per ml and ν ≈ 6.5 and 2.5, respectively, while the largest segment
has k ∼ 60,000 particles per ml and ν ≈ 3. If one were to try to fit the data to a single
function, then the ν value would be ∼ 3 with k ∼ 40, 000 ml−1.

The “size distribution” is defined by n(D) = dN/dD, where dN is the number of particles
per unit volume with diameters in the range D − dD/2 ≤ D ≤ D + dD/2. This is related
to N>D through

n(D) =
dN

dD
= −dN>D

dD
,

so, if we assume the distribution can be represented by a single segment, which is roughly
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the case for D > 1 µm, then43

n(D) =
νk

Dν+1
,

K

Dν+1
.

If the N>D graph contains several segments, then this formula applies to each segment with
their individual values of k and ν, and the size distribution n(D) will not be continuous, but
will have jump discontinuities. The actual size distribution of course has no discontinuities,
only its segmented representation. Size distributions of this type are called power-law
distributions; also called Junge distributions. (See Chapter 4 for a review of power-law
distributions and log-normal distributions, discussed below.)

The total number of particles per ml (N0 =
∫∞

0 n(D) dD) is infinite if the distribution
of sizes continues to follow the power-law all the way to D = 0, so if it continues to have
this form, there must be a smallest particle size DS . If there is a largest size DL, then for
this truncated distribution the constant K is related to the total number of particles:

N0 =
k

Dν
s

− k

Dν
L

=

∫ ∞

0
dN = K

∫ DL

Ds

D−(ν+1) dD,

so

K = νk =
N0ν

(D−νS −D−νL )
.

Other distributions are also used to describe marine particle sizes. For example, the
distribution of sizes in phytoplankton cultures of a single species is often represented as a
log-normal distribution:44

dN

d(`nD)
=

N0√
2πσ2

exp

[
−1

2

(
`nD − `nDN

σ

)2
]
, (5.28)

where N0 (the total number of particles per unit volume), DN (the median or modal
diameter) and σ are constant. An equivalent form of this distribution is

dN(D)

dD
=

N0

loge(10)D
√

2πσ2
10

exp

[
−1

2

(
log10(D/DN )

σ10

)2
]
, (5.29)

43In Chapter 4, the size distribution is defined in terms of particle radius R. Here, we use diameter D
because that is how Coulter counter results are usually reported. Clearly, dN/dR = 2dN/dD.

44Note the similarity between Eq. (5.28) and the Gaussian or Normal distribution. For particles following
a Gaussian distribution in diameter,

dN

dD
=

N0√
2πσ2

exp

[
−1

2

(
D −Dm

σ

)2
]
.

For this distribution the mean of D, 〈D〉 = Dm and the variance 〈(D − 〈D〉)2〉 = σ2. Thus, for the log-
normal distribution (Eq. (5.28)) 〈`nD〉 = `nDN and 〈(`nD−〈`nD〉)2〉 = σ2 — the log normal distribution
is a Gaussian distribution in which D → `nD everywhere.
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where σ10 = σ log10(e). Size distributions of the type shown in Figure 5.49 are sometimes
modeled as different populations of particles, with the individual populations having log-
normal distributions. For example, a distribution with ν values similar to that shown in
Figure 5.49 can be well modeled by a combination of three log-normal distributions:

dN

dD
=

3∑

i=1

dNi

dD
, where

dNi

dD
=

N0i

loge(10)D
√

2πσ2
10i

exp

[
−1

2

(
log10(D/DNi)

σ10i

)2
]
,

with N0i = (6.5 × 1011, 7 × 104, 3 × 103) ml−1, DNi = (0.011, 0.5, 1.0) µm, and σ10i =
(0.35, 0.30, 0.35), where i = (1, 2, 3). This is shown in Figure 5.50. The right panel in
the figure compares favorably to the cumulative distribution in Figure 5.49. This kind
of representation has the advantage that each component of the distribution might be
physically linked to a particular kind of particle, e.g., here possibly viruses (i = 1), detritus
(i = 2), and phytoplankton (i = 3).

5.5.2 Influence of the Distribution of Sizes on IOPs

Recall that the IOPs (aPart, bPart, cPart, and βPart) for single-sized particles are related to
the respective cross sections σa, σb, σc, and dσb/dΩ, by the number of particles per unit
volume, e.g.,

bPart =
N

V
σb,

etc., where N is the number of particles in V . When we have a distribution of sizes governed
by n(D) = dN(D)/dD, with dN equal to the number of particles per unit volume with
diameters in the range D − dD/2 ≤ D ≤ D + dD/2, then for particles in this size range,

dbPart(D) = σb(D) dN(D) = σb(D)
dN(D)

dD
dD = σbn(D) dD,

etc, for aPart, cPart, and βPart, so

bPart =

∫
σbn(D) dD,

etc. If the efficiencies are given, e.g., by Qb(D) = 4σb/πD
2, then

bPart =
π

4

∫
QbD

2n(D) dD,

with similar expressions for a and c. In a similar manner, VSF is

βPart(Θ) =

∫
dσb
dΩ

n(D) dD.
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In these expressions, the integrals are taken over all particle sizes.

For some applications it is useful to define mean efficiencies with respect to a given size
distribution in the following manner. The mean scattering efficiency is defined according
to

〈Qb〉 =

∫
D2Qb(D)n(D) dD∫

D2n(D) dD

so

bPart =
π

4
〈Qb〉

∫
D2n(D)dD = 〈Qb〉G,

where

G =
π

4

∫
D2n(D)dD

is the total projected are of the particles in the size distribution.Similar definitions are
made for 〈Qa〉 and 〈Qc〉.

5.5.2.1 Estimation of ai and m̃ for Size-Distributed Plankton

In Section 5.4.1.1.1 we examined a method for estimation of particle refractive index,
e.g., for single-sized phytoplankton, from measurements of the absorption coefficient. How
does the distribution of particle sizes influence this estimation? We note that Qa is a
monotonically increasing function of ρ′ = aiD, where ai is the absorption coefficient of the
intracellular material. Therefore,

〈Qa(ai)〉 =
π

4G

∫
D2Qa(aiD)n(D) dD

is also monotonic in ai, so aPart = 〈Qa(ai)〉G admits a unique solution for ai and therefore
m̃i. If the complete spectrum of aPart(λ) is measured yielding m̃i(λ), then it can be fit to
a collection of oscillators from which C̃i in Eq. (5.25) can be determined. This means that
m̃r−1 can be determined to within an additive constant C̃0. This constant can sometimes
(but not always) be determined from cPart:

cPart(λ) = 〈Qc(m̃, λ)〉G.

If the particle sizes (and m̃) are actually in the range where Qc(x, m̃) varies significantly
with x over the spectrum, then C̃0 can be determined, otherwise it cannot. This requires
that the mean size is not so large (or C̃0 not so large) that 〈Qc〉 ≈ 2. So, with this latter
proviso, the basic method of estimating m̃, described for single-size particles, will also work
for particles distributed in size.
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For specific absorption coefficients, we can define the mean intracellular pigment concen-
tration 〈ci〉 to be the bulk pigment concentration C divided by the total particle volume
VTotal, i.e.,

〈ci〉 ,
C

VTotal
=

C

(π/6)
∫
D3n(D) dD

.

Then it is easy to show that

a∗Part =
aPart

C
=
〈Qa〉
〈ci〉

(π/4)
∫
D2n(D) dD

(π/6)
∫
D3n(D) dD

=
3

2

〈Qa〉
〈ci〉
〈D2〉
〈D3〉 ,

where 〈Dp〉 =
∫
Dpn(D) dD. This is the analog of a∗Part = 3Qa/2ciD for distributed

particles. Also, noting that a∗i = ai/〈ci〉, we have

a∗Part

a∗i
=

3

2

〈Qa〉
ai

〈D2〉
〈D3〉 ,

which is the analog of Eq. (5.23) for distributed particles. In a similar manner,45

b∗Part =
3

2

〈Qb〉
〈ci〉
〈D2〉
〈D3〉 .

5.5.2.2 IOPs of Power-Law Distributed Particles

As mentioned earlier, if we modeled the distribution of ocean particles in Figure 5.49 by
a single power-law, one would find ν ≈ 3. Thus, it is important to examine the IOPs
associated with a size distribution

n(D) =
K

Dν+1
,

with D extending over the entire size range DMin to DMax. Consider the total scattering
coefficient,

bPart =
π

4

∫ DMax

DMin

D2Qbn(D) dD =
πK

4

∫ DMax

DMin

D2

Dν+1
Qb dD. (5.30)

The integral can be computed by deriving Qb from Mie theory or from the anomalous
diffraction approximation, and will obviously depend on DMin and DMax. It is instructive

45The relationships between a∗Part, b
∗
Part, 〈Qa〉 and 〈Qb〉 can also be put in the useful form

〈Qa〉 =
2

3

〈D3〉
〈D2〉 〈ci〉a

∗
Part and 〈Qb〉 =

2

3

〈D3〉
〈D2〉 〈ci〉b

∗
Part.
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to see under what circumstances one can extend the limits to DMin → 0 and DMax →∞.
For small D we are in the Rayleigh regime in which the scattering is proportional to the
square of the particle volume, i.e. D2Qb ∝ D6, while for large D, Qb → 2. So, for small
D the integrand is ∝ D5−ν , while for large D it is ∝ D1−ν . Therefore, if the limits are
extended, the integral will exist,46 i.e., be <∞, if 2 < ν < 6. Thus, even though the total
number of particles and the total projected area of the particles (and for ν > 2, the total
volume of particles) are infinite, the scattering is finite for this range of the parameter ν.
Then, for this range of ν we can compute

bPart =
πK

4

∫ ∞

0

D2Qb
Dν+1

dD.

To do this we note that Qb depends only on x and m̃, so we change variables in the integral
from D to x = πD/λWater. Making this substitution (D = λWaterx/π) we find

bPart =
πK

4

(
λWater

π

)2−ν ∫ ∞

0
x1−νQb dx.

The integral in this expression is simply a number, so this tells us that the spectral depen-
dence of the particle scattering coefficient is

bPart(λ) ∝ λ2−ν ,

a relationship we have already found for aerosols (Chapter 4). Similar arguments can
be made for aPart, cPart, and βPart, i.e., they all vary spectrally according to λ2−ν , which
implies that the scattering phase function for such a distribution of particles is independent
of wavelength. Note that these conclusions require that the size distribution be extended
over the entire size range (0→∞).47 If the size range is finite, then

bPart =
πK

4

(
λWater

π

)2−ν ∫ xMax

xMin

x1−νQb dx, (5.31)

46Note that∣∣∣∣∫ ∞
c

1

ya
dy

∣∣∣∣ <∞ if a > 1 and c > 0 and

∣∣∣∣∫ c

0

1

yb
dy

∣∣∣∣ <∞ if b < 1 and c <∞.

47There is another interesting relationship can be derived when the power-law size distribution is valid
for all sizes from 0 to ∞. This concerns small-angle scattering. Small-angle scattering is dominated
by diffraction. In the diffraction-geometrical optics approximation (Chapter 3) the small angle volume
scattering function is given by

dβ(Θ) =
κ2R4J2

1 (κR sin θ)

(κR sin θ)2
,

where θ = 2 sin(Θ/2), Θ is the scattering angle, and R is the particle radius. Now, κR = x so R = λx/2π,
and for small angle scattering θ ≈ Θ. These yield

dβ(Θ) =

(
λ

2π

)2

x2 J
2
1 (xΘ)

Θ2
dN
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where xMax = πDMax/λWater and xMin = πDMin/λWater. In this case, the integral itself also
depends on wavelength (through the dependence of the limits of integration on wavelength)
so bPart(λ) is no longer ∝ λ2−ν , nor are aPart, cPart, and βPart. In this case, the phase
function becomes dependent on wavelength.

It is of obvious interest to know how the various scattering quantities depend on the
limits to the size distribution. We examine this by computing the scattering coefficient,
the backscattering coefficient and the VSF at various angles as a function of the integration
limits. Specifically, for a given quantity, e.g., the scattering coefficient, consider

fb(x) =

∫ x

0
y1−νQb(y, m̃) dy, /

∫ ∞

0
y1−νQb(y, m̃) dy,

as x = πD/λWater varies from 0 to ∞. Equation (5.31) shows that

bPart = [fb(xMax)− fb(xMin)]
πK

4

(
λWater

π

)2−ν ∫ ∞

0
y1−νQb(y, m̃) dy, (5.32)

with similar relationships for β and bb. Actually, because we carry out the integrations
numerically, the upper limit is some large value (here the maximum value of x is typically
2500, but sometimes 6300). Similar computations were carried out for bb and β. The results
with ν = 3 are shown in Figure 5.51 for b, bb and β(20◦) with m̃ = 1.05 + 0.000i. The
results shown in Figure 5.51 are quite typical for power-law distributions. We note that the
scattering coefficient and the backscattering coefficient are mostly determined by particles
in different regions of the size distribution: 80% of b is determined from 6 < x < 100, while
80% of bb is determined by 0.7 < x < 13. Note that near the center of the visible spectrum
(550 nm or λWater ≈ 413), x is related to the particle diameter through D ≈ 0.13x, so
the size range determining most of b and bb are 0.8 <∼ D <∼ 13 µm and 0.09 <∼ D <∼ 1.7
µm, respectively. The size range of importance for β(Θ) depends considerably on Θ.
For Θ > 90◦, β(Θ) is determined by approximately the same size range as bb, while for
Θ <∼ 10◦, β(Θ) is determined by approximately the same size range as b. In between, there
is a gradual decrease in the size range of maximum influence as Θ increases. The VSF for
an intermediate angle 20◦ is shown in the figure.

Letting y = xΘ and noting that dN = (K/Dν+1) dD, we find that

β(Θ) = K

(
λ

π

)(2−ν)

Θ(ν−4)

∫ ∞
0

y(1−ν)J2
1 (y) dy.

The integral is finite as long as 1 < ν < 4, so we see that β(Θ) ∝ Θ(ν−4). (Note that if ν ≥ 4 there are so few
large particles that diffraction no longer dominates at small angles and the fact that the integral diverges
is irrelevant.) It was mentioned earlier that at small angles the Petzold phase function varied according to
P (Θ) ∝ Θ−m with m > 0. So according to this analysis, ν− 4 = −m or m = 4− ν, and ν can be estimated
from m and vice versa. For the Petzold Phase-T phase function, m ≈ 1.4, so this suggests that ν ≈ 2.6.
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How are the size ranges in Figure 5.51 changed by adding absorption? Figure 5.52
provides a plot similar to Figure 5.51 (with β omitted) for m̃r = 1.05 with m̃i = 0, 0.002,
and 0.010. The introduction of absorption moves the range of influence for b to slightly
smaller particle sizes, but changes the upper limit for bb significantly, from x = 13 to
about x = 5 as m̃i increases for 0 to 0.010 (larger value of D decreases from 1.7 to about
0.65 µm). Thus, introducing absorption can significantly reduce the size range governing
backscattering.

How are the size ranges in Figure 5.51 changed by changing m̃r? Figure 5.53 provides
a plot similar to Figure 5.52 for m̃r = 1.025, 1.050, and 1.075 with m̃i = 0. Varying m̃r

strongly affects the range of influence for b. Changing m̃r from 1.025 to 1.075 changes the
range of influence for b from 4 < x < 63 to 10 < x < 200, while the upper limit for bb
increases from 8 to 25. Thus, increasing m̃r shifts the range of influence to larger sizes for
b, and shifts the upper limit of the size range for bb.

Finally, how are the size ranges in Figure 5.51 changed by changing ν? Figure 5.54
provides a plot similar to Figure 5.52 for m̃ = 1.05 + 0i. When ν increases from 3 to 3.5,
the range of influence for both b and bb moves to smaller particle sizes, but decreasing ν
to 2.5 greatly increases the upper limit of the range of influence to the point where it is
approximately x = 800 for b and x ≈ 1000 for bb. For bb this means the upper limit of the
range of influence is D ≈ 130 µm! The reason for this is easy to understand. For ν = 2
the integral diverges, i.e., it’s value is∞. This means that the closer ν gets to 2, the larger
the range contributing significantly to the scattering quantities.48 The peculiar shape of
the bb curve for ν = 2.5 can be traced to the shape of Qbb as a function of x (see Figure
5.32). There is a maximum in Qbb ranging from about x = 200 to x = 1000. For ν = 3.5
this size range doesn’t contribute, but for ν = 3 it starts to have some effect. When ν is
reduced to 2.5, there are sufficient numbers of particles in this size range that it becomes
very important and the peculiar shape emerges. For completeness we include the values of
the integrals for all of the cases in Figures 5.51 to 5.54 in Table 5.4.

Considering that x over the visible spectrum varies by a factor of ∼ 2, these figures
clearly suggest that for ν >∼ 3, and the low indices of refraction generally found for marine
particles, the size distribution only needs to range over 0.5 <∼ D <∼ 15 µm for the spectral

variation of bPart to be nearly ∝ λ
(2−ν)
Water, as it is when the sizes vary over the entire range

of diameters (0 → ∞). Only if the distribution is narrow, or if either xMax or xMin falls
near the steep parts of the curves in these figures will the spectral dependence depart

48The astute reader will note that the curves in Figure 5.54 do not reach a value of 1.0. That is because
the integrals have been computed numerically only up to x ≈ 6300. However, it is easy to estmate the
contribution from 6300 < x <∞ because Qb, which is equal to Qc if m̃i = 0, and is given approximately by
Eq. (5.26), becomes oscillatory around a more or less constant value (2). Likewise, Qbb becomes oscillatory
around a value of ∼ 0.0055 (Figure 5.32).
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Table 5.4: Values of the integrals encountered in Figures 5.51 to 5.54.

m̃ ν
∫∞

0 y1−νQb(y, m̃) dy
∫∞

0 y1−νQbb(y, m̃) dy

1.025 + 0.000i 3.0 1.035× 10−1 3.518× 10−4

1.050 + 0.000i 3.0 2.068× 10−1 1.476× 10−3

1.050 + 0.002i 3.0 1.870× 10−1 1.402× 10−3

1.050 + 0.010i 3.0 1.522× 10−1 1.370× 10−3

1.050 + 0.000i 2.5 1.299× 10−0 3.580× 10−3

1.050 + 0.000i 3.5 4.964× 10−2 1.160× 10−3

1.075 + 0.000i 3.0 3.091× 10−1 3.535× 10−3

significantly from the power-law spectrum.

Using Eq. (5.32) to numerically compute bPart requires some care. Given the cumulative
size distribution N>D = kD−ν we found earlier that

dN

dD
=

K

Dν+1
=

νk

Dν+1
.

If D is in µm, then k is the total number of particles per ml larger than 1 µm. However,
the units of k are not ml−1, they are ml−1(µm)ν . The corresponding K also has units
ml−1(µm)ν . To use Eq. (5.32) and get the answer in m−1, we need to convert all of the
units of length to meters. Thus, the units for k must be changed from ml−1(µm)ν to

(10−6m)ν

10−6m3
or

dN

dD
=
νk(10−6)(ν−1)

Dν+1
,

where now k is numerically equal to the number of particles per ml with diameters larger
than 1 µm. Then Eq. (5.32) becomes

bPart = 10−6 × [fb(xMax)− fb(xMin)]
νk

4
π(ν−1) λ

(2−ν)
Water

∫ ∞

0
y1−νQb(y, m̃) dy,

where λWater is in now µm, and direct substitution gives bPart in m−1. Thus, for example,
in the case of ν = 3, and taking xMin = 0 and xMax = ∞, we have for λWater = 0.375 µm
(500 nm in air)

bPart = 10−6 × 3kπ2

4λWater

∫ ∞

0
y−2Qb(y, m̃) dy = 1.97× 10−5 k

∫ ∞

0
y−2Qb(y, m̃) dy.

If m̃ = 1.05 + 0.000i, the integral is ∼ 0.2, so bPart ≈ 4 × 10−6 k. Fitting the distribution
in Figure 5.49 to a single segment, N>D = kD−ν , yields ν ∼ 3 and k ∼ 40, 000 particles
per ml (although the fit would be rather poor) so this would predict that bPart ∼ 0.16
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m−1. This is close to the observed scattering coefficient in the Tongue of the Ocean surface
waters at the time the size distribution samples were obtained (0.10→ 0.14± 0.03 m−1).

We complete this section by looking at the scattering phase functions for the power-law
size distribution with ν = 3. For this case, with m̃ = 1.050 + 0.000i, Figure 5.51 shows
that the scattering and backscattering coefficients are determined mostly by particles in the
x = 1 to 1000 range. In Figure 5.55 we provide the phase functions for distributions ranging
over 0→ xMax for xMax = 1, 10, 100, and 1000. Note how the phase function changes shape
from Rayleigh-like to more and more sharply peaked in the forward direction, characteristic
of scattering by larger and larger particles. Notice also that the phase function changes very
little from xMax = 100 to 1000, except in the extreme forward and backward directions.
(The increase in the extreme backward direction is called the “glory” and is characteristic
of spherical particles, and disappears for other particle shapes.) For large xMax the phase
function varies as P (Θ) ∝ Θ−m, where m ≈ 0.87. This is consistent with diffraction theory
that suggests m = 4− ν, which in this case is unity.

Figure 5.56 shows how the phase function for xMax = 1000 varies with m̃. The phase
function for Θ >∼ 10◦ generally increases with increasing m̃r. Figure 5.56 also shows that
m̃i has little influence on the phase function. In addition, Figure 5.56 compares the Petzmas
phase function (described in Section 5.3.3.2) to the others. This comparison shows that
the ν = 3 phase functions have the same general shape as Petzmas; however, the values
of B depend significantly on m̃, with B for m̃ = 1.05 + 0i being about half of that for
Petzmas. It is gratifying that such a simple model comes so close to describing what is
actually observed in nature.

Finally, the degree of polarization (DOP) of the scattering by this size distribution is
provided in Figure 5.57. Recall that the DOP is defined as −P12/P11, where the subscripts
indicate the elements of the phase matrix (Chapter 3). Included for comparison is the DOP
of Rayleigh scattering for an isotropic scatterer (e.g., a very small homogeneous sphere).
Several conclusions are clear: (1) when m̃r is small, e.g., near 1, the DOP is very close
to Rayleigh scattering; (2) in this case absorption has little influence on the DOP; and
(3) m̃r >∼ 1.075 are required for significant departures from the DOP of isotropic Rayleigh
scattering. Thus, we would expect that the (P11-normalized) phase matrix for scattering
by Case 1 waters would be similar to Rayleigh scattering. That is indeed the case (Section
5.3.3.4).

In summary, we have seen that including a distribution of particle sizes into the theory
of the IOPs is straightforward. The procedures for estimation of m̃ for monodisperse
phytoplankton cultures in Section 5.4 are easily extended to polydisperse systems. For size
distributions similar to those observed in Case 1 waters, the effective size range influencing
the various scattering properties is easily carried out (Figures 5.51 – 5.54). Interestingly,
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the same regions of the size distribution rarely contribute to scattering and backscattering:
b is mostly determined by larger particles (> 1 µm), while bb is mostly determined by
smaller particles (< 1 µm). Thus, measurements of bb made either in-situ or remotely, will
typically provide information about particles in smaller size ranges. The scattering phase
functions are mostly influenced by m̃r, with m̃i having little impact; however, the value
of ν can have a large effect, especially when it falls below ν = 3 bringing relatively more
larger particles into the scattering process, and these scatter mostly at smaller angles. The
DOP of the scattering by the low-m̃r particles that are found in the oceans is very close
to that of Rayleigh scattering by isotropic spheres. It is tempting to try to model the
IOPs by considering a size distribution consisting of a number of log-normal functions each
representing a particular kind of particle (e.g., as in Figure 5.50) to develop a systematic
model for the particle phase function as described in Section 5.3.3.5; however, this is a
topic for future research and will not be attempted here.

Here, we have only looked at spherical particles; however, the calculations can be ex-
tended to non-spherical particles with simple shapes using publicly-available computer
codes. The details of the IOPs will differ somewhat from those for spheres, but the general
nature of the behavior with size, etc., will be similar to that seen here for spheres.

5.6 Summary

Here, we have discussed those IOPs of natural waters that play a direct role in ocean
color remote sensing. For simplicity we have limited the discussion to Case 1 waters.
Principally, we described in detail the influence of particles containing Chlorophyll a on
the IOPs. We applied scattering theory to the known physical and chemical properties of
particles in the water to understand the empirical measurements in a more fundamental
manner. The reader should understand that this is a very dynamic subject and that we have
presented only the most rudimentary ingredients, i.e., those essential for understanding
the foundations of ocean color. However, the material presented should provide a solid
departure point for the examination of more up-to-date research.

5.7 Appendix 1: The Fournier-Forand Phase Function

In Chapter 3 we developed an analytic the expression for the extinction efficiency, that we
referred to as the “van de Hulst approximation.” In this approximation the interference,
in the exact forward direction, of light passing through a particle with the light passing by
(diffracted by) the particle was computed, and the extinction cross section determined with
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the help of the optical theorem. Of course, interference occurs at other scattering angles
as well as at Θ = 0. When interference is carefully examined at Θ 6= 0 the result is what
is called the anomalous diffraction approximation. Application of this approximation to
the scattering by a collection of non-absorbing particles with a power-law size distribution
provides the Fournier-Forand (FF) phase function:49

PFF (Θ) =
1

4π(1− δ)2δα

[
α(1− δ)− [(1− δα) + δ(1− δα)− α(1− δ)] sin−2

(
Θ

2

)]

+
1− δα180

16π(δα180 − 1)δα180

(3 cos2 Θ− 1)

,
(5.33)

where

α =
4− ν

2
and δ =

4

3(m̃− 1)2
sin2

(
Θ

2

)
.

The quantity m̃ is the (real) refractive index of the particle, ν is the slope parameter in the
power-law size distribution,50 and δ180 is the value of δ when Θ = 180◦. The backscattering
probability for this phase function is

BFF = 1− 1− δα+1
90 − 0.5(1− δα90)

(1− δ90)δα90

, (5.34)

where δ90 is the value of δ when Θ = 90◦. For small angles,

PFF (Θ) ∼ 1

Θ(4−ν)
,

so for ν < 4 the phase function is infinite at Θ = 0. In spite of this, the total scattering
coefficient will still be finite as long as ν > 2. This behavior of the small-angle phase
function was seen earlier in the diffraction approximation (Footnote 45).

Other than the fact that it has an analytical representation (with only two parameters,
m̃ and ν), the main reason for the popularity of the FF phase function in marine optics
is that for certain sets of parameters it yields an excellent analytic fit to the Petzold (and

49This result is not exact even in the anomalous diffraction approximation, as further approximations
were necessary to make the integral over particle size tractable. In addition, the result is applicable only
to non-absorbing particles.

50Recall that the power-law size distribution is given by

dN

dD
∝ 1

Dν+1

where dN is the number of particles per unit volume with (volume-equivalent spherical) diameters between
D and D + dD.
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Petzmas) phase function(s). This is shown in Figure 5.58, where the FF parameters have
been chosen so that all three phases functions have the same backscattering probability.
(Note that the choice of m̃ and ν for a given BFF is not unique.) Clearly an excellent fit to
both the Petzold and Petzmas phase functions over the entire range of Θ is obtained. In
particular, the FF phase function differs from Petzmas for Θ > 90◦ by less than 10%. The
FF phase function is the default for particles in the HydroLight radiative transfer code.

In spite of the success of reproducing the Petzold and Petzmas phase functions, one must
be careful in interpretation of the parameters (especially m̃) if the FF is used to retrieve
them from experimental light-scattering data. This is particularly true when backscattering
data are considered, i.e., Eq. (5.34). An example of the erroneous behavior of FF in the
backward direction, compared to Mie theory, is provided in Figure 5.59, which shows the
phase functions for a collection of power-law distributed spherical particles with refractive
index m̃ = 1.05 and ν = 3. Since Mie theory is exact, we see that the FF formulation
strongly overestimates the backscattering in this case if the correct values of m̃ = 1.05 and
ν = 3 are used in Eq. (5.33). To closely approximate the backscattering observed in the
Mie calculation, using the correct ν requires m̃ ≈ 1.01180 in the FF formula. A cursory
examination of other cases shows similar behavior. Although this degrades the value of
the FF formulation, it is not surprising that there should be significant error at the larger
scattering angles, as the FF phase function is based on anomalous diffraction theory, which
is valid only for small-angle scattering.

5.8 Appendix 2: Particle Orientational Effects and Averag-
ing

In the text we often referred to situations in which non-spherical particles were in random
orientation; however, we never defined with any precision what random orientation means,
nor did we examine any effects of non-random particle orientation. This is remedied in this
appendix, where we describe how to specify the orientation of a particle and then compare
random and non-random orient5ation using scattering by a thin disk as an example.

In order to ask how an object is oriented, we need to ask, oriented to what? So, we pick
a certain orientation (the “basic” orientation) and specify a new orientation relative to the
basic one. Consider the object on the left in the figure above. It is a cylinder with a sector
cut out (so the object has no rotational symmetries). Let’s specify the basic orientation
as that in which n̂ points toward the north pole of a spherical coordinate system, i.e., is
aligned with the z axis, and where one edge of the sector is along the y axis. Then any
other orientation can be defined by specifying the direction the new n̂ is pointing, along
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with a rotation by some angle around the new vector n̂. One way to accomplish this in a
systematic manner is shown on the right panel. Here the base orientation is the disk in the
x-y plane of the unprimed cartesian coordinate system. The object is first rotated around
the z axis through an angle φ. The z axis is then rotated through an angle θ in a plane
normal to the dashed line in the figure (the position to which the x axis was rotated in
the first rotation and called line of nodes) to a new z axis labeled z′. Finally, the object is
rotated around the z′ axis through an angle ψ.51 The angle φ, θ, and ψ are called Euler
angles and describe the orientation of a rigid object relative to some fixed orientation or
fixed coordinate axes. Note, if the sector were not cut out of the object in the figure,
i.e., the object is a solid cylinder, then the orientation would independent of ψ, and the
direction of n̂ is all that would be required to specify the orientation.

Using Euler angles we can specify the probability that the orientation is given by (φ, θ, ψ),
where φ− dφ/2 ≤ φ ≤ φ+ dφ/2, etc., through a probability density p(φ, θ, ψ), with

∫ 2π

0
dφ

∫ 2π

0
dψ

∫ π

0
p(φ, θ, ψ) sin θ dθ = 1.

51In a spherical coordinate system defined in the usual manner, the polar angle of the spherical system
corresponds to the angle θ, and the azimuth angle of the spherical system corresponds to φ− π/2.
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If all orientations are equally probable (random orientation), clearly

p(φ, θ, ψ) =
1

8π2
.

The orientational average of a quantity Q(φ, θ, ψ) that depends on orientation is

〈
Q
〉

=

∫ 2π

0
dφ

∫ 2π

0
dψ

∫ π

0
Q(φ, θ, ψ)p(φ, θ, ψ) sin θ dθ,

and for random orientation

〈
Q
〉

=
1

8π2

∫ 2π

0
dφ

∫ 2π

0
dψ

∫ π

0
Q(φ, θ, ψ) sin θ dθ.

In what follows the object we will be considering is a disk, for which the probability density
is independent of ψ. For disks,

〈
Q
〉

=

∫ 2π

0
dφ

∫ π

0
Q(φ, θ)p(φ, θ) sin θ dθ,

with ∫ 2π

0
dφ

∫ π

0
p(φ, θ, ψ) sin θ dθ = 1,

and for random orientation p(φ, θ) = 1/4π.

In general, orientational averaging in computations is carried out by simply solving
the scattering problem for a large number of orientations, and computing the averaging
integral(s) numerically. To illustrate some of the effects of averaging for a particle for
which the scattering is strongly affected by orientation, we will consider scattering by a
disk. To make the problem tractable, we show in the figure below that the Rayleigh-
Gans approximation (RGA) provides an excellent approximation to the exact scattering
solution provided by the discrete-dipole approximation (DDA). Since the RGA solution is
analytical, orientational averaging is relatively simple to carry out. The figure shows the
quantity S11(Θ), where the volume scattering function β(Θ) = nS11(Θ)/κ2, for scattering
by a disk oriented as shown with its normal parallel to the plane of scattering (the plane
of the inserted figure) making an angle of 45◦ with the incident beam. The diameter of the
disk is 2.7 µm, the thickness is 0.1352 µm, the refractive index is 1.20, and the wavelength
of the radiation is 700 nm. The scattering angle Θ ranges from 0 to 2π. Clearly, the
RGA solution is very close to the DDA over many orders of magnitude and can be used to
demonstrate some effects of averaging. It is particularly interesting to note the presence of
the large scattering peak near Θ = 270◦. This peak is in the position for specular reflection
off the surface of the disk and propagation vertically in the figure. It is nearly as strong
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as the forward peak (Θ = 0), and as such will have a significant affect in orientational
averaging.

As an example of the possible influence of orientation, consider scattering by a collection
of disks whose orientation is restricted as shown in the figure below. The left panel shows
the geometry, where the normal to the disk is uniformly distributed over the surface of
a spherical cap of half-angle θMax. When θMax = 90◦ the disks are in random orienta-
tion. The shaded area is the scattering plane (SP), which is horizontal in this drawing.
Typically, when making a measurement of scattering with a bench top scattering photome-
ter it is assumed that the particles are in random orientation, so the scattering plane is
representative of any other plane in which one might care to make measurements. The
right panel provides σb and σbb for a disk of the dimensions in the figure above (at 700
nm) as a function of θMax. Clearly, if any process restricts the disk normal from being
in the scattering plane (θMax = 90◦), even by a small amount, measurements of both the
total scattering and the backscattering will be drastically reduced. When the scattering
plane is horizontal (as for most bench scattering photometers), gravitational settling of the
particles could provide such an orientation restriction, causing an underestimation of both
both σb and σbb. (It is just such an orientation restriction, resulting from gravitational
settling of ice-crustals, that gives rise to atmospheric halo phenomena such as Sun dogs,
Sun halos and Moon halos.) If θMax is close to 0 (or even as large as ∼ 45◦) the error in
measuring σb would be close to a factor of three and σbb would be too low by a factor of
20 or more. The primary cause of this particular orientation effect is obviously the strong
scattering peak at Θ = 270◦ that comes into the averaging when the disk normal is parallel
to the scattering plane. In cases such as this, one would have to make measurements over
a number of scattering planes from the one shown in the figure to one perpendicular to it
and intersecting it along ~κ0, in order to obtain accurate measurements of σb and σbb.
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5.9 Bibliographic Notes

5.2.1 The Absorption Coefficient

The spectra in Figure 5.2 are from a combination of Pope and Fry [1997] and Sogandares
and Fry [1997], and the description of the measurement principle described in Footnote
(2) follows that of Fry et al. [1992]. Although these measurements were considered the
“gold standard” for the absorption coefficient, they have been called into doubt near the
minimum and in the UV by two very sensitive methods. The first employs irradiance
measurements taken in very clear ocean water in the South Pacific near Easter Island to
infer the absorption coefficient through inversion (Chapter 6) [Morel et al., 2007], while the
second employs a technique similar to Sogandares and Fry [1997], but reportedly much more
sensitive [Cruz et al., 2009]. Both believe that the Pope and Fry [1997] and Sogandares
and Fry [1997] coefficients are too large in the UV, with Cruz et al. [2009] suggesting
they are too large from the absorption minimum (∼ 420 nm) into the UV. There are no
questions regarding the absorption coefficient at wavelengths greater than about 430-450
nm in Figure 5.2. Figure 5.3 is from Hale and Querry [1973]. The temperature (and
salinity) dependence of the absorption coefficient were measured by Pegau et al. [1997].

5.2.2 The Scattering of Pure Water and Sea Water

The theory and measurements of the scattering of water and sea water through 1974
is throughly discussed in Morel [1974]. The measurements in Tables 5.1 and 5.2 were
taken from Morel [1968] based on measurements in Morel [1966]. Their stated uncertainty
(for β(90◦)) is ± 2%; however, Morel’s measurements of δ are considered to be too high.
The recommended value now is δ = 0.039, the lowest value determined by Farinato and
Rowell [1976]. Recent calculations of β(90◦) using Eq. (5.5) by Zhang and Hu [2009] and
the thermodynamic properties of water agree with Morel’s measurements (within their
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experimental uncertainty) using δ = 0.039. In addition, Zhang et al. [2009] used the
fluctuation theory of light scattering along with the thermodynamics of ionic solutions and
sea water to explain the roughly 30% increase in scattering as the salinity varies from 0 to
38.5 0/00. The comments regarding the contribution to bb in the waters near Hawaii were
based on the analysis of Gordon et al. [2009].

5.2.3 The Raman Scattering of Pure Water

The Raman scattering coefficient for illumination at 488 nm was deduced by Marshall
and Smith [1990]. They actually measured the differential scattering cross section per
molecule integrated over the entire Raman band using illumination polarized normal to the
scattering plane and scattering at 90◦ analyzed with a polarizer with pass direction also
normal to the scattering plane (proportional to βr→r using the notation in Appendix 3 to
Chapter 3 and integrated over the whole Raman band). They state a relative uncertainty
of approximately 12% in their measurement. They also review previous measurements.
The shape of the Raman spectrum as a function of νs in Figure 5.5 was taken from Chang
and Young [1974] who measured βr→r and βr→` at a scattering angle of 180◦ with high
spectral resolution, but without absolute calibration and with an illumination wavelength
of 460 nm. Noting that βr→r and βr→` are independent of scattering angle, and that
only bR(ν0 → ν0 − νs) depends on the value of ν0, the Chang and Young [1974] data
can be calibrated using the value of bR deduced by Marshall and Smith [1990] at 488
nm. This combination produced Figure 5.5. Figure 5.4 was prepared directly from the
Chang and Young [1974] measurements. The spectral variation of bR with wavelength
was measured by Bartlett [1996], who also measured bR for the Raman emission band at
an excitation wavelength of 488 nm and found (2.7 ± 0.2) × 10−4 m−1, not significantly
different from Marshall and Smith [1990]. In addition, these authors concluded that, within
the uncertainty of their measurements, salinity has no effect on the Raman scattering
coefficient.

5.3 The IOPs of the Constituents of Natural waters

The classification of natural waters into Case 1 and Case 2 follows that presented in
Gordon and Morel [1983].

5.3.1 Measurement of the Absorption of the Constituents of Case 1 waters

The “shiny tube” method for measuring the absorption by marine particles, based on
collecting much of the light scattered by the particles, was inspired by the work of Shibata
[1958] and Yentsch [1962], both of whom developed methods to collect the scattered light.
The actual shiny tube device was developed by Zaneveld and co-workers (e.g., see Zan-
eveld et al. [1992]). The filter pad technique was first used by Yentsch [1962] and further
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developed by Mitchell and Kiefer [Mitchell and Kiefer, 1984, 1988].

5.3.2 Absorption of the Constituents of Case 1 waters

The description of particle absorption is taken mostly from Bricaud et al. [1998]. The
data for Figure 5.10 were provided by A. Bricaud.

5.3.3.1 Total Scattering Coefficient of Particles in Case 1 waters

The schematic of the small angle scattering device in Figure 5.12 is similar to that in
Bauer and Ivanoff [1965] and Bauer and Morel [1967].

The early work on bp, e.g., Eqs. (5.12) and (5.13) along with Figures 5.13 and 5.14 was
taken directly from Gordon and Morel [1983]. The later work, i.e., the analysis leading to
Eq. (5.15), was taken from Loisel and Morel [1998]. The relationship between cp(660) and
POC was linearized here, based on the observation that a linear relation fit the data in
Figure 4 of Loisel and Morel [1998] almost as well as the power-law in their analysis. In
addition, other workers, e.g., Gardner et al. [1993], proposed a linear relationship between
POC and cp(660). Examples of the fact that spectra of cφ are nearly featureless, while bφ
is depressed in pigment absorption bands are provided in Bricaud et al. [1983] for several
species of plankton. The question concerning the effect of the c-meter’s acceptance angle
on the measurement of c in Footnote 11 is discussed in Boss et al. [2009].

5.3.3.2 Volume Scattering Function of Particles in Case 1 Waters

The “Phase-T” phase function was measured by Petzold [1972] using a combination of
instruments to measure the full volume scattering function near 514 nm [Mobley, 1994].
The measurements were made in San Diego (CA) Harbor containing very turbid water,
but the results are similar to those measured in clearer off shore southern California waters
(HAOCE). Other measurements reported by Petzold in clear water have been rejected as
characteristic of ocean water because they show a more pronounced increase in scattering
between 150◦and 180◦ than that shown by Phase-T in Figure 5.17 which is not borne out
by later measurements. The WetLab Avg./Petzmas phase function (Figures 5.16 and 5.17)
was taken from Sullivan and Twardowski [2009]. This paper also describes the scattering
instrument (MASCOT) used to make measurements of the volume scattering function.
The name “Petzmas,” used here to describe the combination of Phase-T and the WetLab
Avg., is an abbreviation for Petzold-MASCOT.

5.3.3.3 The Backscattering Coefficient of Particles in Case 1 Waters

The three-angle measurement of β(Θ) fitted to the βBZ was first described by Gordon
[1976]. The subscript “BZ” stands for Beardsley-Zaneveld who first used this functional



5.9. BIBLIOGRAPHIC NOTES 399

form in oceanic optics to represent the volume scattering function [Beardsley and Zaneveld,
1969]. The result that Bp ∼ 0.01 in oligotrophic waters (and the concomitant covariation
of bbp and bp) was described in Dall’Olmo et al. [2009], although Bp = 0.01 was actually
assumed by Gordon and Morel [1983] in explaining the physics underlying the relationship
between the blue-green reflectance ratio and the chlorophyll concentration used in the
original CZCS pigment algorithm. The ( 1/2 − 1/4 log10C) factor in Bp first appeared in
Morel [1988]. The discussion regarding Bp and the spectral parameter v follows that in
Morel et al. [2002].

5.3.3.4 Polarization of Scattering in Case 1 Waters

The measured Mueller matrices for scattering by particles suspended in seawater were
taken from Voss and Fry [1984] (Figures 5.19, 5.20, and 5.21). Additional scattering Mueller
matrix measurements can be found in Fry and Voss [1985]. The degree of polarization
measurements for phytoplankton in Figure 5.22 are from Volten et al. [1998].

5.3.3.5 Empirical Model for the Particle Phase Function in Case 1 Waters

The use of two components to interpret the VSF seems to have originated with Brown
and Gordon [Brown and Gordon, 1973, 1974], who assigned the components to be either
mineral (high refractive index) and planktonic (low refractive index), rather than detritus
(small size) and phytoplankton (large size) as assumed here. A similar approach was made
by Kopelevich [Kopelevich, 1983; Kopelevich and Mezhericher, 1983] based on a statistical
analysis of experimental scattering data. The scheme of modifying the Phase-T/Petzmas
phase functions to represent the two components was first used in a detailed study of R by
Gordon [1992]. The end member values of Bp for the empirical two-component here (0.0019
and 0.0140) were developed in Morel et al. [2002] based on assumed size distributions and
refractive indices for each component, i.e., a physical model of the particles. They used
power-law distributions with ν = 2.1 and 3.2 to represent “large” and “small” particles,
respectively. In their model both populations have m̃ = 1.06, and the scattering compu-
tations were carried out for a mixture of oblate and prolate spheroids, although spheres
would produce similar results.

5.4.1 The Absorption Coefficient

The material here and Section 5.4.2 is based mostly the work of Morel and Bricaud
[Bricaud and Morel, 1986; Morel and Bricaud, 1981]. Anomalous diffraction results formu-
las for coated particles can be found in Jonasz and Fournier [2007].

5.4.3 The Backscattering Coefficient

The calculations were all done by the author. A detailed review of backscattering by
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marine particles can be found in Stramski et al. [2004].

5.4.5 Influence of Particle Shape on IOPs

This Section was taken from Gordon [2011]. In addition, the original paper contains
examination of the scattering by a two-layer cylinder, leading to another “package effect,”
namely, the effect of how the absorbing pigment is distributed within the cylinder.

A through investigation of similar effects of non-sphericity has been carried out (with
spheroidal particles) by Clavano et al. [2009], including a consideration of size-distributed
particles. A study of the influence of internal structures (periodic and aperiodic) on the
scattering of disk-like particles (to represent detach coccoliths from E. huxleyi) is presented
in Gordon [2006, 2007b].

5.5 Influence of The Distribution of Particle Size on IOPs

The general nature of the size distribution in natural waters is from Brown and Gordon
[1974]. Figure 5.49 is from Gordon et al. [1972].

5.5.1 Analytical Representations of the Size Distribution

More material on the properties of size distribution of the type discussed in this section
can be found in Chapter 4. An exhaustive treatment of present knowledge regarding the
size distribution and refractive indices of marine particles is in Jonasz and Fournier [2007].

5.5.2.1 Estimation of ai and m̃ for Size-Distributed Plankton

This is based mostly on Bricaud and Morel [1986].

5.5.2.2 IOPs of Power-Law Distributed Particles

The computations present in this section were carried out by the author using a Mie
scattering code. Further computations can be found in Gordon and Brown [1972], Brown
and Gordon [1973] and Brown and Gordon [1974].

5.7 Appendix 1: The Fournier-Forand Phase Function

The Fournier-Forand phase function is developed of in Fournier and Forand [1994]. (See
also Jonasz and Fournier [2007].)
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5.10 Figures
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Figure 5.2: Spectra of the absorption coefficient of pure water in the visible.
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Figure 5.3: Spectra of the absorption coefficient of pure water in the near infrared.
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Figure 5.4: Spectrum of the depolarization ratio of Raman scattering. From
Gordon [1999].
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Figure 5.5: Spectrum of the Raman scattering coefficients of pure water. The
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Figure 5.7: Raman excitation wavelength for a given Raman emission wavelength,
λI . The dotted lines provide the limits for the excitation band resulting in 90% of
the Raman emission. From Gordon and Xu [1996].
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Figure 5.9: Schematic for measuring a for a suspension of particles that scatter
mostly in the forward direction.
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(Ap) with C = 1 mg/m3.
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Figure 5.11: Average absorption spectrum of particles (solid curve) with C = 1
mg/m3. Dotted curve is for NAP, and dashed curve is for phytoplankton.
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that scatter mostly in the forward direction. Here, “A” is an absorber to prevent
the incident beam from P to reach the detector D1. Clearly, light scattered through
an angle Θ from anywhere in scattering volume will be focussed by L2 at the point
S (actually in a circle on which S is a part).
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Figure 5.15: Marine particle phase function labeled “Phase-T.”
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Figure 5.16: Marine particle phase function “Phase-T” compared with other phase
functions in this work. “O99” is the phase function for the Oceanic aerosol model
in Chapter 4, “HG” is a Henyey-Greenstein function with g = 0.925, and “WetLab
Avg.” is the average phase function for marine particles (normalized to Phase-T
at 90◦).
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Figure 5.17: A more detailed comparison between “Phase-T” and “WetLab Avg.”
Note that the phase function scale is now linear. The normalization at 90◦ is the
same as in Figure 5.16.
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Figure 5.18: The fit of βBZ to the “WetLab Avg.” phase function (extended
with Phase-T to small angles to form the Petzmas phase function). The Petzmas
phase function was sampled at Θ = 45◦, 90◦, and 135◦ to estimate ef = 0.71 and
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Figure 5.20: The elements N33 (red line) and N44 (blue line) of the average
normalized scattering Mueller phase matrix for sixty stations in the Atlantic and
Pacific Oceans. Dashed line is for isotropic Rayleigh (or Rayleigh-Gans) scattering,
and triangles are N44 for anisotropic Rayleigh (or Rayleigh-Gans) scattering with
δ = 0.2.
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Figure 5.22: Degree of Polarization of scattering by marine phytoplankton com-
pared to the oceanic average (“Average”). Those labeled with “S” are approxi-
mately spherical in shape. Those labeled with “F” have a filamentous structure,
i.e., cylindrical in shape. The species are a follows: Fa, Prochlorothrix hollandica;
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Figure 5.23: Proposed phase functions for the living and nonliving particulate mat-
ter in water based on modifying the Petzmas phase function according to Table 5.3.
Ppl and Ppn have backscattering probabilities of 0.0019 and 0.0140, respectively.
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Figure 5.24: The absorption efficiency Qa as a function of ρ′ = Dai = Da∗i ci.
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Figure 5.26: Specific (to the concentration of the given pigment) absorption spectra
of some absorbing pigments found in phytoplankton. Chl-a: Chlorophyll a. Chl-
b: Chlorophyll b. Chl-c: Chlorophyll c. PSC: Photosynthetic Carotinoids. PPC:
Photoprotectant Carotinoids. PE-1: Phycoerythrin. PE-2: Phycoerythrin. These
spectra are measured for pigments in solution (not in the cell). Within the cells,
the pigment maxima shift a few (6-12 nm) to longer wavelengths.
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Figure 5.27: Specific absorption spectrum of Chlorophyll a from Figure 5.26.
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Figure 5.28: Extinction efficiency of non-absorbing spheres as a function of ρ =
2x(m̃r − 1). The top three curves are for m̃r = 1.05, 1.10, and 1.20. The lowest
curve is the approximation Eq. (5.26). This is similar to Figure 3.3.
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Figure 5.29: Extinction efficiency Qc and absorption efficiency Qa of absorbing
spheres as a function of ρ = 2x(m̃r − 1). The solid curves are exact Mie computa-
tions for m̃r = 1.05 (black), m̃r = 1.05 + 0.0025i (blue), and m̃r = 1.05 + 0.0075i
(red). The associated dashed curves are the approximations to Qc and Qa, Eqs.
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Figure 5.30: Scattering efficiency Qb as a function of ρ = 2x(m̃r − 1). The curves
are for m̃r = 1.05 (black), m̃r = 1.05 + 0.0025i (blue), and m̃r = 1.05 + 0.0075i
(red). They were calculated from Qc −Qa.
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Figure 5.31: Scattering efficiency Qb divided by ρ as a function of ρ = 2x(m̃r−1).
The curves are for m̃r = 1.05 (black), m̃r = 1.05 + 0.0025i (blue), and m̃r =
1.05 + 0.0075i (red).
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Figure 5.32: Optics of non-absorbing spherical particles as a function of x =
πD/λWater, where D is the diameter and λWater is the wavelength. The parameter
varied is the real part of the refractive index (mr). Upper left: B. Upper right:
Qb. Lower left: Qbb. Lower right: σbb.
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Figure 5.33: Optics of absorbing spherical particles as a function of x = πD/λWater,
where D is the diameter and λWater is the wavelength. The parameter varied is
the imaginary part of the refractive index (mi, i.e., the absorption). Upper left:
B. Upper right: Qb. Lower left: Qbb. Lower right: σbb.
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Figure 5.34: Optics of a coated sphere with refractive index m = 1.075 + 0.0050i.
The refractive index of the coating is 1.15 and the thickness of the coating t is the
parameter varied in the figures (t = 0, 0.04, 0.08, 0.16, 0.24, 0.32, 0.48, 0.64 µm).
Upper left: B. Upper right: Qb. Lower left: Qbb. Lower right: σbb. The variable
x is πD/λ, where D is the diameter of the core plus the coating.
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Figure 5.35: Comparison between backscattering scattering efficiency of a coated
sphere with successively thicker coatings and a homogeneous sphere with the same
refractive index as the coating (1.15).
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Figure 5.36: Phase function for a sphere with x = 20, m̃r = 1.05 and m̃i = 0,
0.0075, and 0.0150.
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Figure 5.37: The absorption efficiency Qa for randomly oriented absorbing cylin-
ders (m = 1.05 + 0.002i and 1.05 + 0.010i) as a function of ρ′ = Dai = Da∗i ci, for
aspect ratios (AR = L/D) ranging from 0.333 to 30 (left panel). The solid lines
correspond to Qa for an infinitely long cylinder. The cylinder diameters are 0.5,
1.0, and 1.5 µm, and the vacuum wavelength ranges from 400 to 700 nm. The
dotted line is Mie theory for spheres with index m = 1.05 + 0.002i. In the right
panel only computations for AR ≥ 3 are shown.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ρ '

Q
a

m = 1.05 + 0.002i
m = 1.05 + 0.010i
Qa (m = 1.05 + 002i) Mie
Qa (m = 1.05 + 010i) Mie
Qa vdH

Figure 5.38: The absorption efficiencies of cylinders computed by dividing the cross
sections (computed for cylinders) by the projected area of the volume-equivalent
sphere as a function of ρ′ = 4xm̃i, where x = πDEquivmWater/λ and DEquiv is the
diameter of the volume-equivalent sphere. All the aspect ratios in Figure 5.37 are
included.
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Figure 5.39: The extinction efficiency Qc for randomly oriented non-absorbing
cylinders (m̃ = 1.20), as a function of ρ = 2x(m̃r − 1), where x = πDmWater/λ
and D is the diameter of the cylinder, for aspect ratios (AR = L/D) ranging from
0.333 to 30 (left panel). The cylinder diameters are 0.5, 1.0, and 1.5 µm, and the
vacuum wavelengths range from 400 to 700 nm. The solid line is Qc for infinitely
long cylinders. In the right panel only computations for AR ≥ 3 are shown. From
Gordon [2011].
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Figure 5.40: Comparison between Qc for spheres and randomly oriented, infinitely
long, cylinders. There curves are exact results for m̃ = 1.20.
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Figure 5.41: The extinction efficiency Qc for randomly oriented absorbing cylinders
(m = 1.05 + 0.002i and 1.05 + 0.010i), as a function of ρ = 2x(m̃r − 1), where x =
πDmWater/λ and D is the diameter of the cylinder, for aspect ratios (AR = L/D)
ranging from 0.333 to 30 (left panel). The cylinder diameters are 0.5, 1.0, and 1.5
µm, and the vacuum wavelengths range from 400 to 700 nm. The solid lines are
Qc for infinitely long cylinders. In the right panel only computations for AR ≥ 3
are shown. From Gordon [2011].
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Figure 5.42: The extinction efficiencies of cylinders computed by dividing the cross
sections (computed for cylinders) by the projected area of the volume-equivalent
sphere as a function of ρ = 2x(m̃r− 1), where x = πDEquivmWater/λ and DEquiv is
the diameter of the volume-equivalent sphere. All the aspect ratios in Figure 5.37
are included. From Gordon [2011].
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Figure 5.43: Examples of the variation of the backscattering probability with aspect
ratio for cylinder diameters between 0.5 and 1.5 µm and refractive indices m̃ =
1.05, 1.05 + 0.002i and 1.05 + 0.010i to demonstrate the effect of absorption on
backscattering by finite cylinders. The vacuum wavelength is 400 nm. Note that
the largest value of the size parameter here is x ≈ 16.
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Figure 5.44: Examples of the variation of the backscattering probability with aspect
ratio for cylinder diameters between 0.5 and 1.5 µm and refractive indices m̃ = 1.05
and 1.20 to demonstrate the influence of refractive index on backscattering of finite
cylinders. The vacuum wavelength is 400 nm.
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Figure 5.45: Comparison of backscattering probability and backscattering effi-
ciency between cylinders (data points) and spheres (continuous line) as a function
of the associated particle size parameter. Upper left: B for m = 1.05. Upper right:
B for m = 1.20. Lower left: Qbb for m = 1.05. Lower right: Qbb for m = 1.20.
For spheres the variable x is as usual πD/λWater, where D is the diameter of the
sphere. For cylinders the variable x is πD/λWater, where D is the diameter of the
cylinder. The open symbols for m = 1.05 correspond to cases in which the aspect
ratio of the cylinder is less than one, i.e., a disk-shaped particle.
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Figure 5.46: Phase function for a non-absorbing, randomly oriented, cylinder with
x = 2.62, m̃r = 1.20, m̃i = 0 and various aspect ratios (AR) compared to a sphere
with the same diameter.
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Figure 5.47: Phase function for an absorbing, randomly oriented, cylinder with
x = 7, m̃r = 1.05 and m̃i = 0.0020.
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for an absorbing,

randomly oriented, cylinder with x = 7, m̃r = 1.05 and m̃i = 0.0020.
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Figure 5.49: Size distribution of particles measured in the surface waters of the
Tongue of the Ocean, Bahamas using a Coulter counter. Here, N>D refers to the
number of particles per ml with sizes greater than the indicated diameter (D).
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Figure 5.50: An exercise showing how three log normal distributions can be com-
bined to produce a size distribution that could be fit reasonably well by segmented
power law distributions. The right panel is the cumulative distribution resulting
from the sum of the three log-normals in the left panel.
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Figure 5.51: Scattering quantities as a function of the size parameter x used as the
upper limit on the integrals, e.g., in Eq. (5.31) with xMin = 0 and xMax ranging
from 0 to 2500 with m̃ = 1.050 + 0.0000i. Diamonds (black): b. Squares (red): bb.
Triangles (blue): β(20◦).
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mr = 1.050; mi =  0, 0.002, 0.010; ν = 3.0
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Figure 5.52: Same as Figure 5.51, but here m̃r = 1.050 and m̃i = 0, 0.002, and
0.010. Black curves (on right) are for b, with m̃i = 0 (Solid Diamonds), m̃i = 0.002
(Open Diamonds), m̃i = 0.010 (Open Circles). Red curves (on left) are for bb, with
m̃i = 0 (Solid Squares), m̃i = 0.002 (Open Squares), m̃i = 0.010 (Open Circles).
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Figure 5.53: Same as Figure 5.51, but here m̃i = 0 and m̃r = 1.025, 1.050,
and 1.075. Black curves (on right) are for b, with m̃r = 1.025 (Open Diamonds),
m̃r = 1.050 (Solid Diamonds), m̃r = 1.075 (Open Circles). Red curves (on left) are
for bb, with m̃r = 1.025 (Open Squares), m̃r = 1.050 (Solid Squares), m̃r = 1.075
(Open Circles).
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m = 1.050 + 0.0000i; ν = 2.5, 3.0, 3.5
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Figure 5.54: Same as Figure 5.51, but here m̃ = 1.050 + 0.0000i and ν = 2.5, 3.0,
and 3.5. Black curves (on right) are for b, with ν = 2.5 (Open Diamonds), ν = 3.0
(Solid Diamonds), ν = 3.5 (Open Circles). Red curves (on left) are for bb, with
ν = 2.5 (Open Squares), ν = 3.0 (Solid Squares), ν = 3.5 (Open Circles).
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Figure 5.55: The phase function for particle scattering following a power-law
distribution with ν = 3. The size distribution extends from 0 → xMax (xMax is
indicated by x in the legend box). Note that there is an insignificant difference
between xMax = 100 and xMax = 1000.
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Figure 5.56: The phase function for particle scattering following a power-law
distribution, with ν = 3, as a function of m̃ (m̃ is indicated by m in the legend).
The size distribution extends from 0 → xMax = 1000. “Petzmas” is the modified
Phase-T described in Section 5.3.3.2.
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Figure 5.57: The degree of polarization (DOP) for particle scattering following a
power-law distribution, with ν = 3, as a function of m̃ (m̃ is indicated by m in the
legend). The size distribution extends from 0 → xMax = 1000. “Rayleigh” is the
DOP of isotropic Rayleigh scattering.
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Figure 5.58: Comparison between the Petzold (Phase-T) and the FF phase func-
tions (upper panel). The parameters used in generating the FF phase function
were m = 1.10 and ν = 2.5835. Lower panel is an expanded (linear) version of
the left panel, with the Petzmas phase functions included as well. All of the phase
functions have the same backscattering probability.
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Figure 5.59: Comparison between the Mie-computed (for spheres) and the asso-
ciated FF phase functions for m̃ = 1.05 and ν = 3. The associated backscattering
probabilities are 0.00713 and 0.02885 for the Mie and FF calculations, respectively.
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Chapter 6

Apparent Optical Properties
(AOPs) of Natural Waters

6.1 Introduction

In this Chapter we discuss the apparent optical properties (AOPs) of natural waters. The
AOPs are not really optical properties of the water and constituents, i.e., a characteristic
of the medium like the IOPs (Chapter 5) but, under certain conditions, they may appear to
be. In an ocean with spatially homogeneous IOPs, and a given illumination at the surface
by the sun and sky, the AOPs are relatively weak functions of depth, and therefore appear
to be properties of the water body. This the source of the word “apparent.” Unfortunately,
when the illumination conditions change, the values of the AOPs change, so, as mentioned
above, they are not characteristic of the medium, but depend on the illumination conditions
as well. Their importance stems from the fact that historically, compared to the IOPs, the
AOPs were much easier to measure. In addition, two of the AOPs are critically important in
ocean color remote sensing: the remote sensing ratio and the diffuse attenuation coefficient.
The former directly relates to the water-leaving radiance measured by a remote sensor above
the surface, and the latter relates to the depth over which the remote sensor can “see” into
the water.

Here we describe all of the AOPs that are important to oceanic optics with a particular
emphasis on remote sensing. The goal is to familiarize the reader with the AOPs and their
variation with the constituent concentrations, and to prepare the reader for understand-
ing remote sensing applications through the derivation of approximate relationships that
provide the explicit dependence of the AOPs on the IOPs, and in turn, on the constituent
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concentrations through their influence on the IOPs.

We begin with definitions of most of the AOPs. Next we provide some examples of
several AOPs derived from field measurements. In addition, we provide a set of examples
of AOPs computed from solutions of the radiative transfer equation using IOPs that are
representative of those actually observed in natural waters. The latter examples are more
complete than the former in that a wider range of AOPs can be examined, and their vari-
ability with depth more clearly demonstrated. This examination is followed by a lengthy
section developing a simple model for treating multiple scattering in radiative transfer (the
quasi-single scattering approximation – QSSA).The QSSA provides approximate relation-
ships for the AOPs in terms of the IOPs. These relationships are studied to determine their
range of validity in a natural environmental setting, possible avenues for improvement, and
their general application to ocean color remote sensing. Inelastic processes and the effects
of vertical variations in the IOPs are then examined and incorporated into the QSSA.
In an appendix the problem of estimating the IOPs given measurements of the AOPs is
considered in some detail.

6.2 Apparent Optical Properties

6.2.1 Basic Radiometric Quantities

The radiometric quantity that is of fundamental importance in the water is the radiance,
L (Chapter 2). Because of the strong attenuation of light in the water, the attenuation
length, ` = 1/c, is at most of the order of 100 m; however, horizontal spatial variability of
the inherent optical properties in oceanic waters is usually at scales much greater than 100
m.1 Picking a coordinate system in which the z-axis is increasing into the water from z = 0
at the surface and the x-axis and y-axis are parallel to the surface, this strong attenuation
means that

∂L

∂x
� ∂L

∂z
and

∂L

∂y
� ∂L

∂z
so ξ̂ • ∇L(~r, ξ̂, λ) ≈ (ξ̂ • êz)

∂L

∂z
.

If it is assumed that the IOPs are dependent only on depth and that the incident illumi-
nation from the Sun and the sky is independent of x and y, then the radiance L(~r, ξ̂, λ)

1In coastal and inland waters the scale of variability can be on the order of 100 m or even less, but in
such waters c is typically much larger than for oceanic waters, so `� 100 m. Usually the assumption, that
vertical variability in the radiance and IOPs is much greater than horizontal variability in such waters, is
still valid.
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becomes L(z, ξ̂, λ) and

∂L

∂x
= 0,

∂L

∂y
= 0 and ξ̂ • ∇L(~r, ξ̂, λ) = (ξ̂ • êz)

∂L

∂z
.

Actually, it can almost always be assumed that the IOPs are dependent only on depth,
so these are excellent approximations. Therefore, the radiative transfer equation becomes
one-dimensional, and in this setting the water body is, from a radiative transfer theory
view point, a plane-parallel medium.

In Chapter 2 we discussed the various integrals of the radiance L(z, ξ̂, λ) propagating
in the direction ξ̂, in plane-parallel media. The downwelling irradiance Ed(z, λ) and the
upwelling irradiance Eu(z, λ) were defined according to

Ed(z, λ) ,
∫

ξ̂•êz>0
|ξ̂ • êz|L(z, ξ̂, λ) dΩ(ξ̂), (6.1)

and

Eu(z, λ) ,
∫

ξ̂•êz<0
|ξ̂ • êz|L(z, ξ̂, λ) dΩ(ξ̂), (6.2)

respectively. These can be combined to form the vector irradiance Ed − Eu:2

Ed(z, λ)− Eu(z, λ) =

∫

All ξ̂
ξ̂ • êz L(z, ξ̂, λ) dΩ(ξ̂). (6.3)

In addition, the downwelling (E0d) and upwelling (E0u) and total (E0) scalar irradiances
are defined as above but without the ξ̂ • êz factor:

E0d(z, λ) ,
∫

ξ̂•êz>0
L(z, ξ̂, λ) dΩ(ξ̂), (6.4)

E0u(z, λ) ,
∫

ξ̂•êz<0
L(z, ξ̂, λ) dΩ(ξ̂), (6.5)

2The reader may wonder why Ed − Eu is called the vector irradiance. A more general definition of the
vector irradiance ~EV (~r) is

~EV (~r) ,
∫

All ξ̂

ξ̂L(~r, ξ̂) dΩ(ξ̂).

The vector ~EV usually points in (or close to) the direction of propagation of the maximum value of the
radiance at the point ~r. Equation (6.3) is the z component of the vector irradiance, i.e.,

Ed(~r)− Eu(~r) = êz • ~EV (~r).

It is a simple matter to start with the radiative transfer equation and derive a generalized Gershun’s
equation given by

∇ • ~EV (~r) = −a(~r)E0(~r) +

∫
All ξ̂

Q(~r, ξ̂) dΩ(ξ̂).
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E0(z, λ) , E0d(z, λ) + E0u(z, λ) =

∫

All ξ̂
L(z, ξ̂, λ) dΩ(ξ̂). (6.6)

The irradiances Ed and Eu are the energy fluxes (in the interval ∆λ and divided by ∆λ)
across a horizontal surface at z in the downward and upward directions, respectively. The
vector irradiance is the net downward flux. The scalar irradiance was shown in Chapter 2
to be proportional to the energy density in the electromagnetic field, also in the interval
∆λ and divided by ∆λ.

These radiometric quantities — the radiance and the irradiances derived from it —
within a water body are strongly dependent on the the illumination from the Sun and
sky. Consider an extreme case of illumination variation: the direct Sun is blocked by a
passing cloud causing the downward irradiance at the water’s surface and within the water
to fall by an order of magnitude or more. When the value of a radiometric quantity can
change by an order of magnitude within a few seconds, it is impossible that a given value
of the radiometric quantity within the water can be of any use in a description of the water
body, or of conditions within the water body. However, when a change in illumination such
as described above occurs, it occurs at all depths in the medium (nearly) simultaneously.
Thus, the ratio of various radiometric quantities

(
e.g., Ed(z2)/Ed(z1), where z1 and z2

are two different depths within the medium, or Eu(z)/Ed(z)
)

remains unchanged (when
they are measured simultaneously, and except for any change caused by differences in the
angular distribution of the radiance). It would then seem that such ratios might be useful
in the description of the water body, particularly if they depend only weakly on depth
within the water. All of the apparent optical properties are related to the ratios of various
radiometric quantities at a given depth, or at two different, depths. They are defined in
the following section.3

6.2.2 Apparent Optical Properties: Definitions

We shall see in the examples provided below that Ed decreases in an almost exponential
manner with increasing depth, so it is reasonable to determine the exponential decay
coefficient. The decay coefficients of Ed(z, λ), Eu(z, λ) and E0(z, λ) are called the irradiance
attenuation coefficients and are defined through

Kx(z, λ) , − 1

Ex(z, λ)

dEx(z, λ)

dz
= −d`n[Ex(z, λ)]

dz
,

where x = d, u, or 0. The downward irradiance attenuation coefficient Kd(z, λ) is often
referred to as the diffuse attenuation coefficient.

3A further requirement for an AOP to be useful in characterizing a water body is that it be relatively
stable. For example, at a given time each day, e.g., noon, an AOP in the open ocean will be more-or-less
constant from day to day and could be used to characterize a particular oceanic region.
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Another AOP formed from these irradiances is the irradiance reflectance or irradiance
ratio:

R(z) ,
Eu(z, λ)

Ed(z, λ)
.

Most modern instrumentation for measuring aspects of the in-water light field do not
measure Eu (although some do), but measure the radiance propagating upward in the
water, i.e., in the direction −êz. This is called the upwelling radiance Lu(z, λ). The
radiance exiting the water body propagating toward the zenith is proportional to Lu(0, λ),
and is the signal measured by a remote sensor aimed toward the nadir. In the spirit of the
definitions above, we define

KL(z, λ) , − 1

Lu(z, λ)

dLu(z, λ)

dz
= −d`n[Lu(z, λ)]

dz
,

and

RL(z) ,
Lu(z, λ)

Ed(z, λ)
.

The quantity RL(0) is often referred to as the “remote sensing ratio” (RSR). It is the
most important AOP for understanding and interpreting remotely-sensed radiance exiting
the water surface. If the upwelling radiance distribution were uniform (independent of
ξ̂) then Eu(z, λ) = πLu(z, λ) and R(z, λ) = πRL(z, λ). A quantity that is a measure of
the deviation of the upwelling light field from uniformity is called the Q-factor, defined
according to

Q(z, λ) ,
Eu(z, λ)

Lu(z, λ)
,

so RL(z, λ) = R(z, λ)/Q(z, λ). The remote sensing reflectance is an additional quantity
often used in remote sensing and is defined according to

Rrs(λ) =
Lu(0, λ)

E+
d (0, λ)

tL,

where tL is the transmittance of Lu(0, λ) through the air-water interface (water to air)
and E+

d (0, λ) is the downwelling irradiance incident just above the water surface.4 For a

4If we write the upwelling radiance just below the water surface propagating in the direction ξ̂ as
Lu(0, ξ̂, λ), then we can extend the definition of the remote sensing reflectance to that for radiance exciting
the water propagating in a direction ξ̂′ above the surface, i.e.,

Rrs(ξ̂
′, λ) =

Lu(0, ξ̂, λ)

E+
d (0, λ)

tL(ξ̂ → ξ̂′),

where ξ̂ and ξ̂′ are related by Snell’s law. The quantity Lu(0, ξ̂, λ)tL(ξ̂ → ξ̂′) is called the water-leaving
radiance and is usually written Lw(ξ̂′, λ). It is the radiance backscattered out of the water.
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flat interface, the transmittance tL is just the Fresnel transmittance for normal incidence
divided by m2

w (Chapter 2).

Finally, a rough characterization of the directionality of the in-water light field is the
average cosine (〈µ〉) of the radiance:

〈µ〉 , 〈ξ̂ • êz〉 ,
∫

All ξ̂(ξ̂ • êz)L(z, ξ̂, λ) dΩ(ξ̂)
∫

All ξ̂ L(z, ξ̂, λ) dΩ(ξ̂)
=
Ed(z, λ)− Eu(z, λ)

E0(z, λ)
.

As above for irradiance, the average cosines of the downwelling and upwelling light fields
are

〈µd〉 ,
∫
ξ̂•êz>0(ξ̂ • êz)L(z, ξ̂, λ) dΩ(ξ̂)
∫
ξ̂•êz>0 L(z, ξ̂, λ) dΩ(ξ̂)

=
Ed(z, λ)

E0d(z, λ
,

and

〈µu〉 , −
∫
ξ̂•êz<0(ξ̂ • êz)L(z, ξ̂, λ) dΩ(ξ̂)
∫
ξ̂•êz<0 L(z, ξ̂, λ) dΩ(ξ̂)

=
Eu(z, λ)

E0u(z, λ
,

respectively. The average cosines are sometimes inverted to define the distribution function:
Dd = 1/〈µd〉 and Du = 1/〈µu〉. The collection of AOPs, K’s, R’s and 〈µ〉’s, are useful to
the extent that they depend only weakly on depth in a homogeneous medium.

One of the biological areas in which oceanic optics makes a direct contribution is primary
productivity by marine phytoplankton. This productivity is effected through photosynthe-
sis, which of course requires light. Photosynthesis is a quantum process, e.g., for algae to
undergo photosynthesis a particular energy state in a chlorophyll a molecule must be ex-
cited. This excitation can be achieved through absorption of a photon of higher energy by
the chlorophyll molecule (or an accessory pigment molecule) than the required excitation
energy, and subsequent non-radiative transfer to the required state (the excess energy be-
ing degraded to heat). Thus, a photon of virtually any energy in the visible spectrum can
(when absorbed by an algal particle) be available for photosynthesis. Because of this, the
relevant quantity associated with the visible light field is not the total irradiance (energy
flux) in the spectrum, but the total photon flux in the visible spectrum. Since the energy
associated with a photon of wave length λ is hc/λ. The total number of quanta in the
visible spectrum, associated with the irradiance Ed(z, λ), is

EQd(z) =
1

hc

∫ 700 nm

400 nm
λEd(z, λ) dλ.

The units are easily seen to be quanta/m2s. The quantity EQd(z) is called the downwelling
quantum irradiance at depth z. Likewise the upwelling and scalar quantum irradiances
(EQu(z) and EQ0(z)) are are defined by replacing Ed in the above equation with Eu and
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E0, respectively. As might be expected, as for all the irradiances, there are K-values defined
for quantum irradiance, e.g.,

KQ0(z) , − 1

EQ0(z)

dEQ0(z)

dz
;

however, because of the strong variation of water absorption with wavelength, the K’s
associated with the quantum irradiances display a strong variation with depth, especially
at the surface.

Since the direction from which the photon is absorbed is of no consequence to an in-
dividual algal particle, the scalar quantum irradiance is the most important of the three
and is often just called the quantum irradiance. A unit for quanta often used by biolo-
gists is the Einstein (E), which is a mole of quanta, i.e., 6.023×1023 photons. If the lower
limit on the integral above is extended to 350 nm, then EQ0(z) is usually referred to as
“photosynthetically available radiation” or “PAR(z),” and the associated decay coefficient
as “KPAR(z)”.5 In many studies, Ed(z) is used rather than EQ0(z) to estimate PAR(z);
however, the two can differ by tens of a percent, depending on the time of day, the depth,
etc.

For an idea of the magnitude of EQ0, consider the direct solar beam at the top of
the atmosphere. For that E0(λ) = F0(λ), where F0 is the extraterrestrial solar irradi-
ance. Substituting F0(λ) from Chapter 8 into the above integral for EQ0 yields 1.44×1021

quanta/m2s or 2.4×10−3E/m2s. This is often conveyed using a hybrid set of units which
replace meters by centimeters: EQ0 = 0.24µE/cm2s, where µE = 10−6E , a micro Einstein.

Finally, the euphotic depth is defined as the depth at which EQ0(z) falls to 1% of its value
at the surface, when the Sun is near the zenith (and not obscured by clouds). Note that
the euphotic depth is a fixed number for a given water body on a given day. Photosynthesis
only takes place (for the most part) above the euphotic depth (if it takes place at all, e.g.,
it does not at night). So the euphotic depth is really only a measure of the maximum
thickness of the surface layer within which photosynthesis can take place.

6.3 AOP Examples

Examples of AOPs are now provided. These examples are of two flavors: (1) derived from
experimental measurements of irradiance and radiance carried out in natural waters; and
(2) derived from solutions of the radiative transfer equation for specified IOPs similar to
those found in natural waters.

5Many authors define PAR as EQ0 for the spectral range 400–700 nm rather than 350-700 nm.
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6.3.1 AOPs Derived from Experimental Measurements

Figure 6.1 provides profiles of Ed and Lu at several wavelengths measured in the clear
waters off Lanai, Hawaii. In this example, the IOPs are slowly increasing with depth, with
a and b increasing by about 50 and 20%, respectively, from the surface to 100 m. Note
that, in contrast to Lu, the Ed profile is very “noisy” near the surface. This noise is the
result of fluctuations in the downward propagating light field due to the surface waves (like
the bright and dark striations moving on the bottom of a swimming pool in sunlight, due
to the waves on the surface). The effect of the surface waves decreases with depth and is
small for z >∼ 15 m. Even in the presence of the noise, it is clear that the irradiance (and
the radiance) decays with depth in approximately an exponential manner, with a nearly
constant decay coefficient.

From these data we can estimate the profiles of Kd and RL shown in Figure 6.2. As
expected, Kd is very noisy near the surface, but for z >∼ 20 m the noise is greatly reduced.
The value of Kd was computed using a depth interval of 2 m for ∆z after the irradiance
data were averaged over 11 m, i.e.,6

〈Ed(zj)〉 =
1

11

i=+5 m∑

i=−5 m

Ed(zj + i)

The slow increase in Kd between 20 and 70 m follows the associated slow increase in the
absorption and scattering coefficients. As there is no differentiation involved, the profile
of RL is much smoother than Kd, except near the surface where Ed is noisy. Thus, the
variation ofRL with depth probably better reflects the small-scale variation in the aggregate
IOPs than does Kd. The slow decrease of R with depth reflects the slow increase of the
absorption coefficient.

Figures 6.3 and 6.4 provide the variation of the attenuation coefficients and RL with
wavelength. The irradiances at 2 and 20 m and the radiances at 2 and 6 m were used to
compute Kd and KL, respectively, and so these Ks are really averages of K(z) over these
depths. The remote sensing ratio, RL, was computed at 2 m depth. Both Kd and KL

follow the spectral shape of the absorption coefficient of pure water and have similar values
to each other. The divergence of KL from Kd for λ >∼ 500 nm is due to the increasing
influence of Raman scattering on the upwelling radiance as the wavelength increases. The
effects of Raman scattering on the in-water light field will be discussed in detail later in
this chapter. The radiance reflectance RL is accompanied by πRL in Figure 6.4 and is
more closely associated with remote sensing. The quantity πRL is similar to the irradiance
reflectance, R.7 Due to the high reflectance near 400 nm, the water at this location appears

6The values of Kd were virtually unchanged when `n(Ed) replaced Ed in this equation.
7If it is assumed that the upward-propagating radiance is independent of the direction of propagation,



6.3. AOP EXAMPLES 443

to be a deep blue (the maximum reflectance is actually in the ultraviolet near 389 nm).
These spectra are characteristic of clear natural waters, that is, waters containing minimal
concentrations of dissolved and suspended material. The historical average concentration
of Chlorophyll a at this location is approximately 0.1 mg/m3.

Figures 6.5 and 6.6 provide the typical spectral variation of R and Kd for Case 1 waters8

with a range of pigment concentrations provided in Table 6.1. For these data, spectra
labeled “D” are for Sargasso Sea and Caribbean waters with one in the Pacific near the
Panama Canal (D15). Spectra labeled “C” are from off the coast of West Africa near
Mauritania. The R spectra show a decrease in the reflectance in the blue and an increase
in the green with increasing pigment concentration. The opposite effect is seen in Kd. The
reflectance maximum near 685 nm is due to the natural fluorescence of chlorophyll a and
will be discussed later.

Table 6.1: Pigment concentrations (mg/m3) at the various stations in Figures 6.5,
6.6 and 6.7. The ordering of the stations conforms to the order in the legends to
the figures.

Station Concentration

D23 0.028
D21 0.027
D18 0.039
D19 0.041
D15 0.180
C70 2.4
C92 9.0
C35 2.1

The AOPs of Case 2 waters are much more complicated and variable than those shown
above for Case 1 waters. We show only one example here: spectra for sediment-dominated
Case 2 waters, i.e., waters for which mineral particles have a strong influence on the
IOPs. This example is shown in Figure 6.7 for two locations with nearly the same pigment
concentration (2.1 mg/m3 for C35 and 2.4 mg/m3 for C70) but vastly different suspended
particle concentrations.

i.e., completely diffuse, then R = πRL.
8Recall from Chapter 5 that Case 1 waters are those for which the pigment concentration determines

the IOPs, i.e., the optical effects of all of the constituents can be linked to the pigment concentration. In
Case 2 waters this is not the case: the optical effect of the constituents is not solely determined by the
pigment concentration.
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6.3.2 AOPs Derived from Computed Light Fields

The most-often measured AOPs are Kd, R, and RL. It is rare to have measurements of the
other AOPs, e.g., 〈µ〉, etc. Also it is rare to have measurements in a truly homogeneous
medium with an absolutely flat surface. To provide examples of the rarely-measured AOPs
and the effects of the wind-roughened surface and the atmosphere on the AOPs, it is
helpful to look at AOPs derived from solutions of the radiative transfer equation under
idealized conditions. This of course also allows isolation of the individual effects of Sun
angle, surface roughness, etc. from one another. Here we provide examples computed
at two wavelengths of interest in ocean color remote sensing: 440 and 550 nm. In the
examples, the water IOPs are taken from Chapter 5. The particles are chosen to be weakly
absorbing (ω0 = 0.93), and the spectral variation of the particle scattering coefficient chosen
to be approximately independent of wavelength. The values of absorption coefficient a, the
scattering coefficient b and the beam attenuation coefficient (extinction coefficient) c of the
medium are a(440) = 0.0171 m−1, b(440) = 0.148 m−1, c(440) = 0.165 m−1, a(550) = 0.067
m−1, b(550) = 0.144 m−1, and c(550) = 0.211 m−1. The scattering phase function for the
particles is that labeled “Petzold Phase-T” in Chapter 5.9 The polarization of light and
Raman scattering are ignored.

Figure 6.8 provides depth profiles of the irradiance reflectance R(z) with the upper
graphs for 440 nm and the lower for 550 nm. Plotted on each panel are the results for
two solar zenith angles, for a total of four solar zenith angles for each wavelength. The
results are shown for a flat surface and one that has a surface roughness characterized
by theCox-Munk distribution with a surface slope variance, σ2 (Chapter 7), of zero, and
a wind-roughened surface characterized by σ = 0.2, corresponding to a wind speed of
approximately 3.7 m/s.10 For each solar zenith angle (θ0) there are two cases: one for
the sun in a black sky, i.e., no atmosphere; and one with an atmosphere containing both
molecular and aerosol scattering. At 440 nm, the atmosphere’s Rayleigh (τr) and aerosol
(τa) optical depths are 0.252 and 0.295, respectively, while at 550 nm, the corresponding
optical depths are 0.099 and 0.250. These aerosol optical depths would be considered to be
quite large in a maritime setting (Chapter 4). Figure 6.8 shows that at 440 nm (top panels)
there is a strong dependence of R(z) on the solar zenith angle near the surface for θ0 ≤ 60◦,
with a much less dependence on the surface roughness or the presence or absence of the
atmosphere. For θ0 = 80◦ there is a large increase in reflectance when the atmosphere is
absent and even larger when the surface is roughened. The roughened surface causes some
photons to enter the water at large angles relative to the surface normal, and this increases
the probability that they will be scattered in upward directions. When the atmosphere is

9This phase function is also called “Petzold,” or just “Phase-T” later in this chapter.
10Note that in Chapter 7 we have mostly used σ̃ rather than σ for the surface slope variance, where

σ2 = 2σ̃2.
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added, however, there is very little difference between results for θ0 = 80◦ and 60◦. The
results are similar at 550 nm, with two exceptions: first, the overall reflectance is much
smaller, which is associated with the larger absorption coefficient compared to 440 nm;
and the effect of the atmosphere is smaller due to the smaller value of τr at 550 nm. One
of the most striking features is the fact that all of the curves seem to be approaching an
asymptotic regime in which R(z) becomes virtually independent of depth. The existence
of this regime was shown theoretically in Chapter 2 (Section 2.7.2). Note also that even in
the cases with the most extreme variation in depth, the variation in R with z is usually less
than ±10 to 20% from the surface to 100 m — hence the notion of its being an apparent
optical property of the medium.

Figure 6.9 shows trends in Kd with the variables that are similar to those for R, with
the exception of the fact that Kd at 550 is larger than that at 440, i.e., the reverse of that
for R. This of course suggests that R varies inversely with the absorption coefficient, while
Kd varies directly with the absorption coefficient. The asymptotic behavior of Kd with
depth is also evident, as it is with two other AOPs 〈µd〉 and 〈µ〉 shown in Figure 6.10. The
various average cosines are related, i.e., it is easy to verify from the definitions that

R
〈µd〉
〈µu〉

= (1−R)
〈µd〉
〈µ〉 − 1,

so given 〈µd〉, 〈µ〉 and R one can find 〈µu〉. Since the left-hand-side of this equation must
be positive, this shows that (1 − R)〈µd〉/〈µ〉 ≥ 1 or 〈µd〉 ≥ 〈µ〉, with the equality holding
when R = 0, i.e., no upwelling radiance at all. In ocean optics, the 〈µ〉’s are important in
the application of Gershun’s equation for estimating the absorption coefficient. If inelastic
processes are unimportant, the Gershun’s equation states (Chapter 2),

a(z) = − 1

E0(z)

d

dz
[Ed(z)− Eu(z)] .

This can be reduced to
a = 〈µ〉KV ,

where KV , −∂ `n[Ed − Eu]/∂z is the attenuation coefficient for vector irradiance. Thus,
given the irradiances, we could determine the IOP a(z) knowing the vertical profile of 〈µ〉.
This equation can also be manipulated to read

a = 〈µd〉Kd

[
1−RKu/Kd

1 +R〈µd〉/〈µu〉

]
,

which shows that when R � 1, a ≈ 〈µd〉Kd. This is important because under these
conditions, and close to the surface, 〈µd〉 can be approximated by cos θ0w, where θ0w is
the zenith angle of the refracted solar beam in the water. Because R is usually � 1, this
relationship (a ≈ 〈µd〉Kd) is very robust, and allows estimation of the near-surface a from
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Kd. We shall return to the question of estimation the IOPs from the AOPs later in an
appendix to this chapter.

Two quantities that are of prime interest in remote sensing of water properties are
Q = Eu/Lu, and especially, Lu/Ed = R/Q. These quantities are provided in Figures 6.11
and 6.12, respectively. Note that the “noise” in these figures is due entirely to statistical
fluctuations in the Monte Carlo(Chapter 2) solution to the radiative transfer equation that
was used here. The fluctuations increase with increasing depth and are much larger in the
upwelling quantities than the downwelling quantities and are particularly severe in Lu. As
with the other AOPs, the solar zenith angle has the dominate influence on Q for a given
set of AOP’s; however, when combined with R to form R/Q the effect of the sun angle is
greatly reduced (Figure 6.12). In fact, near the surface, the depth of most interest in remote
sensing, R/Q for these cases varies by only 5-6% as the solar zenith angle varies from 0
to 60◦. Since the remotely sensed signal for any near nadir viewing sensor is proportional
to Lu, and Ed can be estimated based on the optical properties of the atmosphere, it is of
prime importance to be able to relate RL = R/Q just beneath the surface to the IOPs.

Finally, in Figure 6.13 we provide profiles of the various Kx’s. Note that there is signif-
icant differences in the values of the various K’s near the surface (up to almost a factor of
2); however, of interest here is the observation that KL and Kd are close in value near the
surface. This of course is the source of the weak variation in R/Q = Lu/Ed with depth
seen in Figure 6.12 compared to either R or Q. This nearness of KL and Kd holds for all
of the cases examined in the figures, i.e., over all of the cases examined, at a depth of 6 m,
0.951 ≤ KL/Kd ≤ 1.002 while, in contrast, 0.761 ≤ Ku/Kd ≤ 1.014.

6.4 Relationships between AOPs and IOPs

The main difficulty establishing relationships between AOPs and IOPs is that they are
connected through the difficult-to-solve radiative transfer equation (difficult in terms of
closed-form expressions). Although codes for solving the radiative transfer equation in
a marine environment for any set of IOPs are now readily available, and must be used
if high-accuracy results are needed, it is instructive to try to develop simple models of
the multiple scattering process to isolate the more important IOPs and to provide simple
parameterizations of the AOPs in terms of the IOPs. Here we develop such a model using
the quasi-single scattering approximation (QSSA) as the basis for an approximate solution
of the full radiative transfer equation. We then examine the full range of validity of the
model for the various AOPs through comparison with “exact” numerical solutions of the
radiative transfer equation. Such models are essential both for understanding the causes
of variability in the AOPs seen in natural waters, and for the retrieval of the IOPs given
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the AOPs – one of the central problems of ocean color remote sensing.

We begin by developing the QSSA solution for a semi-infinite homogeneous medium
illuminated by the sun in a black sky and using it to determine the AOPs. Then we
methodically examine complicating factors: a flat refracting interface at the surface of the
medium, a rough refracting interface at the surface, an atmosphere above the medium, etc.
Finally, we consider vertically stratified water bodies and the effects of inelastic processes:
fluorescence and Raman scattering.

6.4.1 The QSSA – A Simple Model to Develop AOP−IOP Relationships

Consider a water body modeled as a semi-infinite medium (surface at z = 0) of uniform
IOPs and illuminated from above by the sun and sky. For the moment we assume that
the refractive index of the water is unity in order to remove the complications arising
from refraction and reflection at the air-water interface. The medium is assumed to be
free of internal sources such as inelastic scattering. The scalar radiative transfer equation
governing the propagation of radiance in the ξ̂ direction at a depth z within such a medium
is

ξ̂ • êz
∂

∂z
L(z, ξ̂, λ) = −c(z, λ)L(z, ξ̂, λ) +

∫

All ξ̂′
β(z, ξ̂′ → ξ̂, λ)L(z, ξ̂′, λ) dΩ(ξ̂′),

or, dropping the explicit reference to the wavelength λ, noting the the IOPs are independent
of z, writing τ = cz, ω0 = b/c, and replacing the volume scattering function by the phase
function, we have

ξ̂ • êz
∂

∂τ
L(τ, ξ̂) = −L(τ, ξ̂) +

ω0

4π

∫

All ξ̂′
P (ξ̂′ → ξ̂)L(τ, ξ̂′) dΩ(ξ̂′). (6.7)

The solution requires the incident radiance on the boundary L(0, ξ̂). Because the phase
function is sharply peaked in the forward direction (Figure 5.15), i.e., ξ̂′ = ξ̂, the integral
term can be quite large and cannot be ignored. However, some simplification can be
achieved by replacing the phase function by a Dirac-delta function at ξ̂′ = ξ̂, i.e., δ(2)(ξ̂′ −
ξ̂), plus a more slowly varying (with scattering angle) function Pr(ξ̂

′ → ξ̂), where the
subscript“r” stands for “remaining,” i.e.,

P (ξ̂′ → ξ̂) = Aδδ
(2)(ξ̂′ − ξ̂) +ArPr(ξ̂

′ → ξ̂). (6.8)

We can relate Aδ and Ar by integrating this phase function over all solid angles and over
those for which ξ̂′ • ξ̂ < 0 (i.e., all scattering angles Θ > 90◦):

∫

All ξ̂
P (ξ̂′ → ξ̂) dΩ(ξ̂) = 4π = Aδ +Ar

∫

All ξ̂
Pr(ξ̂

′ → ξ̂) dΩ(ξ̂);
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and ∫

ξ̂′•ξ̂<0
P (ξ̂′ → ξ̂) dΩ(ξ̂) = 4πB = Ar

∫

ξ̂′•ξ̂<0
Pr(ξ̂

′ → ξ̂) dΩ(ξ̂),

where we employ the symbol “B” for the backscattering probability rather than the more
cumbersome b̃b usually used in the literature. Substituting Eq. (6.8) into Eq. (6.7) we
obtain

ξ̂ • êz
∂

∂τ
L(τ, ξ̂) = −L(τ, ξ̂)

(
1− ω0Aδ

4π

)
+
ω0Ar

4π

∫

All ξ̂′
Pr(ξ̂

′ → ξ̂)L(τ, ξ̂′) dΩ(ξ̂′),

or

ξ̂ • êz
∂

∂τ ′
L(τ ′, ξ̂) = −L(τ ′, ξ̂) +

ω′0
4π

∫

All ξ̂′
Pr(ξ̂

′ → ξ̂)L(τ ′, ξ̂′) dΩ(ξ̂′), (6.9)

which is the same as Eq. 6.7 but with

τ → τ ′ = τ

(
1− ω0Aδ

4π

)

ω0 → ω′0 =
ω0Ar

(1− ω0Aδ/4π)
.

(6.10)

Since Pr lacks the strong forward peak (the δ-function removed it) the integral term in
Eq. (6.9) is much smaller than in Eq. (6.7) which suggests that a good approximation
to the radiance might actually be possible by solving Eq. (6.9) in the single-scattering
approximation.

In Chapter 2 we developed the single scattering solution to Eq. 6.7 for a source of
illumination L0(u, φ), u > 0, incident on a slab of optical thickness τ1 = cz1 from above:

Ld(τ, u, φ) = L0(u, φ) exp[−τ/u]

+
ω0

4π

∫ 1

0
du′
∫ 2π

0
dφ′

P (u′ → u, φ′ → φ)L0(u′, φ′)

1− u/u′
×
(
exp[−τ/u′]− exp[−τ/u]

)
; u > 0,

(6.11)

and

Lu(τ, u, φ) =
ω0

4π

∫ 1

0
du′
∫ 2π

0
dφ′

P (u′ → u, φ′ → φ)L0(u′, φ′)

1− u/u′
×
(
exp[−τ/u′]− exp[−τ/u] exp[−τ1(1/u′ − 1/u)]

)
; u < 0,

(6.12)

If the slab is infinitely thick, τ1 →∞. It is often convenient to replace u by −µ when u < 0.
This is equivalent to measuring the polar angle of propagation of the upward radiance from
the outward normal contrary to u, which is measured relative to the downward normal, i.e.,
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into the medium, so µ = cos θup. If we apply this solution to the reduced radiative transfer
equation Eq. (6.9) and make the indicated changes,

Ld(τ
′, u, φ) = L0(u, φ) exp[−τ ′/u]

+
ω′0
4π

∫ 1

0
du′
∫ 2π

0
dφ′

Pr(u
′ → u, φ′ → φ)L0(u′, φ′)

1− u/u′
×
(
exp[−τ ′/u′]− exp[−τ ′/u]

)
; u > 0,

and

Lu(τ ′, µ, φ) =
ω′0
4π

∫ 1

0
du′
∫ 2π

0
dφ′

Pr(u
′ → −µ, φ′ → φ)L0(u′, φ′)

1 + µ/u′

×
(
exp[−τ ′/u′]

)
; µ > 0,

Now if the incident radiance is in the form of a parallel beam propagating in the direction
ξ̂0 = (u0, φ0), e.g., from the Sun in a black sky, then

L0(u, φ) = F0δ(u− u0)δ(φ− φ0),

and the first order solutions become

Ld(τ
′, u, φ) = F0δ(u− u0)δ(φ− φ0) exp[−τ ′/u]

+
ω′0F0

4π

Pr(u0 → u, φ0 → φ)

1− u/u0
×
(
exp[−τ ′/u0]− exp[−τ ′/u]

)
; u > 0,

(6.13)

and

Lu(τ ′, µ, φ) =
ω′0F0

4π

Pr(u0 → −µ, φ0 → φ)

1 + µ/u0
×
(
exp[−τ ′/u0]

)
; µ > 0, (6.14)

From these expressions, we can compute all of the AOPs in this approximation. Start with
the downwelling irradiance:

Ed(τ
′) =

∫ 2π

0
dφ

∫ 1

0
uLd(τ

′, u, φ) du = F0u0 exp[−τ ′/u0]

+
ω′0F0

4π

∫ 2π

0
dφ

∫ 1

0

uPr(u0 → u, φ0 → φ)

1− u/u0
×
(
exp[−τ ′/u0]− exp[−τ ′/u]

)
du.

(6.15)
Using this we can find the downwelling irradiance attenuation coefficient Kd. First,

−dEd(τ
′)

dτ ′
= F0 exp[−τ ′/u0]

+
ω′0F0

4π

∫ 2π

0
dφ

∫ 1

0

uPr(u0 → u, φ0 → φ)

1− u/u0
×
(

exp[−τ ′/u0]

u0
− exp[−τ ′/u]

u

)
du.
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The integral above can only be carried out numerically; however, if we let τ ′ → 0, there is
considerable simplification:

− lim
τ ′→0

dEd(τ
′)

dτ ′
→ F0 −

ω′0F0

4π

∫ 2π

0
dφ

∫ 1

0
Pr(u0 → u, φ0 → φ) du.

so

− lim
τ ′→0

dEd(τ
′)

Ed(τ ′)dτ ′
→ 1

u0

(
1− ω′0

4π

∫ 2π

0
dφ

∫ 1

0
Pr(u0 → u, φ0 → φ) du

)
.

Now, using Eq. (6.10) and defining

Prd(u0, φ0) ,
1

4π

∫ 2π

0
dφ

∫ 1

0
Pr(u0 → u, φ0 → φ) du,

we find

lim
z′→0

Kd(z
′)

c
,
Kd(0)

c
=

1

u0

(
1− ω0Aδ

4π

)(
1− ω0Ar

(1− ω0Aδ/4π)
Prd(u0, φ0)

)
. (6.16)

The upwelling irradiance is

Eu(τ ′) =

∫ 2π

0
dφ

∫ 1

0
µL(τ ′, µ, φ) dµ

=
ω′0F0

4π

∫ 2π

0
dφ

∫ 1

0

µPr(u0 → −µ, φ0 → φ)

1 + µ/u0
×
(
exp[−τ ′/u0]

)
dµ,

(6.17)

from which it is trivial to show that

− dEu(τ ′)

Eu(τ ′)dτ ′
=

1

u0
,

so
Ku(z)

c
=

1

u0

(
1− ω0Aδ

4π

)
. (6.18)

Equation 6.14 shows that in this approximation, KL(z) = Ku(z).

The irradiance reflectance (or irradiance ratio) is given by R(z) = Eu(z)/Ed(z) and is
also easy to evaluate just beneath the surface

lim
z→0

R(z)→ ω′0
4π

∫ 2π

0
dφ

∫ 1

0

µPr(u0 → −µ, φ0 → φ)

u0 + µ
dµ

or

R(0) =
ω0Ar

4π (1− ω0Aδ/4π)

∫ 2π

0
dφ

∫ 1

0

µPr(u0 → −µ, φ0 → φ)

u0 + µ
dµ. (6.19)



6.4. RELATIONSHIPS BETWEEN AOPS AND IOPS 451

The downwelling average cosine (E0d/Ed) evaluated at z = 0 is easily seen to be u0.

Finally, the quantity of most interest in remote sensing, the radiance exiting the medium,
Lu(0, µ, φ), is just

Lu(0, µ, φ)

Ed(0)
=

ω0Ar
4π(1− ω0Aδ/4π)

Pr(u0 → −µ, φ0 → φ)

u0 + µ
, (6.20)

with RL = Lu(0, 1, φ)/Ed(0) = R/Q.

The approximations used in this section fall under what is commonly termed the quasi-
single scattering approximation — QSSA. The next order of business is to determine the
range of validity, if any, of these approximations.

6.4.2 The Range of Validity of the QSSA Model for AOPs.

To understand the range of validity of the QSSA, we compare its predictions with exact
solutions of the radiative transfer equation in a variety of situations.11 We begin by em-
ploying a specific phase function replacement in Eq. (6.8). We shall assume that Pr = P
for a range of scattering angles that can scatter the incident solar beam, propagating along
ξ̂0 = (θ0, φ0), into the upward hemisphere, i.e., toward the surface. We further assume that
Pr = 0 for all smaller scattering angles (see Figure 6.14). Then, Ar = 1 and

Aδ = 4π −
∫

All ξ̂
Pr(ξ̂0 → ξ̂) dΩ(ξ̂)

where the integral in Aδ is easily seen to be

∫

All ξ̂
Pr(ξ̂0 → ξ̂) dΩ(ξ̂) = 2π

∫ π

(π/2)−θ0
Pr(Θ) sin Θ dΘ , 4πB′.

The quantity B′ is the probability of scattering through an angle greater than (π/2)− θ0,
and when θ0 = 0, B′ = B, where B is the backscattering probability. Thus,

Aδ = 4π(1−B′).

Defining

Pru(u0, φ0) ,
1

4π

∫ 2π

0
dφ

∫ 1

0
Pr(u0 → −µ, φ0 → φ) dµ,

11Recall, the solutions are numerical, but are “exact” to the extent that they can be made as accurate
as desired.
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one sees that
Pru(u0, φ0) + Prd(u0, φ0) = B′,

i.e., Pru(u0, φ0) is the vertically striped volume in Figure 6.14 and Prd(u0, φ0) is the hori-
zontally striped volume. Inserting these relationships into Eqs. (6.16)–(6.20) provides the
QSSA-estimated AOPs in terms of the IOPs:

Kd(0)

c
=

1

u0
[1− ω0(1− Pru)] ,

QSSAK(u0)

u0
,

Ku(z)

c
=

1

u0
[1− ω0(1−B′)],

Lu(0, µ, φ)

Ed(0)
=

ω0

4π[1− ω0(1−B′)]
Pr(u0 → −µ, φ0 → φ)

u0 + µ
, QSSAL(u0, µ),

R(0) =
ω0

4π[1− ω0(1−B′)]

∫ 2π

0
dφ

∫ 1

0

µPr(u0 → −µ, φ0 → φ)

u0 + µ
dµ , QSSAR(u0).

(6.21)
Note that in the limit ω0 � 1, these equations reduce to the single scattering approxima-
tion, i.e., the terms introduced to try to correct the single scattering approximation (SSA)
for multiple scattering, ω0(1−B′) and ω0(1− Pru), become negligible.

One observation that can be immediately drawn from Eqs. (6.21) is that, since B′ ≥ Pru,
Kd(0) ≤ Ku(0) = KL(0); however, Figures 6.3 and 6.13, show that in the examples provided
Kd(0) > KL(0) > Ku(0). So, which of the results are better, those for Ku and KL or that
for Kd? To answer this question, we compare the prediction with exact computations. We
use the Phase-T phase function from Chapter 5 and carry out computations for a range
of values for ω0 and θ0. As in the QSSA, we assume for the moment that the refractive
index of the medium is unity. Figures 6.15 and 6.16 provide the values of Pru and B′,
respectively, as a function of the solar zenith angle for this phase function. One sees that
for θ0 = 60◦, B′ is more than double Pru. Figure 6.17 compares the exact value of Kd(0)/c
(y axis) with the QSSA prediction (x axis) for θ0 = 0 and 60◦ with 0.1 ≤ ω0 ≤ 0.9. The
solid line is the linear regression of these two quantities. The slope of the regression line is
0.9999 and the R2 value is 0.9999. Clearly, the QSSA provides an excellent approximation
to Kd(0). This implies that the approximation for Ku(z), and possibly the other upwelling
quantities, may not be as accurate.

We continue the examination of the range of validity of the QSSA by looking at R(0).
To compute the QSSA approximation to R(0), we need the integral

1

4π

∫ 2π

0
dφ

∫ 1

0

µPr(u0 → −µ, φ0 → φ)

u0 + µ
dµ , IR(u0).

Actually, later we will find it more useful to have I ′R(u0) , IR(u0)/B, where B = B′ with
u0 = 1, the backscattering probability. This is provided in Figure 6.18 for Phase-T (and for
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later use, for the water itself – Rayleigh scattering). The comparison between the QSSA
and “exact” computations of R(0) is provided in Figure 6.19 for θ0 = 0 and 60◦. Also
included on Figure 6.19 is the single scattering approximation (SSA) for the two θ0’s. We
see that for both Sun angles the QSSA and exact computations agree well for ω0 up to
about 0.5, after which departures up to a factor of 2 are seen. In contrast, the SSA shows
significant error even for ω0 = 0.1 (4.4% and 11.1% for θ0 = 0 and 60◦, respectively).

We have also included in Figure 6.19 the results of replacing B′(θ0) with B in Eq. 6.21
for R(0), i.e.,

R(0) =
ω0

4π[1− ω0(1−B)]

∫ 2π

0
dφ

∫ 1

0

µPr(u0 → −µ, φ0 → φ)

u0 + µ
dµ , QSSA′R(u0).

The quantities B′ and B are the same for θ0 = 0, but B′ ≈ 6.6B for θ0 = 60◦. With
this replacement there is a considerable improvement between the QSSA and the exact
computations. Figure 6.20 shows this relationship plotted in another way and suggests an
almost linear dependence of R(0) on QSSA′R(u0):

R(0) ≈ 1.12QSSA′R(u0). (6.22)

We now turn to the quantity of most interest in remote sensing: Lu(0, µ, φ). Since this
quantity depends on u0 and φ0 in addition to µ and φ, it is useful in this section to indicate
this explicitly in the notation by the following replacement:

Lu(0, µ, φ) −→ Lu(0, µ, φ ;u0, φ0).

Let us start by examining Lu(0, µ = 1, φ ;u0, φ0), the radiance at the surface propagating
toward the zenith, given by

Lu(0, µ = 1, φ ;u0, φ0)

Ed(0)
= QSSAL(µ = 1, u0) =

ω0

4π[1− ω0(1−B′(u0))]

Pr(u0 → −1, φ0 → φ)

u0 + 1
(6.23)

where we have explicitly indicated that B′ is a function of u0. Note that in the above
equation there is really no dependence on φ or φ0 because for this geometry the scattering
angle is independent of φ and φ0. Based on our experience with R(0), we expect that
the quality of this equation in predicting the correct Lu/Ed will be improved by replacing
B′(u0) by B. Let’s see if this is the case.

Consider Figure 6.21 for the Petzmas phase function. In the left panel the QSSA formula
uses the actual B′(u0) to make the prediction, i.e., Eq. (6.23). Note that at larger values of
QSSAL(1, u0), in addition to deviating from the prediction the comparison shows a strong,
systematic, dependence on θ0 (or u0). For a given ω0, as u0 is varied the points fall on arcs
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with the largest values of Lu/Ed corresponding to θ0 = 60◦ and the smallest to θ0 = 0.
This strong dependence on θ0 cannot be caused by the phase function, which only varies
by about 10% over the relevant range of scattering angles (Figure 5.17). The only other
candidate for this behavior is B′(u0). The right panel shows the effect of replacing B′(u0)
by B′(1) = B in Eq. (6.23). In this case the points cluster better and the deviation from
the QSSA prediction is much smaller and more systematic. Thus, as with R(0), we see that
replacing B′(u0) with B improves the agreement with exact calculations, yielding a near-
linear relationship between Lu(0, µ = 1, φ ;u0, φ0)/Ed(0, u0, φ0) and QSSA′L(µ, φ;u0, φ0)
defined through

QSSA′L(µ, φ;u0, φ0) ,
ω0

4π[1− ω0(1−B)]

Pr(u0 → −µ, φ0 → φ)

u0 + µ
, (6.24)

with µ = 1.

There is an additional (and favorable) consequence of replacing B′ by B. It was shown
earlier that the reciprocity principle (Chapter 2, Eq. 2.35) applied the boundary of a
medium without internal sources and with unit refractive index requires

Lu(ξ̂1 → ξ̂2)

Ed(ξ̂1)
=
Lu(−ξ̂2 → −ξ̂1)

Ed(−ξ̂2)
,

where in this equation the incident direction is to the left of the arrows and the reflected
direction to the right of the arrows. The left figure below shows a schematic of the processes
associated with the left-hand-side of this equation, and the right figure the right-hand-side.
(n̂ is the surface normal.) In the present notation, where µ = −u,

 

!̂1  

n̂  

!̂2
 

!"̂1
 

n̂  

!"̂2
 

Lu(0, µ = 1, φ ;u0, φ0)

Ed(0, u0, φ0)
=
Lu(0,−u0,−φ0 ;u = 1,−φ)

Ed(0, u = 1,−φ)
,

where the irradiances explicitly indicate the direction of the incident beam, i.e., Ed(0, u0, φ0)
is the downward irradiance when the incident beam is propagating toward (u0, φ0). Now
Pr(u0 → −µ, φ0 → φ) = Pr(µ → −u0, φ → φ0) and, as the scattering angle depends on φ
and φ0 only through |φ− φ0|, we see that satisfying reciprocity principle requires that B′

in Eq. (6.23) cannot depend on u0.
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An example of how well the modified QSSA reproduces the variation of Lu(0, µ =
1, φ ;u0, φ0) with u0, we computed “exact” values for this quantity using two scattering
phase functions: Petzold Phase-T and Petzmas (Chapter 5). The results of the compu-
tation are provided in Figure 6.22 for several values of ω0 along with the QSSA′L(1, u0)
prediction. It shows that for small ω0 (e.g., ω0 <∼ 0.5) the departures from the QSSA
prediction are small, but they increase with increasing ω0. As the Petzmas phase func-
tion is now thought to be more representative of the scattering by particles in natural
waters for scattering angles in the backscattering hemisphere, one sees that the departure
of Lu(0, µ, φ ; 1, φ0) from the behavior predicted by QSSA′L(1, u0) is at most expected to be
about 10% and with the QSSA always yielding a smaller value for all solar zenith angles.

In sum, the modified QSSA (by replacing B′ with B) appears to yield relatively accurate
results for ω0 <∼ 0.5 and is a considerable improvement on the single scattering approxi-
mation, which for similar accuracy requires a much smaller upper limit on ω0. However,
there are also inconsistencies, e.g., the prediction that Kd < Ku is not borne out by exact
calculations. Still, the approximation is useful, providing relatively simple formulae for
writing the AOPs as functions of the IOPs, and for investigating the variation of the AOPs
resulting from changes in the IOPs. We shall see later, they also provide a framework
estimating IOPs from measurements of the AOPs.

6.4.3 Decomposition of Scattering into Water and Particle Components

In the last section we modified the QSSA by replacing QSSAR and QSSAL by QSSA′R
and QSSA′L, respectively. This considerably improved the agreement between the rela-
tionships provided in Eq. (6.21) and R(0) and Lu/Ed (nadir viewing). Noting that the
scattering by the water itself can make an important contribution to the volume scattering
function, especially in the backscattering directions, we now modify the AOP-IOP formu-
las to separate the water and particle scattering. If we write b = bp + bw, c = cp + cw
and β = βp + βw, where the subscripts “p” and “w” stand for “particles” and “water”,
respectively, then

ω0 =
bp + bw
cp + cw

,

P (Θ) =
Pp(Θ)bp + Pw(Θ)bw

bp + bw
,

(6.25)

where Θ is the scattering angle, and the unscripted quantities refer to water plus particles.
To include water in the QSSA or modified QSSA formulation we need quantities such as
Pru(u0), B′(u0), and IR(u0) in Eq. (6.21). The Rayleigh phase function is symmetric
around Θ = 90◦, therefore Puw(u0) = 0.5, B′w(u0) = 0.5, and Bw = 0.5. The calculation
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of IR(u0) is just straightforward integration, and is shown in Figure 6.18.12. Thus, for
example

Pu(u0) =
Pup(u0)bp + Puw(u0)bw

bp + bw
,

and

IR(u0) =
IRp(u0)bp + IRw(u0)bw

bp + bw
,

etc., and we can then apply the QSSA or modified QSSA to problems including both
particle and water scattering given bp and bw (see Chapter 5 for the variation of bp and bw
with wavelength, Chlorophyll a, etc.).

Since the addition of water has a considerable effect on the overall phase function of the
medium, especially for Θ >∼ 90◦, we need to see if this changes the efficacy of the modified
QSSA. Furthermore, in Chapter 5 we introduced a model for the particle phase function
that depended on the concentration of Chlorophyll a. The end members of this model
were modified Petzmas phase functions with backscattering probabilities Bp = 0.0019 and
0.014. (Figure 5.23 in Chapter 5 shows these phase functions.) Thus, we need to assess
how well the modified QSSA works when water is added to a particle phase function similar
to Petzold’s Phase-T or to one much more strongly forward scattering. This assessment
is accomplished here by carrying out exact computations with water added to the Petzold
Phase-T in amounts required to render the total backscattering probability,

B =
Bpbp +Bwbw
bp + bw

,

equal to 0.02(0.02)0.12.13 In addition, Phase-T was modified by enhancing the scattering
in the range 0 < Θ < 2◦ by a factor of approximately 33, which resulted in a Bp of 0.002.
Because they have the same angular dependence in the backward scattering directions, the
Phase-T and modified Phase-T phase functions have the same IRp(u0)/Bp (Figure 6.18).
Water was also added to this model to again render B = 0.02(0.02)0.12 as well as smaller
values of B. This encompasses much of the variation of B and ω0 for the IOP-Chlorophyll
a relationship model described in Chapter 5 (Figure 6.23). The resulting phase functions
(particles plus water) are shown in Figure 6.24 for selected values of B. Note that the
biggest difference between the two sets is the stronger forward scattering for the modified
Phase-T (Bp = 0.002). We would expect the AOPs would follow the QSSA relationships

12In the case where the depolarization factor for water is ignored, i.e., P (Θ) = 3(1 + cos2 Θ)/4, IRw(u0)
is easily found to be

IRw(u0) =
3

8

[(
3

2
− 1

2
u0

)(
1− `n

(
1 + u0

u0

))
+

(
3

2
u2

0 −
1

2

)(
1

3
− u0

2
+ u2

0 − u3
0 `n

(
1 + u0

u0

))]
.

13The notation i(j)k means from i to k in increments of j.
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better for the modified Phase-T, as it more resembles a Dirac delta function at small
angles. Also, note that for B = 0.10 and Θ >∼ 90◦ there is little difference between the
phase functions for the water plus particles.

Figure 6.25 compares R(0) with QSSA′R(u0) for the two particle phase functions for
θ0 = 10◦, 37◦ and 60◦, with ω0 = 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, and 0.9, and
B = 0.020 to 0.120 for Bp = 0.0181, and B = 0.003 to 0.12 for Bp = 0.002. Again, the
modified QSSA works better for the Bp = 0.002 case, although in both cases the QSSA-
predicted R(0)’s are usually too low. The average (absolute) error in the modified QSSA is
1.59% for Bp = 0.002 and 6.27% for Bp = 0.0181. The largest errors are usually associated
with the largest values of ω0 (more multiple scattering). Linear regressions

R(0) = CRQSSA
′
R(u0) (6.26)

yielded CR = 1.0321 and 1.09800 for Bp = 0.002 and 0.181, respectively. These regressions
do not change the average absolute error significantly, but do remove most of the bias.

Of more interest is the upwelling radiance Lu. Figure 6.26 compares exact values of
Lu/Ed (nadir-viewing) with the modified QSSA prediction, QSSA′L(u0). Not surprising,
the comparisons of Lu/Ed and QSSA′L(u0) are similar to those for R(0) and QSSA′R(u0).
The average (absolute) error in QSSA′L is 1.57% for Bp = 0.002 and 6.45% for Bp = 0.0181,
and in

Lu
Ed

= CLQSSA
′
L(u0), (6.27)

the values of CL are 1.0363 (Bp = 0.002) and 1.1179 (Bp = 0.0181). Additional simulations
show that much of the bias in the QSSA can be removed by taking CL ≈ 0.99 + 6.9BP .

For Kd, Figure 6.27 provides results for IOP parameters that are the same as those in
Figures 6.25 and 6.26, and shows that QSSAK(u0) provides an excellent estimate of Kd(0)
in the presence of water as well as particle scattering.

Clearly, the QSSA expressionsQSSA′L, QSSA′R, andQSSAK reproduce their associated
AOPs quite well. As expected, the accuracy is higher the more strongly the particles scatter
in the near-forward direction.

6.4.4 Influence of the Environmental Setting on QSSA Validity

Thus far we have ignored the fact that the water surface is refracting, and is usually ruffled
by the wind. In addition, we have ignored the atmosphere above the water surface. Here
we examine any changes in the QSSA model that may be required to accommodate these
omitted features of the water-atmosphere system.
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6.4.4.1 A Flat Refracting Interface

We have assumed the refractive index of water (mw) was unity rather than about 1.333. The
air-water refracting interface will influence the light field in the medium in two important
ways: (1) the solar beam will be refracted so as to make a smaller angle θ0w in the medium
given by

sin θ0w =
1

mw
sin θ0;

and (2) some upwelling radiance in the water will be reflected at the interface and rejoin
the downwelling light field. Of course, fewer photons will enter the water because some
will be Fresnel-reflected from the surface.

In spite of these complications, one might reasonably expect Eqs. (6.21) should still
be applicable if u0 is replaced by u0w = cos θ0w, and Lu(0, µ, φ ;u0, φ0)/Ed(0) and R(0)
are evaluated just beneath the interface. This is to be expected because for ω0 <∼ 0.5,
the upwelling field is small, so its reflection from the interface should provide very little
enhancement of the downwelling light field, and there will be very little deviation from illu-
mination with a parallel beam having zenith angle θ0w, but without the interface. However,
as ω0 increases, the illumination (downward radiance just beneath the surface) will become
less and less like a beam source. To examine the validity of this conjecture, we compare
solutions to the radiative transfer equation in the absence and presence of the refracting
interface. Such comparisons are made in Figure 6.28, which provides the ratio of Lu/Ed
(nadir-viewing), R(0), and Kd(0) for medium refractive indices of 1.333 and 1.000 (i.e.,
Lu/Ed for m = 1.333 divided by Lu/Ed for m = 1.000, etc.). To test our hypothesis, we
use θ0 = 40◦ for m = 1.000, and θ0 = 58.96◦ for m = 1.333, so that the θ0w for m = 1.333
is equal to θ0 for m = 1.000. The phase function is Petzold’s Phase-T. The ratios are noisy
because the quantities are computed from radiative transfer simulations using the Monte
Carlo method (Chapter 2). The radiances (Lu) are estimated to be accurate to within
±0.8%, the reflectance to within ±0.2%, and Kd to within about ±0.1%. The ratios show
that the reflecting interface has virtually no effect on Lu/Ed, i.e., the ratio is unity to
within the accuracy of the simulations. In contrast, for R and Kd we see an ever increasing
effect with ω0, with R increasing 5.3% and Kd increasing 8% as one increases m from 1.000
to 1.333 with ω0 = 0.9. This behavior of R and Kd is due to the internal reflection of
upwelling light from the interface. Most internally-reflected photons will have values of θ
greater than the critical angle (48.6◦) and be more strongly attenuated with depth when
they join the downwelling stream than photons in the refracted solar beam. This will result
in an increased Kd. Internally-reflected photons also have a higher probability of being
scattered back into the upwelling field than photons in the direct solar beam, and this
increases R. Thus, results seen in Figures 6.25 and 6.26 are easily explained by internal
reflection of the upwelling light field.
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In the case of Kd, Figure 6.28 suggests that an expansion in increasing powers of QSSAK
might be useful. However, it is more appropriate to perform the regression in the following
manner:

u0w
Kd

c
− 1 = CK1[ω0(1− Pru)] + CK2[ω0(1− Pru))]2 + CK3[ω0(1− Pru)]3; (6.28)

as this ensures that Kd reduces to the correct value for ω0 = 0, i.e., Kd = a/u0w. Note
that in the above equation Pru is evaluated at u0w. Interestingly, the best fit is obtained
with CK2 = CK3 = 0. The quality of that fit (with CK1 = 0.9892) is shown in Figure 6.29,
where the average unsigned error in Kd/c is 0.25% and the maximum error is slightly less
than 1% (for ω0 = 0.9 and θ0 = 0). Thus, Kd can be well represented by Eq. (6.28) with
CK2 = CK3 = 0, i.e.,

u0w
Kd

c
= 1 + CK1[ω0(1− Pru)]. (6.29)

In the earlier simulations Lu/Ed was evaluated by using the known Ed = u0F0. But in
the presence of the refracting interface, and in the absence of simulations, we only know
E+
d , the irradiance incident on the water surface from above. So, if we wanted to use

Eq. (6.27) to obtain Lu alone from Lu/Ed in the presence of the water surface, we would
need to be able to determine Ed (which is unknown) from E+

d , which, for the solar beam,
is just u0F0. This can be effected with high accuracy in the following manner. When
a beam of irradiance E+

d is incident on the surface, the Fresnel-transmitted irradiance is
Etd = tf (u0 → u0w)E+

d , where tf is the Fresnel transmittance. Some of this downwelling
irradiance, R(u0w)Etd, is backscattered (by the medium below) into the upwelling field. A
fraction, r, of this backscattered irradiance is reflected from the interface, augmenting the
downwelling irradiance by rR(u0w)Etd. Again, a portion of this is reflected upward and
back downward augmenting the irradiance by rR(u0w)r′R′Etd, where r′ and R′ are used for
the second reflection because the radiance distribution of the light fields change from the
first to the second reflection. Continuing the process, we have14

Ed = tfE
+
d

(
1 + rR(u0w) + rR(u0w)r′R′ + rR(u0w)r′R′r′′R′′ + · · ·

)
.

Now, noting that the values of R are usually < 0.1 and r ∼ 0.5, the series will converge
rapidly, i.e., the terms in R′ and R′′ will not be very important. Thus, we simplify the
result by letting R′ = R′′ = R(u0w), etc., and r′ = r′′ = r, etc. Then the series is just a
geometric series and

Ed =
tfE

+
d

1− rR(u0w)
. (6.30)

14It might seem troubling that Ed > tfE
+
d , i.e., greater than the transmitted irradiance entering the

water! However, the photons in each term of the series entered the water at times earlier than the photons
contribution to E+

d .
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If we further approximate the upwelling field as totally diffuse, i.e., the upward radiance is
independent of direction, then

r =

∫ 1
0 µ(1− tf (µ)) dµ

∫ 1
0 µdµ

,

which for m = 1.333 results in r ≈ 0.48. Comparison with Ed from Eq. (6.30) with that
obtained from “exact” radiative transfer simulations show that Eq. (6.30) is satisfied to
within a small fraction of one percent. Thus, the error in Ed determined from E+

d is not a
significant source of error in estimating Lu from the IOPs using

Lu =
tfE

+
d

1− rR(u0w)

(
Lu
Ed

)
, (6.31)

where the quantity in the parenthesis is determined from Eq. 6.27 with u0w replacing u0.

6.4.4.2 A Wind-Roughened Refracting Interface

When the water surface is roughened by the wind, the solar beam is no longer unidirectional
in the water, i.e., it is no longer propagating in the direction specified by a single value of
u0w. Photons are propagating in a range of directions close to u0w with a spread determined
by the Cox-Munk surface slope distribution and variance σ2 (Chapter 7). This deviation
of the incident radiance (beneath the surface) is clearly expected to have some influence
on the AOPs, however, examination of Figures 6.8-6.12 suggest that the influence is small
except at very large solar zenith angles. A similar effect is produced by the presence of the
atmosphere above the interface, i.e., the presence of sky light, as well as a wind-roughened
surface, results in the incident radiance (beneath the surface) propagating mostly in a
range of directions close to u0w. The atmospheric effect is discussed in the next section.

To examine that surface roughness effect, we have computed the AOPs R, Kd, and
Lu/Ed for θ0w = 0, 10◦, 20◦, 30◦, and 40◦, (θ0 = 0, 13.38◦, 27.12◦, 41.68◦, 58.96◦), with
0.1 ≤ ω0 ≤ 0.9 with σ = 0.2 (wind speed of about 3.7 m/s) rather than zero, using the
rough-surface modification to the Monte Carlo procedure developed in Chapter 7. In the
case of Lu/Ed and R, the average ratio of the quantity with σ = 0.2 to that with σ = 0
(flat surface) differs from unity by less that 0.2% and 0.7%, respectively (the maximum
difference from unity is 1.2% and 2.9%, respectively, for θ0 = 58.9◦). Thus, these two AOPs
are almost unaffected by surface roughness.

In the case of Kd, there are more significant differences between the flat- and the rough-
surface cases; however, they are easily related to the structure of the in-water light field.
We have seen in the last Section that u0wKd/c is directly related to the IOPs (Eq. (6.28)).
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We need to find a modification that relates Kd to the IOPs in the presence of a rough
surface. The obvious candidate is a replacement for u0w. The simplest description of the
geometric structure of the incident light field is its average cosine , i.e., the ratio Ed/E0d,
where both quantities refer only to photons that are transmitted through the surface. We
call this quantity 〈u0w〉0, where the second subscript “0” means it is for a medium with
ω0 = 0, i.e., a totally absorbing water body.15 If the surface is flat, this reduces to u0w.
The computation of the effect of roughness on 〈u0w〉0 is carried out by simulating the
radiative transfer and setting the IOPs so ω0 = 0. Figure 6.30 provides D0 = 1/〈u0w〉0 as
a function of θ0 and σ resulting from such simulations. For each value of θ0 we have fit the
corresponding value of D0 to a polynomial in σ:

D0 = CD0 + CD1σ + CD2σ
2, (6.32)

and the results are provided in Table 6.2 In turn, the coefficients in Table 6.2 can be

Table 6.2: Expansion coefficients in Eq. (6.32) as a function of θ0 derived from
simulations.

θ0 CD0 CD1 CD2

0 1.000 0 0.0300
13.38 1.015 0.0005 0.0350
27.12 1.064 0.0004 0.0625
41.68 1.154 0.0022 0.1625
58.96 1.305 0.0049 0.6525
70.49 1.415 0.0885 1.4150

reasonable well fit to functions of u0w for θ0 ≤ 60◦:

CD0 = 1/u0w,

CD1 ≈ 0.0155 (CD0 − 1),

CD2 ≈ 0.03− 0.1831 (CD0 − 1) + 7.268 (CD0 − 1)2.

(6.33)

The average ratio of 〈u0w〉0Kd/c with σ = 0.2 to that with σ = 0 computed using these
equations for D0 is 0.9957, and the largest deviation from unity is 0.9935 for the simulations
described in this section. Thus, Eq. (6.29) with u0w replaced by 〈u0w〉0 remains valid to a
high degree of accuracy, utilizing Eq. (6.32) and Eq. (6.33) to estimate 〈u0w〉0.

The Ed used in these simulations was the actual value beneath the surface, determined
from the Monte Carlo results. Thus, one might also ask if a formula similar to Eq. (6.30)
can be used to estimate Ed from E+

d . The answer is yes: the ratio Ed/E
+
d for σ = 0 and

15When the waterbody is totally absorbing, i.e., there is no scattering, the geometrical structure of the
light field just beneath the surface is that of the transmitted radiance alone.
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σ = 0.2, for all of the cases examined in this section, differed by an average of 0.15% and
a maximum of 0.47%, with the difference generally increasing with increasing θ0.

In sum, we see that the influence of surface roughness (due to the wind) is small or easily
taken into account for θ0 <∼ 60◦. For larger solar zenith angles the effects of roughness
become larger (Figures 6.8-6.12) and the effects may not be simply explained in a quan-
titative manner. It should be noted that the modifications to the AOP-IOP relationships
required a model of the surface roughness, e.g., the Cox-Munk model used here to relate
the surface slope distribution to the wind speed. Large solar zenith angles depend on such
models being accurate for very large surface slopes, which is highly questionable. For this
reason we have limited our discussion to θ0 < 60◦ (with the exception of Figure 6.30 and
Table 6.2).

6.4.4.3 An Atmosphere Above a Refracting Interface

To examine the influence of the atmosphere on Lu/Ed, we used an aerosol model typical
of that for a clear maritime aerosol. The aerosol optical thicknesses τa(λ) were 0.126,
0.107, and 0.094, respectively at, λ = 400, 500, and 600 nm (0.10 at 550 nm). At these
wavelengths, the Rayleigh optical thicknesses τr(λ) were 0.364, 0.145, and 0.069. Radiative
transfer simulations were run for all combinations of θ0w = 0, 10◦, 20◦, 30◦, and 40◦(θ0 = 0,
13.38◦, 27.12◦, 41.68◦, 58.96◦), with ω0 = 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, the Pet-
zmas phase function, and λ = 400, 500, and 600 nm. Surface roughness was characterized
by σ = 0 and 0.2. In addition, similar computations, but without the atmosphere, were
carried out as well. The values of the ratio (Lu/Ed)Atm ÷ (Lu/Ed)NoAtm , where the sub-
scripts “Atm” and “NoAtm” mean, respectively with and without the atmosphere (both
with a refracting water surface), are shown in Figure 6.31 for λ = 400 nm.. We see that this
ratio is always between 3% above unity and 1.5% below unity depending on ω0, θ0 and σ.
It deviates more from unity at 400 nm than for longer wavelengths as shown in Table 6.3,
which also provides information on similar ratios formed with R and Ed/E

+
d . One notes

that the average effect of the atmosphere is to increase Lu/Ed slightly above unity and to
decrease Ed/E

+
d slightly below unity. This suggests that the effect of the atmosphere on

Lu/E
+
d should be less that the effect on either of the above quantities. In fact, the average

value of this ratio over those cases in Table 6.3 is 0.9997 at 400 nm. Since the remote
sensing reflectance is given by Rrs = (Lu/E

+
d )tL, and tL is not affected by the presence of

the atmosphere, one expects that the absence or presence of the atmosphere has very little
effect on Rrs.
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Table 6.3: Values for the ratios (with the atmosphere ÷ without the atmosphere)
of the indicated quantities for all combinations of θ0w = 0, 10◦, 20◦, 30◦, and 40◦,
with ω0 = 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, the Petzmas phase function,
σ = 0 and 0.2, and λ = 400, 500, and 600 nm. “Ave” is the average deviation from
unity and “Max” is the maximum deviation from unity.

Lu/Ed Lu/Ed R R Ed/E
+
d Ed/E

+
d

λ (nm) Ave Max Ave Max Ave Max

400 1.012 1.029 1.042 1.082 0.988 0.982
500 1.004 1.016 1.021 1.039 0.993 0.986
600 1.004 1.010 1.013 1.039 0.995 0.990

6.4.4.4 Estimation of E+
d and 〈u0w〉0 with a Rough Surface, Sun and Sky

If we want to use the QSSA to evaluate Lu by itself, as discussed before, we need Ed. The
estimate of Ed can be made utilizing Eq. (6.30). Table 6.3 shows that to within about 1%
or less, (Ed/E

+
d )Atm = (Ed/E

+
d )No Atm. Thus, the problem of estimating Ed in the presence

of the atmosphere and rough refracting surface reduces to that of estimating E+
d . Also, we

will need to estimate 〈u0w〉0, as in the spirit of the QSSA, we will replace QSSA′L(u0w) by
QSSA′L(〈u0w〉0). In addition, we will need both of these quantities for further application
of the QSSA in the computation of Kd(0) in the presence of the surface, Sun, and sky,
described at the end of this section.

The problem of finding E+
d , the solar irradiance transmitted by the atmosphere and inci-

dent on the water surface is easily effected by applying the single-scattering approximation
to the atmosphere. The first-order solution for a atmospheric layer of optical thickness τ
is given by an equation similar to Eq. (6.15).

E+
d (τ) =

∫ 2π

0
dφ

∫ 1

0
uLd(τ, u, φ) du = F0u0 exp[−τ/u0]

+
ω0F0

4π

∫ 2π

0
dφ

∫ 1

0

uP (u0 → u, φ0 → φ)

1− u/u0
×
(

exp[−τ/u0]− exp[−τ/u]
)
du.

Here P is the phase function for the atmosphere, composed of Rayleigh and aerosol scat-
tering. When τ � 1, the exponentials can be expanded we have (the single-scattering
approximation)16

E+
d (τ) ≈ F0u0(1− τ/u0) +

ω0F0

4π

∫ 2π

0
dφ

∫ 1

0
τ P (u0 → u, φ0 → φ) du.

16This ignores Fresnel reflection from the interface. A derivation including (flat) surface Fresnel reflection
is provided in Chapter 9, Section 9.5, Eq. 9.37.
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Note that
ω0Pτ = ω0Pcz = ωrPrcrz + ωaPacaz = ωrPrτr + ωaPaτa

where the subscripts “r” and “a” refer to “Rayleigh” and “aerosol” scattering by the
atmosphere, respectively. Inserting this into the integral and recalling that Pr is symmetric
in the forward and backward directions,17 we have

E+
d (τ) ≈ F0u0(1− τ/u0) + ωrF0τr/2 +

ω0F0

4π

∫ 2π

0
dφ

∫ 1

0
τa Pa(u0 → u, φ0 → φ) du.

Writing
∫ 2π

0 dφ
∫ 1

0 Pa(u0 → u, φ0 → φ) du , 4πIa(u0) and noting that ωr = 1,18

E+
d (τ) ≈ F0u0(1− τ/u0) + ωrF0τr/2 + ω0F0τaIa = F0u0(1− τr/2u0 − τa(1− ωaIa)/u0).

We can usually drop the aerosol term in this expression because typically, τa <∼ 0.1, ωa ≈ 1
and Ia is close to 1 (aerosols scatter strongly in the forward direction). Then,

E+
d (τ) ≈ F0u0

(
1− τr

2u0

)
≈ F0u0 exp

(
− τr

2u0

)
.

However, ignoring the aerosol altogether can lead to error of a few % in E+
d . We have

found, more or less by trial and error, that an acceptable compromise when the aerosol
optical thickness at 550 nm is ≤ 0.1 is

E+
d (λ) = F0u0(λ) exp

(
− τr(λ)

x(λ)u0

)
, (6.34)

where the factor x(λ) = 2.3, 2.2, and 2.1 for λ = 400, 500, and 600, respectively. The error
in Eq. (6.34) for the simulations carried out in the last section (6.4.4.3) is generally < 0.5%,
except for 400 nm with θ0 ≈ 60◦ for which the error was ≈ −1.8 to −2.3% depending on
ω0 in the water (larger error was for larger ω0, as photons scattered out of the water can
backscatter in the atmosphere and contribute to E+

d ).

To estimate 〈u0w〉0 we note that there are two sources of irradiance incident on the water
surface: direct sunlight and sky light. For simplicity, we assume the sky light is totally
diffuse (sky radiance is assumed independent of viewing direction from the surface). As
in an earlier section, we prefer to work with D0 = 1/〈u0w〉0. If there are N sources of
irradiance incident on the surface (each indexed by “i”), then

D0 =

∑N
i=1(E0d)

i

∑N
i=1(Ed)i

=

∑N
i=1D

i
0(Ed)

i

∑N
i=1(Ed)i

=

∑N
i=1D

i
0(Ed)

i

ETotal
d

=
N∑

i=1

fiD
i
0,

17Remember in this section Pr is the Rayleigh phase function, while in the rest of this chapter it is the
“remaining” part of the phase function after the Dirac delta function has been subtracted for the QSSA.

18Ia(u0) is the same as the quantity p−−a (|u|) in Chapter 9 and Pd in Chapter 2. An example of its
variation with θ0 is shown in Figure 9.15 (with θ0 replacing θex).
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where fi is the fraction of the incident irradiance produced by source i. In our case (two
sources),

D0 = fDS
0 + (1− f)D⊕0 , (6.35)

where the superscripts S and ⊕ refer to the sky and the sun, respectively. Now, DS
0 and

D⊕0 can be determined once-and-for-all using a model for the surface roughness, as DS
0

depends only on the roughness (σ) and D⊕0 depends on θ0 and σ (see Section 6.4.4.2 for
the D0 dependence on θ0 and σ). In the case of DS

0 , Table 6.4 provides the dependence on
σ. Regressions using the values provided in Table 4 yield,

DS
0 ≈ 1.1876 + 0.1505σ + 0.675σ2

TS ≈ 0.933 + 0.04σ,
(6.36)

which can be used for intermediate values of σ. If we could find f in Eq. (6.35) we

Table 6.4: Simulated values of DS
0 and the irradiance transmittance of the wa-

ter surface TS for totally diffuse sky light as a function of the surface roughness
parameter σ.

σ DS
0 TS

0.0 1.188 0.933
0.1 1.208 0.936
0.2 1.246 0.943
0.3 1.293 0.949

would be able to estimate D0, and thus, 〈u0w〉0. The quantity f is the sky fraction of the
irradiance just beneath the interface. Its estimate requires the sky fraction just above the
interface. Call this latter fraction g, i.e., g , ES+

d /E+
d , 1 − g = E⊕+

d /E+
d . Now earlier in

this section we found E+
d could be estimated from

E+
d = u0F0 exp

[
− τr(λ)

x(λ)u0

]
.

But what about E⊕+
d ? This is the solar irradiance modified by the direct transmittance of

the atmosphere: exp[−(τr+τa)/u0]. However, as most photons scattered by the aerosol are
scattered through small angles, and thus may be considered to be still part of the collimated
solar beam, the τa term in the direct transmittance effectively causes the attenuation to
be over estimated and should be ignored. Therefore, in the same spirit as leading to Eq.
(6.34), we ignore the aerosol and take

E⊕+
d = u0F0 exp

[
−τr(λ)

u0

]
,

so

g(λ) = 1− exp

[
−τr(λ)

u0

(
1− 1

x(λ)

)]
. (6.37)
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Note that this will be adequate only for small values of τa. Now,

f =
ESd
Ed

=
ES+
d TS

ES+
d TS + E⊕+

d T⊕
=

gTS

gTS + (1− g)T⊕
, (6.38)

where T⊕ is the irradiance transmittance of the direct solar beam. Recalling that T⊕ ≈
tf (θ0), where tf is the Fresnel reflectance for a flat surface in the absence of the atmosphere,
these relationships along with Tables 6.2 and 6.4 (or the associated regressions) provide
estimates of f and D0.

The validity of these estimates of D0 is tested with Monte Carlo simulations of D0

obtained for θ0 = 0, 13.38◦, 27.12◦, 41.68◦and 58.96◦, λ = 400, 500, and 600 nm, τa(550) =
0, 0.1, and 0.2, and σ = 0, 0.1, 0.2, and 0.3. The results are provided in Figure 6.32. All of
the estimated values are too low, but the average error is only −0.23% and the maximum
error −1.23%. Thus, D0, and the associated 〈u0w〉0 can be very robustly estimated in the
presence of the atmosphere and a wind-roughened surface using Eqs. (6.35)-(6.38).

This completes computation of all of the ingredients required to estimate Lu in the
presence of the atmosphere (and a wind-roughened water surface) using Eq. (6.27) with
u0w replaced by 〈u0w〉0. But how well can we compute Lu/Ed in this more realistic setting?
Figure 6.33 compares exact computations of Lu/Ed with predictions of the QSSA in the
presence of a flat water surface and the atmosphere using Eq. (6.27) with u0w replaced by
〈u0w〉0 and CL = 1. These computations are for a wavelength of 400 nm (for the maximum
atmospheric effect), an aerosol optical thickness of 0.10 at 550 nm, and solar zenith angles of
10◦, 37◦, and 60◦. The particle scattering phase function is either Petzold (Bp = 0.0181) or
modified Petzold with Bp = 0.0020. The average (unsigned) error is 2.25% for Bp = 0.0020
and 7.27 % for Bp = 0.0181.19 Computations for more values of Bp shows that much
of the bias can be removed by replacing CL = 1 by CL = 0.99 + 6.9Bp. The results are
similar to those in Figure 6.26, which has neither a water surface nor an atmosphere. This
suggests that, at least as far as Lu/Ed is concerned, we have adequately accounted for the
presence of the water surface and the atmosphere and, as we can now compute Ed, we can
estimate Lu using these simple relationships between Lu and the IOPs.

What about the effects of the environment on Kd(0)? Using the same simulations
including the atmosphere as in the discussion of D0 above, we computed the value of
Kd(0) and plotted the results in a manner similar to Figure 6.29. This is provided in
Figure 6.34 in which u0w from Figure 6.29 is replaced by 〈u0w〉0. The line on the figure is
Eq. (6.28) with the same values of CKi as in Figure 6.29, i.e., the linear fit. The average
(unsigned) error in the linear expansion is 2.31% and the maximum difference is 3.69%.

19We also examined the quality of the QSSA if u0w is not replaced by 〈u0w〉0. On the scale of Figure 6.33
the results are almost indistinguishable; however they are slightly better with the average error of 1.57%
for Bp = 0.0020 and 6.25 % for Bp = 0.0181.
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(If a new linear regression is carried out the result is CK1 = 1.0139, for which the average
error is reduced to 0.44% and the maximum difference reduced to 2.36%.) Thus, it would
seem that the main effect of the environmental setting on the QSSA expression for Kd(0)
is the replacement of u0w with 〈u0w〉0.

6.4.4.5 Summary of Environmental Effects on QSSA

We have shown that factors affecting the radiative transfer in the ocean-atmosphere system,
but were not included in the original QSSA, namely a flat or rough refracting water surface
and an atmosphere above the water, can be handled with the simple replacement of u0

by 〈u0w〉0. When this is done, the accuracy of the QSSA is virtually the same as in their
absence. If needed, the computation of Ed from E+

d can be effected with high accuracy as
well. These conclusions apply to the QSSA-computation of both Lu/Ed and Kd(0). For
convenience, we provide the complete set of equations necessary to effect the computation
of Lu/Ed and Lu in Figure 6.35, with CL = 1. (The estimate can be improved by using
CL = 0.99 + 6.9Bp.)

6.4.5 Depth-Averaged Kd(z)

One of the important uses of the QSSA is the estimate of the IOP [1− ω0(1− Pru)] from
Kd. As we see from Figure 6.15, Pru is small compared to unity, so 〈u0w〉0Kd ≈ c(1−ω0) =
c− b = a, and the estimated IOP is close to the absorption coefficient. However, although
we have the very accurate formula (Eq. (6.29)) relating Kd(z), determined just beneath
the surface (z = 0), to the IOPs, it is often useless in practice because Kd(0) is nearly
impossible to determine experimentally due to the presence of strong fluctuations in Ed(z)
resulting from the motion of the wind-roughened surface. Fortunately, these fluctuations
decrease rapidly with increasing z. We have seen earlier that Ed(0), i.e., just beneath the
surface, can be accurately estimated from E+

d (0), the downwelling irradiance just above
the surface (Eq. (6.30)). So, given experimental measurement of E+

d (0), it is possible to
compute an average Kd between the surface and some depth z′, where the wave-induced
irradiance fluctuations are unimportant, i.e.,

〈Kd(0→ z′)〉 , −`n
[
Ed(z

′)

Ed(0))

]
=

1

z′

∫ z′

0
Kd(z) dz.

Can this be related in a simple manner to the IOPs? The obvious choice for such a
relationship would be to try to relate 〈Kd(0 → z′)〉 to ω0(1 − Pru) in the manner of
Eq. (6.28). Figure 6.36 compares computations of 〈Kd(0 → z′)〉, for z′ just beneath the
surface and z′ equal to the depth at which Ed falls to exp(−3) of its value just beneath
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the surface, to ω0(1− Pru) for a water body with a flat refracting interface in the absence
of the atmosphere. Clearly, the strong linear relationship between Kd(0) and ω0(1− Pru)
still holds for 〈Kd(0 → z′)〉, although the slope of the relationship is not the same. Thus,
we seek the least-squares fit of the computations to determine 〈CK〉X in

u0w
〈Kd〉X
c

= 1− 〈CK〉Xω0(1− Pru), (6.39)

where 〈Kd(0→ z′)〉 , 〈Kd〉X and z′ is the depth at which Ed(z
′)/Ed(0) = exp(−X). Table

6.5 provides 〈CK〉X for various values of X, along with the resulting average (unsigned)
and maximum % errors in 〈Kd〉X . In all cases, when X ≥ 1 the maximum error is for
ω0 = 0.9. In general the departure of the computed 〈Kd〉X from its true value increases
with increasing ω0 and with increasing X. However, one should note that (for a given value
of c) larger values of ω0 result in smaller values of Kd(z), i.e., the irradiance decays at a
smaller rate. Thus, in field applications one could expect the use a smaller value of X for
larger ω0’s to avoid the surface-induced fluctuations. For example, for irradiance data off
Hawaii (Figure 6.1) if one assumes that the wave-induced fluctuations are negligible below
z = 20 m, then one could take X ∼ 0.5 in the blue, ∼ 1.5 near 580 nm, and ∼ 4 near 600
nm, to avoid such fluctuations. In this case, to retrieve the IOPs — cω0(1−Pru) = b(1−Pru)
— from the irradiance measurements using Eq. (6.39) the more-accurate formulas would

Table 6.5: Value of 〈CK〉X for various values of X, and the average (unsigned) and
maximum error in 〈Kd〉X determined using Eq. (6.39).

X 〈CK〉X Ave (%) Max (%)

0 0.9892 0.25 0.95
1 0.9639 0.44 4.04
2 0.9519 1.07 9.60
3 0.9447 1.72 14.22
4 0.9402 2.29 17.57

be used with the smaller values of Kd and the less-accurate for the larger values of Kd, but
the less-accurate formulas are actually quite accurate for larger values of Kd.

These formulas result from a simple extension of QSSAK at the surface to the water
column. However, the surface was flat and there was no atmosphere. In either case,
the irradiance entering the water will be propagating in a range of directions around the
direction specified by θ0w. Thus the generalization of Eq. (6.39) to more realistic settings
is

〈u0w〉0
〈Kd〉X
c

= 1− 〈CK〉Xω0(1− Pru), (6.40)

where Pru is evaluated using 〈u0w〉0 in place of u0w. We extended the radiative transfer
computations of Kd(0 → z′) used in computing Table 6.5 to three other situations: (1)
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a rough surface characterized by the Cox-Munk omnidirectional wind with σ = 0.2, but
no atmosphere; (2) a flat surface but with an atmosphere characteristic of a maritime
atmosphere at λ = 400 nm; and (3) the combination of (1) and (2). In each set of
simulations we used all combinations of ω0 = 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, and 0.9,
and θ0w = 0, 10◦, 20◦, 30◦, and 40◦. In the case of the atmosphere, the aerosol optical depth
is 0.1 at 550 nm which is typical; however, at the wavelength used in these calculations (400
nm) the sky radiance is dominated by Rayleigh scattering. These simulations are pooled

Table 6.6: Value of 〈CK〉X for various values of X, and the average (unsigned) and
maximum error in 〈Kd〉X determined using Eq. (6.40).

X 〈CK〉X Ave (%) Max (%)

0 0.9858 0.65 3.73
1 0.9655 0.49 4.48
2 0.9550 1.16 9.56
3 0.9491 1.80 13.38
4 0.9455 2.34 16.02

with those used for Table 6.5 and again used with Eq. (6.40) to determine 〈CK〉X via least-
squares analysis. The results of the analysis are presented in Table 6.6. Comparison of
these results with those in Table 6.5 suggests that the presence of the atmosphere and/or
surface waves does not significantly affect the accuracy of Eq. (6.39) as long as 〈u0w〉0
replaces u0w.

How does the inclusion of Rayleigh scattering by the water itself influence these results?
We examined full Monte Carlo simulations yielding 1 − 〈u0w〉0〈Kd〉X/c as a function of
ω0(1−Pru) for media in which the particle phase function was either the Petzold Phase-T
(Bp = 0.0181) or the modified Petzold (Bp = 0.0020). In these computations θ0 = 10◦,
37◦and 60◦, with ω0 = 0.1, 0.2, 0.4, 05, 0.6, 0.7, 0.8, 0.85, and 0.9. The total backscattering
probability varied from 0.0030 to 0.12. As before, the atmosphere was maritime with an
aerosol optical thickness of 0.1 at 550 nm. The water surface was flat and the computations
were carried out at a wavelength of 400 nm. The results are displayed on Figure 6.37, and
show that for the smaller Bp the results fit Eq. (6.40) considerably better than those for
the larger, which show systematic departures from 〈CK〉X = 1. Table 6.7 provides the
linear-regression estimate of 〈CK〉X . Note the closeness of 〈CK〉X to unity and the near
independence on X for Bp = 0.0020, and the closeness of the 〈CK〉X values for Bp = 0.0181
to those in Table 6.6, for which there is no contribution to scattering by the water itself.
The average (absolute) error in 1 − 〈u0w〉0〈Kd〉X/c for these regressions is of the order of
1.5–2.5% with the maximum error ∼ 10%. The errors are of similar magnitude for both
values of Bp. These examples again underscore the fact that the QSSA becomes more
accurate as the phase function becomes more peaked in the forward direction.



470 CHAPTER 6. APPARENT OPTICAL PROPERTIES (AOPS)

6.4.6 Angular Distribution of Lu (BRDF Effect)

The discussion of upwelling radiance thus far has been limited to that propagating toward
the zenith. However, in a general remote sensing setting, the sensor views the radiance
exiting the water propagating toward the sensor in almost any conceivable viewing direction
(θv, φv) except those close to the position of specular reflection of direct solar radiation
(i.e., in the Sun glitter pattern, described in Chapter 7). Because of internal reflection,

Table 6.7: Value of 〈CK〉X for various values of X when water scattering is added
to particle scattering. Bp is the particle backscattering coefficient. As in Table
6.6, “Ave” and “Max” are the average (unsigned) and maximum error in 〈Kd〉X
determined using Eq. (6.40).

X Bp = 0.0020 Ave (%) Max(%) Bp = 0.0181 Ave (%) Max(%)

0 1.0059 1.88 11.28 0.9778 1.79 8.33
1 1.0029 1.94 11.88 0.9521 1.82 10.62
2 1.0059 1.36 9.02 0.9449 1.69 12.77
3 1.0083 1.06 7.16 0.9420 1.71 14.38
4 1.0103 1.03 5.95 0.9404 1.97 15.55

only Lu(0, θvw, φvw), where sin θv = mw sin θvw and φv = φvw, with 0 ≤ θvw ≤ 48.6◦ (for a
flat water surface) can be observed from above the water. (Note: θv and θvw are measured
relative to the upward normal to the water surface.) Thus, rather than Lu(0, 0, φvw)/Ed(0)
in terms of the IOPs, in general we need the full radiance distribution Lu(0, θvw, φvw)/Ed(0).
The variation of Lu with θvw and φvw is called the “BRDF Effect.”20 The success of
Eq. (6.27) in relating Lu(0, 0, φvw)/Ed(0) to the IOPs, and its extension to the case of a
refracting interface, suggests its utility could be extended to the full radiance distribution
by replacing QSSA′L(u0) by

QSSA′L(u0w, µvw, φvw) ,
ω0

4π[1− ω0(1−B)]

Pr(u0w → −µvw, φ0w → φvw)

u0w + µvw
, (6.41)

where u0w = cos θ0w and µvw = cos θvw.

Testing this relationship over the full range of parameter variation is well beyond the
scope of this work; however, we have already provided an example that sheds some light
on the accuracy that can be expected using Eq. (6.41) to determine the dependence of
Lu on viewing angle. In Figure 6.22 we provided the normalized Lu/Ed (nadir viewing)
as a function of the solar zenith angle (for the case of no atmosphere and water refractive
index of unity). Reciprocity can be used to relate this to the angular distribution of Lu
when the sun is at the zenith. Let Lu(ξ̂1 → ξ̂2) be the radiance leaving the medium in a

20See Chapter 2 for a discussion of the BRDF.



6.4. RELATIONSHIPS BETWEEN AOPS AND IOPS 471

direction ξ̂2 when the surface is illuminated by the solar beam (in a black sky) propagating
in a direction ξ̂1, and Ed(ξ̂1) be the irradiance into the medium (by the beam) under the
same circumstances. Then reciprocity requires

Lu(ξ̂1 → ξ̂2)

Ed(ξ̂1)
=
Lu(−ξ̂2 → −ξ̂1)

Ed(−ξ̂2)
.

It is easy to verify that Eq. (6.41) satisfies this relationship by simply interchanging the
symbols u0w ↔ µ0v and φ0w ↔ −φ0v.

21 Since Ed(ξ̂a) = |ξ̂a • n̂|F0, where n̂ is the surface
normal (directed out of the medium),

Lu(ξ̂1 → ξ̂2)

|ξ̂1 • n̂|
=
Lu(−ξ̂2 → −ξ̂1)

|ξ̂2 • n̂|
.

So, if ξ̂2 is in the direction of the zenith (the direction for the computations in Figure 6.22),
i.e., −ξ̂2 = n̂,

Lu(ξ̂1 → n̂)

|ξ̂1 • n̂|
= Lu(−n̂→ −ξ̂1).

The radiance on the left-hand-side of this equation is that which is plotted in Figure 6.22,
but in the figure it is normalized by dividing by Lu(−n̂→ n̂). Therefore,

Lu(−n̂→ −ξ̂1)

Lu(−n̂→ n̂)
=

1

|ξ̂1 • n̂|

[
Lu(ξ̂1 → n̂)

Lu(−n̂→ n̂)

]
.

The term in the square brackets is the quantity actually plotted in Figure 6.22. This figure
can therefore be converted to a plot to the normalized angular distribution of the radiance
exiting the medium when the sun is at the zenith (solar radiation propagating in the di-
rection −n̂), simply by replacing the θ0 by the viewing angle (θv) and dividing each point
by |ξ̂1 • n̂| = cos θv = µ. The result is provided in Figure 6.38. It suggests that Eq. (6.41)
will reproduce the variation of Lu/Ed with viewing angle – sun angle variations to with
in ∼20% for the Petzold phase function and ∼10% for the Petzmas phase function.The
variation prediction is best for smaller values of ω0, but the performance of Eq. (6.41) is
surprisingly good of larger ω0 values. Since scattering is a diffusive process, the more mul-
tiple scattering the less the shape of the phase function in the backward directions affects
the shape of the radiance distribution. The QSSA-radiance distribution always exactly
reflects the actual phase function (Eq. (6.41)), so it will become progressively less accurate
for increasing multiple scattering. Because the shape of the Petzmas phase function is
thought to be more representative of the scattering by ocean particles for Θ >∼ 90◦, and
when the scattering by water is added to that of particles the variation in the particle
phase function at large Θ is suppressed in the total phase function (Figure 6.24), it is to be

21Note that Pr depends on φ0w and φ0v only through |φ0w − φ0v|.
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expected that Eq. (6.41) will reproduce actual variations Lu/Ed even better than shown
in Figure 6.38.

For another example of the ability of Eq. (6.41) to reproduce the angular variation in
Lu/Ed we have redrawn Figure 6.26 (left panel) stratifying the results according to θ0.
The redrawn graphs are shown in Figure 6.39. Some sets of three points are connected
by horizontal lines. These points have the same IOPs but different values of θ0. The
larger values of Lu/Ed correspond to larger values of ω0 and B. One sees the tendency of
connected points (which are for larger values of ω0 and B) to have roughly the same value
of Lu/Ed but different values of QSSA′L. In contrast, for smaller Lu/Ed (smaller ω0) the
tendency of the values is to fall along the one-to-one line, and QSSA predicts the correct
angular distribution of radiance.22

6.4.7 Degree of Polarization of Lu

Nearly all of the radiative transfer simulations used in this chapter were carried out using
a code that includes the polarization of the radiant light field. However, since most ocean
color sensors do not measure polarization (although they may in the future) we have not
focussed attention on this aspect of the upwelling radiance. However, for completeness we
provide an example of the degree of polarization (DOP) and how it is influenced by multiple
scattering. Figure 6.40 shows the DOP of Lu(0, θvw, φvw) for water body with ω0 = 0.2,
i.e., near the single scattering limit, and one with significant multiple scattering: ω0 = 0.9.
In these simulations θ0 = 40◦, the water surface was flat, and the atmosphere included
Rayleigh scattering (∼500 nm) but was aerosol free. The normalized Voss-Fry scattering
phase Mueller matrix (Chapter 5) was used along with the Petzold Phase-T phase function
to describe the polarized scattering. The general features of the Lu DOP can be understood
from the DOP associated with the Voss-Fry phase matrix, i.e., DOP small at scattering
angles near Θ = 0 and 180◦, and large at Θ near 90◦ (similar to Rayleigh scattering).
The figure shows as expected that for small ω0 the DOP is a maximum near where the
scattering angle Θ (in single scattering) would be 90◦, e.g., for θ0 = 40◦, θ0w ≈ 30◦, so
at φvw = 0 the maximum DOP is at θvw ≈ 60◦. As φvw increases to 90◦, the maximum
DOP shifts to θvw ∼ 90◦ preserving Θ ≈ 90◦. For φvw > 90◦, the scattering angle Θ > 90◦

reaching 180◦ at θvw = 30◦ with φvw = 180◦, where the DOP is very low. For the large
value of ω0 the DOP is decreased in all directions by multiple scattering; however, the
general features (maxima and minima) remain in roughly the same angular positions. The
maximum DOP decreases from about 0.6 to 0.4 as ω0 increases from 0.2 to 0.9; however,
viewed from above the surface the maxima would not be observed in the positions shown

22Remember that, although the figures are for nadir radiance at different sun angles, the results can be
directly applicable to the distribution of upward radiance with viewing angle when the sun is at the zenith.
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in the figure because radiance from these directions would not escape the water. This
example provides, at least, some idea of the magnitude of the DOP one might expect in
natural waters. This will be of interest when we discuss the vicarious calibration of ocean
color sensors.

6.4.8 Summary of QSSA

The AOPs are related to the IOPs through the radiative transfer equation. In general this
equation can be solved only numerically, except within the approximation that photons
scatter only once: the single scattering approximation (SSA). The QSSA is an approxima-
tion derived by replacing the forward portions of the volume scattering function by a Dirac
delta function. Its utility is that it can provide analytical expressions for the AOPs that are
similar to those derived from the SSA, but in addition it can account (approximately) for
the effects of multiple scattering. In fact, we have shown earlier that the QSSA-estimate
of R or Lu/Ed can be reasonably accurate for ω0 as high as 0.7–0.8, and the average er-
ror in the QSSA-estimated Lu/Ed can be as low as a few % over a wide range of IOPs.
Noting that in the QSSA, the average number of scatterings23 in a homogeneous medium
is 1/(1 − ω0F ), we see that the QSSA can account for the effects of 3–5, or even more,
scatterings quite effectively. It also can provide a good approximation to the shape of the
radiance distribution just beneath the sea surface (as long as ω0 <∼ 0.5) which directly pro-
vides the water-leaving radiance distribution. In addition, it can be modified in a relatively
simple manner to account for environmental factors such as a rough water surface and the
presence of an atmosphere above the water surface, e.g., through u0 → u0w → 〈u0w〉0, etc.
We shall see in the next section that, because it identified the relevant parameters that
determine the AOPs, i.e., a, bb, and Pr for scattering angles greater than 50◦, the QSSA
can lead to further analytical/empirical models that produce the AOPs even better.

6.4.9 Alternate Formulations of AOP-IOP Relationships

The QSSA approach to the relationships between AOPs and IOPs has proven reasonably
successful in estimating the AOPs of interest in remote sensing given the IOPs (Figures
6.34-6.37), and also in isolating the relevant parameters. Is it possible to improve these
estimates short of actually solving the radiative transfer equation? In studies in the early
1970’s relating AOPs to IOPs it was found that both the reflectance R(0) and Lu/Ed could

23Recall from Chapter 2 that the mean number of scatterings 〈n〉 for Lu is given by 〈n〉 = (ω0/L)(dL/dω0).
Application of this to Eq. (6.27) yields the stated result.
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be expanded in a power series in the parameter bb/(a+ bb) or bb/a, i.e.,

R(0) =
3∑

n=1

rn

[
bb

a+ bb

]n
=

3∑

n=1

rnG
n (6.42)

and
Lu
Ed

=
2∑

n=1

gn

[
bb

a+ bb

]n
=

2∑

n=1

gnG
n (6.43)

and Kd(0) could be expanded in a series

Kd(0)

D0
=

3∑

n=1

kn [a+ bb]
n or

Kd(0)

cD0
=

3∑

n=1

k′n [1− ω0 F ]n , (6.44)

where F = 1−B.24 Note that the solar zenith angle only appears in the equation for Kd,
i.e., in D0 and does not occur in the other two equations at all. An example of the fits
of exact computations to relationships such as Eqs. (6.42) to (6.44) is provided in Figure
6.41. (Note: the water surface and the atmosphere at 400 nm, as described in Section
6.4.4.3, are included in all the results presented in this section.) We will now combine
these relationships with the QSSA to develop better AOP-IOP relationships.

6.4.9.1 Hybrid Model for Lu/Ed

Because it is central to remote sensing, we will discuss an alternate formulation for Lu/Ed
first. Figure 6.39 shows that for larger ω0 and/or B, the exact value of Lu/Ed does not
depend much on u0 (although the QSSA value does); however, for small ω0, the dependence
of Lu/Ed on u0 can be significant. This suggests the possibility of developing a more
accurate hybrid model for Lu/Ed as a function of the IOPs: for small ω0 use the QSSA,
and for large ω0 use an expansion similar to Eq. (6.43). We have tried this using ω0 = 0.7
as a cutoff, i.e., for ω0 < 0.7 we use the standard QSSA, and for ω0 ≥ 0.7 we use Eq.
(6.43):

Lu
Ed

= QSSA′L; ω0 < 0.7,

Lu
Ed

= g1G+ g2G
2; ω0 ≥ 0.7.

(6.45)

Note that for the QSSA portion of Eqs. (6.45), CL = 1, i.e., there is no fitting of the
model to the computations for ω0 ≤ 0.7. The performance of this hybrid model is provided
in Figure 6.42 for the same cases as in Figure 6.33. For this figure, g1 = 0.1054 and

24Indeed, these parameterizations were developed based on guidance provided by the QSSA.
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g2 = 0.0057. One should note the considerable improvement over the QSSA alone afforded
by this hybrid model. In these cases, the average (absolute) error in the hybrid model was
3.64% for Bp = 0.0181 and 3.00% for Bp = 0.0020, i.e., it is more uniformly distributed with
respect to Bp than the QSSA alone. This hybrid model has the additional advantage of
better predicting the angular distribution of the upwelling radiance, i.e., strong dependence
on angle for small ω0 related to the phase function and little dependence at large ω0.

6.4.9.2 Kd

We now turn to Kd. In this case, most of the dependence on the solar zenith angle is
accounted for by 〈u0w〉0 = 1/D0 in the QSSA, with the dependence on Pru being of minor.
This is why Eq. (6.44) was successful in predicting Kd as a function of AOPs. When
Pru(u0, φ0) is replaced by B in Eqs. (6.29) or (6.39) as suggested by Eq. (6.44), we have

〈u0w〉0
〈Kd〉X
c

= 1− 〈C ′K〉Xω0(1−B) = 1− 〈C ′K〉Xω0F. (6.46)

Figure 6.43 shows how well this relationship is satisfied for the same computations as in
Figure 6.37, and Table 6.8 provides the fit to Eq. (6.46). It is interesting to note that the

Table 6.8: Value of 〈C ′K〉X in Eq. (6.46) for various values of X when water scat-
tering is added to particle scattering. Bp is the particle backscattering coefficient.
As in Table 6.6, “Ave” and “Max” are the average (unsigned) and maximum error
in 〈Kd〉X determined using Eq. (6.46).

X Bp = 0.0020 Ave (%) Max(%) Bp = 0.0181 Ave (%) Max(%)

0 0.9869 1.46 6.15 0.9747 1.76 8.43
1 0.9838 1.80 9.24 0.9490 1.76 8.99
2 0.9865 1.24 6.58 0.9417 1.59 11.26
3 0.9889 0.89 4.67 0.9388 1.54 12.88
4 0.9908 0.76 3.50 0.9373 1.80 13.99

fits are similar to, and of similar quality to, those shown in Figure 6.37 and Table 6.7.

6.4.9.3 R(0)

For R(0) hybrid models do not seem to be an improvement over the QSSA, however, one
is tempted here to try to make similar expansions similar to Eq. (6.42) but with QSSA′R,
i.e.,

R(0) = CR1QSSA
′
R(u0w) + C ′R2[QSSA′R(u0w)]2 + C ′R3[QSSA′R(u0w)]3, (6.47)
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where

QSSA′R(u0w) =
ω0B

1− ω0F

IR(u0w)

B
=

ω0B

1− ω0F
I ′R(u0w) =

bb
a+ bb

I ′R(u0w) = GI ′R(u0w).

(6.48)
To facilitate using Eq. (6.48) it is useful to reformulate I ′R. Recall that

I ′R =
I ′Rpbbp + I ′Rwbbw

bbp + bbw
, (6.49)

where the subscripts “w” and “p” stand for water and particles, respectively. Figure
6.18 provides I ′Rp and I ′Rw as a function of the θ0 (for the case mw = 1.333) when the
particle phase function is either Petzold Phase-T, modified Petzold, or Petzmas. However,
a simplification appears if the graph is redrawn using D0 = 1/u0w as the independent
variable. This is provided in Figure 6.44, which shows that both I ′Rp and I ′Rw are nearly
linear functions of D0. They can be accurately represented by

I ′Rw = +0.2098 + 0.1229D0,

I ′Rp = −0.1988 + 0.4790D0.
(6.50)

Figure 6.45 provides the fit for CR1 = 1.029, C ′R2 = 1.2526 and C ′R3 = −0.2304 to the same
simulations presented in Figure 6.26, but including the water surface and the atmosphere
as in Figures 6.39, 6.41, and 6.42. In this case the results for Bp = 0.0020 and 0.0181
were pooled to derive the expansion coefficients. The average (absolute) error in the fit
is 3.68%; however, as can be seen in the figure, the maximum error can be large, ∼ 28%
in this case. The maximum error here is always for B ≈ Bp for the Petzold (or Petzmas)
phase function. For a particle phase function with less forward scattering than Petzold, we
can expect the error in the modified QSSA to be even larger.

6.4.9.4 An Important Observation

These alternate formulations of the AOPs as a function of the IOPs, and the nearness of
〈CK〉X in Eq. (6.46) to unity, i.e.,

〈u0w〉0〈Kd〉X ≈ c(1− ω0F ) = a+ bb,

suggest that the AOP’s Kd, Lu/Ed and R depend principally on a and bb and in only a
minor way on b (or c). Thus, in strongly forward-scattering media such as natural waters,
the IOPs b and c cannot be derived from measurements of the AOPs. In contrast, a and
bb can be estimated from AOP measurements. Such estimation is the subject of Appendix
1 to this chapter (Section 6.6).
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6.4.10 The Penetration Depth

As we have mentioned earlier, from a remote sensing perspective, the quantity of most
interest is Lu(z = 0, µ, φ), as it provides the water’s contribution to the radiance measured
at the sensor. It is natural to want to understand the range of depths over which photons
contributing to Lu are backscattered, i.e., how deeply can the remote sensor “see” into
the water? If the IOPs of the water body are independent of depth over this depth range,
then the water body can be considered to be a homogeneous medium and the formulae
developed in this chapter are applicable. In contrast, if there is significant vertical structure
in the IOPs, the formulae would seem to be of little value (however, see the next section).
So, in a homogeneous medium, what is the depth over which Lu(z = 0, µ, φ) is determined?
We will use the QSSA to estimate this depth.

Equations (6.11) and (6.12) provide the single-scattered radiance for a layer of optical
thickness τ1. In particular, for τ = 0 and L0(u′, φ′) = F0δ(u

′ − u0)δ(φ′ − φ0),

Lu(τ = 0, u, φ, τ1, u0, φ0) =
ω0F0u0

4π

P (u0 → u, φ0 → φ)

u0 − u

{
1− exp

[
−τ1

(
1

u0
− 1

u

)]}
,

where the full dependence of Lu on the angles and τ1 is provided in the argument list. The
term in front of the curly brackets is just Lu(τ = 0, u, φ, τ1 = ∞, u0, φ0). Replacing u by
−µ, we have

Lu(τ = 0, µ, φ, τ1, u0, φ0)

Lu(τ = 0, µ, φ,∞, u0, φ0)
= 1− exp

[
−τ1

(
1

u0
+

1

µ

)]
.

Now to make the transition to QSSA, we replace τ1 by

τ ′1 = τ1

(
1− ω0Aδ

4π

)
→ cz1[1− ω0(1−B′(u0))]

Therefore, within the context of the QSSA,

Lu(τ = 0, µ, φ, τ1, u0, φ0)

Lu(τ = 0, µ, φ,∞, u0, φ0)
= 1− exp

[
−
{
c[1− ω0(1−B′(u0))]

}( 1

u0
+

1

µ

)
z1

]
. (6.51)

The quantity in the curly brackets is recognized as u0Ku(z) = u0KL(z) in the QSSA (Eq.
(6.21)); however, we note that the QSSA approximations to Ku and KL are not as accurate
as those for the other AOPs, e.g., it gives the wrong relationship between the magnitudes
of Kd(0) and Ku(0). In any event, according to the QSSA,

Lu(τ = 0, µ, φ, τ1, u0, φ0)

Lu(τ = 0, µ, φ,∞, u0, φ0)
= 1− exp

[
−KLz1

(
1 +

u0

µ

)]
. (6.52)
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There is another way to derive a formula similar to Eq. (6.52). Consider a semi-infinite
homogeneous medium, The radiance reflected from such a medium is

Lu(τ = 0, µ, φ,∞, u0, φ0) =
R

Q
Ed(u0) =

R

Q
F0u0 (6.53)

If a thin layer of thickness z1 with the same IOPs is added to the top of this medium, then
the total exiting radiance is

(Lu)Total = (Lu)Layer + (Lu)Semi−infinite,

where the first term is due to the layer and the second to the medium below it. It is easy
to approximate the second term: it is just Eq. (6.53) with Ed(u0) reduced by a factor
exp[−Kd(u0)z1] and then Lu reduced by an additional factor exp[−KL(µ)z1]. Thus,

(Lu)Total = (Lu)Layer +
R

Q
F0u0 exp[−z1(Kd(u0) +KL(µ))].

But, the addition of this layer simply redefines the zero of depth, it doesn’t change the
value of the reflected radiance (i.e., (Lu)Total is still (R/Q)F0u0). Thus,25

(Lu(z = 0, µ, φ, z1, u0, φ0))Layer = Lu(z = 0, µ, φ,∞, u0, φ0)

× (1− exp[−z1(Kd(u0) +KL(µ))])
(6.54)

Note the similarity to Eq. (6.52). This equation is not exact, but it is reasonably accurate
for small z1. The main approximation in this equation is that the radiance entering the
semi-infinite layer after the thin layer is added is still in the form of a collimated beam,
which of course is not the case, but for sufficiently small z1 it is a good approximation. It
has also been assumed that Kd and KL are constant within the layer which, as shown in
Figures 6.9 and 6.13, is not valid. Thus, it is more appropriate that Kd and KL be replaced
by 〈Kd〉 and 〈KL〉 with the averages taken over 0→ z1.

To try to understand the efficacy of these formulae, we computed Lu(z = 0, µ, φ, z1, u0, φ0)
for a layer of thickness z1 and IOPs identical to those in Figure 6.9 (flat interface, no at-
mosphere) for θ0 = 0 and 60◦, λ = 440 nm and 550 nm, and formed the ratio

Lu(z = 0, µ, φ, z1, u0, φ0)

Lu(z = 0, µ, φ,∞, u0, φ0)

for µ = 1. We have no accurate estimate for KL from the QSSA; however, it is computed
in the simulation and therefore available. Since the K’s are depth dependent, we use
their values averaged over z1. Figure 6.46 shows the ratio Lu(z1)/Lu(∞) as a function of
〈Kd +KL〉z1 for the cases considered, along with the prediction of Eq. (6.54) with the K’s

25This is an example of the idea of invariant imbedding discussed in Chapter 2, Section 2.7.4.
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Table 6.9: Values of 〈Kd(z)〉 (in m−1) near 〈Kd(z)〉z1 = 1 for the simulation
parameters used in Figures 6.46 and 6.47. The value of 1/〈Kd(z)〉 (in m) is provided
in parenthesis.

θ0 λ = 440 nm λ = 550 nm

0 0.027 (37) 0.078 (13)
60◦ 0.036 (28) 0.100 (10)

replaced by their averages. Note that Eq. (6.54) follows the exact computation reasonably
well for θ0 = 0, but overestimates Lu(z1)/Lu(∞) for θ0 = 60◦. Also, when 〈Kd+KL〉z1 = 2,
Lu(z1) has reached between 79 and 85% of its value for an infinitely deep water body, and
between 86 and 91% for 〈Kd + KL〉z1 = 2.5. Thus, it is reasonable to define the remote
sensing penetration depth (zPd) as the depth zPd = 2/〈Kd+KL〉 to 2.5/〈Kd+KL〉. This is
the depth over which 85-90% of the remote sensing signal (Lu) originates. Unfortunately,
the QSSA performs poorly in estimating KL; however, accurate estimates of Kd(0) and
〈Kd〉 are available. Figure 6.13 suggests that KL(z) ≈ Kd(z) and 〈KL(z)〉 ≈ 〈Kd(z)〉, so it
is reasonable to investigate the accuracy of

Lu(z = 0, µ, φ, z1, u0, φ0)

Lu(z = 0, µ, φ,∞, u0, φ0)
= 1− exp[−2〈Kd(u0)〉z1] (6.55)

This is provided in Figure 6.47. There is virtually no difference between this equation and
Eq. (6.54), and an equally good estimate of (zPd) is

zPd =
1

〈Kd(z)〉
to

1.25

〈Kd(z)〉
(6.56)

For the cases considered, 〈Kd(z)〉 at depths near 〈Kd(z)〉z1 ≈ 1 are given in Table 6.9 as
can be roughly verified by examination of Figure 6.9. Note that at 440 nm with θ0 = 60◦

only about 30% of Lu is reflected from the depth over which 80% is reflected at 550 nm.
At θ0 = 0 the corresponding numbers are 40 and 80%.

As a “real-world” example of penetration depths, Figure 6.48 provides an estimate of
the penetration depth for the data presented in Figures 6.5 and 6.6 for Case 1 waters. Note
that in the blue, zPd varies from 2 to 50 m for these data. Also note the strong dependence
on wavelength with zPd(440) usually, but not always, much greater than zPd(550). In the
open oceans, the water is usually well mixed near the surface down to some depth (the
top of the thermocline) due to solar heating and wind-induced mixing. This mixed layer
can extend from a few meters to over 100 m, depending on geophysical factors. In the
mixed layer the IOPs are nearly independent of depth and the layer can be considered
optically homogeneous. Below the mixed layer the IOPs can in some cases depend strongly
on depth. It is immediately apparent that for the water to be considered homogeneous
throughout the spectrum for the purposes of remote sensing, the mixed layer must extend



480 CHAPTER 6. APPARENT OPTICAL PROPERTIES (AOPS)

beyond the depth of the greatest zPd. Interpretation of Lu in terms of the IOPs of the
medium becomes an almost intractable problem if the mixed layer depth is < the maximum
zPd. A common algorithm in remote sensing relates Lu(440)/Lu(550) to the concentration
of Chlorophyll a in the water column. Such an algorithm could be clearly frustrated at
relative low Chlorophyll concentrations were the mixed layer depth less than about 15 m
and the water strongly stratified below the mixed layer. Finally, if asked how deep the
remote sensor can “see” into the water, one answer is about 50 m in the blue in clear ocean
water.

6.4.11 QSSA Estimate of the Influence of Vertical Stratification

The IOPs of most water bodies are stratified in the vertical (below the mixed layer); how-
ever, our discussion thus far has been limited to media with depth-independent IOPs. Here
we briefly apply the QSSA to a vertically stratified medium. From Chapter 2 (Appendix
1), the first-order radiative transfer equation for L(1) in a medium of optical depth τ1 is
given by

u
∂

∂τ
L(0)(τ, u, φ) + L(0)(τ, u, φ) = 0

u
∂

∂τ
L(1)(τ, u, φ) + L(1)(τ, u, φ, )

=
1

4π

∫ 1

−1
du′
∫ 2π

0
dφ′ ω0(τ)P (τ, u′ → u, φ′ → φ)L(0)(τ, u′, φ′)

with the boundary conditions

L(0)(0, u, φ) = L(0, u, φ) u > 0,

L(0)(τ1, u, φ) = 0 u < 0,

and

L(1)(0, u, φ) = 0, u > 0,

L(1)(τ1, u, φ) = 0, u < 0.

Here, the dependence of the IOPs on depth is explicitly given by the τ in the argument list
of ω0 and P . The solution for L(0) is L(0) = L(0, u, φ) exp(−τ/µ). If L(0, u, φ) is a beam
source directed toward the (u0, φ0) direction, i.e., L(0, u, φ) = F0δ(u− u0)δ(φ− φ0), then
L(1) satisfies

u
∂

∂τ
L(1)(τ, u, φ) + L(1)(τ, u, φ, ) =

ω0(τ)F0

4π
P (τ, u0 → u, φ0 → φ) exp(−τ/u0).
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To solve this, we first simplify the notation and consider a single direction (u, φ). Then

u
dL(1)

dτ
+ L(1) = F0A(τ) exp(−τ/u0),

where A(τ) = ω0(τ)P (τ, u0 → u, φ0 → φ)/4π. Multiplying this by exp(τ/u) and simplyfing
the left-hand-side yields

u
d

dτ

(
L(1) exp

[τ
u

])
= F0A(τ) exp

[
τ

(
1

u
− 1

u0

)]
,

which can be immediately integrated between two depths τa and τb:

L(1)(τb) exp
[τb
u

]
− L(1)(τa) exp

[τa
u

]
=

1

u

∫ τb

τa

F0A(τ) exp

[
τ

(
1

u
− 1

u0

)]
dτ.

Now, if τb =∞, we have for the upward radiance (u = −µ),

L(1)(τa, µ, φ) =
exp[τa/µ]

µ

∫ ∞

τa

F0A(τ) exp

[
−τ
(

1

u0
+

1

µ

)]
dτ.

Furthermore, if A(τ) = A, independent of τ (i.e., a homogeneous medium), the integration
results in

L(1)(τa, µ, φ) =
u0F0 exp(−τa/u0)

u0 + µ
A , L

(1)
H (τa, µ, φ),

where L
(1)
H (τa, µ, φ) is the first-order solution for the upward radiance in a homogeneous

medium, i.e., the subscript “H” stands for “homogeneous.” Recognizing that to this order,

E
(1)
d (τa) = u0F0 exp(−τa/u0),

we can write the radiance reflectance

R
(1)
LH(τa, µ, φ) ,

L
(1)
H (τa, µ, φ)

E
(1)
d (τa)

=
A

u0 + µ
,

but, sinceA is independent of τa in a homogeneous medium, this is the same asRLH(0, µ, φ).
In a similar manner, for the inhomogeneous case A is dependent on τ , and we identify

A(τ) = (u0 + µ)R
(1)
LH(τ, µ, φ),

where R
(1)
LH(τ, µ, φ) is the radiance reflectance of a homogeneous medium with IOPs equal

to those in the stratified medium at the optical depth τ , i.e., R
(1)
LH(τ, µ, φ) = R

(1)
LH(0, µ, φ),
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where the latter is the reflectance of a homogeneous medium with IOPs that exist in the
stratified medium at the optical depth τ . Letting

R
(1)
L (τa, µ, φ) =

L(1)(τa, µ, φ)

E
(1)
d (τa)

,

we have

R
(1)
L (τa, µ, φ) =

∫ ∞

τa

u0 + µ

u0µ
R

(1)
LH(τ, µ, φ) exp

[
−(τ − τa)

(
1

u0
+

1

µ

)]
dτ.

Since

d

dτ
exp

[
−(τ − τa)

(
1

u0
+

1

µ

)]
= − u0µ

u0 + µ
exp

[
−(τ − τa)

(
1

u0
+

1

µ

)]
,

letting

M(u0, µ) ,
1

u0
+

1

µ
,

the final result we obtain is

R
(1)
L (τa, µ, φ) = −

∫ ∞

τa

R
(1)
LH(τ, µ, φ)

d

dτ
exp [−(τ − τa)M(u0, µ)] dτ. (6.57)

At the surface Eq. (6.57) reduces to

R
(1)
L (0, µ, φ) = −

∫ ∞

0
R

(1)
LH(τ, µ, φ)

d

dτ
exp [−τM(u0, µ)] dτ. (6.58)

If we approximate the vertical structure of the medium by a set of layers, each with
homogeneous IOPs between τi and τi+1, then the radiance ratio at the surface (τa = 0)
can be written

R
(1)
L (τ = 0, µ, φ) =

∞∑

i=0

R
(1)
LH(τi → τi+1, µ, φ) {exp [−M(u0, µ)τi]− exp [−M(u0, µ)τi+1]} ,

(6.59)

where R
(1)
LH(τi → τi+1, µ, φ) is the value of R

(1)
LH just beneath the surface of a homogeneous

water body with the same IOPs as extant between between τi and τi+1.

The transition from the first-order approximation to the QSSA is made as usual by
replacing τ with τ ′, where

dτ ′ = dτ

(
1− ω0Aδ

4π

)
→ c dz [1− ω0(1−B′(u0))].
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But, as we have noted earlier, the QSSA formulas work better (and satisfy reciprocity) if
B′(u0) is replaced by B in which case dτ ′ = c dz [1 − ω0F ], and since 1 − ω0F ≈ u0Kd/c,
we have dτ ′ ≈ u0Kd dz, so26

τ ′ =

∫ z

0
u0Kd(z) dz , u0〈Kd〉0→zz.

Thus, the final QSSA result for the radiance reflectance of a stratified water body is27

RL(z = 0, µ, φ) =
∞∑

i=0

RLH(zi → zi+1, µ, φ)

×
{

exp [−M(u0, µ)u0〈Kd〉0→zizi]− exp
[
−M(u0, µ)u0〈Kd〉0→zi+1zi+1

]}
.

(6.60)
Note that the superscripts “(1)” have been removed from the equation, i.e., it is approxi-
mately a multiple scattering result in the QSSA.

We will not provide an exhaustive investigation into the accuracy of Eq. (6.60). Instead
we will examine two specific examples: a 2-layer medium and a 3-layer medium for two
values of θ0. For both we carry out exact radiative transfer simulations using the Petzold
phase function for the medium, including the refracting water surface, but excluding the
atmosphere. In the 2-layer case, the upper layer has ω0 = 0.7, while ω0 for the lower
layer varies from 0 to 0.9, and extends from τ = 0.5 to ∞. Thus, we have a moderately
scattering upper layer over a semi-infinite lower layer with IOPs varying from low to high
scattering relative to absorption. Figure 6.49 compares the result of applying Eq. (6.60)
with the exact computations. With the exception of ω0(Lower) = 0 and θ0 = 60◦, the
maximum error is 6% and usually much less. In the 3-layer case, the same phase function
and θ0 values are used. The top layer extends from τ = 0 to τ = 0.5 and has ω0 = 0.7.
The bottom layer extends from τ = 1 to ∞ and also has ω0 = 0.7. In the middle layer ω0

varies from 0 to 0.9. The comparison of Eq. (6.60) with exact computations is presented in
Figure 6.50. Here, with the exception of ω0(Middle) = 0 or 0.9, the maximum error is less
than 5%. These comparisons suggest that Eq. (6.60) is remarkably accurate considering
the approximations involved in its derivation. It is certainly sufficiently accurate to be
used as a guide for understanding the influence of vertical stratification on RL.

26Since c(1− ω0F ) = a+ bb , c dz → (a+ bb) dz, and a simple “rule of thumb,” that SSA → QSSA when
c→ a+ bb, will yield excellent results (although not precisely QSSA, e.g., Section 6.4.9).

27This equation can written in an alternate form. If we label the layers starting from the top calling RLH
for the first layer R1, 〈Kd〉 for the first layer K1, and similarly for the second layer R2 and K2, etc., then

RL = R1 + (R2 −R1) exp(−Mτ ′1) + (R3 −R2) exp(−Mτ ′2) · · ·

where
τ ′1 = u0K1z1, τ ′2 = u0[K1z1 +K2(z2 − z1)], etc.

We emphasize again that the R’s here refer to the radiance reflectance (just beneath the surface) of a
homogeneous medium with the same IOPs as extant for the given layer in the stratified medium,
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It is interesting to look at the structure of the K’s in a stratified medium. A simple
example will shed some light on their behavior. Consider the two extreme cases in the
simulations used in Figure 6.50, i.e., ω0(Middle) = 0 and ω0(Middle) = 0.9. Figure 6.51
provides the depth profiles of Kd and KL from the radiative transfer simulations for these
two cases. One sees immediately that in each of the three individual regions, Kd is essen-
tially independent of depth, and independent of the IOPs in the adjoining region. In the
region 0.5 ≤ τ ≤ 1.0, Kd/c ≈ 1.02 and 0.125 for ω0(Middle) = 0 and 0.9, respectively.
These should be compared to 1.00 and about 0.128 for a homogeneous media with ω0 = 0
and 0.9, respectively, over a similar depth range. Thus, the appropriate value of Kd for a
given layer is that of a homogeneous medium with the IOPs of the layer in question, i.e.,
Kd is a local property of the medium: at a given depth z it depends mostly on the IOP’s
at z.

The behavior of KL is not as simple as that of Kd, but nevertheless is easy to understand
with the help of Figure 6.52, which provides the zenith propagating radiance (and RL(τ))
as a function of depth for the three values of ω0(Middle). First consider ω0(Middle) = 0
and start in the bottom layer. In that layer, KL is nearly identical to that of a homogeneous
medium with the same IOPs. When radiance scattered by the bottom layer propagates
toward the zenith (Lu) it encounters the middle layer, in which there is no scattering,
so it is simply absorbed as it goes from τ = 1.0 to 0.5, i.e., the radiance decreases with
decreasing depth so KL is negative. The value of −1 for KL/c follows from the fact that
here KL = −a. Proceeding into the top layer, new upward radiance is scattered from
within this layer, with the amount increasing with decreasing depth. Thus, KL is large
near τ = 0.5, but decreases in magnitude as one approaches the surface; however, because
of the lack of radiance generated in the middle layer, KL does not reach the value obtained
in a homogeneous medium. For ω0(Middle) = 0.9 we again start with the bottom layer
and see that KL is the same as that for a homogeneous medium. In the middle layer KL

decreases with depth in a manner similar to the top layer in the ω0(Middle) = 0 case,
and for the same reason: additional radiance is generated by the middle layer. In the top
layer KL is less than that for a homogeneous medium because of the additional radiance
generated by the middle layer. In contrast to Kd, KL at a given τ is a strong function of
the structure of the IOPs for the medium at depths > τ , while Kd depends mostly on the
IOPs at τ .

6.4.12 The Influence of Inelastic Processes on the AOPs

In inelastic processes a photon is absorbed at one wavelength and subsequently a photon
is emitted at a different (usually longer) wavelength. Thus, there is an internal source
of light at the emission wavelength, the propagation of which depends on the IOPs at
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the emission wavelength. The theory of radiative transfer in the presence of inelastic
processes is most easily developed by considering such processes to be scattering of an
incident photon plus a change in wavelength (energy) of the scattered photon, hence the
term inelastic scattering. In natural waters, there are two important inelastic processes:
fluorescence by suspended or dissolved constituents in the water, and Raman scattering by
the water molecules. The most important fluorescence process (from a remote sensing view
point) is the natural fluorescence of Chlorophyll a contained in phytoplankton. Photons
absorbed by Chlorophyll a, and by the accessory pigments within phytoplankton, induce
fluorescent emission near 683 nm. An example of this is the strong peak in the reflectance
R extending from about 670 to 700 nm seen in Station C92 in Figure 6.5. Its importance
depends primarily on the concentration of Chlorophyll a, and secondarily on the light
exposure history of the phytoplankton population. A secondary process (of less importance
to remote sensing) is the fluorescence of dissolved organic material. Raman scattering,
resulting from the interaction of light with the water molecule (Chapters 3 and 5), is an
inelastic process that is always present in natural waters, and as such its importance must
always be ascertained. In this section, we examine the influence of these two processes
on the AOPs of the water. We start by solving the radiative transfer equation in the
lowest order that incorporates inelastic processes, and then specifically apply the solution
to fluorescence and Raman scattering.

6.4.12.1 Radiative Transfer and Inelastic Processes.

The radiative transfer equation including inelastic processes was provided in Chapter 2.

ξ̂ • ∇L(~r, ξ̂, λ) = −c(~r, λ)L(~r, ξ̂, λ)

+

∫

All ξ̂′
β(~r, ξ̂′ → ξ̂, λ)L(~r, ξ̂′, λ) dΩ(ξ̂′)

+

∫

λE<λ

∫

All ξ̂′
βIn(~r, ξ̂′ → ξ̂, λE → λ)L(~r, ξ̂′, λE) dΩ(ξ̂′) dλE .

The last term represents the contribution of inelastic scattering. We consider a 1-D
medium, i.e., one in which the IOPs depend only on depth and the incident illumination
is independent of horizontal position. Then this reduces to

u
dL(z, u, φ, λ)

dz
+ c(z, λ)L(z, u, φ, λ) =

∫ 2π

0
dφ′
∫ 1

−1
β(z, u′ → u, φ′ → φ, λ)L(z, u′, φ′, λ) du′

+

∫

λE<λ
dλE

∫ 2π

0
dφ′
∫ 1

−1
βIn(z, u′ → u;φ′ → φ, λE → λ)L(z, u′, φ′, λE) du′.

(6.61)
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We write the last term as

Q(z, u, φ, λ) =

∫

λE<λ
dλEJ(z, u, φ, λ, λE), (6.62)

where

J(z, u, φ, λ, λE) =

∫ 2π

0
dφ′
∫ 1

−1
βIn(z, u′ → u;φ′ → φ, λE → λ)L(z, u′, φ′, λE) du′. (6.63)

We now make the transition to dimensionless variables dτ = c(z, λ) dz, P = β/4πb and
ω0(z, λ) = b(z, λ)/c(z, λ), where b is the scattering coefficient at λ. Then,

LL =

(
u
d

dτ
+ 1

)
L =

ω0

4π

∫ 2π

0
dφ′
∫ 1

−1
PLdu′ +

Q

c
.

We assume that the radiance at λE is known, so Q = Q(z, u, φ, λ) is a known function of
its arguments. The solution of this equation can be developed in a manner similar to the
successive order of scattering (Chapter 2) by expanding the radiance in increasing powers
of ω0. (This is most straightforwardly done by initially assuming that ω0 is independent
of depth.)

L = L(0) + ω0L
(1) + ω2

0L
(2) + · · · ,

yielding a set of differential equations;

LL(0)(τ, u, φ, λ) =
Q(τ, u, φ, λ)

c(τ, λ)
,

LL(1)(τ, u, φ, λ) =
1

4π

∫ 2π

0
dφ′
∫ 1

−1
P (τ, u′ → u, φ′ → φ, λ)L(0)(τ, u′, φ′, λ) du′,

LL(2)(τ, u, φ, λ) =
1

4π

∫ 2π

0
dφ′
∫ 1

−1
P (τ, u′ → u, φ′ → φ, λ)L(1)(τ, u′, φ′, λ) du′,

...

(6.64)

where it must be remembered that τ is the optical depth at λ. The first term is the result
of the inelastic scattering in the direction (u, φ) directly transmitted from its position of
generation to the depth z, while the second corresponds to inelastically-generated radiance
in the direction (u′, φ′) being scattered in the direction (u, φ) before reaching the depth z,
etc. Each of these differential equations is of the form

LL(n) =

(
u
d

dτ
+ 1

)
L(n) = f (n)(τ),

where f (n)(τ) is a known function of τ , derived from Q or L(n−1). As we have seen in
earlier sections (e.g., 6.4.11), if we multiply this by exp[τ/u], the equation can be rewritten

u
d

dτ
[L(n) exp(τ/u)] = [exp(τ/u)]f (n)(τ),
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and the solution can be found by direct integration from τa to τb:

L(n)(τb) exp(τb/u)− L(n)(τa) exp(τa/u) =
1

u

∫ τb

τa

f (n)(τ ′) exp(τ ′/u) dτ ′.

If we first take u to be positive (downward propagating radiance) with τa = 0 and no
inelastically scattered radiance entering the medium, i.e., L(n)(0) = 0, and then u < 0
(upward propagating radiance) with τb =∞ and L(n)(∞) = 0, we arrive at the solutions:28

L(n)(τ, u, φ) =
exp(−τ/u)

u

∫ τ

0
f (n)(τ ′, u, φ) exp(τ ′/u) dτ ′ u > 0

L(n)(τ, u, φ) =
exp(−τ/u)

u

∫ τ

∞
f (n)(τ ′, u, φ) exp(τ ′/u) dτ ′ u < 0

(6.65)

The first of these equations (n = 0) yields

L(0)(τ, u, φ, λ) =
exp(−τ/u)

u

∫ τ

0

Q(τ ′, u, φ, λ)

c(τ ′, λ)
exp(τ ′/u) dτ ′ u > 0

L(0)(τ, u, φ, λ) =
exp(−τ/u)

u

∫ τ

∞

Q(τ ′, u, φ, λ)

c(τ ′, λ)
exp(τ ′/u) dτ ′ u < 0

(6.66)

and provides the lowest order estimate for the radiance resulting from inelastic scattering.
We will see that it is often sufficient to meet remote sensing needs. If not, L(0)(τ, u, φ, λ)
can be inserted into Eq. (6.64) for computation of L(1)(τ, u, φ, λ), etc.

6.4.12.2 Fluorescence

We now apply the formulas derived above to fluorescence. A common trait of fluorescent
emission is that it is isotropic, that is βIn , βF is independent of the angle between ξ̂
and ξ̂′. This result is due to the time lag between the absorption at λE and the emission
at λ. During this time, the fluorescent molecule makes many rotations and “forgets” the
direction of the incident photon. Thus, the inelastic scattering function becomes

βF (z, u′ → u, φ′ → φ, λE → λ) =
bF (z, λE → λ)

4π
,

and inserting this into Eq. (6.63) yields

J(z, u, φ, λ) =
bF (z, λE → λ)

4π

∫ 2π

0
dφ′
∫ 1

−1
L(z, u′, φ′, λE) du′.

28For u < 0, it might appear that L(n) is negative because u < 0; however note that the limits on the
integral are ∞→ τ . so the integral is also negative, and L(n) > 0.
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The integral is just the scalar irradiance, E0(z, λE), at λE , so finally the source function
for fluorescence is

QF (z, u, φ, λ) =

∫

λE<λ

bF (z, λE → λ)

4π
E0(z, λE) dλE .

Combining this with Eqs. (6.66) provides the lowest order contribution of fluorescence to
the radiance at λ:

L(0)(τ, u, φ, λ) =
exp(−τ/u)

4πu

∫

λE<λ
dλE

×
∫ τ

0
bF (τ ′, λE → λ)E0(τ ′, λE) exp(τ ′/u)

dτ ′

c(τ ′, λ)
; u > 0,

with a similar expression for the upward radiance but with the integration from ∞ → τ .
Noting that τ(z) =

∫ z
0 c(z)dz, we can rewrite this in terms of real depth; however, the

equations are considerably simplified if we assume that c(z, λ) , c is independent of z, i.e.,
τ = c(λ)z. Then

L(0)(z, u, φ, λ) =
exp(−cz/u)

4πu

∫

λE<λ
dλE

×
∫ z

0
bF (z′, λE → λ)E0(z′, λE) exp(cz′/u) dz′; u > 0,

L(0)(z, u, φ, λ) =
exp(−cz/u)

4πu

∫

λE<λ
dλE

×
∫ z

∞
bF (z′, λE → λ)E0(z′, λE) exp(cz′/u) dz′; u < 0.

(6.67)

The only approximation used in these equations is that of a depth-independent c(λ). If we
further assume that bF is independent of depth and that

E0(z, λE) = E0(0, λE) exp[−K0(λE)z]

with a constant scalar irradiance attenuation coefficient, we can carry out the z′ integration
and find

L
(0)
d (z, u, φ, λ) =

1

4πu

∫

λE<λ
dλE

[
E0(0, λE)bF (λE → λ)

c(λ)−K0(λE)u

]

× {exp[−K0(λE)z]− exp[−cz/u]}; u > 0,

L(0)
u (z, µ, φ, λ) =

1

4πµ

∫

λE<λ
dλE

[
E0(0, λE)bF (λE → λ)

c(λ) +K0(λE)µ

]

× exp[−K0(λE)z]; µ = −u > 0,
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where the subscripts “d” and “u” stand for “downward” and “upward,” respectively. These
equations represent the lowest order estimate for the radiance generated by inelastic scat-
tering through fluorescence. If more accuracy is desired, they can be used in Eq. (6.64) to
determine L(1), etc. One can use these equations to determine the lowest order estimate
of the upward and downward irradiances. For the upward case (of more interest to remote
sensing) the simple integration (Eu =

∫ 1
0 µdµ

∫ 2π
0 dφL) yields

E(0)
u (z) =

∫

λE<λ
dλE

[
E0(0, λE)bF (λE → λ)

2K0(λE)

]

×
{

1− c(λ)

K0(λE)
`n

(
1 +

K0(λE)

c(λ)

)}
exp[−K0(λE)z].

An important feature of these results is that the upward radiance and irradiance produced
through fluorescence excited by a narrow band of wavelengths ∆λE decays with depth
exponentially, but with a decay coefficient equal to K0(λE), i.e., from excitation within
∆λE around λE , the upward light field decays with depth with attenuation coefficients
KL(λ) = Ku(λ) = K0(λE). To make the transition to the QSSA for fluorescence, we need
only replace c(λ) by a(λ) + bb(λ).

It is often useful to replace the the inelastic scattering coefficient by the quantum effi-
ciency of fluorescence, η(λ, λE). This quantity is defined as the rate of emission of photons
between ±∆λ/2 around λ, divided by the rate of absorption of photons between ±∆λE/2
around λE , i.e.,

η(λ, λE) =
∆N(Emitted within ∆λ)/∆t

∆N(Absorbed withinin ∆λE)/∆t
,

where N stands for number of photons and t is time. Now, ∆N/∆t = E−1
1 ∆E/∆t,

where E1 is the energy of a single photon: E1 = hc/λ. Therefore ∆N/∆t = (λ/hc) ×
(Power emitted or absorbed). Over a given path length ∆` , the power absorbed by the
fluorescent pigment is just aPig(λE)∆` times the incident power within ∆λE , and the power
emitted through fluorescence into narrow band of wavelengths ∆λ is bF (λE → λ)∆λ∆`
times the incident power within ∆λE . Combining these, we have

η(λ, λE) =
λ

λE

bF (λE → λ)∆λ

aPig(λE)
.

The usefulness of the quantum efficiency resides in the fact that it is often nearly indepen-
dent of λE , i.e., as long as a photon is absorbed (with λE < λ) it has a given probability of
causing a fluorescent emission regardless of its wavelength. This happens because fluores-
cence is the emission of a photon resulting from a transition from a given energy state in
the molecule to a given lower state. Above the upper state, there are many higher energy
states (or even bands of closely spaced energy states) and the absorbed energy is cascaded
to lower energy states through radiation-less transitions (producing heat) ending at the
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upper state of the fluorescence. The molecule ends up in the upper state regardless of the
energy at which the cascade started. Of course, the exciting photon must have more (or
an equal amount of) energy than the emitted photon.

When η(λ, λE) = η(λ), the equations we developed can be rewritten in terms of the
absorption coefficient of the fluorescing material and the quantum efficiency. For example,
the upwelling irradiance becomes

E(0)
u (z, λ) =

η(λ)

λ∆λ

∫

λE<λ
dλE

[
E0(0, λE)λEaPig(λE)

2K0(λE)

]

×
{

1− c(λ)

K0(λE)
`n

(
1 +

K0(λE)

c(λ)

)}
exp[−K0(λE)z].

In the case of phytoplankton fluorescence at 683 nm (an example of which is Station C92 in
Figure 6.5), if aPig(λE) is taken to be the absorption coefficient of phytoplankton (roughly
proportional to the concentration of Chlorophyll a in the water) and ∆λ ≈ 25 nm, then
η(683) is generally in the range 0.005 to 0.01, and the upwelling radiance and irradiance
at 683 nm is roughly proportional to the concentration of Chlorophyll a in the water
(for Station C92 in Figure 6.5, the upwelling irradiance at 683 nm can be explained with
η(683) = 0.0066). The upper state of the Chlorophyll a fluorescence transition is the same
state that the Chlorophyll a molecule must be excited for photosynthesis to occur. Thus,
photosynthesis and fluorescence are competing processes.

6.4.12.3 Raman Scattering

Raman scattering by water is typically a far more important inelastic process than flu-
orescence for two reasons: (1) it is always present in natural waters; and (2) except in
specific regions of the spectrum (e.g., near 683 nm) it is almost always much larger than
fluorescence. To evaluate the contribution of Raman scattering to the light field we need
to evaluate the integral

Q(z, u, φ, λ) =

∫

λE<λ
dλE

∫ 2π

0
dφ′
∫ 1

−1
βR(z, u′ → u;φ′ → φ, λE → λ)L(z, u′, φ′, λE) du′,

where βR is the inelastic volume scattering function and λE is the excitation wavelength.
For Raman scattering the excitation is from a narrow band of wavelengths ∆λE so, assum-
ing L(z, u′, φ′, λE) varies slowly with λE , it can be removed from the λE integration (i.e.,
it’s assumed to be constant over λE), and

Q(z, u, φ, λ) =

∫ 2π

0
dφ′
∫ 1

−1
L(z, u′, φ′, λE) du′

∫

∆λE

βR(z, u′ → u;φ′ → φ, λE → λ) dλE .
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The λE integration was developed in Chapter 5 (Section 5.2.3) with the result

∫

∆λE

βR(z, u′ → u;φ′ → φ, λE → λ) dλE = 0.0673 bR(λE Band→ λ)(1 + 0.55 cos2 α)

where λ is the wavelength of the scattered photon and λE the wavelength at the center of
the excitation band, are related by

λE =
λ

1 + 3.357× 10−4λ
,

with λ in nm. The angle α is the scattering angle:

cosα = u′u+
√

1− u′2
√

1− u2 cos(φ′ − φ).

The quantity bR(λE Band → λ) is the Raman scattering coefficient for the entire Raman
band (of width ∆λE) into λ. It has units m−1 and is given by

bR(λE Band→ λ) = 2.61× 10−4 (589/λ)4.8, (6.68)

with λ in nm.

Let’s begin by calculating the Raman contribution to the upward radiance propagating
toward the zenith L(0)(u′ → u = −1, φ′ → φ, λE → λ), for which βR = 0.0673 bR(1 +
0.55u′2). The source function is then

Q(z, u, φ, λ) = 0.0673 bR(λE Band→ λ)

∫ 2π

0
dφ′
∫ 1

−1
(1 + 0.55u′2)L(z, u′, φ′, λE) du′.

If we define the average of the cosine squared of the light field at λE to be

〈u2〉E =

∫ 2π
0 dφ

∫ 1
−1 u

2L(z, u, φ, λE) du

E0(z, λE)
,

then,

Q(z, u, φ, λ) = 0.0673 bR(λE Band→ λ)
[
1 + 0.55〈u2〉E

]
E0(z, λE).

Given that L(z, u, φ, λE) is strongly peaked near the direction of propagation of the incident
solar beam, we expect that 〈u2〉E ≈ u2

0w.29 As in the case of fluorescence, we assume the
scalar irradiance can be written

E0(z, λE) = E0(0, λE) exp[−K0(λE) z]

29Detailed Monte Carlo simulations suggest that an excellent approximation to 〈u2〉E is µ2
d at λE .
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with a depth-independent K0(λE). Inserting this into Eq. (6.66) and carrying out the
indicated integration yields

L(0)
u (z, u = −1, λ) = 0.0673 bR(λE Band→ λ)

(
1 + 0.55〈u2〉E

)

×
∫ ∞

z
E0(z′, λE) exp[−c(λ)z′] dz′,

=

[
0.0673 bR(λE Band→ λ)

c(λ) +K0(λE)

(
1 + 0.55〈u2〉E

)]

× E0(0, λE) exp[−K0(λE) z],

(6.69)

where we have assumed c(λ) and 〈u2〉E are independent of depth.

If we carry out the same analysis for the upwelling radiance in any direction µ = −u,
due to the solar beam directed toward (u0w, φ0), we find

L(0)
u (z, µ, φ, λ) = 0.0673 bR(λE Band→ λ)

(
exp[cz/µ]

µ

)∫ ∞

z
dz′ exp[−cz′/µ]

×
∫ 2π

0
dφ′
∫ 1

−1
du′
(
1 + 0.55 cos2 α

)
L(z′, u′, φ′, λE),

(6.70)

with cosα = −u′µ +
√

1− u′2
√

1− µ2 cos(φ′ − φ). Carrying out the solution requires
knowledge of the complete radiance distribution, L(z′, u′, φ′, λE) at the excitation wave-
length rather than just the scalar irradiance; however, if we only wanted the upwelling
irradiance, significant simplification occurs. The upwelling irradiance is

E(0)
u (z, λ) =

∫ 2π

0
dφ

∫ 1

0
µL(0)

u (z, µ, φ, λ) dµ

= 0.0673 bR(λE Band→ λ)

∫ 2π

0
dφ

∫ 1

0
dµ

∫ ∞

z
dz′ exp[−c(z′ − z)/µ]

×
∫ 2π

0
dφ′
∫ 1

−1
du′
(
1 + 0.55 cos2 α

)
L(z′, u′, φ′, λE),

To evaluate this, first write

cos2 α = u′2µ2 +
1

2
(1− u′2)(1− µ2)

− 2u′µ
√

1− u′2
√

1− µ2 cos(φ′ − φ)

+
1

2
(1− u′2)(1− µ2) cos 2(φ′ − φ),
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then carry out the integration over φ. This results in

E(0)
u (z, λ) = 0.0673 bR(λE Band→ λ)

∫ 1

0
dµ

∫ ∞

z
dz′ exp[−c(z′ − z)/µ]

×
∫ 2π

0
dφ′
∫ 1

−1
du′
(

1 + 0.55
[
u′2µ2 +

1

2
(1− u′2)(1− µ2)

])
L(z′, u′, φ′, λE).

Now recall the definition of the average cosine squared of the light field at λE , 〈u2〉E , and
this simplifies to

E(0)
u (z, λ) = 0.0673 bR(λE Band→ λ)

∫ 1

0
dµ

∫ ∞

z
dz′ exp[−c(z′ − z)/µ]

×
(

1 + 0.55
[
〈u2〉Eµ2 +

1

2
(1− 〈u2〉E)(1− µ2)

])
E0(z′, λE).

(6.71)

Finally, assuming E0(z, λE) = E0(0, λE) exp[−K0(λE) z] and that 〈u2〉E is independent of
z, we have

E(0)
u (z, λ) = 0.0673 bR(λE Band→ λ)E0(0, λE) exp[−K0(λE) z]

×
[∫ 1

0
µdµ

1 + 0.55
[
〈u2〉Eµ2 + 1

2(1− 〈u2〉E)(1− µ2)
]

c(λ) + µK0(λE)

]
.

(6.72)

The integral in this equation can be carried out in closed form.30 A similar procedure gives

E
(0)
d (z, λ) = 0.0673 bR(λE Band→ λ)E0(0, λE)

×
∫ 1

0
u du

1 + 0.55[〈u2〉Eu2 + 1
2(1− 〈u2〉E)(1− u2)]

c(λ)− uK0(λE)

(
exp[−K0(λE) z]− exp[−cz/u]

)
.

(6.73)
We test the efficacy of these equations, by comparing Raman-excited radiances and irra-
diances computed using them to the results of exact (Monte Carlo) computations in the
following examples.

30First, factor out K0(λE) and write the remaining integral as

IE ,
∫ 1

0

x dx
1 + c1[c22 + 1

2
(1− c22)(1− x2)]

c3 + x
,

where c1 = 0.55, c2 = 〈u2〉E , and c3 = c(λ)/K0(λE). Then,

IE = 1 + c1

[
1

3
+ (1− 3c22)

(
c3
4
− c23

2

)]
+ c3

[
1 + (1− c23)

c1
2
− (1− 3c23)

c22
2

]
`n

(
c3

1 + c3

)
Finally,

E(0)
u (z, λ) = 0.0673 bR(λE Band→ λ)E0(0, λE) exp[−K0(λE) z]

IE
K0(λE)

.
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Table 6.10: Exact values of the Raman scattering contribution to Lu(0, µ = 1, λ)
in mW/cm2µm Sr and Eu(0) in mW/cm2µm at 550 nm for a pure sea water water

body, compared with values of L
(0)
u (0, µ = 1, λ) and E

(0)
u (0) computed using Eqs.

(6.69) and (6.72), respectively, with 〈u2〉E = 〈µd(λE)〉2. The values labeled “Ap-
prox.” are computed by replacing K0 with Kd and using Eq. (6.74) to estimate
E0 from Ed(0) and Eu(0) at λE , and 〈u2〉E = u2

0w.

θ0 Lu (Exact) Lu Eq. (6.69) Lu (Approx.) Eu (Exact) Eu Eq. (6.72) Eu (Approx.)

0◦ 0.1125 0.1114 0.1127 0.3223 0.3221 0.3159
60◦ 0.0533 0.0531 0.0520 0.1699 0.1697 0.1630

Example 1: Computation of Raman Component of Lu(0) and Eu(0) for Pure Seawater

Consider a water body consisting of pure sea water below an aerosol-free atmosphere.
Let us compare the Raman contributions to Lu and Eu just beneath the surface to exact
computations at 550 nm for which λE = 464 nm. We take the actual values of K0(λE)
(actually, its depth mean) and E0(0, λE) along with 〈u2〉E = 〈µd(λE)〉2 from exact Monte

Carlo computations. Table 6.10 compares the exact values of L
(0)
u (0, µ = 1, λ) and E

(0)
u (0)

with those computed using Eqs. (6.69) and (6.72), respectively. Clearly, when the correct
excitation parameters are used in the equations, excellent results are obtained for Lu and
Eu; however, typically if any experimental measurements are made at the excitation wave-
length, they will be measurements of Ed(z) and Eu(z) (or Lu(z)), so usually E0(0) and K0

will be unknown. In that case the scalar irradiance can be reasonably well predicted from

E0(0) ≈ D0Ed(0) + 2.5Eu(0), (6.74)

while if Lu(0) is measured, Eu(0) above is replaced by πLu(0), which assumes the upwelled
radiance distribution at λE is totally diffuse. The value of µd(λE) is usually unknown, so
we use the approximation 〈u2〉E = u2

0w. With these approximations, the columns labeled
“Approx.” in Table 6.10 are obtained. This suggests that Eqs. (6.69) and (6.72) provide

robust estimates of L
(0)
u (0, µ = 1, λ) and E

(0)
u (0), respectively. Note that the depth depen-

dence of these two quantities is given by the surface value multiplied by exp[−K0(λE) z],
i.e., pure exponential decay governed by the excitation wavelength.

Example 2: Efficacy of the Computation the Raman Component of Ed(z, λ).

What about Ed(z, λ)? Equation (6.73) shows that the depth dependence of Ed is more
complex than Eu or Lu. Is this borne out in exact computations? We note that this
equation determines the contribution to Ed from the initial Raman scattering, and is thus
zero at z = 0; however, the actual Ed(0) at λ includes Raman-induced Eu(0) reflected
downward from the interface. For comparison of Eq. (6.73) with exact computations, this
reflected component must be removed from the exact values of the Raman contribution
to Ed(z). How can this component of Ed(z, λ) be estimated? We proceed as follows:
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first, we assume that the upward Raman radiance L
(0)
u (z, µ, φ, λ) at z = 0 is isotropic

(L(0) independent of µ and φ);31 next, we compute the Fresnel-reflected component of this
radiance; and finally, we determine the decay characteristics of this reflected component
with depth.

For isotropic upward radiance L0, the reflected irradiance at z = 0 is

Ed(0) = 2πL0

∫ 1

0
urf (u) du = 2Eu(0)

∫ 1

0
urf (u) du,

where Eu(0) = πL0 and rf is the Fresnel reflectance of the air-water interface from below.
The downward radiance Ld(z, u) is

Ld(z, u) = L0rf (u) exp(−cz/u),

so the downward irradiance is

Ed(z) = 2πL0

∫ 1

0
urf (u) exp(−cz/u) du,

and
Ed(z)

Ed(0)
=

∫ 1
0 urf (u) exp(−cz/u) du

∫ 1
0 urf (u) du

, exp(−KD
d z).

Figure 6.53 provides KD
d /c as a function of the optical depth τ = cz. Note that except

very near the surface, or at large τ , KD
d ≈ 2c. The reflected fraction of Eu(0), i.e.,

ρDiffuse , Ed(0)/Eu(0) for the above assumptions is ∼ 0.48; however, exact computations

yield slightly larger values because E
(0)
u is not totally diffuse. Using the above assumptions,

the total downward irradiance at depth z is

[E
(0)
d (z, λ)]Total = E

(0)
d (z, λ) + ρDiffuseE

(0)
u (0, λ) exp[−KD

d (λ) z]. (6.75)

We can now examine the accuracy of the downwelling Raman irradiance for the same
cases examined above, namely a particle-free water body and an aerosol-free atmosphere at

550 nm for θ0 = 0 and 60◦. We compare the values of E
(0)
d (z, λ), computed from the exact

[Ed(z, λ)]Total, ρDiffuse, and E
(0)
u (0, λ) using Eq. (6.75) and Figure 6.53, with those from

Eq. (6.73). The resulting “exact” Raman-induced Ed(z) at 550 nm is provided in Figure
6.54 (symbols) along with the computations resulting from Eq. (6.73) (line). Clearly, Eq.
(6.73) provides an excellent approximation to the Raman-induced downwelling irradiance.

31Note that the author often uses both the term “totally diffuse” as well as the term “isotropic” when
referring to radiance that is independent of direction.
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Example 3: Depth Dependence of Lu and Ed

For an example of the impact of Raman scattering within the water, we again consider
a water body that is free of scattering and absorbing materials, i.e., consisting only of pure
(sea) water, as above. The exact solution to the radiative transfer equation at 550 nm
(with θ0 = 37◦) yields vertical profiles of Kd, Ku and R shown in Figure 6.55. Also shown
is Kd at 464 nm, the excitation wavelength. Note that with increasing depth both Kd

and Ku at 550 both tend toward Kd at 464 nm, with Ku approaching more rapidly that
Kd. At shallow depths, Kd is relatively unaffected by Raman scattering. The figure also
shows that R is very strongly influenced by the presence of Raman scattering, with a value
approaching the order of unity at great depth.

We now apply our model for E
(0)
d (z, λ) and E

(0)
u (z, λ) to see how well it reproduces the

exact computations of R in Figure 6.55. The solid lines on the figures are predictions of
the model above. To do these predictions, we need Ed(0, 550) and Eu(0, 550) for both the
elastic and Raman components. For the elastic components, we note that in a medium that
scatters with a phase function that is nearly isotropic (not strongly forward scattering),
as Rayleigh scattering does, the QSSA is not appropriate for the computation of R(0) in
Eu(0) = R(0)Ed(0), so the exact value of R(0) from the Monte Carlo simulation was used
instead. For the elastic Ed(0), we used Ed(0) = tfu0F0 exp(−τr/2u0) (Eq. (6.34) with
x = 1), where tf is the Fresnel transmittance of the air-water interface for incidence angle
θ0 and τr is the optical depth of the atmosphere. These gave EElastic

d (0, 550) = 138.19
mW/cm2µm, and EElastic

u (0, 550) = 0.8278 mW/cm2µm. The elastic components both
decay exponentially in depth with decay coefficient Kd = (a+ b)/u0w, which for a medium
that scatters with a nearly isotropic phase function is more appropriate than the QSSA
value of (a+bb)/u0w. We assume that we are provided with the downward irradiance at 464
nm, e.g., measurements of Ed(z, λE), so that Kd(464) is known. The Raman components
are computed using the formulas above but with K0(λE) replaced with Kd(464). Also,
E0/F0 = 0.94 at the excitation wavelength was taken from the exact computation (Eq.
(6.74) gave 0.975). These resulted in

ETotal
u (z, 550) = 0.8278 exp(−0.0656 z) + 0.2647 exp(−0.0146 z)

EElastic
d (z, 550) = 138.19 exp(−0.0656 z),

(6.76)

in mW/cm2µm, and, because of the integral in E
(0)
d (Eq. (6.73)) must be carried out

numerically, no simple analytic formula is available for ERaman
d (z, 550), only a table of

values. From these, it is a simple matter to compute the K(z)’s and R(z), as presented
as the solid lines in Figure 6.55. The agreement here between the exact and approximate
values of these quantities is remarkably close; however, much of the good agreement is due
to the fact that in a particle-free water body the K’s for the elastic component are almost
independent of depth — which is not true in general (Figure 6.9). However, the results do
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demonstrate the efficacy of Eqs. (6.72) and (6.73) in computing the Raman-induced light
fields.32

Example 4: Transition from SSA to QSSA

To effect the transition to the QSSA approximation to the Raman contributions, the
simplest approximation is to replace c(λ) by a(λ) + bb(λ) in Eqs. (6.69)-(6.73); however,
unfortunately there is no simple QSSA formula for E0(z) or K0(z). Figure 6.13, which
compares the vertical profiles of K0, Kd, Ku, and KL shows that K0 varies much more
rapidly with depth than any of the other K’s except Ku. Thus, how do we estimate K0 or
the scalar irradiance? Ku would be a good approximation, but there is no accurate QSSA
estimate of Ku as there is for Kd (recall that in Eqs. (6.21) the estimate for Ku is not
very good). The most obvious thing we can do is replace K0 with Kd, or some averaged
Kd; however, if we know ω0(λE) we can do a little better. Using all of the simulations
discussed in Figure 6.31, a course relationship between Kd and K0 is evident. Figure 6.58
shows K0/Kd, evaluated at τ = 0.5 used in Figure 6.31, as a function of ω0 for the 360
simulations. The optical depth τ = 0.5 rather than τ = 0 is used as a compromise for
improving the K0 ≈ Kd assumption, as Kd at τ = 0.5 is very close to Kd(0) for which
there is a good QSSA relationship. The line on the figure is the least-squares fit:

K0

Kd
= 1 + 0.2538ω0 − 2.3216ω2

0 + 5.2589ω3
0 − 3.9837ω4

0. (6.77)

This fit has an R2 of 0.9822, and for all the points shown, the average (absolute) error was
1.81% with a maximum error of 13.59% (at the point where the K0 ≈ Kd assumption is
in error by almost a factor of 2), and can be used to improve the estimate of K0 given the
IOPs at λE . Given Eqs. (6.69)-(6.73), the transition to the QSSA

(
c(λ)→ a(λ) + bb(λ)

)
,

and Eq. (6.77), we have a complete set of equations to provide a reliable estimate of the
Raman contribution to Lu(0) and Eu(0).

Example 5: Efficacy of QSSA in Computation of the Raman Contribution to AOPs

Just how effective is the transition from the SSA to the QSSA? Consider a more realistic
example, e.g., a water body with particles producing a strongly-forward scattering phase
function, below an atmosphere with aerosols. To estimate Lu(0) in this case the first
line in Eq. (6.69) must be used because K0(λE) depends strongly on depth, especially
when the solar zenith angle is large. We employed a bio-optical model similar to that in
in the next section, but tuned to match experimental measurements in clear waters off
Hawaii, to provide exact calculations of the light field at λE . A phytoplankton pigment
concentration of 0.3 mg/m3 was used in the simulation along with a solar zenith angle

32In situations where K0(z, λE) is not constant, the Raman components can still be computed by inserting

the actual depth variations of E0(z, λE) into Eq. (6.71) and a similar equation for E
(0)
d (z, λ).
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60◦. Entering the required quantities at the excitation wavelength into Eq. (6.69), the
integration was carried out to estimate Lu(0). Table 6.11 provides the results for 450 and
550 nm (excitation at 391 and 464 nm, respectively) computed using Eq. (6.69) directly
(the single scattering approximation) and by replacing c by a+ bb in Eq. (6.69) (the quasi-
single scattering approximation, which approximately accounts for the multiple scattering
of the Raman-generated radiance. Note that, in the quasi-single scattering approximation,
a(λ) + bb(λ) = u0wKd(λ), and Kd(λ) could be derived from Ed(z, λ), i.e., measurements
of the downwelling irradiance at the emission wavelength which near the surface are only
weakly influenced by Raman scattering. The fraction of the Raman contribution to the
total radiance at the surface turned out to be 7.7% and 14.5%, respectively, at 450 and
550 nm. The error using the QSSA compared to the SSA is reduced by a large factor

Table 6.11: Contribution to Lu(0, λ) “(MC)” in mW/cm2 µm Sr and at 450 and
550 nm for a modeled water body with a pigment concentration of 0.3 mg/m3,
compared with values of Lu(0, λ) computed using Eq. (6.69) with 〈u2〉E replaced
by µ2

d. The solar zenith angle was 60◦. “Model” refers to using Eq. (6.69) directly
with c, or replacing c(λ) by a(λ) + bb(λ), to transition to the QSSA.

λ→ 450 nm 550 nm

Model Lu (MC) Lu Eq. (6.69) Lu (MC) Lu Eq. (6.69)

c(λ) 0.07164 0.03590 0.03461 0.02365

a(λ) + bb(λ) 0.07164 0.06517 0.03461 0.03407

to an error of 9% at 450 nm and 1.6% at 550 nm. The larger error at 450 nm is to be
expected because the single scattering albedo is significantly larger there than at 550 nm,
so the quasi-single scattering approximation is less effective. Note that in this example
the scalar irradiance E0(z, λE) was used directly in Eq. (6.69) rather than the Kd → K0

approximation in Exercise 4. This enabled the assessment of the SSA → QSSA transition
effectiveness alone.

Example 6: Assessment of Raman Contribution to AOP Measurements.

Even if we do not know ω0 and cannot use Eq. (6.77), the lack of high accuracy in
the K0 ≈ Kd assumption does not mean that the approximate Raman contribution is not
valuable. One can for example use it to qualitatively understand the influence of the various
constituent concentrations on the Raman contribution in a given situation. For example,
if dissolved organic material, which absorbs in a manner that increases exponentially with
decreasing wavelength (i.e., absorbs weakly in the green, more strongly in the blue and
even more strongly still in the ultraviolet) is added to the water, the Raman contribution
will decrease with increasing concentration because K0(λE) will increase with increasing
concentration. Thus, the Raman contribution to the upwelling radiance and irradiance at
the surface in the blue and green will be significantly lower than that for pure sea water
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shown in Figure 6.56. There will be a smaller decrease in the red. Similarly, phytoplankton,
which absorb primarily in the blue will decrease the Raman contribution in the green, etc.,
by increasing K0(λE).

Another example of the utility of the approximate formulas is to assess the magnitude of
the Raman contribution in experimental measurements. Consider Station C92 in Figures
6.5 and 6.6. How large is the Raman contribution to R at 550 nm (close to the maximum
in R)? At this station the Sun was near the zenith, so a good approximation to c(λ) →
a(λ) + bb(λ) is Kd(λ), i.e., u0w ≈ 1. The scalar irradiance just beneath the surface at λE
was not measured, but can be estimated from Eq. (6.74) with Ed(0) and Eu(0) determined
from extrapolation of the actual irradiance measurements to the surface. We have no way
of precisely knowing K0(λE), so the best we can do is replace it with Kd(λE). This exercise
suggests that Raman scattering contributes approximately only 1.5% to R(0) at 550 nm,
i.e., in the absence of Raman scattering, R(0) would be 1.5% smaller.

Example 7: Raman Influence on Angular Distribution of Lu

Finally, from a remote sensing perspective, Lu is the most important quantity to estimate
from the IOPs. It can be done with reasonable accuracy through a combination of Eqs.
(6.27), (6.31), (6.34)-(6.38), (6.69), and (6.77). The presence of Raman scattering will of
course also change the angular distribution of the the total upwelling radiance at z = 0.
An estimate of the influence of Raman scattering can be found as follows. First, in Eq.
(6.70), because of the strong forward scattering at λE , approximate L(z′, u′, φ′, λE) by
E0(0, λE)δ(u′ − u0w)δ(φ′ − φ0) exp[−K0(λE)z′]. Then after carrying out the integrations
over the primed variables, we have

L(0)
u (z, µ, φ, λ) =

[
0.0673 bR(λE → λ)∆λE

c(λ) +K0(λE)µ
(1 + 0.55 cos2α0)

]
E0(0, λE) exp[−K0(λE) z],

where cosα0 = −µu0w +
√

1− µ2
√

1− u2
0w cos(φ − φ0). The angular distribution of L

(0)
u

at the surface is then,

L
(0)
u (0, µ, φ, λ)

L
(0)
u (0, 1, φ, λ)

=

[
1 + 0.55 cos2α0

1 + 0.55〈u2〉E

] [
c(λ) +K0(λE)

c(λ) +K0(λE)µ

]
,

where 〈u2〉E is as usual to be approximated by u2
0w.

Example 8: Influence of Raman Scattering on Lu Across the Visible Spectrum

Finally, we have seen in Example 3 that the Raman component to Eu(0, 550) accounts
for about 25% of the total (Eq. (6.76)). How does the influence of Raman scattering on
Eu and, more importantly, Lu vary across the spectrum? Again, we consider the same case



500 CHAPTER 6. APPARENT OPTICAL PROPERTIES (AOPS)

as in Example 3, a medium consisting only of pure sea water bounded by an aerosol-free
atmosphere, because for such a water body (and atmosphere) all of the IOPs are pre-
cisely known. Figure 6.56 provides exact computations (in the scalar approximation) of
the contributions to the zenith-propagating radiance (left panel) from elastic and inelastic
(Raman) scattering. The right panel shows the fraction of the total radiance contributed
by Raman scattering by shorter wavelengths. Note that for >∼ 500 nm Raman scattering
contributes about a quarter of the total. The precipitous drop in the Raman contribution
for λ <∼ 475 nm is mostly due to the large drop in the solar irradiance (F0) for wave-
lengths shorter than ∼ 400 nm. The small peak in the Raman contribution near 430 nm
corresponds to a similar peak in F0 near 375 nm, the excitation wavelength (Chapter 8,
Figure 8.7). How well do these calculations match real data? Figure 6.57 compares the
calculated zenith-propagating radiance with measurements in the clear waters off Lanai,
Hawaii. These data are from a complete set of spectral data of which those in Figure
6.1 are a subset. The radiances were extrapolated to the surface from a depth of 2 m
using Lu(z = 0, λ) = Lu(z = 2, λ) exp[+2 × 〈Ku(λ)〉], where 〈Ku(λ)〉 is the average value
from over the depth range 2 to 6 m for the given wavelength. The agreement between the
calculations and the measurements for λ >∼ 490 nm is truly remarkable. The lack of agree-
ment over the 400 to 490 nm range is due to material in the water: particles (principally
phytoplankton) and dissolved organic material.33

In our treatment of the effects of Raman scattering on the in-water light field, we have
neglected polarization of the scattering. Including polarization, a solution in lowest order,
i.e., Eq. (6.66), is still straightforward but requires knowing the polarization state of the
excitation radiance. If we only want the polarization state of the upwelling radiance just
beneath the water surface, e.g., for remote sensing, we can assume as a first approximation
that the excitation is just due to the (unpolarized) solar beam. Then the solution for the
Stokes vector associated with the upwelling radiance is similar to that provided in Section
2.11.3 for Rayleigh scattering.34. The details of the solution are left to the reader.

6.4.13 Examples of Modeling with QSSA

We complete this Section by providing some examples using the QSSA for estimating the
AOPs given models of the IOPs. First, we focus on two of the Case 1 water stations

33For λ >∼ 490 nm, the agreement here is a little misleading because particle scattering of solar radiation
clearly provides additional radiance. However, at this location the Chlorophyll concentration is ∼ 0.10 to
0.15 mg/m3 for which the Raman fraction drops to 10-15 % for λ >∼ 490 nm because of phytoplankton
absorption at shorter wavelengths. This “missing” (compared to a particle-free medium) radiance is replaced
by the particle backscattering contribution to Lu.

34Recall that Raman and Rayleigh scattering share a common phase function, differing only in the value
of the depolarization factor.
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described earlier in Section 6.3.1: the Hawaii station, Figures 6.3 and 6.4; and C70 on
Figures 6.6 and 6.5. We used the formulas displayed in Figure 6.35 to estimate the elastic
contribution to Lu and Eq. (6.47) to estimate R resulting from elastic scattering. The
Raman contributions were estimated using Eq. (6.69) for Lu and Eq. (6.72) for Eu. Where
needed, the scalar irradiance at the Raman excitation wavelength (λE) was estimated from
Ed and Eu (or Lu) at λE using Eq. (6.74), and K0 at the excitation was estimated from
Kd(λE) and ω0(λE) using Eq. (6.77). The Kd’s were estimated from Eq. (6.46) using for
〈C ′K〉X the average of its value for Bp = 0.0020 and Bp = 0.0181 from Table 6.8 for X = 1.

The IOPs required for input to the QSSA are described in detail in Chapter 5 and for
convenience are summarized in Figure 6.59. Note that the Raman scattering coefficient has
been included in the absorption coefficient. This is because at Raman scattering from a
given wavelength λ is a loss that is indistinguishable from absorption at λ. In the formulae
in Figure 6.59, C is in mg/m3, and the resulting quantities are in their usual units, e.g.,
ap(λ) is in m−1, etc. The quantities ap1(λ) and bp1(550) are the values of ap(λ) and bp(550)
(in m−1) for C = 1 mg/m3. All of the quantities in the figure are fixed with the exception
of fap and fbp. Recall that the formulas for ap and bp are statistical products, e.g., bp(550)
for C = 1 mg/m3 is in the range 0.12-0.45 m−1 for Case 1 waters. Here, this parameter
is fixed at 0.30 m−1, and the statistical spread is accommodated by varying fbp. Similar
comments apply to ap1(λ) and fap. So, given C, the only free parameters in the IOP
model are fap and fbp. These parameters are varied to try to obtain a good fit to the AOP
data (within an acceptable range based on the statistical properties of the aggregate IOP
measurements).

The modeled AOPs for the Hawaii station are Lu and Kd. Although C was not measured
during the experiment, we take C = 0.10 mg/m3 – the coarse historical average. For this
data we took fap = 0.67 and fbp = 1.10.35 Comparison of the estimated and measured
AOPs are shown in Figure 6.60. The results are excellent, but the fits for both Lu and Kd

do indicate that the absorption coefficient is a little too low in the region between 400 and
450 nm: the modeled Lu is too high and Kd is too low.36 Also, the absorption coefficient
is either a little to low, or the scattering coefficient a little too high in the region from 500
to 650 nm. However, considering the coarseness of the IOP model, e.g., the absence of any
spectral features in Bp, which are known to exist, the agreement is remarkably good.

In the case of Station C70, the modeled AOPs are R and Kd. Here C was measured37

35These parameters were chosen by trial and error to render the spectral variation of the model close to
that of the field data. There was no attempt to optimize the fit of the model to the data.

36Note that Kd ≈ (a+ bb)/〈u0w〉0 and typically a� bb, so Kd depends mostly in a. In contrast, Lu and
R ∼ bb/(a+ bb) and so are strongly influenced by bb even if a� bb

37The measurement of C here was actually of Chlorophyll a plus Phaeophytin a determined by fluo-
rometry. The more recent measurements leading to the formulas for ap and bp as a function of C were
established with C representing Chlorophyll a or total Chlorophyll measured using High Performance Liquid
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to be 2.4 mg/m3. The parameter values for this station are fap = 1.44 and fbp = 1.33. The
resulting comparisons between the measurements and the model are also shown in Figure
6.60. The agreement for both Kd and R is excellent for λ <∼ 570 nm. For λ >∼ 600 nm it
appears that the modeled R is about a factor of 2 too high, however, these experimental
data were analyzed before the importance the self-shading of in-water optical instruments
(especially in the red) was well understood. Although self-shading could not account for
all of the difference seen here, it could account for 30-40% or more of the difference.

As another example of the use of these equations, we examine the ratio Lu(440)/Lu(550)
as a function of the chlorophyll concentration. In forming the ratio, it was assumed that
θ0 = 37◦. The ratio is provided in Figure 6.61 for the nominal IOPs (fap = fbp = 1) as
well as for those used for C70 and Hawaii in Figure 6.60. Also included on the figure is
the original empirical algorithm for retrieval of pigment concentration from water color.
The latter was based on experimental measurements of Lu and C.38 The results show that
the IOP model is clearly comparable with experimental measurements, but shows a strong
dependence of the predicted ratio on fap. As would be expected from Figure 6.60, no single
values for fap and fbp appear to work well over the entire range of C in Figure 6.61.

Although a complete study of the applicability of the QSSA to the examination of
experimental AOPs is beyond the scope of this work, it is hoped that the results presented
in this section clearly demonstrate the value of the QSSA for the exploration of the influence
of various water constituents on the AOPs.

6.5 Summary

In summary, in this chapter we have defined the AOPs of natural waters and provided
examples, from direct experimental measurements and from radiative transfer simulations
utilizing the IOPs, which are directly related to the concentration of the water’s constituents
(estimation of which is the ultimate goal of ocean color remote sensing). We then developed
a simple model of radiative transfer (QSSA) and provided relationships from which the
most important AOPs (from a remote sensing perspective), Lu(0, θvw, φvw) and Kd(0), can
be estimated given the IOPs. The contribution of inelastic processes (Raman scattering
and fluorescence) can also be estimated in a simple manner, but these require the IOPs
at the exciting wavelength(s) as well as the wavelength of interest. Of course, detailed
radiative transfer computation of these quantities will always be superior in accuracy to

Chromatography (HPLC).
38The reader is again reminded that in the earlier experiments C was actually of Chlorophyll a plus Phaeo-

phytin a determined by fluorometry, while the IOPs used here correspond to C representing Chlorophyll a
or total Chlorophyll measured using High Performance Liquid Chromatography (HPLC).
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the relationships developed here (and validated and sometimes improved by comparison to
detailed calculations); however, as the relationships between the IOPs and the constituent
concentrations are rarely known with high accuracy, the simple relationships will often
suffice as demonstrated in Section 6.4.13. We show in an appendix that these QSSA-based
relationships make it possible to invert the AOPs to obtain some of the IOPs. Additional
appendices provide alternative approaches to simple solutions to the radiative transfer
equation, as well as examples of bio-optical algorithms based on measurements of the
AOPs.

Finally, we have not discussed the influence of the bottom on Lu and Kd which is of
interest in remote sensing of shallow coastal waters or inland lakes. We leave this area,
which likely requires special techniques, to others, cogniscent of the fact that our analysis
is valid only when the bottom has a negligible influence on Lu.

6.6 Appendix 1: Estimation of IOPs from AOPs

The existence of formulae relating the AOPs to the IOPs suggests the possibility of using
AOP measurements to estimate some of the IOPs. Assume we are given measurements
of the Ed(z) and Eu(z) at a given wavelength in a homogeneous water body and have
somehow removed the inelastic contributions to the light field. The relevant equations are
Eqs. (6.46)-(6.49):

〈u0w〉0
〈Kd〉X
c

= 1− 〈C ′K〉X ω0F,

R(0) =

3∑

n=1

C ′Rn[QSSA′R(u0)]n,

QSSA′R(〈u0w〉0) =
ω0B

1− ω0F
I ′R(〈u0w〉0),

I ′R(〈u0w〉0) =
I ′Rp(〈u0w〉0)bbp + I ′Rw(〈u0w〉0)bbw

bbp + bbw
,

=
I ′Rp(〈u0w〉0)Bpbp + I ′Rw(〈u0w〉0)Bwbw

Bpbp +Bwbw
,

F = 1−B

B =
Bpbp +Bwbw
bp + bw

(6.78)

From Eu and Ed we form R(0) and 〈Kd〉X . Then we have two known quantities. The water
quantities bbw and I ′Rw(〈u0w〉0) are determined given the wavelength and an estimate of
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D0 = 1/〈u0w〉0 (e.g., see Figure 6.35). The unknown IOPs are the particle phase function
(which provides I ′Rp and Bp), ω0, and c.39

Clearly, there are many more unknowns than knowns. This means we need some ad-
ditional assumptions reduce the number of unknowns. The obvious quantity to focus on
for this purpose is the phase function. If we assume, as we have in much of this chapter,
that the particle phase function is a modified Petzold (or Petzmas) with a given Bp, then
I ′Rp(〈u0w〉0) is determined (Figure 6.44) reducing the unknowns to ω0 and c.40 This sug-
gests that we should be able to obtain ω0 and c, and thus all of the IOPs from R(0) and
〈Kd〉X . However, there is a pitfall. Note the nearness of 〈C ′K〉X to unity in Tables 6.6 and
6.7, i.e., with an error of only a few %, 〈C ′K〉X = 1. When 〈C ′K〉X = 1, we have

〈u0w〉0
〈Kd〉X
c

= 1− ω0F =⇒ a+ bb = 〈u0w〉0〈Kd〉X

and

QSSA′R(〈u0w〉0) =
ω0B

1− ω0F
I ′R(〈u0w〉0) =⇒ bb =

〈u0w〉0〈Kd〉XQSSA′R(〈u0w〉0)

I ′R(〈u0w〉0)
.

Thus, the only IOPs that are derivable from the AOPs are a and bb. This is not surprising;
with a strongly forward scattering phase function, small angle scattering makes a signifi-
cant contribution to b (and therefore c), but in radiative transfer small angle scattering is
essentially equivalent to no scattering at all, so it should not affect the AOPs in a signifi-
cant manner.41 Since B = bb/b, one might think that it would be possible to determine b
from the retrieved bb, but remember that B is the integral of the phase function over the
backward solid angles, and the phase function has been assumed not determined.

A similar retrieval of IOPs can be effected using the often-measured Lu(z = 0, µ = 1, φ)
along with Ed(0). Recall that

Lu(0, µ = 1, φ ;u0, φ0)

Ed(0)
= QSSA′L(u0) =

ω0

4π(1− ω0F )

Pr(u0 → −1, φ0 → φ)

u0 + 1

=
ω0B

(1− ω0F )

(
1

u0 + 1

)
Pr(u0 → −1, φ0 → φ)

4πB

=
bb

a+ bb

(
1

u0 + 1

)
Pr(u0 → −1, φ0 → φ)

4πB
.

Thus, replacing Eu by Lu in the measurements simply replaces IR′ by Pr/B and a geomet-
rical factor. The conclusions are then the same as above with the replacement of QSSA′R

39This should not be surprising, these are just the IOPs that appear in the radiative transfer equation,
which determines the AOP’s, given the incident radiance on the water surface.

40Given ω0 and c, bp = ω0c− bw, and if we start from the bottom equation in Eqs. (6.78) and work our
way upward, we find that all the parameters required to compute 〈Kd〉X and R(0) are available.

41This, in fact, is the basis of the QSSA.
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with QSSA′L. Of course, as before, one still needs to assume a particle phase function
to provide Pr/B. Again, having assumed a Pr, only a and bb can be obtained with any
confidence.

Although one can use these equations to estimate a and bb, it is possible that significant
error can occur because of large deviations of the AOPs from Eqs. (6.78) for some IOPs,
e.g., Table 6.7 and Figures 6.33 and 6.45. Therefore we seek a better AOP→ IOP inversion
technique that avoids these errors. In the next two sections we provide such a method.

6.6.1 Iterative Inversion Algorithm — Homogeneous Water Bodies

The basic idea of an iterative AOP → IOP inversion algorithm is as follows. From the
illumination on the sea surface and measurements of depth profiles of either Eu(z) and
Ed(z) or Lu(z) and Ed(z), we must find IOPs that, when inserted into the radiative transfer
equation, reproduce the measured AOP profiles within experimental error. In this brief
sketch of the method, we limit the discussion to the simplest case: a homogeneous water
body with no inelastic processes, or with the effects of inelastic processes removed, e.g.,
through the methods of Section 6.4.12.

Consider first the case where Eu(z) and Ed(z) are measured. Recall from Section 6.2
that

a(z) = 〈µ(z)〉KV (z), where KV (z) = − d
dz
`n [Ed(z)− Eu(z)].

We form KV (z) and R(z) from the irradiance data, and would like to use KV to find a;
however, we do not yet know 〈µ(z)〉, so initially we approximate it by µ0w. Thus, the
algorithm starts with an initial guess for the absorption coefficient, a(0)(z) = µ0wKV (z)
which is averaged over depth according to

a(0) =

∫ zm
0 a(0)(z) f(z) dz∫ zm

0 f(z) dz
, (6.79)

where zm is the maximum depth of the measurements and f(z) is a weighting function
that could for example be used to give less weight to the less accurate values of KV (z) near
the surface (due to wave-induced light field fluctuations). In our Monte Carlo simulations,
the results are found to be insensitive to the form of f , and we simply take f = 1. Now,
recall Eq. (6.48) that the reflectance just beneath the water surface is given by

QSSA′R(u0w) =
bb

a+ bb
I ′R(u0w) ≈ bb

a
I ′R(u0w)
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and from Figure 6.44 I ′R ∼ 0.33 for the Petzold Phase-T phase function. The lowest order
relationship, QSSA′R ≈ R, provides an initial estimate of bb:

b
(0)
b (z) = 3R(z)a(0)(z). (6.80)

This is then averaged over depth in a manner identical to a(0)(z). As in all inverse algo-
rithms, an assumption must be made for the scattering phase function because it is required
to solve the radiative transfer equation. This assumption (e.g., the Petzold Phase-T) pro-

vides B, which through b(0) = b
(0)
b /B, yields the initial estimate of the scattering coefficient.

For the retrievals here, we used the actual phase function employed in the Monte Carlo
simulations, i.e., the correct phase function. At this point we have all of the IOPs required
to solve the radiative transfer equation: a(0), b(0), and the scattering phase function. The

solution of the transfer equation provides E
(0)
u , E

(0)
d , and E

(0)
0 (z), yielding an estimate for

the 〈µ(z)〉 profile: 〈µ(z)〉(0). The estimated 〈µ(z)〉 provides a new estimate of a(z), i.e.,
a(1)(z) = 〈µ(z)〉(0)KV (z). We get a revised estimate of bb(z) in the following manner. Call-
ing the computed value of R(z) after the initial iteration R(0)(z), ∆R(z) = R(z)−R(0)(z)
is formed, and the change in bb(z) is taken to be ∆bb(z) = 3∆R(z)a(1)(z). However, since
the relationship R(z) ≈ 0.33bb(z)/a(z) is not precise, the revised estimate for bb is taken
to be

b
(1)
b (z) = b

(0)
b (z) + ε∆bb(z)

where ε < 1. This has the property that it pushes (or nudges) bb in the right direction, but
with ε ≈ 0.5, there is little possibility of overshoot. These are then averaged over depth

as before, and b
(1)
b is combined with B to provide b(1). The revised IOPs are then inserted

into the radiative transfer equation and its solution provides the quantities required for

the next step in the iteration: E
(1)
u (z), E

(1)
d (z), and E

(1)
0 (z). This is then repeated many

times. The algorithm is stopped when the residual error after n iterations, defined as

δ(n) ,
1

N

N∑

i=1

∣∣`n[E
(n)
d (zi)]− `n[Ed(zi)]

∣∣+
1

N

N∑

i=1

∣∣`n[E(n)
u (zi)]− `n[Eu(zi)]

∣∣,

where the superscripted irradiances are those computed in the nth iteration and zi are the
depths at which the irradiance data are given, reaches a minimum.

Applying the algorithm to simulated data shows that the retrieved a and bb values are
only weakly dependent on the assumed particle phase function (in the QSSA they depend
on the phase function only through I ′R). Of course, when the correct phase function is
used, the value of B is correct, so an estimate of b can be obtained as well; however, in
general b cannot be obtained using such an algorithm.

In the case where Lu(z) is measured rather than Eu(z). The algorithm is still applicable:
Eu(z) is estimated from Lu(z) using the “Q-factor,” Q = Eu/Lu. At each iteration, the Q-
factor (which is initially set to π) is updated based on the results of the previous iteration,
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i.e., after the nth iteration E
(n)
u (z) = Q(n)(z)Lu(z). This E

(n)
u (z) is combined with measured

Ed(z) and used as in the earlier Eu and Ed algorithm. The performance of the Lu(z) and
Ed(z) is only slightly degraded compared to the Eu(z) and Ed(z) algorithm.

6.6.2 Iterative Inversion Algorithm — Stratified Water Bodies

How do we deal with the vertical stratification of water bodies? From what we saw earlier
in our discussion of stratified media, we can expect that KV , in the manner of Kd will be a
“local” property, i.e., KV (z) will depend mostly on the IOPs at the depth z (Figure 6.51).
Thus, Eq. (6.79) should still provide a good approximation to a(z). However, R(z) is not
local, i.e., it depends on the IOPs at all depths greater than z, so Eq. (6.80) can hardly be

a reasonable approximation to estimate b
(0)
b , nor will ∆bb estimated this way be realistic.

When Lu is the measured upwelling quantity, this can be remedied by using our discussion
in Section 6.4.11 on stratified media. Recall Eq. (6.57):

R
(1)
L (τa, µ, φ) = −

∫ ∞

τa

R
(1)
LH(τ, µ, φ)

d

dτ
exp [−(τ − τa)M(u0, µ)] dτ.

If we compute dR
(1)
L /dτa, we find

R
(1)
LH(τa) = R

(1)
L (τa)−

1

M

dR
(1)
L (τa)

dτa
,

where R
(1)
LH(τa) is the first order reflectance of a homogeneous medium with the same IOPs

as the medium of interest has at depth τa. Introducing the QSSA for which dτa = c(z) dz →
[a(z) + bb(z)] dz → 〈u0w〉0Kd(z) dz, we have

RLH(z) = RL(z)− 1

M〈u0w〉0Kd(z)

dRL(z)

dz
= RL(z)− 1

(1 + 〈u0w〉0)Kd(z)

dRL(z)

dz
. (6.81)

RLH(z) is the value RL(z) would have if the medium were homogeneous for depths > z
with the IOPs that the actual medium has at z. We refer to RLH as RL for the “equivalent”
homogeneous medium. To illustrate the efficacy of Eq. (6.81) we apply it to the three-layer
example discussed in Figure 6.52. This is shown in Figure 6.62 (Right Panel). Note that
the rather confusing behavior of RL(z) with depth has been simplified, with RLH making
it fairly obvious that the medium consists of three homogeneous layers. It is the function
RLH(z) derived from the actual profile of RL(z) that should be used as the initial guess
and the updating of the IOPs. That is, along with Eq. (6.79) as the initial guess for a,

b
(0)
b (z) = 3πRLH(z)a(0)(z)
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should be used as the initial guess for bb(z) with the initial Q(z) taken to be π. Then,

from the solution that yields R
(0)
HL(z), 〈µ(0)(z)〉, and Q(0)(z), the trial IOPs for the next

iteration are

a(1)(z) = 〈µ(z)(0)〉KV (z) and b
(1)
b (z) = b

(0)
b (z) + ε∆b

(0)
b (z),

where now

∆b
(0)
b (z) = 3Q(0)(z) ∆R

(0)
LH(z)a(1)(z) with ∆R

(0)
LH(z) = RLH(z)−R(0)

LH(z).

Thus, what we are trying to do is to find IOPs such that when inserted into the radiative
transfer equation reproduce AOPs of the stratified medium, by updating the trial IOPs us-
ing the “equivalent” homogeneous medium. Note that the equivalent homogeneous medium
is used only for initiating and updating the IOPs.

Examples of the efficacy of this inversion scheme are provided in Figure 6.63, where we
have applied this procedure to the three-layer profiles of RL in Figure 6.62. The figures
show that a is retrieved to high accuracy (error < 1%). The absorption coefficient is
mostly determined by Kd (actually KV ) and this quantity can be accuracy computed.42

In contrast, given a, bb is mostly determined by RL, which being the ratio of two noisy
quantities exhibits significant noise. In addition, the trial bb also depends on dRL/dz,
which is proportional to the difference of two noisy quantities, and also exhibits even more
noise than the individual quantities. Thus, the retrieved bb is expected to be noisier than
a, and the results bear this out. It is seen here that the error in bb appears to be ∼ 10%
near the surface, and decreasing away from the surface. Some of this error is, of course,
the result of the approximate nature of Eq. (6.81); however, we note that the overall error
does not seem to depend on the stratification, so Eq. (6.81) does in fact remove most of
its effects.43

One should note that IOPs obtained by such inversions are actually preferable to those
measured by conventional in-situ instruments, which usually examine small sample volumes
(few cubic cm) and thus undersample the contribution of larger particles (which are few
in number, but there nonetheless). IOPs determined from AOPs sample volume sizes that
are appropriate to radiative transfer (volume size is ∼ 1/K3

d , which can be ∼ 10–1000 m3

42These profiles of RL and Ed are the result of Monte Carlo simulations, and thus can have considerable
noise. The K’s can be accurately found even in the presence of noise by using the observation that the
irradiances decay more or less exponentially. Thus, rather than differentiating the quantities themselves,
we differentiate the log-transformed quantities. This reduces the noise (and improves the accuracy) of the
K estimates.

43Note that in these inversions we have use the stratified version of the algorithm, i.e., the one employing
Eq. (6.81), even for the homogeneous case (ω0 = 0.7 at all depths). Using the homogeneous version of the
algorithm (i.e., dropping the dRL/dz term in Eq. (6.81) for this particular case reduces the error by about
a factor of two.
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or greater). It is these IOPs that, when inserted into the radiative transfer equation, or
our simple relationships, yield the appropriate AOPs.

6.7 Appendix 2: Bio-Optical Algorithms

Although not really a part of the AOP subject per se, it seems appropriate here to discuss
the so-called “bio-optical algorithms:” relationships between the AOPs and the biologically
important parameters like the pigment concentration and the Chlorophyll a concentration.
In Section 6.2 we defined the remote sensing reflectance as Rrs(λ) = Lw(λ)/E+

d (λ), where
Lw(λ) is the water-leaving radiance propagating toward the zenith and E+

d (λ) is the down-
ward irradiance from then Sun and sky falling on the water surface. Here, we examine
important relationships between the remote sensing reflectance at various wavelengths and
the pigment concentration CP . Figure 6.5 shows that (in Case 1 waters) as CP increases,
the reflectance in the blue decreases and the reflectance in the green and yellow increases.
This change in the reflectance spectrum (the “color” of the water) with CP is what origi-
nally led to ocean color remote sensing.

Figure 6.5 suggests that CP could be estimated from a ratio of reflectance in the blue to
that in the green. The first ocean color sensor in space, the Coastal Zone Color Scanner
(CZCS) had spectral bands at 443, 520, 550, and 670 nm, and the first empirical algorithms
for relating reflectance to CP used ratios formed with the first three of these bands. Figure
6.64 shows the original bio-optical algorithms used with the CZCS for Case 1 waters. In
CZCS the idea was to use the Rrs(443)/Rrs(550) algorithm (left panel) for lower values
of CP , and for higher values, where retrieving accurate values of Rrs(443) became very
difficult due to its small value, switch to the Rrs(520)/Rrs(550) algorithm (right panel).
The blue to green ratio is clearly more sensitive to changes in CP than the blue-green to
green ratio, i.e., d

(
log10(CP )

)
/d
(

log10(R)
)

= −1.68 for the blue to green and compared
to −6.15 for the blue-green to green. The performance of the blue-green ratio algorithm
suggests that CP can be estimated from the ratio with an uncertainty of ∼ 30%.

SeaWiFS had more spectral bands in the visible than CZCS. In addition to CZCS, it
had bands at 412, 490, and 510 nm.44 This led to a four-band algorithm called “OC4”
using 443, 490, 510, and 550. This algorithm was of the form

log10(CP ) =

4∑

n=0

an

(
log10(R)

)n
,

44The green band on SeaWIFS was 555 nm compared to 550 nm in CZCS, but that is basically irrelevant
to the CP -retrieval.
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whereR is the largest amongRrs(443)/Rrs(550), Rrs(490)/Rrs(550) andRrs(510)/Rrs(550).
An example of this is provided in Figure 6.65 for the same data set used in Figure 6.64.
The curve on the figure is a quadratic (rather than quartic) least-squares fit to the data.

Algorithms based on differences in reflectances rather than ratios were considered early
on in the CZCS program, but fell out of favor because ratio algorithms were thought to be
more forgiving of errors in atmospheric correction. However, difference algorithms react to
error in Rrs(λ) differently from ratio algorithms. For the former, if

R =
Rrs(λ1)

Rrs(λ2)
, then R+ ∆R =

Rrs(λ1) + ∆Rrs(λ1)

Rrs(λ2) + ∆Rrs(λ2)
≈ R+

∆Rrs(λ1)

Rrs(λ1)
− ∆Rrs(λ2)

Rrs(λ2)
,

and the error in R vanishes in first order if the relative error is the same at both wavelengths.
In contrast, for the algorithm using differences, if D = Rrs(λ1)−Rrs(λ2), then

D + ∆D = Rrs(λ1) + ∆Rrs(λ1)−Rrs(λ2) + ∆Rrs(λ2) = D +
(

∆Rrs(λ1)−∆Rrs(λ2)
)
,

and the error vanishes if the absolute error is the same at both wavelengths. An algorithm
using differences called the “color index” (CI) has been developed and used in processing
of SeaWIFS and MODIS imagery for oligotrophic waters. It is given by

CI = Rrs(550)−
[
Rrs(443) +

(
550− 443

670− 443

)(
Rrs(670)−Rrs(443)

)]
.

On a graph of Rrs as a function of λ, the term in the square brackets is the value Rrs(550)
would have if the spectral variation was a straight line drawn from Rrs(443) to Rrs(670).
The difference between that value and the actual value is CI (so CI is negative for low CP
and positive for high CP . For this color index, if the error in remote sensing reflectance is
linear in λ, i.e., ∆Rrs(λ) ∼ e1 + e2λ, then

∆CI = e1 + 550e2 −
[
e1 + 443e2 −

(
550− 443

670− 443

)(
e1 + 670e2 − e1 − 443e2

)]
= 0, (6.82)

and the error in CI vanishes when the error in Rrs(λ) is a linear function of λ. For the
same data as in Figure 6.64, the relationship between the color index (Eq. (6.82)) and
CP is shown in the right panel of Figure 6.65.45 The straight line on the figure is a linear
regression using only data with CI < 0: log10(CP ) = −0.58 + 70.48CI.

All of these algorithms (with the exception of CI operating over a limited range) display
essentially the same uncertainty in retrieving CP (∼ 30%).46 This is in part due to the
natural variability of the IOPs with CP (Chapter 5). Similar algorithms with similar
accuracies have been developed from a much larger data base using C in place of CP .
These are used in all post-CZCS sensors.

45The quantity actually used in Figure 6.65 was not Rrs, it was πRrs, which is called the normalized
water-leaving reflectance and which is used extensively in later chapters.

46This assumes no error in the associated Rrs(λ)’s.
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6.8 Appendix 3: An Alternative to the QSSA: The Zaneveld
Solution

In this appendix we derive an alternative approximate solution for Lu/Ed at the surface
of an absorbing-scattering medium based on the work of J.R.V. Zaneveld. Consider a 1-
d medium, i.e., one in which the IOPs depend only on depth, illuminated by collimated
irradiance F0. Within the medium, and in the absence of internal sources, the radiance
L(z, ξ̂, λ) is governed by

ξ̂ • êz
∂

∂z
L(z, ξ̂, λ) = −c(z, λ)L(z, ξ̂, λ) +

∫

All ξ̂′
β(z; ξ̂′ → ξ̂, λ)L(z, ξ̂′, λ) dΩ(ξ̂′).

(We now drop the λ’s from the argument list, but remember that this is for monochromatic
radiation.) In general, we note that β(z; ξ̂′ → ξ̂) is slowly varying with ξ̂′ for ξ̂′ • ξ̂ < 0,
while L(z, ξ̂′) is slowly varying for ξ̂′ • êz < 0. Thus, it is convenient to break the integral
term into two terms, one for integrations over the lower hemisphere (ξ̂′• êz > 0) and one for
integration over the upper hemisphere (ξ̂′ • êz < 0), indicated by Ω′d and Ω′u, respectively:

∫

Ω′u+Ω′d

β(z; ξ̂′ → ξ̂)L(z, ξ̂′) dΩ(ξ̂′) =

∫

Ω′u

β(z; ξ̂′ → ξ̂)L(z, ξ̂′) dΩ(ξ̂′)

+

∫

Ω′d

β(z; ξ̂′ → ξ̂, )L(z, ξ̂′) dΩ(ξ̂′).

As we will be interested in radiance traveling in the upward direction, we examine cases
for which ξ̂ is upward, i.e., take ξ̂ • êz < 0. Consider the Ω′d integral. Since β(z; ξ̂′ → ξ̂) is

slowly varying over the range of integration, we define an angle ζ̂ (unknown) such that
∫

Ω′d

β(z; ξ̂′ → ξ̂)L(z, ξ̂′) dΩ(ξ̂′) = β(z; ζ̂ → ξ̂)

∫

Ω′d

L(z, ξ̂′) dΩ(ξ̂′) = β(z; ζ̂ → ξ̂)E0d(z),

(6.83)
where E0d(z) is the downwelling scalar irradiance at z. Likewise, we note that as L(z, ξ̂′)
is slowly varying to the upward integration, we choose η̂ so that

∫

Ω′u

β(z; ξ̂′ → ξ̂)L(z, ξ̂′) dΩ(ξ̂′) = L(z, η̂)

∫

Ω′u

[
L(z, ξ̂′)

L(z, η̂)

]
β(z; ξ̂′ → ξ̂) dΩ(ξ̂′). (6.84)

With these changes,

ξ̂ • êz
∂

∂z
L(z, ξ̂, λ) = −c(z, λ)L(z, ξ̂, λ)

+ β(z; ζ̂ → ξ̂)E0d(z) + L(z, η̂)

∫

Ω′u

[
L(z, ξ̂′)

L(z, η̂)

]
β(z; ξ̂′ → ξ̂) dΩ(ξ̂′).

(6.85)
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Now, apply this to the surface (z = 0) of a medium with no refracting interface (m = 1)
illuminated by a beam of irradiance propagating in the direction ξ̂0:

ξ̂ • êz
(
∂

∂z
L(z, ξ̂)

)

z=0

= −c(0, λ)L(0, ξ̂)

+ β(0, ξ̂0 → ξ̂)E0d(z) + L(0, ξ̂)

∫

Ω′u

[
L(0, ξ̂′)

L(0, ξ̂)

]
β(0, ξ̂′ → ξ̂) dΩ(ξ̂′),

(6.86)
where we have replaced η̂ by ξ̂, as that is the direction we want the radiance. Defining the
attenuation coefficient for radiance in the direction ξ̂, KL(z, ξ̂), through

KL(z, ξ̂) = − 1

L(z, ξ̂)

∂

∂z
L(z, ξ̂),

we have

−ξ̂ • êzKL(0, ξ̂)L(0, ξ̂) = −c(0, λ)L(0, ξ̂)

+ β(0, ξ̂0 → ξ̂)E0d(0) + L(0, ξ̂)

∫

Ω′u

[
L(0, ξ̂′)

L(0, ξ̂)

]
β(0, ξ̂′ → ξ̂) dΩ(ξ̂′),

If we define the shape factor, fL(z, ξ̂), through

fL(z, ξ̂)bf (z) ,
∫

Ω′u

[
L(z, ξ̂′)

L(z, ξ̂)

]
β(z, ξ̂′ → ξ̂) dΩ(ξ̂′), (6.87)

where bf (z) is the forward scattering coefficient (sometimes called F (z)b(z) in the text),
then

L(0, ξ̂) =
β(0, ξ̂0 → ξ̂)E0d(0)

−ξ̂ • êzKL(0, ξ̂) + c(0)− fL(0, ξ̂)bf (0)
, (6.88)

or, considering just the radiance propagating toward the zenith (which we have indicated
by Lu in the text),

Lu(0) =
β(0, ξ̂0 → −êz)E0d(0)

KL(0,−êz) + c(0)− fL(0,−êz)bf (0)
, (6.89)

Recall that the average cosine of the downwelling light field, 〈ud(z)〉, is defined through
〈ud(z)〉 = Ed(z)/E0d(z), so

Lu(0)

Ed(0)
=

β(0, ξ̂0 → −êz)
〈ud(0)〉[KL(0,−êz) + c(0)− fL(0,−êz)bf (0)]

, (6.90)
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In the case we are examining, the quantity 〈ud(0)〉 is just u0 = cos θ0, so finally,

Lu(0)

Ed(0)
=

β(0, ξ̂0 → −êz)
u0[KL(0,−êz) + c(0)− fL(0,−êz)bf (0)]

, (6.91)

Equation (6.91) is an exact solution of the radiative transfer problem, but unfortunately
it involves two unknown AOPs,47 KL(0,−êz) and fL(0,−êz). Following Zaneveld, it may
be better to refer to this equation as a restatement of the radiative transfer equation. To
proceed in making it useful and to connect it to what we have done earlier, we need to
approximate the AOPs.

The shape factor fL defined in Eq. (6.87) has not been encountered in the text, so
we need to familiarize ourselves with its behavior as a function of the IOPs. As a simple
example of the variation of fL with the IOPs, we shall characterize β using the Henyey-
Greenstein (H-G) phase function and calculate fL as a function of the phase function
asymmetry parameter g and the single scattering albedo ω0. Note that as g increases from
0 to unity the H-G phase functions progresses from isotropic to very strongly peaked in
the forward direction. As a further simplification we assume the Sun is at the zenith,
so ξ̂0 = êz. The results of this exercise are shown in Figure 6.67 (right panel), which
provides fL(0,−êz), when ξ̂0 = +êz, as a function of ω0 and the asymmetry parameter g.
Included for comparison on the figure is the result for pure Rayleigh scattering (Ray.). In
the particular case that we are examining, fL is given by

fL(z,−êz) =
1

bf (z)

∫

Ω′u

[
L(z, ξ̂′)

L(z,−êz)

]
β(z, ξ̂′ → −êz) dΩ(ξ̂′).

If L(z, ξ̂) is uniform, then the integral is just bf (z) and fL = 1. As ω0 increases, there is

more and more multiple scattering, which renders L(z, ξ̂) more and more uniform and so
fL → 1 as ω0 → 1.48 This is clearly seen in all of the cases in the figure. If β is strongly
peaked in the forward direction, then the largest contribution to the integral is from ξ̂ = −êz
and the result approaches unity as β becomes more and more forward peaked. For phase
functions Petzold and Petzmas, which have an integrable singularity at zero scattering
angle, fL is closer to unity for all ω0 than seen in Figure 6.67 for the Henyey-Greenstein
phase function. In the case of Rayleigh scattering, which has no forward peak, fL is closer
to unity than for HG, but for a different reason: the radiance distribution in the Rayleigh
case is closer to uniform than the HG cases for all ω0. For small ω0 a simple formula can
be developed for fL at the surface in terms of the phase function using the SSA or QSSA:

fL(0,−êz) =
4π

P (π)

∫ Θ=180◦

Θ=90◦

P (Θ)P (π −Θ)

1− cos Θ
sin Θ dΘ.

47The quantity KL(0,−êz) was referred to as KL(0) in the text.
48Actually, the upwelling radiance distribution in general will never be uniform, so fL = 1 is not actually

reached at ω0 = 1.
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This can be used to evaluate fL as ω0 → 0. The Petzold (and Petzmas) phase function is
more difficult to deal with. As seen in Figure 6.67 (left panel) it scatters much more in
the forward direction than either of the HG phase functions in the figure. In fact, between
0.1◦ ≤ Θ ≤ 1◦, P (Θ) ∼ Θ−1.38, so the manner in which the singularity is treated can affect
the resulting fL at the level of ∼ 1% or so. Fitting P (Θ) in the range 0.1◦ → 1◦ to a power
law, which was assumed valid to Θ = 0, resulted in fL = 0.994, using the above formula
for ω0 → 0.

Equation (6.91) is exact, but has some similarities to the QSSA formulas. How are they
related? As we have just seen, when the phase function is strongly peaked in the forward
direction, as are those encountered in marine optics, the Ω′u integral, Eq. (6.84), to a good
approximation is

∫

Ω′u

β(z; ξ̂′ → ξ̂)L(z, ξ̂′) dΩ(ξ̂′) ≈ L(z, ξ̂)

∫

Ω′u

β(z; ξ̂′ → ξ̂) dΩ(ξ̂′).

The integral on the right hand side of this is just b
(
1− Pru(u, φ)

)
, where

Pru(u, φ) ,
1

4π

∫ 2π

0
dφ′
∫ 1

0
Pr(u

′ → u, φ′ → φ) du′,

u = −êz • ξ̂ (and φ is irrelevant), and Pr is the scattering phase function remaining after
the Dirac delta function has replaced the forward peak in the QSSA. The function Pru
is provided in Figure 6.15 for the Petzold phase function (as well as the Petzmas phase
function). Thus, with this approximation

fL(0,−êz)bf (0) = b(0)
(
1− Pru(1)

)
= c(0)ω0(0)

(
1− Pru(1)

)
.

In addition, we have seen that for the limited number of examples considered, when ξ̂ =
−êz, KL(0,−êz)) = KL(0) ≈ Kd(0), but an excellent QSSA approximation to Kd(0) is seen
in Figure 6.17, where Kd(0) = u0c(0)

[
1− ω0(0)

(
1− Pru(u0)

)]
. With these replacements,

Lu(0)

Ed(0)
=

β(0, ξ̂0 → −êz)
c(0)

[
1− ω0(0)

(
1− Pru(u0)

)]
+ u0c(0)

[
1− ω0(0)

(
1− Pru(1)

)
]
.

Noting that Pru(1) = B and Pru(u0) ≈ B for θ0 <∼ 35◦ − 40◦ (Figure 6.15), we finally
obtain

Lu(0)

Ed(0)
=

1

4π

ω0(0)P (0, ξ̂0 → −êz)[
1− ω0(0)F (0)

](
1 + u0

) , (6.92)

where β/c = ω0P/4π and F = 1 − B. Equation (6.92) is identical to the modified QSSA
approximation to Lu/Ed, i.e., QSSAL′(u0) (Eq. (6.24)). Thus, one might argue that Eq.
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(6.91) is an exact generalization of the QSSA in which the AOPs are explicitly retained
rather than approximated.49

Equation (6.88) also shows that the departure of the BRDF from that predicted by
the single scattering approximation (or by the QSSA) with the IOPs, is governed by the
variation of KL(0, ξ̂) and fL(0, ξ̂) with ξ̂.

What about application to a real waterbody with a refracting interface and an atmo-
sphere above. The form of Eq. (6.90) remains the same, but ξ̂0 is replaced by the unknown
angle ζ from Eq. (6.83), i.e.,

Lu(0)

Ed(0)
=

β(0, ζ → −êz)
〈ud(0)〉[KL(0) + c(0)− fL(0,−êz)bf (0)]

.

In the absence of the atmosphere, the interface provides refraction of the solar beam,
changing ξ̂0 to ξ̂0w, and reflection of upwelling radiance from below. Thus, the down-
welling radiance incident on the waterbody just beneath the interface consists of a beam
propagating in the direction ξ̂0w

50 and diffuse radiance reflected from the interface. Since
the direct solar part is much stronger than the diffuse component, the angle ζ ≈ ξ̂0w and
〈ud(0)〉 ≈ u0w, or in case of a rough surface 〈ud(0)〉 ≈ D−1

0 (see Section 6.4.4.2). The
addition the atmosphere strengthens the diffuse part relative to the refracted direct solar
beam, but the approximations are still valid, albeit a bit weaker. Thus, in a real waterbody,
an excellent approximation is

Lu(0)

Ed(0)
≈ D0β(0, ξ̂0w → −êz)
KL(0) + c(0)− fL(0,−êz)bf (0)

, (6.93)

where of course the AOPs are evaluated in the presence of the air-water interface and the
atmosphere.

One fascinating feature of Eq. (6.91) and (6.93) is the fact that they are applicable to
a medium with vertically stratified IOPs as well as a homogeneous medium. Since all of
the IOPs in the equation are evaluated at z = 0, any effect of the vertical stratification on
Lu/Ed must be manifest in the values of the AOPs. These equations can be considered
the generalizations of the QSSA to stratified media.

Earlier in Section 6.4.11 we derived an approximate theory of Lu/Ed in a stratified
medium and provided examples of profiles of KL and Lu/Ed for a three-layer medium in

49Another form of Eq. (6.91) that facilitates its comparison to the QSSA is

Lu(0)

Ed(0)
=

ω0P (ξ̂0 → −êz)
u0[KL/c+ 1− fL(0,−êz)ω0F ]

,

where all quantities are evaluated just beneath the surface.
50Or if the surface is rough, propagating in a small range of directions close to ξ̂0w.
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Figures 6.51 and 6.52, respectively. One should particularly take note of the very strong
effect of the stratification on KL(τ). For the three profiles examined in the figures, the
values for fL(0,−êz) were all close to unity. Thus, in this case, virtually all of the influence
of stratification is manifest in KL(0),51 and it quantitatively explains the variation of Lu/Ed
at the surface with the varying stratification. The exact Eq. (6.88) is applicable to all
depths in the medium, and the reader can see that it qualitatively predicts the behavior
of Lu(τ)/Ed(τ) in Figures 6.51 and 6.52. One exception is within the layer where ω0 = 0.
There, KL = a, c = a, and β = 0, so bf = 0 yielding 0/0, and the formula yields an
indeterminate result. However, for a real waterbody, ω0 = 0 is not possible.

6.9 Appendix 4: An Alternative to the QSSA: The Modified
δ-Isotropic Solution

In this appendix we develop an alternative approach to the QSSA that is similar in spirit
but different in some important details. Recall that in the QSSA, the actual phase function
in the problem was approximated and replaced by a Dirac delta function and a remainder
Pr:

P (ξ̂′ → ξ̂) = Aδδ
(2)(ξ̂′ − ξ̂) +ArPr(ξ̂

′ → ξ̂).

In the QSSA, we chose Pr to be the actual phase function for scattering angles greater than
some value that was determined by the geometry of the particular problem. Here we replace
Pr by a constant value over the entire range of scattering angles, so the scattering phase
function is replaced by a Dirac delta function plus an isotropically scattering component
with backscattering probability B. Evaluating Aδ and Ar yields

Aδ = 4π(1− 2B) and Ar = 2B.

We call this procedure the “δ-Isotropic” approximation.

Inserting this phase function into the radiative transfer equation for a homogeneous
medium provides the following equation for the radiance:

u
dL(z, u)

dz
=
[
− c+ b(1− 2B)

]
L(z, u) + bB

∫ 1

−1
L(z, u′) du′.

Rewriting in terms of optical depth τ and single scattering albedo ω0 gives

u
dL(τ ′, u)

dτ ′
= −L(z, u) +

ω′0
4π

∫ 1

−1
L(z, u′) du′, (6.94)

51There is a very small 〈ud(0)〉 change caused by the stratification. It varied by at total of about 1%
between the two extreme profiles.
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where

τ = cz, ω0 =
b

c
, τ ′ = τ(1− ω0(1− 2B)), and ω′0 =

2ω0B

1− ω0(1− 2B)
.

We apply this equation to the problem of radiance exiting the surface (z = 0) of such
a medium when it is illuminated by the solar beam of irradiance F0 propagating in a
direction specified by ξ̂0 = (u0, φ0). S. Chandrasekhar has provided the exact solution to
this problem in the following form:

L(0, µ)

Ed(0)
=
ω′0
4π

H(u0, ω
′
0)H(µ, ω′0)

u0 + µ
, (6.95)

where the H-functions are solutions to the nonlinear integral equation

H(u, ω0) = 1 +
ω0

2
uH(u, ω0)

∫ 1

0

H(u′, ω0)

u′ + u
du′, (6.96)

and the propagation direction is ξ̂ = (−µ, φ). The beauty of this solution is that it is
exact, i.e., it includes all orders of multiple scattering. The H-functions can be derived
numerically by iteration; however, there are several approximate formulas available that
provide them with high accuracy. The one we use in the computations described below is

1

H(u, ω0)
=
[
1−

(
1−

√
(1− ω0)

)
u×

{
r0 +

(
1− r0

2
− r0u

)
`n
(1 + u

u

)}]
, (6.97)

where

r0 =
2

1 +
√

(1− ω0)
− 1.

The error over the full range of both u and ω0 is less than 1%.52

Equation (6.95) cannot reproduce the variations in the BRDF that are due to structure in
the scattering phase function, as isotropic scattering has no such structure. We can remedy
this by noting that, as scattering is similar to a diffusion process, the phase function-induced
structure in the BRDF comes from the first few scatterings. With this in mind, we subtract
the single scattering contribution to the BRDF we have computed, and replace it with the
single scattering solution derived with the correct phase function. This procedure results
in a revised BRDF;

L(0, µ, φ)

Ed(0)
=
ω′0
4π

H(u0, ω
′
0)H(µ, ω′0)

u0 + µ
+
ω0

4π

(
P (u0, φ0 → −µ, φ)− 2B

u0 + µ

)
, (6.98)

52A simpler approximation, but with errors as high as 4% is

H(u, ω0) =
1 + 2u

1 + 2u
√

(1− ω0)
.
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where P is the actual phase function for the medium. In actuality, the δ-Isotropic approx-
imation is being used to assess the effect of multiple scattering. We refer to this procedure
as the “modified δ-Isotropic” approximation (MDIA). Note that in the limit that ω0 → 0,
for which H(u, ω0)→ 1,

L(0, µ, φ)

Ed(0)
→ ω0

4π

(
P (u0, φ0 → −µ, φ)

u0 + µ

)
,

the correct single-scattering result.

To see how well the MDIA approximates the Lu/Ed at nadir, we compare it with the
QSSA in Figures 6.66 and 6.68, for water parameters that are the same as those in Section
6.4.3, Figure 6.26 (the right panels in Figures 6.66 and 6.68 are identical to Figure 6.26).
We note that that Eq. (6.98) is slightly better than the QSSA for Bp = 0.0181, but
somewhat poorer for Bp = 0.0020, where the QSSA becomes quite accurate because the
phase function more closely resembles a Dirac delta function.

How well does Eq. (6.98) perform in computing the shape of the BRDF? In Figure 6.69
we compare the exact and computed (normalized) radiance distributions as functions of
the viewing angle, arccos(µ). The computations in the figure are for both the Petzold and
the Petzmas phase functions (both have BP = 0.0181). The Sun is at the zenith. Note
that in contrast to the QSSA, which always yields a normalized BRDF that is too low at
all viewing angles, the modified δ-Isotropic approximation performs better in reproducing
the BRDF. For the Petzmas phase function it can reduce the QSSA-error in the predicted
normalized BRDF in this case from about 10% to less than about 2%. The performance for
the Petzold phase function, which has more structure in the backward scattering angles, is
poorer, but the QSSA-error reduction is still significant, e.g., from as much as −20% for
ω0 = 0.9 and θv = 30◦ to about +4%.

In light of the success of the modified δ-Isotropic approximation in the computation
of the remote-sensing reflectance and the BRDF, one is led to expect that it should also
be reasonably accurate for computing R(0). The solution to Eq. (6.95) for the diffuse
reflectance, Eu(0)/Ed(0), can be shown to be

R(0) = 1−H(u, ω′0)
√

(1− ω′0),

so, from the integration of Eq. (6.98),

R(0) =

∫ 2π

0
dφ

∫ 1

−1
dµ
µL(0, µ, φ)

Ed(0)
= 1−H(u, ω′0)

√
(1− ω′0) +RPhase −RIso., (6.99)

where

RPhase = ω0I
′
R(u0) and RIso. =

ω0

2

[
1− u0 `n

(
1 + u0

u0

)]
,
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are the single scattering reflectances for the true phase function and for an isotropic phase
function, respectively. The I ′R is provided in Figure 6.18. To test the quality of the
modified δ-Isotropic approximation in the prediction of R(0), the same cases are employed
as those that were examined in Figure 6.25, i.e., combinations of particles and water for
two particle phase functions: one with Bp = 0.0181 (Petzold) and one with Bp = 0.0020
(modified Petzold). The simulations used three solar zenith angles (θ0 = 10◦, 37◦ and
60◦), nine single scattering albedos (ω0 = 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, and 0.9)
and values of the total backscattering probability B ranging from Bp to 0.12. Clearly the
smaller Bp yields significantly better performance than the larger. For Bp = 0.0181 the
performance degrades as θ0 increases. The largest errors are usually associated with the
largest values of ω0 and θ0. At small θ0 the agreement is excellent. For θ0 = 10◦, the
average-absolute error is 2.4% for Bp = 0.0020 and 4.2% for Bp = 0.0181. In contrast, for
θ0 = 60◦ the corresponding errors are 9.8% and 16.3%. Overall the error is 5.7% and 9.8%,
respectively for Bp = 0.0020 and Bp = 0.0181, compared to 1.6% and 6.3% for QSSA′R.
Interestingly, unlike the situation with the BRDF, the phase function correction to the
modified δ-Isotropic — the RPhase and RIso. terms in Eq. (6.99) — only make as small
improvement in the performance for R(0): overall the error for Bp = 0.0181 without the
correction is 13.2% compared to 9.8% with the correction

An important feature of the δ-Isotropic approximation is that it can also be used to
estimate the AOPs beneath the surface from the IOPs. Assume that we have solved Eq.
(6.94) for L(τ ′, u). From this one can find all of the AOPs. For example,

κ′d(τ
′) = −d `nEd(τ

′)

dτ ′
,

where τ ′ = c′z, and c′ = c
(
1− ω0(1− 2B)

)
, c γ. Therefore,

κ′d(τ
′) = − 1

γc

d `nEd(τ
′)

dz
=
Kd(τ

′)

γc
, so Kd(z) = γc κ′d(γcz).

Thus, if we want Kd(z0) in a medium characterized by ω0, B, and c, we find ω′0, solve
Eq. (6.94) for L(τ ′, u), and compute κ′d(τ

′). The required Kd(z0) is then γc κ′d, with κ′d
evaluated at τ ′ = γcz0. Similar equations are easily verified for Ku(z), KL(z), etc. The
irradiances can be directly found in the same way, e.g., Ed(z0) = Ed(τ

′), with Ed(τ
′)

evaluated at τ ′ = γcz0.

To see how well the δ-Isotropic approximation predicts the AOPs, we examine two of the
cases in Figures 6.66, 6.68 and 6.70. Both cases have B = 0.10 and ω0 = 0.8. The first one
has Bp = 0.0020, for which the modified δ-Isotropic approximation yields quite accurate
values for Lu(0) and R(0), while the second has Bp = 0.0181 for which the δ-Isotropic
approximation is in error by as much as 10%. Several of the AOPs are provided for these
two cases at the surface and at a water depth of 10 m in Table 6.12. Again, there is no
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atmosphere and the refractive index of water is taken to be unity. The results are clearly
excellent for Bp = 0.0020. As expected, for Bp = 0.0181 the results are poorer, with errors
in the various K’s of as much as 10%. Clearly, the δ-Isotropic approximation can provide
reasonable, and sometimes excellent, estimates of AOPs within the water column.

Table 6.12: Comparison between AOPs computed from the exact (Monte Carlo)
solution and the δ-Isotropic approximation to the radiative transfer problem with
θ0 = 60◦, ω0 = 0.80, and B = 0.10. There is no atmosphere and the refractive
index of water is taken to be unity.

Bp = 0.0020 (c = 0.0480 m−1) Bp = 0.0181 (c = 0.0555 m−1)

Quantity Exact (MC) δ-Isotropic Exact (MC) δ-Isotropic

R(0) 0.1365 0.1355 0.1519 0.1355

Lu(10 m) 0.0124 0.0124 0.0119 0.0124

Ed(10 m) 0.3835 0.3843 0.3608 0.3684

Eu(10 m) 0.0524 0.0521 0.0553 0.0499

KL(10 m) 0.0273 0.0267 0.0327 0.0308

Kd(10 m) 0.0269 0.0266 0.0335 0.0308

Ku(10 m) 0.0268 0.0268 0.0343 0.0312

K0(10 m) 0.0262 0.0260 0.0325 0.0304

〈µd(10 m)〉 0.480 0.483 0.465 0.482

〈µu(10 m)〉 0.413 0.423 0.388 0.423

What effect does the atmosphere and the reflecting water surface have on the effective-
ness of the δ-Isotropic approximation? We provide at least a glimpse of the effectiveness of
the approximation in a more realistic setting, by looking at the same two cases as above,
but with the atmosphere (characteristic of the actual atmosphere at 400 nm with molecular
and aerosol scattering) in place and a reflecting interface between the water and the at-
mosphere. We compare the full, exact computation with for θ0 = 60◦, with the δ-Isotropic
approximation (in the absence of the atmosphere), but for θ0 = 40.52◦, the refracted so-
lar zenith angle in the water for θ0 = 60◦. This is in the same spirit as replacing u0 in
the QSSA without the refracting interface by u0w with a refracting interface. The results
are provided in Table 6.13, where because the atmosphere and surface will attenuate the
absolute irradiances in the water, we compare only the ratio quantities. Again the agree-
ment between the exact and approximate computations is quite good. The somewhat large
difference in the values of K0 (even for Bp = 0.0020) is attributed to internally reflected
radiance in the case with the refracting interface. This causes E0 to decay faster with
depth than it does when the reflecting interface is missing.

The modified δ-Isotropic approach discussed here is an alternative to the QSSA for
computing the remote-sensing reflectance and the diffuse reflectance. For the tests we
examined it is somewhat less accurate than the QSSA in most respects, but more accurate
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Table 6.13: Comparison between AOPs computed from the exact (Monte Carlo)
solution and the δ-Isotropic approximation to the radiative transfer problem with
ω0 = 0.80, and B = 0.10. For the exact computation θ0 = 60◦, the atmosphere
is characteristic of that at 400 nm, and the refractive index of water is 1.333. For
the δ-Isotropic there is no atmosphere, the refractive index of water is taken to be
unity, and θ0 = 40.52◦, the refracted solar zenith angle for θ0 = 60◦. The quantity
L∗u(10 m) is Lu(10 m)/Ed(10 m).

Bp = 0.0020 (c = 0.0480 m−1) Bp = 0.0181 (c = 0.0555 m−1)

Quantity Exact (MC) δ-Isotropic Exact (MC) δ-Isotropic

R(0) 0.1147 0.1119 0.1211 0.1119

L∗u(10 m) 0.0320 0.0296 0.0321 0.0296

KL(10 m) 0.0173 0.0174 0.0216 0.0197

Kd(10 m) 0.0179 0.0178 0.0218 0.0207

Ku(10 m) 0.0174 0.0171 0.0208 0.0198

K0(10 m) 0.0167 0.0149 0.0195 0.0179

〈µd(10 m)〉 0.709 0.714 0.690 0.714

〈µu(10 m)〉 0.475 0.442 0.439 0.442

in one: the computation of the shape of the normalized BRDF.53 In addition, it can be
applied to the approximation of many AOPs within the water column that are not available
in the QSSA. Unlike QSSA, at present it can only be applied to a homogeneous medium,
but it should be investigated further. However, for the pedagogical purposes the author
believes the QSSA is more appropriate for most applications because of its transparency.

6.10 Bibliographic Notes

Unless otherwise indicated, the radiative transfer simulations presented in this chapter are
new and were carried out by the author specifically to illustrate ideas and concepts in the
text.

6.2 AOP Definitions

The material in this section is basic to ocean optics. It was largely developed by R.

53This one improvement is not to be underestimated. In Chapter 13 we discuss the validation of ocean
color sensors, for which comparison of surface and sensor water-leaving radiances are required. For such
comparisons the surface and sensor measurements of the water-leaving radiance are rarely made viewing in
the same direction. Since the water-leaving radiance depends on the viewing direction it is important to
have a method of transforming the measurements from one viewing direction to another – just what the
modified δ-Isotropic is better at.
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Preisendorfer [Preisendorfer, 1961, 1976a] and is described in greater detail in Mobley
[1994].

6.3.1 Examples of AOPs Derived from Experimental Measurements

The data from Hawaii (Figures 6.1 to 6.4) are from Gordon et al. [2009]. The data from
Figures 6.5 to 6.7 are from Morel and Prieur [1975] (see also Morel and Prieur [1977]). In
the latter figures, those labeled “D” are from the Caribbean and the Sargasso Sea, while
those labeled “C” are off the coast of Mauritania.

6.3.2 Examples of AOPs Derived from Computed Light Fields

The examples of the AOPs displayed in Figures 6.8 through 6.13 are the results of Monte
Carlo simulations carried out by the author. In these examples the radiative transfer code
did not account for the effects of polarization or inelastic scattering on the light field. The
code is described in Mobley et al. [1993] along with comparisons with other codes.

6.4 Relationships between AOPs and IOPs

Most of this section is based on work by the author (published and unpublished). Al-
though numerical codes are available for full radiative transfer computations of all AOPs
given the IOPs — most notably “HydroLight” [Mobley, 1989, 1994] — the author believes
there is value in simple, easy to understand (and derive) analytical relationships between
the various relevant quantities. Much of the material in this section is an attempt to ex-
plore the full usefulness of the QSSA for providing such relationships between the AOPs
to the IOPs.

The technique of replacing a portion of the forward peak of the scattering phase function
with a Dirac delta function seems to have originated with Potter [1969]. The initial QSSA
applied to ocean optics was described by Gordon [1973] to approximate R(0), and has been
refined over the years, e.g., Gordon et al. [1975]. The application to Lu was first made by
Gordon et al. [1988], even though the basic ingredient was already in the 1973 paper. In
1973, unlike irradiance, radiance measurements were few at the time and did not become
routine until the mid 1980’s.

In this section, for the least-squares fits of the “exact” Lu to QSSA′L(u0w), the radiance
Lu was calculated with a radiative transfer code that included the full effects of polarization.

6.4.3 Decomposition of Scattering into Water and Particle Components
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We note that

QSSA′L(µ, φ;u0, φ0) =
ω0

4π[1− ω0(1−B)]

Pr(u0 → −µ, φ0 → φ)

u0 + µ

=
bb

a+ bb

Pr(u0 → −µ, φ0 → φ)/B

u0 + µ
,

and

QSSA′R(u0) =
ω0

4π[1− ω0(1−B)]

∫ 2π

0
dφ

∫ 1

0

µPr(u0 → −µ, φ0 → φ)

u0 + µ
dµ =

bb
a+ bb

IR
B
.

In earlier works, e.g., Gordon et al. [1988] and Gordon et al. [1975], Lu/Ed and R were
expanded in powers of the parameter G = bb/(a+bb); however, here linear relationships are
found. This is due to the fact that in the earlier studies the phase function consisted of the
Petzold Phase-T alone, so those results corresponded to a single value of B. In contrast, in
this Section, B varied over the range from 0.003 to 0.12 and the linear relations are better
in this more realistic case (but see 6.4.9.1).

6.4.9.1 Lu/Ed

The hybrid model, in which different formalisms are used for ω0 smaller or larger than
0.7, described in this section has not been previously published.

6.4.9.4 An Important Observation

The observation that b and c cannot be estimated from R is developed in detail in
Gordon [1993].

6.4.10 The Penetration Depth

The relationship between the penetration depth and the Kd was first worked out by
Gordon and McCluney [1975].

6.4.11 QSSA Estimate of the Influence of Vertical Structure in the IOPs

The influence of vertical stratification of the IOPs on the AOPs — particularly on
R(0) — has been studied by Gordon [1978a], Gordon and Clark [1980b], Zaneveld [1982],
Sathyendranath and Platt [1989] and Gordon [1992]. The derivation here is the author’s;
however, it was inspired by Zaneveld et al. [2005]. It is superior to the earlier treatments.

A demonstration that Kd is a “local” property of a stratified medium is made in Gordon
[1980].
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6.4.12 The Influence of Inelastic Processes on the AOPs

The influence of fluorescence on the AOPs was first worked out in Gordon [1979] and that
of Raman scattering by Sugihara et al. [1984], Stavn and Weidemann [1988] and Marshall
and Smith [1990], and more recently by Gordon [1999] based on newer measurements of the
Raman scattering cross section by Bartlett et al. [1998]. The independence of the volume
fluorescence function βF on scattering angle was directly verified by Gordon et al. [1993]
for several species of phytoplankton. High spectral resolution measurements of the effect of
inelastic processes on the depth of solar Fraunhofer absorption lines in natural waters (not
discussed here) can be found in Ge et al. [1995] and provide a direct separation between
the contribution of elastic and inelastic processes to the AOPs. The model presented in
6.4.12.3 is the author’s own development [.gordon 2014.], although similar ideas can be
found in Bartlett [1996] and Sathyendranath and Platt [1998].

6.4.13 Examples of Modeling with the QSSA

The possibility of a large instrument self-shading error in early spectral radiometric
measurements, especially in the red (as mentioned in this section) was pointed out and
quantified by Gordon and Ding [1992].

6.6 Appendix 1: Estimation of IOPs from AOPs

Various methods for AOP→ IOP inversion are reviewed in considerable detail in Gordon
[2002]. The method described in this appendix for homogeneous waters is from Gordon
and Boynton [1997]. It was extended to water bodies with depth-varying IOPs in Gordon
and Boynton [1998] and waters where Raman scattering is important in Boynton and
Gordon [2000], as well as waters for which the phase function has a significant Rayleigh
component (very clear water) [Boynton and Gordon, 2002]. For preparation of Figure 6.63,
in the Gordon and Boynton [1998] algorithm we replaced the original Gordon and Clark
[1980b] treatment of vertical structure by Eq. (6.81), which is superior. Examples of the
application of these methods to experimental data can be found in Gordon et al. [2009]
and Gordon et al. [2009]. The fact that the scattering coefficient cannot be retrieved from
the AOPs alone because near-forward scattering contributes strongly to b but only weakly
to the AOPs is shown directly through simulations by Gordon [1993].

6.7 Appendix 2: Bio-Optical Algorithms

Ratio algorithms of the type shown in Figure 6.64 were first given by Gordon and
Clark [1980a] and in the form here by Gordon et al. [1983]. The OC4-type algorithms are
described in O’Reilly et al. [1998] and O’Reilly et al. [2000]. Difference algorithms were
first introduced by Viollier et al. [1980] and the novel CI algorithm was developed by Hu
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et al. [2012].

6.8 Appendix 3: An Alternative to the QSSA: The Zaneveld Solution

The solution of the radiative transfer equation culminating in Eq. (6.88) closely follows
that provided by Zaneveld [1982] and Zaneveld [1995].

6.9 Appendix 4: An Alternative to the QSSA: The Modified δ-Isotropic Solu-
tion

The solution to Eq. (6.95) is provided in Chandrasekhar [1950]. The approximation to
the H-function in Eq. (6.98) is from Hapke [1993] and the simpler approximation in the
footnote from Hapke [1981]. This particular phase function was first (to our knowledge)
used by DiToro [1978] as a simplification to the QSSA. DiToro derived Eq. (6.95), but then
solved it in the QSSA approximation rather than adapting Chandrasekhar’s exact solution
for R as we did here. Following Chandrasekhar [1950], he also solved for the asymptotic
radiance distribution and K∞ (Chapter 2), as did Gordon and Xu [1996], in applying the
approximation to inelastic processes.
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6.11 Figures
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Figure 6.1: Examples of the spectral Ed (left panel) and Lu (right panel) obtained
in the clear waters off Lanai, Hawaii. The sky was clear and the solar zenith angle
was 36◦.
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Figure 6.2: Profiles of Kd (left panel) and RL (right panel) at 482.73 nm derived
from the data in Figure 6.1.
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Figure 6.3: Spectra of Kd and KL for the Data from Hawaii in Figure 6.1.
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Figure 6.4: Spectra of RL and πRL for the Data from Hawaii in Figure 6.1.
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Figure 6.5: Spectra of R for Case 1 waters with a range of pigment concentration.
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Figure 6.6: Spectra of Kd for Case 1 waters with a range of pigment concentration.
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Figure 6.7: Examples of R and Kd providing a comparison of spectra between Case
1 (C70) and sediment-dominated Case 2 (C35) waters with comparable pigment
concentrations.
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Figure 6.8: Depth profiles of the irradiance reflectance (R = Eu/Ed) at 440 nm
(top) and 550 nm (bottom). The key to the legend describing the various curves
is as follows: “t0-s0-N” means the solar zenith angle is θ0 = 0◦ (t0) the surface
slope standard deviation is σ = 0 (s0) and there is no atmosphere (N), e.g., the
case labeled “t8-s2-A” refers to θ0 = 80◦, σ = 0.2 with an atmosphere present over
the water.
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Figure 6.9: Depth profiles of the irradiance attenuation coefficient Kd at 440 nm
(top) and 550 nm (bottom). The key to the legend is the same as in Figure 6.8.
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Figure 6.10: Depth profiles of average cosine of the downwelling light field 〈µd〉 =
Ed/E0d (top: 440 nm left, 550 nm right) and the average cosine of the entire light
field 〈µ〉 = (Ed − Eu)/E0 (bottom: 440 nm left, 550 nm right). The key to the
legend is the same as in Figure 6.8.
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Figure 6.11: Depth profiles of Q = Eu/Lu at 440 nm (left) and 550 nm (right).
The key to the legend is the same as in Figure 6.8.
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Figure 6.12: Depth profiles of R/Q = Lu/Ed at 440 nm (left) and 550 nm (right).
The key to the legend is the same as in Figure 6.8.



534 CHAPTER 6. APPARENT OPTICAL PROPERTIES (AOPS)

K  (m-1) 

0.015 0.020 0.025 0.030 0.035 0.040

D
ep

th
  (

m
) 

0

20

40

60

80

100

K u

K0

KL

Kd 

K  (m-1) 

0.08 0.09 0.10 0.11 0.12

D
ep

th
  (

m
) 

0

20

40

60

80

100

K u

K0

KL

Kd 

Figure 6.13: Depth profiles of the various K functions (left, 440 nm; right, 550
nm). This is for θ0 = 60◦ and σ = 0, no atmosphere.
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Figure 6.14: Schematic for help understanding Pru(u0, φ0) and Prd(u0, φ0). Sun-

light is propagating along ξ̂0 making an angle θ0 with the vertical (the dashed line)

and then scattered in the medium in the direction ξ̂. The elliptical-looking curve
represents the scattering phase function on a polar plot (phase function in a given
direction is proportional to the distance from the point O in that direction, and the
point B is direct backscattering). The surface of the medium is along the line AA’.
Pru(u0, φ0) is found by accounting for all directions in which the vertical compo-

nent of ξ̂ is upward (the vertically striped volume). The portion without striping

is replaced by a Dirac Delta function at ξ̂ = ξ̂0. Thus, Prd(u0, φ0) is the volume
represented by the horizontal striping. Taken together, Pru(u0, φ0) + Pru(u0, φ0)
is the integral of the phase function over solid angles from θ = π/2− θ0 to π and
φ− φ0 = 0 to 2π.
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Figure 6.15: Pru(u0, φ0) as a function of the solar zenith angle.

Figure 6.16: B′ as a function of the solar zenith angle.
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Figure 6.21: Left Panel: Exact computations of the zenith propagating radiance
exiting the medium divided by the downwelling irradiance, for several values of ω0

and solar zenith angles, compared with QSSAL(µ = 1, u0). The Petzmas phase
function was used in the computations. Right Panel: Same as the left panel, but
B′(u0) in QSSAL(µ = 1, u0) is replaced by B, the backscattering probability,
forming QSSA′L(µ = 1, u0). The solid line represents one-to-one agreement.
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function of the solar zenith angle θ0. The computations are normalized to the value
of Lu/Ed for θ0 = 0. Curves from bottom to top correspond to QSSA′L (thicker
line) and ω0 = 0.2, 0.5, 0.8, and 0.9.
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Figure 6.25: Comparison of exact computations of R(0) and the QSSA′R predic-
tions for Bp = 0.0181 (left) and 0.002 (right). The diagonal line represents perfect
agreement between the two.
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Figure 6.26: Comparison of exact computations of Lu/Ed and the QSSA′L predic-
tions for Bp = 0.0181 (left) and 0.002 (right). The diagonal line represents perfect
agreement between the two.
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Figure 6.27: Comparison of exact computations of Kd(0) and the QSSAK pre-
dictions for Bp = 0.0181. The diagonal line represents perfect agreement between
the two. The parameters are identical to the left panel in Figure 6.26.
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for both indices (40◦). Phase-T is used in the simulations.
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Figure 6.29: Linear fit of Kd to Eq. (6.28) for the Petzmas phase function with
ω0 ranging from 0.1 to 0.9 and θ0 from 0 to 58◦, and m = 1.333.
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Figure 6.30: Simulated values of D0 = 1/〈u0w〉0 as a function of the surface
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phase function with ω0 ranging from 0.1 to 0.9, θ0 from 0 to 58◦ (θ0w = 0 to 40◦)
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Figure 6.32: The value of D0 computed using Eqs. (6.32) through (6.38), and the
“exact” value determined through Monte Carlo simulations.
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Figure 6.33: Comparison of exact computations of Lu/Ed and the QSSA′L predic-
tions for Bp = 0.0181 (left) and 0.002 (right). The diagonal line represents perfect
agreement between the two. This utilizes 〈u0w〉 (or 1/D0) computed using Eqs.
(6.34) through (6.38).
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Figure 6.34: The influence of the atmosphere and water surface on Kd for the
Petzmas phase function with ω0 ranging from 0.1 to 0.9, θ0 from 0 to 58◦ and
σ = 0 and 0.2. The atmospheric parameters are provided in the text. The line is
the fit of Kd to Eq. (6.28) in the absence of the atmosphere. Note that u0w in
Figure 6.29 has been replaced by 〈u0w〉0 here.
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October 12, 2017

To compute Lu:

Lu = EdQSSA
′
L(〈u0w〉0)

QSSA′L(〈u0w〉0) =
ω0

4π[1− ω0(1−B)]

Pr(〈u0w〉0 → −1)

1 + 〈u0w〉0

To compute Ed:

Ed(λ) = E+
d (λ)tf (1− 0.48R)−1, R ≈ πQSSAL′(〈u0w〉0)

E+
d (λ) = u0F0(λ) exp[−τr(λ)/(x(λ)u0)]

x(λ) ≈ 2.3− 0.001(λ− 400)

To compute 〈u0w〉0:

〈u0w〉0 def
= 1/D0

D0 = fDS
0 + (1− f)D⊕0

D⊕0 =CD0 + CD1σ + CD2σ
2,

CD0 = 1/u0w,

CD1 ≈ 0.0155 (CD0 − 1),

CD2 ≈ 0.03− 0.1831 (CD0 − 1) + 7.268 (CD0 − 1)2.

DS
0 ≈ 1.1876 + 0.1505σ + 0.675σ2

f =
gTS

gTS + (1− g)T⊕

g(λ) = 1− exp

[
−τr(λ)

u0

(
1− 1

x(λ)

)]
.

TS ≈ 0.933 + 0.04σ

T⊕ = tf (u0)

1

Figure 6.35: Summary of equations to compute Lu using the modified QSSA in
the presence of the water surface and the atmosphere. Note that this uses CL = 1
in Eq. (6.27).
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Figure 6.36: The relationship between the average Kd between the surface and a
depth for which Ed(z)/Ed(0) = exp(−3) (diamonds). Included for comparison is
Kd(0) (triangles). The computations are for all combinations of ω0 = 0.1, 0.2, 0.4,
0.5, 0.6, 0.7, 0.8, 0.85, and 0.9, and θ0w = 0, 10◦, 20◦, 30◦, and 40◦.
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Figure 6.37: Comparison of exact computations of 1−〈u0w〉0〈Kd〉X/c with QSSA
predictions for Bp = 0.0020 and Bp = 0.0181. The total backscattering probability
B varies from 0.0020 to 0.12. Solid line represents exact agreement between the
Monte Carlo simulation and the QSSA predictions. Filled symbols are for X = 0
and open triangles are for X = 3.
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Figure 6.38: Lu/Ed for viewing radiance propagating in the direction θv (measured
relative to the upward normal to the surface) computed with the Petzmas phase
function (left panel) and the Petzold phase function (right panel) as a function of
the viewing angle θv. The Sun is at the zenith. The computations are normalized
to the value of Lu/Ed for θv = 0 and were computed from Figure 6.22 using
reciprocity. Curves from bottom to top correspond to the QSSA and ω0 = 0.2, 0.5,
0.8, and 0.9.
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Figure 6.39: Comparison of exact computations of Lu/Ed and the QSSA′L pre-
dictions for Bp = 0.0181. The right panel is the expanded lower left part of the
left panel.The diagonal line represents perfect agreement between the two. This
utilizes 〈u0w〉 (or 1/D0) computed using Eqs. (6.34) through (6.38). The open
squares are for θ0 = 10◦, the solid triangles θ0 = 37◦, and the open triangles
θ0 = 60◦. Horizontal lines connect points of equivalent IOPs.



6.11. FIGURES 549

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10
20

30
40

50
60

70
80

0
20

40
60

80
100

120
140

160

D
eg

. 
o

f 
P

o
l.

 (
%

)







0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10
20

30
40

50
60

70
80

0
20

40
60

80
100

120
140

160

D
e

g
. 

o
f 

P
o

l.
 (

%
)







Figure 6.40: Angular distribution of the degree of polarization of Lu(0, θvw, φvw)
for ω0 = 0.2 and 0.9 with the Petzold Phase-T phase function and the Voss and
Fry normalized (to P11) Mueller phase matrix. The solar zenith angle is 40◦. The
atmosphere is aerosol free and the wavelength is 500 nm.
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Figure 6.41: Lu/Ed as a function of G for the same data as in Figure 6.39. The
line represents a least-shares fit: Lu/Ed = 0.1001G+ 0.0278G2.
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Figure 6.42: Peformance of the ”Hybrid” model (Eq. (6.45)) for the same cases
as used in Figure 6.33. For the figures, g1 = 0.1054 and g2 = 0.0057.
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Figure 6.43: Comparison of exact computations of 1 − 〈u0w〉0〈Kd〉X/c with ω0F
predictions for Bp = 0.0020 and Bp = 0.0181. The total backscattering probability
B varies from 0.0020 to 0.12. Solid line represents exact agreement between the
Monte Carlo simulation and the prediction of Eq. (6.46) with 〈C ′K〉X = 1. Filled
symbols are for X = 0 and open triangles are for X = 3.
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Figure 6.44: I ′R = IR/B for the Phase-T and Rayleigh scattering phase functions.
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Figure 6.45: Comparison between Monte Carlo-simulated R(0) and that computed
using Eq. (6.47). The Monte Carlo results include the atmosphere and water
surface.
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Figure 6.46: Lu(z1)/Lu(∞) as a function of 〈Kd +KL〉z1. The parameters of the
simulations are those in Figure 6.9. The red points connected by thin lines a for
θ0 = 0 with the solid line corresponding to 440 nm and the dashed to 550 nm.
Similarly, the black points and thin lines are for θ0 = 60◦. The thick black line is
the prediction of Eq. (6.54).
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Figure 6.47: Lu(z1)/Lu(∞) as a function of 〈Kd〉z1. The points and thin lines are
representative of the same quantites as in Figure 6.46. The thick black line is the
prediction of Eq. (6.55).
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Figure 6.48: The penetration depth for the various stations presented in Figures
6.5 and 6.6. Here zPd is taken to be 1/Kd, and Kd is taken from Figure 6.6.
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Figure 6.49: Comparison between exact computations (symbols) and Eq. (6.60)
(lines) for the two-layer case described in the text. Solid lines and symbols are for
θ0 = 0 and dashed lines and open symbols are for θ0 = 60◦.
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Figure 6.50: Comparison between exact computations (symbols) and Eq. (6.60)
(lines) for the three-layer case described in the text. Solid lines and symbols are
for θ0 = 0 and dashed lines and open symbols are for θ0 = 60◦.

Figure 6.51: Examples of Kd (left panel) and KL (right panel) for a three-layer
medium with θ0 = 0. The value of ω0 for the top and bottom layers is 0.7. The
value for the middle layer is indicated in the legend.
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Figure 6.52: Zenith-propagating radiance, Lu, (normalized to unit irradiance in-
cident on the water surface) for a three-layer medium with θ0 = 0 (Left Panel).
Radiance reflectance Lu/Ed for the same cases (Right Panel). The value of ω0 for
the top and bottom layers is 0.7. The value for the middle layer is indicated in the
legend.
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Figure 6.53: Attenuation of downward irradiance that originates from the reflec-
tion of totally diffuse upward irradiance by the air-water interface.
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Figure 6.54: The Raman-induced Ed(z) at 550 nm from exact computations (sym-
bols) along with the results from Eq. (6.73) (lines).



6.11. FIGURES 557

Kd  and Ku    (m
-1)

0.00 0.02 0.04 0.06

D
ep

th
 (

m
)

0

20

40

60

80

100

120

140

160

Kd (550)

Ku (550)

Kd (464)

Kd (550) Calc.

Ku (550) Calc.

R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

D
ep

th
 (

m
)

0

20

40

60

80

100

120

140

160

R
R (Calc.)

Figure 6.55: Zenith-propagating radiance, Lu, (normalized to unit irradiance in-
cident on the water surface) for a three-layer medium with θ0 = 0 (Left Panel).
Radiance reflectance Lu/Ed for the same cases (Right Panel). The value of ω0 for
the top and bottom layers is 0.7. The value for the middle layer is indicated in
the legend. K-R-550 Left Panel: exact computations of the Kd and Ku at 550 nm
along with Kd at 464 nm for a water body consisting of pure water only (symbols).
Right Panel: exact computations of reflectance at 550 for the same water body
(symbols). The sky was aerosol free and the solar zenith angle was 36◦. The lines
correspond to predictions of the lowest-order model described in the text.
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Figure 6.56: Left Panel: The elastic and inelastic (Raman) contributions to the
zenith-propagating radiance, just beneath the surface of a water body consisting
only of pure seawater. The atmosphere was aerosol free and the solar zenith angle
was 37◦. Right panel: The fraction of the total radiance in the left panel that is
contributed by Raman scattering.
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Figure 6.57: Upwelling radiance just beneath the surface at Hawaii derived from
the full data set, part of which was used to produce Figure 6.1, (filled symbols)
along with the theoretical upwelling radiance (open symbols) for a water body
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and Raman scattering are accounted for in the theoretical calculation.
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Figure 6.58: K0/Kd at τ = 0.5 for several values of ω0, refracted solar zenith angles
(0, 10◦, 20◦, 30◦, and 40◦), and σ = 0 and 0.2 in the absence of the atmosphere.
In addition, the same water and surface properties are combined with a model
atmosphere at λ = 400, 500 and 600 nm. The model atmosphere’s aerosol optical
thicknesses τa(λ) were 0.126, 0.107, and 0.094 and Rayleigh optical thicknesses
τr(λ) were 0.364, 0.145, and 0.069, respectively at, λ = 400, 500, and 600 nm.
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To Compute the Absorption Coefficient:

a(λ) = aw(λ) + ap(λ) + ay(λ) + bRaman(λE Band→ λ)

ap(λ) = fapap1(λ)CEp(λ)

ay(λ) = ay(440) exp[−Sy(λ− 440)]; Sy = 0.014 nm−1

ay(440) = 0.2× [aw(440) + ap(440)]

To Compute the Scattering Coefficient:

b(λ) = bw(λ) + bp(λ)

bp(λ) = fbpbp1(550)

(
λ

550

)v
C0.62; bp1(550) = 0.30 m−1

v = 0.5(log10 C − 0.3) for C ≤ 2 mg/m3 and v = 0 otherwise

To Compute the Backscattering Probability:

B(λ) =
Bwbw(λ) +Bpbp(λ)

bw(λ) + bp(λ)
; Bw = 0.5

Bp(λ) = αsBps + (1− αs)Bp`; Bps = 0.0140, Bp` = 0.0019

αs =
0.0020 + 0.01

(
1
2 − 1

4 log10(C)
)
−Bp`

Bps −Bp`

To Compute the Scattering Phase Function:

P (Θ, λ) =
Pw(Θ)bw(λ) + Pp(Θ)bp(λ)

bw(λ) + bp(λ)

Pp(Θ) = αsPps(Θ) + (1− αs)Pp`(Θ)

Pps(Θ) & Pp`(Θ) are Modified Petzold

To Compute the Raman Scattering Parameters:

bRaman(λE Band→ λ) =

(
589

λ

)4.8

× 2.61× 10−4 m−1

λE =
λ

1 + 3353× 10−7λ

2
Figure 6.59: Summary of equations used to compute the IOPs required for the
examples described in the text.
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Figure 6.60: Comparison between measurements and modeling (as described in
the text) for Hawaii and C70 stations shown in Figures 6.3-6.6. Open symbols and
filled symbols are the measurements for C70 and Hawaii, respectively. Solid lines
are the model results. On the right panel, Lu is in mW/cm2µm and R is in %.
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Figure 6.61: The chlorophyll concentration as a function of the ratio of Lu in
the blue to that in the green, as in the initial algorithms to estimate the pigment
concentration from the water color. The modeled curves using the model’s nominal
(fap = fbp = 1) IOPs as well as the C70 and Hawaii IOPs are compared to the
original empirical algorithm (Emp.) based on experimental data. The lines and
equations represent regressions of the model results. The regression line for the
experimental measurements is y = 1.13x−1.71.
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Figure 6.62: Zenith-propagating radiance reflectance, Lu/Ed = RL, for a three-
layer medium with θ0 = 0 (Left Panel). Radiance reflectance (Lu/Ed)H = RLH
after application of Eq. (6.81) to the RL profiles (Right Panel). The value of ω0

for the top and bottom layers is 0.7. The value for the middle layer is indicated in
the legend.
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Figure 6.63: Retrieved profiles of a and bb from a three-layer medium for the cases
provided in Figure 6.62. The lines are the retrievals for the stratified media, and the
symbols are the values of a and bb for homogeneous media with the IOPs indicated
in the caption. The retrievals should match the symbols in the appropriate layer
(as they do in the left panel for a). In preparing the figure we have taken c = 1
m−1.
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Figure 6.64: Bio-optical algorithms for retrieving the pigment concentration from
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Rrs(443)/Rrs(550). Right panel: R = Rrs(520)/Rrs(550). CP is in mg/m3. The
lines on both panels are the result of linear regression.
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Figure 6.65: Newer bio-optical algorithms for retrieving the pigment concen-
tration from SeaWiFS-like remote sensing reflectances in Case 1 waters. Left
panel: RMax is the maximum among Rrs(443)/Rrs(550), Rrs(490)/Rrs(550) and
Rrs(510)/Rrs(550). Right panel: relationship between CP in mg/m3 and the color
index CI defined in the text. The line on the left panel is the least-squares fit to a
quadratic, and the line on the right panel is a linear regression (log10(CP ) vs. CI)
of the data for CI < 0.
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Figure 6.66: Comparison of exact computations of Lu/Ed with the modified δ-
Isotropic approximation (MDIA) predictions (left panel) and the QSSA′L predic-
tions (right panel) for Bp = 0.0181. There is no atmosphere and the refractive
index of water is taken to be unity.
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Figure 6.68: Comparison of exact computations of Lu/Ed with the modified δ-
Isotropic approximation (MDIA) predictions (left panel) and the QSSA′L predic-
tions (right panel) for Bp = 0.002. There is no atmosphere and the refractive index
of water is taken to be unity.
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Figure 6.69: The normalized BRDF, Lu(0, µ)/Ed, for the Petzold (left panel) and
Petzmas (right panel) phase functions (Bp = 0.0181) and the Sun at the zenith.
The view angle is given by θv = arccos(µ). The solid line at the bottom of the
cluster is the QSSA result. The open symbols are for exact computations (circle
is for ω0 = 0.2, triangle is for ω0 = 0.5, diamond is for ω0 = 0.8, and square is for
ω0 = 0.9. Closed symbols are for Eq. (6.98), with the symbol shape having the
same meaning as for the exact computations.
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Figure 6.70: The comparison of the reflectance of a homogeneous medium com-
puted by Monte Carlo methods (“Exact”) and the modified δ-Isotropic approxi-
mation (“Approximate”). The phase function is a mixture of the modified Petzold
for the scattering by particles and Rayleigh for the scattering by water. The solid
circles are for θ0 = 10◦, the open diamonds for θ0 = 37◦ and the solid squares
for θ0 = 60◦. The values of the backscattering probability for the particles Bp is
0.0181 (left panel) and 0.002 (right panel). The refractive index of the water is
taken to be unity. Similar plots comparing the exact and QSSA′R values of R(0)
are provided in Figure 6.25.



Chapter 7

Optical Effects of the Water
Surface

7.1 Introduction

This chapter we consider aspects of the water surface that are important in remote sens-
ing. Noting that the basic idea of ocean color remote sensing is to measure the radiance
backscattered out of the water and propagated to satellite altitudes, and to relate that ra-
diance to certain constituents in the water, we can enumerate some of the ways the water
surface can be expected to affect this process. First, because of the change in refractive
index at the interface, the surface will reflect a portion of the incident Sun light and sky
light back into the atmosphere. Some of this reflected light may reach the sensor. Next,
the surface will refract both of these components into the water, providing the photons
available for backscattering toward the surface. Finally, the subsurface radiance that is
backscattered will again interact with the surface, with some being reflected back into the
water and the rest being transmitted through into the atmosphere. If there are breaking
waves on the surface causing foam patches called “whitecaps,” these patches will reflect
Sun light and sky light toward the sensor.

We begin by examining the optics of a flat water surface (most of which has already been
described in Chapter 2). Next, we extend the analysis to a first-order analytical model of
a wind-ruffled surface which accounts for most of the observed surface effects as long as
the solar zenith angle and the viewing angles are not in excess of about 60◦. Along the
way we describe how this model was incorporated into the Monte Carlo radiative transfer
simulation code that was used in Chapter 6 to study surface effects numerically. Finally,
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we describe the salient properties of whitecaps.

7.2 Optical Effects of a Flat (Smooth) Water Surface.

The optics of a flat surface separating two media with different refractive indices has been
described in considerable detail in Chapter 2. Here, we summarize the important points.
Let radiance Li(ξ̂i) be incident on the interface from medium “i” (with refractive index
mi). Medium “t” has refractive index mt (Figure 7.1). The radiance that is reflected back
into medium “i” by the interface, Li(ξ̂r), is given by

Li(ξ̂r) = rfLi(ξ̂i),

where ξ̂r = ξ̂i − 2êz(êz • ξ̂i) (or χr = χi) and rf is the Fresnel reflectance of the interface.1

The radiance that is transmitted through the interface Lt(ξ̂t) is

Lt(ξ̂t) =

(
mt

mi

)2

tf Li(ξ̂i),

where tf = 1− rf is the Fresnel transmittance of the interface. The vector ξ̂t is given by

m2ξ̂t = m1ξ̂i + (m2 cosχt −m1 cosχi)êz.

Note that the vectors ξ̂i, ξ̂r, ξ̂t and êz are coplanar, and mi sinχi = mt sinχt.

We can use these relationships to answer the questions posed in the Introduction. First,
what is the reflection and refraction of the direct Sun light? The radiance of the solar
beam (Sun in a black sky) is L(ξ̂i) = F0δ

(2)(ξ̂ − ξ̂i), so the reflected radiance is L(ξ̂r) =
rfF0δ

(2)(ξ̂ − ξ̂r) and the transmitted radiance is

L(ξ̂t) = tf

(
mt

mi

)2

F0δ
(2)(ξ̂ − ξ̂t),

where, for the air-water interface, mt = mw and mi = 1.2 Similarly, the reflection and

1The reader is reminded that when the incident radiance is unpolarized

rf =
1

2

[
sin2(χi − χt)
sin2(χi + χt)

+
tan2(χi − χt)
tan2(χi + χt)

]
,

with mi sinχi = mt sinχt.
2The irradiance of the transmitted beam is easy to find. Noting that (Chapter 2) m2

t cosχtdΩ(ξ̂t) =
m2
i cosχidΩ(ξ̂i), we find that Ed(ξ̂t) = tfEd(ξ̂i), where the Ed(ξ̂)’s are, respectively, the irradiance incident

on the water surface (ξ̂ = ξ̂i) and the irradiance transmitted through the water surface (ξ̂ = ξ̂t). Similarly,
the reflected irradiance is Eu(ξ̂r) = rfEd(ξ̂i) since dΩ(ξ̂r) = dΩ(ξ̂i) and χr = χi.
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refraction of sky radiance LSky(ξ̂i) are, respectively, L(ξ̂r) = rfLSky(ξ̂i) and

L(ξ̂t) = tfm
2
wLSky(ξ̂i).

Finally, for radiance underneath the water surface propagating toward the surface, Lu(ξ̂i),
we can still use Figure 7.1, but now mi > mt so χt > χi. Thus, the transmitted radiance
is

Lt(ξ̂t) =
tf
m2
w

Lu(ξ̂i).

In this case we can also have χt = 90◦, which occurs when mw sinχi = 1. This value of χi
is the critical angle χc. For χi > χc there is no transmitted wave: all of the radiance in
these angles is reflected with χr = χi, i.e., rf (χi > χc) = 1.

7.3 Optical Effects of a Wind-ruffled Water Surface.

We now turn to the optics of a water surface ruffled by the wind. As in the case of
a flat surface we will describe the computation of the various quantities of interest in
remote sensing: reflection of Sun and sky light by the surface and transmission of upwelling
subsurface radiance Lu(ξ̂i) through the interface. We will also describe how the presence
of a rough interface has been included in the radiative transfer process for use in other
chapters.

7.3.1 Introduction

Consider standing near the water surface facing in the general direction of the Sun. If the
water is surface is flat, you will see a reflected image of the Sun in a small range of viewing
angles determined by the solar angular diameter. However, if the water surface is ruffled by
the wind you will see many individual images of the Sun (that flash on and off) in directions
well outside the range of directions for which the image is observed with a flat surface. An
individual flash in a given direction occurs when a portion of the moving surface has the
correct orientation to reflect the solar beam toward the observer. The resulting visual
pattern of flashes is usually called the “glitter pattern” or “Sun glint.” Seen from a great
distance, this glitter pattern is a bright patch of individual flashes (usually) centered on
the position the Sun’s image would occupy in the case of a flat surface. Standing close
to the water surface, e.g., on the deck of a ship, looking toward the horizon during the
rising or setting Sun, one would see something that looks schematically like the drawing
in Figure 7.2, with the triangle in the drawing representing the average reflected image of
the Sun, i.e., a photograph of the water surface and horizon taken with a long exposure
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time. An actual photograph of such a pattern (but not a time exposure) is provided in
Figure 7.3. This pattern has been referred to as “the road to happiness” in the Russian
literature. In this section we examine the optics of a rough reflecting and refracting water
surface. The as mentioned above, the goal will be to describe the effect of such a surface
on the radiance it reflects and refracts, and along the way, explain some of the features in
Figures 7.2 an 7.3.

7.3.2 Reflection of Light by a Wind-Ruffled Surface

There is a rigorous methods of treating reflection and refraction from a rough surface. This
involves using the measured energy spectrum of surface waves (for various wind conditions),
from which one can develop a realization of the water surface by synthesizing its shape,
assuming that the phase of each component wave in the spectrum is a random angle.
Then, tracing individual photons with the given (incident) radiance distribution through
their (multiple) interactions with this surface determines the angular distribution of the
reflected and refracted components. One then synthesizes a new realization the surface
and repeats the process. Averaging over a large number of such realizations one can arrive
at the radiances reflected from, and transmitted through, a randomly rough surface given
an initial incident radiance distribution Li(ξ̂i).

3 Such a procedure, although accurate, is
computationally intensive, totally numerical and does not lend itself well to pedagogy, nor
does it follow the historical development of the subject. Here we follow the traditional
development that, with some limitations, is an excellent approximation, and nearly as
accurate as the numerical procedure over a wide range of the important parameters.

Consider the water surface to be composed of a collection of flat facets whose surface
normals follow an, as yet unknown, probability distribution. The reflective and refractive
properties of a patch of surface containing a large number of such facets will allow esti-
mation of this probability distribution. However, in order to determine this distribution,
understanding the geometry of the reflection and refraction process is paramount. We will
start with a description of reflection from an individual facet (Figure 7.4). Let the normal
to the facet be denoted by n̂f , with the convention that it is directed into the water. The

direction of the incident photon is denoted by ξ̂i and that of the reflected photon by ξ̂r.
The law of reflection (Chapter 1) states that

ξ̂r = ξ̂i − 2n̂f (n̂f • ξ̂i). (7.1)

Notice that this equation requires ξ̂r, ξ̂i and n̂f to all lie in a plane. Let the nominal level
sea surface be located at z = z1. The instantaneous height of sea surface is z−z1 = ζ(x, y, t)

3What is “random” about the “randomly rough surface?” It’s the phases of the individual waves.
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or z1 = z − ζ(x, y, t) , f(x, y, t). The normal to this surface n̂f is given by

n̂f =
∇f
|∇f | =

êz − êx ∂ζ∂x − êy
∂ζ
∂y√

1 +
(
∂ζ
∂x

)2
+
(
∂ζ
∂y

)2
.

Letting

~s , êx
∂ζ

∂x
+ êy

∂ζ

∂y
, êxsx + êysy,

and |~s| , s, this can be written

n̂f =
êz − ~s√
1 + s2

. (7.2)

Note the n̂f is a function of x, y, and t. The components of ~s are the slopes of the lines of
intersection of the facet with planes parallel to the x-z and y-z planes at x, y, and t. Now,
take the scalar product of Eq. (7.1) with êz, noting that n̂f • êz = 1/

√
1 + s2, we find

n̂f • ξ̂i = −êz • (ξ̂r − ξ̂i)
√

1 + s2

2
.

Putting this and Eq. (7.2) into Eq. (7.1) we arrive at

~s = êz −
ξ̂r − ξ̂i

êz • (ξ̂r − ξ̂i)
, (7.3)

which is the fundamental relationship between the slope vector ~s and the incident and
reflected directions. It can be used in many ways: (1) given ξ̂i and ξ̂r it provides ~s, which
with Eq. (7.2) gives the surface normal n̂f required to effect the reflection from ξ̂i to ξ̂r;

(2) given ξ̂i and n̂f , Eq. (7.2) gives ~s and Eq. (7.3) gives ξ̂r, the direction of the reflected

photon; and (3) given ξ̂r and n̂f , Eq. (7.2) gives ~s and Eq. (7.3) gives ξ̂i.

The angle of incidence χ of the light on the facet is needed to determine the facet’s
reflectivity from the Fresnel equations. It can be found in two ways. First, by virtue of the
fact that ξ̂i, ξ̂r and n̂f all lie in a plane: ξ̂i • ξ̂r = cos(π − 2χ) = − cos 2χ. Alternatively,

we note that in Eq. (7.1) n̂f • ξ̂i = cosχ, so we have |ξ̂r − ξ̂i| = 2 cosχ. Thus given ξ̂i and

ξ̂r we can find χ.

Going forward we will indicate the unit vectors by their polar (θ) and azimuthal (φ)
angles: ξ̂i = (θi, φi); ξ̂r = (θr, φr); and n̂f = (θn, φn), so

ξ̂i = êx cosφi sin θi + êy sinφi sin θi + êz cos θi,

ξ̂r = êx cosφr sin θr + êy sinφr sin θr + êz cos θr,

n̂f = êx cosφn sin θn + êy sinφn sin θn + êz cos θn.

(7.4)
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We can now compute the radiance reflected in the direction ξ̂r from a patch of the water
surface containing many facets, as follows (refer to Figure 7.5). The power falling on the
facet due to an incident radiance L(ξ̂i) propagating in the direction ξ̂i in a range of solid
angles ∆Ω(ξ̂i) is just L(ξ̂i)aj cosχ∆Ω(ξ̂i), where aj is the actual surface area of the facet.
A fraction of the power rf , where rf is the Fresnel reflectivity of the facet for the given

incident angle χ, is reflected in the direction ξ̂r in a solid angle of the same magnitude
as ∆Ω(ξ̂i), i.e., ∆Ω(ξ̂i) = ∆Ω(ξ̂r). The radiance from the surface in the direction ξ̂r is
(Chapter 2)

L(ξ̂r) =
Power toward ξ̂r in ∆Ω(ξ̂r)

AH | cos θr|∆Ω(ξ̂r)
,

where AH is the (horizontal) surface area of the water viewed by the radiometer. For one
facet, e.g., the jth, the radiance is

Lj(ξ̂r) =
rf (χ)L(ξ̂i)aj cosχ∆Ω(ξ̂i)

AH | cos θr|∆Ω(ξ̂r)
. (7.5)

Note that the two solid angles are the same and so they cancel out of the final result. We
now write the facet area aj in terms of its projection onto the horizontal water surface aHj ,
i.e., aj = aHj/ cos θn. The total radiance is the sum of the radiance from each facet, i.e.,
the sum over j, but the only quantity in the sum that depends on j is aHj . Thus, the total
radiance is

L(ξ̂r) =
∑

j

Lj(ξ̂r) =
∑

j

rf (χ)L(ξ̂i)aHj cosχ

AH | cos θr| cos θn
=
rf (χ)L(ξ̂i)aH cosχ

AH | cos θr| cos θn
,

where aH is the total projected area of all facets in the area AH oriented so as to reflect light
from ξ̂i to ξ̂r. The quantity aH/AH is the fraction of the surface with the correct orientation,
that is, it is the probability that the slope ~s or the normal n̂f has the correct orientation

to reflect light from ξ̂i to ξ̂r. We denote this as P (~s), the probability that facets within AH
have the required orientation. If we write the probability P (~s) = p(sx, sy) dsx dsy, where
p(sx, sy) is the probability density of ~s, then

L(ξ̂r) = rf (χ)L(ξ̂i)
cosχ

| cos θr| cos θn
p(sx, sy) dsx dsy.

If the incident radiance comes from several directions, each of which require a different ~s,
we need to sum over these as well. Then finally,

L(ξ̂r) =
1

| cos θr|

∫ ∫
rf (χ)L(ξ̂i)

cosχ

cos θn
p(sx, sy) dsx dsy. (7.6)
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To carry out the integration indicated in Eq. (7.6) we use the relationship between ~s and
ξ̂i given ξ̂r: Eq. (7.3). In terms of the angles, Eq. (7.3) yields

sx =
(ξ̂r − ξ̂i)x

êz • (ξ̂r − ξ̂i)
=

cosφr sin θr − cosφi sin θi
cos θr − cos θi

sy =
(ξ̂r − ξ̂i)y

êz • (ξ̂r − ξ̂i)
=

sinφr sin θr − sinφi sin θi
cos θr − cos θi

.

(7.7)

In some cases it is more convenient to integrate over all incident directions ξ̂i than over
~s. To change the integration variables from sx and sy to θi and φi, we need to compute
the Jacobian determinant of the transformation, Eqs. (7.7):

dsx dsy = |J(~s, ξ̂i)| dθi dφi,

where

J(~s, ξ̂i) =

∣∣∣∣
∂sx/∂θi ∂sx/∂φi
∂sy/∂θi ∂sy/∂φi

∣∣∣∣ =

(
∂sx
∂θi

)(
∂sy
∂φi

)
−
(
∂sy
∂θi

)(
∂sx
∂φi

)
.

From Eqs. (7.7) all of the indicated partial derivatives can be computed in a straightforward
(but very tedious) manner. The final result is

|J | = [1− ξ̂i • ξ̂r]
[êz • (ξ̂i − ξ̂r)]3

sin θi, (7.8)

and noting that sin θi dθi dφi = dΩ(ξ̂i), we have

dsx dsy =
[1− ξ̂i • ξ̂r]

[êz • (ξ̂i − ξ̂r)]3
dΩ(ξ̂i).

Using a trigonometric identity, [1 − ξ̂i • ξ̂r] = 1 + cos 2χ = 2 cos2 χ, and taking the scalar
(dot) product of êz with Eq. (7.1) yields

êz • (ξ̂i − ξ̂r) = 2(êz • n̂f )(n̂f • ξ̂i) = 2 cos θn cosχ, (7.9)

so

dsx dsy =
1

4 cos3 θn cosχ
dΩ(ξ̂i).

Equation (7.6) can then be rewritten

L(ξ̂r) =
1

| cos θr|

∫ ∫
rf (χ)L(ξ̂i)

1

4 cos4 θn
p(~s) dΩ(ξ̂i). (7.10)



574 CHAPTER 7. OPTICAL EFFECTS OF THE WATER SURFACE

7.3.2.1 Reflected Direct Solar Radiance: Sun Glitter

If the water surface is illuminated solely by the solar beam (i.e., the Sun in a black sky)
then the incident radiance is simply

L(ξ̂i) = F0δ
2(ξ̂i − ξ̂0) = F0δ(cos θi − cos θ0)δ(φi − φ0)

where F0 is the extraterrestrial solar irradiance and ξ̂0 is the propagation direction of the
solar beam. Inserting this into Eq. (7.10) yields

L(ξ̂r) =
rf (χ)F0

4| cos θr| cos4 θn
p(~s), (7.11)

and suggests a method for finding p(~s).

7.3.2.2 The “Road to Happiness”

We now have the tools required to understand the origin of the triangular glitter pattern
shown schematically in Figure 7.2. Consider an observer standing, say, on the deck of a
ship looking at the water in the general direction of the setting Sun, as depicted in Figure
7.6. The observer, at a height H above the surface, is looking at a spot at F on the surface.
Light is propagating in a direction ξ̂r after being reflected at F from the direction ξ̂i. We
assume that the photons propagating in the incident direction ξ̂i are all from the Sun in a
black sky, and take the azimuth of the solar beam to be φi = 0. Thus, Eqs. (7.4) becomes

ξ̂i = êx sin θi + êz cos θi,

ξ̂r = êx cosφr sin θr + êy sinφr sin θr + êz cos θr,

and Eq. (7.3) yields

sx = −(cosφr sin θr − sin θi)

(cos θr − cos θi)

sx = − sinφr sin θr
(cos θr − cos θi)

.

Noting that the equation of the tilt of the surface normal is cos θn = (1 + s2)−1/2, we have
that s = (s2

x + s2
y)

1/2 = tan θn. Putting these together yields the angle φr:

cosφr =
sin2 θr + sin2 θi − (cos θr − cos θi)

2 tan2 θn
2 sin θr sin θi

.

The interpretation of this equation is that for a given tilt of a facet on the water surface θn,
φr is the azimuth of propagation of the reflected photon for it to be seen by the observer
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given θr and θi.
4 Now, the observer is looking down toward the surface (at F ) in order to

see this photon. The position on the surface from which the reflection takes place is easily
seen to be

x = −H tan(π − θr) cosφr

y = −H tan(π − θr) sinφr.

Thus, for a given θr, θi, and θn the position of the spot on the water surface from which the
solar beam is reflected has these coordinates (x, y), i.e, the observer would see a bright spot
at (x, y), if the correct n̂f azimuth angle is available. Note the observer is at (x, y, z) =
(0, 0,−H).)

To provide a concrete example of the use of these relationships, consider an observer
standing at H = 1 m on the deck of ship. Let the solar zenith angle be 70◦, i.e.., θi = 70◦,
and assume that all azimuths of the normal to a surface facet are equally probable, i.e.,
all φn’s are equally probable, so whatever azimuth of the normal is required to reflect the
light toward the observer, it is always available. Then, for given values of θn, the loci of
points on the water surface as seen by the observer are given in Figure 7.7. Thus, for a
fixed θn, the observer will see two approximately straight lines of bright spots progressing
toward the horizon (one on the negative y-axis, as shown, and an identical line on the
positive y-axis). The larger the surface tilt (θn) the larger the angle this straight line will
make with the x axis. So, if only a single surface tilt (θn) were available, but all azimuth
angles φn were equally probable, the observer would see a “V”-shaped line of flashes (as the
correct φn’s occur) extending from the ship to the horizon. If all values of θn are possible
up to some maximum value, then the interior of the “V”-shape will fill in and the resulting
pattern of flashes will be similar to that shown schematically in Figure 7.2.

7.3.2.3 Estimation of p(~s) (Cox and Munk Analysis)

If we examine the glitter pattern for the Sun, i.e., measure Lr(ξ̂r) for a given ξ̂r and a fixed
solar beam in the direction ξ̂0 with spherical coordinates (θ0, φ0), we can find the, as yet,
unknown probability density p(~s) in the following manner. First the variable χ is found
from

cos 2χ = −ξ̂r • ξ̂0 = −(cosφr cosφ0 + sinφr sinφ0) sin θr sin θ0 + cos θr cos θ0.

Next, θn is determined from Eq. (7.9), i.e.,

cos θn =
êz • (ξ̂0 − ξ̂r)

2 cosχ
=

cos θ0 − cos θr
2 cosχ

.

4Clearly, the azimuth angle of the surface normal φn must have the correct value for the reflection toward
the observer to take place. If not, the observer sees no reflected light propagating in the ξ̂r direction.
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Finally, the slope components sx and sy can be found from Eq. (7.7): 5

sx =
cosφr sin θr − cosφ0 sin θ0

cos θr − cos θ0

sy =
sinφr sin θr − sinφ0 sin θ0

cos θr − cos θ0

Note that the radiance in Eq. (7.11) is a function of time, i.e., in any given viewing direction
the radiance will fluctuate as the facet at that point assumes various orientations, only a
narrow range of which will produce a flash. However, if we use long (compared to the
period of the capillary waves) integration times, we can measure the average radiance, and
thus, p(~s). Alternatively, we can examine the water surface from a great distance away,
so that a large number of facets are within the spatial resolution of the radiometer, e.g.,
a satellite-borne sensor viewing the water surface from space, and can obtain a similar
average radiance and p(~s).6

Using out-of-focus photographs of the water surface from aircraft (equivalent to a spatial
average) Cox and Munk estimated the probability density p(sx, sy) to be approximately
Gaussian, i.e.,

p(sx, sy) ≈
1

2πσ̃xσ̃y
exp

[
−1

2

(
sx
σ̃x

)2

− 1

2

(
sy
σ̃y

)2
]
, (7.12)

where the slope variances σ̃2
x and σ̃2

y are related to the wind velocity ~W .7 In Eq. (7.12),

the x-axis is oriented so that the vector êx is parallel to the wind vector ~W . With this

5Another useful set of relationships for the slope components can be found from Eq. (7.2) written
in the form n̂f = (êz − ~s)(n̂f • êz) = (êz − ~s) cos θn. Then, n̂f • êx = cosφn sin θn = −sx cos θn and
n̂f • êy = sinφn sin θn = −sy cos θn, and

sx = − cosφn tan θn

sy = − sinφn tan θn.

The angle φn can be found from the law of reflection, (n̂f = ξ̂0 − ξ̂r)/2 cosχ, and Eqs. (7.4):

cosφn =
cosφ0 sin θ0 − cosφr sin θr

2 cosχ sin θn

sinφn =
sinφ0 sin θ0 − sinφr sin θr

2 cosχ sin θn
.

6The so-called ergotic theorem of statistical physics demands that these two averages (time and spatial)
are equivalent.

7Note that this is normalized in the sense that∫ +∞

−∞
dsy

∫ +∞

−∞
p(sx, sy) dsx = 1.
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orientation, σ̃x is usually called the up-wind standard deviation σ̃u and σ̃y the cross-wind
standard deviation σ̃c. In using this equation, it is vitally important to remember that
the various φ’s in Eq. (7.4) are measured relative to the wind direction. If we replace the
surface slopes in Eq. (7.12) by the angles θn and φn, we have8

p(θn, φn) ≈ 1

2πσ̃uσ̃c
exp

[
−
(

cos2 φn
2σ̃2

u

+
sin2 φn

2σ̃2
c

)
tan2 θn

]
. (7.13)

In these equations, the empirical values of σ̃u and σ̃c were found to be

σ̃2
c = 0.003 + 1.92× 10−3W

σ̃2
u = 0.000 + 3.16× 10−3W,

where W is in m/s.9

8Note here, that this probability density is still normalized; however, when we make the transformation
from (sx, sy) to (θn, φn) we also need to transform from dsxdsy to dθndφn which requires computation of
the Jacobian of the transformation, i.e.,

dsxdsy = |J |dθndφn,

where

J =
∂sx
∂θn

∂sy
∂φn

− ∂sy
∂θn

∂sx
∂φn

.

Using the relationships in Footnote 5 yields J = sec2 θn tan θn, so the corresponding normalization integral
is ∫ 2π

0

dφn

∫ π/2

0

p(θn, φn) sec2 θn tan θn dθn = 1.

9There is considerable debate as to the validity of the values assigned to these parameters. Shaw and
Churnside [1997] have directly measured σ̃u using a scanning-laser glint meter. Their results showed a
strong dependence of σ̃u on the atmospheric stability. The atmospheric stability is characterized by the
Richardson number Ri given by

Ri = g
(Ta − Tw)

TwW 2
,

where Ta and Tw are, respectively, the air and water temperatures (◦C), and g is the gravitational constant
(9.8 m/s2). The atmosphere is stable when Ri > 0 and unstable when Ri < 0. They combined their
measurements with those of Hwang and Shemdin [1988] and developed the relationship between σu and Ri:

σ̃2
u

σ̃2
cm

= 1.42− 2.8Ri for − 0.23 < Ri < 0.27

σ̃2
u

σ̃2
cm

= 0.65 for Ri > 0.27.

Cox and Munk [1954] collected most of their data for positive stability, thus for unstable atmospheres, σ̃u
is considerably larger than that suggested by their equations. It is expected that σ̃c behaves in a manner
similar to σ̃u in respect to its dependence on stability. It is important to note that a larger σ̃ implies a
more diffuse glitter pattern, i.e., it extends farther from the specular point (the point at which Sun light
would be reflected from a flat surface toward the sensor), but with smaller radiance near the specular
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To demonstrate the effect of the wind direction on the slope distribution, we compare
p(θn, 0

◦) with p(θn, 90◦):

p(θn, 0
◦)

p(θn, 90◦)
= exp

[
−
(

1

2σ̃2
u

− 1

2σ̃2
c

)
tan2 θn

]
,

and introducing the measured σ̃’s we find for a wind speed of 5 m/s, the values of the
above ratio for θn = 5◦, 10◦, 15◦, and 20◦ are 1.06, 1.28, 1.78, and 2.90, respectively. Thus,
the wind direction is relatively unimportant for facets with small tilt angles, but more
important for large tilt angles. The effect of the wind direction decreases with increasing
wind speed, e.g., for θn = 20◦ and W = 20 m/s the ratio is 1.74 compared to 2.90 for
W = 5 m/s.

In Figure 7.8 we provide an example of the radiance reflected from a wind-ruffled water
surface as a function of θr and φr. The source is the Sun in a black sky with a zenith
angle of 30◦, and lying in the x-z plane. The azimuth of ξ̂r is “phi” (in Deg.) measured in
the x-y plane relative to êx. The wind vector ~W is in the x-direction, i.e., has only an êx
component, so the plane containing the Sun’s rays and the z-axis also contains ~W . Thus,
for “phi = 0”, the projection ξ̂r in the x-y plane is parallel to ~W , while for “phi = 90◦”,
it is perpendicular to ~W . The wind speed is 7.5 m/s. The angle π − θr is the angle that
ξ̂r makes with −êz, which points out of the water. Note that as φr increases from 0◦ the
maximum of the Sun glitter moves from near the specular point (the point where the Sun’s
image would be for a smooth surface; here at π − θr = 30◦) to approximately π − θr = 0◦.

Figure 7.9 provides a second example of radiance reflected from a wind-ruffled water
surface. The source is again the Sun in a black sky with a zenith angle of 30◦. The wind
is parallel to êx. For the filled symbols the plane containing ξ̂i, ξ̂r, and the surface normal
also contains ~W , while for the open symbols, it is perpendicular to ~W . The wind speed
is 7.5 m/s. We see that when the plane of ξ̂r and ξ̂i is parallel to the wind vector, the
reflected radiance is somewhat higher than when the plane is perpendicular to ~W .

For demonstration purposes, or to simplify computations (as below) the dependence of
p(θn, φn) on φn is sometimes ignored. In this case we need to determine what to take for

point. In contrast to direct measurements of the surface slope statistics, Ebuchi and Kizu [2002] combined
directly observed glitter patterns (from a geostationary satellite) with satellite estimates of the wind speed
and direction from space-borne radar scatterometers. They assumed that the apparent radiance of the
surface in the visible is proportional to p(sx, sy), and on this basis, derived the surface slope parameters.
Their resulting σ̃c agreed well with that measured by Cox and Munk [1954]; however, their σ̃u showed a
considerably weaker dependence on W . Considering that most of their measurements were in the tropics,
where the atmosphere is expected to be unstable, their conclusions are opposite to Shaw and Churnside
[1997] and Hwang and Shemdin [1988]. Ebuchi and Kizu [2002] attribute this to the likelihood that the
direct measurements were made under conditions in which the waves were growing with the wind, whereas
in their measurements the waves were in equilibrium with the wind, and therefore, represent average
conditions. In our opinion the question of the most realistic values for σ̃c and σ̃u remains open.
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σ̃. One possibility, is to first write

p(θn, φn) ≈ C exp

[
−tan2 θn

2σ̃2
φn

]
,

where
1

2σ̃2
φn

=
cos2 φn

2σ̃2
u

+
sin2 φn

2σ̃2
c

,

and C is a new normalization constant. Then take φn = 45◦ (i.e., midway between the
upwind and crosswind directions) and use

σ̃2
45◦ =

2σ̃2
c σ̃

2
u

σ̃2
c + σ̃2

u

, σ̃2 ≈ 2.39× 10−3W

as the wave slope variance independent of direction. Often, as we do in Chapter 6, σ̃2 is
taken to be the the Cox-Munk value of σ̃2

u + σ̃2
c = 0.003 + 5.12 × 10−3W , σ̃2. In the

literature this is sometimes referred to as the wave slope variance for an omnidirectional
wind. The normalization constant C is easily found by requiring (see Footnote 8)

∫ 2π

0
dφn

∫ ∞

0
p(θn, φn) sec2 θn tan θn dθn = 1.

It is 2πσ̃2, so if we choose to ignore the wind direction, we take

p(θn, φn) =
1

2πσ̃2
exp

[
−tan2 θn

2σ̃2

]
or p(~s) =

1

2πσ̃2
exp

[
−
s2
x + s2

y

2σ̃2

]
. (7.14)

A word of caution: In their paper, Cox and Munk used the distribution in Eq.
(7.13) to estimate σ̃u and σ̃c; however, in an earlier section of their paper they used
the distribution

p(~s) =
1

πσ2
exp

[
−
s2
x + s2

y

σ2

]
,

to assess the influence of skylight on their measurements. This has caused confusion,
especially for this author. Thus, in this work, we use different symbols for the slope
variance depending on which form of p(~s) is being used: σ̃ and σ. These are related
by 2σ̃2 = σ2. Thus, while σ̃2 = 0.003 + 5.12× 10−3W for an omnidirectional wind,
σ2 = 0.006+10.24×10−3W . Except in the present chapter, in most of the examples
in this work, σ is used rather than σ̃.
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7.3.3 Refraction of Light by the Wind-Ruffled Water Surface

We can describe the refraction of light through the interface between two media by the
vector form of Snell’s law:

mtξ̂t = miξ̂i + (mt cosχt −mi cosχi)n̂i→t, (7.15)

where mi, χi, and ξ̂i are, respectively, the refractive index, the angle of incidence, and the
propagation direction of the incident ray, mt, χt, and ξ̂t respectively, the refractive index,
the angle of incidence, and the propagation direction of the transmitted ray, and n̂i→t is the
unit normal to the surface directed from the incident side toward the transmitted side of the
interface. The angles χi and χt are the angles (< 90◦) between ξ̂i and n̂i→t and between
ξ̂t and n̂i→t, respectively. They are related through Snell’s law: mi sinχi = mt sinχt.
Equation (7.15) is the refraction equivalent of the law of reflection Eq. (7.1). We simplify
the notation by writing Eq. (7.1) in the form

mtξ̂t −miξ̂i = k(χi)n̂i→t,

with k(χi) , (mt cosχt −mi cosχi).

We now consider air to water refraction by a facet at the surface (Figure 7.10). Here,
n̂i→t is n̂f . Note that Eq. (7.2) still provides n̂f in terms of the slope vector ~s, so

mtξ̂t −miξ̂i = k(χi)
êz − ~s√
1 + s2

,

and taking the scalar product of this with êz, we have

êz • (mtξ̂t −miξ̂i) =
k(χi)√
1 + s2

,

so,

~s = êz −
[mtξ̂t −miξ̂i]

êz • [mtξ̂t −miξ̂i]
= êz −

[(mt/mi)ξ̂t − ξ̂i)]
êz • [(mt/mi)ξ̂t − ξ̂i]

. (7.16)

This is the analog of Eq. (7.3) for refraction. Note that the only difference between this
and Eq. (7.3) is replacement of ξ̂r with (mt/mi)ξ̂t.

As with reflection, we will compute the radiance transmitted in the direction ξ̂t from a
patch of the water surface containing many facets. In complete analogy to Eq. (7.5), the
radiance transmitted by the jth facet is

Lj(ξ̂t) =
tf (χi)L(ξ̂i)aj cosχi

AH | cos θt|
∆Ω(ξ̂i)

∆Ω(ξ̂t)
, (7.17)
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where in Eq. (7.5) we have replaced the Fresnel reflectance rf by the Fresnel transmittance

tf in Eq. (7.17), as well as θr by θt, and ξ̂r, by ξ̂t. Now in Eq. (7.5) the two solid angles
were equal, but here they are not. In fact, we showed in Chapter 2 that

m2
i cosχi dΩ(ξ̂i) = m2

t cosχt dΩ(ξ̂t),

so

Lj(ξ̂t) =
m2
t

m2
i

tf (χi)L(ξ̂i)aj cosχt
AH | cos θt|

,

and writing aj = aHj/ cos θn, summing over j, and identifying
∑

j aHj/AH as P (~s) =
p(~s) dsx dsy, the probability of the slope ~s in the area AH of the water surface, the final
result is

Lj(ξ̂t) =
m2
t

m2
i

tf (χi)L(ξ̂i)
cosχt

cos θn cos θt
P (~s).

If the incident radiance comes from a range of directions, the total transmitted radiance is

L(ξ̂t) =
1

cos θt

m2
t

m2
i

∫ ∫
tf (χi)L(ξ̂i)

cosχt
cos θn

p(sx, sy) dsx dsy, (7.18)

where for the air-water interface m2
t /m

2
i = m2

w.10 Note that the essential difference
between Eq. (7.18) and Eq. (7.6) is the replacement of rf (χ) cosχ in the latter by
(mt/mi)

2tf (χi) cosχt in the former (and θr by θt).

Finally as before, it is sometimes easier to integrate over dθi dφi rather than dsx dsy.

To do this we again need to compute a Jacobian J(~s, ξ̂i), but this time the ~s and ξ̂i are
related by Eq. (7.16) rather than (7.3). The final result can differ from Eqs. (7.8) only
in the appearance of the various m’s. As in the case of Eq. (7.8) the direct calculation is
tedious; however, after having carried out the detailed derivation of Eq. (7.8) it is easy to
see where the various m’s need to be placed in the final result, which is

|J(~s, ξ̂i)| =
∣∣∣∣∣
−m3

i +mi[miξ̂i •mtξ̂t]

{êz • [miξ̂i −mtξ̂t]}3
sin θi

∣∣∣∣∣ =
m2
i

k(χi)2

cosχi
cos3 θn

sin θi.

Therefore,

L(ξ̂t) =
m2
t

cos θt

∫ ∫
tf (χ)L(ξ̂i)

cosχt cosχi
k2 cos4 θn

p(~s) dΩ(ξ̂i). (7.19)

10Note that for a flat surface, p(sx, sy) = δ(sx)δ(sy), so in this case the integral gives

L(ξ̂t) =
m2
t

m2
i

tf (χi)L(ξ̂i) = m2
wtf (χi)L(ξ̂i),

where we have used the fact that θn = 0 so χt = θt and χi and χt are related by Snell’s law. Thus, we have
recovered the well-known m2

w law for transmitted radiance (Chapter 2).
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or, if we let m = mt/mi, and k′ = k/mi = (mt/mi) cosχt − cosχi = m cosχt − cosχi,:

L(ξ̂t) =
m2

cos θt

∫ ∫
tf (χi)L(ξ̂i)

cosχt cosχi
k′2 cos4 θn

p(~s) dΩ(ξ̂i).

When the source of L(ξ̂i) is the Sun in a black sky, i.e., L(ξ̂i) = F0δ
(2)(ξ̂ − ξ̂0), the

resultant subsurface radiance is

L(ξ̂t) =
m2

cos θt
tf (χi)

cosχt cosχi
k′2 cos4 θn

p(~s)F0. (7.20)

7.3.4 Requirements for Conservation of Energy Across the Water Sur-
face

Let the water surface be illuminated by the Sun in a black sky. The reflected and trans-
mitted irradiances from the Sun are given by

EReflected , E+
u (ξ̂i) =

∫

ξ̂r•êz<0
L(ξ̂r)| cos θr| dΩ(ξ̂r),

ETransmitted , E−d (ξ̂i) =

∫

ξ̂t•êz>0
L(ξ̂t) cos θt dΩ(ξ̂t),

(7.21)

where the subscripts u and d mean “up” and “down” while the superscripts + and − mean
above and below the interface, respectively and the argument ξ̂i on the irradiances is a
reminder that the Sun light is incident in that direction. The reflected and transmitted
radiances, L(ξ̂r) and L(ξ̂t) are provided by Eqs. (7.11) and (7.20). Using these,

E+
u (ξ̂i) = F0

∫

ξ̂r•êz<0

rf (χ)

cos4 θn
p(~s) dΩ(ξ̂r)

E−d (ξ̂i) = F0

∫

ξ̂t•êz>0
m2
wtf (χi)

cosχt cosχi
k′2 cos4 θn

p(~s) dΩ(ξ̂t).

(7.22)

In these equations it turns to be more convenient to integrate over sx and sy rather than

the solid angles. This requires computing the Jacobians J(~s, ξ̂r) and J(~s, ξ̂t). These are
computed in the same manner as before,11 and the results are

|J(~s, ξ̂r)| =
1

4

1

cos3 θn cosχi
sin θr

11From experience computing the earlier Jacobians, it should be clear that for the transmitted case, the
difference between J(~s, ξ̂i) and J(~s, ξ̂t) is the simple replacement of mi with mt, and possibly an irrelevant
sign change.
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and

|J(~s, ξ̂t)| =
m2
w cosχt

k′2 cos3 θn
sin θt.

Therefore

dsx dsy =
1

4

1

cos3 θn cosχi
dΩ(ξ̂r)

and

dsx dsy =
m2
w cosχt

k′2 cos3 θn
dΩ(ξ̂t).

Finally,

E+
u (ξ̂i) = F0

∫

ξ̂r•êz<0

rf (χi) cosχi
cos θn

p(~s) dsx dsy

E−d (ξ̂i) = F0

∫

ξ̂t•êz>0

tf (χi) cosχi
cos θn

p(~s) dsx dsy.

(7.23)

Adding the integrals and recognizing that rf (χi) + tf (χi) = 1, we find

E+
u (ξ̂i) + E−d (ξ̂i) = F0

∫
cosχi
cos θn

p(~s) dsx dsy.

The the left-hand-side of this equation is the irradiance (on a horizontal plane) propagating
away from the interface, and recognizing that F0 cos θi is the irradiance propagating toward
the interface, conservation of energy across the interface requires

E+
u (ξ̂i) + E−d (ξ̂i) = F0 cos θi

This is only possible if
1

cos θi

∫
cosχi
cos θn

p(~s) dsx dsy = 1. (7.24)

There is a simple geometric explanation for Eq. (7.24). In the diagram below, let	  
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the longer horizontal line represent the area AH and the heavy horizontal line aHj , the
horizontal area associated with all of the facets oriented as shown, with a slope ~sj . Projected

normal to ξ̂i this facet has area aHj cosχj/ cos θnj , represented by the chain dashed line

(− · − · − · −). Then similarly, the projected area of the surface on a plane normal to ξ̂i is
AH cos θn. Noting that aHj/AH = P (~sj), and that AH cos θn must equal the sum of all of

the facets sloped so as to receive light from ξ̂i, i.e.,
∑

j aHj cosχj/ cos θnj , we have

AH cos θi =
∑

j

aHj cosχj/ cos θnj or cos θi =
∑

j

P (~sj) cosχj/ cos θnj .

Thus, Eq. (7.24) is simply a manifestation of the fact that solar photons propagating
toward AH must strike some facet.

Is Eq. (7.24) satisfied when p(s) is given by the Cox-Munk distribution, i.e., Eq. (7.12)?
Let’s calculate the integral and find out. For simplicity, we will use the omnidirectional
form of p(~s), Eq. (7.14). But first, we have been a little sloppy in not putting limits
on the integration over sx and sy. In reality, some facets are oriented in such a manner
that χi > 90◦, and the cannot contribute to the radiances and should be left out of the
integrations. To properly set the limits, we note that, since we are using the omnidirectional
form of p(~s), φn is not relevant, and we can orient the (x-y) coordinate system in any
manner we desire, i.e., take the most convenient value of φn. So let’s take n̂f to be in the

x-z plane, i.e., φn = 0. In this case, ξ̂i and ξ̂r are also in the x-z plane as shown in Figure
7.11. Now, in order for light to be reflected by a facet, χ < 90◦ or cosχ > 0. In the figure
it is clear that cosχi = cos(θn + θi), which leads to

cosχi
cos θn

=
cos(θn + θi)

cos θn
= cos θi − tan θn sin θi,

but if φn = 0, tan θn = −sx, so

cosχi
cos θn

= cos θi + sx sin θi,

and the requirement that cosχi > 0 implies that sx > − cot θi. Thus, in the integrals
above, sx goes from − cot θi to +∞ and sy from −∞ to +∞, and the integral we need to
compute, which we will call the inverse of S(θi), is

1

S(θi)
,

1

cos θi

∫
cosχi
cos θn

p(~s) dsx dsy =

∫ +∞

−∞
dsy

∫ +∞

− cot θi

(1 + sx tan θi)p(~s) dsx,

or inserting p(~s),

1

S(θi)
=

1

2πσ̃2

∫ +∞

−∞
exp

[
−
(
s2
y

2σ̃2

)]
dsy

∫ +∞

− cot θi

(1 + sx tan θi) exp

[
−
(
s2
x

2σ̃2

)]
dsx

=
1√
2πσ̃

∫ +∞

− cot θi

(1 + sx tan θi) exp

[
−
(
s2
x

2σ̃2

)]
dsx
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It is shown in Appendix 1 to this chapter that the value of this integral is

1

S(θi)
=

1

2

[
1 + erf

(
cot θi√

2σ̃

)
+
σ̃ tan θi√

2π
exp

(
−cot2 θi

2σ̃2

)]
,

where erf(x) is called the error function and is defined through

erf(x) =
2√
π

∫ x

0
exp[−t2] dt.

It is easy to see that
1

S(θi)
≤ 1

where the equality occurs only for θi = 0. Thus, if we replace p(~s) by p(~s)S(θi) Eqs.
(7.21)-(7.23), the results satisfy energy conservation.12 The quantity S(θi) is called the
“shadowing factor” for light incident from ξ̂i.

It would appear that we have some inconsistency here, as the measurements made by
Cox and Munk would have had to include S(θi), so the use Gaussian form of p(~s) may
not be correct. However, most of their measurements were made for θi < 30◦ and often
< 20◦. For σ̃ = 0.2 (W ≈ 7.5 m/s) and θi = 30◦, cot θi/

√
2σ̃) = 6.14, and S ≈ 1. (Actually

1-erf(6) ≈ 2×10−17 so S is very close to 1.) So we will assume henceforth that p is gaussian
and that Eq. (7.14) is valid.13

7.3.5 Reflection and Refraction of Diffuse Radiance by the Water Surface

We now turn to the reflection and transmission of diffuse light, e.g., sky light and upwelling
subsurface radiance. These, can be computed using Eqs. (7.10) and (7.19) given the inci-
dent radiance, and replacing p(~s) by p(~s)S(ξ̂i). The integrals must in general be computed
numerically; however, some simplification occurs when the incident radiance is totally dif-
fuse, i.e., when L(ξ̂i) is independent of ξ̂i. When the incident radiance is not totally diffuse,
the reciprocity principle can be a useful guide to understanding the rough-surface effects.
We start by applying the reciprocity relationship to the general case of propagation across
the interface and then examine reflection and transmission.

12The difficulty that we face here, and which does not arise with a proper model of the water surface,
is that we are assuming that the reflected and refracted radiance depends only on the surface slope at a
given point, and is in no way dependent on the elevation variations of the surface. In reality, certain facets
that are properly orientated so they could contribute to, say, reflected radiance are not illuminated by the
source because they are in the shadows of other parts of the surface. The “fix” to conserve energy that we
have constructed here should be considered to be a first-order approximation to account for the fact that
the surface is being modeled in an overly simple manner.

13Measurements of the surface slope distribution by other means also yield a gaussian distribution similar
to Eq. (7.12).
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7.3.5.1 General Considerations: Reciprocity

The reciprocity principle was stated in Chapter 2, where we considered two radiative
transfer problems on the same medium. The medium has a volume V bounded by a
surface S. The (outward) normal to S is n̂. Let any point on the boundary (surface) of
the medium be indicated by the position vector ~ρ. In Problem 1 the radiance incident
on the boundary from the outside is L1(~ρ, ξ̂, λ) and the internal sources are specified by
Q1(~r, ξ̂, λ). Likewise, in Problem 2 the radiance incident on the boundary from the outside
is L2(~ρ, ξ̂, λ). The inherent optical properties of the medium are identical in both problems.
If there are no internal sources (Q = 0 in Chapter 2) then

∫

S
dS

∫

ξ̂•n̂<0
|ξ̂ • n̂|

[
L1(~ρ, ξ̂, λ)L2(~ρ,−ξ̂, λ)

m2(~ρ)
− L1(~ρ,−ξ̂, λ)L2(~ρ, ξ̂, λ)

m2(~ρ)

]
dΩ(ξ̂) = 0. (7.25)

In this equation, L1(~ρ,−ξ̂, λ) and L2(~ρ,−ξ̂, λ) are the radiances exiting the medium at the
boundaries, and the ξ̂ • n̂ < 0 on the solid angle integral on the left-hand-side indicates
that the integration is restricted to directions into the medium.

To apply this we look at Figure 7.12, where the water surface contained within a volume
bounded by two surfaces “A” for just “above” and “B” for just “below” the interface. Any
point on the corresponding bounding surface is designated by the vector ~ρA and ~ρB. The
unit normals n̂A and n̂B are directed up and down, respectively, in the figure. The water
surface itself can be flat or ruffled by the wind (the usual case). The boundary radiances
(radiances into the volume) in case (a) on the left are L1(~ρA, ξ̂) in the form of a collimated
beam, i.e., L1(~ρA) = F0δ

(2)(ξ̂ − ξ̂0), for Problem 1 and a perfectly general L2(~ρA, ξ̂) for
Problem 2. Both are independent the horizontal position on the surface. The radiances
incident on boundary B are both zero. In this case, (suppressing the λ’s) the reciprocity
principle states

∫

S
dS

∫

ξ̂•n̂A<0
|ξ̂ • n̂|

[
F0δ

(2)(ξ̂ − ξ̂0)L2( ~ρA,−ξ̂)− L1( ~ρA,−ξ̂)L2( ~ρA, ξ̂)
]
dΩ(ξ̂) = 0,

Because the radiances are independent of position on the boundary integral over S, just
yields just the surface area of whatever sized volume we are examining. Therefore,

F0|ξ̂0 • n̂A|L2(~ρA,−ξ̂0) =

∫

ξ̂•n̂A<0
|ξ̂ • n̂A|L1( ~ρA,−ξ̂)L2( ~ρA, ξ̂) dΩ(ξ̂) (7.26)

Note that L1( ~ρA,−ξ̂, λ) is the radiance reflected from the interface in the direction −ξ̂
when collimated radiance is incident on the boundary in the direction ξ̂0, and L2(~ρA,−ξ̂0)
is the radiance reflected from the interface in the direction −ξ̂0, when L2(~ρA, ξ̂) is incident
on the surface.
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It’s illustrative to consider the case of a flat (smooth) interface. We know that the
reflected radiance in Problem 1 is in the form of a collimated beam propagating in the
direction ξ̂r, in fact L1(ρA, ξ̂) = rf (χr)F0δ

(2)(ξ̂ − ξ̂r) (Figure 7.1). Then, L1(ρA,−ξ̂) =

rf (χr)F0δ
(2)(−ξ̂ − ξ̂r) = rf (χr)F0δ

(2)(ξ̂ + ξ̂r), and inserting this into Eq. (7.26) and exe-
cuting the Dirac delta function yields

F0|ξ̂0 • n̂A|L2(~ρA,−ξ̂0) = F0|ξ̂r • n̂A|r(χr)L2(~ρA,−ξ̂r),

The two dot products are equal, so L2(~ρA,−ξ̂0) = r(χr)L2(~ρA,−ξ̂r), i.e., radiance prop-
agating in the direction −ξ̂r is reflected into direction −ξ̂0 and reduced in magnitude by
the Fresnel reflectance. This example provides a qualitative way of understanding what
will happen when the surface is ruffled by the wind. In that case the radiance reflected in
Problem 1, L1(ρA,−ξ̂), is no longer a Dirac delta function (it is given by Eq. (7.11)), but
it is a sharply peaked function of direction around −ξ̂r above, i.e., the “glitter pattern”
similar to Figures 7.8 and 7.9. Then L2(~ρA,−ξ̂0) in Eq. (7.26) will receive radiance from
a region of directions near −ξ̂r rather than a single direction.

Now, consider Case (b) in Figure 7.12. Problem 1 is the same as above; however,
for Problem 2, radiance is incident from below the interface, given by L2(ρB, ξ̂) with no
radiance incident from above the interface. In this case,

F0|ξ̂0 • n̂A|L2(~ρA,−ξ̂0) =
1

m2
w

∫

ξ̂•n̂B<0
|ξ̂ • n̂B|L1( ~ρB,−ξ̂)L2( ~ρB, ξ̂) dΩ(ξ̂)

=
1

m2
w

∫

ξ̂•n̂B>0
|ξ̂ • n̂B|L1( ~ρB, ξ̂)L2( ~ρB,−ξ̂) dΩ(ξ̂),

(7.27)

where in the second line we have replaced ξ̂ with -ξ̂, which means the integration is now over
directions ξ̂ exiting the lower boundary. For clarity we provide a schematic in the figure
below. Note that here L1( ~ρB, ξ̂) is the radiance below the surface due to the collimated

!ξ̂0 !−ξ̂0

!ξ̂ !−ξ̂
!A
!B

!! L1(
!
ρB ,ξ̂) !! L2(

!
ρB ,−ξ̂)

!! L2(
!
ρA ,−ξ̂0)

!!n̂B
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beam propagating in the direction ξ̂0 (Problem 1) transmitted through the interface and
propagating in the direction ξ̂ (solid arrows), and the desired L2( ~ρA,−ξ̂0) is the radiance
resulting from L2( ~ρB,−ξ̂) transmitted through the interface from below (dashed arrows).
In the case of a flat interface, the solar beam is refracted from ξ̂0 above the surface to ξ̂0w

below the surface, yielding

L1( ~ρB, ξ̂) = F0
|ξ̂0 • n̂A|
|ξ̂0w • n̂A|

tf (ξ̂0 → ξ̂0w)δ(2)(ξ̂ − ξ̂0w),

so Eq. (7.27) gives

F0|ξ̂0 • n̂A|L2(~ρA,−ξ̂0) = F0
tf (ξ̂0 → ξ̂0w)

m2
w

|ξ̂0 • n̂A|L2( ~ρB,−ξ̂0w),

or

L2(~ρA,−ξ̂0) =
tf (ξ̂0 → ξ̂0w)

m2
w

L2( ~ρB,−ξ̂0w),

the familiar formula radiance transmittance across the air-water interface (Chapter 2).

7.3.5.2 Reflection of Sky Radiance

The reflected sky radiance, can be computed using Eq. (7.10) with p(~s) replaced by by
p(~s)S(ξ̂i), or by utilizing Eq. (7.26). If we approximate the sky radiance by an isotropic
radiance, i.e., L2(~ρA, ξ̂) = L0, then Eq. (7.26) becomes

F0|ξ̂0 • n̂|
L(~ρA,−ξ̂0)

L0
=

∫

ξ̂•n̂<0
|ξ̂ • n̂|L1( ~ρA,−ξ̂, λ) dΩ(ξ̂) = E+

u (ξ̂0),

or
L(~ρA,−ξ̂0)

L0
, r+(−ξ̂0) =

E+
u (ξ̂0)

F0|n̂ • ξ̂0|
. (7.28)

In words: given a uniform sky radiance L0, the radiance reflected in the direction −ξ̂0 is the
same as the irradiance reflected from the surface divided by the incident irradiance when
the source is a collimated beam incident in the direction ξ̂0. This is valid for more realistic
models of the rough surface, e.g., models that use the full spectrum of waves to synthesize
random surfaces, and provides a convenient method for computing r+(−ξ̂0). As we shall
see below, it is particularly useful when Monte Carlo techniques are employed to compute
r+(−ξ̂0).14 Figure 7.13 provides r+(−ξ̂0) computed by Monte Carlo means to be described

14It is easy to show that Eq. (7.6) satisfies this result. When L(ξ̂r) is a constant L0, this equation yields

L(~ρA, ξ̂r)

L0
=

1

| cos θr|

∫
rf (χi)

cosχi
cos θn

p(~s) dsxdsy.
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later in this chapter. In the figure, the “Viewing angle” is π − θr, i.e., the polar angle
of ξ̂r measured with respect to −êz. Note the the reflectance closely follows the Fresnel
reflectivity until viewing angles of about 60◦ (see Figure 7.14). This is manifest in the fact
that for a given viewing angle, the radiance in the direction ξ̂r results from reflection from
directions close the vector ξ̂i that would be required for a flat surface, i.e., L1( ~ρA,−ξ̂, λ) in
Eq. (7.26) is a sharply peaked function around the direction −ξ̂0.

For larger angles the reflectivity is significantly smaller than Fresnel (Figure 7.14). This
accounts in part for the existence of the horizon in directions away from the Sun. If the
surface was smooth, as one looked at the water surface closer and closer to the horizon,
there would be no variation in the magnitude of the radiance as the viewing angle varied
from just less to just greater than 90◦, i.e., there would be no visible horizon. If the surface
is rough, Figure 7.13 shows that the radiance would be smaller viewing the water near
90◦ than the sky, i.e., the water would be darker than the sky.15

7.3.5.3 Transmittance of Upwelling Subsurface Radiance (Lu)

We now turn to the transmittance of upwelling subsurface radiance through the water-air
interface. To do this we use the result for Case (b) in Figure 7.12, i.e., Eq. (7.27). If we
assume the subsurface upwelling radiance is uniform, e.g., L2(~ρB, ξ̂) = L0, then Eq. (7.27)
reads

L2(~ρA,−ξ̂0)

L0
=

1

m2
w

∫
ξ̂•n̂<0 |ξ̂ • n̂|L1( ~ρB,−ξ̂) dΩ(ξ̂)

F0|ξ̂0 • n̂|
,

In this integration ξ̂r is fixed, and as ~s varies it determines ξ̂i through Eqs. (7.3). Now, compare this to
Eq. (7.23):

E+
u (ξ̂i) = F0

∫
ξ̂r•êz<0

rf (χi) cosχi
cos θn

p(~s) dsx dsy.

In this integral, ξ̂i is fixed and as ~s varies it determines ξ̂r, so the same relationship between ξ̂i, ξ̂r and ~s is
extant. If the value of the latter is E+

u (ξ̂i)/F0, the value of the former must be E+
u (ξ̂r)/F0. Thus,

L(~ρA, ξ̂r)

L0
=

E+
u (ξ̂r)

F0| cos θr|
.

15Another reason for the horizon is that the sky radiance is usually higher near the horizon than higher
in the sky (limb brightening). Looking toward the horizon one sees facets that face the observer as well
as those that are level. These facing facets reflect light from higher in the sky (smaller radiance) and
with smaller incident angles (χi) (lower reflectivity). Both of these effects also account for the horizon. In
addition, even for a smooth surface, the curvature of the Earth and limb brightening would combine to
produce the visible horizon.
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but the integral above is the downward irradiance just beneath the surface in Problem 1:
E−d (ξ̂0). Thus if we define the transmittance of the interface from below to be

t−(−ξ̂0) ,
m2
wL2(~ρA,−ξ̂0)

L0
,

then

t−(−ξ̂0) =
E−d (ξ̂0)

F0|ξ̂0 • n̂|
. (7.29)

Noting that E−d (ξ̂0) + E+
u (−ξ̂0) = F0|ξ̂0 • n̂|, we have the interesting result

t−(−ξ̂0) + r+(−ξ̂0) = 1 :

across the air-water interface, the sum of the reflectance of uniform radiance incident
from above and the transmittance of uniform radiance incident from below is unity. We
have already computed r+(−ξ̂0) as a function of W (Figure 7.13), so t−(−ξ̂0) follows
immediately. For completeness this is provided in Figure 7.15. The transmittance factor
for a viewing angle in air of 60◦ or less is within 0.5% of the Fresnel transmittance for flat
(smooth) interface. We have seen in Chapter 6 that, although the angular distribution
of upwelling radiance just beneath the water surface is not uniform, it does not deviate
significantly from being uniform. Therefore, it is safe to assume that the transmittance of
such radiance through the interface is given by the Fresnel transmittance for a flat (smooth)
interface.

7.3.6 Incorporation of Wind-Ruffled Surface into Radiative Transfer

In this section, we discuss incorporating the wind-ruffled surface into radiative transfer
codes used in remote sensing. We start by sketching how traditional codes, e.g., successive
order of scattering, are modified by the rough surface. Then we discuss in a more detailed
manner the inclusion of rough surface effects in Monte Carlo codes, as such a code is used
to study the influence of surface roughness on the apparent optical properties (AOPs) of
natural waters in Chapter 6.

7.3.6.1 General Methods

The addition of reflecting and transmitting boundaries to radiative transfer problems was
described generally in Chapter 2. For a 1-d problem, i.e., a problem in which the properties
of the medium and surface are independent on horizontal (x-y) position, if the radiance is
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incident from a direction ξ̂i the radiances reflected in the direction ξ̂r and transmitted in
the direction ξ̂t are, respectively, given by

L(ξ̂r) =

∫

All ξ̂i

r(ξ̂i → ξ̂r)L(ξ̂i) dΩ(ξ̂i) (7.30)

and

L(ξ̂t) =

∫

All ξ̂i

t(ξ̂i → ξ̂t)L(ξ̂i) dΩ(ξ̂i), (7.31)

where r and t are the reflection and transmittance functions. Compare Eq. (7.30) to Eq.
(7.10) with p→ pS:

L(ξ̂r) =
1

| cos θr|

∫ ∫
rf (χ)L(ξ̂i)

1

cos4 θn
p(~s)S(ξ̂i) dΩ(ξ̂i).

This implies that for an atmosphere bounded by a wind-ruffled surface,

r(ξ̂i → ξ̂t) =
1

| cos θr|
rf (χ)

1

cos4 θn
p(~s)S(ξ̂i).

Similarly,

t(ξ̂i → ξ̂t) =
m2
t

cos θt
tf (χ)

cosχt cosχi
k2 cos4 θn

p(~s)S(ξ̂i).

Now, usually integrals such a this are discretized, e.g., as in Chapter 2, L(z, ξ̂) = L(z, θ, φ)
might be Fourier-analyzed in φ and discretized using Gaussian quadratures in θ. Because
of the form of these equations, it is clear that r and t are even functions of φ− φw, where
φw is the azimuth of the wind and can be expanded in a Fourier cosine series in φ − φw.
However, in the absence of the surface, the radiance can be expanded in a Fourier cosine
series in φ − φ0, where φ0 is the solar azimuth. Thus, the addition of the surface to the
atmosphere destroys the symmetry relative to the solar beam. However, if the wind is taken
to be omnidirectional, then r and t are even functions of φi − φr (just like the scattering
phase function) and the symmetry is retained. The beauty of this symmetry is that when
the radiance and reflectance are expanded in Fourier series, i.e.,

L(z, θi, φi) = L(0)(θi) + 2
∑

`

L(`)(θi) cos `(φi − φ0)

r(θi, φi → θr, φr) = t(0)(θi → θr) + 2
∑

`

r(`)(θi → θr) cos `(φi − φr),

and inserted into the above equations, the Fourier orders completely decouple:

L(`)(θr) = 2π

∫ π/2

0
r(`)(θi → θr)L

(`)(θi) sin θi dθi,
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with the result that the problem separates into individual problems for each Fourier coef-
ficient L(`)(z, θ). These individual problems can be solve by methods described in Chapter
2. Because of this separation, most treatments of rough surfaces (other than Monte Carlo)
assume an omnidirectional wind. Further discussion of this problem would take us too far
afield; however, a reference dealing with it in detail is given in the Bibliographic Notes.

7.3.6.2 Monte Carlo Methods

The evaluation of integrals using Monte Carlo methods is throughly discussed in the Math-
ematical Appendix (Chapter 14). There it is shown that one method for estimating the
value of the multidimensional integral

I ,
∫ b

a

∫ d

c

∫ f

e
· · · f(x, y, z, · · · )p(x, y, z, · · · ) dx dy dz · · ·

is to treat p(x, y, z, · · · ) as a probability density and sample xi, yi, zi, · · · , i = 1, to N , from

p(x, y, z, · · · )
∫ b
a

∫ d
c

∫ f
e · · · p(x, y, z, · · · ) dx dy dz · · ·

.

The estimator for I is then

I ≈
[

1

N

N∑

i=1

f(xi, yi, zi, · · · )
]∫ b

a

∫ d

c

∫ f

e
· · · p(x, y, z, · · · ) dx dy dz · · · (7.32)

If it is too difficult to sample from p, then we can sample from p̃(x, y, z, · · · ) and use as the
estimator

I ≈
[

1

N

N∑

i=1

f(xi, yi, zi, · · · )w(xi, yi, zi, · · · )
]∫ b

a

∫ d

c

∫ f

e
· · · p̃(x, y, z, · · · ) dx dy dz · · · ,

(7.33)
where

w(xi, yi, zi, · · · ) =
p(xi, yi, zi, · · · )
p̃(xi, yi, zi, · · · )

.

We are now ready to consider a rough water surface. In the case of reflection from the
surface in a given direction ξ̂r, recall Eq. (7.6):

L(ξ̂r) =
1

| cos θr|

∫ ∫
rf (χi)L(ξ̂i)

cosχi
cos θn

S(θi)p(sx, sy) dsx dsy,
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where we have replace p by Sp to conserve energy. To estimate L(ξ̂r) by Monte Carlo
means, we sample ~s from p(~s), which is already normalized, i.e.,

∫
p(sx, sy) dsx dsy = 1.

The determined ~s provides ξ̂i, which allows computation of χi, θi and S(θi). For this
particular sample, call it the jth sample, the quantity corresponding to f(xj , yj , , zj , · · · ) in
Eqs. (7.32) or (7.33) is then

1

| cos θr|

[
rf (χi)L(ξ̂i)

cosχi
cos θn

S(θi)

]

j

.

Repeat this procedure Nj times and the Monte Carlo estimate is

L(ξ̂r) =
1

| cos θr|
1

Nj

Nj∑

j=1

rf (χij)L(ξ̂ij)
cosχij
cos θnj

S(θij), (7.34)

where a second subscript j has been added to each variable to indicate that each sample
of ~s, i.e., ~sj , produces a different ξ̂i, now referred to as ξ̂ij — the incident direction for the

jth sample, etc. This estimate of L(ξ̂r) becomes better and better as Nj increases.16

Now a Monte Carlo radiative transfer code doesn’t deal with radiance, it deals with
individual photons, so how do we translate what we have done thus far into numbers of
photons? Recall from Chapter 2 that the number of photons NP associated with a radiance
L(ξ̂r) leaving an (horizontal) area of surface AS in a solid angle ∆Ω(ξ̂r) is

NP (ξ̂r) = CPL(ξ̂r)| cos θr|AS∆Ω(ξ̂r),

where CP is a constant. The equation for NP (ξ̂i) is similar with the subscripts r replaced
by i. Thus, if we partition the unit sphere into a set of solid angles, all of which are the
same size ∆Ω, then Eq. (7.34) becomes

NP (ξ̂r) =
1

Nj

Nj∑

j=1

1

cos θij
rf (χij)

cosχij
cos θnj

S(θij)NP (ξ̂ij) =
1

Nj

Nj∑

j=1

w(ξ̂ij → ξ̂r)NP (ξ̂ij),

with

w(ξ̂ij → ξ̂r) ,
1

cos θij
rf (χij)

cosχij
cos θnj

S(θij).

But in a radiative transfer code, we don’t a priori know NP (ξ̂i) for all ξ̂i. That will be
one of the results of the simulation. So, how do we incorporate these ideas into a radiative
transfer code? As described earlier in Chapter 2, photons are followed through their various
interactions, for each of which the probability of the various outcomes are known. Let one

16Typically, the percent error in the final result is proportional to
√
Nj , so for a given Nj , to decrease

the error by a factor of 10 one must increase Nj by a factor of 100.
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of these interactions be with the surface. The photon has a direction ξ̂i. We choose ~s from
p(~s) and this gives ξ̂r and the various angles from which we compute w(ξ̂i → ξ̂r). We then
propagate the photon in the direction ξ̂r but with a “weight” of w. In the end we do not
accumulate photon numbers in the various detectors, but we accumulate photon weights.
This is similar to the way the effect of ω0 was treated in Chapter 2. In the case of ω0, in a
given interaction instead of destroying the photon if it was absorbed, the photon is retained
but its weight is reduced by a factor of ω0, the probability that it survived the interaction,
so after n interactions its weight is ωn0 . Here, if the weight of the photon entering the
surface interaction propagating in the direction ξ̂i is W , it will be w(ξ̂i → ξ̂r) ×W after
the interaction with the surface, propagating in the ξ̂r direction. But wait, don’t photons
ever penetrate the surface? Of course, the transmitted photons have a weight

w(ξ̂i → ξ̂t) =
1

cos θi
tf (χi)

cosχi
cos θn

S(θi).

Actually, rather than following two photons, in the codes used here, at the interaction with
the surface rf (χi) is used to determine whether the photon is reflected or transmitted:
from a random number ρ with uniform distribution on 0 → 1, reflection occurs if ρ < rf ,
and transmission otherwise. So actually, in either case the weight is modified by

w(ξ̂i → ξ̂f ) =
cosχi

cos θi cos θn
S(θi),

where ξ̂f is the final direction.

In our code, we do not choose ~s directly from p(~s). Rather, we choose θn and φn from
p(θn, φn). Recall (Footnote 8),

p(~s) dsx dsy = p(θn, φn) sec2 θn tan θn dθn dφn,

and since θn and φn are independent random variables, p(θn, φn) = pθ(θn)pφ(φn). Assuming
an omnidirectional wind, from Eq. (7.14)

p(θn, φn) =
1

2πσ̃2
exp

[
−tan2 θn

2σ̃2

]
,

but since all φn’s are equally probable, pφ(φn) is uniform, so we take

pθ(θn) =
1

σ̃2
exp

[
−tan2 θn

2σ̃2

]
,

pφ(φn) =
1

2π
.

Then, given a uniformly distributed random number ρφn on the interval 0→ 1,

ρφn =

∫ φn

0

1

2π
dφn =⇒ φn = 2πρφn .
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Likewise, given a uniformly distributed random number ρθn on the interval 0→ 1,

ρθn =
1

σ̃2

∫ θn

0
exp

[
−tan2 θn

2σ̃2

]
sec2 θn tan θn dθn = 1− exp

[
−tan2 θn

2σ̃2

]
,

so
tan θn = σ̃

√
−2 `n(1− ρθn).

However, we are not quite finished. Although all values of tan θn ≥ 0 are possible, not all
values of φn are. For a facet to intercept the incident photon, we must have n̂f • ξ̂i > 0,

i.e., those values of φn for which n̂f • ξ̂i ≤ 0, are not possible. Thus, values of φn that are
possible are given by

n̂f • ξ̂i = cosφi cosφn sin θi sin θn + sinφi sinφn sin θi sin θn + cos θi cos θn

= cos(φn − φi) sin θi sin θn + cos θi cos θn

≥ 0

or

cos(φn − φi) ≥ − cot θi cot θn =⇒ φn − φi ≤ arccos(− cot θi cot θn) , φ0
n.

If this condition is satisfied, then the value obtained for φn is acceptable, otherwise a new
value must be chosen.17 This of course means that we are not actually sampling from the
true distribution of φn, i.e., pφ = 1/2π, but rather we are sampling from p̃φ = 1/(2π−φ0

n).
Thus, we must include an additional weight in the estimate: w(φ0

n) = (2π − φ0
n)/2π. If a

photon goes into an interaction with the surface with a weight Wi, it exits the interaction
with a weight

Wf = w(φ0
n)w(ξ̂i → ξ̂f )Wi =

(2π − φ0
n)

2π

cosχi
cos θi cos θn

S(θi)Wi.

Note that it is possible for a photon going toward the water surface (ξ̂i • êz > 0) to still be
going downward after it is reflected, i.e., ξ̂r • êz > 0. If this is the case, then let ξ̂r become
the new ξ̂i and the photon interact with the surface a second time. In this manner the code
will take into account some of the effects of multiple reflections, which were not addressed
in the earlier sections.

The Monte Carlo code described above was that used to compute the results in Figure
7.13 by utilizing Eq. (7.28), removing the atmosphere, and rendering the water totally
absorbing. In this manner the surface effects were isolated from the other radiative transfer
processes. However, caution should be exercised: because the elevation of the water surface
is not modeled, the shadowing of one surface element by another is not considered at all.

17When a sample is not acceptable and a new on is chosen, this process is known as “rejection sampling.”
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This can lead to errors for large values of θi, especially when σ̃ is large as well. The
results with this code are qualitatively comparable to those that treat the surface in a
more realistic manner, and quantitatively comparable for θi <∼ 60◦.

Unfortunately, the correct way of treating the wind ruffled surface in a radiative transfer
model, although straightforward in principle, is too computer intensive. One would need
to develop many realizations of a randomly rough surface based on the energy spectrum
of waves, use each of these realizations as the actual water surface for a Monte Carlo
simulation, and then average the results of the individual Monte Carlo simulations.

7.3.7 The Normalized Water-Leaving Radiance

A simple application of influence of the surface occurs in the computation of the normal-
ized water-leaving radiance. Let the upwelling radiance just beneath the water surface,
propagating in the upward direction ξ̂′v, be Lu(ξ̂′v, ξ̂

′
s), where solar photons are propagating

in the direction ξ̂′s in the water.18 If the surface is flat, the radiance transmitted through
the interface – the water-leaving radiance – Lw(ξ̂v, ξ̂s) is given by

Lw(ξ̂v, ξ̂s) =
tf (ξ̂v, ξ̂

′
v)

m2
w

Lu(ξ̂′v, ξ̂
′
s),

where ξ̂v and ξ̂′v are related by Snell’s law and tf is the Fresnel transmittance (water to

air). An observer looking down at the water surface in the direction −ξ̂v would measure
Lw(ξ̂v, ξ̂s). In Chapter 6 we studied Lu and its relationship to the IOPs in detail. There
we showed that

Lu(ξ̂′v, ξ̂
′
s) =

tf (ξ̂s, ξ̂
′
s)E

+
d (ξ̂s)

1− rR(ξ̂′s)

(
Lu(ξ̂′v, ξ̂

′
s)

Ed(ξ̂′s)

)
,

where E+
d is the downwelling irradiance incident the water surface, ξ̂s the propagation

direction of the solar beam (in air), r ≈ 0.48 and R is the irradiance reflectance just beneath
the surface. The vectors ξ̂s and ξ̂′s are also related by Snell’s law. The combination Lu/Ed
was the quantity directly related to the IOPs (also called R/Q). Therefore,

Lw(ξ̂v, ξ̂s) =

[
tf (ξ̂v, ξ̂

′
v)tf (ξ̂s, ξ̂

′
s)

m2
w(1− rR(ξ̂′s))

]
E+
d (ξ̂s)

(
Lu(ξ̂′v, ξ̂

′
s)

Ed(ξ̂′s)

)
.

The quantity in the square brackets is only weakly dependent on the optical properties of
the water through the dependence of R(ξ̂′s) on the IOPs. Typically 0 ≤ R ≤ 0.1, so the

18Here we indicate the direction of the scattered radiance (ξ̂v) and the solar beam (ξ̂s) as arguments in
Lw (and Lu) because later we will try to relate measurements of Lw made by observers looking in different
directions with illumination at different solar zenith angles.
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quantity 1 − rR(ξ̂′s) varies only from 0.952 to 1, and can be replaced by an average value
with an error that is <∼ 3%. Thus, we assume that

<(ξ̂v, ξ̂s) ,
tf (ξ̂v, ξ̂

′
v)tf (ξ̂s, ξ̂

′
s)

m2
w(1− rR(ξ̂′s))

depends only on ξ̂s and ξ̂v.
19 Now, we multiply and divide by the extraterrestrial solar

irradiance at the Sun-Earth distance equal to 1 Astronomical Unit (AU), F̄0, to yield20

Lw(ξ̂v, ξ̂s) = <(ξ̂s, ξ̂v)F̄0

(
Lu(ξ̂′v, ξ̂

′
s)

Ed(ξ̂′s)

)
E+
d (ξ̂s)

F̄0
.

This defines the normalized water-leaving radiance [Lw]N though

Lw(ξ̂v, ξ̂s) = [Lw(ξ̂s, ξ̂v)]N
E+
d (ξ̂s)

F̄0
, (7.35)

so

[Lw(ξ̂v, ξ̂s)]N , <(ξ̂v, ξ̂s)F̄0

(
Lu(ξ̂′v, ξ̂

′
s)

Ed(ξ̂′s)

)
= <(ξ̂v, ξ̂s)F̄0RL(ξ̂′v, ξ̂

′
s),

where RL(ξ̂′v, ξ̂
′
s) is the remote sensing ratio (Chapter 6) generalized to viewing directions

other than nadir. Thus, [Lw(ξ̂s, ξ̂v)]N consists of two parts, one of which (<) depends only
on the air-water interface (ignoring the weak dependence on R).

How does this carry over to the case where the water surface is ruffled by the wind? We
saw in Chapter 6 that Lu depends only weakly on ξ̂′v. So in the first approximation we will
assume that Lu is independent of ξ̂′v, i.e., the upwelling radiance below the water surface
is totally diffuse. Then the results of the Section 7.3.5.3 show that the transmittance of
totally diffuse radiance through the interface is governed by t−(−ξ̂v). So one must replace
tf (ξ̂v, ξ̂

′
v) by t−(−ξ̂v) in < to account for the surface roughness. However, from Figure

7.15 we see that for a viewing direction ξ̂v such that π − θv <∼ 60◦, there is virtually no

difference between t−(−ξ̂v) and tf (ξ̂v, ξ̂
′
v). What about the other transmittance in <? This

is the irradiance transmittance of the solar beam, but this is precisely what was computed
as t−(−ξ̂0) in Eq. (7.29), and used to compute the first factor in <. Thus, for a roughened
surface we can write

<(ξ̂v, ξ̂s)) =
t−(−ξ̂v)t−(−ξ̂s)
m2
w(1− rR(ξ̂′s))

. (7.36)

19It is easy to reduce the error in < due to R through an iterative process where one first takes a nominal
R and computes Lu/Ed = R/Q. Then Q is estimated yielding a new R, etc. This can cut the error in <
by at least a factor of 2 by using a nominal value for Q.

20The extraterrestrial solar irradiance at the Sun-Earth distance distance equal to 1 AU, F̄0, is about
0.07% less than the extraterrestrial solar irradiance averaged over a year and indicated by 〈F0〉 in Chapter
8. Also, it is about 0.03% less than the value of F0 at the mean distance from the Earth to the Sun.
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Again, t−(−ξ̂s) ≈ tf (ξ̂s, ξ̂
′
s) for θs <∼ 60◦. Thus, summarizing, for θs <∼ 60◦, < can be

computed with high accuracy assuming that the surface is flat (smooth).

Why do we call [Lw(ξ̂s, ξ̂v)]N the normalized water-leaving radiance? Normalized in
what way? We know that

E+
d (ξ̂s) =

F̄0 cos θs
a2
⊕

tE(ξ̂s),

where tE(ξ̂s) is the transmittance of irradiance from the top of the atmosphere to the water
surface, and a⊕ is the Earth-Sun distance in astronomical units (AU). Putting this into
Eq. (7.35), we have

Lw(ξ̂v, ξ̂s) = [Lw(ξ̂v, ξ̂s)]N
1

a2
⊕

cos θstE(ξ̂s),

or

[Lw(ξ̂v, ξ̂s)]N = Lw(ξ̂v, ξ̂s)
a2
⊕

cos θstE(ξ̂s)
. (7.37)

Note that if the Sun is at the zenith (ξ̂s = êz) at a⊕ = 1 AU, and in the absence of
the atmosphere (tE(ξ̂s) = 1), the actual water-leaving radiance propagating in toward the
zenith (ξ̂v = −êz) is equal to the normalized water-leaving radiance, i.e., Lw(−êz, êz) =
[Lw(−êz, êz)]N .

We can compare the normalized water-leaving radiances for two different Sun-viewing
geometries:

[Lw(ξ̂v2, ξ̂s2)]N

[Lw(ξ̂v1, ξ̂s1)]N
=
<(ξ̂v2, ξ̂s2)

<(ξ̂v1, ξ̂s1)

RL(ξ̂′v2, ξ̂
′
s2)

RL(ξ̂′v1, ξ̂
′
s1)
. (7.38)

The < ratio in this equation is easily calculated, while the RL ratio can be modeled, e.g.,
from Chapter 6, we have to a good approximation RL = QSSA′L, so

RL(ξ̂′v2, ξ̂
′
s2)

RL(ξ̂′v1, ξ̂
′
s1)

=
QSSA′L(ξ̂′v2, ξ̂

′
s2)

QSSA′L(ξ̂′v1, ξ̂
′
s1)
.

Ideally the remote sensor provides Lw(ξ̂v, ξ̂s), which when given an estimate of tE(ξ̂s),
provides [Lw(ξ̂s, ξ̂v)]N . However, most field measurements of Lu are taken at a different
Sun angle and are made at nadir, i.e., at ξ̂′Field

v = −êz, and ξ̂′s = ξ̂′Field
s . So, to compare field

measurements of [Lw]N to remotely sensed measurements, modeling of the dependence of
RL on ξ̂v and ξ̂s is required. Such modeling is often referred to as the “BRDF effect.”

Later we will find it useful (especially in atmospheric correction, Chapter 10) to replace
all radiances L by a reflectance ρ according to

ρ ,
πL

F0 cos θs
,
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where F0 is the extraterrestrial solar irradiance at the time L is measured, i.e., the instan-
taneous F0 (not to be confused with F̄0, the value of F0 at time mean Sun-Earth distance).
How does ρw relate to [Lw]N? Consider Eq. (7.37) and replace Lw by ρw. The result is

[Lw(ξ̂v, ξ̂s)]N = ρw(ξ̂v, ξ̂s)
F0a

2
⊕

πtE(ξ̂s)
.

Noting that F0a
2
⊕ = F̄0, this becomes

[Lw(ξ̂v, ξ̂s)]N = ρw(ξ̂v, ξ̂s)
F̄0

πtE(ξ̂s)
,

and if we define the normalized water-leaving reflectance, [ρw(ξ̂v, ξ̂s)]N , according to

ρw(ξ̂v, ξ̂s) = [ρw(ξ̂v, ξ̂s)]N tE(ξ̂s), (7.39)

we have

[ρw(ξ̂v, ξ̂s)]N =
π[Lw(ξ̂v, ξ̂s)]N

F̄0
. (7.40)

It is important to note that [ρw(ξ̂v, ξ̂s)]N and [Lw(ξ̂v, ξ̂s)]N are related by F̄0, while ρw(ξ̂v, ξ̂s)
and Lw(ξ̂v, ξ̂s) are related by the instantaneous F0. Recalling,

[Lw(ξ̂v, ξ̂s)]N = <(ξ̂v, ξ̂s)F̄0

(
Lu(ξ̂′v, ξ̂

′
s)

Ed(ξ̂′s)

)
,

we see that

[ρw(ξ̂v, ξ̂s)]N = π<(ξ̂v, ξ̂s)

(
Lu(ξ̂′v, ξ̂

′
s)

Ed(ξ̂′s)

)
. (7.41)

While we are on this subject, recall that the remote sensing reflectance, Rrs was defined as

Rrs(ξ̂v, ξ̂s) ,
Lw(ξ̂v, ξ̂s)

E+
d

.

Using this it is easy to show that

Rrs(ξ̂v, ξ̂s) =
[ρw(ξ̂v, ξ̂s)]N

π
,

and so

Rrs(ξ̂v, ξ̂s) = <(ξ̂v, ξ̂s)

(
Lu(ξ̂′v, ξ̂

′
s)

Ed(ξ̂′s)

)
.



600 CHAPTER 7. OPTICAL EFFECTS OF THE WATER SURFACE

7.4 Whitecaps

When waves “‘break” on the water surface they inject air into the water to produce a rack
of foam that is usually referred to as a whitecap.21 On a windy day one often sees a more
or less uniform distribution of small white patches on the water surface. These patches
are highly reflective and can supply a reflected radiance that directly competes with the
water-leaving radiance we are interested in measuring. One can get a rough idea of the
magnitude of the radiance produced by whitecaps by (1) measuring the fraction (fwc) of
the water surface covered by whitecaps, (2) estimating the reflectance (rwc) of a single
whitecap and (3) assuming the individual whitecaps are lambertian reflectors. With these
quantities and assumptions, Lwc = rwcfwcE

+
d /π, where E+

d is the irradiance incident on
the water surface. For the Sun in a back sky, E+

d = F0 cos θ0, so

Lwc

F0
=
rwcfwc

π
cos θ0.

It is obvious that the fraction of the sea surface covered with whitecaps is related to the wind
speed W . Monahan and O’Muircheartaigh [1980] summarized the very noisy relationship
between f and W as

f = 2.95× 10−6W 3.52,

where W is in m/s measured 10 meters above the water surface.22 It is also observed that
there are essentially no whitecaps for W ≤ 6 m/s. For the spectral range in the visible,
the effective whitecap reflectance is almost independent of λ and has been determined by
Koepke [1982] to be ∼ 22%. These included both fresh whitecaps as well as decaying
whitecaps. Thus, an estimate of the whitecap radiance is

Lwc

F0
=

2.95× 10−6W 3.52 × 0.22

π
cos θ0 = 2.07× 10−7W 3.52 cos θ0 (7.42)

The water-leaving radiance near 500 nm Lw ∼ (2.5 × 10−3)F0, so this suggests that at
W ≈ 13 to 14 m/s the water-leaving radiance and the whitecap radiance are comparable
in magnitude.

As whitecaps have the potential of adding upwelling radiance just above the water surface
comparable magnitude to the desired Lw, it is important to try to obtain radiometric data

21The same process creates what is usually termed the marine or maritime aerosol.
22Later Monahan and O’Muircheartaigh [1986] modified the expression to

f = 1.95× 10−5 W 2.55 exp[−0.0861∆T ],

which included the influence of the atmospheric stability. The quantity ∆T is the air-sea temperature
difference (∆T = TA − TW ), with ∆T > 0 implying a stable atmosphere.
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of actual oceanic whitecaps, and determine the effect of the wind speed. In particular, it is
critical to understand the spectral dependence of whitecap reflectance. The author and co-
workers approached this by constructing a ship-based radiometer for observing whitecaps
while a ship is on station or underway. The radiometer, suspended from a boom off the
bow of the ship, continuously viewed a spot about 12 cm in diameter on the sea surface,
continuously measuring a radiance Ls. A video image, from a TV camera mounted along
side of the radiometer to visually observe the water surface, was used to reject Sun glitter.
A second radiometer on the deck of the ship recorded the incident irradiance E+

d . The
radiance of the surface measured by the radiometer was recorded as a function of time
(∼ 7 samples/sec). This radiance consists of background radiance (Lb) from whitecap-
free areas (the predominant situation) and a much higher radiance (Lwc + Lb) whenever
a portion of a whitecap was in the field of view of the radiometer. After determining the
radiance of the whitecap-free areas (Lb, essentially the “baseline” of the radiance, and in
the absence of skylight and Sun glitter, Lw), and subtracting it from the entire record, we
are left with the time-average radiance due to the whitecaps,

〈Lwc〉 = 〈Ls〉 − 〈Lb〉.

The associated reflectance (the remote-sensing augmented reflectance, RSAR) is defined
by

RSAR =
π〈Lwc〉
E+
d

. (7.43)

The RSAR is the irradiance reflectance of whitecaps (over and above the background)
assuming that they are Lambertian reflectors.23 The radiometer was accompanied by a
meteorological package to provide the speed of the wind relative to the ship (and other,
possibly relevant, parameters) and a GPS unit to provide the absolute speed of the ship.
Combining these yielded W . The whitecap radiometer recorded in 10 nm bands centered at
6 wavelengths: 410, 510, 550, 670, 750, and 860 nm, and the downward surface irradiance
was measured in 5 bands, also 10 nm wide, centered at 410, 510, 550, 670, and 860 nm.

An example of two whitecaps passing under the radiometer is shown in Figure 7.16. The
96 consecutive samples shown are acquired over a period of ∼ 15 seconds. In this example
a large whitecap suddenly breaks in view of the radiometer with thick white foam (sample
point 11) reaching a peak reflectance of ∼ 55%. Six traces are plotted representing the six
radiometer channels. The lower trace corresponds to the 860 nm reflectance. The thick
foam is temporarily replaced by a region of submerged bubbles and less thick foam (∼
sample points 13, 14, 15) and some thick foam comes into view again at sample point 17.
At sample point 20 and 21 a thin layer of foam passes followed by the decaying thicker
foam to about sample point 35. Sample points from about 35 to 55 show the reflectance of

23Rewriting Eq. (7.40) using Eq. (7.35) yields [ρw]N = π[Lw]N/F̄0 = πLw/E
+
d .Comparison with Eq.

(7.43) shows that RSAR, like [ρw]N , is a similarly normalized reflectance.
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thinning residual foam. From 60 to about 75 the reflectance of the foam free water surface
is shown and is suddenly followed by another whitecap of smaller magnitude (sample point
76) and continues to decay out to about sample point 96. The data clearly suggest a
significant fall in the near-infrared (NIR) reflectance of whitecaps.

From 1 to 13 November 1996, the whitecap radiometer was operated on a cruise from
Manzanillo, Mexico to Honolulu, Hawaii. This cruise provided whitecap data under con-
ditions of steady winds (the trades) of essentially unlimited duration and fetch. Unfortu-
nately, analysis of the data was not as straightforward as expected. Under clear skys it is
still very difficult to separate whitecaps from Sun glint events. Thus, the analysis was per-
formed only under overcast conditions. Furthermore, the determination of the “baseline”
reflectance is critical to the analysis and proved to be difficult as well.

The analysis for estimating RSAR is described in detail in Moore et al. [2000]. The
dependence of RSAR at 410 nm on wind speed is provided in Figure 7.17 along with the
results of earlier investigations and parameterizations. The black triangles (joined by a
vertical line) are the results of two different methods of data analysis (establishing the
baseline). The larger (lower) black triangles are believed to be the better analysis of the
data. For these,

RSAR ∼ 3× 10−6W 2.55.

There was no discernible spectral variation of RSAR in the visible; however, the RSAR
was significantly lower at 860 nm than at 410 nm. (Figure 7.18). Although the data are
very noisy, they suggest that

RSAR(860) ∼ 0.85×RSAS(410),

for RSAR(410) <∼ 0.06. This reduction of RSAR in the NIR was similar to, but less than,
that observed in the surface zone [Frouin et al., 1996] and in ship wakes [Moore et al.,
1998]. Combining all of the observations, the RSAR of whitecaps is estimated to be

RSAR(λ) = S(λ)× 3× 10−6W 2.55, (7.44)

where S(λ) is a spectral reflectance factor for whitecaps taken to be unity in the visible,
0.925 at 750 nm and 0.85 at 860 nm. While this formula fit our data reasonably well, it could
well be an underestimate at higher wind speeds. The spread of the various measurements
in Figure 7.17 suggests that the standard deviation in the RSAR may be approximately
equal to or somewhat greater than the RSAR itself.
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7.5 Numerical Comparisons of Surface Effects

We close out this chapter on surface optics by providing a quantitative example that
compares the various effects of the water surface to the signal that we are attempting
to measure (remotely): the normalized water-leaving radiance. Consider a sensor on a
satellite in orbit moving in a south to north direction (with the sub-satellite track on the
surface being a line of constant longitude) at the spring or fall equinox. In this case, the
solar zenith angle (θi) is the latitude of the sensor, and the solar azimuth (φi) is zero. The
sensor views the surface in one of two modes: (1) it is aimed in the nadir direction so
θr = 180◦; and (2) it is in a “tilted”24 mode in which θr = 160◦ and φr = 180◦. Figure
7.19 compares the radiance that the sensor would view (in the absence of atmospheric
attenuation) due to direct Sun glitter, reflected sky radiance25 and whitecaps, to the signal
of interest: the normalized water-leaving radiance [Lw]N . The sensor is assumed to be
similar to most space-borne ocean color instruments having a field of view represented by
an approximately 1 km × 1 km area on the water surface, so that the radiance due to Sun
glitter represents an average over a very large number of facets. Note that the quantity
plotted on the abscissa is radiance divided by F0. The plot is for a wavelength of 500 nm.
The water is assumed to be have a chlorophyll concentration of less than 0.2 mg/m3, and
the wind is assumed to be omnidirectional.

The left panel in Figure 7.19 is for a nadir-viewing sensor (mode 1). Here we see that
the radiance due to whitecaps is about an order magnitude lower than [Lw]N , so whitecaps
would not be a significant factor in the determination of [Lw]N ; however, note that the
whitecap contribution increases rapidly with increasing wind speed. Similarly, for latitudes
less than about 40◦, the reflected skylight is significantly lower than [Lw]N . In contrast, the
direct Sun glitter is approximately a full to half an order of magnitude greater than [Lw]N
for latitudes of 30◦ (W = 5 m/s) and 40◦ (W = 10 m/s). Retrieving [Lw]N in the presence
of such strong Sun glitter would be a significant challenge. In the tilted configuration (mode
2, the right panel in Figure 7.19) one sees that the range of contamination of the desired
[Lw]N by Sun glitter is considerably reduced extending the range (of latitudes) over which
retrievals might be possible. The message here is that the contamination by Sun glitter
(near the position where the specular image of the Sun would appear for a flat surface)
is so large that useful results there are nearly impossible, and every effort must be made

24The first ocean color sensor, the Coastal Zone Color Scanner (CZCS), was equipped with the capability
to tilt the scan plane 20◦ forward and aft of nadir so as to avoid some of the Sun glitter. Mode (1) here is
equivalent to the center of the CZCS scan when it is in the untilted mode, while mode (2) here equivalent to
the center of the CZCS scan when it is tilted fully forward. The SeaWiFS sensor had the same capability.

25For the reflected sky radiance in the figure, for simplicity we have assumed that r+(−ξ̂0) = rf (−ξ̂0),
the simple Fresnel reflectivity at the angle appropriate for a flat surface. The error in doing so is easily
determined by noting that over the range 0 ≤ χi ≤ 60◦, |r+(−ξ̂0)−rf (−ξ̂0)| ≤ 0.004. Since LSky/F0 <∼ 0.02
over this range, the error in the reflected component is <∼ 8× 10−5, significantly less than [Lw]N/F0.
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to avoid such regions of ξ̂r. Fortunately, since most ocean color instruments scan roughly
from east to west, even in regions where there is significant glitter contamination at nadir,
there will be regions along the scan for which the glitter contamination will be negligible.

7.6 Summary

In this chapter we have examined the transmission of radiance through, and reflection
from, the air-water interface. The simple relationships developed for a flat surface become
complex, but tractable, for a wind-ruffled interface. Modeling the latter as a set of plane
facets enables the estimation of the distribution of surface slopes, which turns out to be
approximately gaussian with a variance proportional to the wind speed. Applying the
basic laws of refraction and reflection along with the Fresnel equations to the individual
facets allowed a description of the propagation of radiance across such a surface. The most
important results are: (1) the computation of the contribution of directly-reflected Sun light
from the water surface — the glitter pattern given by Eq. (7.11); and (2) demonstration
that the transmittance of a uniform Lu(ξ̂) distribution incident on the interface from the
water side is accurately provided by the Fresnel transmittance for a flat interface, as long
the viewing angle (from above the interface) is less than about 60◦. These results are the
product of a first-order theory, in which photons interact with the water surface only once,
and for which one portion of the surface does not shadow another — conditions that are
valid for low wind speeds. In a brief section we provided a summary of what is presently
known about the effects of whitecaps their relation to wind speed.

We also developed the idea of normalized water-leaving radiance (and reflectance), which
will be the ultimate radiometric quantity derived from remote sensing, and used as inputs
to algorithms for water constituents.

7.7 Appendix 1. Evaluation of an Integral

In this appendix we compute the integrals involved in

1

S(θi)
=

1√
2πσ̃

∫ +∞

− cot θi

(1 + sx tan θi) exp

[
−
(
s2
x

2σ̃2

)]
dsx

This is of the form

I =

∫ ∞

−c
exp(−bx2) dx+

∫ ∞

−c
ax exp(−bx2) dx , I1 + I2
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where a, b, and c are constants. First consider I1:

I1 =

∫ ∞

−c
exp(−bx2) dx =

∫ 0

−c
exp(−bx2) dx+

∫ ∞

0
exp(−bx2) dx

=

∫ 0

−c
exp(−bx2) dx+

1

2

√
π

b

=

∫ +c

0
exp(−bx2) dx+

1

2

√
π

b

=
1

2

√
π

b
erf(
√
bc) +

1

2

√
π

b

=
1

2

√
π

b

[
1 + erf(

√
bc)
]
,

where erf(x) is the error function defined through

erf(x) ,
2√
π

∫ x

0
exp(−t2) dt.

The integral I2 is simple:

I2 =

∫ ∞

−c
ax exp(−bx2) dx = − a

2b

∫ ∞

−c
d
[
exp(−bx2)

]

=
a

2b

[
exp(−bx2)

]
|∞−c =

a

2b
exp(−bc2).

Noting that a = tan θi, b = 1/2σ̃2, and c = cot θi, yields the desired relationship:

1

S(θi)
=

1

2

[
1 + erf

(
cot θi√

2σ̃

)
+
σ̃ tan θi√

2π
exp

(
−cot2 θi

2σ̃2

)]
.

7.8 Appendix 2. Polarization of Sun Glitter

Here, we will briefly develop the polarization of reflected Sun glitter. The Mueller matrix
for Fresnel reflection from the (flat) air-water interface was given earlier in Chapter 1:

rf (θi) =




r+ r− 0 0
r− r+ 0 0
0 0 r33 0
0 0 0 r33


 ,

with

r± =
1

2

[
tan2(θi − θt)
tan2(θi + θt)

± sin2(θi − θt)
sin2(θi + θt)

]
,
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r33 = −tan(θi − θt)
tan(θi + θt)

sin(θi − θt)
sin(θi + θt)

,

and mw sin θt = sin θi. In analogy to the scalar case in the text, the reflected Stokes vector
Ir(ξ̂r) for unpolarized incident solar radiation (Sun in a black sky) is

I(ξ̂r) =
p(~s)

4| cos θr| cos4 θn
R(−αr)rf (χ)R(−αi)




F0

0
0
0


 ,

where R(ψ) is the rotation martix,

R(ψ) =




1 0 0 0
0 cos 2ψ − sin 2ψ 0
0 sin 2ψ cos 2ψ 0
0 0 0 1


 .

The angles αr and αi are shown in Figure 7.20. The “−” sign in the arguments of the
rotation matrices results from the fact that the rotations in Figure 7.20 are clockwise
looking toward the light rather than counterclockwise (Chapter 1). We note that because
the incident radiation is unpolarized, R(αi) is irrelevant, so

I(ξ̂r) =




Ir
Qr
Ur
Vr


 =

p(~s)F0

4| cos θr| cos4 θn




r+(χ)
r−(χ) cos(−2αr)
r−(χ) sin(−2αr)

0


 ,

where the law of sines applied to the spherical triangle in Figure 7.20 gives

sinαr =
sin θi sin(φr − φi)

sin 2χ
,

and the angle χ is given by cos 2χ = |ξ̂r • ξ̂i|. The degree of polarization is

P =

√
Q2
r + U2

r + V 2
r

I2
r

=

∣∣∣∣
r−(χ)

r+(χ)

∣∣∣∣ ,



7.8. APPENDIX 2. POLARIZATION OF SUN GLITTER 607

Noting that r− is negative, we can write

I(ξ̂r) = K




r+(χ)
r−(χ) cos(−2αr)
r−(χ) sin(−2αr)

0


 = Kr+




1
−P cos(−2αr)
−P sin(−2αr)

0


 = Kr+




1
P cos(−2αr ± π)
P sin(−2αr ± π)

0




= Kr+




1− P
0
0
0


+Kr+




P
P cos(−2αr ± π)
P sin(−2αr ± π)

0




= IUr + IPr,

where IUr and IPr are, respectively the unpolarized and polarized components of Ir, and

K ,
p(~s)F0

4| cos θr| cos4 θn
.

Now, since IPr is in the standard form for linearly polarized light, i.e.,

I =




I
I cos(2γ)
I sin(2γ)

0


 ,

and we identify γ as specifying the direction polarization (Chapter 1), the angle of polar-
ization γ is given by

2γ = −2αr ± π =⇒ γ = ±π
2
− αr.

Noting that −π/2 is the same angle a +3π/2, we see that the two values of γ refer to the
same polarization direction:

γ =
π

2
− αr or γ =

3π

2
− αr.

Interestingly, neither P nor γ depend on the surface roughness. They depend only on
the directions ξ̂r and ξ̂i; however, the magnitudes of both Qr and Ur do depend on p(~s).
For most directions ξ̂r and ξ̂i, the surface must be rough to get any reflected light at all.
The polarization angle γ is easy to explain. For reflection from a dielectric, the light with ~E
perpendicular to the plane of incidence-reflection is more strongly reflected than that with
~E parallel to the plane of incidence-reflection. So when unpolarized light is reflected from
a tilted facet, the reflected light will have a larger ~E perpendicular to the plane formed by
ξ̂r and ξ̂i than in the plane parallel to it. Thus, examination of the reflected light with a
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plane polarization analyzer will yield a maximum of transmission when the pass direction
of the analyzer is perpendicular to the plane formed by ξ̂r and ξ̂i, or making an angle
γ = π/2− αr with the vertical (±êz).

It should be noted that these results apply to first order interactions with the surface.
Should a photon reflect two or more times from the surface, e.g., an incident photon
strikes the surface again after being reflected by a facet, its polarization will not follow the
equations developed in this appendix.

7.9 Bibliographic Notes

7.2 Optical Effects of a Flat (Smooth) Water Surface

The material here was taken from Chapters 1 and 2.

7.3 Optical Effects of a Wind-Ruffled Water Surface

The material in much of this Section was developed by the author drawing heavily from
Cox and Munk [1954], with some of the vector relationships (Eqs. (7.2) and (7.3)) inspired
by Walker [1994].

7.3.2 Reflection of Light by a Wind-Ruffled Surface

In this section we alluded to the rigorous method of dealing with reflection and refraction
from a random rough surface that involves use of the energy spectrum of waves. This is
discussed in Preisendorfer [1976f], Preisendorfer and Mobley [1986] and Mobley [1994],
and culminated in Mobley [2016], which treats the reflection light from water based on
the wave energy spectrum, in its entirety, and from which the limitations of first-order
theory developed in the text can be assessed. However, it still remains to carry out the
complete radiative transfer problem – coupled water, surface, and atmosphere. This will
likely require the next generation of super computers.

7.3.2.3 Estimation of p(~s) (Cox and Munk)

There is considerable debate as to the validity of the values assigned to the Cox and
Munk [1954] parameters; however, there is little debate about the correctness of the basic
formulation, i.e., the gaussian nature of p(~s), the Shaw and Churnside [1997] direct mea-
surements using a scanning-laser glint meter demonstrated this, as did Duntley [1954] by
a completely different method. Even the satellite measurements of glitter by Ebuchi and
Kizu [2002] confirmed this basic distribution. Only the relationship of the parameters to
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wind speed is controversial: the conclusions of Ebuchi and Kizu [2002] are opposite to those
of Shaw and Churnside [1997] (and Hwang and Shemdin [1988]). Ebuchi and Kizu [2002]
attribute this to the likelihood that the direct measurements were made under conditions
in which the waves were growing with the wind, whereas in their measurements the waves
were in equilibrium with the wind, and therefore, represent average conditions. Interest-
ingly, the surface realizations based in wave energy spectra in Mobley [2016] show surface
slope variances in reasonable agreement with Cox and Munk [1954]. The relationship of
surface slope to wind speed is therefore still an open question, which may be answered as
more complete energy spectra become available.

7.3.4 Requirements for Conservation of Energy Across the Water Surface

This section was developed completely by the author; however, ideas concerning the
“shadowing” of a rough surface developed by Saunders [1967] helped crystalize the devel-
opment.

7.3.5.1 General Considerations: Reciprocity

The form of the reciprocity principle used here was developed in Yang and Gordon [1997]
and applied to radiative transfer across a rough surface in Gordon [2005].

7.3.6.1 General Methods

The methods described here are developed in Nakajima and Tanaka [1983] for scalar
radiative transfer and in Gordon and Wang [1992] for vector theory. For the most general
case, i.e., the wind direction and the solar beam neither parallel nor antiparallel, see Mobley
[2018].

7.4 The Normalized Water-Leaving Radiance

The concept of a normalized water-leaving radiance was first introduced by Gordon and
Clark [1981], used to in the processing of CZCS imagery [Gordon et al., 1988, 1983], and
later discussed in considerable detail by Morel and Gentili [1996].

In this section it was assumed that Lu(ξ̂′v, ξ̂
′
s) was independent of ξ̂′v. Gordon [1999]

examined the case where Lu is not totally diffuse, but varies slowly with ξ̂′v. By expanding
Lu in a power series in ξ̂′v, it was shown that

Lw(ξ̂v, ξ̂s) =
t−(−ξ̂s)
m2
w

Lu(ξ̂′c, ξ̂
′
s)

where ξ̂c is a direction that is very close to, but not identical to, ξ̂′v. For a surface ruffled
by an omnidirectional wind, it was shown that the polar angles θ′c and θ′v differed by less
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than 4◦ for viewing angles π−θv ≤ 75◦ and W ≤ 16 m/s, and that the difference decreases
rapidly for smaller viewing angles. Thus, < is unchanged if Lu is not totally diffuse, but
the water-leaving radiance is characteristic of a slightly different ξ̂′v in the water. Examples
in Chapter 6 should convince the reader that the variation in Lu when the viewing angle
changes by <∼ 4◦ is insignificant.

7.5 Whitecaps

Our knowledge of whitecap coverage and its relationship to water and meteorlogical
parameters W and ∆T owes much to Monahan and co-workers [Monahan, 1969, 1971;
Monahan and O’Muircheartaigh, 1980, 1986; Stabeno and Monahan, 1986]. His work,
accomplished largely through photography was centered in determining the fractional cov-
erage. Data presented by Bortkovskii [Bortkovskii, 1987] appears to show a dependence of
coverage on the water temperature itself; however, Monahan and O’Muircheartaigh [1986]
pointed out that it is not clear if the effect is real or due to the fact that the cold water
measurements may not be representative because the seas may not have been fully de-
veloped in regions where such measurements have been made. For fully developed seas,
fwc ∼ W η, and for non-fully developed seas the value of η is reduced. Thus, the value of
the exponent depends in some manner on the “duration” of the wind in the open ocean
(where there is no fetch limitation).

Concerning the reflective properties, Whitlock et al. [1982] measured the reflectivity of
laboratory-produced foam suggesting that the maximum reflectivity was ∼55%. Koepke
[1984] estimated their effective reflectivity, accounting for the decay in reflectivity as the
foam rack thins in an aging whitecap to be ∼22%. Frouin et al. [1996] measured the
reflectance of breaking waves in the surf zone and were the first to suggest that there
might be a significant decrease in the NIR reflectance of whitecaps. The measurements
using the whitecap radiometer are described in detail in Moore et al. [1998, 2000].
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7.10 Figures	  
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Figure 7.1: Refraction and reflection of light by an interface. The unit vectors ξ̂i,
ξ̂r and ξ̂t are, respectively, the propagation directions of the incident, the reflected
direction and the transmitted electromagnetic waves. The unit vector êz is the
surface normal, and ξ̂i, ξ̂r, ξ̂t and êz all lie in the same plane. The refractive indices
on the two sides of the interface are mi and mt as shown. The law of reflection
is χr = χi or in vector form ξ̂r = ξ̂i − 2êz(êz • ξ̂i) and the law of refraction is

mt sinχt = mi sinχi or in vector form mtξ̂t = miξ̂i + (mt cosχt − mi cosχi)êz.
The drawing here is for mi < mt, so χt < χi.
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Figure 7.2: Schematic showing what an observer might see from the deck of a ship
looking out over the sea surface toward the horizon in the direction of the rising
or setting sun. The triangular patch is the reflection of the sun from the rough
surface. The horizontal line between the light blue (sky) and dark blue (water) is
the horizon.

Figure 7.3: Photograph of Sun glitter taken September 21, 2016 from the shore
of Lake Champlain. Here the solar zenith angle was approximately 52◦.
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Figure 7.4: Schematic showing a facet on the water surface, the normal to the facet
n̂f , and the incident (ξ̂i) and the reflected (ξ̂r) directions. The angle of incidence

(and reflectance) on the facet is χ (also called χi in the text). The vectors n̂f , ξ̂i
and ξ̂r all lie in the same plane. The z axis (and êz) is vertically downward in the
drawing and is not in the plane of the other three vectors.
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Figure 7.5: Schematic showing a single facet. In contrast to Figure 7.4, the plane
of the drawing is the plane containing the normal to the facet n̂f , the incident (ξ̂i)

and the reflected (ξ̂r) directions. The unit vector êz is not in this plane, but makes
an angle θn with the normal. The area of the facet is ai. The dash-dot-dash line
(− ·− ·−) represents a plane perpendicular to the incident direction, and is drawn
so that its area is the projected area (in the incident direction) of the facet, i.e.,
this projected area is ai cosχ.
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Figure 7.6: Schematic showing an observer (O) at a height (H) above the water
surface looking toward the surface so as to observe a reflected photon propagating
in the direction ξ̂r, after being reflected from a properly oriented facet at F . The
coordinates (x, y) of F are given by x = −H tan(π−θr) cosφr and y = −H tan(π−
θr) sinφr.
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Figure 7.7: Position in Figure 7.6 from which the reflected image of the sun will
appear for a given θn assuming that all φn’s are equally probable. There is an
equivalent set of lines having positive values of y, leading to a “V”-shaped figure
for a given value of θn (in degrees). Here the solar zenith angle θi = 70◦ and the
observer is located at x = y = 0, and 1 m above the water surface.
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Figure 7.8: Radiance reflected from a wind-ruffled water surface. The source is
the sun in a black sky with a zenith angle of 30◦(ξ̂i is in the x-z plane). The

azimuth of ξ̂r is “phi” (in degrees) measured in the x-y plane relative to êx. The

wind vector ~W is in the x-direction, i.e., has only an êx component. Thus, for “phi
= 0”, the projection ξ̂r in the x-y plane is parallel to ~W , while for “phi = 90◦”, it
is perpendicular to ~W . The wind speed is 7.5 m/s. The angle π − θr is the angle

that ξ̂r makes with the outward normal, i.e., surface normal pointing out of the
water. Left Panel: Linear scale. Right panel: Log scale.
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Figure 7.9: Radiance reflected from a wind-ruffled water surface. The source is
the sun in a black sky with a zenith angle of 30◦. The wind is parallel to êx. For
the filled symbols the plane containing ξ̂i, ξ̂r, and êz also contains ~W , while for
the open symbols, it is perpendicular to ~W . The wind speed is 7.5 m/s. The angle

π − θr is the angle that ξ̂r makes with the outward normal, i.e., surface normal
pointing out of the water (-êz).
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Figure 7.10: Schematic showing a facet on the water surface, the normal to the
facet n̂f , the incident (ξ̂i), the reflected (ξ̂r) and the refracted (transmitted, ξ̂t)
directions. The angle of incidence (and reflectance) on the facet is χi and the angle
of refraction is χt). The z axis (and êz) is vertically downward in the drawing, but

not in the plane containing ξ̂i, ξ̂r, ξ̂t and n̂f .
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Figure 7.11: Schematic showing a facet (dotted line for clarity) aligned so that
it’s normal nf is in the x-z plane. All of the vectors shown are also in the same
x-z plane.
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Figure 7.12: Schematic two cases (a) and (b) for which the reciprocity principle
is applied for radiances L1 and L2 shown incident on the surfaces ρA and ρB that
straddle the interface. (From Gordon [2005])
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Figure 7.13: Reflection factor r+(ξ̂r) for totally diffuse sky radiance as a function
of the viewing angle (π − θr) for various values of σ̃ and an omnidirectional wind.
The line labeled “Fresnel” is rf (π − θr) and corresponds to a smooth surface.
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Figure 7.14: Reflection factor r+(ξ̂r)/rf for totally diffuse sky radiance as a func-
tion of the viewing angle (π − θr) for various values of σ̃ and an omnidirectional
wind.
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Figure 7.15: Transmittance factor t−(ξ̂r) for totally diffuse upwelling subsurface
radiance as a function of the viewing angle (π − θr) in air for various values of σ̃
and an omnidirectional wind.
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Figure 7.16: An approximately 15 second record of the reflectance of two whitecaps
passing within the field of view of the radiometer. The lowest line corresponds to
860 nm. Redrawn from Moore et al. [2000].
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Figure 7.17: Remote-sensing augmented reflectance of whitecaps at 410 nm. The
small and large triangles are from Moore et al. [2000] and correspond to two meth-
ods of analyzing the whitecap measurements. The open symbols are the Monahan
[1971] fractional coverage multiplied by 0.155, the value of the Koepke [1984] effec-
tive whitecap reflectance of 0.22 minus 0.065, in order to convert from reflectance
to augmented reflectance. The solid line is the formula developed from Koepke’s
work (Eq. (7.42)) with the overall reflectance reduced by 1/3 to better the Moore
et al. [2000] radiometer data: RSAR ∼ 1.6 × 10−7W 3.52. The dashed lines use
the Monahan and O’Muircheartaigh [1986] model for a neutrally stable (∆T = 0)
and an unstable (∆T = 2◦C) atmosphere to provide fractional coverage for use in
computing the augmented reflectance: RSAR = 3× 10−6W 2.55 exp(0.861×∆T ).
From Moore et al. [2000].
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Figure 7.18: Relationship between RSAR at 865 nm and 410 nm (from Moore et al.
[2000]).

Figure 7.19: Comparison of the radiances leaving the water surface seen by a sensor
looking down from a satellite as a function of latitude at the equinox. Solid squares
(red curve) are for the normalized water-leaving radiance at 500 nm. Downward
and upward pointing triangles are the Sun glitter radiance for omnidirectional
wind speeds of 5 and 10 m/s, respectively. Open circles are the whitecap radiance
W = 10 m/s (there are no whitecaps for W = 5 m/s). The open diamonds are
the reflected sky radiance for W = 10 m/s. Left panel: nadir viewing (θr = 180◦).
Right panel: tilted viewing (θr = 160◦, φr = 180◦).
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!!êz

!π −2χ

!θi

!θr

!φr −φi

!α r

!α i

!x

!y

Figure 7.20: Light propagating along ξ̂i is reflected in the direction ξ̂r from a
rough water surface. The angle between the planes formed by (ξ̂r,êz) and (ξ̂i,êz) is

φr−φi. The angle between the planes formed by (ξ̂r,êz) and (ξ̂r,ξ̂i) is αr. The angle

between the planes formed by (ξ̂i,êz) and (ξ̂r,ξ̂i) is αi. The angle αi is positive if

the rotation of the plane (ξ̂i,êz) into the plane (ξ̂i,ξ̂r) is counterclockwise looking

toward the light (i.e., in the direction −ξ̂i). Likewise, the angle αr is positive if

the rotation of the plane (ξ̂i,ξ̂r) into the plane (ξ̂r,êz) is counterclockwise looking

toward the light (i.e., in the direction −ξ̂r). So both αr and αi are entered as
−αi and −αr in the rotation matrices based on this drawing (clockwise rotations),
because the computation via the law of sines will yield positive numbers for each.
The angles θr, θi, and π−2χ are great circles on the unit sphere on which the ends
of the vectors ξ̂r, ξ̂i, and êz fall.
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Chapter 8

The Sun and Moon

8.1 Introduction

In the chapter we examine the physical properties of the Sun and the Moon that are
important in remote sensing.

8.2 The Sun

The Sun is the source for the radiation reflected from the ocean-atmosphere system. To
interpret the reflected radiance, we need to know how to predict the position of the sun in
sky and understand the spectrum and strength of the incident solar radiation. This is the
subject of this section. As the motion of the Sun in the sky is determined by the motion
of the Earth around the Sun, we start by examining the motion of the Earth around the
Sun and the rotation of the Earth about its own axis. Next, we use this information to
learn how to predict the position of the Sun in the sky at any location and time. Finally,
we provide the solar spectrum and the dependence of the extraterrestrial solar irradiance
on time.

625
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8.2.1 Motion of the Earth relative to the Sun and Fixed Stars

The Earth moves around the Sun in an elliptical orbit with the Sun at one of the two foci
of the ellipse. This orbit is shown in Figure 8.1. The period of the orbit is one year or
365.2422 twenty-four hour days. The position of the Earth relative to the Sun is specified
by the vector ~r. This vector makes an angle θ with respect to the orbit perihelion (position
of smallest distance between Earth and Sun). The perihelion of the orbit is near January 3
of each year. The semi-major and semi-minor axes of the ellipse are a and b, respectively.
the parameter ε is the eccentricity of the ellipse and has a value of approximately 0.0167.
The equation of the orbit is

r =
a(1− ε2)

1 + ε cos θ
. (8.1)

Thus, due to the small value of ε the orbit is almost circular: at θ = 0, r = a(1 − ε)
(the perihelion) and θ = 180◦, r = a(1 + ε) (the aphelion). The length of the semi-major
axis is ∼ 149,598 km, which is 1 astronomical unit (AU). The semi-minor axis has length
a
√

(1− ε2), so a and b differ by only about 0.01%, i.e., b is only 0.01% less than 1 AU.
The average distance from the Earth to the Sun is

〈r〉 , 1

2π

∫ 2π

0
r dθ = b.

Conservation of angular momentum leads to Kepler’s second law, which states that as the
Earth moves in its orbit the ~r sweeps out equal areas in equal times. Thus, the Earth must
move faster than average in the vicinity of the perihelion and slower in the vicinity of the
aphelion.1

As the Earth orbits around the Sun, it also rotates around its own axis. This rotation is
depicted schematically in Figure 8.2. The direction of the rotation axis is fixed (on decadal
time scales) relative to the fixed stars and in our epoch is directed near the north star
(Polaris).2 The angle between the axis of rotation and the plane of the Earth’s orbit (the
ecliptic) is 23.43◦ (δN ). From the figure it is clear that at different times of the year the
Sun’s rays are normal to the Earth’s surface at different latitudes: in Northern Hemisphere
Summer these latitudes are north of the Equator, while in Winter they are south of the
Equator. At the positions marked “Spring” and “Fall” (the vernal and autumnal equinox,
respectively) the Sun rays are normal to the Earth’s surface at the Equator. In Figure 8.2

1The angular momentum ~L of the Earth with respect to the origin of coordinates at the Sun is ~L = ~r×m~v,
where ~v is the Earth’s velocity. Its rate of change is d~L/dt = ~r ×md~v/dt = ~r × ~F , where ~F is the force on
the Earth. Since the force is parallel to ~r, d~L/dt = 0 and ~L is constant. The magnitude of ~L is mr2dθ/dt,
so r2dθ/dt is constant and dθ/dt is inversly proportional to r2. The area swept out by the radius vector
when θ changes by dθ is dA = r2dθ/2, so dA/dt is constant.

2The rotation axis actually moves over the surface of a cone centered on the center of the Earth with a
period of 25,772 years.
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the orbital position marked “Winter” (winter solstice) occurs near December 21; about 13
days before the orbit perigee is reached. As viewed from the Earth, the Sun reaches its
highest point in the sky near local noon. In the Northern Hemisphere this occurs at the
orbital position marked “Summer.” At all other times during the year, the solar zenith
angle is larger at noon.

The declination of the Sun or solar declination is the latitude at which the Sun’s rays
are normal to the Earth’s surface. This is relatively easy to compute. Figure 8.3 provides
the geometry relevant to the computation. In the figure, the shaded area is in the plane
of the Earth’s orbit (x-y plane). The vector r̂ is in the direction of ~r in Figure 8.1 and
is the direction of propagation of the Sun’s radiation. The x-axis is directed toward the
perihelion of the orbit, ŵ is toward the position of the Earth at winter solstice, and the
z-axis is normal to the ecliptic. The unit vector N̂ is the axis of rotation and the angle δN is
inclination of the Earth’s rotation axis to the plane of the orbit. It is in the plane containing
ŵ and the z axis. The angles θw and θE are both defined a positive in the diagram. The
problem is to find α, the angle between N̂ and r̂. Clearly, δN − π/2 ≤ α ≤ δN + π/2. The
computation of α is not difficult: cosα = N̂ • r̂. The vectors r̂ and N̂ are given by

r̂ = êx cos θE + êy sin θE ,

N̂ = −êx cos θw sin δN + êy sin θw sin δN + êz cos δN .

These result in
cosα = − cos(θE + θw) sin δN .

The Earth’s equator is in a plane which has N̂ as its normal. Thus, the latitude at which
the Sun’s rays are normal to the surface (λS) is given by α+ λS = π/2, so,

sinλS = − cos(θE + θw) sin δN (8.2)

and by definition the solar declination is δ = λS . As required, near the winter solstice
θE + θw = 0 and λs = −δN , i.e., in the Southern Hemisphere, and near the summer
solstice, λs = δ. If N is the day of the year in question (N = 0 is January 1), noting that
the winter solstice is 10 days earlier than the N = 0, if desired, θE+θw ≈ (N+10)×360/365
in degrees.

The motion of the Earth is influenced by the motion of the Moon, which is not ac-
counted for in our derivation. Through Fourier analysis, the declination (in degrees) can
be approximated by

δ = 0.396◦ − 22.868◦ cos γ + 4.025◦ sin γ − 0.387◦ cos 2γ

+ 0.052◦ sin 2γ − 0.155◦ cos 3γ + 0.0848◦ sin 3γ,
(8.3)

where γ = 2πN/365. The declination of the Sun as a function of time during the year is
provided in Figure 8.4.
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8.2.2 Position of the Sun in the Sky

The geometry for determination of the position of the sun in the sky is provided in Figure
8.5. In the figure, the observer is at the origin. The bold vector Ŝ is a unit vector from the
position of the observer pointed toward the sun. The bold vector n̂ is the normal to the
Earth’s surface at the observer’s position, i.e., it points from the observer directly toward
the observer’s zenith. The z-axis of the coordinate system is parallel to the rotational axis
of the Earth, and points north. The x-axis is fixed with respect to the Earth and falls
along the Greenwich meridian (dash-dot-dash curve from the z-axis to the x-axis). The
polar and azimuth angles of Ŝ are π/2 − δ and Lons, respectively. The value of Lons
increases with time during the day. The angle δ is the declination of the Sun. The polar
angles of the observer’s normal are θo and Lono, respectively. The observer’s latitude is
λo = π/2 − θo. The solar zenith angle is θs. It is the angular distance between Ŝ and n̂
in the plane formed by these two vectors. It can be found from cos θs = Ŝ • n̂. The solar
azimuth angle φs is defined as the angle between the plane formed by n̂ and the z-axis,
and the plane formed by Ŝ and n̂ measured toward the East from the former to the latter.
It can be found from the small spherical triangle formed by Ŝ, n̂, and the z-axis. From the
law of sines for spherical triangles,

sinφs
sin(π/2− δ) =

sin(Lono − Lons)
sin θs

.

The Sun’s hour angle at the observer is defined to be Sh , Lons − Lono, i.e., as shown in
the figure, the hour angle is negative.

sinφs = −sin(Sh)

sin θs
cos δ. (8.4)

To derive the solar zenith angle it is easiest to write the vectors Ŝ and n̂ in cartesian
coordinates:

Ŝ = êx cos(Lons) sin(π/2− δ) + êy sin(Lons) sin(π/2− δ) + êz cos(π/2− δ)
= êx cos(Lons) cos δ + êy sin(Lons) cos δ + êz sin δ;

n̂ = êx cos(Lono) sin θo + êy sin(Lono) sin θo + êz cos θo

= êx cos(Lono) cosλo + êy sin(Lono) cosλo + êz sinλo,

so
cos θs = Ŝ • n̂ = cos(Lono) cosλo cos(Lons) cos δ

+ sin(Lono) cosλo sin(Lons) cos δ + sinλo sin δ

= cos(Lons − Lono) cosλo cos δ + sinλo sin δ

= cos(Sh) cosλo cos δ + sinλo sin δ.

(8.5)
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Thus, to determine the position of the Sun in the sky given the time of day using Eqs.
(8.4) and (8.5) we need only know the longitude of the sun at the given time, the observer’s
position on the Earth (latitude and longitude) and the declination of the sun on the given
day. The declination is given by Eq. (8.3).3 Finding the Lons requires more work.

The Earth rotates 360◦ on its axis (N̂) in 23hr56m4.1s = 23.934470 hr. Assume for the
moment that the Earth’s orbit is circular (ε = 0) and the δN = 0 = δ. Then, because of
the Earth’s orbital motion, for the Sun to return the same position in the sky at the same
time each day, the Earth has to rotate a little more than 360◦ in one day. How much more?
In the Appendix we show that in a year the Earth must make one full rotation more than
number of days per year, so the length of the day is 23.934470 × (366.2422/365.2422) or
almost exactly 24 hr. This defines what is called the mean solar day (“mean” because of
the assumptions ε = 0 and δN = 0). Thus, the mean motion of the Sun as seen from Earth
is 360◦/24hr = 15◦hr−1, i.e., 15◦ longitude per hour. (Note that under these assumptions,
Eq. (8.5) gives cos θs = cosSh cosλo, so the maximum value of θs is λo.) As the mean
solar day is exactly 24 hr, it is in synchrony with our mechanical clocks. It is customary
to define the zero of time each day so that the fictive mean Sun is at its highest point in
the sky over Greenwich, UK (where the longitude is defined to be 0◦) at 12 noon. This is
called Greenwich Mean Time (GMT). Since the Sun moves 15◦ longitude per hour toward
the West, the longitude of the mean Sun is given by

〈Lons〉 = (GMT − 12)× 15◦,

where GMT is the Greenwich Mean Time in hours (the angle brackets on Lons indicate
that this is the mean Lons). However, we are not finished yet: we need the actual not the
mean longitude of the Sun.

The actual longitude of the Sun (Lons) differs from the mean longitude (〈Lons〉) for
two reasons: (1) the orbit of the Earth is elliptical not circular; and (2) δN 6= 0. In the
Appendix (Section 8.5) we show how these two facts determine Lons − 〈Lons〉. The final
result is called the equation of time (EOT ):

EOT = Lons − 〈Lons〉
Through Fourier analysis of solar data, the EQT can be approximated by

EQT =
180◦

π
×
(
0.0000075 + 0.001868 cos γ − 0.032077 sin γ

− 0.014615 cos 2γ − 0.040849 sin 2γ
) (8.6)

where again, γ = 2πN/365. The variation of EQT throughout the year is provided in
Figure 8.6.

3The declination may be assumed to be constant throughout the day. The maximum change in δ
according to Eq. (8.2) is 0.4◦ in 24 hr (0.2◦ in 12 hr) near θE + θw = 90◦.
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Using the equation of time, we have

Sh = Lons − Lono
= 〈Lons〉 − Lono + EQT

= (GMT − 12)× 15◦ − Lono + EQT,

(8.7)

providing the last ingredient needed to compute the solar azimuth and zenith angles using
Eqs. (8.4) and (8.5).4

It should be noted, that these formulas for computing the position of the Sun in the
sky ignore refraction by the atmosphere. For θs < 80◦ the refractive effect is small: the
error in θs when it is near 60◦ is ∼ 0.08◦. When the Sun is near the horizon, the error is
about one solar diameter, i.e., when the sun appears at the horizon its actual zenith angle
is about 90.5◦ rather than 90◦. This effect can be ignored in remote sensing applications
where solar zenith angles are almost always < 70− 80◦.

8.2.3 Extraterrestrial Solar Irradiance

We wish to derive an expression for the solar irradiance falling on a plane at the position
of the Earth and oriented normal to the propagation direction of radiation from the Sun.
Consider an area dASi at position i on the solar disk. The radiance leaving this area is
LSi. This is also the radiance falling on an area dAE at the top of the atmosphere. From
the definition of radiance, the power falling on this area is

d2PEi
dAEdΩSi

= LSi,

where dΩSi is the solid angle subtended by dASi at the position of dAE , i.e., dΩSi =
dASi/r

2, where r is the Earth-Sun distance. Thus, the irradiance on dAE due to element
at position i on the Sun is

EEi =
d2PEi
dAE

=
LSidASi

r2
,

4The “equation of time” derived its name from the fact that it represented the difference between solar
time and the time provided by mechanical clocks. If one is at the center of a time zone, local solar noon is
defined by the instant at which the sun is highest in the sky, i.e., the time when a person’s shadow is shortest.
However, the mean solar noon is defined as the time the mean Sun is highest in the sky, which is the same
time indicated by a mechanical clock. Noting that the Earth rotates through 15◦ of longitude per hour, the
time difference between a mechanical clock and a Sun clock (i.e., sundial) is tSun − tMechanical = EQT/15◦,
where the time difference is in hours. Figure 8.6 shows that the maximum correction to a Sun clock is about
16 min, and that the Sun clock is running at its slowest compared to a mechanical clock near February 12
and at its fastest near November 4.
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and the total irradiance from all portions of the Sun is

EE =
dPE
dAE

=

∫
LSidASi
r2

. (8.8)

The integral is a constant (C) characteristic of the Sun. EE is usually denoted by F0, the
extraterrestrial solar irradiance. Thus, F0 = C/r2, and the mean F0 averaged over the
course of a year is

〈F0〉 = C
〈 1

r2

〉
,

so the instantaneous solar irradiance is

F0 =
〈F0〉

r2〈1/r2〉 ,

and it varies inversely as the square of the Earth-Sun distance. The mean extraterrestrial
spectral solar irradiance 〈F0(λ)〉 is provided in Figure 8.7.5 The irradiance spectrum of the
Sun is close to that of a black body at an absolute temperature of approximately 5700 K.
The maximum in

〈
F0(λ)

〉
is near 500 nm, when the units are power divided by the product

of area and wavelength interval, e.g., mW/cm2µm as in the figure.6 The sharp features
of decreased irradiance are absorption lines (called Fraunhofer lines) caused by elements
in the solar atmosphere. For example, the absorption feature at 656 nm is the greatest
wavelength in the Balmer series of atomic Hydrogen.

The total irradiance from the Sun, i.e.,

S ,
∫ ∞

0
〈F0(λ)〉 dλ,

5In Chapter 7 we defined the extra terrestrial solar irradiance, at an Earth-Sun separation of 1 AU, to
be F̄0. By definition, the semi-major axis to the Earth’s orbit, a, is 1 AU. Thus, r2F0 = a2F̄0, so

F̄0 =
〈F0〉

a2〈1/r2〉 = 〈F0〉
(1− ε2)2

1 + ε2/2
≈ 〈F0〉

[
1− 5

2
ε2

]
,

and therefore 〈F0〉 and F̄0 differ by less than 0.07%.
6Recall that the spectral irradiance is the power falling on a plane sensor

(
∆Pλ(λ)

)
within a wavelength

interval ∆λ divided by ∆λ and by the area of the surface ∆A, i.e., ∆Pλ(λ)/(∆λ∆A). If we described the
separation of the spectrum according to frequency, ν = c`/λ, rather than wavelength λ then the irradiance
would be ∆Pν(ν)/(∆ν∆A). But, if we are examining a given spectrum (with a spectrometer at a given
setting — wavelength or frequency), the radiant power measured by the instrument is independent of how
it will be described, i.e., ∆Pν(ν) = ∆Pλ(λ). Therefore, the irradiance spectrum in one representation is
related to that in the other representation by

∆Pν
∆ν∆A

=
∆Pλ

∆λ∆A
× ∆λ

∆ν
=

∆Pλ
∆λ∆A

× λ2

c`
,

and the maximum of ∆Pν(ν)/(∆ν∆A) for the solar spectrum occurs at a wavelength near 880 nm.
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where λ is wavelength, is called the Solar Constant. Its value is S ≈ 1368 W/m2 and
is stable to within about 0.1%. spectrally, this stability is extant throughout the visible
and the infrared; however, in the ultraviolet (λ < 400 nm) the variability increases and
can reach 1% between 300 and 400 nm and 5% between 200 and 300 nm. In remote
sensing applications, the variability of the mean extraterrestrial solar irradiance is below
the sensitivity of most instrumentation.

In order to compute the instantaneous extraterrestrial solar irradiance, we need 〈1/r2〉.
This is given by

〈 1

r2

〉
=

1

2π

∫ 2π

0

dθ

r2
=

1

2π

∫ 2π

0

dθ(1 + ε cos θ)2

a2(1− ε2)2
=

1 + ε2/2

a2(1− ε2)2
.

Then

F0 =
〈F0〉

r2〈1/r2〉 = 〈F0〉
(1 + ε cos θ)2

1 + ε2/2

=
1

1 + ε2/2
(1 + 2ε cos θ + ε2 cos2 θ)

=
1

1 + ε2/2

(
1 +

ε2

2
+ 2ε cos θ +

ε2

2
cos 2θ

)
.

Neglecting terms of order ε3 and higher,

F0 = 〈F0〉
(

1 + 2ε cos θ +
ε2

2
cos 2θ

)
. (8.9)

The perihelion is on January 3 (actually between January 2 and 5), so if we write this in
terms of the day of the year, we must replace θ by γ − γ0, where γ0 = 2 × 2π/365 and
γ = 2πN/365, with N = 0 on January 1. This introduces sine terms in the above equation.
When the value of ε is inserted, an accurate expression for this factor is

F0

〈F0〉
= 1 + 2ε cos γ0 cos γ + 2ε sin γ0 sin γ

+
ε2

2
cos 2γ0 cos 2γ +

ε2

2
sin 2γ0 sin 2γ.

(8.10)

In these equations, the dominate variability in F0 comes from the terms that are linear
in ε. Equation (8.9) shows that the extremes of the deviation of F0 from the mean are
approximately ±2ε or ∼ ±3.3%.

The Sun subtends an angle of approximately 1/2◦ in the sky.7 This means that the
radiation from the Sun is not strictly a collimated beam, but is slightly diverging. If

7Interestingly, the Moon also subtends the same angle in the sky. This is the reason that total eclipses
of the Sun and the Moon exist.
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the radiance from the solar disk were uniform across the disk, i.e., LSi in Eq. (8.8) the
maximum divergence of the Sun’s radiation would be 1/2◦. However, the solar disk is not
of uniform radiance. In the visible, the solar radiance is considerably smaller at the edges
than at the center of the disk. In fact, at 550 nm, LSi near the edge is roughly 40% of
its value at the center. This phenomenon is known as limb darkening. It decreases in
magnitude into the infrared, but is still significant in spectral regions of interest in remote
sensing. Because of solar limb darkening, the effective divergence of the solar beam is
actually less than 1/2◦.

8.3 The Moon

All sensors show a radiometric sensitivity loss with time in-orbit. It is critical that this
sensitivity decay be accurately assessed. The moon is of interest in ocean remote sensing
because it provides a stable source of radiance that can be used to assess the long-term
radiometric stability of in-orbit sensors.

8.3.1 Motion of the Moon

The moon moves in an elliptical orbit about the center of mass of the Earth-Moon system
(1710 km below the Earth’s surface). The mean distance from the center of the Earth at
perihelion is about 362,500 km and a aphelion 405,500 km. The time interval required for
the Moon to return to the same phase (synodic period) is about 29.53 days, while the time
interval required for the Moon to return to the same position relative to the fixed stars
is about 27.32 days and is identical to the orbital period. The Moon’s rotational period
about its own axis and orbital period around the Earth are identical. This is the result
of tidal forcing by the Earth. If the Moon’s orbit were perfectly circular and the axis of
the Moon’s rotation were perpendicular to the plane of its orbit, the Moon would always
present the same face to the Earth as viewed from the center of the Earth, and the same
50% of the lunar surface would be visible, and 50% invisible. However, as the Moon’s orbit
is elliptical, conservation of angular momentum requires the moon to move more slowly
near its aphelion, more rapidly near the perihelion. Thus near the perihelion, the Moon’s
rotation is not rapid enough to keep its face exactly pointed toward the Earth. Vice versa,
near the aphelion the Moon rotates too rapidly to keep the face perfectly aligned toward
Earth. Likewise, because of the tilt of the Moon’s axis8 it is sometimes possible to observe
a portion of the back side at both poles. These effects enable about 59% of the Moon’s

8The Moon’s rotational axis is tilted at an angle 5.145◦ to the normal to the ecliptic (plane of Earth’s
orbit around the Sun).
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surface to be visible from Earth over the course of time rather than the 50% mentioned
above. This of course means that two successive images of the Moon, e.g., at full phase,
will view different areas on the Moon near the limbs.

8.3.2 Radiometry of the Moon

The radiance reflected by the lunar surface is specified by its bi-directional reflectance
distribution function (BRDF) through

L(ξ̂, λ) = BRDF (ξ̂0 → ξ̂;λ)|n̂ • ξ̂0|FM (λ), (8.11)

where ξ̂0 is the propagation direction of the solar irradiance, ξ̂ is the propagation direction
of the reflected radiance, n̂ is the normal to the lunar surface, and FM (λ) is the solar
irradiance incident on the lunar surface. If the lunar surface were a lambertian reflector,
then BRDF (ξ̂0 → ξ̂;λ) = A(λ)/π, where A is the surface albedo (reflected irradiance ÷
incident irradiance). However, were that the case, L(ξ̂, λ) ∝ |n̂ • ξ̂0| and, as discussed in
Chapter 2, the full Moon would become darker near the limbs and would not resemble a
disk. This means that BRDF (ξ̂0 → ξ̂;λ) must be peaked near ξ̂ = −ξ̂0. The angle between
ξ̂ and −ξ̂0 is called the phase angle: the Full Moon has a phase angle near 0◦, and the New
Moon a phase angle of 180◦. The reflectance of the moon is best described by providing
the disk-equivalent albedo of the Full Moon. Imagine the Moon to be a disk oriented with
its normal directed toward the Earth and the Sun. The reflected radiance is

L(ξ̂, λ) = BRDF (−ξ̂ → ξ̂;λ)FM (λ). (8.12)

Furthermore, if the surface of the disk is assumed to be lambertian,

L(ξ̂, λ) =
A(λ)

π
FM (λ). (8.13)

The quantity A(λ) is the disk-equivalent albedo. At the position of the Earth, a radiometer
viewing any portion of the lunar disk it would measure the radiance L(ξ̂, λ). As the disk
is not uniform, the radiance is a function of position on the disk, i.e., a function of the
selenographic latitude and longitude on the disk. If the disk was viewed from the position
of the Earth with a radiometer having a viewing solid angle Ωr dividing the disk into N
equal-area sections, then the total radiance of the Moon defined to be

LTotal(λ) ,
N∑

i=1

Li(λ) =
N∑

i=1

Pi(λ)

ArΩr
=
Er(λ)

Ωr
, .

where Pi is the power falling on the radiometer sensor, which has an area Ar, and Er
is the irradiance from the whole Moon at the position of the radiometer. Since Li(λ) =
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Ai(λ)FM (λ)/π, we have

Er(λ) =
ΩrFM (λ)

π

N∑

i=1

Ai(λ).

But, if ΩM is the solid angle subtended by the entire Moon at the radiometer, then Ωr =
ΩM/N , so

Er(λ) =
ΩMFM (λ)

π

∑N
i=1Ai(λ)

N
=

ΩMFM (λ)

π
〈A(λ)〉, (8.14)

where 〈A(λ)〉 is the spatially averaged disk-equivalent albedo of the Moon. Likewise, if
the radiometer viewed the entire disk, the lunar irradiance at the radiometer would be
Er(λ) = 〈L(ξ̂, λ)〉ΩM , with 〈L(ξ̂, λ)〉 = 〈A(λ)〉FM (λ)/π.

The albedo A(λ) of the lunar Terrae or Highlands is compared to a typical reflectance
of the ocean-atmosphere system in Figure 8.8. The Terrae are the areas of the moon that
appear to be of about average brightness to the naked eye. The darker areas are called
Maria, as they were first thought to be oceans or seas. The brightest area has an albedo
of about 0.17 near the center of the visible spectrum. Figure 8.9 provides the probability
distribution of lunar albedo. Figure 8.8 shows that the Earth (oceans) and Moon have
reflectances that are of the same order of magnitude. A dramatic demonstration of this
is provided in Figure 8.10. This, and the fact that the lunar surface is very stable, makes
the Moon an ideal source for monitoring the long-term stability of an ocean color sensor.
However, such monitoring is complicated by the fact that the radiance of the Moon is a
strong function of the phase angle. Figure 8.11 provides the relative radiance of the moon
as a function of the phase angle, with the right panel showing that near Full Moon the
radiance decreases exponentially with increasing phase angle. The decrease of radiance is
due to two effects: (1) as the phase angle increases, less of the lunar surface is illuminated
by the Sun, so Er decreases; and (2) the BRDF decreases as the phase angle increases.
Thus, it is essential that the Moon always be viewed by the sensor at the same (or nearly
the same) phase angle. Monitoring is also complicated by the motions of the moon. In
addition, the reflectance spectrum of the Moon varies with the phase angle, with the blue
reflectance decreasing relative to the red as the magnitude of the phase angle increases.
This is another reason for viewing the Moon at a constant (or nearly constant) phase angle.

In viewing the Moon, other than the effect of the phase on reflectance, the lunar radiance
varies because of variations in the distance from the Moon to the Sun. The solar irradiance
falling on the Moon is the same as that falling on the Earth, modified by the distance from
the Moon to the Sun. If DMS is the distance from the Moon to the Sun, and DES the
distance from the Earth to the Sun, then the solar irradiance at the surface of the Moon
on a plane normal to the solar beam (propagating in the direction ξ̂0), FM , is given by
FM = F0(DES/DMS)2, where F0 is the extraterrestrial solar irradiance received at the
Earth. A sensor with a field of view sufficiently small to image a small area on the Moon
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and aimed to receive radiation from ξ̂ would measure the radiance given by Eq. (8.13).9

The albedo is of course a function of position on the lunar surface.

There are two ways that the Moon could be employed to monitor the stability of an
orbiting sensor. The first is to simply examine individual pixels in the lunar image. In this
case, the radiance observed by the sensor is just that given by Eq. (8.13), where the albedo
used in the equation is that of the particular location on the lunar surface. Utilizing this
of course requires periodically imaging the same area at exactly the same phase. Having
a detailed map of the A(λ) as a function of selenographic latitude and longitude would be
required in this application. The second method consists of adding the radiances from all
of the pixels, i.e., forming LTotal =

∑N
i=1 Li as above. As the number of pixels imaged (N)

is the solid angle subtended by the Moon at the sensor, ΩM , divided by the field-of-view
solid angle of the sensor, Ωs, which is constant, so N ∝ ΩM . But ΩM = AM/D

2
Ms, where

AM = πR2
M the projected area of the Moon and therefore the lunar disk, RM is the lunar

radius, and DMs is the distance from the sensor to the lunar disk. Combining these as in
Eq. (8.14) results in

Es = F0(λ)〈A(λ)〉
(
RM
DMs

)2(DES

DMS

)2

The DMs factor alone in this equation causes the resulting Es to vary ±10% at a given
phase as the Moon moves from aphelion to perihelion in its orbit around the Earth.

Finally, an important fact about the radiance reflected from the Moon is that near full
phase, the polarization of the radiance is very small. The degree of polarization is 0 at full
phase, ∼ 1% at a phase angle of 10◦ and 0 near 20◦. For larger phase angles, the degree of
polarization increases, reaching a maximum of about 7.5% at a phase angle of 90◦. Since it
is important for sensor stability studies to view the Moon near full phase, it is reasonable
to assume that it is a source of totally unpolarized radiance.

8.4 Summary

Here we have provided the basic information related to the Sun and the Moon. Of particular
importance to ocean color remote sensing is the determination of the position of the Sun
in the sky, Eq. (8.5)-(8.7), along with its mean extraterrestrial solar irradiance in Figure
8.7 and its variation over the year, Eq. (8.10). As the Moon has properties that make it

9For a typical ocean color sensor with a surface resolution of ∼ 1 km from an altitude of ∼ 700 km, the
solid angle subtended by the sensor is 1 km2/(700 km)2 = 2 × 10−6 Sr. When this sensor is aimed at the
lunar disk, it will image an area of ∼ 550 × 550 km2. The radius of the Moon is about 1740 km, so the
area imaged is about 3.2 % of the lunar area. Thus, for such a sensor the area of the Full Moon would be
about 31 pixels.
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useful to monitor the stability of sensors while they are in orbit, we have provided some
limited basic information that should be useful as a starting point for further study of this
important application.

8.5 Appendix: The Equation of Time

If one places a rod vertically into the ground (a crude sundial), solar noon occurs when
the shadow of the rod is directed toward true North (not magnetic North). This is also
the time when the shadow of the rod is shortest. However, solar noon is not in synchrony
with mechanical (electrical or atomic) clocks, i.e., at the prime meridian, solar noon does
not always occur at exactly the time a mechanical clock reads noon (assuming that they
were synchronized at some earlier time).10 If the orbit of the Earth were circular, and the
Earth’s rotation axis perpendicular to the plane of the orbit (the ecliptic), then local noon
would occur every day at the same time, according to a mechanical clock. So, the fact that
the orbit is elliptical and the axis is tilted with respect to the ecliptic must be at the root
of the lack of synchrony between solar noon and a mechanical clock.

The Earth rotates 360◦ on its axis in 23hr56m4.0916s = 23.9344699 hr. In astronomy
this length of time is known as a sidereal day . This means that any particular star in the
heavens reaches its highest position in the night sky from one night to the next after a this
amount of time has passed. Notice that a solar day is defined to be 24 hr, i.e., slightly
longer than a sidereal day. Why? The figure below shows the Earth in two positions
in its orbit around the Sun. At “A” the observer (at the equator) sees the Sun directly
overhead at noon. For the same observer n sidereal days later, when the Earth has moved

A	  

θ

θ

B	  

10The prime meridian is at longitude 0◦. The same statement can be made for other meridians at the
center of the various time zones, i.e., ±15◦, ±30◦, etc. If one is not located at one of these meridians, solar
noon will occur at a different time, but that time will still not remain in synchrony with mechanical clocks.
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through θ in its orbit, has rotated exactly n times, and is located at position “B,” the Sun
is not directly overhead: the Earth has to rotate thorough an additional angle θ before
the Sun is directly overhead. Thus, over the course of one year, the Earth must make
one more rotation than the number of sidereal days that have passed, i.e., one year takes
approximately 366 sidereal days, not 365. So, there are 365 solar days, but 366 sidereal
days, in one year, and the solar day is 366.2422/365.2422 longer than the sidereal day.
This comes out to 24.00000030 hr for one solar day. The error in defining a solar day
to be exactly 24 hr is about 0.4 s per year,11 so that is what we will do. We define the
mean solar day to be exactly 24 hr, so if the Earth’s orbit were exactly circular and the
rotation axis perpendicular to the ecliptic, the Sun would pass over an observer at the
prime meridian at intervals of exactly 24 hr. We call this the mean Sun. From the point
of view of an observer on the Earth, the mean Sun moves in a circle around the Earth
given by the same equation as for the actual motion of the Earth around the Sun (but
in the opposite sense). Thus, the equation of the mean Sun’s orbit around the Earth is
simply θm = ωmt = (360◦/365.2422)t = 0.9856473◦t, where θm is the angular position of
the Earth in its orbit, measured from some arbitrary point on the circular orbit and t is
time in days.

The Earth’s orbit is actually elliptical as shown in Figure 8.1. Recalling Eq. (8.1) and
the fact that conservation of angular momentum requires r2dθ/dt to be constant, we have

dθ

dt
=
K

r2
=
K(1 + ε cos θ)2

(1− ε2)2
,

where K is a constant, showing that the angular speed of the Earth in its orbit is not
constant, i.e., the Earth moves faster when its closer to the Sun and slower when it is
farther away. This equation also gives the motion of the true Sun relative to Earth, so we
indicate this by replacing θ by θt, where the subscript t stands for “true.” Because ε is
small (0.0167), we can ignore ε2 compared to ε itself, so

dθt
dt
≈ K(1 + 2ε cos θt) or θt ≈ K(1 + 2ε sin θt).

If ε = 0 (circular orbit of the mean Sun) this gives θm = K, therefore θt = θm(1+2ε sin θt).
Thus, when the mean Sun moves through an angle θm, the true Sun moves through θt. The
difference is θt − θm = 2ε sin θt; however, as the difference between θt and θm is of order
ε, ε sin θt can be replaced by ε sin θm with an error that is of order ε2, so we shall make
the replacement and take θt − θm = 2ε sin θm. The effect of this is shown schematically
in the figure above which depicts the Earth moving from point “A,” which we take to be

11Defining the solar day to be 24 hr means that as clocks get better the definition of the time unit
“second” must change. Time was originally measured in terms of the motion of the Sun and stars in the
sky. As astronomical measurements and clocks both got better the definition of the second changed, but it
seems that the solar day remained 24 hr.
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A	  

!θm

B	  

!θt −θm

!θt
B’	  

the position of the point where the Earth is nearest the Sun (perihelion) to the points “B”
and “B′”, both of which are several sidereal days later. Position B is where the Earth
would be were its orbit circular. In contrast, position B′ is the Earth’s actual position
in its elliptical orbit, having progressed further because it is moving faster in this part of
the orbit.12 Because the same number of sidereal days have elapsed for both B and B′

the same number of rotations has taken place as indicated by the vertical line across the
planet. Clearly, from the point of view of the Earth observer, the position of the true Sun
is farther to the East than that of the mean Sun. Since the mean Sun is synchronized
with mechanical clocks, the true Sun will reach its “noon” (highest point in the sky) at a
later time (according to the mechanical clock) than the mean Sun. (Note that the angle
θt − θm is greatly exaggerated in the figure.) To put it another way, the true Sun will be
at its highest point in the sky at a longitude Lont that is East of the mean Sun when the
mechanical clock reads noon. If we indicate the longitude at which the true Sun is at its
highest point at a given time as Lont and similarly the longitude at which the mean Sun
is at its highest point at the same time as Lonm, then clearly this longitude difference is
just θt − θm, i.e.,

Lont − Lonm = −(θt − θm) = −2ε sin θm,

where the negative sign is applied because the true Sun is farther East, i.e., at a smaller lon-
gitude. This longitude difference is in radians. To get the longitude difference in degrees,we
multiply by 180◦/π, and noting that ε = 0.0167,

Lont − Lonm = −1.913◦ sin θm.

Note that θm = ωmt, where ωm = 2π/365.2422 day−1 = 2π/(365.2422 × 24) hr−1, etc.,
and t is the elapsed time since the perihelion. If we measure time in days, then θm = 0 on

12The elliptical orbit and the circular orbit are actually very close together (and are shown here as
identical). If one assumes that ε � 1, then a circular orbit centered at x = cx and y = 0 can be written
in polar coordinates as r ≈ R + cx cos θ, where R is the radius of the circle. If we expand the equation for
the ellipse under the same assumption, we find r ≈ a(1− ε cos θ), so the ellipse at small ε is nearly a circle
with radius a centered at cx = −εa, i.e., a circle centered slightly off the origin at a point directed away
from the perihelion.
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January 3, and returns to zero after 365.2422 days, thus

θm =
360◦

365.2422
(N − 2) = 0.985647◦(N − 2),

where N is the day of the year minus 1, i.e., N = 0 on January 1. Thus, for any clock
time on any day of the year we can compute θm = ωmt and therefore Lont − Lonm. The
time gives us Lonm, and therefore the true longitude of the Sun, Lont. How do we find
Lonm? This is easy. By definition at longitude 0◦ the mean Sun is highest in the sky at
noon, which is called 12 o’clock Greenwich Mean Time (GMT). Relative to the mean Sun,
the Earth rotates 360◦ in 24 hr or 15◦ per hour. Thus, if one reckons time on a mechanical
clock in GMT, then on any particular day Lonm = 15◦(GMT− 12). For example, at 11:30
AM (11.5 hr) GMT, the mean Sun is at Lonm = −7.5◦. (Note, here time in GMT must
be measured on a 24 hr clock.)

If the Earth’s rotation axis were perpendicular to the plane of its orbit, we would be able
to compute the longitude of the Sun at any given time from Lont−Lonm = −1.913◦ sin θm,
but it is not. The tilt of the orbit with respect to the ecliptic also has an effect on the
position of the Sun. To illustrate this it is useful to take the point of view of an observer
on the Earth. Accordingly, the mean Sun is assumed to revolve around the Earth in a
circular orbit once per year. The Earth rotates on its axis once per sidereal day. The true
Sun similarly revolves around the Earth but in an orbit that is tilted with respect to the
mean sun through an angle δN . This state of affairs is shown schematically in the drawing

N

To Vernal Equinox 
(March 21) 

 Mean Sun 
 True  Sun 

N̂

O  



1 Day

1 Day 
N

!y

!x

above (left) of the celestial sphere, depicting the mean (tilted circle in the figure) orbit of
the Sun around the Earth from the point of view of an observer “O” located on the Earth.
The unit vector N̂ is normal to the the plane of the orbit of the mean Sun. The horizontal
circle is the path of the actual Sun, which moves in the same plane as the Earth’s orbit
around the Sun (the ecliptic). The Earth’s rotation axis (N̂) is tilted with respect to the
ecliptic through an angle δN . The summer solstice is on the left side of the drawing.
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The drawing on the right is the view of the situation looking down toward the North
pole of the Earth, where we see the mean Sun moving in a circular orbit and the true Sun
moving in what we shall see is an elliptical orbit when projected on to the x-y plane. The
equation of the orbit of the mean Sun is simply x2

m+y2
m = R2, where R is the radius of the

orbit. The equation of the true Sun’s orbit is x2
t + y2

t + z2
t = R2. Clearly, zt = xt tan δN ,

so (1 + tan2 δN )x2
t + y2

t = R2, the equation of an ellipse. The true and mean Suns are
coincident at the vernal equinox (x = 0) and also at the autumnal equinox. They both
move at the same uniform rate in their individual (circular) orbits of one revolution per
year (365.2422 days) and, since the planes of the two orbits intersect along the y axis, both
Suns must always have the same value of y as they go along their individual orbits, i.e.,
yt = ym, so xt = xm cos δN . During their traverse, the Earth rotates once every sidereal
day in a counter clockwise direction. At some time between the beginning of Spring (vernal
equinox) and Summer (summer solstice) the positions of the two Suns (mean and actual)
are as shown on the right-hand figure. Clearly, in the position shown the true Sun is located
at a more Easterly longitude than the mean Sun, i.e., when the mechanical clock reads
noon (solar noon for the mean Sun), the true Sun will be to the East and will be highest
in the sky at the observer’s position some time after solar noon. In the drawing below,

!y

!x

!Φt

!Φm

we have labeled the Φt and Φm, the angles through which the true and mean Suns have
progressed from the vernal equinox toward summer. Clearly, Lont − Lonm = Φt − Φm, so
to is necessary to relate these angles. We note that

tan Φm =
xm
ym

and tan Φt =
xt
yt
,

But yt = ym and xt = xm cos δN , so

tan Φt =
xm cos δN

ym
= cos δN tan Φm

This relationship, tan Φt = cos δN tan Φm, provides Φt as a function of Φm, which allows
the longitude difference to be determined by Φm, i.e., by a mechanical clock. With an error
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of less than 0.15◦ this can be fit to Φt − Φm = −2.476◦ sin 2Φm, so

Lont − Lonm = −2.476◦ sin 2Φm

provides the longitude difference due to the tilt of the Earth’s orbit to the ecliptic. Com-
bining the two effects, we have

Lont − Lonm = −1.913◦ sin θm − 2.476◦ sin 2Φm.

Recall that θm is the position of the Earth in its orbit measured from the perihelion
(January 3), while Φm is measured from the vernal equinox (March 21). We need to write
these in terms of the same reference time. We choose the reference to be January 1, and
define the angle γ to be θm measured from January 1 rather than January 3, then θm =
γ−2×0.9856◦. Likewise since March 21 is the 80th day of the year, Φm = 80×0.9856◦−γ.13

Combining,

Lont − Lonm = −1.912◦ sin γ + 0.065◦ cos γ − 2.291◦ sin 2γ − 0.939◦ cos 2γ.

From this equation we find that the maximum longitude difference is about +4.15◦ near
γ = 300◦.

The equation in the text developed by Fourier analysis of actual observations of the Sun
was (in the same units and using the notation here)

Lont − Lonm = −1.840◦ sin γ + 0.107◦ cos γ − 2.340◦ sin 2γ − 0.837◦ cos 2γ + 0.00043,

which agrees well with our derived equation. It should be noted that our derivation is
approximate. For example, the orbits of the mean and true Suns in the tilt contribution
are really elliptical, and the effects of the motion of the Moon are ignored.

For a fixed observer, the longitude difference is manifest as a time difference, i.e., the
difference between when the Sun is supposed to be at a given longitude, tm (say the
observer’s meridian) and when it actually is at that longitude, tt. Since the Earth rotates
15◦ per hr or 0.25◦ per min, dividing the longitude difference by 0.25◦ gives the time
difference in minutes. From our derived result, we find for the time difference in minutes
to be

tt − tm = −7.648 sin γ + 0.260 cos γ − 9.164 sin 2γ − 3.751 cos 2γ.

Note that, when tt − tm is negative, it means that the mean Sun arrives at the given
meridian of longitude earlier than the true Sun, i.e., the actual Sun arrives at a later time
than the mean Sun. Thus, when the mechanical clock reads noon at the prime meridian
(0◦ longitude) the Sun arrives there when the mechanical clock reads noon+(tm − tt), i.e.,
a sundial at this location would be tm − tt minutes slow. The figure below is a plot of the
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variation of tt − tm over the course of one year. The quantity tt − tm is usually called the
equation of time. It remains only to note that the angle γ is simply

γ =
2πN

365.2422
,

where N is the day of the year with N = 0 on January 1.

On older globes of the Earth one often sees a vertical “figure 8-like” object close to the
Equator drawn in the Pacific Ocean. This object is called the analemma . It is simply
a plot of the declination of the Sun (δ) as a function of the equation of time (EQT ) as
shown in the figure below. It represents the position of the Sun in the sky at a mean
solar time of noon. If you were at the Equator in a room with a small hole in ceiling (to
let in a beam of light from the Sun), and at noon (by a mechanical clock) each day, you
marked the position of the Sun’s image on the floor, the resulting locus of positions would

13One might think that Φm = γ−80×0.9856◦; however, note that the Sun moves in a direction opposite
to the Earth in its orbit. Note 0.9856◦ is the angular distance the Earth moves in one day.
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be similar to the curve in the figure. Thus, you would have discovered the effects of both
declination and the equation of time. In addition, on the 366th day of this exercise you
will have discovered the need for leap year.
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8.6 Bibliographic Notes

8.2.1 Motion of the Earth relative to the Sun and Fixed Stars

The orbital motion of the Earth is developed in almost all textbooks on intermediate
Newtonian mechanics. A good one is Barger and Olssen [1995]. The derivation of Eq.
(8.2) is our own, and the Fourier representation of δ is from Spencer [1971].

8.2.2 Position of the Sun in the Sky

Basic data on the Earth’s rotation can be found in any textbook on astronomy. A
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good derivation of the equation of time is provided by Muller [1995]. The Fourier series
representation of the equation of time and also the solar declination was developed by
Spencer [1971].

8.2.3 Extraterrestrial Solar Irradiance

The Extraterrestrial Solar Irradiance is from Wehrli [1985]. Measurements of the limb
darkening of the Sun across the spectrum are found in Pierce et al. [1950].

8.3.1 Motion of the Moon

The material in the section can be found in almost any book on astronomy or astro-
physics.

8.3.2 Radiometry of the Moon

The lunar spectral albedo (Figure 8.8) was developed from data provided in Fessenkov
[1962]. It agrees well with the measurements of Lane and Irvine [1973] for the full lunar
disk.

The statistical distribution of the lunar albedo (Figure 8.9) was computed from data
presented in Minnaert [1962] based on measurements made by Sytinskaya [1953]. They
were measured with the “V” (visual) optical filter with maximum transmittance at 550 nm
and a full width at half maximum transmittance of ∼ 89 nm. This filter approximates the
spectral sensitivity of the human eye in full daylight.

The lunar phase curve (Figure 8.11) was measured by Rougier [1934] and the data
presented were taken from Fessenkov [1962].

A detailed model of the spectral albedo of the Moon is described in Kieffer and Stone
[2005]. The use of the Moon as a stability monitor for ocean color systems appears to have
been first proposed by Kieffer and Wildey [1985] and independently by Gordon [1987]. The
the initial application to the SeaWiFS sensor is provided in Barnes et al. [1999]. A detailed
comparison between SeaWiFS measurements of the Moon’s irradiance with the model of
Kieffer and Stone [2005] is described in Barnes et al. [2004].
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8.7 Figures
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Figure 8.1: Geometry of the Earth’s orbit around the Sun.
 
 
 
 

Fall 

Spring 

Winter Summer 

Figure 8.2: Schematic of the Earth’s motion around the Sun including the Earth’s
rotation.
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Figure 8.3: Geometry for determination of the declination of the Sun. (See text
for detailed definitions of the symbols.)
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Figure 8.4: Declination of the Sun as a function of day of the year. 
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Figure 8.5: Geometry for determination of the solar zenith angle θs and solar
azimuth angle φs. (See text for definitions of all the other angles.)
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Figure 8.6: Value of EQT = Lons − 〈Lons〉 in degrees as a function of the day of
the year.
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Figure 8.7: The spectrum of mean extraterrestrial solar irradiance 〈F0〉.
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Figure 8.8: Reflectance (actually A(λ)) of the bright areas (full phase) of the
lunar surface (Terrae or Highlands) compared with the typical reflectance of the
ocean-atmosphere system which is defined as πL/F0 cos θ0, where L is the reflected
radiance, θ0 the solar zenith angle, and F0 the extraterrestrial solar irradiance.
Here, the ocean-atmosphere system is viewed at nadir. If the ocean-atmosphere
system were a lambertian reflector, the reflectance shown here would be its albedo.
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Figure 8.9: Probability of a given reflectance of the lunar surface near full phase.
The wavelength corresponds to the “V” (visible) filter of astronomy, centered at
550 nm with a full width at half maximum of 89 nm.
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Figure 8.10: A visible GOES image containing both the Earth and the Moon.
Note that the non-cloudy areas of the Earth are close in brightness to the Moon.
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Figure 8.11: The radiance (relative) of the moon as a function of the phase angle in
blue (440 nm) light. Note that the point corresponding to 0◦ is extrapolated from
non-zero phase angles. The radiance of the Moon near 0◦ becomes much larger
than shown here, a phenomenon known as the lunar surge or opposition effect.



652 CHAPTER 8. THE SUN AND MOON



Part III

Remote Sensing Ocean Color
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Chapter 9

The Remote Sensing Problem

9.1 Introduction

In this chapter we examine the general problem of remote sensing water properties by mea-
suring the upwelling radiance (in the visible) over a water body using airborne or space
borne radiometers. One goal of this chapter is to provide the reader with an understanding
of the various issues that must be faced to extract the water properties from the measured
radiance. Another goal is to provide a preliminary estimate of the magnitude of the quan-
tities involved. For simplicity, the single-scattering approximation1 is used for radiative
transfer in the atmosphere because it captures all of the essential physics of the problem
and provides analytic formulas for most of the quantities involved.

We begin the discussion by describing the various components of the measured radiance
through the application of single-scattering radiative transfer for a simple model of the
atmosphere and the water surface. This will provide analytical formulas for the components
and will be used later to suggest a path for retrieving the water properties as discussed in
the next chapter. Next the range of validity of the single-scattering theory is examined.
Finally, we show how to compute the normalized water-leaving radiance and reflectance —
the quantities that are actually used in the bio-optical algorithms to retrieve constituents
such as pigment concentration and Chlorophyll a concentration. In an appendix we examine

1Following the practice we use throughout this work, the term “first-order solution” to the radiative
transfer equation is reserved for the first-order term in the successive-order of scattering solution method.
That term contains exponentials, that when expanded and the second and higher order terms are deleted
(i.e., only one interaction with the medium is retained), results in what we call the “single-scattering
approximation.”

655
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the polarization properties of the radiance exiting the top of the atmosphere over the
ocean. The polarization of the exiting radiance is important, as most sensors are somewhat
sensitive to the polarization state of the radiance they measure, and corrections are required
to account for this sensitivity.

9.2 The Remote Sensing Problem

Radiance in the visible portion of the spectrum (light) from the Sun and sky that enters
a water body and is then backscattered out through the surface contains information re-
garding the water’s constituents and their vertical distribution. This radiance exiting the
water surface is called the “water-leaving radiance,” and is denoted by Lw(ξ̂), Lw(θ, φ),
or Lw(u, φ). In general, Lw(ξ̂) is nonzero for all ξ̂ directed into the upward hemisphere.
In remote sensing, this radiance contributes one component of the radiance measured by
a sensor viewing the water from above. A radiometer at a height z above the sea sur-
face aimed so as to detect radiance propagating in the direction ξ̂ will measure a radiance
Lt(z, ξ̂) that is given by

Lt(z, ξ̂) = LOther(z, ξ̂) + Lw(z, ξ̂),

where LOther(z, ξ̂) is the totality of radiance at the sensor that was not backscattered out of
the water. It results from photons that have been scattered in the atmosphere or reflected
from the sea surface (before and/or after scattering in the atmosphere) into the radiometer.
Lw(z, ξ̂) is the contribution to Lt(z, ξ̂) from photons that were backscattered out of the
water. It consists of the photons that exit the water in the direction ξ̂ (denoted by Lw(ξ̂))
and survive propagation from the surface to the radiometer, as well as photons that exit
the ocean in a direction other than ξ̂, but are redirected by scattering in the atmosphere
into the radiometer. It is traditional to write

Lw(z, ξ̂) = t(z, ξ̂)Lw(ξ̂),

where t(z, ξ̂) is called the diffuse transmittance of the atmosphere between z and the surface
in the direction ξ̂; however, we shall see that t(z, ξ̂) is not a property of the atmosphere
alone, as it depends on Lw(ξ̂) as well.

9.3 Single-Scattering Analysis

To provide a firm foundation for understanding the various processes that influence Lt(z, ξ̂)
we will apply the single-scattering solution for radiative transfer to a simplified version of
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the remote sensing problem. Consider a homogeneous slab atmosphere of thickness z0

bounded on the bottom by a flat, horizontally homogeneous, water body. As in Appendix
1 to Chapter 2, we place the origin of coordinates at the top of the atmosphere with the
z-axis directed toward the water. The top of the slab is illuminated by the solar beam
propagating in the direction ξ̂0. The radiance associated with this beam is

F0δ
(2)(ξ̂ − ξ̂0) = F0δ(u− u0)δ(φ− φ0)

where F0 is the extraterrestrial solar irradiance. The remote radiometer is located at the
top of the atmosphere (z = 0) measuring a radiance Lt(0, ξ̂). The water-leaving radiance
entering the bottom of the atmosphere is Lw(z0, ξ̂). For this problem

Lt(0, ξ̂) = LOther(0, ξ̂) + Lw(0, ξ̂)

= LOther(0, ξ̂) + t(z0 → 0, ξ̂)Lw(z0, ξ̂),
(9.1)

where t(z0 → 0, ξ̂) is the diffuse transmittance from the surface to the top of the at-
mosphere. Thus, to understand how to extract the useful information, Lw(z0, ξ̂), from
Lt(0, ξ̂), we need to understand how to determine LOther(0, ξ̂) and t(z0 → 0, ξ̂). Recall
that LOther(0, ξ̂) consists of radiance from the Sun and sky scattered by the atmosphere
(air molecules and aerosols) into the radiometer, radiance from the Sun and sky reflected
by the water surface into the radiometer, and radiance from any whitecaps present on the
sea surface, while t(z0 → 0, ξ̂) accounts for the attenuation of Lw(z0, ξ̂) as it propagates
to z = 0, as well as atmospheric scattering of Lw(z0, ξ̂

′) (where ξ̂′ is simply a direction
different from ξ̂) into ξ̂ followed by propagation to the radiometer. Although the solar
beam is the ultimate source for Lw(z0, ξ̂

′), to carry out the single-scattering analysis, we
will solve the radiative transfer equation for a slab illuminated by two sources: the direct
solar beam illuminating the top of the atmosphere leading to LOther(0, ξ̂); and the water-
leaving radiance Lw(z0, ξ̂) illuminating the bottom of the atmosphere leading to Lw(0, ξ̂).
These sources can be treated separately by virtue of the linearity of the radiative transfer
equation.

9.3.1 Contribution of Atmospheric Scattering to LOther(0, ξ̂).

There are three processes involving a single interaction (scattering) within the atmosphere
that can contribute to LOther(0, ξ̂): (1) backscattering of direct solar radiation into the ra-
diometer; (2) forward scattering of solar radiation toward the water surface (sky radiance),
followed by specular (Fresnel) reflection from the surface and subsequent propagation to
the sensor; and (3) specular reflection of direct solar radiation from the sea surface followed
by forward scattering into the direction ξ̂ and propagation to the sensor. These processes
are shown schematically in Figure 9.1.
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For process number 1, the formulas developed in Appendix 1 to Chapter 2 are directly
applicable. In particular, Eq. (2.102) states that this component (L1) is given by

L1(0, u, φ) = −ω0τ0F0

4πu
P (u0 → u, φ0 → φ), u < 0,

or

L1(0, ξ̂) =
ω0τ0F0

4π|ξ̂ • êz|
P (ξ̂0 → ξ̂),

(9.2)

where P is the scattering phase function, ω0 is the single scattering albedo, and τ0 is the
optical depth of the atmosphere (cz0).

To compute the contribution from process number 2, we note that Eq. (2.103) in the
Appendix to Chapter 2 provides the radiance at the surface (the sky radiance), i.e.,

L(τ0, u
′, φ) = F0δ(u

′ − u0)δ(φ′ − φ0)
[
1− τ0

u′

]

+
ω0F0τ0

4πu′
P (u0 → u′, φ0 → φ′), u′ > 0,

This is Fresnel-reflected from the flat surface with reflectance rf (u′) and propagated un-

changed to the top of the atmosphere.2 If ξ̂′ = ξ̂0 the second term can be ignored because
it is very small compared to the first (Sun glint, Chapter 7); however, because the first
term is so large, in any real remote sensing situation the geometric setting in which ξ̂′ = ξ̂0

must be avoided. Thus,

L2(0, u, φ) =
ω0F0τ0

4πu′
rf (u′)P (u0 → u′, φ0 → φ′)

+ rf (u0)F0δ(u
′ − u0)δ(φ′ − φ0) exp[−2τ0/u0], u′ > 0

or

L2(0, ξ̂) =
ω0F0τ0

4π|ξ̂ • êz|
rf (ξ̂′)P (ξ̂0 → ξ̂′) + rf (ξ̂0)F0δ

(2)(ξ̂′ − ξ̂0) exp[−2τ0/|ξ̂0 • êz|],

(9.3)
where, u′ = |u|, φ′ = φ, ξ̂′ = ξ̂ − 2(ξ̂ • êz)êz, and we have replaced the single-scattering
equation for the directly reflected solar beam by its exact counterpart.

Finally, for process 3, we recognize that this is equivalent to illuminating the atmosphere
from the bottom with a radiance

rf (ξ̂0)F0δ
(2)(ξ̂ − ξ̂′′) = rf (ξ̂0)F0δ(u− u′′)δ(φ− φ′′),

2Note that rf depends only on the angle of incidence with the surface, cos−1 u′. Thus, we use the
notation rf (u′), or equivalently rf (ξ̂′), where u′ and ξ̂′ are related by u′ = ξ̂′ • êz. In addition, since
u = −u′ (the law of reflection), rf (u′) = rf (|u|).
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where ξ̂′′ = ξ̂0 − 2(ξ̂0 • êz)êz. A straightforward computation similar to that given in
Appendix 1 to Chapter 2 yields,

L3(0, u, φ) = −ω0F0τ0

4πu
rf (u0)P (u′′ → u, φ′′ → φ), u < 0,

or

L3(0, ξ̂) =
ω0F0τ0

4π|ξ̂ • êz|
rf (ξ̂0)P (ξ̂′′ → ξ̂).

(9.4)

Combining, the radiance due to these three processes exiting the top of the atmosphere
is given by

L(0, ξ̂) =

3∑

i=1

Li(0, ξ̂).

The resulting formulas can be simplified in the case where the scattering phase function
depends only on the angle between the incident and the scattered beams, i.e., the scattering
angle Θ. We note that the scattering angles for processes 2 and 3 are given by, respectively

cos Θ2 = ξ̂0 • ξ̂′

= ξ̂0 • ξ̂ − 2(ξ̂ • êz)ξ̂0 • êz,

and

cos Θ3 = ξ̂′′ • ξ̂
= ξ̂ • ξ̂0 − 2(ξ̂0 • êz)ξ̂ • êz.

Thus, we see that Θ2 = Θ3 and the scattering angles associated with processes 2 and 3 are
identical. Following the notation of the earlier literature, we denote the scattering angle
associated with process 1, i.e., cos−1(ξ̂0• ξ̂), by Θ−, and the angle associated with processes
2 and 3 by Θ2 = Θ3 , Θ+. Then these three components can be combined to yield LOther

exiting the top of the atmosphere, propagating in a direction ξ̂:

LOther(0, u, φ) =
ω0τ0F0

4π|u|

[
P (Θ−) +

(
rf (u′) + rf (u0)

)
P (Θ+)

]

+ rf (u0)F0δ(u
′ − u0)δ(φ′ − φ0) exp[−2τ0/u0], or

LOther(0, ξ̂) =
ω0τ0F0

4π|ξ̂ • êz|

[
P (ξ̂0 → ξ̂) +

(
rf (ξ̂′) + rf (ξ̂0)

)
P (ξ̂0 → ξ̂ − 2(ξ̂ • êz)êz)

]

+ rf (ξ̂0)F0δ
(2)(ξ̂′ − ξ̂0) exp[−2τ0/|ξ̂0 • êz|],

(9.5)
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where u′ = |u|, φ′ = φ, ξ̂′ = ξ̂ − 2(ξ̂ • êz)êz, and we have ignored any contribution from
whitecaps.3

In general the scattering in the atmosphere results from scattering by air molecules
(Rayleigh scattering) and scattering by various species of aerosols. Consider a homogeneous
slab with N species of scatterers. The attenuation coefficient c can be written

c =
N∑

i=1

ci,

where ci is the attenuation coefficient of the ith species. Since τ0 = cz0, we also have

τ0 =
N∑

i=1

τ0i,

with τ0i = ciz0. Likewise,

β =

N∑

i=1

βi and b =

N∑

i=1

bi,

for the volume scattering function and the total scattering coefficient, respectively. The
various components of LOther (except for the term with the Dirac delta functions, which

3Equation (9.5) provides LOther when the sensor is located at the top of the atmosphere, i.e., a space-
borne sensor. In the interest of completeness, we provide the associated formulas for the case of a sensor
viewing the water from within the atmosphere, e.g., an aircraft-borne sensor. Let the sensor be located
at a depth z within the slab, where 0 < z < z0. Figure 9.1 shows that for process 1, only that portion of
the atmosphere between τ and τ0 can contribute. Since L1 is a linear function of optical depth, the term
analogous to L1 is given by Eq. (9.2) with τ0 replaced by the optical thickness of the atmosphere between
the surface and the sensor, i.e., τ0 − τ . A similar conclusion is reached for process 3, i.e., Eq. (9.4) still
applies with τ0 replaced by τ0 − τ . In contrast, for process 2 the altitude of the sensor is irrelevant as the
radiance is scattered by the entire atmosphere (once) before reflecting from the surface, and there are no
additional interactions in the atmosphere (single scattering). Thus, Eq. (9.3) provides the correct radiance
as it stands for process 2, except that the attenuation factor for the exact Fresnel-reflected solar beam,
exp[−2τ0/|ξ̂0 • êz|], must be replaced by exp[−(2τ0 − τ)/|ξ̂0 • êz|] to account for the shortened path to the
sensor. Combining these observations provides LOther propagating in an upward direction ξ̂ at an optical
depth τ within the atmosphere:

LOther(τ, u, φ) =
ω0(τ0 − τ)F0

4π|u|

[
P (Θ−) +

(
τ0

τ0 − τ
rf (u′) + rf (u0)

)
P (Θ+)

]
+ rf (u)F0δ(u

′ − u0)δ(φ′ − φ0) exp[−(2τ0 − τ)/u0], or

LOther(τ, ξ̂) =
ω0(τ0 − τ)F0

4π|ξ̂ • êz|

[
P (ξ̂0 → ξ̂) +

(
τ0

τ0 − τ
rf (ξ̂′) + rf (ξ̂0)

)
P (ξ̂0 → ξ̂ − 2(ξ̂ • êz)êz)

]
+ rf (ξ̂0)F0δ

(2)(ξ̂′ − ξ̂0) exp[−(2τ0 − τ)/|ξ̂0 • êz|],

(9.6)

where again u′ = |u|, φ′ = φ.
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vanishes unless u = −u0 and φ = φ0) are all proportional to the product ω0τ0P . For a
multi-component slab, this product can be written

ω0τ0P

4π
=
b

c
cz0

4πβ

4π
= z0β

= z0

N∑

i=1

βi = z0

N∑

i=1

biPi
4π

= z0

N∑

i=1

ciω0iPi
4π

=
N∑

i=1

τ0iω0iPi
4π

.

Thus, the product ω0τ0P is summable over the scattering species in the atmosphere, and
LOther can be separated into

LOther(0, u, φ) =

N∑

i=1

(
LOther(0, u, φ)

)
i
, for u 6= −u0,

where
(
LOther(0, u, φ)

)
i

is LOther(0, u, φ) when only species i is present in the atmospheric

slab. In general, the various species of aerosol are rarely separated. Rather they are
grouped together in a component simply called “aerosol.” Considering the aerosol as one
species of scatterer and the Rayleigh scattering by air molecules as the other species, we
have

ω0τ0P

4π
=
τ0rω0rPr

4π
+
τ0aω0aPa

4π
,

and

LOther(0, u, φ) =
(
LOther(0, u, φ)

)
r

+
(
LOther(0, u, φ)

)
a
, for u 6= −u0,

where the (additional) subscripts r and a refer to Rayleigh and aerosol, respectively. The
notation above is cumbersome, so we simplify it to

LOther(0, u, φ) = Lr(0, u, φ) + La(0, u, φ), for u 6= −u0, (9.7)

with

Lx(0, u, φ) =
ω0xτ0xF0

4π|u|
[
Px(Θ−) +

(
rf (|u|) + rf (u0)

)
Px(Θ+)

]
, (9.8)

where x = r or a, and the scattering angles are given by

cos Θ± = ∓uu0 +
√

1− u2)(1− u2
0) cos(φ− φ0).

The reader will recall that the atmospheric slab has been assumed to be homogeneous;
however, in the single-scattering approximation (with τ0 � 1) in which photons are al-
lowed to interact with the medium only once, the vertical structure of the atmosphere is
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irrelevant. For example, contrast the situation with a thin aerosol layer at the top of the
atmosphere with that of a thin aerosol layer near the bottom, with Rayleigh scattering
comprising the rest of the atmosphere in both cases. If the aerosol is near the top, photons
backscattered from it will not have suffered any attenuation due to Rayleigh scattering.
When the aerosol is near the bottom, photons will be attenuated by two trips through
the Rayleigh scattering layer – one prior to aerosol scattering and one after aerosol scat-
tering. In the process just described the photon would have had to interact at least once
(the process of attenuation) in addition to scattering from the aerosol layer. This cannot
happen in the single scattering approximation. Thus, in the limit that τ0 � 1 the vertical
structure of the atmosphere is unimportant. However, if τ0 6� 1, so multiple scattering is
important, one must expect that the vertical structure of the atmosphere will play a role
in determining LOther(0, u, φ).

9.3.2 Identification of Sun Glitter in LOther(0, ξ̂).

In Eqs. (9.5) and (9.6) the term containing the Dirac delta function provides the radiance
due to specular reflection of the solar beam from the water surface. This term is the flat-
surface equivalent of what is commonly called the “Sun glitter” and was studied in detail
in Chapter 7. If the water surface is roughened by the wind, this radiance is no longer
in a single direction, but exists in a narrow range of directions centered on (or close to)
the direction ξ̂ that is the solution to ξ̂ = ξ̂0 − 2(ξ̂0 • êz)êz, or equivalently the direction
specified by u = −u0 and φ = φ0. Also, the Dirac delta functions are replaced by a finite
function that describes how the solar radiance reaching the surface is reflected. Then this
term is usually written as Lg(0, ξ̂) or Lg(0, u, φ), etc. We will retain this notation and write
for the flat-surface case as well,

Lg(0, u, φ) = rf (u0)F0δ(u+ u0)δ(φ− φ0) exp[−2τ0/u0],

where we have replaced δ(u′ − u0) in Eq. (9.3) by δ(−u− u0) = δ(u+ u0) and δ(φ′ − φ0)
by δ(φ− φ0) because u+ u0 = 0 and φ− φ0 = 0 for this term to contribute. Furthermore,
since rf (u0)F0δ(u+u0)δ(φ−φ0) exp[−τ0/u0] is the radiance at the water surface associated
with the reflected solar beam, i.e.,

Lg(τ0, u, φ) = rf (u0)F0δ(u+ u0)δ(φ− φ0) exp[−τ0/u0], (9.9)

we can write
Lg(0, u, φ) = exp[−τ0/u0] × Lg(τ0, u, φ),

= T (τ0 → 0, u0, φ0) × Lg(τ0, u, φ),
(9.10)

where T (τ0 → 0, u0, φ0) = T (τ0 → 0, |u|, φ) = exp[−τ0/|u|] is the direct transmittance of
the atmosphere along the path from the water surface to the sensor. Note that unlike the
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diffuse transmittance, developed fully in the next section, T is a property of the atmosphere
alone. It is simply the transmittance of a perfectly parallel beam of radiation through the
entire atmosphere when the beam is inclined at an angle θ = cos−1 |u| with respect to
the normal to the water surface. When the surface is roughened by the wind the glitter
is neither in the form of a parallel beam nor totally diffuse; therefore the appropriate
transmittance will be somewhere between the direct transmittance (T ) and the diffuse
transmittance (t), which we study next.4

9.3.3 Contribution of Atmospheric Processes to t(z0 → 0, ξ̂)Lw(z0, ξ̂).

We now examine the second term in Eq. (9.1), i.e., the water-leaving radiance transmitted
to the top of the atmosphere. In general, radiance exits the water and enters the atmo-
sphere in all upward directions. This radiance is then modified by the atmosphere through
absorption and scattering and exits the top of the atmosphere where it is measured by
the sensor. Thus, the radiative transfer problem that must be solved consists of finding
the radiance Lw(0, ξ̂) exiting the top of the atmosphere measured by a radiometer (aimed
toward −ξ̂), given radiance Lw(z0, ξ̂

′) entering the bottom of the atmosphere, where ξ̂′ is
a unit vector pointing in any upward direction (Figure 9.2).5 The diffuse transmittance is
then

t(z0 → 0, ξ̂) =
Lw(0, ξ̂)

Lw(z0, ξ̂)
, (9.11)

i.e., the radiance exiting the top of the atmosphere in the direction ξ̂ divided by the radiance
entering the bottom of the atmosphere in the same direction. Thus, we need to solve the
radiative transfer equation subject to the boundary conditions,

L(0)(0, u′, φ) = 0 for u′ > 0,

L(0)(τ0, u
′, φ) = Lw(τ0, u

′, φ) for u′ < 0,

L(n)(0, u′, φ) = 0 for u′ > 0,

L(n)(τ0, u
′, φ) = 0 for u′ < 0,

where, as usual, u′ = ξ̂′ • êz, the unit vector ξ̂′ is in an arbitrary upward direction, and
τ0 = cz0.

4If we try to incorporate the surface roughness, using the relationships developed in Chapter 7, into the
single-scattering analysis, it is found that the terms for which sky radiance interact with the surface lead
to divergent integrals. (The integrals do not diverge in the first-order solution.) Thus, no single scattering
analysis is performed in the presence of surface roughness.

5The subscript “w” on Lw(0, ξ̂) departs from our convention of using “w” to represent “water-leaving”
quantities; however, we use the present notation here for clarity to remind the reader that Lw(0, ξ̂) is the
radiance exiting the top of the atmosphere when Lw(τ0, ξ̂) is exiting the water surface, i.e., incident on the
bottom of the atmosphere, in the absence of the solar beam.
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The first-order solution can be developed in a manner analogous to that for diffuse light
entering the top of the atmosphere, as presented in Appendix 1 to Chapter 2. The result
for u < 0 is

Lw(0, u, φ) = Lw(τ0, u, φ) exp(τ0/u)

+
ω0

4π

∫ 0

−1
du′
∫ 2π

0
dφ′

P (u′ → u, φ′ → φ)

1− u/u′ Lw(τ0, u
′φ′)

×
[
exp(τ0/u

′)− exp(τ0/u)
]
.

(9.12)

The interpretation of the two terms in this equation is provided in Figure 9.3. Noting that
Eq. (9.12) provides accurate radiances only for τ0 � 1, we expand the exponentials and
retain only the first-order term, yielding the single-scattering solution. This results in

Lw(0, u, φ) = Lw(τ0, u, φ)

×
[
1 +

τ0

u

(
1− ω0

4π

∫ 0

−1
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ)

Lw(τ0, u
′φ′)

Lw(τ0, u, φ)

)]
.

(9.13)
Thus, the diffuse transmittance can be written

t(τ0 → 0, u, φ) =
Lw(0, u, φ)

Lw(τ0, u, φ)

= 1 +
τ0

u

(
1− ω0

4π

∫ 0

−1
du′
∫ 2π

0
dφ′ P (u′ → u, φ′ → φ)

Lw(τ0, u
′φ′)

Lw(τ0, u, φ)

)
,

(9.14)
or, in coordinate-free form,

t(τ0 → 0, ξ̂) = 1 +
τ0

ξ̂ • êz

(
1− ω0

4π

∫

ξ̂′•êz<0
dΩ(ξ̂′) P (ξ̂′ → ξ̂)

Lw(τ0, ξ̂
′)

Lw(τ0, ξ̂)

)
, (9.15)

where dΩ(ξ̂′) is a differential solid angle around ξ̂′ and the integration is restricted to
directions for which ξ̂′ • êz < 0. Note that ξ̂ • êz < 0 as well.

These single-scattering representations of the diffuse transmittance are incomplete be-
cause there is one single-scattering process that has been omitted. The omitted process is
shown in Figure 9.4. Inclusion of the process in Figure 9.4 requires computing downward-
scattered radiance falling on the water surface. In a computation similar to that leading
to Eq. (9.12) this radiance is found to be

L(τ0, u
′′, φ′′) =

ω0

4π

∫ 0

−1
du′
∫ 2π

0
dφ′

P (u′ → u′′, φ′ → φ′′)

1− u′′/u′ Lw(τ0, u
′φ′)

× exp(τ0/u
′)
[
exp(−τ0/u

′)− exp(−τ0/u
′′)
]
,

(9.16)
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or expanding the exponentials to first order,

L(τ0, u
′′, φ′′) =

ω0τ0

4πu′′

∫ 0

−1
du′
∫ 2π

0
dφ′ P (u′ → u′′, φ′ → φ′′)Lw(τ0, u

′φ′). (9.17)

This radiance is then Fresnel-reflected at the water surface, resulting in an upward radiance
L(τ0, u, φ) = rf (u′′)L(τ0, u

′′, φ′′). (Note, the law of reflection requires u = −u′′ and φ = φ′′,
which for a given upward direction (u, φ) completely specifies the intermediate direction
(u′′, φ′′). Because one scattering event has already taken place in this process, the reflected
radiance is then transmitted to the top of the atmosphere without further interaction. This
contribution adds a term

−ω0τ0rF (−u)

4πu

∫ 0

−1
du′
∫ 2π

0
dφ′ P (u′ → −u, φ′ → φ)

Lw(τ0, u
′φ′)

Lw(τ0, u, φ)

to the right-hand-side of Eq. (9.14). Combining all of the contributions, the diffuse trans-
mittance becomes

t(τ0 → 0, u, φ) =
Lw(0, u, φ)

Lw(τ0, u, φ)

= 1 +
τ0

u

[
1− ω0

4π

∫ 0

−1
du′
∫ 2π

0
dφ′

Lw(τ0, u
′φ′)

Lw(τ0, u, φ)

×
(
P (u′ → u, φ′ → φ) + rf (−u)P (u′ → −u, φ′ → φ)

)]
,

(9.18)

or in the coordinate-free representation,

t(τ0 → 0, ξ̂) = 1 +
τ0

ξ̂ • êz

[
1− ω0

4π

∫

ξ̂′•êz<0
dΩ(ξ̂′)

Lw(τ0, ξ̂
′)

Lw(τ0, ξ̂)

×
(
P (ξ̂′ → ξ̂) + rf (ξ̂′′)P (ξ̂′ → ξ̂′′)

)]
,

(9.19)

where ξ̂′′ = ξ̂ − 2(ξ̂ • êz)êz.6 Note that u and ξ̂ • êz are both negative so the integrals
make positive contributions to t. Also, the Fresnel reflectance can be taken outside the
integration, as it is not dependent on the integration variables. Typically, the term con-
taining the Fresnel reflectance is small compared to the term without it for two reasons:

6The associated formulas for the case where the sensor is within the atmosphere are easy to develop
from the formulas already presented using Figures 9.3 and 9.4. If the sensor is at an optical depth τ , where
0 < τ < τ0 (or at z, where 0 < z < z0) then Figure 9.3 shows that only the atmosphere between τ and
τ0 can contribute to the various terms in Eq. (9.15). Thus, for the portions of t provided by Figure 9.3,
Eq. (9.15) is applicable with τ0 replaced by τ0 − τ . In contrast, for the portion of t provided by Figure
9.4, the entire atmosphere can contribute to the downward radiance in the ξ̂′′ direction and, as there are
no additional interactions between the surface and the sensor, this term will remain unchanged. The final
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(1) the Fresnel reflectance is small (< 10%) for useful viewing directions; and (2) the term
containing the Fresnel reflectance is associated with backscattering directions for which
the phase function (when aerosols are present) is smaller than for the forward scattering
directions associated with the first term.

The single-scattering equations developed for the diffuse transmittance clearly show
that t(τ0 → 0, ξ̂) is not a property of the atmosphere. Rather, it depends on Lw(τ0, ξ̂), i.e.,
the angular distribution of radiance exiting the water surface (the radiance distribution).
However, it does depend on the properties of the atmosphere through P (ξ̂′ → ξ̂), ω0, and τ0.
Interestingly, in contrast to the direct transmittance, i.e., exp[τ0/(ξ̂ • êz)], where ξ̂ • êz < 0,
there is no necessity that t(τ0 → 0, ξ̂) ≤ 1 in the presence of scattering. In fact, in the
unlikely event that Lw(τ0, ξ̂

′) = 0 for some ξ̂′, then unless ω0 = 0, t(τ0 → 0, ξ̂′) = +∞!

Equations (9.18) and (9.19) are easy to modify in the case of a multi-component atmo-
sphere: simply replace ω0τ0P with

∑N
i=1 ω0iτ0iPi. Then, for example, Eq. (9.18) becomes

t(τ0 → 0, u, φ) = 1 +
τ0

u
− 1

4πu

∫ 0

−1
du′
∫ 2π

0
dφ′

Lw(τ0, u
′φ′)

Lw(τ0, u, φ)

×
N∑

i=1

ω0iτ0i

(
Pi(u

′ → u, φ′ → φ) + rf (−u)Pi(u
′ → −u, φ′ → φ)

)
,

or in the case of Rayleigh and aerosol scattering,

t(τ0 → 0, u, φ) = 1 +
τ0r

u
+
τ0a

u

− 1

4πu

∫ 0

−1
du′
∫ 2π

0
dφ′

Lw(τ0, u
′φ′)

Lw(τ0, u, φ)

× ω0rτ0r

(
Pr(u

′ → u, φ′ → φ) + rf (−u)Pr(u
′ → −u, φ′ → φ)

)

− 1

4πu

∫ 0

−1
du′
∫ 2π

0
dφ′

Lw(τ0, u
′φ′)

Lw(τ0, u, φ)

× ω0aτ0a

(
Pa(u

′ → u, φ′ → φ) + rf (−u)Pa(u
′ → −u, φ′ → φ)

)
.

(9.21)

result is then

t(τ0 → τ, ξ̂) =
Lw(τ, ξ̂)

Lw(τ0, ξ̂)

= 1 +
(τ0 − τ)

ξ̂ • êz

[
1− ω0

4π

∫
ξ̂′•êz<0

dΩ(ξ̂′)
Lw(τ0, ξ̂

′)

Lw(τ0, ξ̂)

×
(
P (ξ̂′ → ξ̂) +

τ0
(τ0 − τ)

rf (ξ̂′′)P (ξ̂′ → ξ̂′′)
)]
,

(9.20)

where ξ̂′′ = ξ̂ − 2(ξ̂ • êz)êz.



9.3. SINGLE-SCATTERING ANALYSIS 667

This expression can be identified as the first-order expansion of the product of two polyno-
mials, e.g., 1 +x+ y ≈ (1 +x)(1 + y) if both x and y are� 1. When such an identification
is made, the diffuse transmittance is approximated as

t(τ0 → 0, u, φ) = tr(τ0r → 0, u, φ)ta(τ0a → 0, u, φ), (9.22)

where

tx(τ0 → 0, u, φ) = 1− τ0x

|u|

+
ω0xτ0x

4π|u|

∫ 0

−1
du′
∫ 2π

0
dφ′

Lw(τ0, u
′φ′)

Lw(τ0, u, φ)

×
(
Px(u′ → u, φ′ → φ) + rf (−u)Px(u′ → −u, φ′ → φ)

)
(9.23)

x = r or a, and, as u < 0, we have replaced +τ0x/u by −τ0x/|u| to emphasize that fact
that the second term results in a decrease in the transmittance, while the third results in
an increase.

9.3.4 Summary of the Single-Scattering Analysis.

The results of this single-scattering analysis can be summarized in the equations below
describing the various contributions to the radiance Lt(0, u, φ) exiting the top (z = 0) of
a thin, homogeneous-slab, atmosphere of thickness z0 above a flat, Fresnel-reflecting water
body, that provides an upward radiance Lw(z0, u, φ) into the bottom of the atmosphere
when the top of the atmosphere is illuminated by the solar beam.

Lt(0, u, φ) = Lr(0, u, φ) + La(0, u, φ)

+ T (τ0 → 0, u, φ)Lg(τ0, u, φ) + t(τ0 → 0, u, φ)Lw(τ0, u, φ),
(9.24)

where

Lx(0, u, φ) =
ω0xτ0xF0

4π|u|
[
Px(Θ−) +

(
rf (|u|) + rf (u0)

)
Px(Θ+)

]
,

cos Θ± = ∓uu0 +
√

1− u2)(1− u2
0) cos(φ− φ0),

T (τ0 → 0, u, φ) = exp[−τ0/|u|],

Lg(τ0, u, φ) = rF (u0)F0δ(u+ u0)δ(φ− φ0) exp[−τ0/u0],

and

t(τ0 → 0, u, φ) = tr(τ0r → 0, u, φ)ta(τ0a → 0, u, φ),
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with

tx(τ0 → 0, u, φ) = 1− τ0x

|u|

+
ω0xτ0x

4π|u|

∫ 0

−1
du′
∫ 2π

0
dφ′

Lw(τ0, u
′φ′)

Lw(τ0, u, φ)

×
(
Px(u′ → u, φ′ → φ) + rf (−u)Px(u′ → −u, φ′ → φ)

)

In these equation, the subscript “x” can be either “r” or “a.” The equations are appropriate
when the optical depth of the atmosphere, τ0 = cz0 � 1. Succinctly stated, the remote
sensing problem is to retrieve Lw(τ0, u, φ) from measurement of Lt(0, u, φ). However, even
in this single-scattering approximation, these equations indicate that the water-leaving
component of Eq. (9.24), t(τ0 → 0, u, φ)Lw(τ0, u, φ) depends on Lw(τ0, u

′, φ′), for all u′ < 0
and all φ′, i.e.,

tr(τ0 → 0, u, φ)ta(τ0 → 0, u, φ)Lw(τ0, u, φ) =

[
1− τ0r + τ0a

|u|

]
Lw(τ0, u, φ)

+
ω0rτ0r

4π|u|

∫ 0

−1
du′
∫ 2π

0
dφ′ Lw(τ0, u

′φ′)

×
(
Pr(u

′ → u, φ′ → φ) + rf (−u)Pr(u
′ → −u, φ′ → φ)

)

+
ω0aτ0a

4π|u|

∫ 0

−1
du′
∫ 2π

0
dφ′ Lw(τ0, u

′φ′)

×
(
Pa(u

′ → u, φ′ → φ) + rf (−u)Pa(u
′ → −u, φ′ → φ)

)
.

The presence of the integrals containing Lw(τ0, u
′, φ′) shows that it is not possible to re-

trieve Lw(τ0, u, φ) from the measurement of Lt(0, u, φ) propagating in the single direction
(u, φ), even if the atmospheric parameters are precisely known. Thus, further assumptions
are required to make the remote sensing problem tractable. Note the only approximations
made thus far are that the single-scattering approximation is valid, i.e., τ0 � 1, so con-
tributions to the radiance of order ∝ τn0 , where n > 1 are negligible, and that the water
surface is flat and free of whitecaps.

9.3.5 Assumption of a Uniform Lw(τ0, u
′, φ′).

The remote sensing problem can at least be made tractable by assuming that Lw(τ0, u
′, φ′)

is independent of direction, i.e., independent of u′ and φ′, so Lw(τ0, u
′, φ′)→ Lw(τ0). Then,
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the diffuse transmittances become independent of the water-leaving radiance, and

tr(τ0 → 0, u, φ)ta(τ0 → 0, u, φ)Lw(τ0)

=

[
1− τ0r

|u| +
ω0rτ0r

4π|u|

∫ 0

−1
du′
∫ 2π

0
dφ′

(
Pr(u

′ → u, φ′ → φ) + rf (−u)Pr(u
′ → −u, φ′ → φ)

)]

×
[
1− τ0a

|u| +
ω0aτ0a

4π|u|

∫ 0

−1
du′
∫ 2π

0
dφ′

(
Pa(u

′ → u, φ′ → φ) + rf (−u)Pa(u
′ → −u, φ′ → φ)

)]

× Lw(τ0).

To remind the reader that this assumption has been evoked, we denote the diffuse trans-
mittance under these circumstances by t∗x(τ0 → 0, u, φ), i.e.,

t∗x(τ0 → 0, u, φ)

=

[
1− τ0x

|u|

+
ω0xτ0x

4π|u|

∫ 0

−1
du′
∫ 2π

0
dφ′

(
Px(u′ → u, φ′ → φ) + rf (−u)Px(u′ → −u, φ′ → φ)

)]
,

(9.25)
and

Lt(0, u, φ) = Lr(0, u, φ) + La(0, u, φ)

+ T (τ0 → 0, u, φ)Lg(τ0, u, φ) + t∗(τ0 → 0, u, φ)Lw(τ0, u, φ).
(9.26)

Clearly, in contrast to t, the transmittance t∗ is a property of the atmosphere alone.
Equation (9.25) is often considered to represent the first two terms in an exponential
expansion, i.e., 1 + x ≈ exp(x) when x� 1. When this identification is made,

t∗x(τ0 → 0, u, φ) ≈ exp

[
−τ0x

|u|

(
1

− ω0x

4π

∫ 0

−1
du′
∫ 2π

0
dφ′

(
Px(u′ → u, φ′ → φ) + rf (−u)Px(u′ → −u, φ′ → φ)

))]
.

(9.27)

It is useful to investigate the nature of the integrals. First, we note that rF is independent
of u′, so it can be taken outside the integral. Consider

1

4π

∫ 0

−1
du′
∫ 2π

0
dφ′ Px(u′ → u, φ′ → φ) , p−−x (|u|), (9.28)

where u < 0 and u′ < 0.7 This integral corresponds to the processes depicted in Figure 9.5.
Recalling that Px(u′ → u, φ′ → φ)/4π is the probability density for scattering from (u′, φ′)

7Note that p−−x (|u|) does not depend on φ. The easiest way to verify this is to expand Px(u′ → u, φ′ → φ)
in a Fourier series in φ′−φ (assuming that Px depend only on the angle between ξ̂′ and ξ̂). Upon integrating
the series over φ′, only the term independent of φ′ − φ survives.
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to (u, φ), it is clear that p−−x (|u|) is the probability of scattering into a particular direction
(u, φ), where u < 0, from all directions (u′, φ′) with u′ < 0. (The superscript “−−” is used
to indicate scattering from an upward directed ξ̂′ to an upward directed ξ̂, i.e., u′ and u
both < 0.) Using the symmetry of the phase function,

Px(u′ → u, φ′ → φ) = Px(u→ u′, φ→ φ′),

it is seen that p−−x (|u|) is also the probability of scattering into all directions (u′, φ′), where
u′ < 0, from a particular direction (u, φ) with u < 0. In addition, it is easy to see that
p−−x (|u|) = p++

x (|u|). Likewise

1

4π

∫ 0

−1
du′
∫ 2π

0
dφ′ Px(u′ → −u, φ′ → φ) , p−+

x (|u|) (9.29)

corresponds to the process in Figure 9.6. Here p−+
x (|u|) is the probability of scattering

into a particular direction (−u, φ), where u < 0, from all directions (u′, φ′) with u′ <
0, or equivalently, the probability of scattering into all directions (u′, φ′), where u′ <
0, from a particular direction (−u, φ) with u < 0.8 Clearly, p−+

x (|u|) = p+−
x (|u|) and

p−−x (|u|)+p−+
x (|u|) = 1. Also, when |u| = 1 (ξ̂ directed vertically), p−−x (1) is the probability

of scattering in the forward hemisphere (Θ ≤ 90◦), while p−+
x (1) is the probability of

scattering in the backward hemisphere (Θ ≥ 90◦). With these identifications,

t∗x(τ0 → 0, u, φ) ≈ exp

[
−τ0x

|u|
(

1− ω0x

[
p−−x (|u|) + rf (|u|)p−+

x (|u|)
])]

= exp

[
−τ0x

|u|
(

1− ω0x

[
p−−x (|u|)

(
1− rf (|u|)

)
+ rf (|u|)

])]
.

(9.30)

As analytic expressions of Px are usually not available, the integrals for p−−x and p−+
x

must be carried out numerically; however, for Rayleigh scattering an analytical formula is
available and it is straightforward to carry out the integrals in Eqs. (9.28) and (9.29).9

The result is p−−r (|u|) = p−+
r (|u|) = 1

2 , so

t∗r(τ0 → 0, u, φ) ≈ exp

[
−τ0r

|u|
(

1− ω0r

2

[
1 + rf (|u|)

])]
. (9.31)

8The quantities p−−x (|u|) and p−+
x (|u|) are identical to the quantities Prd and Pru, respectively, in

Chapter 6, when the full phase function is used in the integrals, rather than the portion that remains after
removal of the Dirac delta function.

9Insert the Fourier expansion of the Rayleigh phase function from Chapter 2 (Eq. (2.66)) into Eqs.
(9.28) and (9.29) and carry out the integrals.
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9.4 Accuracy of the Single-Scattering Solution.

The purpose of employing the single-scattering solution of the remote sensing problem was
to develop approximate, but analytical, formulas for the various quantities in the remote
sensing equation

(
Eq. (9.1)

)
, LOther(0, ξ̂)

(
or Lr(0, ξ̂) + La(0, ξ̂)

)
and t(τ0 → 0, ξ̂)

(
or

tr(τ0 → 0, ξ̂)× ta(τ0 → 0, ξ̂)
)
. The resulting single-scattering formulas are valid for τ0r � 1

and τ0a � 1; however, we have seen in Chapter 4 that at 412 nm (the minimal wavelength
for spectral bands on many space-borne ocean color sensors) τ0r ≈ 0.32. Also, the upper
limit for τ0a at 412 nm in a clear, totally maritime, atmosphere is ∼ 0.1 to 0.2. Are these
optical depths sufficiently small for the single-scattering formulas to be useful? We now
investigate this question by comparing the predictions of single-scattering theory with the
results of “exact” solutions of the scalar radiative transfer equation (for the same physical
setting) at a wavelength of 412 nm. As usual, by “exact” solutions we mean numerical
solutions that can be made as accurate as desired.

9.4.1 Accuracy of the Single-Scattering Solution for Lr.

We begin by examining the accuracy of the approximation when τ0a = 0, i.e., in the absence
of the aerosol. Consider a pure Rayleigh scattering slab above a Fresnel-reflecting water
body for which Lw(τ0r, u, φ) = 0 for all u < 0 and φ, i.e., for which no radiance exits the
water. Assume that the remote sensor is viewing radiance exiting the top of the atmosphere
making a polar angle θex = π−θ = cos−1(|u|) with the upward normal (see insert in Figure
9.7) and an azimuth angle φ = φ0 ± π

2 . A sensor scanning through various values of θex,
but keeping the azimuth constant at this value is said to be scanning in the perpendicular
plane. This approximates the sun-viewing geometry used in many space-borne sensors.

It is convenient at this point to switch from radiance L to reflectance ρ. The reflectance
ρ corresponding to a radiance L is defined to be

ρ =
πL

F0 cos θ0
=

πL

F0u0
,

where F0 is the extraterrestrial solar irradiance leading to L, and θ0 is the solar zenith angle
at the time of the measurement. (Note, if the radiance exiting the top of the atmosphere is
independent of the direction of propagation, the atmosphere is said to be lambertian and
ρ is the albedo.) With this change, Eq. (9.8) for Lx becomes

ρx(0, u, φ) =
ω0xτ0x

4|u|u0

[
Px(Θ−) +

(
rF (|u|) + rF (u0)

)
Px(Θ+)

]
, (9.32)
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where x = r or a, and

cos Θ± = ∓uu0 +
√

1− u2)(1− u2
0) cos(φ− φ0).

In Figure 9.7 we compare the reflectance ρr at 412 nm (τ0r = 0.32) computed using Eq.
(9.32) with those computed from a full solution of the scalar RTE for three separate solar
zenith angles: θ0 = 20◦, 40◦, and 60◦. As the spectral bands associated with remote
sensing systems are chosen to be in atmospheric “windows,” i.e., spectral regions of little
or no absorption, the computations are for ω0r = 1 (no atmospheric absorption). The
figure shows excellent agreement between the two computations. This is emphasized in
Figure 9.8 which provides the % error in ρr when computed using the single-scattering
approximation. The error in the figure is computed as 100% ×

(
ρr(Single-scattering) −

ρr(Exact)
)
/ρr(Exact), so a positive error means that the single-scattering solution is too

large. Since most remote sensors operate with θex < 50◦ to 60◦, the results suggest that
the single-scattering approximation to ρr is in error by ∼ ±3% or an absolute error in ρr
of ∼ ±0.004.

9.4.2 Accuracy of the Single-Scattering Solution for Lr + La.

To examine the accuracy of the single-scattering solution when aerosols are present requires
optical properties for the aerosols. For this purpose, we use the M70 aerosol model of Shettle
and Fenn which, as we have seen in Chapter 4, approximates the properties of pure maritime
aerosols. A value for the aerosol optical thickness of 0.2 is assumed because it is close to
the maximum for “pure” maritime atmospheres (actually, it is somewhat above the largest
values observed). In addition, because such an aerosol is known to be confined to the marine
boundary layer, we assume that the aerosols are confined to a thin layer near the surface.
For evaluation of the single-scattering solution, we consider the “exact” values of ρr + ρa
to be those computed using full multiple scattering methods for a two-layer atmosphere
with aerosols confined to the lower layer and Rayleigh scattering by the air confined to
the upper layer. As in the case of a pure Rayleigh-scattering atmosphere, the water body
is bounded by a Fresnel-reflecting surface and is totally absorbing (Lw = 0). Figure
9.9 provides the comparison between the exact and the single-scattering computation of
ρr + ρa, and Figure 9.10 provides the error in the single-scattering solution. That the
addition of aerosols increases the error in single-scattering solution is to be expected, as
the total optical thickness is increased to 0.52. However, even at this value of τ0 the error
is not excessive, except for small θex and θ0. The increased error in this regime is due
to small-angle scattering by the aerosol followed by Fresnel reflection from the surface.
The linearized first-order solution simply does not properly account for this process, which
is much more important when aerosols are present because their phase function strongly
favors scattering through small angles. In contrast to the pure molecular atmosphere,
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and except for this regime, with the addition of aerosols the error in the single-scattering
estimate has the tendency to be negative over most of the range of θex and θ0. The
magnitude is somewhat higher than that for ρr alone, and the error in the single-scattering
ρr + ρa is usually <∼ ± 0.008− 0.010.

9.4.3 Accuracy of the Single-Scattering Solution for La.

Figure 9.11 provides the single-scattering approximation to ρa. Note that ρa is ≈ 1
10 to 1

5
of ρr (Figure 9.7) even though the optical thickness is 60% of τ0r. This disparity is due to
the much smaller backscattering associated with the aerosol phase function compared to
that for Rayleigh scattering. The accuracy with which the single-scattering approximation
yields ρa would at first seem to be irrelevant because τ0r is never zero, i.e., the aerosol
never scatters in the absence of Rayleigh scattering. However, there is a multiple scattering
analog to ρa: the analog is

[
(ρr + ρa) − ρr

]
. Thus, we ask how well the single-scattering

formulas reproduce the exact values of
[
(ρr + ρa)− ρr

]
. Figures 9.9 and 9.7 provide exact

values of ρr + ρa and ρr respectively. Subtracting these yields the multiple-scattering or
exact value of our analog to ρa. Comparing these with the single-scattering approximation
to ρa provides the error in the single-scattering approximation as shown in Figure 9.12.
With the exception of the regime mentioned above, where both θex and θ0 are small, the
single-scattering formulas provide the quantity

[
(ρr + ρa) − ρr

]
with an error ∼ −20 to

−30%. Figure 9.13 shows that the absolute error in this quantity is −0.008 to +0.010 even
including the small-angle regime.

9.4.4 Accuracy of the Single-Scattering Solution for t∗r.

We cannot compute tr without knowing Lw(τ0, ξ̂); however, in the case when Lw(τ0, ξ̂) is
independent of ξ̂, we can calculate t∗t . Assuming as above, that ω0r = 1, Equation (9.31)
for t∗r becomes

t∗r(τ0r → 0, u, φ) ≈ exp

[
− τ0r

2|u|
(

1− rF (|u|)
)]
. (9.33)

The exact values for t∗r can be computed by solving the RTE for a homogeneous, Rayleigh-
scattering slab, bounded on the bottom by a Fresnel-reflecting surface and illuminated
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from below by a uniform Lw(τ0r, ξ̂), i.e., Lw independent of ξ̂. Then,10

t∗r(τ0r → 0, ξ̂) =
Lw(0, ξ̂)

Lw(τ0r, ξ̂)
.

Figure 9.14 compares the single-scattering t∗r computed using Eq. (9.33) with the exact
value. Clearly, the single-scattering formula provides a t∗r that is too small, with the error
ranging from 1.5% near θex = 0 to 7% near θex = 75◦. This error can be rendered almost
negligible for small θex (|u| near 1) by replacing 2|u| in Eq. (9.33) by 2.2|u|. For comparison,
the direct transmittance

Tr(τ0r → 0, u, φ) = exp

[
τ0r

|u|

]
,

is shown as the dotted line on Figure 9.14. Equation (9.31) shows that t∗r → Tr as ω0r → 0,
so t∗r ≥ Tr.

9.4.5 Accuracy of the Single-Scattering Solution for t∗.

Computation of the single-scattering solution to t∗ requires computation of p−−a . This
computation is provided in Figure 9.15 for the M70 aerosol model. That p−−a is largest at
θex = 0 and falls to 0.5 at θex = 90◦, owes to the strong forward scattering exhibited by
aerosols. Combining the single-scattering solution for t∗a with the single-scattering solution
for t∗r provides the single-scattering solution for t∗. This is compared with the exact t∗

in Figure 9.16. The figure shows that the error in the single-scattering t∗ is similar in
magnitude to the error in the single-scattering t∗r , suggesting that there is little error in
the single-scattering t∗a. Because Rayleigh scattering is never absent in the atmosphere, an
exact t∗a has no meaning; however, a meaningful counterpart to an exact t∗a is t∗/t∗r . Figure
9.17 shows excellent agreement between the exact t∗/t∗r and the single-scattering t∗a for the
M70 aerosol model with τ0a = 0.2. The error in t∗a is ≤ 0.5% for θex ≤ 55◦, suggesting that
the first order formula for t∗a can provide useful information regarding t∗. In particular,
Figure 9.18 shows that t∗ is expected to be only a weak function of τ0a.

9.4.6 Summary

Examples presented in this section suggest that the single-scattering solutions for ρr, ρr+ρa,
and

[
(ρr + ρa) − ρr

]
at 412 nm are accurate to within ±0.004, ±0.008 to ±0.100, and

10Actually, this is not the method used to compute t∗r . In Chapter 10 we use the reciprocity principle to
show that t∗r(τ0 → 0, ξ̂) can be computed by taking Lw = 0, illuminating the top of the atmosphere with
the solar beam directed so that ξ̂0 = −ξ̂ and computing the total (sun plus sky) irradiance

(
Ed(−ξ̂, τ0)

)
incident just above the water surface. Then t∗r(τ0 → 0, ξ̂) = Ed(−ξ̂, τ0)/|ξ̂ • êz|F0.
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−0.008 to +0.010, respectively. These errors range from ∼ 3% for ρr to −20 to −30% for[
(ρr + ρa) − ρr

]
. Since τ0a = 0.2 is the upper limit for a clean maritime atmosphere, the

errors in ρr+ρa and
[
(ρr+ρa)−ρr

]
will generally be smaller that shown in the figures. Thus,

given the optical properties of the aerosol, ρOther in a typical remote sensing setting can be
computed using single-scattering formulas with an error <∼ 0.010. However, it should be
noted that this error represents a significant fraction of the contribution from the aerosol
(Figure 9.11). As we shall see in the next section, it also represents a considerable fraction
of the water-leaving reflectance at 412 nm for Case 1 waters, for which 0 <∼ ρw <∼ 0.04.

At 412 nm, over the range 0 ≤ θex ≤ 55◦, the diffuse transmittances t∗r and t∗ computed
with the single-scattering formulas are in error by −1.5 to −3.5% and −1.25 to −4.5%,
respectively. In contrast, the first order t∗a agrees with the exact values of t∗/t∗r to within
0.5% over the same angular range. Given a precise value of ρOther, this shows that use of
the single-scattering t∗ would result in an error <∼ + 1.25 to +3.5% in ρw. Given the
excellent accuracy of t∗r and t∗ computed in single-scattering, we expect that the tr and t
computed with single-scattering formulas

(
Eq. (9.25)

)
, with the addition of the exponential

approximation (i.e., 1 − x replaced by exp(−x) as in t∗), would provide about the same
accuracy.11

9.5 The Water-Leaving Reflectance

Now that we have examples of the various reflectances, e.g., ρr and ρa, and their accuracies
using the single-scattering scattering theory, we can compare these in magnitude to the
water-leaving reflectance. The water-leaving reflectance ρw is related to the water-leaving
radiance Lw through

ρw(ξ̂v, ξ̂0) =
πLw(ξ̂v, ξ̂0)

F0 cos θ0
,

where ξ̂v is the propagation direction of the viewed water-leaving radiance, and ξ̂0 is the
propagation direction the solar beam.12 In Chapter 7 we defined the normalized water-
leaving radiance [Lw]N and related it to Lw through (Eq. (7.37))

[Lw(ξ̂v, ξ̂0)]N = Lw(ξ̂v, ξ̂0)
a2
⊕

cos θ0tE(ξ̂0)
,

11In reality, it is more accurate to assume that the upwelling radiance just beneath the water surface is
uniform (Chapter 6). In fact, this is the assumption used in processing ocean color imagery from many
sensors, e.g., SeaWiFiS and MODIS. In this case, t∗ is computed by illuminating the atmosphere (from the

top) by the solar beam at a zenith angle θ0 and computing the downward irradiance (E
(−)
d ) just beneath the

interface (for a totally absorbing ocean). The diffuse transmittance is then t∗(θ0) = E
(−)
d /

(
tf (θ0) cos θ0F0

)
.

12In Chapter 7 we used ξ̂s to denote the propagation direction of the solar beam.
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where tE(ξ̂0) is the transmittance of irradiance from the top of the atmosphere to the water
surface, a⊕ is the Earth-Sun distance in astronomical units, and F̄0 is the solar irradiance
for a⊕ = 1 AU. If we multiply this by π/F̄0

π[Lw(ξ̂v, ξ̂0)]N
F̄0

=
πLw(ξ̂v, ξ̂0)a2

⊕

F̄0 cos θ0tE(ξ̂0)
,

and recognize F̄0/a
2
⊕ as F0, we see that

π[Lw(ξ̂v, ξ̂0)]N
F̄0

=
ρw(ξ̂v, ξ̂0)

tE(ξ̂0)
.

If we define the left-hand-side as the normalized water-leaving reflectance [ρw(ξ̂v, ξ̂0)]N ,
i.e., as

[ρw(ξ̂v, ξ̂0)]N ,
π[Lw(ξ̂v, ξ̂0)]N

F̄0
, (9.34)

then

[ρw(ξ̂v, ξ̂0)]N =
ρw(ξ̂v, ξ̂0)

tE(ξ̂0)
or ρw(ξ̂v, ξ̂0) = [ρw(ξ̂v, ξ̂0)]N tE(ξ̂0). (9.35)

Most measurements of Lw(ξ̂v, ξ̂0) (actually the measured quantity is Lu(ξ̂v, ξ̂0)) are made
with ξ̂v = −êz, i.e., of upwelling radiance propagating toward the zenith. From these, one
can estimate [ρw(−êz, ξ̂0)]N given tE(ξ̂0), which we now show how to compute.

There are three processes that contribute to the irradiance on the water surface. The
first (1) is the direct transmission of the solar beam through the atmosphere, the second
(2) is the scattering from the solar beam in the downward direction, and the third (3) is
upward Fresnel reflection of the solar beam followed by downward scattering toward the
water surface. The irradiance transmittance in single scattering is the sum of the irradiance
due to each of these three processes divided by u0F0. We note that the radiance of the solar
beam at the top of the atmosphere is F0δ(u − u0)δ(φ − φ0). We have already computed
the radiance at the surface for processes (1) and (2) in Chapter 2 (Eq. (2.103)):

L1(τ0, u, φ) + L2(τ0, u, φ) = F0δ(u− u0)δ(φ− φ0)
[
1− τ0

u

]

+
ω0F0τ0

4πu
P (u0 → u, φ0 → φ),

where u > 0. We have actually almost completed the computation of the radiance for pro-
cess (3) as well. Consider Eq. (9.17). For a radiance Lw(τ0, u

′, φ′) incident into the bottom
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of the atmosphere, this equation gives the radiance backscattered toward the surface. All
we need to do is replace Lw(τ0, u

′, φ′) with r(u0)F0δ(u− u0)δ(φ− φ0)(1− τ0/u0). Then

L3(τ0, u, φ) = r(u0)
ω0τ0F0

4πu
P (−u0 → u, φ0 → φ),

where the term in τ2
0 is dropped as it would indicate more than one interaction with the

medium. The downward irradiance at the surface is just

Ed(τ0, u0, φ0) =

∫ 2π

0
dφ

∫ 1

0
u[L1(τ0, u, φ) + L2(τ0, u, φ) + L3(τ0, u, φ)] du

= u0F0

(
1− τ0

u0

)

+
ω0F0τ0

4π

∫ 2π

0
dφ

∫ 1

0
P (u0 → u, φ0 → φ) du

+ r(u0)
ω0F0τ0

4π

∫ 2π

0
dφ

∫ 1

0
P (−u0 → u, φ0 → φ) du.

(9.36)

Figure 9.19 provides a schematic of the first integral Ed:

1

4π

∫ 2π

0
dφ

∫ 1

0
P (u0 → u, φ0 → φ) du,

in which light from ξ̂0 is (single) scattered into various directions ξ̂ and integrated over
dΩ(ξ̂) constrained to downward directions (ξ̂ • êz > 0). Reversing the direction the rays
and using the symmetry of the phase function shows that this integral is identical to
p−−(|u0|) in Eq. (9.28). Likewise, the second integral is identical to p−+(|u0|). Thus,

tE(ξ̂0) =
Ed(τ0, u0, φ0)

u0F0
= 1− τ0

u0

(
1− ω0

[
p−−(|u0|)− r(u0)p−+(|u0|)

])

≈ exp

[
− τ0

u0

(
1− ω0

[
p−−(|u0|)− r(u0)p−+(|u0|)

])]
.

(9.37)

The reader should note that this is identical to Eq. (9.30). This is no accident, it is
demanded by the reciprocity principle. In fact for the exact as well as the single-scattering
solution, tE(u0) = t∗(u0), and Figures 9.14-9.18 provide estimates of tE as well as t∗, and
show that most of the deviation of tE from unity is due to Rayleigh scattering in the
atmosphere. Since p−− = p−+ = 1/2 for Rayleigh scattering (for which ω0 = 1),

tEr(ξ̂0) ≈ exp
[
− τr

2u0

(
1 + r(u0)

)]
.

On the basis of this discussion of tE , and Figures 9.14-9.18 we can safely assume for the
present discussion that tE ≈ 1 as a basis of computing [ρw]N from ρw or Lw.
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Figure 9.20 provides [ρw]N at 443, 520, 550, and 670 nm as a function of the pigment
concentration, i.e., the concentration Chlorophyll a plus its degradation product Phaeo-
phytin a, in Case 1 waters (Chapter 5).13 The magnitude of [ρw]N should be compared to
the magnitude of ρr + ρa and ρa itself. Figures 9.7-9.13 are all for 412 nm: the shortest
wavelength band on all existing ocean color sensors. This wavelength was chosen as it
is the wavelength of maximum Rayleigh scattering and therefore maximum atmospheric
optical depth, and provides the most severe test if the single scattering approximation.
Note that ρr ∝ λ−4, so it decreases rapidly with wavelength and the single-scattering the-
ory becomes increasingly more accurate as λ increases. The aerosol component ρa usually
varies with wavelength proportional to λ−n, where n <∼ 1, so it is a much weaker function
of wavelength. In Chapter 6 we found that Lu at 412 nm is similar in magnitude to that
at 443 nm, so we take, for discussion purposes [ρw(412)]N ≈ [ρw(443)]N . Thus, we see that
[ρw(412)]N is at most only 20-25% of ρr + ρa and the same order of magnitude as ρa, i.e.,
in the measured reflectance ρt = ρr + ρa + tρw, the desired quantity ρw at low pigment
concentrations is at most ∼ 20 − 25% of the measured reflectance. At higher pigment
concentration, the water “signal” is an even smaller fraction of the total. The required
retrieval of ρw from ρt is what is usually called atmospheric correction, and is discussed in
detail in Chapter 10.

9.6 Concluding Remarks

Here, we have defined the remote sensing problem — the retrieval of the water-leaving
reflectance ρw from the top-of-atmosphere exiting radiance ρt, or equivalently, the esti-
mation of ρOther and t. We then used single-scattering theory to separate ρOther into its
component parts and to estimate the magnitudes of the various quantities and to compare
them to one another, e.g., the magnitude of ρw compared to ρa. We examined the accu-
racy of the single-scattering approximation compared to exact solutions of the radiative
transfer equation and concluded that while single-scattering theory is sufficiently accurate
to provide a tool for understanding the important processes involved in ocean color remote
sensing, its accuracy is marginal for the purpose of actually retrieving the water-leaving
reflectance.14 Thus, accurate retrieval of ρw from ρt requires a full solution to the radiative

13Examination of Figure 9.20 for 520 and 550 nm suggests that at these wavelengths [ρw]N is approx-
imately constant ([ρw(520)]N ≈ 0.0075 and [ρw(550)]N ≈ 0.005) for CP <∼ 0.25 mg/m3. The values of
[Lw]N associated with these reflectances are called “clear-water radiances.” This concept — approximately
constant radiances in the green for low CP — is often referred to as the “clear-water radiance concept.”

14It is important to note that the single-scattering theory implies that ρOther is independent of the vertical
distribution of the aerosol. The level of agreement with the exact computations for the M70 model and a
two-layer atmosphere suggests that the full multiple-scattering solution is also independent of the aerosol’s
vertical distribution. This, however, is only true for weakly absorbing aerosols (ω0a ≈ 1). For strongly
absorbing aerosols (ω0a <∼ 0.8), their vertical distribution is critical, e.g., contrast ρOther computed for a
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transfer equation, and is the subject of the next chapter. In the Appendix we showed
that the single-scattering analysis of the polarization properties of ρOther agree reasonably
well with their exact counterparts and can be used when less than exact computations are
required.

9.7 Appendix: Single-Scattering Approximation to LOther,
Including Polarization

It is important to understand the polarization of the radiance exiting the top of the at-
mosphere because some ocean color sensors are sensitive to the polarization state of this
radiance. Here we provide the single-scattering approximation to the atmospheric portion
of this radiance LOther = Lr + La when polarization is included in the analysis.

Figure 9.1 shows the three single-scattering processes that contribute to the top-of-
atmosphere radiance: (1) direct backscattering of solar radiance to the sensor without
interaction with the sea surface; (2) forward scattering of solar radiation by the atmosphere
followed by reflection from the sea surface and propagation to the sensor; and (3) reflection
of solar radiation from the sea surface followed by forward scattering by the atmosphere
and propagation to the sensor. These processes contribute radiance with different states
of polarization.

Following the notation in Chapters 2 and 3, the scattering phase matrix (referred to the
scattering plane) for spherical particles or for Rayleigh scattering can be written in the
form

P (Θ) =




P11(Θ) P12(Θ) 0 0
P12(Θ) P11(Θ) 0 0

0 0 P33(Θ) −P34(Θ)
0 0 P34(Θ) P33(Θ)


 ,

where Θ is the scattering angle. Recalling that in the description of polarized radiance
the Stokes vector is referenced to a particular coordinate system, a natural system for
describing the polarization state of the radiance in the atmosphere. In this system we take
the direction of the unit vector ê` (or ˆ̀) to be parallel to the plane formed by the vertical
êz and the direction of propagation ξ̂. Thus, to quantify the polarization of radiance
scattered from one direction to another requires transforming the incident Stokes vector
to the scattering-plane reference, where the phase matrix takes the simple form above,
computing the scattered Stokes vector in this plane, and then transforming the scattered

totally absorbing aerosol (ω0a = 0) located in a thin layer at the sea surface with that computed when the
aerosol is all in a thin layer at the top of the slab.
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Stokes vector back to the natural system. These transformations are effected by the rotation
matrix R(ψ) described in Chapter 2. The Stokes vector for radiance reflected from the sea
surface is related to the incident Stokes vector by the Mueller matrix for reflection,

IReflected = RfIIncident,

where from Chapter 1,

Rf =




ρ+ ρ− 0 0
ρ− ρ+ 0 0
0 0 ρ33 0
0 0 0 ρ33


 ,

with

ρ±(θi) =
1

2

[
tan2(θi − θt)
tan2(θi + θt)

± sin2(θi − θt)
sin2(θi + θt)

]
,

and

ρ33(θi) = −tan(θi − θt)
tan(θi + θt)

sin(θi − θt)
sin(θi + θt)

.

Here, the radiation is incident at an angle θi with respect to surface normal, and sin θt =
m−1
w sin θi. If the sea surface is flat, the surface normal is parallel to êz and the reference

system for Rf is the natural system.

To compute the Stokes vector for the three processes that contribute in first order, we
need to determine the scattering angles and the rotation angles involved in the required
R(ψ)’s. The scattering angles are the same as those developed in the scalar case, i.e., Θ±,
so we really need only determine the various rotational transformations. Determination
of the required transformations is most easily accomplished by displaying the vectors ξ̂0

and ξ̂ on the unit sphere centered on our standard coordinate system for radiative transfer
(z-axis directed into the atmosphere from the top). This is shown in Figure 9.21, in which
the incident radiance from the sun is propagating in the direction ξ̂0 (point “A” on the unit
sphere) and radiance formed by processes 1, 2, and 3 is exiting the top of the atmosphere
in the direction ξ̂ (point “B” on the unit sphere). The direction ξ̂0 is specified by the
angles θ0 and φ0 (or equivalently u0 and φ0). Likewise, ξ̂ is specified by the angles θ and
φ (or equivalently u and φ). Note that the angle π − θ (rather than θ) is provided on the
diagram. Also, note that the angle ∆φ , φ− φ0 is negative for the directions ξ̂0 and ξ̂ as
drawn in the figure.

Now, we examine Figure 9.21, looking along the plane formed by êz and ξ̂0 (the incident
plane in the natural system). This view is provided in Figure 9.22, where the line ZDAN
is the great circle ZAN in Figure 9.21, and the arc ZBCN is the great circle ZBN: the
labeled points are in the corresponding positions on the two figures. Focussing on Figure
9.22, the incident solar beam (striking the sphere at point A) can be redirected to point B
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in three ways (corresponding to the three processes in Figure 9.1. First it can be directly
backscattered in the atmosphere through an angle Θ− toward point B (process 1, A→ B).
Secondly, it can be scattered toward the sea surface through an angle Θ+, reaching point
C on the sphere, and then reflected from the surface toward point B (process 2, A → C →
B). Finally, it can be reflected from the sea surface to point D and then forward scattered
through an angle Θ+ to reach point B (process 3, A → D → B).

Determination of the various rotations required is straightforward given the figures.
Radiance arriving at point A on the figure is unpolarized (from the sun), so there is no
rotation required to place its reference in the scattering plane. Thus, for processes 1 and 2,
the only transformation required is the rotation of the scattering plane reference through
angles i1 and i2, respectively, into the natural reference system. The figure shows that
these rotations are both in the same sense: the scattering plane reference frame must be
rotated counter clockwise and as such the rotation matrices are R(+i1) and R(+i2) for
processes 1 and 2 respectively. No rotation is required upon Fresnel reflection from the
sea surface as Rf is already referred to the natural system. In the case of process 3, the
radiance arriving at point D is polarized by reflection from the sea surface. Thus, at D
the natural reference frame must be rotated into the scattering plane through an angle i0
to compute the scattered Stokes vector, which is then referenced to the natural coordinate
system by a rotation through an angle i3. Both of these rotations are clockwise, so the
corresponding rotation matrices are R(−i0) and R(−i3).

The various rotation angles can be determined from the laws of spherical trigonometry.
Applying the laws of cosine and sine to the spherical triangle shown in Figure 9.23, i.e.,

cos I = cos θS1 cos θS2 + sin θS1 sin θS2 cos i (9.38)

and

sin i

sin I
=

sin iS1

sin θS1
=

sin iS2

sin θS2
, (9.39)

we have

cos i =
cos I − cos θS1 cos θS2

sin θS1 sin θS2
,

and the signs of the individual angles i, iS1, and iS2, are the same as the signs of the
opposite arcs I, θS1, and θS2, respectively. Using this, the rotation angles i0 through i3 are
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seen to be given by

cos i0 =
cos(π − θ)− cos Θ+ cos θ0

sin Θ+ sin θ0

cos i1 =
cos θ0 − cos Θ− cos θ

sin Θ− sin θ

cos i3 =
cos(θ0)− cos Θ+ cos(π − θ)

sin Θ+ sin(π − θ)
i2 = i3

with

Sign(i0) = Sign(i1) = Sign(i2) = Sign(i3) = Sign(∆φ).

Following the procedures in Appendix 1 to Chapter 2, the single-scattered Stokes vector
can be written

Ix(0, u, φ) = −ωxτx
4πu

[
R(+i1)Px(Θ−)

+Rf (θ0)R(+i2)Px(Θ+)

+R(−i3)Px(Θ+)R(−i0)Rf (π − θ)
]
I0,

where

I0 =




F0

0
0
0


 ,

and x = r or a.

Carrying out the matrix multiplication, we find that the Stokes vector components of
the radiance exiting the top of the atmosphere:
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I(u, φ) = −ωxτxF0

4πu

[
P11(Θ−)

+
(
ρ+(θ) + ρ+(θ0)

)
P11(Θ+)

+
(

cos(2i2)ρ−(θ) + cos(2i0)ρ−(θ0)
)
P12(Θ+)

]
,

Q(u, φ) = −ωxτxF0

4πu

[
cos(2i1)P12(Θ−)

+
(
ρ−(θ) + cos(2i3) cos(2i0)ρ−(θ0)

)
P11(Θ+)

+
(

cos(2i2)ρ+(θ) + cos(2i3)ρ+(θ0)
)
P12(Θ+)

− sin(2i3) sin(2i0)ρ−(θ0)P33(Θ+)
]
,

U(u, φ) = −ωxτxF0

4πu

[
sin(2i1)P12(Θ−)

− sin(2i3) cos(2i0)ρ−(θ0)P11(Θ+)

+
(

sin(2i2)ρ3(θ)− sin(2i3)ρ+(θ0)
)
P12(Θ+)

− cos(2i3) sin(2i0)ρ−(θ0)P33(Θ+)
]
,

V (u, φ) = −ωxτxF0

4πu

[
− sin(2i0)ρ−(θ0)P34(Θ+)

]
,

(9.40)

where,

cos(Θ±) = ∓ cos θ cos θ0 + sin θ sin θ0 cos ∆φ,

and the “x” on the elements of the phase matrix has been suppressed. Note that if polar-
ization is neglected, the associated equation for the radiance is

I(u, φ) = −ωxτxF0

4πu

[
P11(Θ−) +

(
ρ+(θ) + ρ+(θ0)

)
P11(Θ+)

]
,

so the neglect of polarization leads to an error in the radiance even in single scattering
when a Fresnel-reflecting lower boundary is present.

Recall from Chapter 1 that the elements of the Stokes vector can be written in the form

Q = IP cos 2χ

U = IP sin 2χ cos ∆

V = IP sin 2χ sin ∆,

where ∆ is the phase difference between E` and Er, tanχ = |Er|/|E`|, and IP =
√
Q2 + U2 + V 2,

the radiance of the polarized component. Thus, we can provide the state of polarization of
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the reflected radiance by specifying χ, ∆, and the degree of polarization

P =

√
Q2 + U2 + V 2

I2
,

where I is the sum of the radiances of the polarized and unpolarized components I = IP+IU .

Now we investigate the efficacy of the single-scattering solution for providing the po-
larization properties of the reflected radiation by comparing these quantities (P , χ, and
∆) with exact computations for a number of realistic atmospheres. The atmospheres will
exhibit Rayleigh scattering and aerosol scattering, with the aerosols described by either
the M70 or the M99 aerosol models. Figure 9.24 provides P12(Θ)/P11(Θ) for these three
components. This ratio is the degree of polarization P of light scattered from a sample of
the indicated component.15 Note the large polarization indicated for the M99 model near
the rainbow angle (Θ ≈ 138◦), where the aerosol scattering produces larger polarization
than molecular scattering.

First, consider a purely Rayleigh-scattering, i.e., an aerosol-free, atmosphere. Figure
9.25 provides the comparison of P and χ computed using single-scattering theory with
exact values for τr characteristic of earth’s atmosphere at 412 and 865 nm, the lower
and upper limits of the spectral region employed by many ocean color sensors. Clearly the
single-scattering theory provides an excellent estimate of χ over the entire range of possible
viewing angles and a reasonably accurate estimate of P for viewing angles up to ∼ 60◦. The
degree of polarization is always higher in the single-scattering computation – an indication
that multiple scattering tends to depolarize the polarization induced at each scattering.
The angle ∆ is not provided because it is identically zero for both the single-scattering and
the exact solutions, i.e., the radiance reflected from a pure Rayleigh-scattering atmosphere
is linearly polarized.16

In contrast to a pure Rayleigh-scattering atmosphere, we now consider a purely aerosol-
scattering atmosphere. Figure 9.26 provides examples of P and χ computed for the M70
and M99 aerosol models. Again, we see that single-scattering theory compares well with
exact computations as long as the viewing angle is less than about 60◦. As before, multiple
scattering tends to depolarize the first order radiance.

Figures 9.27 and 9.28 provide similar comparisons for more realistic atmospheres with
both Rayleigh and aerosol scattering present. Note that the Stokes vectors for the Rayleigh

15To verify this, compute P using Eqs. (9.40) with ρ+ = ρ− = 0.
16It is easy to verify that when P34(Θ) = 0, as in Rayleigh scattering, the V component of the Stokes

vector satisfies a radiative transfer equation that is independent of the other components. Since the incident
radiance from the Sun is unpolarized, no V component can ever be generated in a pure Rayleigh-scattering
atmosphere.
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and aerosol components are linearly additive in the single-scattering theory. These com-
parisons are similar to those above even though the total optical thickness is as high as
0.718 in the right panels of Figure 9.28.

Computations of ∆ have not been provided for Figures 9.26 through 9.28 because its
value is always close to zero, i.e., the polarization of radiation in the atmosphere is almost
linear, even in the presence of aerosols. For example, Figure 9.29 provides ∆ for the M70
aerosol model in the absence of Rayleigh scattering. The single-scattering computation of
∆ is poor near its maximum, but reasonably good elsewhere. The main message of this
figure is that ∆ ≈ 0 is a good approximation to the exact computations, i.e., in this case the
maximum value of ∆ was ∼ 7◦, so at the maximum cos ∆ ≈ 0.9926 and the U component
can specified by χ alone (with ∆ = 0) to within 1%.
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9.8 Figures

1 2
3

z = z0

z = 0

0ξ̂ ξ̂

ξ ′ˆ
zê

ξ ′′ˆ

Figure 9.1: Schematic of the three processes involving a single interaction in the
atmosphere that can contribute to LOther(0, ξ̂). The solar radiation enters from

the top (z = 0) and is propagating in a direction specified by ξ̂0. The radiance

exiting the top is propagating in the ξ̂ direction. The color of the lines on the
drawing change from black to red after the interaction. The boxed labels refer to
the three processes described in the text. Recalling that in Fresnel reflection the
surface normal bisects the angle between the incident and reflected propagation
vectors, the intermediate vectors ξ̂′ and ξ̂′′ are given by ξ̂′ = ξ̂ − 2(ξ̂ • êz)êz and

ξ̂′′ = ξ̂0 − 2(ξ̂0 • êz)êz, when the surface is flat. In addition, u = −u′ in process 2
and u′′ = −u0 in process 3. 
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zê
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Figure 9.2: Radiance from the water enters the bottom of the atmosphere at z = z0

from an arbitrary direction ξ̂′. A sensor detects the radiance leaving the top of the
atmosphere (z = 0) propagating in a particular direction ξ̂.
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Figure 9.3: Schematic of the processes contributing to the two terms in Eq. (9.12).
In the process on the left, radiance leaves the water propagating toward the sensor
(direction ξ̂). In the atmosphere it is scattered into an arbitrary direction ξ̂′′ 6= ξ̂
resulting in a loss of radiance along the path from the surface to the sensor. This
process represents the first term. On the right of the figure radiance exits the
water in an arbitrary direction ξ̂′ 6= ξ̂ and is scattered into ξ̂ resulting in a gain in
radiance at the sensor. This process is represented by the second term.

 
 
 
 
 
 
 
 
 

zê
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Figure 9.4: The first order process omitted from Eqs. (9.14) and (9.15). Radiance

exits the water propagating in the direction ξ̂′. It is then backscattered in a direc-
tion ξ̂′′ toward the surface, Fresnel-reflected into the direction ξ̂, and subsequently
propagates to the top of the atmosphere. When the water surface is flat, the law
of reflection requires that ξ̂′′ = ξ̂ − 2(ξ̂ • êz)êz.
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zê

ξ̂

ξ ′ˆ

• •

ξ ′ˆ

ξ̂

•

ξ ′ˆ

ξ̂  

 

z = z0

 
 z = 0  
 

Figure 9.5: Processes involved in the integral in Eqs. (9.28). Radiance propagating

in various directions ξ̂′ is scattered into a particular direction ξ̂. The curve on the
figure represents a polar plot of a scattering phase function, as might for example
be characteristic of aerosols, centered on the scattering location (the black dot).

As ξ̂′ sweeps over the upward hemisphere (u′ < 0), the integral covers a large part
of the “forward lobe” of the phase function.
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Figure 9.6: Processes involved in the integral in Eqs. (9.29). Radiance propagating

in various directions ξ̂′ is scattered into direction ξ̂′′ that is appropriate for Fresnel-
reflection from the surface into a particular direction ξ̂. (Note, ξ̂ and ξ̂′′ are fixed
directions for a flat surface.) The curve on the figure represents a polar plot of a

scattering phase function. As ξ̂′ sweeps over the upward hemisphere (u′ < 0), the
integral covers a large part of the “backward lobe” of the phase function.
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Figure 9.7: Comparison between ρr at 412 nm in the perpendicular plane computed
in the single-scattering approximation (symbols) and the full scalar radiative trans-
fer theory (curves). The angle the radiance exits the top of the atmosphere is θex,
where θex = π − θ = cos−1(|u|). The solar zenith angle θ0 = 20◦ (filed circles),
40◦(filled squares), and 60◦(filled triangles).
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Figure 9.8: Error in ρr at 412 nm in the perpendicular plane (in %) computed
using the single-scattering approximation. Positive error indicates that the single-
scattering ρr is too high. Symbols have the same meaning as in Figure 9.7: θ0 = 20◦

(filed circles); 40◦(filled squares); and 60◦(filled triangles).
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Figure 9.9: Comparison between ρr + ρa at 412 nm in the perpendicular plane
computed in the single-scattering approximation (symbols) and the full scalar ra-
diative transfer theory (curves) for τ0a = 0.2. For this aerosol model (M70), ω0a

at 412 nm is 0.9853. Symbols have the same meaning as in Figure 9.7: θ0 = 20◦

(filed circles); 40◦(filled squares); and 60◦(filled triangles).
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Figure 9.10: Error in ρr+ρa (in %) at 412 nm in the perpendicular plane computed
using the single-scattering approximation for τ0a = 0.2. Positive error indicates
that the single-scattering ρr + ρa is too high. Symbols have the same meaning as
in Figure 9.7: θ0 = 20◦ (filed circles); 40◦(filled squares); and 60◦(filled triangles).
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Figure 9.11: Computation of ρa at 412 nm in the perpendicular plane computed in
the single-scattering approximation for τ0a = 0.2. Symbols have the same mean-
ing as in Figure 9.7: θ0 = 20◦ (filed circles); 40◦(filled squares); and 60◦(filled
triangles).
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Figure 9.12: Error in the quantity
[
(ρr + ρa)− ρr

]
at 412 nm in the perpendicular

plane computed using the single-scattering approximation for τ0a = 0.2. Positive
error indicates that the single-scattering

[
(ρr +ρa)−ρr

]
is too high. Symbols have

the same meaning as in Figure 9.7: θ0 = 20◦ (filed circles); 40◦(filled squares); and
60◦(filled triangles).
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Figure 9.13: Absolute error in the quantity
[
(ρr + ρa) − ρr

]
at 412 nm in the

perpendicular plane computed using the single-scattering approximation for τ0a =
0.2. Positive error indicates that the single-scattering

[
(ρr + ρa)− ρr

]
is too high.

Symbols have the same meaning as in Figure 9.7: θ0 = 20◦ (filed circles); 40◦(filled
squares); and 60◦(filled triangles).
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Figure 9.14: Comparison between the exact (filled squares) and the single-

scattering (filled triangles) computations of t∗r(τ0r → 0, ξ̂) at 412 nm. For compar-
ison, the dotted line provides the direct transmittance Tr.
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Figure 9.15: p−−a as a function of the exiting angle for the M70 aerosol model.
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Figure 9.16: Comparison between the exact (filled squares) and the single-

scattering (filled triangles) computations of t∗(τ0 → 0, ξ̂) at 412 nm with τ0a = 0.2.
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Figure 9.17: Comparison between t∗a at 412 nm with τ0a = 0.2 computed using the
single-scattering formulas (filled triangles) and its exact counterpart t∗/t∗r (filled
squares).
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Figure 9.18: Influence of the aerosol optical thickness on the single-scattering com-
putation of t∗a. Filled squares — τ0a = 0.1, filled triangles — τ0a = 0.2, filled circles
— τ0a = 0.3.
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Figure 9.19: Left panel is a schematic showing the processes involved in the first
integral in Eq. (9.36). Right panel shows the processes involved in the function

p−−(u0) defined in Eq. (9.28). The two integrals are identical because P (ξ̂0 →
ξ̂) = P (−ξ̂ → −ξ̂0).
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Figure 9.20: Normalized water-leaving reflectance at 443, 520, 550, and 670 nm, as
a function of pigment concentration. Redrawn from figures in Gordon et al. [1988].
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Figure 9.21: The directions ξ̂0 and ξ̂ projected on the unit sphere. The re-
lationships between the unit vectors and the angles are ξ̂0 = êx sin θ0 cosφ0 +
êy sin θ0 sinφ0 + êz cos θ0 and ξ̂ = êx sin θ cosφ+ êy sin θ sinφ+ êz cos θ.
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Figure 9.22: View of the unit sphere in Figure 9.21 looking toward the NAZ plane
(NAZ plane is viewed “on edge”). This shows the scattering angles Θ± and the
various rotation angles (the i’s) required for the three processes. The angle ∆φ in
this figure is the angle φ − φ0 in Figure 9.21. Note that all the lines are arcs of
great circles on the unit sphere.
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Figure 9.23: Spherical triangle used in the explanation of Eqs. (9.38) and (9.39).
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Figure 9.24: The degree of polarization of scattering of a beam of unpolarized light
from aerosols described by the M70 and M99 aerosol models. Raleigh scattering
(multiplied by −1) is included for comparison.
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Figure 9.25: Comparison of P and χ as a function of the viewing angle (π− θ) of
light scattered from a pure Rayleigh-scattering atmosphere using single-scattering
theory (solid curves) with exact values (discrete points). The values of optical
depth, solar zenith angle and relative azimuth are provided at the top of each
panel. Values of τr of 0.318 and 0.015 correspond to wavelengths of 412 and 865
nm, respectively.
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Figure 9.26: P and χ computed using single-scattering theory (solid curves) as a
function of the viewing angle (π − θ) for light scattered from an atmosphere com-
posed purely of aerosols scattering according to the M70 (left panels) or M99 (right
panels) aerosol models. Exact values (discrete points) are provided for comparison.
The values of the aerosol optical depth, solar zenith angle and relative azimuth are
provided at the top of each panel.
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Figure 9.27: P and χ computed using single-scattering theory (solid curves) as a
function of the viewing angle (π − θ) for light scattered from earth’s atmosphere
at 865 nm if the aerosols scatter according to the M70 (left panels) or M99 (right
panels) aerosol models. Exact values (discrete points) are provided for comparison.
The values of the aerosol optical depth, solar zenith angle and relative azimuth are
provided at the top of each panel.
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Figure 9.28: P and χ computed using single-scattering theory (solid curves) as a
function of the viewing angle (π − θ) for light scattered from earth’s atmosphere
at 412 nm if the aerosols scatter according to the M99 aerosol model computed
using single-scattering theory (solid curves). Left panel is for τa = 0.2 and right
panel for τa = 0.4. Exact values (discrete points) are provided for comparison.
The values of the solar zenith angle and relative azimuth are provided at the top
of each panel.
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Figure 9.29: The angle ∆ for the indicated aerosol model. If ∆ = 0, the radiation
is linearly polarized, if ∆ = 90◦ and χ = 45◦, the radiation is circularly polarized.
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Chapter 10

Retrieval of Water-Leaving
Radiance — Atmospheric
Correction

10.1 Introduction

A principal objective of ocean color imagery is to study primary production, and its spatial
and temporal variation, to better understand the ocean’s role in the global carbon cycle.
A required component in the estimation of primary productivity is the concentration of
Chlorophyll a. Estimation of the concentration of Chlorophyll a from ocean color imagery
requires the normalized water-leaving reflectance.1 An example of how this is accomplished
is provided by the CZCS. Figure 10.1 (left panel) displays a data set relating the pigment
concentration (CP ) to [ρw(443)]N and [ρw(550)]N . The data can be well represented by

log10CP = −0.04− 2.26 log10R+ 3.03(log10R)2 − 2.80(log10R)3, (10.1)

with R = [ρw(443)]N/[ρw(550)]N , i.e., the pigment concentration can be derived directly
from the reflectance ratios.2 Analysis suggests that, given error-free reflectances, the pig-
ment concentration can be derived with an uncertainty of ∼ ±20%. Clearly, the normalized
water-leaving reflectance plays a central role in the application of ocean color imagery.

1Recall from Chapter 9 that the normalized water-leaving reflectance [ρw]N is related to the normalized
water-leaving radiance [Lw]N by [ρw]N = π[Lw]N/F̄0, and related to the actual water-leaving reflectance
ρw by ρw = tE [ρw]N , where tE is the solar irradiance transmittance of the atmosphere.

2Other examples provided in Section 6.7.

705
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In the preceding chapter, we learned that the water-leaving reflectance is at most 20%
of the radiance received by a remote sensor in the blue part of the visible spectrum. Thus,
we are faced with retrieval of this “signal” from that resulting from other processes such as
scattering in the atmosphere by molecules and aerosols, absorption by atmospheric gases,
and reflection of Sun and sky light from the water surface and from whitecaps. In principle
such an effort is straightforward: use the known properties of the atmosphere and surface
to estimate the effect of these processes and subtract them from the measured reflectance.
Unfortunately, however, these properties are not constant in time: the molecular scattering
in the atmosphere varies in proportion to the atmospheric pressure, causing variations in the
Rayleigh scattering component of the signal; the aerosol concentration in the atmosphere
undergoes significant variation in space and time; the absorption of atmospheric gases, e.g.,
Ozone, varies significantly; and of course the contribution of Sun glitter and whitecaps
depends on the wind speed (and the wind direction). Modern remote sensing systems
rely on the availability of data concerning surface atmospheric pressure, wind speed and
direction, Ozone concentration, etc., for processing remotely-sensed reflectance. Such data
are usually referred to as ancillary data, and are provided by sophisticated numerical
models of atmospheric circulation and atmospheric properties. However, the most variable
of these components is the aerosol concentration and optical properties, and they cannot
be adequately estimated by modeling or by the sparse data sets provided by global aerosol
measurement efforts such as AERONET. For example, a typical remotely sensed image
may contain 106 individual pixels, each of which is of the order of 1 km × 1 km in area.
The aerosol contribution can vary significantly even over a single image of this size and such
variation cannot be assessed by surface measurements. Thus, it is a significant challenge
to assess the aerosol effect on the measured reflectance. Such an assessment must be made
utilizing the sensor measurements themselves. This chapter concerns how this assessment
can be carried out and, after correcting for whitecap contamination and gaseous absorption,
the water-leaving radiance is retrieved.

We start by reviewing the remote sensing problem, then discuss an algorithm for deter-
mination of the aerosol effect based on the single-scattering approximation (SSA). As we
learned in the last chapter the SSA provides a solution to the radiative transfer equation
for the atmosphere, with an error of only a few %. The SSA algorithm is pedagogically
simple and, as we shall see, actually works quite well, e.g., in the case of the CZCS. In
addition, it is well suited to the spectral band set of more modern sensors: sensors with
spectral bands in the near infrared (NIR), i.e., λ > 700 nm, where the water-leaving radi-
ance is negligible in most waters, so most of the radiance in the NIR is due to atmospheric
effects. More importantly, it provides a framework for an algorithm utilizing full multiple-
scattering solutions to the radiative transfer equation. Following discussion of the SSA
algorithm, the extension to multiple scattering is developed. Finally, we consider in some
detail the question of absorbing aerosols, and an algorithm capable of dealing with them.
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10.2 Review of the Remote Sensing Problem

In Chapter 9 we divided the radiance Lt(λi) in a spectral band centered at a wavelength
λi, into two components: LOther(λi); and the water-leaving radiance transmitted from
the surface to the top of the atmosphere (TOA), tLw(λi). We included only atmospheric
scattering in LOther(λi), but now we include all of the processes that contribute to Lt:

Lt(λi) = Lpath(λi) + tg(λi)Lg(λi) + twc(λi)Lwc(λi) + tw(λi)Lw(λi), (10.2)

where Lpath(λi), is the radiance generated along the optical “path” by scattering in the
atmosphere and by specular reflection of atmospherically-scattered light (skylight) from
the sea surface (called LOther(λi) in Chapter 9); Lg(λi) is the contribution arising from
specular reflection of direct sunlight from the sea surface (Sun glitter); and Lwc and Lw
(the desired quantity) are area-weighted averages of the radiance leaving whitecap-covered
and whitecap-free areas of the surface, respectively. The quantities tg, twc and tw are the
appropriate transmittances for glitter, whitecaps and water-leaving radiance respectively.3

Converting to reflectance, Eq. (10.2) becomes

ρt(λi) = ρpath(λi) + tg(λi)ρg(λi) + twc(λi)ρwc(λi) + tw(λi)ρw(λi), (10.3)

Thus, we must develop an algorithm that provides accurate estimates of ρpath(λi),
tg(λi)ρg(λi), twc(λi)ρwc(λi), and tw(λi), to retrieve ρw(λi) from ρt(λi). Near the Sun’s
glitter pattern tg(λi)ρg(λi) is so large that the imagery is virtually useless and is usually
discarded. Away from the glitter pattern tg(λi)ρg(λi) becomes negligibly small, and the
largest, and most difficult to estimate, of the remaining terms is ρpath(λi). This difficulty
is due to the aerosol component by virtue of its highly variable concentration and optical
properties. So, we will concentrate on this term first, and consider the rest later.

Formally, ρpath can be decomposed into several components:

ρpath = ρr(λ) + ρa(λ) + ρra(λ) (10.4)

3For the water-leaving radiance, the appropriate tw is diffuse transmittance t developed in Chapter 9,
but refined here in Section 10.4.4. Assuming whitecaps are Lambertian reflectors, twc = t∗ of Chapter 9.
In the case of the direct Sun glitter, when the wind speed is low the angular distribution of the radiance is
approximately a Dirac delta function and tg is close to the direct transmittance:

tg ≈ T = exp

[
− τ

|u|

]
,

where τ = τr + τa + · · · is the total optical thickness of the atmosphere. In contrast, at high wind speed,
Lg is more diffuse and the appropriate glitter transmittance is somewhere between T and t∗. Not knowing
the appropriate transmittance for the glitter (although it could be estimated using the Cox-Munk model
given the surface wind speed) is unimportant because the glitter radiance is so high that viewing directions
with significant glitter must be discarded anyway.
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where ρr is the reflectance resulting from multiple scattering by air molecules (Rayleigh
scattering) in the absence of aerosols, and ρa is the reflectance resulting from multiple
scattering by aerosols in the absence of the air. The term ρra accounts for the interaction
between Rayleigh and aerosol scattering, e.g., photons first scattered by the air then scat-
tered by aerosols, or photons first scattered by aerosols then air, etc. This term is zero
in the SSA, in which photons are only scattered once. It can be ignored as long as the
amount of multiple scattering is small, i.e., at small Rayleigh and aerosol optical thick-
nesses. Although it may seem awkward when multiple scattering is important, the above
separation is still useful because, given the surface atmospheric pressure (to determine the
value of τr) and the surface wind speed (to define the roughness of the sea surface), ρr
can be computed accurately, even accounting for polarization by scattering and by surface
reflection.

To proceed we need an understanding of the basic relationship between the measured
reflectance ρt and the desired ρw. In Chapter 7 we found that ρw = tE [ρw]N , where tE is
the irradiance transmittance of the atmosphere and [ρw]N is the normalized water-leaving
reflectance. Table 10.1 provides typical values for ρt and [ρw]N . It is developed for a most-

Table 10.1: Typical values of the reflectance (ρt) measured at the sensor and the
normalized water-leaving reflectance [ρw]N for open ocean waters with low pigment
concentrations. The values of ρt are for a solar zenith angle of 60◦ and viewing
near the edge of the scan for a typical ocean color sensor.

λ ρt [ρw]N
(nm) (sr−1) (sr−1)

412 0.34 0.040
443 0.29 0.038
488 0.23 0.024
531 0.19 0.0090
551 0.154 0.0040
670 0.105 0.0004
681 0.105 0.0003
748 0.081 –
869 0.069 –

challenging geometric viewing scenario: large solar zenith angle and large viewing angle
(π − θv ≈ 45◦ and φv − φ0 = 90◦).4 This represents viewing near the edge of the scan
for a typical scanning radiometer. The geometry is most challenging because of the long
path of both Sun light and backscattered light through the atmosphere. The wavelengths

4It is awkward to keep working with the viewing angle θv measured with respect to the downward normal.
Thus, we will often use the supplement of this angle θ

(s)
v = π − θv, i.e., the angle of propagation of the

viewed radiance measured with respect to the upward normal.
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provided are those for MODIS. Clearly, the water “signal” is significant in the blue and
negligible in the NIR. If one desires to retrieve information concerning the atmosphere by
itself, the data in Table 10.1 suggest that this can be effected in the red and NIR. Thus, in
our development of a ρw retrieval algorithm, we will assume that the sensor has two NIR
spectral bands λs and λl with λs < λl for which ρw = 0 (the subscripts “s” and “l” stand
for short and long, respectively). These will provide the needed information concerning
the state of the atmosphere. The problem we are required to solve can then be stated in a
simple manner: in the absence of whitecaps and sun glitter, given the satellite measurement
of the reflectance of the ocean-atmosphere system in the NIR, predict the reflectance ρt that
would be observed in the visible if ρw were zero. The difference between the predicted and
the measured reflectance of the ocean-atmosphere system is the water-leaving reflectance
transmitted to the top of the atmosphere, twρw.

Before continuing with the development of the algorithm for effecting the retrieval of ρw,
it is important to assess the accuracy required for the procedure described in the previous
paragraph to be successful. Lets assume that we will use the “blue-green” algorithm Eq.
(10.1) from Figure 10.1 (left panel) to estimate the pigment concentration (CP ). More
modern algorithms actually do not use such a single ratio as R = [ρw(443)]N/[ρw(550)]N to
estimate CP throughout the entire range of pigment concentrations because, as we shall see
below, [ρw(443)]N becomes too small at moderate values of CP (Figure 10.1) to be retrieved
with sufficient accuracy. Most algorithms now use 3 or 4 bands, e.g., 443, 490, 520, and 555
nm, wherein the ratio [ρw(443)]N/[ρw(555)]N is used if [ρw(443)]N > [ρw(490)]N , which is
true for low CP . When CP is large enough that [ρw(443)]N < [ρw(490)]N , then the ratio
[ρw(490)]N/[ρw(555)]N is used as long as [ρw(490)]N > [ρw(520)]N , etc. Nevertheless, to
assess the required accuracy, Eq. (10.1) is sufficient. Using this we find the relative error
in CP is given by

∆CP
CP

=
[
− 2.26 + 2× 3.08 log10R− 3× 2.8(log10R)2

]∆R
R
,

with
∆R

R
=

∆[ρw(443)]N
[ρw(443)]N

− ∆[ρw(550)]N
[ρw(550)]N

.

Here we have only one equation, but 2 unknowns: ∆[ρw(443)]N and ∆[ρw(550)]N . That is,
a given relative error in CP depends on the relative errors at two wavelengths. Because of
the extrapolation procedure from the NIR to the visible that will be used in the algorithm to
estimate the aerosol contribution, we can expect the errors ∆[ρw(443)]N and ∆[ρw(550)]N
to be correlated: in fact usually they will have the same sign. We will see in the next
section that the errors are approximately related in the following manner:

∆[ρw(443)]N ≈ γ∆[ρw(550)]N ,
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where γ ≈ 1/3. This provides the needed second equation yielding

∆CP
CP

≈
[
− 2.26 + 2× 3.08 log10R− 3× 2.8(log10R)2

][
1− γR

]
× ∆[ρw(443)]N

[ρw(443)]N
.

From the data in Figure 10.1 (right panel), we can relate [ρw(443)]N directly to CP through

[ρw(443)]N ≈ 0.0075C−0.48
P ,

so
∆CP
CP

≈
{(

C+0.48
P

0.0075

)
[
− 2.26 + 2× 3.08 log10R

− 3× 2.8(log10R)2
][

1− γR
]
}
×∆[ρw(443)]N .

(10.5)

To use Eq. (10.5) we need to invert Eq. (10.1), which is easy to accomplish (numerically).
Figure 10.2 provides the factor in the curly brackets (“Factor”) in Eq. (10.5) as a function
of CP . Note that for a fixed ∆[ρw(443)]N the magnitude of the error grows almost linearly
with increasing CP . Now, [ρw(443)]N becomes smaller than [ρw(490)]N for C ≈ 0.6 mg/m3,
so this algorithm would typically be used only up to this concentration. That means that
the factor in the curly brackets is at most ∼ −110. So if we want the error in atmospheric
correction to be roughly equivalent to the error in the bio-optical algorithm due to natural
variability, i.e., ∼ 20%, then we require |∆[ρw(443)]N | <∼ 0.002. In that case, in a root-
mean-square sense, the total error – natural plus atmospheric correction – would be at
most ∼ 30%. Thus, we take the goal of the water-leaving radiance retrieval/atmospheric
correction algorithm to be |∆[ρw(443)]N | <∼ 0.002. In clear ocean water (low CP ) this
implies that the relative error in [ρw(443)]N in such cases should be no more than 5%.

10.3 A Single-Scattering Solution

We begin by approximating ρpath(λi) in the the limit that the optical thickness of the
atmosphere is� 1, i.e., the single-scattering limit. Reflectances in this limit were developed
in Chapter 9. The path reflectance is

ρpath(λi) = ρr(λi) + ρas(λi), (10.6)

where the aerosol contribution ρas is provided by5

ρas(λ) =
ωa(λ)τa(λ)pa(θv, φv; θ0, φ0;λ)

4 cos θv cos θ0
, (10.7)

5We have added the subscript “s” to the subscript “a” (for aerosol) to emphasize that this is single
scattering for the aerosol. Note that in the SSA the Rayleigh scattering contribution ρr is given by the
same formula, but with the subscripts “a” replaced by “r.”
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pa(θv, φv; θ0, φ0;λ) = Pa(Θ−, λ) +
(
rf (θ(s)

v ) + rf (θ0)
)
Pa(Θ+, λ),

cos Θ± = ∓ cos θ0 cos θv + sin θ0 sin θv cos(φv − φ0),

where Pa(Θ, λ) is the aerosol scattering phase function for a scattering angle Θ, ωa is the
aerosol single scattering albedo, and rf (α) is the Fresnel reflectance of the interface for

an incident angle α, or in the case of rf (θ
(s)
v ) for an incident angle of θ

(s)
v = π − θv. As

usual, the angles represent the spherical coordinates of the propagation directions of the
solar beam (ξ̂0) and of the light being viewed (ξ̂v), i.e., the remote radiometer is aimed
in the direction −ξ̂v. Note that except for the angles and the Fresnel reflectances, all of
the quantities depend on wavelength. We have provided examples of the accuracy of the
single-scattering approximation in Chapter 9. In particular, the reader should examine the
figures comparing the exact value of ρpath−ρr = (ρr +ρa+ρra)−ρr with ρas (Figures 9.11
through 9.13). These show that, at least at the shorter wavelengths in the visible, e.g.,
412 nm, accurate estimation of ρpath(λi) requires the complete solution to the radiative
transfer equation, i.e., the inclusion of multiple scattering. Still, the SSA can serve as a
roadmap to a more accurate approach.

Following the approach described above, we assume we are given the path reflectance at
two bands in the NIR: λs and λl, where for SeaWiFS λs = 765 nm and λl = 865 nm, and
for MODIS λs = 748 nm and λl = 869 nm. Given estimates of the surface atmospheric
pressure and the wind speed, ρr(λ) can be computed precisely and therefore ρas(λs) and
ρas(λl) can be determined from the measurements of ρpath at λs and λl.

6 The parameter
ε(λs, λl), defined by

ε(λs, λl) ,
ρas(λs)

ρas(λl)
=
ωa(λs)τa(λs)pa(θv, φv; θ0, φ0;λs)

ωa(λl)τa(λl)pa(θv, φv; θ0, φ0;λl)
, (10.8)

can then be estimated. Assume for the moment that we can determine the value of
ε(λi, λl) for a spectral band at λi from ε(λs, λl), e.g., through extrapolation, then ρas(λi) =
ε(λi, λl)ρas(λl), and

tw(λi)ρw(λi) = ρt(λi)− ρr(λi)− ε(λi, λl)ρas(λl)
= ρt(λi)− ρr(λi)− ε(λi, λl)

[
ρt(λl)− ρr(λl)

]
.

This shows that a key element to finding ρw(λi) is the accurate extrapolation of ε(λi, λl)
from ε(λs, λl).

7

6Since we are ignoring Sun glitter, this assumes that twc(λi)ρwc(λi) has also been provided.
7It is important to note that pa in the definition of ε(λs, λl) is not Pa(Θ−) as has implicitly assumed by

some authors, i.e., it involves both forward, Pa(Θ+), and backward, Pa(Θ−), scattering. Although Pa(Θ−)
is dominant, because Pa(Θ) is strongly peaked in near-forward directions (Chapter 4) the surface-reflected
term Pa(Θ+) can make a significant contribution to ρas(λ), i.e., as much as 30% in some geometries.
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10.3.1 Application to the CZCS

The CZCS was the first ocean color scanner in orbit. It had spectral bands at 443, 520,
550, and 670 nm. The earliest atmospheric correction algorithm for CZCS was based
on single scattering. Because were no NIR bands on CZCS,8 the algorithm could not
be operated as described in the previous section. Table 10.1 shows that ρw(670) can
generally be taken to be zero if the pigment concentration (CP ) is sufficiently low, therefore
the single scattering algorithm was typically operated with λl = 670 nm, and it was
assumed ρw(λl) = 0. On CZCS, there was no shorter wavelength (λs) for which ρw = 0;
however for CP <∼ 0.25 mg/m3, Figure 9.20 suggests that [ρw(550)]N is approximately a
known constant, so t∗ρw(550) can be estimated and subtracted from ρt(550) − ρr(550) to
yield ρas(550).9 This can be used along with ρas(670) to estimate ε(550, 670) for “clear
water” regions in a scene, i.e., regions for which CP <∼ 0.25 mg/m3, providing a basis for
extrapolation to 520 and 443 nm by assuming the ε varies in a known manner with λ.
Then it was further assumed that the resulting ε(550, 670) was valid for the entire image,
so retrieval of [ρw(λi)]N at 443, 520, and 550 could be effected for the entire image. Figure
10.3 provides an example of atmospheric correction of the CZCS blue and green bands in
the Middle Atlantic Bight. Here, ε(λ, λl) was taken to be proportional to (λl/λ)n, where
n was determined from ε(550, 670) in the “clear water” region. Note that the intense
haze layer seen crossing the diagonal in the images of Lt is absent from the images of Lw,
revealing rich underlying horizontal structure in water-leaving radiance. Although, there
are difficulties applying this procedure routinely, e.g., (1) the image of interest may contain
no “clear water,” (2) the ε’s may vary over the image because of variations in aerosol type,
or (3) CP may not be small enough to take ρw = 0 at 670 nm, Figure 10.3 does indicate
that the single scattering algorithm shows considerable promise.

10.3.2 Application to MODIS/SeaWIFS

Since the key to application of the single scattering algorithm to the second-generation
sensors, which do have spectral bands in the NIR, is the extrapolation from ε(λs, λl) to
ε(λi, λl), it is important to try to understand the expected spectral behavior of ε(λi, λl),
i.e., the spectral behavior of ρas, to be able to make a valid extrapolation. We will try
to do this in two ways: (1) by examining actual imagery for which [ρw]N is measured
contemporaneously throughout the spectrum, so ρa(λ), the multiple scattering analog to
ρas, i.e., ρt− ρr − twρw, can be determined, and (2) to examine the behavior of ε(λi, λl) as

8The CZCS did have a spectral band centered at 750 nm having a spectral width of 100 nm. However,
it was useless for atmospheric correction because of its low radiometric sensitivity compared to the visible
bands.

9Since tw is unknown at this point, we replace it with t∗ (actually, t∗r).
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predicted from realistic aerosol models.

10.3.2.1 Spectral Behavior of ρa from SeaWiFS Data

We first look at the behavior of ρa(λ) as revealed by data taken by the SeaWiFS sensor
coincident with surface measurements of ρw. These are provided in Figure 10.4. They
were obtained in the clear waters (low Chlorophyll) in the vicinity of the Hawaiian Islands.
These data were taken on eight different days (eight separate satellite overpasses) with
the ship-borne measurement coincident with the satellite measurement. In Figure 10.4
the measurements (ρt and ρw) are in the top panels with some derived quantities in the
bottom panels. The measurement of ρw shows a spectrum that is typical of clear ocean
water (Table 10.1), i.e, high values in the blue progressing rapidly to negligible values in
the red and NIR. Clearly, the assumption that ρw ≈ 0 in the red and NIR is valid for this
region. The lower left panel is the residual reflectance after subtraction of the Rayleigh
component of the total, i.e., ρt − ρr, with ρr computed using a full multiple scattering
code, but using the standard atmospheric pressure rather than the actual. Subtracting the
water-leaving reflectance (modified by the Rayleigh component of the diffuse transmittance
t∗r) then yields the aerosol component:

ρa = ρt − ρr − t∗rρw,

shown in the lower right panel. The diffuse transmittance t∗r was use as an approximation,
as both the aerosol properties and the angular distribution of ρw are unknown. We note that
the aerosol component is weakly dependent on wavelength. As we shall see below, a weak
dependence of the aerosol reflectance on wavelength, i.e., ε(λi, λl) ≈ 1, is characteristic
of a marine aerosol at high relative humidity. Note that, even in this area remote from
large land masses and where the aerosol is mostly generated by breaking waves, the aerosol
reflectance in the NIR, which is proportional to the aerosol concentration, still varies by a
factor of four.

10.3.2.1 Spectral Behavior of ρa from Aerosol Models

We now try to understand what aerosol properties influence the behavior of ε(λi, λl) by
examining what is revealed about this quantity by several of the aerosol models described
in detail in Chapter 4. We begin with the Shettle and Fenn [1979] models. Sample results
for ε(λi, λl), where λl is taken to be 865 nm (SeaWiFS), are presented in Figure 10.5 (left
panel). Note that ε is a function of the Sun-viewing geometry, so these results only apply

to the specific geometry indicated (θ
(s)
v ≈ 1◦ and θ0 = 60◦). These computations show

a variation of ε with aerosol model. Most of the spectral variation is due to the spectral
variation of the aerosol optical thickness, τa (Eq. (10.8)), with the rest due to the weak (but
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significant) spectral variation of the phase function. Note that if ε(λi, λl) ∝ exp
[
k(λl−λi)

]
,

where k is a constant, then ε(λi, λl) would yield a straight line in plotted on Figure 10.5.
This shows that over the spectral range considered (about a factor of 2 in wavelength)
ε(λi, λl) is nearly an exponential function of λl−λi, for the Shettle and Fenn [1979] models.
Similar computations are presented for Haze C models (Chapter 4) in the right panel of
Figure 10.5. Twelve separate Haze C models are shown: ν = 2, 3, and 4, with the refractive
index of the particles taken to be that of liquid water (labeled “H2O”), close to that of the
dust component of the Tropospheric model (1.53− 0.008i, labeled “dust”), non-absorbing
minerals (1.50 − 0i, labeled “1.50”), and absorbing minerals (labeled “min.”) as might
be from windblown desert aerosols. Only for the absorbing minerals does the refractive
index depend significantly on wavelength. We note that with the exception of the minerals,
the exponential variation of ε with wavelength is clearly evident, and almost independent
of the refractive index. An important observation from Figure 10.5 (right panel) is that,
in general, ε(765, 865) depends mostly on the size distribution, and cannot be utilized to
discriminate with certainty between weakly- and strongly-absorbing aerosols with similar
size distributions.

10.3.2.2 Test of SSA Algorithm with Synthetic Data

Let’s now examine the accuracy of the single-scattering algorithm for a sensor with two NIR
bands, assuming an exponential spectral variation of ε(λi, λl). We simulated atmospheres
using an array of aerosol models: (1) the aerosol optical properties were taken from the
Tropospheric, Coastal, and Maritime models at RH = 80%, denoted, respectively, as T80,
C80, and M80; (2) the Shettle and Fenn [1979] Urban model at RH = 80% (U80) was used
as an example of an aerosol with strong absorption and nearly wavelength-independent ab-
sorption index, e.g., a carbonaceous aerosol that might be characteristic of urban pollution
(at 865 nm ωa = 0.9934, 0.9884, and 0.9528, respectively, for the Maritime, Coastal, and
Tropospheric models at 80% RH, but only 0.7481 for the Urban model with RH = 80%.);
and (3) the twelve Haze C models described in the previous section.

Pseudo data values of ρt(λ) were generated using a two-layer “exact” scalar radiative
transfer code in which the aerosol was all in the lower layer and the molecular (Rayleigh)
scattering all in the upper layer, a distribution of aerosols similar to that typically found
over the open ocean, where most of the aerosol is confined to the marine boundary layer.
The aerosol had the properties of each of the 16 individual models described above. The
water surface was flat and all photons that penetrated the interface were assumed to be
absorbed in the ocean, so ρw(λ) = 0 in the pseudo data.

There were seven Sun-viewing geometries: θ0 = 20◦, 40◦, and 60◦, with θ
(s)
v ≈ 1◦ and
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φv −φ0 = 90◦, i.e., viewing near nadir, the sensor’s scan center; and θ0 = 0◦, 20◦, 40◦, and

60◦, with θ
(s)
v ≈ 45◦ and φv − φ0 = 90◦. The set with θ

(s)
v ≈ 45◦ would represent viewing

near the scan edge for most ocean color scanners. The simulations were performed for
λ = 443, 555, 765, and 865 nm, which enables estimation of the accuracy of the algorithm
in retrieving ρw in the blue and green, and the concomitant accuracy in the retrieved
pigment concentration. Two aerosol optical thickness were used at 865 nm: τa(865) = 0.1
and 0.2, a typical value and high value for the open ocean, respectively. The τa(λi) at
the other three wavelengths were determined from the spectral variation of the extinction
coefficient for the individual model. Computations of these spectral variations are provided
in Figure 10.6.

Because the actual ρw(λi) was taken to be zero in the pseudo data the error in atmo-
spheric correction, ∆(tρw), is equal to the error in the predicted path radiance. This error
is10

∆
(
tρw(λi)

)
= ρt(λi)− ρpath(λi) = ρt(λi)− ρr(λi)− ε(e)(λi, λl)ρas(λl)

= ρt(λi)− ρr(λi)− ε(e)(λi, λl)
(
ρt(λl)− ρr(λl)

)
,

(10.9)
where ε(e)(λi, λl) is the estimated value of ε(λi, λl). If we assume an exponential variation
of ε(λi, λl) with λi, this estimate is

ε(e)(λi, λl) , exp[k(λl − λi)] = exp

[(
λl − λi
λl − λs

)
loge

(
ρt(λs)− ρr(λs)
ρt(λl)− ρr(λl)

)]
.

The Rayleigh reflectance ρr(λi) was computed using the same radiative transfer code and
geometry, but without aerosol. Figure 10.7 provides the error in the retrieved normal-
ized water-leaving reflectance at 443 nm for each geometry and value of τa(865). Since
tρw = ttE [ρw]N , the error in the normalized water-leaving reflectance was derived from

∆
(
tρw(443)

)
assuming that t(443) = t∗r(443) and tE(443) = t∗r(443) (see Footnote 20).

For non-absorbing aerosols (Figure 10.7, open symbols), the performance of this simple
algorithm at 443 nm is excellent, with only a few cases falling outside the desired ±0.002
error. In some cases, e.g., ν = 4 for which Figure 10.6 shows that τa(443) ≈ 0.35 and 0.70
for τa(865) = 0.1 and 0.2, respectively, even with high values of τa(443) the algorithm works
well in some geometries in the absence absorption. The large negative errors for ν = 4
occur at the scan edge with θ0 = 60◦, i.e., the geometry with the most multiple scattering.
When the aerosols are absorbing the errors are mostly negative and are significantly larger
for τa(865) = 0.2 than 0.1. There are two sources of error for absorbing aerosols: (1)

10Henceforth, we will indicate the diffuse transmittance tw by t (without the subscript), unless it would
cause confusion.
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the exponential extrapolation of ε(765, 865) to ε(443, 865) would lead to an overestimation
of ε(443, 865) (Figure 10.5), which overestimates ρas(443), yielding a negative retrieval
error; (2) even weak absorption as in the T80 model for which the extrapolation does work
well (Figure 10.5, left panel), the absorption itself leads to significant error in the single-
scattering approximation (i.e., the error is due to the omission of higher-order scattering).

The error in [ρw(550)]N in relation to the error in [ρw(443)]N is provided in Figure 10.7
(lower panels). The observed improvement in atmospheric correction at 550 compared to
443 nm results from (1) the ε determination requires a smaller extrapolation at 550 nm,
and (2) there is less multiple scattering at 550 nm as both τa (Figure 10.6) and τr are
smaller. Clearly, the error at 550 nm is typically much less than that at 443 nm. The
tendency is for ∆[ρw(550)]N ∼ (1/3)∆[ρw(443)]N for case with non-absorbing aerosols and
∆[ρw(550)]N ∼ (1/4)∆[ρw(443)]N when the aerosol is strongly absorbing. Occasionally
|∆[ρw(550)]N | >∼ |∆[ρw(443)]N |, but this is rare.

At this point it is useful to recall the results of AERONET measurements over the
oceans that were discussed in Chapter 4. Quoting from that chapter: “ ... recent data from
AERONET island stations provide mean values for the aerosol optical thickness τa(500)
and the Angstrom power p for several of the world’s oceans. The global average is τa(500) =
0.108 and p = 0.573. The Southern Ocean has the clearest atmosphere (τa(500) = 0.060 and
p = 0.380) and lowest variability, while the Atlantic Ocean has the most turbid atmosphere
(τa(500) = 0.190 and p = 0.604) and the highest variability. An important conclusion to
be drawn from these studies is that the for most of the World oceans, τa(500) ≤ 0.2.” Note
that for a given value of p, if the Haze C distribution were appropriate, ν = p+ 2. So, for
aerosols such as described in this quote, ε(765, 865) < 1.1, and Figure 10.7 (top left panel,
open symbols) shows that the single scattering CZCS-type algorithm should be capable of
retrieving [ρw(443)]N with the desired accuracy (∆[ρw(443)]N < ±0.002).

Although the single scattering approach is seen to work well for sufficiently small optical
depth (Figure 10.7) and for non-absorbing aerosols — typically the case over the open ocean
— we desire an algorithm that has broader applicability, e.g., near the coast, where the
aerosol optical depth is higher and the weakly-absorbing T80 or the extreme U80 aerosols
would more likely be present. Hence, we are led to consider the possibility of a full multiple
scattering approach.

10.4 Multiple Scattering

What are the effects of multiple scattering that are relevant to our problem? Noting that
the single-scattering algorithm provides an excellent correction in many cases, we need to
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ask, how does multiple scattering affect the algorithm? Recall that in multiple scattering
(neglecting whitecaps and Sun glitter)

ρt − ρr − tρw = ρa + ρra,

while in single scattering

ρt − ρr − tρw = ρas.

Clearly the effect of multiple scattering on the algorithm is revealed through the relationship
between ρa + ρra and ρas. Figure 10.8 shows this relationship for two cases described in
Chapter 9: the Tropospheric model with RH = 50% (T50) and the Maritime model with RH
= 99% (M99). These models were chosen because of the important difference in their size
distributions leading to significant differences in their scattering phase functions (Figure
10.9). Of the aerosol models considered in this work, T50 has the least forward scattering,
while M99 is one of the most forward scattering.11 Interestingly, the M99 model shows a
large deviation from single scattering with the value of ρa + ρra being about 40% greater
than ρas; however, the deviation is nearly independent of wavelength. This increase is due
to the strong forward scattering. A photon that interacts once has a certain probability
of backscattering out of the atmosphere and this leads to ρas, but photons that forward
scatter through small angles have a similar probability to be backscattered. Thus, for
M99, allowing more than one scattering per photon significantly increases the probability
of backscattering. In contrast, the T50 model shows a smaller, but wavelength dependent
deviation from single scattering. In this case the forward scattering is smaller while the
side scatter is larger, so there are fewer forward scattered photons to be backscattered at
the second scattering. In addition, in contrast to M99, the T50 model has some absorption
(albeit weak). Figure 10.10 shows computations similar to those in Figure 10.8 obtained
using the T50 model phase function (for 865 nm, Figure 10.9), but with ωa values of 0.6.
0.8, and 1.0, rather than the values given by the model. They show that decreasing ωa
decreases ρa + ρra for a given ρas, and indicate that strong aerosol absorption can have a
significant impact on the relationship between ρa + ρra and ρas.

12

Unlike the single-scattering algorithm, for which aerosol models are not utilized at all,
the dependence of multiple scattering on the aerosol properties, suggest that models will
be required in order to include their effects in the ρw retrieval algorithm.

11Chapter 4 provides examples of how the phase functions for models such as these vary with wavelength.
12Note that ρas ∝ ωaτa, which is the scattering optical depth. Thus, a given ρas implies a given value of

the scattering optical thickness of the layer.



718 CHAPTER 10. ATMOSPHERIC CORRECTION

10.4.1 The Multiple-Scattering Retrieval Algorithm

Clearly, a way must be found to deal with multiple scattering. However, the success of the
single-scattering algorithm at low values of τa suggests that we should mimic it as closely
as possible. That is the path we will follow. In this development, we use the shorthand
notation ρA , ρa+ρra, i.e., ρA is the multiple scattering counterpart to ρas. The only link
between the aerosol and its physical properties that can be determined from ρt(λ) are the
values of ρA(λs) and ρA(λl), both of which contain the effects of multiple scattering. It is
clear that, for a given wavelength, Sun-viewing geometry and model (say the jth), we can
write ρA as a function of ρas. An example is

ρ
(j)
A = a(j)[ρ(j)

as ]1 + b(j)[ρ(j)
as ]2 + c(j)[ρ(j)

as ]3 + · · · , (10.10)

where a(j), b(j) and c(j) are constants that depend on the model and the Sun-viewing
geometry. In the single-scattering approximation, a(j) = 1 and b(j) = c(j) · · · = 0. Let us
use the following notation for such a relationship:

ρ
(j)
A (λ) = ρ

(j)
A

{
ρ(j)
as (λ)

}
, (10.11)

where the big curly brackets mean ρA(λ) for the jth model given as a function of ρ
(j)
as for

the jth model. This notation specifies ρA as a function of ρas for the jth model. It can be
inverted to yield ρas as a function of ρA for the jth model, i.e.,

ρ(j)
as (λ) = ρ(j)

as

{
ρ

(j)
A (λ)

}
. (10.12)

Figure 10.8 is an example of these relationships for the T50 and M99 models in the given
Sun-viewing geometry. Now, for a given pixel we have the measured values of ρA at λs and
λl which we denote as ρMA (λs) and ρMA (λl). Then for the jth model we can find

ρ(j)
as (λs) = ρ(j)

as

{
ρMA (λs)

}
and ρ(j)

as (λl) = ρ(j)
as

{
ρMA (λl)

}
,

i.e., the values of ρas at λs and at λl that would be valid if the actual aerosol were identical
to that for the jth model. For the jth model then, we can find

ε(j)(λs, λl) =
ρ

(j)
as

{
ρMA (λs)

}

ρ
(j)
as

{
ρMA (λl)

} ,

the value of ε(λs, λl) if the jth aerosol model were correct. Now Figure 10.8 shows that
that there is almost a linear relationship between ρA and ρas, i.e., the first term in Eq.
(10.10) is dominant, and that the multiple scattering effects are nearly the same for both
the NIR bands. This suggests that the retrieved value of ε(j)(λs, λl) is going to be close
to the true value, independent of the aerosol model. That is, if we assume several (N)
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different models (“candidates”) for the aerosol, but one model say the ith is correct, then
each model, e.g., the jth, will yield an ε(j)(λs, λl) that will be close in value to the true
ε(i)(λs, λl). Since the ε’s resulting from each of the trial aerosol models are close to one
another, rather than pick a single model to estimate this quantity, as it is likely none of
the aerosol models are correct, it seems more reasonable to estimate ε(λs, λl) though

ε(λs, λl) =
1

N

N∑

j=1

ε(j)(λs, λl),

where ε(j)(λs, λl) is the value of ε(λs, λl) derived by assuming that the jth aerosol model
is correct. Such and estimate will be most closely bracketed by two of the models, i.e., one
with a slightly smaller value and one with a slightly larger value. Call these ε(−)(λs, λl)
and ε(+)(λs, λl), respectively. Then

ρ(−)
as (λi) = ε(−)(λi, λl)ρ

(−)
as (λl) and ρ(+)

as (λi) = ε(+)(λi, λl)ρ
(+)
as (λl),

so

ρ
(−)
A (λi) = ρ

(−)
A

{
ρ(−)
as (λi)

}
and ρ

(+)
A (λi) = ρ

(+)
A

{
ρ(+)
as (λi)

}
.

Thus, we have two values for ρA(λi). The procedure usually adopted going forward from

here is to assume that ρA(λi) falls between ρ
(−)
A (λi) and ρ

(+)
A (λi) in the same proportion as

ε(λs, λl) falls between ε(−)(λs, λl) and ε(+)(λs, λl). Some kind of assumption such as this is
required, but as we shall see, this one is not always true. The N aerosol models are called
“candidate” models, and to the extent that the candidate models are similar to the actual
aerosol, this particular assumption works quite well.

10.4.2 Simulated Test of the Multiple-Scattering Algorithm

For our tests of the algorithm with simulated data (and for the initial application to
SeaWIFS and MODIS) twelve candidate aerosol models were used: the Maritime, Coastal,
and Tropospheric models with RH = 50, 70, 90, and 99%, labeled T50 to M99. Functions
similar to Eq. (10.10) and the inverse functions were constructed by solving the radiative
transfer equation for each model for θ0 = 0 to 80◦ in increments of 2.5◦ at 33 values of

θ
(s)
v for eight values of τa(λi) from 0.05 to 0.8. Fourier analysis was used for the azimuthal

dependence as described in Chapter 2. The structure of the atmosphere was the same as
the simulated test data described earlier: a two-layer atmosphere with aerosols in the lower
layer and molecular scattering in the upper lower.

For the purpose of the test, pseudo data were created as in Section 10.3.2.3 using the
Shettle and Fenn [1979] Tropospheric, Coastal, Maritime, and Urban models at RH = 80%,
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denoted by T80, C80, M80, and U80, respectively, and the same two-layer atmosphere
model. It is important to note that, although the size and refractive index distributions
of T80, C80, and M80 are similar to members of the candidate aerosol set, they are not
identical to any members of the candidate set. In contrast, the U80 model is completely
different from any of the candidates, as it exhibits strong absorption.

Figure 10.11 provides the comparison between the single-scattering and multiple-scattering
algorithms for the T80, C80, M80, and U80 pseudo data at the seven Sun-viewing geome-
tries described earlier with τa(865) = 0.2. The multiple-scattering algorithm improves the
retrieval of [ρw(443)]N for the C80, and M80 cases, and significantly for the T80 cases; how-
ever, the U80 retrievals, although somewhat improved over single scattering, are still very
poor. Even though the size distribution of the U80 model is similar to the candidate’s, the
fact that its absorption properties are significantly different from the candidate’s, causes
almost as large an error in the retrieval of [ρw(443)]N as neglecting multiple scattering. As
in Figure 10.7 (bottom panels), Figure 10.11 (bottom panels) shows that the relationship
between ∆[ρw(550)]N and ∆[ρw(443)]N is similar to that in the SSA.

The error in the pigment concentration induced by ∆[ρw(550)]N and ∆[ρw(443)]N in
the multiple-scattering algorithm is provided in Table 10.2. For Table 10.2 the errors
∆[ρw(550)]N and ∆[ρw(443)]N for the T80, C80, and M80 cases were added to values of
[ρw(550)]N and [ρw(443)]N that are characteristic of three pigment concentrations (0.10,
0.47, and 0.91 mg/m3) yielding retrieved reflectances that included the atmospheric cor-
rection error. These were used in Eq. (10.1) to derive CP for each of the seven Sun-viewing
geometries. For each pigment concentration, the retrieved values of CP were averaged over
all seven geometries and the three aerosol models, and the standard deviation was com-
puted. This was carried out for τa(865) = 0.1, 0.2, and 0.3. As one would expect, the
quality of the retrievals is better for the lower values of τa(865). The magnitude of the
errors show that the algorithm performs very well indeed,13 and suggests that the multiple-
scattering algorithm can yield excellent retrievals of CP ; however, the candidate aerosol
models must be similar in size and composition to the aerosol actually present.

10.4.3 Estimation of Aerosol Optical Depth τa

There is considerable interest now in studying the global distribution of aerosols because of
their role in climate forcing and biogeochemical cycling. Earth-orbiting satellites are ideal
for such studies. The aerosol concentration is ∝ τa. In this section we show that τa can be

13For τa(865) = 0.3 and a true value of CP of 0.91 mg/m3, one retrieved value of CP was ≈ 9 mg/m3

(θ0 = 60◦, θv ≈ 45◦, T80, for which τa(443) ≈ 0.75 and τa(550) ≈ 0.6). This value was not included in the
average or the standard deviation computation.
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Table 10.2: Mean value of CP obtained for seven viewing geometries and three
aerosol models (M80, C80, and T80). The number in parenthesis is the standard
deviation divided by the mean (in %). Note that these errors are over and above
any intrinsic error in Eq. (10.1). (From Gordon [1997].)

τa(865) CTrue = 0.10 CTrue = 0.47 CTrue = 0.91
(mg/m3) (mg/m3) (mg/m3)

0.1 0.101 0.466 0.912
(1.6) ( 3.4) ( 9.1)

0.2 0.100 0.470 0.940
(3.1) ( 4.7) (12.8)

0.3 0.098 0.493 0.936
(5.5) (15.3) (25.3)

retrieved with a simple extension of the atmospheric correction algorithm.

Even in the single scattering approximation, one notes from Eq. (12.29) that it is not
possible to estimate τa without assuming a model for the aerosol to provide ωa and Pa.
The assumption of an incorrect model can produce significant errors (up to a factor of 2–3)
in the recovered τa. As in atmospheric correction, we will try to avoid using an incorrect
model in the retrieval of τa by utilizing the only other aerosol information available on a
pixel-by-pixel basis — the spectral variation of ρas in the NIR. The τa-retrieval algorithm
is a straightforward extension of the atmospheric correction algorithm. The correction
algorithm provides two candidate models based on ε(765, 865) and these specify two sets
of Pa and ωa values for two estimates of τa. The estimated value of τa is then determined
from the weighted average of the two estimates as in the correction algorithm. This scheme
was tested using the T80, C80, and M80 simulations from the previous section. Tables 10.3
and 10.4 provide the % error in the retrieved τa(865) for three aerosol models at the center
and the edge of a typical scan as a function of θ0. The true value of τa(865) was 0.2 or 0.4.
All the calculations were carried out for φv − φ0 = 90◦. From the tables, we can see that
the error in the retrieved aerosol optical thickness is typically within ±10% (and usually
considerably less) for most of the cases examined. As with the atmospheric correction, the
candidate aerosol models have to be realistic. However, in the case of τa, the model must
produce a realistic phase function as well as single-scattering albedo. For example, if the
size distribution and refractive indices for the model were precise, but the particles were
not spherical as assumed, then the Mie-computed phase function could be significantly
different from the actual one (Figure 4.30), yielding a correspondingly significant error in
τa. Operation of the algorithm for the purpose of atmospheric correction does not require
such accuracy in the phase function.
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Table 10.3: Error in retrieved τa(865) for viewing at the center and edge of the
scan. The true value of τa(865) is 0.20.

Position θ0 Error (%) in τa(865)
M80 C80 T80

20◦ +17.4 +0.09 +0.63
Center 40◦ −1.53 −2.88 −0.41

60◦ +2.96 −10.5 −2.41

0◦ +0.55 −3.64 −0.88
Edge 20◦ +1.31 −4.74 −1.28

40◦ +2.41 −9.27 −2.54
60◦ +3.71 −14.0 −4.18

Table 10.4: Error in retrieved τa(865) for viewing at the center and edge of the
scan. The true value of τa(865) is 0.40.

Position θ0 Error (%) in τa(865)
M80 C80 T80

20◦ +16.9 +0.32 +0.19
Center 40◦ −1.03 −4.57 +0.72

60◦ +3.78 −8.18 +2.05

0◦ +1.12 −4.13 +1.04
Edge 20◦ +1.87 −4.94 +1.18

40◦ +3.41 −7.58 +1.69
60◦ +6.49 −7.80 +2.77

10.4.4 The Diffuse Transmittance

There remains to derive the diffuse transmittance including the multiple scattering. As
developed in Chapter 9, the diffuse transmittance is the transmittance relating water-
leaving radiance from the surface (in a given direction) to the water-leaving radiance at
sensor (in the same direction). It can be computed simply by introducing radiance leaving
the sea surface (with a given angular distribution) as a boundary condition at the bottom
of the atmosphere, and solving the radiative transfer equation for the radiance exiting the
top of the atmosphere. However, there is another way to carry out the computation that
involves using the reciprocity principle.

Recall from Chapter 2, where we considered a volume V bounded by a surface S, and two
separate radiative transfer problems involving the given medium within V . In problem 1
the radiance incident on S from outside V was given by L1(~ρ, ξ̂, λ) and the internal sources
(sources within V ) were specified by Q1(~r, ξ̂, λ). Likewise, in problem 2 the radiance
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incident on S from outside V was L2(~ρ, ξ̂, λ) and the internal sources were specified by
Q2(~r, ξ̂, λ). Then, under the assumption that the volume scattering function is time reversal
invariant, the reciprocity principle relates the solutions L1(~r, ξ̂, λ) and L2(~r, ξ̂, λ) of these
two problems to one another:

∫

S
dS

∫

ξ̂•n̂<0
|ξ̂ • n̂|

[
L1(~ρ, ξ̂, λ)L2(~ρ,−ξ̂, λ)

m2(~ρ)
− L1(~ρ,−ξ̂, λ)L2(~ρ, ξ̂, λ)

m2(~ρ)

]
dΩ(ξ̂)

=

∫

4π
dΩ(ξ̂)

∫

V

[
Q2(~r,−ξ̂, λ)L1(~r, ξ̂, λ)

m2(~r)
− Q1(~r, ξ̂, λ)L2(~r,−ξ̂, λ)

m2(~r)

]
dV,

(10.13)
where S is the bounding surface of V and has a normal (outward) n̂, and m is the refractive
index. In this equation, L1(~ρ,−ξ̂, λ) and L2(~ρ,−ξ̂, λ) are the radiances exiting the volume
at the boundaries, and the ξ̂ • n̂ < 0 on the solid angle integral on the left-hand-side
indicates that the integration is restricted to directions into the medium. Points within V
are located by ~r, while points on the boundary of V are located by ~ρ.14 So, if there are no
sources within V , this reduces to

∫

S
dS

∫

ξ̂•n̂<0
|ξ̂ • n̂|

[
L1(~ρ, ξ̂, λ)L2(~ρ,−ξ̂, λ)

m2(~ρ)

]
dΩ(ξ̂)

=

∫

S
dS

∫

ξ̂•n̂<0
|ξ̂ • n̂|

[
L1(~ρ,−ξ̂, λ)L2(~ρ, ξ̂, λ)

m2(~ρ)

]
dΩ(ξ̂).

(10.14)

It is straightforward to use this to develop a rigorous relationship for the diffuse trans-
mittance of the atmosphere, valid for all orders of multiple scattering. Let the volume V
comprise the whole atmosphere with upper surface at the top of the atmosphere, and lower
surface just beneath the sea surface. Then, for problem 1 choose the incident radiance on
the top of the atmosphere (TOA) to be that of the solar beam, i.e., L1( ~ρT , ξ̂) = F0δ(ξ̂− ξ̂0),
where ~ρT is a TOA point and ξ̂0 is the direction of propagation of the solar beam. We
assume that there is no upward radiance incident at ~ρB, a point just beneath the sea sur-
face, i.e., L1( ~ρB, ξ̂) = 0 for ξ̂ • n̂ < 0. For problem 2 we let L2( ~ρT , ξ̂) = 0 for ξ̂ • n̂ < 0 (no
incident radiance on the TOA), and L2( ~ρB, ξ̂) be specified for ξ̂ • n̂ < 0, i.e., a specified
upward radiance distribution incident on the bottom surface. Then applying Eq. (10.14),
we have

L2( ~ρT ,−ξ̂0) =
1

F0|ξ̂0 • n̂|

∫

Ωd

|ξ̂ • n̂|L1( ~ρB, ξ̂)L2( ~ρB,−ξ̂)
m2
w

dΩ(ξ̂),

where Ωd is the full solid angle in the downward direction, and mw is the refractive index
of water. Letting ξ̂′0 be the direction of the refracted solar beam in the water for a flat

14Note that S cannot fall on a surface where the refractive index changes discontinuously, e.g., the air-
water interface, because m is undefined there.
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surface,

L2( ~ρT ,−ξ̂0)

L2( ~ρB,−ξ̂′0)
=

1

F0|ξ̂0 • n̂|m2
w

∫

Ωd

|ξ̂ • n̂|L1( ~ρB, ξ̂)
L2( ~ρB,−ξ̂)
L2( ~ρB,−ξ̂′0)

dΩ(ξ̂). (10.15)

If we replace L2( ~ρB,−ξ̂′0) in Eq. (10.15) by Lw( ~ρB,−ξ̂0) (Chapter 2, Eq. (2.14)) the
water-leaving radiance just above the sea surface, i.e.,

L2( ~ρB,−ξ̂′0) =
m2
w

tf (ξ̂0)
Lw( ~ρB,−ξ̂0), (10.16)

then, Eq. (10.15) becomes

L2( ~ρT ,−ξ̂0)

Lw( ~ρB,−ξ̂0)
=

1

F0|ξ̂0 • n̂|tf (ξ̂0)

∫

Ωd

|ξ̂ • n̂|L1( ~ρB, ξ̂)
L2( ~ρB,−ξ̂)
L2( ~ρB,−ξ̂′0)

dΩ(ξ̂) , t(−ξ̂0). (10.17)

The quantity t(−ξ̂0) is what we defined as the diffuse transmittance in Chapter 9, i.e.,
Eq. (9.11). Equation (10.17) provides an alternate method for computing the diffuse
transmittance. In this method we illuminate the top of the atmosphere by the solar beam
in the direction ξ̂0 and solve the radiative transfer equation for the downward radiance
just beneath the water surface, when the water is assumed to be totally absorbing (so
L1( ~ρB, ξ̂) = 0 for ξ̂ • n̂ < 0) to derive L1( ~ρB, ξ̂) for ξ̂ • n̂ > 0. Then, given the actual upward
radiance distribution L2( ~ρB,−ξ̂) in the water (for the same atmosphere and illumination)
use Eq. (10.17) to compute t(−ξ̂0).15

We have seen in Chapter 6 the upwelling radiance just beneath the water surface is
expected to have only a weak variation with direction, so it is useful to consider the case
where L2( ~ρB,−ξ̂) is independent of ξ̂, i.e., the upwelling radiance is uniform just beneath
the water surface. Then

t(−ξ̂0) =
Ed1(~ρB)

F0|ξ̂0 • n̂|tf (ξ̂0)
, t∗(−ξ̂0), (10.18)

where

Ed1(~ρB) ,
∫

Ωd

|ξ̂ • n̂|L1( ~ρB, ξ̂) dΩ(ξ̂)

15We have derived Eq. (10.14) for the case of a flat interface. For a wind-ruffled interface the equation
(10.15) is still valid and relates the TOA radiance to the upwelling subsurface radiance, but Eq. (10.16)
can no longer be rigorously applied. However, we have seen in Chapter 7 (Figures 7.14 and 7.15) that Eq.
(10.16) is still a very good approximation as long as the angle θ0 <∼ 60◦. The surface roughness will of

course affect L1( ~ρB , ξ̂), so it must be recomputed for each surface.
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This is the version of the diffuse transmittance that is used in processing SeaWiFs and
MODIS data.16 Computation of t∗ requires an aerosol model and τa. Fortunately, the

16In Chapter 9 we developed a single scattering version of the diffuse transmittance and applied it to
a situation in which the water-leaving radiance itself was uniform, i.e., the upward radiance was uniform
after transmission through the water surface from below (we also called this t∗). This situation can also
be treated with the reciprocity principle. Let the volume V again be the whole atmosphere with one
surface (B) just beneath the water surface and the other surface (T ) at the TOA. Let n̂B and n̂T be the
associated outward normals on the surfaces at ~r = ~ρB and ~r = ~ρT , respectively. The water below the
surface is assumed to be totally absorbing. We consider two problems. Problem 1: The top boundary is
illuminated by the solar beam of irradiance F0 propagating in the direction ξ̂0, with no radiance incident
on the bottom boundary and no sources within the medium. Problem 2: There is a plane source with a
particular angular distribution within the medium, but no radiance incident from the outside on the top
and bottom boundaries. These give the following terms in Eq. (10.13):

L1(~ρT ) = F0δ(ξ̂ − ξ̂0)

L1(~ρB) = 0 (ξ̂ • n̂B < 0)

Q1(~r, ξ̂) = 0

L2(~ρT ) = 0 (ξ̂ • n̂T < 0)

L2(~ρB) = 0 (ξ̂ • n̂B < 0)

Q2(~r, ξ̂) = 0 (ξ̂ • n̂T < 0)

Q2(~r, ξ̂) = (ξ̂ • n̂T )δ(~r − ~ρ2)L2 (ξ̂ • n̂T > 0),

where the source is located on the plane ~r = ~ρ2 , L2 is a constant, and the reason for the particular angular
distribution of Q2 will be apparent later. Inserting these into Eq. 3 yields,

L2( ~ρT ,−ξ̂0) =
L2

F0|ξ̂0 • n̂T |

∫
−ξ̂•n̂T>0

−(ξ̂ • n̂T )L1( ~ρ2, ξ̂) dΩ(ξ̂)

=
L2

F0|ξ̂0 • n̂T |

∫
ξ̂•n̂B>0

(ξ̂ • n̂B)L1( ~ρ2, ξ̂) dΩ(ξ̂)

=
L2

F0|ξ̂0 • n̂T |
Ed1( ~ρ2) =⇒ L2( ~ρT ,−ξ̂0)

L2
=

Ed1( ~ρ2)

F0|ξ̂0 • n̂T |
.

where Ed1( ~ρ2) is the downwelling irradiance on the plane in Problem 1. Thus,

t∗(−ξ̂0) =
L2( ~ρT ,−ξ̂0)

L2
=

Ed1( ~ρ2)

F0|ξ̂0 • n̂T |
. (10.19)

It remains to interpret the constant L2. Recall the definition of the intensity density:

Q =
dJ

dV
=

d4P

dV dΩ
=

d4P

dz dAdΩ
=⇒ d2P

dA
=

∫
Qdz dΩ,

so integrating over the upper hemisphere provides the upwelling irradiance and integrating over the lower
hemisphere, the downwelling irradiance. Inserting the values of Q2 yields Eu( ~ρ2) = πL2, which is the
upwelling irradiance associated with a uniform radiance L2 in the upward direction. The Q2 is therefore
the intensity density that provides a uniform upwelling radiance on the plane at ~r = ~ρ2, which we place
just above the water surface, and the left-hand-side of Eq. (10.19) is the diffuse transmittance when the
water-leaving radiance is uniform just above the interface. This is the approach used to compute the
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parts of the atmospheric correction algorithm described earlier can furnish both. Equation
(10.18) provides a simple method for deriving t∗ in a Monte Carlo solution to the radiative
transfer equation: simply injectN photons in the direction ξ̂0 into the top of the atmosphere
over a totally absorbing ocean and detect the number n that penetrate the surface, then
t∗(−ξ̂0) = n/(Ntf

(
θ0)
)
.

When we consider absorbing aerosols (Section 10.5) and their influence on atmospheric
correction (it’s very large), we will find that the aerosol vertical structure plays a major
role in atmospheric correction. Fortunately, t∗ is almost independent of the aerosol vertical
structure, even in the case of strongly absorbing aerosols. Figure 10.12 compares the
computed t∗’s for a two layer atmosphere with U50 aerosols isolated in the lower layer,
with an atmosphere having the aerosols uniformly mixed with air. It shows that to a high
degree, the vertical structure has little influence on the value of t∗.

Finally, we note that one should use t rather than t∗ for the diffuse transmittance, and
if we use t∗ (as is common), we need to understand the magnitude of the induced error. To
estimate t we need L2( ~ρB,−ξ̂) in Eq. (10.15). This is the upwelling radiance just beneath
the water surface which we designated as Lu(0, µ, φ ;u0, φ0) in Chapter 6. In this case,
we only need the shape of Lu as it is normalized by its value at a particular angle in Eq.
(10.15). We can use the quasi-single scattering model (Chapter 6) as a first approximation
of the shape of Lu(0, µ, φ ;u0, φ0). In this model the shape is completely determined by
the scattering phase function at scattering angles greater than about 48◦. Here we will use
two scattering phase functions: the Rayleigh phase function to represent very clear ocean
water and the Petzold (Phase-T) phase function to represent waters with a high particle
concentration. Figure 6.38 in Chapter 6 provides an example of an angular distribution
computed using the quasi-single scattering model, and also the deviations from the model
incurred as multiple scattering becomes more dominate. Figures 10.13-10.16 provide the
error incurred using t∗ in place of t as a function of viewing angle in recovering ρw for
a variety of aerosol optical thicknesses and solar zenith angles. In these figures the scan
plane is perpendicular to the solar beam (φv − φ0 = 90◦). For τa ≈ 0.1 (typical of the
open-ocean), we see that the error in these extreme cases rarely exceeds 3%. We use the
word “extreme” here because multiple scattering within the water will smooth out the
variations in the QSSA-values of Lu(0, µ, φ ;u0, φ0), so the errors in the figures can be
considered upper limits for the given phase function. Also, for the Petzmas phase function,
which is more representative of ocean particles, the variation of Lu(ξ̂) with ξ̂ is smaller
which places it closer to a uniform radiance distribution moving t closer to t∗.

“exact” results for t∗ in Chapter 9, Figures 9.16 – 9.18. The reader should be able to verify that when the
right-hand-side is computed in the single scattering approximation, the result is identical to Eq. (9.18) in
Chapter 9 when Lw is uniform.
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10.4.5 Ancillary Data Required to Operate the Algorithm

Several sets of ancillary data are required to operate the [ρw]N retrieval algorithm in the
most effective manner. We briefly discuss each ancillary data set below. Some are now
available as measured global data sets from other space-borne sensors, others as the output
of numerical weather models.

10.4.5.1 Ozone Optical Thickness

In the radiative transfer model a three-layer atmosphere was assumed. On top was the
Ozone layer, which was non-scattering, in the middle was a molecular-scattering (Rayleigh)
layer and on the bottom was the aerosol. The Ozone optical thickness τOz(λ) is required
to compute the two-way transmittance of the various reflectances ρr, ρw, etc., through the
Ozone layer. The Ozone absorption is small, but the concentration is highly variable over
the planet (Figure 10.17). From Chapter 4, Figure 4.28, we see that τOz ≈ 0.044 at the
absorption maximum (near 600 nm) for an Ozone concentration (COz) of 343 DU (Dobson
Units), or kOz = 1.28× 10−4 DU−1. Since the two-way Ozone transmittance along a path
specified is TOz = exp(−kOzCOzM), where M is the air mass (u−1 + |u0|−1), we find the
relative error in TOz is

∆TOz
TOz

= −kOz∆COzM.

For not too large viewing or Sun angles TOz ≈ 1, and ∆TOz ≈ −2kOz∆COz. Thus,
for ∆TOz <∼ 1%, ∆COz <∼ 39 DU.17 The accuracy of a TOMS-like satellite-borne Ozone
sensor exceeds this, so it, or a similar instrument, could be used to assess the effect of
Ozone.

10.4.5.2 Surface Atmospheric Pressure P0

The atmospheric pressure is needed to compute the Rayleigh optical thickness (τr) neces-
sary for the computation of ρr, the diffuse transmittance t, and the direct transmittance
T . It is readily available from global weather models. Given the value of τr0 , the Rayleigh
optical thickness at the standard atmospheric pressure P0 of 1013.25 mb (Chapter 4, Eq.
(4.8)) at any surface pressure P , the Rayleigh optical depth is

τr =
P

P0
τr0 .

17Not that this Ozone concentration error yields a transmission error of 1% only in the green-yellow part
of the spectrum (∼ 600 nm). The error in the blue and NIR would be significantly less (Figure 10.17).
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Note that an error in P translates directly to an error in τr, i.e., ∆τr/τr = ∆P/P , and
since most of ρr is the result of single scattering (Chapter 9, Figures 9.7 and 9.8), the error
in τr translates directly into error in ρr: ∆ρr/ρr = ∆P/P . Because ρr makes up the bulk
of ρt in the blue, it is necessary to calculate it with an error of no more than about 0.5%
or less. This requires ∆P <∼ 5 mb.

10.4.5.3 Wind Speed W and Wind Vector ~W

The wind speed can be used in the computation of ρr, i.e., if one desires to consider surface
roughness in its computation. It is necessary for an estimation of [ρwc]N as described
in Chapter 7.18 The wind vector ~W is required for any assessment of Sun glint, e.g.,
construction of a glint mask, to remove areas contaminated by Sun glint from the imagery
before processing.

10.4.5.4 Sea Surface Temperature and Atmospheric Stability

These quantities allow the computation of the Richardson number (Ri) used in newer
estimates of the surface slope variance as part of an assessment of Sun glitter (see Chapter
7).

10.4.5.5 Relative Humidity RH

The surface relative humidity (RH) is not actually needed to operate the algorithm; how-
ever, it could be useful for constraining the candidate aerosol models (Section 10.4.1).

10.4.6 Annotated Flow Diagram of the Complete Algorithm

Many of the quantities required for the correction algorithm are stored in lookup tables
(LUTs). These include the relationship between ρa + ρra and ρas for various optical thick-
nesses, sun-viewing geometry and models as well as those relating t∗ to the same vari-
ables. Figure 10.18 provides a simplified flow diagram describing how the original SeaW-
iFS/MODIS algorithm was operated, along with the ancillary inputs and LUTs.

18The value of [ρwc]N is the remote sensing augmented reflectance RSAR from Chapter 7. It is taken to
be 3× 10−6W 2.55 throughout the visible for W ≥ 6 m/s and zero for W < 6 m/s.
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10.4.7 Non-zero [ρw]N in the NIR

A fundamental assumption in the atmospheric correction algorithm is that [ρw]N = 0 in
the NIR (748 and 869 nm for MODIS, 765 snd 865 nm for SeaWiFS). However, it is well
known that at high Chlorophyll a concentrations, even in Case 1 waters, there is a small,
but non-zero, water-leaving reflectance in the NIR. Therefore, it is necessary to estimate
[ρw]N in the NIR.

For Case 1 waters, we have an AOP model that does a good job relating Lu/Ed to
the concentration of Chlorophyll a (Chapter 6) or to the pigment concentration. The
relationship between Lu/Ed and [ρw]N is provided in the Appendix. The estimate of [ρw]N
in the NIR can be incorporated in an atmospheric correction algorithm in the following
manner. First, an atmospheric correction is carried out assuming that [ρw]N = 0 in the
NIR. The retrieved reflectances are then used in a ratio algorithm, e.g., similar to Figure
10.1, to estimate the concentration of Chlorophyll a. The estimate of C is then used
to estimate [ρw]N in the NIR using the above relationships. This [ρw]N is then used to
estimate tρw in the NIR, which is subtracted from ρt, and the atmospheric correction
algorithm operated again using the revised ρt, etc.

For Case 2 waters,in which high concentrations of scattering material (both biogenic and
non-biogenic) can lead to [ρw]N 6= 0 in the NIR, a similar procedure can be employed. How-
ever, in this case specific relationships must be developed between the principal scattering
constituents and the IOPs for each application area, as these relationships are typically
unique to the individual study area. Alternatively, if the sensor has additional spectral
bands in the short-wave-infrared (SWIR) such bands can be used in the algorithm de-
scribed above (MODIS has such bands at 1.2, 1.6 and 2.1 µm). However, one must bear in
mind that there is a pitfall with the SWIR approach: the aerosol optical properties in the
SWIR are dominated by large particles and extrapolation of ρa + ρra from the SWIR to
the visible may not be representative of its actual values in the visible, as the extrapolation
can be a factor of 3 to 4 in wavelength compared to a factor of 2 with typical operation
of the algorithm. Nevertheless, there has been considerable success using the SWIR for
atmospheric correction of MODIS in turbid coastal waters, where [ρw]N can be a significant
contributor to ρt in the NIR.

10.5 Absorbing Aerosols

We have seen in earlier examples that the multiple-scattering algorithm can fail when the
aerosol is strongly absorbing, even though the particle size distribution may be similar to
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that of the candidate aerosol models. Figure 10.11 shows that even when multiple scattering
is included in the algorithm, the correction for atmospheres containing strongly-absorbing
aerosols (e.g., U80) is not really improved over the single-scattering algorithm; however,
there is considerable improvement for weakly-absorbing aerosols (e.g., T80). Because of
the manner in which the twelve candidate models in Section 10.4.2 were developed (see
Chapter 4) they force a definite relationship between ωa and ε(λi, λl). Physically this is
due to a relation between the absorption properties (ωa) and the size distribution (ε) that
exists in these models. For the geometry shown in Figure 10.5, Figure 10.19 provides this
relationship for the 12 candidates (M, C and T) along with the similar relationship for
the urban models (U). The T80 model falls within the range of the candidates and a good
correction is realized; however, the urban model U80, as well as all the other Urban models,
are far outside the range of the candidates. No wonder the retrieval of ρw is so poor for
U80. Practically, some kind of ε− ωa relationship is necessary for atmospheric correction
because we only have one piece of information available on which to base the choice of
aerosol models: ε(λi, λl). Unfortunately, as we noted earlier, ε(λi, λl) depends mostly on
the size distribution and much less on the refractive index (Figure 10.5 and 10.19) and, as
such, it is a poor indicator of the presence or absence of aerosol absorption. Beyond this
one piece of information we must rely on other knowledge, such a climatology, to make a
judicious choice of a model set to use for correction. The MCT set seems to be adequate
for the open ocean most of the time. However, if it is known for example that during a
given time period (season) there is a high probability of urban-type aerosols resulting from
pollution being present, e.g., at times off the U.S. East Coast in summer, then the MCT
candidates would be a poor choice. Another observation from Figure 10.19: simply adding
some strongly-absorbing aerosols into the candidate set will not work, as there is no way
given ε(λs, λl) to predict ωa. It is clear that we almost need to know a priori whether
the aerosol is strongly or weakly absorbing, or more precisely, its ε − ωa relationship.
In addition, there is a further complication: the effect of strongly-absorbing aerosols is
dependent on the aerosol’s vertical concentration profile, and strongly-absorbing aerosols
such as wind-blown dust and carbonaceous urban aerosols are rarely contained wholly
within the marine boundary layer, as is assumed in the multiple scattering algorithm.

In this section, first we provide an example showing that when candidate aerosol models
are restricted to those with the appropriate absorption properties, the correction algorithm
yields suitable results. Next we examine in some detail the influence of the vertical dis-
tribution of the aerosol. Finally, we discuss strategies for finding appropriate models and
incorporating them into a correction algorithm.
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10.5.1 Atmospheric Correction with a Restricted Set of Candidate Mod-
els

Before continuing, it is important to ask: if candidate aerosol models containing the ap-
propriate absorption properties (along with the correct vertical distribution) are used in
the correction procedure as developed thus far, will the uncertainty of the resulting [ρw]N
retrieval be within acceptable limits? To examine this question, we constrained the algo-
rithm to utilize only four candidate models, the Urban models U50, U70, U90, and U99
shown in Figure 10.19. Then the algorithm was tested using pseudo data simulated with
the U80 model, which falls approximately where the “U” symbol appears on Figure 10.19.
The results showing the error in [ρw(443)]N as a function of the aerosol optical thickness
of U80 at 865 nm are provided in Figure 10.20. Note that even with τa(865) as high as 0.4,
there are only two cases that fall outside the allowable range of error. These occur at the
scan edge with θ0 = 60◦ — the most difficult geometry to correct. This shows that when
models with the proper absorption properties and the correct vertical distribution are used
as candidates, even in the case of strong aerosol absorption, acceptable retrievals are ob-
tained. As mentioned in the previous section, one cannot just add appropriate candidates
to the model mix, i.e., add some absorbing models to the non- or weakly-absorbing models,
because the value of ε(λs, λl) is only weakly dependent on aerosol absorption (Figure 10.5,
right panel and Figure 10.19), so there would be no way to sort out the strongly from the
weakly absorbing models using ρt in the NIR. There must be some model restriction when
strongly-absorbing aerosols are suspected.19 But this is not the only problem.

10.5.2 Aerosol Vertical Structure

The reflectance of the atmosphere in the single-scattering approximation is independent
of the vertical distribution of the aerosol. However, this is not the case when multiple
scattering becomes important. To demonstrate the importance of the vertical distribution
we provide a simple example. Recall that the algorithm, as described thus far, places
all of the aerosol at the bottom of a two-layer radiative transfer model, with all of the
Rayleigh scattering in the upper layer. We compare the correction for a case where the
pseudo data were created for an atmosphere that actually has the assumed structure, with
that for which the pseudo data were created for an atmosphere in which the aerosols are
uniformly mixed with air throughout the atmosphere, e.g., a one-layer atmosphere. Figure
10.21 (left panel) provides such a comparison for the M80 and T80 aerosol models with
τa(865) = 0.2. In this case the correction algorithm was operated with the original twelve

19The situation is not totally hopeless. One could, for example, use a standard set of models to effect a
correction, and if unrealistic results are obtained, e.g., some reflectance are negative, one could try a limited
set of more absorptive candidates.



732 CHAPTER 10. ATMOSPHERIC CORRECTION

candidate aerosol models. Note that the an incorrect assumption regarding the vertical
structure, even in the extreme of uniform mixing, does not lead to serious error — only the
T80 model at the scan edge for θ0 = 60◦ is slightly outside the acceptable error range. We
note in passing that the T80 aerosol does have some (weak) absorption (ωa(443) ≈ 0.975).
Figure 10.21 (right panel) provides a similar comparison when the U70 and U80 models
are used to create the pseudo data set. For this the candidates were restricted to the four
used for Figure 10.20: U50, U70, U90, and U99. For U80 the error for the uniformly mixed
case becomes excessive: over an order of magnitude larger than the two-layer case. But
wait, look at U70, which is actually one of the candidate aerosol models ! When the vertical
structure is correct for U70, of course the error is negligible, but when the U70 aerosol is
uniformly mixed, i..e., when the incorrect vertical structure is assumed, the error for U70
becomes even larger than that for U80.

Let’s look at a more realistic vertical distribution for aerosols. Consider an aerosol layer
that thickens from being confined just near the surface to being mixed higher and higher in
the atmosphere, keeping the total aerosol concentration (τa) constant. The simulations were
performed again for the U80 model using a two-layer radiative transfer model to create
pseudo data with aerosol plus Rayleigh scattering in the lower layer and only Rayleigh
scattering in the upper layer. The fraction of the Rayleigh scattering optical thickness
assigned to the lower layer was that for aerosol-layer thicknesses of 0, 1 km, 2 km, 4 km,
6 km, and ∞. The aerosol concentration was kept constant with τa(865) = 0.2. The
multiple-scattering algorithm was then operated with this pseudo data using the same four
candidate models as in Figure 10.21 (right panel). Figure 10.22 provides the results in the
usual manner. Obviously progressively thickening of the aerosol layer leads to a progression
of increasingly larger error in [ρw(443)]N .

This influence of vertical structure on the algorithm when the aerosol is strongly absorb-
ing can be understood qualitatively in a simple manner. The algorithm is based on the
assumption that all the aerosol is in a thin layer near the surface. As this layer thickens
(mixing molecular scattering with aerosol scattering in the layer) the Rayleigh scattering
within the aerosol layer will cause an increase in the average path length of photons through
the layer, compared to that for just aerosol alone. This causes an increase in absorption
and a decrease in ρt, which when processed by the algorithm results in value of [ρw(443)]N
that is too small, and may even be negative.20

Unfortunately, there is still an additional complication. Figure 10.23 shows the spectral
behavior of ρa + ρra as a strongly absorbing aerosol is mixed higher into the atmosphere
for a fixed value of τa(865) of 0.2. Clearly, for a given τa, ρt will decrease as the thickness
of the aerosol layer increases. This decrease is relatively more in the visible than in the

20The appearance of negative [ρw(λ)]N ’s in the blue is indeed often one of the signatures of a strongly
absorbing aerosol.
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NIR, so as the layer thickens, the algorithm will predict values of ρa + ρra in the visible
that are too large, yielding an over correction, ∆[ρw(443)]N < 0. It is critical to note again
that for strongly-absorbing aerosols the behavior of ρa + ρra in the NIR provides little or
no information regarding the vertical distribution of the aerosol or its spectral variation,
and as such, the behavior of ρa + ρra in the NIR provides no indication of its behavior in
the visible. The predictability of ρa + ρra in the visible from the NIR is the foundation of
the atmospheric correction algorithm for non- or weakly-absorbing aerosols, suggesting a
new approach is needed to deal with strongly-absorbing aerosols.

10.5.3 Strategy for Dealing With Strongly-Absorbing Aerosols

How then will we ever be able to perform atmospheric correction in the presence of strongly-
absorbing aerosols? Actually, Figure 10.23 provides a valuable clue. It shows that in the
case of urban aerosols, and whatever the vertical distribution, the absorption is manifest in
a progressively decreasing ρa +ρra with decreasing wavelength (i.e., red to blue) compared
to what would be expected for non- or weakly-absorbing aerosols. Thus, to detect aerosol
absorption we need to look in the blue part of the spectrum. However, the blue region of
the spectrum is the one mostly influenced by the constituent concentration in the water,
e.g., the pigment concentration, etc. So, how do we separate the effects of water color
variations from aerosol color variations in the total reflectance measured at the sensor?
That is, in

ρt(λ)− ρr(λ) = ρa(λ) + ρra(λ) + t(λ)ρw(λ),

how do we apportion spectral variations seen in ρt(λ)− ρr(λ) between ρa(λ) + ρra(λ) and
t(λ)ρw(λ)? Just as we have models describing the spectral variation of ρa(λ) + ρra(λ), we
are going to need to have a model describing the spectral variation of ρw(λ) in terms of the
water’s constituent concentrations. Such models are available and described in Chapter 6.
The strategy employed for dealing with strongly-absorbing aerosols is to find a set of water
constituent concentrations and an aerosol model and concentration (optical thickness) as
well as vertical distribution that explains the given ρt(λ) − ρr(λ). That is the subject of
this section.

We will begin describing a straightforward method for effecting this called the spectral
matching algorithm (SMA). The method is tested through simulations in which the urban
aerosol is dominant as in Section 10.5.2 and 10.5.3. Then we will apply the algorithm to
retrieve ρw in the presence of Saharan dust over the Eastern North Atlantic. To effect the
dust application, we will need to develop appropriate dust models which involves finding
models that reproduce the radiative effects of the dust. This is described in detail. The
resulting dust models are then used to perform actual water-constituent retrievals.
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10.5.3.1 The Spectral Matching Algorithm (SMA)

In the spectral matching algorithm (SMA) the properties of the ocean and the atmosphere
are retrieved simultaneously. As in each of the algorithms discussed so far, it is assumed
that the whitecap and Sun glint contributions to ρt(λ) have been removed and that ρw(λl) =
0. No assumption is made regarding ρw(λs). Then from the measured ρt(λ) and the
computed ρr(λ) we can form ρt(λ)− ρr(λ), which we take as our experimental input data,
and

ρt(λ)− ρr(λ) = ρa(λ) + ρra(λ) + t(λ)ρw(λ).

Since ρw(λl) = 0, the difference ρt(λl) − ρr(λl) provides ρa(λl) + ρra(λl), from which,
for a given aerosol model (e.g., the ith), one can find the value of the aerosol optical

depth, τ
(i)
a (λl), that reproduces ρa(λl)+ρra(λl). Then from τ

(i)
a (λl) and the aerosol model,

ρ
(i)
a (λj) + ρ

(i)
ra (λj) can be determined for all spectral bands j.21 This provides the quantity

t(θv, λj)ρ
(i)
w (λj) = ρt(λj)− ρr(λj)− ρ(i)

a (λj)− ρ(i)
ra (λj),

i.e., the retrieved values of t(θv, λj)ρ
(i)
w (λj) assuming that the ith aerosol model is correct.

The idea is now to compare the value of t(θv, λj)ρ
(i)
w with that predicted by a model of

t(θv, λ)ρw(λ). This model, which is briefly described in the Appendix, provides [ρw(λ)]N
as a function of the pigment concentration CP and a particle scattering parameter b0. It
is used to compute [ρw(λ,CP , b

0)]N for a discrete set of values of CP and b0 falling within
the typical range of variation. These provide trial values of

t(θv, λ)ρw(θv, λ) = t(θv, λ)tE(θ0, λ)[ρw(λ,CP , b
0)]N .

But here we assume that t(θv, λ) can be replaced by t∗(i)(θv, λ) and noting that tE(θ0, λ) ≈
t∗(i)(θ0, λ), we have the modeled22

21Note, t∗(i)(θ, λj) can be determined as well.
22At this point is is useful to examine the relationship between tE and t∗. These are given by tE =

E+
d /F0 cos θ0 and t∗ = E−d /tfF0 cos θ0, where E+

d is the irradiance incident on the water just above (+)
the interface, E−d is the irradiance incident on the water just below (–) the interface and tf is the Fresnel
transmittance of the solar beam. As in Chapter 6, Section 6.4.4.3, if we let g = ES+

d /E+
d , where ES+

d is
the irradiance incident on the water surface from the sky, then it follows that

t∗ =

[
gTS + (1− g)tf

tf

]
tE ,

where TS is the irradiance transmittance of sky light through the interface. Thus, the relationship between
tE and t∗ is governed by g and TS : g depends on the properties of the atmosphere and TS on the angular
distribution of the sky radiance and the water surface roughness. As an example of the difference between
tE and t∗ we examine the Rayleigh component of each at 412 nm. (Recall that Rayleigh scattering is
much more important than aerosols in both quantities and is largest at the shortest wavelengths of ocean
color sensors. The table below provides the ratio t∗/tE , at 412 nm, as a function of θ0 derived from exact
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t(θv, λ)ρw(θv, λ) = t∗(i)(θv, λ)t∗(i)(θ0, λ)[ρw(λ,CP , b
0)]N .

Next, we examine the residual

δ(i, CP , b
0) , 100%

×

√√√√ 1

n− 1

n∑

j=1

[
t∗(i)(θv, λj)t∗(i)(θ0, λj)[ρw(λj , CP , b0)]N − t(θv, λj)ρ(i)

w (λj)

t∗(i)(θv, λj)t∗(i)(θ0, λj)[ρw(λj , CP , b0)]N

]2

,

where n is the number of visible wavelengths. The value of δ is computed for each aerosol
model and set of ocean parameters. One might suggest that the set of parameters i, CP ,
and b0, that yield the smallest δ(i, CP , b

0) should be chosen as the best, i.e., the solution
to the problem; however, as it is unlikely that the “correct” model is one of the set of
candidates, averaging over some number of the best retrievals (i.e., retrievals with the
lowest values of δ(i, CP , b

0)) to obtain the retrieved ocean and aerosol parameters seems
more reasonable. Here that number is ten.

Figure 10.24 shows the result of tests of this algorithm using atmospheric pseudo data
generated with the M80, C80, T80, and U80 aerosol models. The aerosol optical thickness
at 865 nm is 0.2 for all cases. The pseudo data for ρw(λ) were generated using the model
for the water-leaving reflectance given in the Appendix. The same water model is used
to generate the pseudo data and to operate the SMA; so this may represent an optimum
situation. Sixteen aerosol models are used as candidates: M, C, T and U models with RH
= 50, 70, 90, and 99%. Note the test models are not part of the candidate set. For this test,
the vertical structure of the aerosol in the generated pseudo data is the same as that in the
candidate models — again, the optimal situation. The figure clearly demonstrates that with
the above limitations — correct water model and correct aerosol vertical distribution — the
SMA performs very well. Of particular importance is that the algorithm has no difficulty
determining the presence of strongly absorbing aerosols. In a real-world operation, the
algorithm could incorporate vertical structure by having candidate models with a range of
prescribed vertical structure.

computations for a flat interface.

θ0 t∗/tE
0◦ 0.988
20◦ 0.987
40◦ 0.984
60◦ 0.986
70◦ 1.018

Clearly, the error in replacing tE by t∗ is <∼ 1.5%.
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10.5.3.2 Application of the SMA — A Case Study

Large dust plumes often flow off the African Continent over the Northeast Atlantic. Figure
10.25 shows a dramatic example of such a plume captured in a SeaWiFS image. The islands
in the image provide evidence that this plume is not confined to the surface, but extends
to at least 2 km. There is no way one could hope to effect retrieval of ρw in the dense parts
of a plume such as this, as the water surface is totally obscured; however, even outside the
densest parts, where the water surface is clearly visible, i.e., the blue portions of the image,
the dust can confound the retrieval algorithm discussed in Section 10.4 because it strongly
absorbs in the blue. Dust-contaminated imagery such as this can provide a challenging,
real-world, test of the SMA. However, to effect such a test, we need a realistic model of
the spectral scattering and absorption properties of the dust. In addition, as Figure 10.25
shows, we cannot assume the aerosol is confined to a thin layer near the surface as we did
in the tests in Section 10.5.4.1.

In what follows, we first develop models of the dust that are based on SeaWiFS observa-
tions of a dust event (not the one in Figure 10.25), and then use these models in the SMA
to perform atmospheric correction of imagery in the presence of wind-blown dust.

10.5.3.2.1 Development of Aerosol Models for Windblown Dust

To develop and tune models that are appropriate to the Saharan dust zone, we need to
examine a dust event in which the dust concentration is strong enough that the contribution
to ρa + ρra + tρw from tρw is insignificant compared to ρa + ρra. Such an event is available
and is shown in Figure 10.26, which provides ρA(865) , ρa(865) + ρra(865) from SeaWiFS
imagery off the coast of Africa. Figure 10.27 provides values of ρA(λ) extracted from the
image along the dashed track line in Figure 10.26. Interestingly, there is a steady decrease
in ρA(λ) progressing from the red to the blue. Note that the areas in the image with the
highest dust concentration have ρA(865) ≈ 0.25. This is extraordinarily high considering
that a 100% diffusely reflecting surface (e.g., a piece of white paper) would have a ρ of
unity. It is also an order of magnitude or more higher than ρA(865) typically found over
the open ocean (Figure 10.4). Also note the track from 23◦N to 26◦N, where ρA(865)
increases by over a factor of two, but ρA(412) hardly increases at all, and ρA(443) increases
only about 25%. This is in the region where the absorption is so high that ρA increases
only slightly with a large increase in τa, i.e., ρA is approaching an asymptotic value as
τa → ∞ (saturation). In contrast, between 28◦N and 33◦N ρA at 412 and 443 seems to
follow the variations in ρA(865). This suggests that there are aerosol differences between
these two latitude regions on the track, either in aerosol’s physical properties (particle size
or refractive index) or in the aerosol’s vertical distribution. But before further analysis of
this data, we need to show that the water’s contribution to ρA(λ) can be safely neglected.
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To estimate the contribution of tρw at the other bands (it’s taken to be zero at 865
nm), we need an estimate of ρw and an estimate of t. For this region it is reasonable to
assume that CP ≈ 0.5 mg/m3. The model in the Appendix provides [ρw(λ)]N for this
CP . Then tρw = t(θv)tE(θ0)[ρw(λ)]N , but since the angular distribution of ρw is unknown,
we take it to be uniform, so t(θv) = t∗(θv). As before, we also take tE(θ0) = t∗(θ0),
yielding tρw = t∗(θv)t

∗(θ0)[ρw(λ)]N . So we need to be able to estimate t∗(θ), and this
requires the aerosol optical depth. From Figure 10.26 we can see that the track along
which the data were extracted is located near the edge of the scan with the sun near the

zenith (as indicated by the sun glitter mask). This suggests that θ0 ≈ 0, θ
(s)
v ≈ 45◦, and

φv−φ0 ≈ 90◦. To get a rough estimate of τa(865) consider Figure 10.8 for the M99 model.

Figure 10.8 is for θ0 = 60◦ and θ
(s)
v = 0◦; however, all of the top-of-atmosphere ρ’s satisfy

the reciprocity principle in a particularly simple form: ρ(ξ̂v, ξ̂0) = ρ(ξ̂0, ξ̂v), so Figure 10.8

also applies to θ0 = 0◦ and θ
(s)
v = 60◦. Ignoring the difference for the moment between

θ
(s)
v = 45◦ and θ

(s)
v = 60◦, Figure 10.8 suggests that ρa + ρra ≈ 1.5 ρas. We can calculate

ρas directly from Eq. (12.29) using the phase function for M99 in Figure 10.9, yielding
ρas(865) ≈ 0.053 τa(865). Then, for the region where ρa + ρra ≈ 0.1 along the track, i.e.,
between 26 and 32◦N, we find that the required value of τa(865) would be approximately
1.25. Thus, it is reasonable to expect for these regions, and for much of the data extracted
along the track line in Figure 10.26, that τa(865) > 1. We will, conservatively, assume
τa(865) = 1 in computing the diffuse transmittances, fully realizing that it could be, and
likely is larger, making t∗ and t∗ρw even smaller.

Using τa(865) = 1 and the formulas for t∗ in Chapter 9, the resulting values of tρw are
provided in Table 10.5 for two aerosol models: M99 and BDS1. Recall (Chapter 4) that
BDS1 is an aerosol model that has been used extensively to estimate the optical properties
of Saharan dust and as such has significant absorption, especially in the blue. In the case
of BDS1, the t∗’s were computed “exactly,” while those for M99 were approximated using
the formulas in Chapter 9. Comparing the values of ρA(λ) in Figure 10.27 with tρw(λ)
in Table 10.5 suggests that tρw(λ) contributes at most a few percent to ρA(λ), especially
considering that τa(865) = 1 is a conservative estimate. Thus, we will assume henceforth
in this section that ρA(λ) = ρa(λ) +ρra(λ) along the track line shown in Figures 10.26 and
10.27, i.e., we ignore tρw.

Let’s now see how maritime and dust models compare when applied to the data in
Figure 10.27. If we are given ρA(865), then for a given aerosol model we can compute
ρa(λ) + ρra(λ) as follows:

ρA(865)
Model−→ ρas(865)

Model−→ τa(865)
Model−→ τa(λ)

Model−→ ρa(λ) + ρra(λ).

Figure 10.28 shows the results of this procedure using the M90 and the BDS1 models.
For the computations in Figure 10.28 the vertical structure of the aerosol was the same in
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Table 10.5: Estimated tρw for data along the track line in Figure 10.26. Two aerosol
models are used in the estimate: M99 and BDS1. Also given are the estimated
values of [ρw]N for value of CP = 0.5 mg/m3.

λ [ρw]N tρw tρw
(nm) M99 BDS1

412 0.0081 0.0043 0.0025

443 0.0084 0.0047 0.0031

490 0.0103 0.0058 0.0044

510 0.0090 0.0052 0.0040

555 0.0057 0.0036 0.0028

the two cases — all confined to the lower layer of a two-layer atmosphere. The difference
between the results for the two models is striking. In contrast to the experimental data, as
expected the M90 model with very little absorption shows practically no spectral variation,
while the BDS1 model captures the main features of Figure 10.27. There is no doubt that
the dust is absorbing, and that it becomes more absorbing as one progresses from the red
to the blue.

Although the BDS1 model with the dust confined to the surface captures the qualitative
features of the data along the track, we need to see if it is in quantitative agreement. Also,
we need to know quantitatively the influence of vertical structure. For this purpose, we
considered the BDS models (Chapter 4) with the following two-layer vertical structures:
all of the aerosol confined to a thin layer at the surface with all of the molecular scattering
above it (V00); the aerosol mixed uniformly with air to an altitude of 2, 4, 6, or 8 km
with only the air above it (respectively, V02, V04, V06, or V08); and the aerosol uniformly
mixed with air throughout the entire atmosphere (VUU). Exact computations of ρa + ρra
were then carried out for each wavelength and compared with the data extracted along the
track line shown in Figure 10.26. Figure 10.29 provides an example of this extraction at
443 nm. The extracted data clearly show the two latitude regimes discussed earlier: one
where ρA(443) varies more or less linearly with ρA(865) (Region 1) and one where it varies
also linearly, but very slowly with ρA(865) (Region 2). The comparison between exact
computations, for two aerosol models, and the extracted data for 443 nm is provided in
Figure 10.30. Plotted along with the data on the figure (left panel) are the model results
for BDS1 and BDS3 having the vertical distributions V00, V04, and VUU. The results for
BDS1 and V00 clearly suggest that this model is too absorbing over the Region 1 part of
the track. The other vertical distributions shown are even more absorbing in Region 1.
The BDS1 model can work in Region 2, but that requires it be mixed to heights above
4-6 km. However, the BDS3 model, which differs from BDS1 only by having twenty times
more particles in the largest size mode, can explain the Region 2 data only if the aerosol
is not mixed as high a 4 km. To try to achieve a better fit in Region 1, a new model BDB
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was developed with the same size distribution as BDS but with a smaller absorption index
(imaginary part of the refractive index). (The physical properties of the BDB model is
described in Chapter 4.) Figure 10.30 (right panel) shows the results for this model. It
fits Region 1 (BDB1) well and can also fit Region 2 if the aerosols are mixed high enough
in the atmosphere with more large particles (BDB3). The absorption index as a function
of wavelength for the BDB model was derived by carrying out the exercise described here
for all of the other SeaWiFS bands. Because the data in Region 2 are closer to the most
intense part of the plume, and hence closer to the source, it is reasonable to expect the
largest-sized particles to still be in suspension. Farther away from the plume one might
well expect some of the largest particles have settled out. So a variation of the particle size
distribution over the area is not unlikely. However, as these dust particles are likely all from
one source one would expect that the composition (refractive index) are all the similar,
unless it depends significantly on particle size, i.e., a different absorption index in each size
class. Thus, one would expect either the BDS or BDB models might be appropriate to this
dust event, but not both, as they only differ in absorption index.

10.5.3.2.2 Application of SMA to Imagery Containing Windblown Dust

Now that we have seemingly appropriate models to use then windblown dust is present
off the West African Coast, we can use these as candidates in the SMA in this region to
effect retrieval of CP . To carry this out, 18 candidate models have been used: BDS1,
BDS2, BDS3, BDB1, BDB2, and BDB3, each with three vertical distributions — V02,
V04, and V06. The results are then compared with the standard SeaWiFS algorithm
(STD) described in Section 10.4. The STD estimates the concentration of Chlorophyll a,
while the SMA estimates the pigment concentration CP . Typically when measured at sea
using fluorometry CP is about 35% greater than C. However, as the [ρw]N model is not
perfect, it can yield CP ’s that are actually lower than C. We will not try to reconcile these
differences here, but will use the exercise only to assess the ability of the SMA to effect a
reasonable atmospheric correction. Figure 10.31 compares the STD and the SMA for two
days: October 3, 1997 (dusty) and September 29, 1997 (dust free). The area between 13◦N
and 22◦N in the STD image for October 3 contains the dust and no retrievals are obtained
there because of the SeaWIFS dust avoidance mask (i.e., these regions are not processed);
however the SMA does retrieve reasonable values of CP there, as evidenced by the similarity
with the retrievals from the clear day (September 29). The speckled white areas in the
imagery are clouds and are masked out (not processed) by both algorithms. The SMA
and the STD use different cloud masking algorithms (SMA is more conservative), so in
some areas there appear to be more clouds in the SMA than in the STD. The consistency
between the SMA retrievals for the two days suggests success in atmospheric correction.
Figure 10.32 provides the average aerosol optical depth retrieved over the time period
September 30 to October 7 and shows that the mean τa(865) is close to unity over much
of this plume, while outside it is ∼ 0.15. However, outside the plume, the dust models are
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probably not realistic (and non-absorbing aerosol are not included as candidates), so the
τa retrieval is likely too large outside the plume, e.g., in Figure 10.10 compare the ω0 = 1
with the ω0 = 0.8 curves.

This example of the development of models for, and application of, the SMA to atmo-
spheric correction in a region of strongly-absorbing aerosols has been presented as a case
study. The goal was to define a procedure when such aerosols are encountered. To effect
atmospheric correction one must first develop site-specific aerosol models, as the nature
of the aerosol from one region to another is variable, i.e., Saharan dust does not have the
same chemical composition or optical properties as dust from the Gobi Desert. Next, one
must have some understanding regarding the vertical distribution of the aerosol. Finally,
one needs a reliable bio-optical model to be able to predict [ρw(λ)]N as a function of the
constituent concentrations. Only by possessing knowledge of all three of these components
can one hope for adequate atmospheric correction.

10.5.3.3 Further Comments Regarding Absorbing Aerosols

In the example above, one of the retrieved quantities was CP , but it was compared with
C. This can be remedied by using a [ρw]N model based on C as developed in Chapter 6.
Another approach is to use the SMA only to provide the best aerosol model at a given pixel,
and then use that particular aerosol model in the STD algorithm for estimating [ρw(λ)]N .
The estimated [ρw(λ)]N can then be used in the standard bio-optical algorithms to retrieve
C. This procedure was used to study the distribution of C in the Arabian Sea during the
Southwest Monsoon time period when much of the Northern Arabian Sea is obscured by
dust. Figure 10.33 compares the results of the SMA and STD algorithms for this region
using the dust models developed in the previous section. Note the considerable increase
in coverage for the summer months by the SMA and the excellent agreement between the
two in regions outside the dust.

The vertical distribution of the aerosol requires further comment. In the SMA we have
used vertical distributions for which the dust is extant from the surface to a specific altitude,
e.g., 2, 4, 6 km, etc. But what if the dust exists in a layer above the surface? This can lead
to further complications. Consider Figure 10.34, which provides the ρA(412) — ρA(865)
relationship for two vertical distributions: V04 and V26. For V04 the aerosol is uniformly
mixed with air from the surface to 4 km, while for V26 the same optical depth of aerosol
is mixed from 2 km to 6 km with no aerosol from the surface to 2 km. Thus, the layers
have the same physical (and optical) thickness, but differ only in their position vertically
in the atmosphere. The difference in the computed ρA(412) is striking. The V26 result is
actually very close to the result for V08. Clearly, in general we not only need to know the
thickness of the layer, we need to know where it is in the atmosphere.
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The strong influence of the vertical distribution of particle absorption on the reflectance
of the ocean-atmospheric system can be understood with a simple example. Consider an
aerosol with ωa = 0, i.e., totally absorbing. If it is in a thin layer at the surface, only that
part of ρr that interacts with the surface (the Fresnel reflectance terms in Eq. (12.29))
is influenced by the aerosol. They account for only about 5% of ρr. If the aerosol is in
a layer at the top of the atmosphere, the solar beam is attenuated before creating the
Rayleigh reflectance, and then the created ρr is attenuated again propagating to the TOA,

i.e., ρr → ρr exp[−M τAbs], where M is the airmass [(cos θ0)−1 +(cos θ
(s)
v )−1] and τAbs is the

absorption optical depth of the aerosol. The latter ρr is much smaller than the former: the
TOA-reflectance becomes smaller as the absorbing layer moves higher into the atmosphere,
as in Figure 10.34.

Increasingly, LIDAR systems are being placed on Earth observing systems for the pur-
pose of measuring the cloud and aerosol backscattering. These, like LITE (described in
Chapter 4), can provide the aerosol concentration as a function of altitude. Newer sys-
tems, that measure the polarization of the backscattered light as well as the magnitude,
can give an indication of the aerosol type, e.g., mineral (dust) as opposed to maritime
(water). Thus, vertical distributions of aerosol will be available for used by future ocean
color scanners. Incorporation of such information into atmospheric correction schemes in
an efficient manner is left to future investigators — perhaps the reader.

10.6 Summary and Discussion

In this chapter we have derived an atmospheric correction procedure using the single-
scattering analysis and its algorithm as a guide. This algorithm was particularly appealing
because it only required a knowledge of the spectral variation of ρas, which could be es-
timated from that in the NIR. However, because of the severe accuracy requirements on
the retrieved [ρw]N in the visible, we showed that the single-scattering algorithm often was
not up to the task, and that attention to multiple scattering was required. As multiple
scattering effects depend significantly on the aerosol phase function and single scattering
albedo, more complete information is required to address them. This forced the use of
detailed models of the aerosol — considerably more information than was required in the
single scattering case. Since inclusion of multiple scattering required solving the radiative
transfer equation for the particular geometry and aerosol concentration, this required off-
line solution of the equation and the storage of, and the use of, the spectral variation of ρA
in the form of lookup tables that are accessed at each pixel to be corrected. Fortunately,
for non- or weakly-absorbing aerosols — the usual situation — the spectral variation of
ρA is nearly independent of the vertical distribution of the aerosol, greatly reducing the
complexity of the lookup tables. Simulations indicate that the final multiple-scattering
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algorithm can retrieve [ρw]N with the needed accuracy, but only in situations in which
the aerosol is non-absorbing or weakly absorbing. This is borne out by several years of
successful processing of SeaWiFS imagery. It is important to note that the aerosol models
that are used in the algorithm need not be precise. For atmospheric correction they need
only provide the correct spectral variation of ρA, i.e., ε(λi, λl). In contrast, to retrieve the
aerosol optical depth, it is necessary that the models provide a good representation of the
actual aerosol phase function and aerosol absorption properties, as ρA is approximately
∝ ωaτa[P (Θ−) + r(θ0) + r(θv)P (Θ+)]. Error in ωa or P (Θ), especially in the backward
directions (Θ−), translates directly to error in τa. The reader will note that our develop-
ment has been based on scalar radiative transfer. Extension to vector radiative transfer
(i.e., including polarization) only requires recalculation of the lookup tables using a vector
radiative transfer code, and this has been done.

We then examined the problems associated with atmospheric correction in the presence
of strongly-absorbing aerosols, using urban aerosols as an example. An algorithm was
proposed — the spectral matching algorithm — in which atmospheric correction and the
retrieval of constituent concentrations are effected in a single process. A case study was
provided in which the strongly-absorbing aerosol was windblown Saharan dust. In this
study, satellite imagery from the specific region in question was used to develop appro-
priate aerosol models to use in the correction process. With these models the algorithm
successfully retrieved the pigment concentration in dusty areas off the West Coast of Africa
during a dust outbreak. In addition, combining the dust algorithm with the standard algo-
rithm allowed estimation of the concentration of Chlorophyll a in the Arabian Sea during
the Southwestern Monsoon.

What we have so far then is an algorithm that will successfully retrieve the water-leaving
reflectance in most cases. However, there are additional complications that must be faced in
special circumstances. These include, but are of course not limited to, (1) the effect of the
curvature of the earth when imagery are acquired at large θ0, e.g., high-latitude imagery,
(2) the effect of thin cirrus clouds as well as stratospheric aerosols resulting from volcanic
sources, and (3) the failure to address the problem of replacing t by t∗. In addition, there
are many issues that must be faced concerning unintended instrumental effects such as the
sensitivity of the instrument to the polarization state of the radiance being measured, and
the out-of-band response of the instrument. Dealing with these and other complications
would take us too far afield from the main subject of this monograph, but they are dealt
with in references provided in the Bibliographic Notes.
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10.7 Appendix: The SMA Water-Leaving Reflectance Model

In Chapter 7, Section 4 the normalized-water-leaving radiance [Lw]N was related to the
subsurface upwelling radiance through

[Lw(ξ̂v, ξ̂s)]N = <(ξ̂v, ξ̂s)F̄0

(
Lu(ξ̂′v, ξ̂

′
s)

Ed(ξ̂′s)

)
,

where

<(ξ̂v, ξ̂s) =
tf (ξ̂v, ξ̂

′
v)tf (ξ̂s, ξ̂

′
s)

m2
w(1− rR(ξ̂′s))

.

Recall that the water-leaving reflectance [ρw]N is related to the water-leaving radiance
through [ρw]N = π[Lw]N/F̄0, so modeling [ρw]N requires modeling Lu/Ed.

23

The model used in the SMA was developed when the modeling of AOPs in terms of
IOPs was in its infancy, and therefore is far less sophisticated than those in Chapter 6.
The radiative transfer part was developed from relationships found in Section 6.4.9 of
Chapter 6, in which early studies suggested that

Lu
Ed

=

2∑

N=1

gn
bb

a+ bb
and

Kd(0)

D0
≈ a+ bb,

so, taking only the first term in the sum,

Lu
Ed
≈ g1D0

bb
Kd(0)

.

Here, g1 ≈ 0.1 and typically 1 < D0 < 1.2 and is nominally taken to be 1.1. The down-
welling irradiance attenuation coefficient was modeled by Baker and Smith [1982] for Case
1 waters as

K = Kw +Kc, (10.20)

where Kw and Kc are the partial contributions to K due to water and phytoplankton, with

Kc = kcCP exp
[
−
[
k′c log10(CP /CP0)

]2]
+ 0.001C2

P ,

where kc, k
′
c, and CP0 are dependent on wavelength and have been tabulated for CP < 10

mg/m3. The SMA water-leaving reflectance model assumes Kd(0) = K, as modeled in Eq.

23It also requires modeling R in <. This is easy since R = QLu/Ed, and because of the smallness or R
(typically < 0.1) Q can be taken anywhere between 3 and 6 with little affect on the result. So modeling
Lu/Ed also provides the needed model for R.
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(10.20). The model for bb is a cruder version of those discussed in Chapter 5. We note
that bb = bbw + bbp, and write bbp = Bpbp. Then, bp is taken to be bp = b0C0.62

p , where
0.12 < b0 < 0.45 m−1, with a mean of 0.3 m−1 and CP is in mg/m3. The backscattering
probability varies from 2% at CP = 0.1 mg/m3 to 0.5% at CP = 20 mg/m3 (within
absorption bands, e.g., 443 nm, Bp = 0.3% at CP = 20 mg/m3). Between these CP limits,
Bp follows a power-law variation with CP . The particle scattering coefficient is taken to
vary with wavelength as λ−1. Thus, the water-leaving reflectance becomes a function of
three parameters: b0p, CP and λ.

Examples of the quality of the model in representing [ρw(λ)]N as a function of CP are
provided in Figure 10.35, for the mean and the extreme values of b0. Figure 10.36 shows
the ratio [ρw(443)]N/[ρw(550)]N as a function of CP for b0 = 0.2 m−1. Clearly the model
captures much of the variation of [ρw(λ)]N with CP .

10.8 Bibliographic Notes

Most of the work described in the chapter was carried out by the author and co-workers. A
significant portion of the material (some verbatim) is drawn directly from Gordon [1997],
albeit with some enhancements.

10.1 Introduction

The data shown in Figure 10.1, converted to [ρw]N from [Lw]N , was taken from Gordon
et al. [1988]. The data were also presented in Gordon [1997], although most the [Lw]N data
had already been presented in Gordon and Clark [1981], where the concept of normalized
water-leaving radiance was first introduced. The global aerosol network, AERONET, is
describe in Holben et al. [1998].

10.3 A Single Scattering Solution

The single scattering solution was first provided in Gordon [1978b] and Gordon et al.
[1983], and in the form presented in this section by Wang and Gordon [1994]. Figure 10.3
is from Gordon et al. [1983]. The data in Figure 10.4 were taken close to the Hawaiian Is-
lands on the SeaWiFS initial calibration-validation cruise organized and directed by Dennis
Clark.

10.4.1 The Multiple Scattering Retrieval Algorithm

The multiple scattering algorithm first appeared in Gordon and Wang [1994] in basically



10.8. BIBLIOGRAPHIC NOTES 745

the form presented here.

10.4.2 Simulated Test of the Multiple-Scattering Algorithm

The tests here are from Gordon [1997].

10.4.4 The Diffuse Transmittance

The development of t and t∗ in this section follows that in Yang and Gordon [1997]. A
demonstration of the magnitude of the error (t−t∗)/t for actual SeaWiFS data is presented
in Gordon and Franz [2008], and suggests that the actual error in replacing t by t∗ is ∼ 1%
as long as the viewing angle is less than about 60◦.

10.4.7 Non-zero [ρw]N in the NIR

The “black pixel” approximation in the NIR is examined by Siegel et al. [2000] and Bailey
et al. [2010] along with an iterative method to overcome its failure. Wang and Shi [2007]
and Wang et al. [2009] discuss using the SWIR in addition to the NIR for atmospheric
correction in turbid coastal environments.

10.5 Absorbing Aerosols

Gordon et al. [1997b] first introduced the spectral matching algorithm for absorbing
aerosol. Much of the material in this section is from Gordon [1997].

10.5.3.2.1 Development of Appropriate Aerosol Models for Windblown Dust

The material here is mostly from Moulin et al. [2001].

10.5.3.2.2 Application of SMA to Imagery Containing Windblown Dust

This is from Moulin et al. [2001].

10.5.3.2.3 Further Comments Regarding Absorbing Aerosols

The summer month panels of Figure 10.33 appeared in Banzon et al. [2004].

10.6 Summary and Discussion

The extension of the standard atmospheric correction to large values of the solar zenith
angle for which the curvature of the Earth is important is provided in Ding and Gordon
[1994]. They showed that the Gordon and Wang [1994] algorithm was still valid in such
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situations as long as the Rayleigh contribution was computed taking into account the
curvature of the Earth. Correction of the interference of the O2 “A” absorption band on
the 765 nm band of SeaWIFS is described in Ding and Gordon [1995] and a general method
for dealing with out-of-band spectral sensitivity is provided in Gordon [1995]. The problem
of correcting sensor measurements for polarization sensitivity is developed in Gordon et al.
[1997a]. The general subject of the diffuse transmittance is given in Yang and Gordon
[1997] and in the context of replacing t by t∗ in Gordon and Franz [2008]. Some effects of
stratospheric aerosols and thin cirrus clouds are studied in Gordon et al. [1996].

Finally, an alternative to the SMA called the spectral optimization algorithm (SOA)
has been developed for dealing with absorbing aerosols of the urban variety [Chomko and
Gordon, 1998, 2001; Chomko et al., 2003]. Here power-law size distributions are used,
and a matrix of refractive indices, allowing essentially a continuum of models through
interpolation. Classical optimization techniques are then used to effect a solution. This
method was applied to Case 2 waters by Kuchinke et al. [2009] and Kuchinke et al. [2009].

10.7 Appendix: The SMA Water-Leaving Reflectance Model

This model was originally developed in Gordon et al. [1988]. Although more sophisti-
cated models now exist (e.g., see Chapter 6), this is the one that was used with the original
SMA.
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Figure 10.1: Normalized water-leaving reflectance ratio (443:550) as a function of
pigment concentration (left panel). Normalized water-leaving reflectance (443) as
a function of pigment concentration (right panel). From Gordon [1997], redrawn
from Gordon et al. [1988].
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as a function of CP .
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Figure 10.3: Lt(443) (top left panel), Lw(443) (top right panel), Lt(550) (bottom
left panel) and Lw(550) (bottom right panel) for a CZCS image from Orbit 3171
over the Middle Atlantic Bight. The Lw retrieval was based on the method de-
scribed in the text. A warm core ring located between the cloud and the lower right
corner of the image was used as the “clear water” area for determining ε(550, 670).
From Gordon et al. [1983].
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Figure 10.4: Top of atmosphere reflectance data ρt from eight SeaWiFS images (top
left) taken in oligotrophic waters near Hawaii coincident with surface measurements
of ρw (top right) obtained from a ship at the same location. The lower figures are
the derived values of ρt − ρr (bottom left) and ρt − ρr − tρw = ρa (bottom right).
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Figure 10.5: ε(λ, 865) for near-nadir viewing with θ0 = 60◦. Left panel: Maritime
(M), Coastal (C), and Tropospheric (T) aerosol models (the relative humidity,
RH, values are 50, 80, and 98% from the upper to the lower curves, so the model
for the top curve is referred to in the text as “T50” and the bottom as “M98”).
Right panel: Haze C models. For both panels the open symbols are for models
with practically no absorption. The filled symbols are for models with weakly- or
strongly-absorbing aerosols. From Gordon [1997].
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10.5. From Gordon [1997].
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Figure 10.7: ∆[ρw(443)]N as a function of ε(e)(765, 865) and τa(865) (top) and
∆[ρw(550)]N as a function of ∆[ρw(443)]N (bottom) for all of the aerosol models

and the seven Sun-viewing geometries: θ
(s)
v ≈ 1◦ and 45◦ with θ0 = 0, 20◦, 40◦,

and 60◦ and φv − φ0 = 90◦, but excluding θ
(s)
v ≈ 1◦ with θ0 = 0 because of Sun

glitter. The dashed lines in the upper panels indicate the goal of ±0.002 for the
error in [ρw(443)]N . Left panels: τa(865) = 0.1. Right panels: τa(865) = 0.2.
Open symbols are for aerosol with very little (or no) absorption. Filled symbols
are for aerosols with moderate to strong absorption. From Gordon [1997].
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Figure 10.8: The ρa(λ) + ρra(λ) versus ρas(λ) relationship at θ0 = 60◦ and near-
nadir viewing. Left panel: T50. Right panel: M99. From Gordon [1997].
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Figure 10.10: Computations of the ρa+ρra, as a function of ρas, for examining the
effects of aerosol absorption. This is similar to Figure 10.8, but obtained using the
T50 model phase function (for 865 nm, Figure 10.9) with ωa values of 0.6, 0.8, and
1.0 (increasing from bottom to top), rather than the values given by the model.
From Gordon [1997].
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Figure 10.11: Similar to Figure 10.7, but compares single (CZCS) and multiple
(SeaWiFS) scattering algorithms. Left panels: Single scattering algorithm. Right
panels: Multiple scattering algorithm. Open symbols are for aerosol with very
little (or no) absorption. Filled symbols are for aerosols with moderate to strong
absorption. From Gordon [1997].
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Figure 10.13: Percent error in the diffuse transmittance when t∗ is used in place of
t and the angular distribution of Lu is determined by the Petzold phase function
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represented by the M90 model and θ0 = 40◦. From Yang and Gordon [1997].
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Figure 10.14: Percent error in the diffuse transmittance when t∗ is used in place of
t and the angular distribution of Lu is determined by the Petzold phase function
(Phase-T). The viewing angle is θv (angle between zenith and the propagation
vector) and the viewing azimuth angle is 90◦ relative to the Sun. The aerosol is
represented by the M90 model and θ0 = 60◦. From Yang and Gordon [1997].
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Figure 10.15: Percent error in the diffuse transmittance when t∗ is used in place of
t and the angular distribution of Lu is determined by the Rayleigh phase function.
The viewing angle is θv (angle between zenith and the propagation vector), the
viewing azimuth angle is 90◦ relative to the Sun, and θ0 = 40◦. From Yang and
Gordon [1997].
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Figure 10.16: Percent error in the diffuse transmittance when t∗ is used in place of
t and the angular distribution of Lu is determined by the Rayleigh phase function.
The viewing angle is θv (angle between zenith and the propagation vector), the
viewing azimuth angle is 90◦ relative to the Sun, and θ0 = 60◦. From Yang and
Gordon [1997].

Figure 10.17: The concentration of Ozone for a single day as revealed by TOMS.
Note the range of variability and the weather-like patterns in the concentration.
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10.9. FIGURES 759

C

M

T

U

U

ɛ(
λ s
,λ
l)

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

ωa
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Figure 10.19: The relationship between ε(λs, λl) and ωa(λl) for the twelve original
candidate aerosol models: M (circles), C (diamonds, red), and T (triangles). For
each model the relative humidities are 99% for the lowest ε to 50% for the highest,
with 90% and 70% in between. The model marked U (squares) is the urban model
with U50 at the far left and U99 at the far right. The position of the “U” symbol
on the plot gives the approximate value of ωa for U80.
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Gordon [1997].
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Figure 10.21: The effect of the vertical distribution of aerosol on the error
∆[ρw(443)]N as a function of θ0 at the edge of the scan τa(865) = 0.2 using the
multiple scattering algorithm that assumes that the “Two-layer” stratification is
correct. Left panel: T80 and M80. Right panel: U70 and U80. From Gordon
[1997].
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Figure 10.22: Effect of the vertical distribution of aerosol on the error ∆[ρw(443)]N
as a function of θ0 at the edge of the scan for the U80 aerosol models with τa(865) =
0.2. Curves from top to bottom refer to situations in which the aerosol is confined
to a layer just above the surface, between the surface and 1, 2, 4, and 6 km, and
uniformly mixed throughout the atmosphere. From Gordon [1997].
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Figure 10.23: Influence of the physical thickness of the aerosol layer on the spec-
trum of ρa + ρra. For U80 the aerosol is confined to a thin layer near the surface,
while for U180, U280, U480, and UU80, the aerosol is uniformly mixed with air to
a height of 1 km, 2 km, 4 km, and the whole atmosphere, respectively. Viewing is
near nadir and θ0 = 60◦. (Gordon et al. [1997b].)
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Figure 10.24: Results of tests of the SMA using M80, C80, T80 and U80 to create
the pseudo data for ρt. Given along the top of each panel are the values of τa at
865 nm, CP (called C on the figure) in mg/m3, b0 in m−1 and ωa (called ω0 on
the figure) at 865 nm. The data points are ρt − ρr and the lines close to the data
points are the results of the three best models. The labels for these lines provide
the retrieved model, τa, CP , b0 and, in parenthesis, δ in %. Note that the SMA
has no problem distinguishing between very-weakly-absorbing aerosols (M80 and
C80), weakly-absorbing aerosols (T80) and strongly-absorbing aerosols (U80).The
averages for ωa, CP and τa over the ten best models and their relative standard
deviation in %, are also provided. The lower curve (chain dashed) gives ρa + ρra
for the best model. The parameter listed as θv is actually θ

(s)
v . From Gordon et al.

[1997b].
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Dust is in a layer above the surface!  Dust is in a layer above the surface!  

Figure 10.25: SeaWiFS image of a Saharan dust plume flowing from Africa into
the Northeast Atlantic. The annotation provides the heights of various islands in
the path of the plume suggesting that it extends to an altitude of at least 2 km,
but probably not to 4 km. (SeaWiFS Project NASA/GSFC and ORBIMAGE)
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Plate 1:  SeaWiFS image of ρA(λ )  at 865 nm from 98174 (year 1998, day 174).  Reflectance 
is high for red colors and low for blue-purple. The vertical black area is the portion masked 
because of sun glint, and the horizontal strip is the data that is missing because of the change 
in the sensor’s tilt from north to south.
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Figure 10.26: SeaWiFS image of ρA(865) = ρa(865) + ρra(865) showing a dust
plume off the West Coast Africa on June 23, 1998. The vertical white area is the
portion masked because of Sun glint, and the horizontal strip is the data that is
missing because of the change in the sensor’s tilt from north to south. From Moulin
et al. [2001].

 
 
 

 
 
 
 
Figure 1:  Extracted values of ρA(λ) along the track line on Plate 1 as described in the text. 
Note that the quantity referred to as ρA(λ) contains the water contribution, i.e.,  it is really 
ρA(λ) + t(λ)ρw(λ). 
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Figure 10.27: Extracted values of ρA ≡ ρa + ρra along the track line in Figure
10.26. Curves progress from bottom to top through 412 to 865 nm in numerical
order. The quantity ρA is actually ρA + tρw; however, here tρw � ρA. From
Moulin et al. [2001].
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Figure 10.28: Computed ρA along the track line in Figure 10.26 for the BDS1
model (upper) compared to that of the M90 model (lower). As in Figure 10.27,
curves progress from bottom to top through 412 to 865 nm in numerical order.
From Moulin et al. [2001].
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Region 1 

Region 2 

Figure 10.29: ρA(443) as a function of ρA(865) extracted from the track line in
Figure 10.26. The enclosed points in Region 1, and Region 2 are described in the
text.
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Figure 10.30: Data points: ρA(443) as a function of ρA(865) from Figure 10.29.
Left panel: Relationships provided by the BDS1 (solid-black) and BDS3 (dashed-
red) models superimposed. For each model, the upper curve is “V00,” the middle
curve “V04” and the bottom curve “VUU.” Right panel: Same presentation as left
panel but for BDB1 (solid-black) and BDB3 (dashed-red).
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11

Figure 3. Pigment concentrations for the two “dusty” days using STD and SMA processings.
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Figure 1. 8-day mean (30 Sept.–7 Oct., 1997) of the AOD as retrieved using the SMA.

Figure 2. Pigment concentrations for the clear day using the STD and the SMA processings.
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Figure 10.31: Comparison between the standard (STD, left panels) and the SMA
(right panels) algorithms for processing SeaWiFS imagery. The retrieved quantity
is CP for the SMA and Chlorophyll a (C) for the STD. Typically, CP is about 35%
greater than C. Top panels are for a dusty day and bottom panels are for a clear
day (very little dust). Reformatted from Moulin et al. [2001].
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Figure 10.32: Average aerosol optical depth at 865 nm for the period Sept. 30 to
Oct. 7 that includes the dust event in Figure 10.31 (top panels).
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Figure 1.  Monthly means of chlorophyll a using standard SeaWiFS
processing (upper panels) and the SMA (lower panels). 
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Standard processing leads to data gaps due to cloud/dust masking. 
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SMA processing leads to greater coverage during the summer months.

Figure 10.33: Monthly concentration of chlorophyll a derived from SeaWiFS im-
agery using the spectral matching algorithm (top) [Moulin et al., 2001] and the
standard algorithm (bottom). The June, July and August panels appeared in
Banzon et al. [2004].
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Figure 10.34: Computations of ρA = ρa + ρra at 412 nm as a function of ρA(865)
for two vertical distributions of the BDS1 model. Solid line is for the vertical
distribution V04. Dashed line is for the vertical distribution V26.
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Figure 10.35: Modeled [ρw(443)]N (left panel) as a function of CP compared to
experimental data from Figure 10.1. The lines from bottom to top are for different
values of b0: 0.12, 0.30, and 0.45 m−1, respectively. Right panel is the same
presentation but for λ = 550 nm. Redrawn from Gordon et al. [1988].
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Figure 10.36: Modeled ratio [ρw(443)]N/[ρw(550)]N as a function of CP compared
to the experimental data from Figure 10.1. The value of b0 used to generate the
line was 0.20 m−1. Redrawn from Gordon et al. [1988].
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Chapter 11

Basics of Ocean Color Sensors

11.1 Introduction

In this chapter we will present some of the basic issues involved in developing the instru-
mentation used to provide imagery of ρw(λ). We will not get bogged down in the specific
detail of any one instrument; however, along the way we will discuss and compare some
aspects of the CZCS, SeaWiFS, MODIS, and VIIRS. In particular we will show examples
of how some of the basic instrumentation problems have been solved. Because the author
has extensive experience with U.S. sensors and their design, these will be focus of the dis-
cussion. We begin with consideration of some of the radiometric design questions that the
scientist must pay particular attention to, e.g., the position and number of the spectral
bands, the allowable noise in the various bands, and the analog-to-digital quantization of
the data from each spectral band. Then we look at the imaging aspects of remote sensing,
i.e., how space borne radiometers use scanning and the motion of the spacecraft to obtain
a spectral image of the water surface. Finally, we examine two examples of ocean color
scanners: CZCS and MODIS. In an appendix we consider some relevant aspects of satellite
orbits.

11.2 Radiometric Design Considerations

The design of ocean color imagers is a collaborative effort by scientists and engineers.
There are several considerations that are the responsibility of the scientific community
based on the goals of the project and the manner in which the goals are to be achieved,
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the latter of which is based in part on the algorithms to be used in processing data from
the sensor. These considerations reflect the kind and character of the data to be provided
by the sensor. Among them are the required number of spectral bands and their position
in the spectrum, the acceptable level of noise in the sensor, and the quantization interval
and saturation values of the measured radiances (reflectances). The responsibility of the
engineer is to develop a system that meets these requirements and to establish any tradeoffs
to be faced in the light of physical, time, and cost restraints. In this section we will discuss
the scientific design considerations.

11.2.1 Spectral Bands

The positioning of the spectral bands is determined by the nature of the spectrum of the
quantity one wishes to measure. In the case of most ocean color imagers the principal quan-
tity one desires is the concentration of Chlorophyll a (or the pigment concentration CP ).
Figure 11.1 shows the simulations of spectrum of water-leaving radiance (lower curves) and
top-of-atmosphere radiance (upper curves) for both low (solid) and high (dotted) pigment
concentrations in Case 1 waters.1 As we have seen earlier (Chapter 6), the curves clearly
show that the signature of high pigment concentration compared to low concentration is
a depression of the spectrum in the blue accompanied by an enhancement in the red and
very little change in the green. Superimposed over the spectrum are the spectral bands of
CZCS (left panel) and SeaWiFS (right panel). We see that the spectral bands of CZCS
are optimally positioned to record the most important features of the spectrum. The 750
nm band on CZCS, intended for use over land, is omitted because it was too insensitive
radiometrically to be of value over the water. The fewer number of bands on CZCS com-
pared to SeaWiFS reflects the fact that it was a proof-of-concept instrument. In the case of
SeaWiFS we see a band added at 412 nm to help separate dissolved organic material from
pigments, a band near 490 nm which is more sensitive to some accessory pigments (e.g.,
carotenoids, Chapter 5) than Chlorophyll a, and spectral bands at 765 and 865 nm that
were selected specifically for the purpose of atmospheric correction.2 The visible bands
on both sensors are 20 nm wide. Although one might like spectral bands as narrow as
possible, the radiant power in a spectral band is proportional to the spectral width, so the
chosen width is a compromise to provide sufficient radiant power for the detectors. The

1In the simulations, smoothed values of F0(λ) have been used, so the Fraunhofer lines do not appear;
however, the absorption bands of H2O and O2 are not smoothed and are clearly visible in the figure.

2One notes that the spectral band at 765 nm overlaps the Oxygen “A” absorption band (band head at
759 nm). This adds additional variation to the signal in this band that was removable through modeling.
Originally it was planned to divide this band into two bands (and sum their detected powers) to avoid the
absorption, but that would have caused an unacceptable decrease in the reflected signal (radiant power) in
the band combination, and the plan was abandoned.
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NIR bands are 40 nm wide.3 MODIS has spectral bands similar to SeaWiFS (except 510
nm is moved to 531 nm), but with approximately half of the spectral width for each band.
In addition it has a very sensitive band at 678 nm to be able to detect the Chlorophyll a
fluorescence at 683 nm (Chapter 6).

11.2.2 Acceptable Levels of Sensor Noise

All detectors of electromagnetic radiation (and their associated electronics) display noise.
Noise is a random fluctuation in the output of the detector, e.g., the current flowing in the
detection circuit (Chapter 12). There are several sources of noise. Many are associated
with the discrete or particle nature of light and matter. Light consists of a stream of
photons, but this stream is not uniform. The emission of a photon from a source is a
random event, so a beam of photons consists of a sequence of random events. The number
of photons received by a detector in a given time is therefore not constant, but varies in
time, so the output of the detector will vary in time.4 This variation is called photon noise.
Photon noise depends on the radiance itself and is Poisson distributed.5 If the detector
on the average receives N̄ photons per unit time, then the fluctuation (the square root of

the variance) in the number received is given by
√
N̄ , i.e., if a stream of photon causes a

detector to receive 100 photons per unit time on average, then the fluctuation will be about
10 photons per unit time, i.e., the number received will vary roughly between 90 and 110
during each unit time. In this case, the signal to noise ratio (SNR), i.e., the average signal
divided by its standard deviation will be 10, while if the beam is brighter, say containing
10,000 photons per second, then the SNR will be 100, etc. The SNR is a convenient way
of describing the performance of a detection system. The above example also shows that
for photon noise the SNR can be adjusted simply by changing the sampling time period
(also called the integration time), i.e., by increasing the sampling time by a factor of 100,
the SNR increases by a factor of 10. It also exposes a fundamental tradeoff for detection
systems for measuring weak light sources — longer integration times and lower noise versus

3The detectors used for SeaWiFS were silicon photodiodes, which are more efficient in the NIR than the
visible. However, Figure 11.1 shows that the top-of-atmosphere radiance at 765 and 865 nm is an order
of magnitude or more less than in the blue. This lower level of radiance required the larger spectral band
width in the NIR compared to the visible. (Recall that the spectral radiant power falling on a detector is
proportional to the spectral width ∆λ.)

4What we normally term as radiance is really the measured instantaneous radiance averaged over a
period of time sufficiently long to render the detector fluctuations irrelevant.

5For a Poisson distribution of photons, if the mean number of photons arriving during a time interval
∆t is N̄ , then the probability of N photons arriving in ∆t is

p(N) =
N̄N

N !
exp[−N̄ ].

It is easy to show that the variance in N is N̄ .
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shorter integration times and higher noise.6

Even though we are not going to study noise in detail, to aid in the understanding of
noise, we briefly describe two additional sources among others. The first is called shot noise.
Shot noise in any electrical system is the result of the discrete nature of electric charge. Just
as with photon noise, if a current (charge per unit time) consists of an average N̄ electrons

per unit time then the variance in the number is N̄ , so the standard deviation is
√
N̄ . So,

again, the SNR is
√
N̄ , which can be increased by increasing the unit of measurement time

which increases N̄ . A second noise source is related to the thermal motion of electrons in
any circuit element. It is called Johnson noise. To understand Johnson noise, consider an
electrical resistor of resistance R connected to a sensitive voltmeter. The electrons in the
resistor are in constant random (thermal) motion. Therefore, a fluctuating voltage will be
measured by the voltmeter even in the absence of any net current through the resistor.
Because thermal energy is proportional to the absolute temperature T , we expect that this
noise source becomes more important as the temperature increases. This is in fact the
case: the fluctuating current has an RMS value of iRMS =

√
2kBT/(∆tR), where kB is the

Boltzmann constant (1.38 ×10−23 Watt second/Kelvin), and ∆t is the integration time.
Note that in this case the noise does not depend on the magnitude of the signal, i.e., the
current flowing in the resistor, but longer integration times still lead to lower noise.

There is noise in all ocean color radiometers, and it is clear that sensors with lower
noise will perform better than sensors with higher noise. However, the reduction of noise
is usually accompanied by an increase in cost, so the maximum acceptable noise has to be
specified to be below a given level. It is up to the scientist to specify what that level of
performance must be to accomplish the scientific goals. It is up to the design engineer to
determine how to obtain the given level of performance.

How can we specify the performance of a system as complicated as an ocean color
sensor? A realistic approach is to require that the sensor be as least as good or better than
the algorithms used to provide the desired products. We have seen that for the low-CP
algorithm7 using the blue (443 nm) to green (550 nm) ratio, the error in the estimate of
CP , i.e., ∆CP /CP , is of the order of 20% (Chapter 10). For convenience we provide this
algorithm from Chapter 10:

log10CP = −0.04− 2.26 log10R+ 3.03(log10R)2 − 2.80(log10R)3, (11.1)

with R = [ρw(443)]N/[ρw(550)]N . In addition, we found that to a good approximation

[ρw(443)]N ≈ 0.0075C−0.48
P , (11.2)

6We shall see later that there is also a relationship between the integration time and the spatial resolution
at the water surface. This is another example of a tradeoff to be faced in ocean color sensor design.

7Recall that this algorithm would be used for 0 ≤ CP ≤ 0.6 mg/m3.
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and by inverting the first equation and combining it with the second we have a statistical
approximation to [ρw(550)]N as a function of CP . For the sensor be as least as good or
better than this algorithm, we require that the error introduced by the sensor noise be a
fraction f of ∆CP /CP . For example, if we required that

(
∆CP
CP

)

Sensor

= f

(
∆CP
CP

)

Algorithm

then in a statistical sense, the total (sensor plus algorithm) uncertainty in the derived CP
would be (

∆CP
CP

)

Total

=

√(
∆CP
CP

)2

Sensor

+

(
∆CP
CP

)2

Algorithm

=
√

1 + f2

(
∆CP
CP

)

Algorithm

.

Thus, if f = 1/2 the total uncertainty is only about 22% if
(

∆CP
CP

)

Algorithm

= 0.2.

This approach allows us to determine some requirements concerning the acceptable sensor
noise. Since the manifestation of the noise is a noisy radiance, we refer to the noise as the
noise-equivalent radiance or NER, or if working in reflectance units, the noise-equivalent
reflectance NE∆ρ.

We will begin by deriving some estimates of the NE∆ρ in the visible bands through an
analytical approach.8 From Eq. (11.1) we have

(
∆CP
CP

)

Algorithm

=
{
− 2.26 + 2× 3.08 log10R− 3× 2.8(log10R)2

}∆R

R
, (11.3)

with
∆R

R
=

∆[ρw(443)]N
[ρw(443)]N

− ∆[ρw(550)]N
[ρw(550)]N

. (11.4)

As we are talking about random noise at both wavelengths, we replace this by9

∆R

R
=

√(
∆[ρw(443)]N
[ρw(443)]N

)2

+

(
∆[ρw(550)]N
[ρw(550)]N

)2

. (11.5)

8Later we will redo the computation using an approach in which we actually simulate the noise in each
spectral band and examine the consequences.

9The reader should contrast the following form for ∆R/R with the situation in Chapter 10, where the
same equation, Eq. (11.4), was used to determine the accuracy requirement for atmospheric correction.
In that case the errors in [ρw]N for the two bands were perfectly correlated because of the nature of the
atmospheric correction algorithm. Here, because the errors are random there is no correlation.
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For low CP , [ρw(443)]N is substantially larger than [ρw(550)]N , so if the ∆[ρw]N ’s are
roughly the same, we can neglect the term for 443 nm in Eq. (11.5) compared to the 550
nm term, and use this to determine an allowable ∆[ρw(550)]N . For CP = 0.075 mg/m3,
R ≈ 5.15, [ρw(550)]N ≈ 0.005, and the term inside the curly brackets in Eq. (11.3) is
−2.207. If we take f = 0.5 and recall that (∆CP /CP )Algorithm ≈ 0.2, we have finally

∆[ρw(550)]N = 2.26× 10−4,

which we will refer to as NE∆[ρw(550)]N . Now we estimate ∆[ρw(443)]N . For this we use
CP = 0.6 mg/m3 and keep both terms in the square root in Eq. (11.5). For this value of
CP , [ρw(550)]N ≈ 7.8× 10−3, [ρw(443)]N ≈ 9.6× 10−3, R = 1.23 and the term in the curly
brackets is −1.79. With the above result for ∆[ρw(550)]N , we find

∆[ρw(443)]N = 4.58× 10−4,

which we will refer to as NE∆[ρw(443)]N . Therefore, for low CP ,

NE∆[ρw(443)]N
[ρw(443)]N

= 0.0176 and
NE∆[ρw(550)]N

[ρw(550)]N
= 0.0453,

and for the higher value of CP ,

NE∆[ρw(443)]N
[ρw(443)]N

= 0.0477 and
NE∆[ρw(550)]N

[ρw(550)]N
= 0.0290.

The algorithm in Eq. (11.1) is used for 0 ≤ CP ≤ 0.6 mg/m3. For CP > 0.6 mg/m3 443 nm
is replaced by 490 nm. The algorithm using 490 and 550 nm can then be used to estimate
NE∆[ρw(490)]N , etc.10

Let us recall for a moment the basic components of the reflectance in any spectral band:

ρt = ρr + ρA + tvts[ρw]N ,

where tv is the diffuse transmittance for the viewing angle and ts is the diffuse transmittance
for the solar zenith angle. These are to a good approximation given by (Chapter 9)

tv = exp[−τr/(2.2× | cos θv|)] and ts = exp[−τr/(2.2× cos θs)],

where θv and θs are the viewing and Sun angles, respectively. What we computed above
and called NE∆[ρw]N is the maximum acceptable noise in [ρw]N ; however, what we really

10At this point it is important to understand the notation being used here and henceforth. When we write
∆ρ we are referring to an individual sample of ∆ρ from a gaussian distribution with standard deviation
NE∆ρ, e.g., N(0, NE∆ρ). The NE∆ρ is a number which we either have already determined, as for
NE∆[ρw(443)]N , etc., or which we wish to determine through further analysis.
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want for instrument design is the maximum acceptable noise in ρt, i.e., ∆ρt. There is no
“noise” in ρr, as it is a calculated quantity. There is noise in ρA that results from noise
in the NIR bands propagated by the atmospheric correction procedure into the visible
bands. Thus, after atmospheric correction, there are two sources of noise in the resulting
[ρw(λ)]N : sensor noise at λ which we refer to as intrinsic noise; and noise at λ resulting
from noise in the NIR propagated to the visible through atmospheric correction which we
call induced noise. Including the second form of noise at λ and noting that the induced
and intrinsic noise sources are uncorrelated, we have estimated the maximum acceptable
values of ∆[ρw(λ)]N , i.e.,

∆[ρw(λ)]2N = (tvts)
−2
(

∆ρA(λ)2 + ∆ρt(λ)2
)
.

The left-hand-side of this is determined, so it is really up to the design engineer to decide
how to divide the noise between the visible and the NIR bands; however, let’s try to
understand the influence of ∆ρA(λ) on ∆CP .

The magnitude of the induced noise in the visible, from the NIR through atmospheric
correction, is dependent on the NE∆ρ’s in the NIR bands. This magnitude can be de-
termined by applying the atmospheric correction algorithm with noise added to the NIR
bands in a stochastic manner. Carrying out such a calculation analytically is not feasible,
but it is simple to effect numerically. That is what we do next.

As with our analysis of the accuracy required for atmospheric correction, we shall use
the single-scattering version of the algorithm and assume that ρas(λ) varies exponentially
with λ. In the algorithm we replace

ε(λs, λl) =
ρas(λs)

ρas(λl)
by ε′(λs, λl) =

ρas(λs) + ∆ρas(λs)

ρas(λl) + ∆ρas(λl)
,

where the ∆ρas’s are the added uncorrelated noise in the two NIR bands, and use

ε′(λ, λl) = exp[k(λl − λ)],

with k determined from
ε′(λs, λl) = exp[k(λl − λs)].

Then, ρas(λ) = ε′(λ, λl)ρas(λl). As [ρw]N = 0 in the NIR and there is no noise in ρr, the
∆ρas’s in the NIR are in fact equal to the NE∆ρt’s there. The noise in the NIR bands is
assumed to have normal distribution with zero mean and a standard deviation of NE∆ρt,
i.e., it is an N(0, NE∆ρt) distributed random variable. For simplicity, we have assumed
that the NE∆ρt’s in the two NIR bands are the same.

We could sample repeatedly from N(0, NE∆ρt) and compute the distribution of values
induced in ρas(λ) (the “noise”), which we call ∆ρas(λ), as a result of noise in the NIR bands.
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If this induced noise were significantly less than the NE∆[ρw(λ)]N , it could be ignored,
otherwise it must be included in order to find the acceptable NE∆ρt in the visible. But
for simplicity, we will consider both intrinsic and induced noise sources simultaneously. We
will use our above estimates for acceptable values of NE∆[ρw(443)]N and NE∆[ρw(550)]N
(although they may be too large). We simulate the noise in the visible by repeatedly
choosing ∆[ρw(λ)]N from a normal distribution N(0, NE∆[ρw(λ)]N ) for both wavelengths.
The total computational program is

1. compute ∆ρas(λ) from by sampling N(0, NE∆ρt) individually at both NIR wave-
lengths and applying the atmospheric correction algorithm

2. sample ∆[ρw(λ)]N from N(0, NE∆[ρw(λ)]N ) individually at both 443 and 550 nm,

3. form (
∆[ρw(λ)]N

)
Total

=

(
∆ρas(λ)

tvts
+ ∆[ρw(λ)]N

)

individually at both wavelengths,

4. add the resulting
(

∆[ρw(λ)]N

)
Total

to the nominal [ρw(λ)]N (for the given CP ) indi-

vidually for each wavelength, and finally,

5. insert the result of these steps into Eq. (11.1) and compute the resulting CP .

The distribution of the retrieved CP values resulting from steps (1)-(5) will provide the
distribution of the CP from which the standard deviation in CP can be found, providing
(∆CP /CP )Sensor resulting from both intrinsic and induced sensor noise. The results of this
exercise is presented in Figure 11.2 for three levels of NE∆ρt in the NIR, and the values of
NE∆[ρw]N at 443 and 550 nm developed earlier. First, note that when NE∆ρt(NIR) = 0
we find that (∆CP /CP )Sensor ≈ 0.1 for both CP = 0.1 and 0.6 mg/m3, as expected because
that is how we arrived at the NE∆[ρw]N values that were used in the visible. Surprising
perhaps is the fact that (∆CP /CP )Sensor actually reaches a pronounced minimum near
CP = 0.3 mg/m3. Increasing NE∆ρt in the NIR to 1 × 10−4 and then to 2 × 10−4

influences (∆CP /CP )Sensor only near the low and high CP limits, with little effect near
CP = 0.5 mg/m3. This suggests that to keep (∆CP /CP )Sensor ≈ 0.1 near CP ≈ 0.1
mg/m3, may require a somewhat smaller NE∆[ρw]N in the visible to allow for some noise
in the NIR.11 Here is where the scientist must discuss the situation with the engineer

11It may be of interest to consider the influence of noise in the NIR by itself, i.e., with NE∆ρt = 0 in the
visible. For CP = 0.3 mg/m3, (∆CP /CP )Sensor ≈ 0.014, 0.028, 0.065, 0.114, and 0.163 for NE∆ρt(NIR) =
1×10−4, 2×10−4, 4×10−4, 6×10−4, and 8×10−4, respectively. This suggests that NE∆ρt(NIR) cannot
be much larger than 2× 10−4 and still keep error in the bio-optical algorithm as the primary cause of noise
in the pigment retrievals. We note here that these estimates depend only weakly on the noise-free value of
k.
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and decide the best approach, i.e., what to trade off — less noise in the visible or less
noise in the NIR — to maintain (∆CP /CP )Sensor

<∼ 0.1 for 0 ≤ CP ≤ 0.6 mg/m3. We
cannot answer this question, but with the tools provided in this section, an answer can
be developed. For completeness, in Figure 11.3 we provide the distribution of the derived
pigment concentrations for NE∆ρt = 1 × 10−4. Because of the nonlinear relationship
between CP and the reflectances, the distributions are not symmetric about their maxima,
but usually have a pronounced “tail” toward larger CP ; however, the mean value of CP
(averaged over 30,000 simulations) is usually excellent.

Finally, it should be remembered that the noise is usually related to the radiance itself,
e.g., photon noise and shot noise, so the NE∆ρt’s or NER’s should be specified at the
reflectance (radiance) values that are typical of those encountered in the actual operation
(Figure 10.4).

11.2.3 Signal Quantization and Saturation Radiance

The magnitude of the radiance (reflectance) measured by the sensor is always transmitted
to Earth in digital format, while the radiance itself is measured as an analog signal. Thus,
analog to digital (A to D) conversion must be carried out by the instrument electronics.
The signal from the sensor is digitized in a N -bit binary number. For example, if N = 8
the radiance is divided into 28 = 256 levels, i.e., ranging from the lowest, 0 to the highest,
255. This was the case with the CZCS. For SeaWiFS N = 10 and for MODIS N = 12.
If the conversion is linear, i.e., DN = K × L, where DN is the N -bit digital number (or
digital count), L is the radiance and K is a constant, then the maximum radiance that can
be transmitted to the ground is (2N − 1)/K. This is called the saturation radiance. The
difference in radiance (∆L1) corresponding to ∆DN = 1 is ∆L1 = 1/K.12 Thus, from its
minimum to its maximum, the water-leaving radiance (reflectance) will consist of

∆DNLw =
(
LMax
w − LMin

w

)
×K

digital counts. This is the portion of the DN range that contains information about the
water. So, one task is to make sure that ∆DNLw is large enough, i.e., to provide the
sensitivity to change in Lw that the science requires.13 This seems simple; however there
is a tradeoff. If we make K larger this makes the saturation radiance smaller. But, if we

12There is an error inherent in any analog-to-digital conversion. If we are converting a radiance, then any
radiance falling between DN and DN+1 are encoded with the same DN value, i.e., there is an uncertainty
in the radiance equal to 1 digital count. This leads to an RMS noise in radiance (quantization noise) of
1 count/

√
12 or L1/

√
12. The SNR of the analog-to-digital conversion is L/(L1/

√
12) or

√
12×DN , where

DN is the digital counts for radiance L.
13To reiterate, we want a sufficiently large number of digital counts between LMin

w and LMax
w to provide

the sensitivity needed by the bio-optical algorithms.
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make the saturation radiance too small, then too much of the imagery will be saturated
in one or more bands and have to be discarded. We can increase N , but this will have
an impact on the rate of transmission of data to the ground14 which usually has a fixed
upper limit. One method that has been used to overcome some aspects of this tradeoff
is to use a bilinear digitation scheme. This was used in SeaWiFS, and is shown for the
412 nm band in Figure 11.4. Bilinear analog-to-digital conversion allows a wide range
of radiance to be recorded, but with higher sensitivity in certain radiance ranges — here
lower radiance values.15 In the case of SeaWiFS, the saturation radiance corresponded to a
reflectance of about 1.1, which allowed low-sensitivity imaging of clouds and land as well as
high sensitivity imaging of water bodies. In contrast, the CZCS used a single linear analog-
to-digital conversion curve and, as such, had to have a much lower saturation reflectance
than SeaWiFS. Table 11.1 compares the radiometric characteristics of CZCS and SeaWiFS.
As one might expect, the difference in the values of ∆ρ/∆DN between the two is almost
completely the result of the increase in the analog-to-digital conversion from 8-bits to 10-
bits (factor of 4). Comparing the SeaWiFS values of ∆ρ/∆DN with the NE∆ρt’s of the
previous section suggests that the NE∆ρt’s correspond to roughly two digital counts.16

Recalling that at 443 nm the range in [ρw]N is approximately 0.005 – 0.035, ∆ρ/∆DN for
CZCS shows that this corresponds to 7 to 47 counts while for SeaWiFS it corresponds to
28 to 200 counts. Similarly, at 550 nm, where the range is 0.005 to 0.010 the count range
in [ρw]N is 12 to 24 for CZCS and 51 to 102 for SeaWiFS. It is instructive to define what
might be called the usable signal-to-noise ratio as [ρw]N/NE∆ρt. For CZCS in the blue
this ranges from about 3.5 to 23 at 443 nm to about 6 – 12 at 550 nm. For SeaWiFS, the
corresponding usable SNR’s are 14 – 100 and 25 – 50.

11.3 General Principles of Imaging with Space-Borne Ra-
diometers

There are some principles that are common to all ocean color radiometers. They all form
an image of the water surface, albeit in different ways. The size of the spot on the water
surface composing one element of the image (a pixel for picture element) is determined by
the height of the sensor and its angular field of view. Usually the size of the pixel varies
during the scan. The image that is formed is done so in several spectral bands; typically
four or more. Careful analysis relating the height, field of view, speed of the spacecraft in
orbit is required to ensure that the pixels are contiguous, i.e., that there are no gaps in

14Other factors that influence the data rate include the number of bands, the number of pixels per scan
line and the number of scan lines recorded per second. Also, typically there will be additional sensors on a
satellite which will affect the data rate as well.

15Bilinear encoding also requires that two linear segments be calibrated as opposed to one.
16This implies that averaging over several samples can increase the signal-to-noise ratio.
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Table 11.1: Comparison of the sensitivities and saturation reflectances of CZCS
and SeaWiFS. The sensitivities(∆ρ/∆DN) refer to the lowest electronic gain, and
for SeaWiFS refer to the more sensitive portion of the analog-to-digital conversion
curve in Figure 11.4. Note that the CZCS data were 8-bit digitized, while SeaWIFS
data were 10–bit digitized.

CZCS SeaWiFS CZCS SeaWiFS

Bands ∆ρ/∆DN ∆ρ/∆DN ρSat ρSat

(nm) (×10−4) (×10−4)

412 – 2.01 – 1.15
443 7.42 1.74 0.19 1.15
490 – 1.31 – 1.13
510 4.96 1.19 0.13 1.14
555 4.12 0.98 0.11 1.11
670 2.31 0.67 0.06 1.11
765 – 0.59 – 1.11
865 – 0.52 – 1.08

the image. We shall begin by showing how a scanning radiometer could be made using a
simple Gershun tube as the radiometer. We then indicate ways that the scanning system
could be modified to obtain spectral images. Finally, we show some concepts for replacing
the Gershun tube by more realistic optics.

11.3.1 Obtaining an Image of the Water-Leaving Radiance

How can we obtain an image of ρw over a large area of the ocean’s surface from a satellite-
borne radiometer? We begin with the simplest kind of radiometer we know — a Gershun
tube equipped with a detector and spectral filter (Chapter 2). Aimed toward the water
surface, i.e., pointed in a direction −ξ̂, this arrangement allows measurement of the total
radiance Lt exiting the atmosphere in a direction ξ̂ (Figure 11.5). Some of Lt(ξ̂, λ) was
backscattered out of the water, and that is what we really want. Given the extraterrestrial
solar irradiance (instantaneous) F0(λ) we can compute ρt(ξ̂, λ), from which ρw(ξ̂, λ) is
found. If the Gershun tube in Figure 11.5 is rotated around an axis parallel to the velocity
vector ~v of the spacecraft, and the electrical current from the detector is sampled at a
uniform rate, then for one rotation of the tube the radiance appears to originate from the
water surface along a string of positions as shown in Figure 11.6. The individual spots are
the “pixels” and their area (size) depends on the properties of the radiometer. Most ocean
color sensors image a spot on the water surface that has a size of about 1 km when the
radiometer is pointed in the nadir direction (ξ̂ normal to the water surface). By size we
mean the diameter of a circular spot or the length of the side of a square spot. This is
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also called the spatial resolution, the footprint, or the instantaneous field of view (IFOV).
If the desired size is 1 km, then the angular field of view (α in radians) times the height
above the water surface equals the spot size. For example, if the radiometer is a Gershun
tube that is 1 m long and 1 mm in diameter, then the angular field of view is α = 1 mm/1
m = 0.001 rad, and from a height of 1000 km, this gives a spot size of 1 km at nadir.
An individual pixel is a fraction α/2π of one rotation of the Gershun tube, i.e., there are
2π/α divisions of increment α in each revolution. If R is the rotation rate in revolutions
per second (rps), then one must sample the current from the detector at a rate 2πR/α
samples per second in order for the pixels to form a contiguous line as shown in Figure
11.6. If ~v is toward the north, then the line of pixels can extend from the eastern horizon
to the western horizon. If the tube continues to sample after completing one revolution,
then a second line of pixels is obtained. If the rotation rate and the spacecraft velocity are
in just the right relationship, there will be no gap between the two sets of samples (Figure
11.7). This relationship is easily seen to be R = vg/s, where vg is the ground speed of the
satellite, and s is the pixel size, e.g., its diameter.

At this point we need to consider the orbital dynamics of a spacecraft. If the satellite is
at a distance r from the center of the earth, and the orbit is circular, Newton’s laws17 tell
us that mv2/r = mMEG/r

2, where m is the mass of the satellite, ME is the mass of Earth,
and v is the spacecraft velocity.To avoid having to use ME , we Apply Newton’s law to a
falling object at the surface of the Earth. In this case we have mg = mGME/R

2
E , where

RE is the radius of the Earth (∼ 6380 km) and g is the acceleration due to gravity (9.81
m s−2), so GME = gR2

E . Thus, v = RE
√
g/r = RE

√
g/(RE +H), where H is the height

of the satellite above the surface. The spot on the surface of the Earth at nadir directly
beneath the satellite moves at a speed vg = vRE/(RE + H) = R2

E

√
g/(RE +H)3. The

period of the orbit (τ , the time for one revolution) is τ = 2πr/v = 2π(RE +H)3/2/RE
√
g.

For a sensor at H = 1000 km, these give vg = 6.36 km/s and τ = 6303.8 s or 105.05 min.
For the individual scan lines to be contiguous for such a scanner, i.e., one with α = 0.001
rad, we find R = 6.36 rps.

Summarizing, for a Gershun tube 1 m long with a diameter of 1 mm at an altitude of
1000 km (α = 10−3 radians), rotating at a rate R = 6.36 rps in a plane normal to the
spacecraft’s velocity vector, sampling at a uniform rate of 6.36×2π/10−3 = 4×104 samples
per second will image the surface with contiguous pixels that have a size of 1 km at nadir.

17The forms of Newton’s laws we use here are from elementary college physics: (1) Newton’s Second
Law ~F = m~a, the relationship between the force ~F acting on a object and its acceleration ~a; and (2)
Newton’s Law of Universal Gravitation |~F | = m1m2G/r

2, where |~F | is the magnitude of the (attractive)
force individual masses m1 and m2 separated by a distance r exert on one another. The quantity G is called
the gravitational constant and has the value 6.674×10−11 m3 kg−1 s−2. In addition, we need to use the fact
from elementary physics that if a particle is moving in a circle of radius r with speed v, its acceleration is
v2/r towards the center of the circle.
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The reader will notice that in the above discussion, the pixel size s was always referred

to as the size at nadir. This is because the pixel size increases with the viewing angle θ
(c)
v

(Figure 11.8). Pixels at large θ
(c)
v are larger than those at nadir for two reasons. First, the

pixels are farther from the sensor (D > H) so for a constant α they must be larger. Second,

in the along-scan direction, the surface is inclined to the sensor by an angle θ
(E)
v , which

elongates the pixel in the along-scan direction compared to the along-track direction. Let’s
see how this works. Referring to Figure 11.8, the pixel size s at nadir is αH, while at a

viewing angle of θ
(c)
v , in the along-track direction the size is s⊥ = αD and in the along-scan

direction it is s‖ = αD/ cos θ
(E)
v = s⊥/ cos θ

(E)
v , where “⊥” and “‖” mean “perpendicular”

and “parallel” to the scan direction, respectively. Thus, we need to find D in the figure.
This is easy to do by applying the law of sines to various sides and angles of the triangle
SCP.

sin(π − θ(E)
v ) = sin θ(E)

v =
RE +H

RE
sin θ(c)

v gives θ(E)
v ,

θ = θ(E)
v − θ(c)

v gives θ,

sin θ =
D

RE
sin θ(c)

v gives D.

Figure 11.9 provides the ratio of s at θ
(c)
v to s at nadir for both the along-scan and along-

track directions for a sensor at an altitude of 1000 km. Note that for such a sensor, the

horizon is at sin θ
(E)
v = 1 or sin θ

(c)
v = RE/(RE + H), which for H = 1000 km, gives

θ
(c)
v = 59.83◦. Also, the distance along the surface from nadir to the pixel is θRE . Clearly,

pixels at large scan angles are elongated in the scan direction and can be very much larger
than pixels near nadir. This is shown schematically in Figure 11.10. When more scans are
combined as in Figure 11.7, the pixels from adjacent scan lines will overlap as one proceeds
from nadir to the edge, even if they do not overlap at nadir.18

Thus far, we have discussed the image formation as if the instrument records the re-
flectance of a pixel instantaneously and then moves on to the location of the next pixel and
does the same, etc. However, the sampling is not instantaneous. The scan of an imager is
smooth and continuous. As the scan progresses, the IFOV moves along the water surface
and the current in the detector continuously responds to the radiance (reflectance) of the
scene. How then are the individual pixels formed? They are formed by averaging the
current over a specific length of time ∆ts — usually called the integration time or sampling
time. We need to know how the sampling time affects the image formation; in particular,
the spatial resolution. An analysis follows in which we discuss the imaging using an actual
target – a bar chart.

18It is important to realize that for scan lines that are 1000-2000 km long on the surface, the values
of θ

(c)
v , φv, θ0 and φ0 are different for each pixel. This must be remembered when applying the various

processing algorithms, e.g., atmospheric correction or normalizing the water-leaving reflectance.
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Let the IFOV of the sensor have size s at nadir. At nadir the observation point at the
surface moves at a speed 2πRH radians/s, so in time ts = s/(2πRH) the IFOV on the
surface will have moved a distance equal to its size s. For the hypothetical sensor discussed
above, with H = 1000 km and an angular field of view of 10−3 radians, for which s = 1
km, we find ts = 25 µs.

Let’s try to understand how varying the sample time relative to ts affects the spatial
resolution. Spatial resolution of an optical system is most frequently described by the
contrast in the image when the object is a target as shown in Figure 11.11.19 The bar
pattern in this target has a spatial period Λ or a spatial frequency fΛ = 1/Λ. The scan
direction is perpendicular to the bars. Assume the pattern has a reflectance of unity in the
white areas and zero in the black areas. We then define the modulation M as

M =
ρMax − ρMin

ρMax + ρMin
,

where ρ is the measured reflectance. For the bar target itself in Figure 11.11, ρMin = 0,
so M = 1. Also, for the purposes of this discussion, we assume ρMax = 1. Below the bar
graph on the left of the figure are IFOVs of various size measured in units of Λ (here, only
the horizontal size of the IFOV is relevant, the height of the IFOV is not). Assume that
the detection system measures the average reflectance of the portion of the scene that is
within the IFOV, i.e., if the IFOV completely encompasses one white and one black area
the measured reflectance is 1/2, etc. To the right of each IFOV we have the reflectance
(the red line) that would be measured as a function of the position of the center of the
IFOV as it moves across the bar graph. For example, for the Λ/2 IFOV, when it is in
the first position shown after the arrow under the target it will measure a reflectance of
unity. If it is then moved a distance Λ/4 it will record ρ = 1/2, and when it has moved
another Λ/4 it will record ρ = 0. On examination of the performance (red lines) of the
four IFOVs in faithfully imaging the surface, there are several observations that can be
made. First, the IFOV of size Λ records ρ = 1/2 everywhere in the scene and sees no
variation whatsoever (M = 0). Second, smaller sized IFOVs will record the existence of a
pattern, and the accuracy of the recording will increase as the size of the IFOV decreases.
When the size is reduced to Λ/2 the modulation reaches M = 1. For IFOVs between Λ
and Λ/2, the modulation follows 0 ≤ M ≤ 1. Further reduction of the IFOV below Λ/2
provides a measured reflectance that more and more faithfully reproduces the reflectance
distribution of the bar graph. Finally, for IFOVs larger than Λ, e.g., the 3Λ/2 IFOV,
displays variation with the correct periodicity and M = 1/3; however, it is 180◦ out of
phase with the bar graph’s variation. This phase shift is indicated by writing M = −1/3

19More generally, the target might be a sinusoidal function, e.g., (1/2) + (1/2) sin 2πfΛ. Then, the full
power of Fourier analysis can be applied directly to the operation of the optical system. This is a particularly
useful when diffraction affects are important.
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rather than M = 1/3.20 For larger IFOVs the situation should be clear: for 2Λ, M = 0,
for 5Λ/2, M = 1/5 and there is no phase shift, etc. Thus, for a faithful representation of a
target with periodic variation Λ, we need an IFOV size that is less than (or equal to) Λ/2.

But wait, what is the effect of the integration time? Consider the case where the IFOV is
Λ/2. This has M = 1 and a surface reflectance ρ given by the second curve from the bottom
in Figure 11.11. Assume that ∆ts = ts, i.e., we integrate to find the average reflectance as
the scan moves a distance of one IFOV. A little thought shows that the result is identical
to the third curve from the bottom in Figure 11.11, i.e., ρ is always 1/2 and M = 0, and
the pattern of periodicity of Λ is not detected. In contrast, let ∆ts = ts/2 and it is easy
to show that M = 1/2 and the pattern is similar to the bottom curve in Figure 11.11,
but ρMax = 3/4 and ρMin = 1/4. Thus, if ∆ts = ts, only variations with Λ > 2s can be
detected. For our hypothetical sensor, a sampling time of 25 µs would allow detection of
periodic patterns with Λ > 2 km. If ∆ts < ts there will be some overlap of pixels but
the reflectance variations will be delineated with more contrast (higher M). Clearly, it is
desirable to make ∆ts/ts as small as feasible; however, one must keep in mind that the
NE∆ρt will generally increase as ∆ts decreases — another engineering tradeoff.

A final note before moving on concerns the need to maneuver the spacecraft in orbit to
produce a faithful image of the surface. Consider Figure 11.12, which shows the sensor
viewing the nadir point at two different times in the orbit. In order to do this, the spacecraft
had to rotate through an angle θ. Thus the spacecraft must rotate 360◦ per orbit to
maintain the correct attitude to be able to view the surface at the nadir.

11.3.2 Producing a Spectrum of the Water-Leaving Radiance

The next question regarding sensors is that of obtaining a spectrum at each pixel, i.e.,
imaging the water surface in different spectral bands. One way to accomplish this is to
have several rotating Gershun tubes as shown in Figure 11.13. If each tube is equipped
with a separate spectral filter, then for one rotation of the array of tubes an image of
the surface similar to Figure 11.14 is obtained. The four separate lines corresponding to
different spectral bands can be combined to one line with four spectral bands through
simple processing.

An alternative for achieving two spectral bands is to use a grating spectrometer in place
of the multiple tubes. This is shown schematically in Figure 11.15. The detector at the
end of the Gershun tube is replaced by a small aperture allowing the light to enter the

20In optics the modulation is actually represented by a complex number. In the situation here, M =
(1/3) exp[iπ] corresponding to a phase shift of π.
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spectrometer chamber and fall on a concave diffraction grating G. The grating separates
the light into a spectrum as well as imaging the aperture of the Gershun tube as shown.
Separate portions the spectrum are imaged onto detectors D1 and D2. In this diagram,
the size of the detectors would determine the spectral bandwidths of the two bands. This
concept was used by the first ocean color scanner — CZCS.

A second alternative for achieving spectral separation without multiple Gershun tubes
is shown in Figure 11.16. As in Figure 11.15 the detector is replaced by a small aperture,
which now is followed by a lens L1 to render the light parallel. The radiation then encoun-
ters a dichroic beamsplitter “Di”. This optical element has the property that it transmits
the red and reflects the blue. An example of such a dichroic filter is presented in the insert
on the figure. In the example, radiation with wavelength between about 350 and 550 nm
is reflected with close to 100% efficiency and likewise for 550 < λ < 825 nm the radiation
is transmitted with close to 100% efficiency. The spectrum is further isolated with narrow-
band filters F1 and F2. (The element M is just a plane mirror to bend the beam through
90◦ and make a nicer drawing.) By using three dichroics and eight filters SeaWiFS used
an arrangement similar to this to obtain eight narrow spectral bands covering the range
412 to 865 nm, and with three dichroics and thirty-six filters, MODIS obtained thirty-six
narrow spectral bands covering the range 412 nm to 14.2 µm.

11.3.3 Some Scan Mechanisms

Scanning with a 1 meter-long Gershun tube is obviously somewhat unwieldy. How is
scanning accomplished with actual instruments? Figure 11.17 shows a schematic of the
scanning mechanism used by the Coastal Zone Color Scanner (CZCS). In the figure, a
plane mirror is mounted on an axis that is parallel to the velocity of the spacecraft. The
mirror is inclined at an angle of 45◦ to the axis. In the position shown the mirror is reflecting
light incident from the nadir direction and directing it to a collimating lens. A spot on the
water surface (the “Object”) is imaged in the focal plane of the lens (the “Image”). The
axis is then rotated causing the mirror angle with respect to the nadir to change imaging
another spot on the water surface.21 Thus as the mirror rotates a line of spots similar to
those in Figure 11.6. In the CZCS, this optical system replaces the Gershun tube in Figure
11.15, with a small aperture determining the IFOV placed at the “Image” position.

A second scanning mechanism is used by the Moderate Resolution Imaging Spectrora-

21For optical situations such as this, the author believes that it is often easier to visualize what is
happening by imagining the light to go through the system backwards. That is, in the position marked
“Image,” imagine a small bright light source. The optics then images this source as a bright spot on the
water surface. As the mirror rotates the spot moves across the water surface, in much the same way that
a searchlight beam swings around a lighthouse.
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diometer (MODIS), with an equivalent, but more complex mechanism used in SeaWiFS. A
schematic of the MODIS scanning system is presented in Figure 11.18. The optical system
as shown is identical to that in Figure 11.17, except now the mirror is rotated around a
horizontal (parallel to the Earth surface at nadir) axis that is into the paper, but is still
parallel to the velocity vector of the spacecraft. As the mirror rotates, the second “Object”
to be imaged is just to the right of the first. Again, a line of pixels is imaged on the water
surface as the mirror rotates. As with CZCS, in MODIS, this optical system replaces the
Gershun tube in Figure 11.16, with a small aperture placed at the “Image” position.

What are the differences between these two scanning mechanisms? First, the image
rotates in Figure 11.17 as the scan takes place. To explain this, note that because of the
symmetry of the system, the scan is the same as if the whole drawing were rotated about
the dashed axis. Thus as the mirror rotates, viewing objects in front of and behind the
paper, the image will rotate with the mirror, i.e., the image arrow will always lie in a plane
formed by the dashed axis and the normal to the mirror surface. That is, the object arrows
all point in the same direction on the water surface, but the image arrows rotate around
the rotational axis. In contrast, in Figure 11.18 the image is fixed (i.e., does not rotate) as
the scan takes place. In that figure the image arrow always points in the same direction.
Because of the optical design of some detection systems, image rotation with scan angle
must be avoided. This is true for MODIS, but for CZCS image rotation was irrelevant. A
second difference is that the angle of incidence of the light on the scan mirror is constant in
Figure 11.17 but varies in Figure 11.18. This variation of incidence angle with scan angle
is one of the additional properties of a MODIS-like scanner that must be characterized
(Chapter 12) prior to launch.

Finally, with the development of systems in which a large number of small detectors can
be placed in a linear array, a new kind of scanning with no moving parts becomes possible.
The concept of this kind of scanner – a “push broom” scanner – is shown in Figure 11.19,
where the array has only five detectors. Here the array of detectors is aligned parallel to the
Earth’s surface, but perpendicular to the velocity vector. The footprints (large squares at
the bottom) are imaged by the optics (lens) onto the array (small squares at the top). As
the spacecraft moves a new line of pixels come into view. One could also place a dispersing
element (diffraction grating or prism) after the lens and use a rectangular array. In this
manner one could arrange to have the spectrum displayed in the along-track direction with
the cross-track direction providing the spatial information. This is the scheme used in
many hyperspectral remote sensing systems. This concept is shown schematically in Figure
11.20. In this case a diffraction grating has been placed behind the lens to disperse the
spectrum, and a rectangular array rather than a linear array is used. However, now the
aperture of the instrument must be a line one pixel wide, perpendicular to the flight line
otherwise the next scan line and the spectrum would be intermixed. A disadvantage of
such a system is that the (large number of) individual detectors in the arrays must all be
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radiometrically calibrated.

11.4 Examples of Ocean Color Scanners

Now we will examine in some detail two ocean color instruments: the CZCS; and the
MODIS. Rather than discussing sensors in precise detail, our purpose will be just to show
how some of the ideas in the last section are actually put into practice. We will also
examine some of the complications resulting from the design.

11.4.1 The CZCS

The actual optical arrangement of the CZCS is shown in Figure 11.21. In this drawing the
scan mirror is labeled M-1. Its size was roughly elliptical with dimensions 20 cm × 28 cm
(Figure 11.22). It rotated at a rate of 8.08 revolutions per second on an axis parallel to
the velocity vector of the spacecraft. In the position shown in the diagram it is oriented to
reflect light from the nadir. M-1 directs the light into a Cassegrain telescope consisting of
mirrors M-2 and M-3. This telescope functions in the same manner as the lens in Figure
11.17. The light then proceeds through a dichroic beam splitter that separates the visible
from the far infrared (here ∼ 10 µm). The far infrared is reflected off the dichroic and then
reflects from a small mirror M-4 into its detection optics. The visible and NIR pass through
the dichroic and a field stop that determines the size of an individual pixel. This beam is
then rendered parallel by mirrors M-6 and M7 after which it passes through the depolarizer
to effectively render the light unpolarized.22 Mirrors M-8 and M-9 fold the beam and direct
it to a concave grating in a Wadsworth mounting as shown schematically in Figure 11.15.
These mirrors are configured in such a manner as to introduce no additional polarization
into the beam. The light is then dispersed into a spectrum with the position and apertures
of the individual detectors defining the spectral band detected. The “Channels” 1 through
4 constitute the visible bands (443, 520, 550, 670 nm, respectively) while 5 is the NIR
(700-800 nm). The visible bands were 20 nm wide, e.g., Band 1 ranged from 433 to 453
nm. Bands 1-4 were designed to have sensitivity sufficient to record the radiance levels
over the ocean, while Band 5 had a reduced sensitivity for the purpose of imaging the land
surface and was not intended to be used for ocean observations. The output signal from

22The incident radiance is partially polarized and is further polarized upon reflection from the scan mir-
ror. Because the diffraction grating has a high polarization sensitivity (10’s of percent) it is necessary to
depolarize the light. In reality the light is not “depolarized,” rather its polarization is spatially scrambled,
i.e. different parts of the beam across its spatial profile emerge from the depolarizer with different polar-
izations, with the net effect that if a measurement of the polarization of the beam as a whole were carried
out, the conclusion would be that it is unpolarized.



11.4. EXAMPLES OF OCEAN COLOR SCANNERS 791

each band was converted from analog to digital in 8-bits (256 digital steps from zero to
the maximum radiance expected over the ocean in each band) transmitted to the ground
(or recorded). The pixel size (IFOV on the surface, or spatial resolution) was 0.825 km at

nadir. The satellite altitude was 955 km. The maximum scan angle θ
(c)
v in Figure 11.8 was

39.2◦.

One should note that the mirror M-7 has a small hole in its center. This allowed light
from a calibrated incandescent lamp to enter the aft optics. This could be used to monitor
the stability of the various elements following M-7, but not the fore optics, i.e., the five
optical elements in the visible path before M-7. Actually the calibration system was hardly
used as the primary degradation seen in the sensitivity of the overall instrument with time
in orbit was due to the degradation of the fore optics; probably the scan mirror — the
calibration assembly did not record any significant degradation in sensitivity with time.

11.4.2 The MODIS

MODIS differs from CZCS in that it uses narrow-band filters to separate the spectrum
into bands, and rather than placing a single detector at the focus of the system (i.e., an
individual pixel as in Figure 11.16) each of four focal planes contained a number of detectors
for each spectral band. The visible focal plane is shown schematically in Figure 11.23. In
this figure, the scan direction is horizontal (perpendicular to the line of detectors) and the
direction of the velocity vector of the satellite is vertical (parallel to the line of detectors).
The band numbers are along the bottom. Bands 8, 9, 10, 11, and 12 are visible bands
for ocean observations with a resolution of 1 km at nadir. The resolution is determined
by the physical size of the individual detectors. Bands 3 and 4 are high resolution (0.5
km) visible bands for land observations. Each ocean band has ten individual detectors,
labeled 1 through 10, covered by a narrow-band spectral filter. When the scan mirror is in
a position to image at nadir, an approximately 21 km × 11 km image of the water surface
falls on this focal plane. In Figure 11.24 we have superimposed a simulated image of the
water surface on the focal plane. This is what actually happens in the operation of the
sensor. As the scan mirror rotates the image will move across the focal plane from left to
right and is sampled by the individual detectors.23 Thus a single scan of the scan mirror
provides ten lines of pixels for each spectral band, e.g., something like Figure 11.7 but with

23Recall that with a CZCS type scan mechanism, the image rotates with the scan. If such a scan
mechanism were used for MODIS, the image shown on the focal plane in Figure 11.24 would rotate with
scan angle, i.e., if the direction of North is vertical toward the top of the image at nadir, it will be rotated
throughout the scan and cut diagonally across the focal plane at large scan angles. This would clearly result
in some confusion and require geometrical correction even to form a image of the surface. To avoid such
confusion the MODIS-type scanning mechanism (Figure 11.18), for which there is no image rotation, was
used.



792 CHAPTER 11. BASICS OF OCEAN COLOR SENSORS

ten lines instead of four. The pixels for different wavelength are of course interleaved and
a given pixel is never simultaneously viewed by different wavelengths. Rather, there is a
small time (or spatial) delay between the various spectral bands; however, it is a simple
matter to properly register all of the bands. We note that if the scan mirror has two sides
as MODIS’s does, then one complete rotation of the mirror will produce twenty scan lines
so it need not rotate as fast as the CZCS scan mirror (the actual rotation rate is 0.338
revolutions per second24). The detector outputs for MODIS were digitized in 12-bits (4096
discrete levels).

Table 11.2: Comparison of some of the properties of the various U.S. Ocean Color
Scanners. H is the altitude of the satellite orbit, vg is the ground speed of the
sub-satellite point, τ is the period of the orbit, ∆x is the spatial resolution, and
“Quant.” is the number of bits used in the digital quantization of the radiance.
The spectral bands are listed in each column and the band width is in parenthesis.

Quantity CZCS SeaWiFS MODIS VIIRS

H (km) 955 705 705 829
vg (km/s) 6.42 6.75 6.75 6.59
τ (min) 104.14 98.92 98.92 101.44
∆x (km) 0.825 1.1 1.0 0.75

Quant. (bits) 8 10 12 12

Bands (nm)
– 412 (20) 412 (20) 412 (20)

443 (20) 443 (20) 443 (10) 445 (20)
– 490 (20) 488 (10) 488 (20)

520 (20) 510 (20) 531 (10) –
550 (20) 555 (20) 547 (10) 555 (20)
670 (20) 670 (20) 667 (10) 672 (20)

– – 678 (10) –
– 765 (40) 748 (10) 746 (15)
– 865 (40) 869 (15) 865 (39)
– – 1375 (30) 1378 (15)

The principal drawback to a system such a MODIS is that each of the detectors in one
spectral band will have slightly different responses to radiant power and must be separately
calibrated. This poses a particular difficulty when viewing the moon as each pixel views
a different portion and some do not see the moon at all. MODIS uses an on-board solar
diffuser to calibrate the radiance into reflectance directly, with a separate optical system
designed to monitor the stability of the solar diffuser. Another complication is due to

24MODIS is in a lower orbit than CZCS, 705 km computer to 955 km and has lower spatial resolution, 1
km compared to 0.825 km, so the rotation rate of its mirror is not twenty times slower than CZCS, but a
little less.
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the variation of the footprint25 with θ
(c)
v , e.g., Figures 11.9 and 11.10. As the scan angle

increases, the pixels will grow and overlap. Thus, one-half a rotation of the scan mirror
produces something like that shown in Figure 11.25. This is referred to as the “bowtie”
effect.

For completeness, in Table 11.2 we provide some of the characteristics of the four U.S.
ocean color instruments: CZCS, SeaWiFS, MODIS, and VIIRS. In terms of NE∆ρ, Sea-
WiFS’s were about half that of CZCS, and MODIS’s were 2−3 times lower than SeaWiFS.
Note that MODIS and VIIRS have a band listed at 1375 nm. As seen in Chapter 4, this is
coincident with a strong H2O absorption band in the atmosphere. The surface can be seen
at the wavelength only under extraordinarily dry conditions (rare over oceans). Thus, any
reflectance in this band is usually due to micron-sized particles in the atmosphere above
the water vapor layer. In particular, thin cirrus clouds are clearly visible in this band, so
it can be used to screen or mask imagery contaminated by thin cirrus clouds.

11.5 Summary

In this chapter we have tried to acquaint the reader with various performance requirements
and design issues that must be faced with ocean color sensors. Although we did not discuss
all of the issues (others come up with each new sensor), our discussion should be a solid
starting point. The radiometric requirements in Section 11.2 are of prime importance.
The methods we used to develop radiometric performance requirements, based on the bio-
optical and atmospheric correction algorithms to be used to process the data, should carry
over to any proposed sensor. Section 11.3, about the various ways of forming a 2-d image
of the water surface, should convince the reader that there are many ways to accomplish
the goal.

11.6 Appendix : Comments Regarding Satellite Orbits

The sensors are on satellites that orbit the Earth. There are two orbit types that have been
used for these: polar and geosynchronous. Environmental satellites, e.g., Landsat, EOS,
etc., are usually in polar orbits, while meteorological satellites such as GOES, Meteosat,
etc., are usually in geosynchronous orbits. Each orbit has its special attributes (positive
and negative), e.g., the sun-synchronous orbit allows the sensor to view the Earth in direct

25Again, think of each of the ten detectors as being a source and form its image on the water surface.
This gives the “footprint” as a function of scan angle.
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Sunlight half of every orbit. In the geosynchronous orbit, the pixel at nadir can be viewed
continuously, but it illuminated by the Sun only about half the time. In sun-synchronous
orbit the sensor can view a given location on the Earth at most once per day, but can
view almost every point on the Earth once per day or once every two days depending on
the latitude. However, as the sun-synchronous orbit is “locked” to the Sun and therefore
to the solar-induced tide, interpretation of the data is more difficult in coastal regions. In
contrast, a sensor in geosynchronous orbit it can continuously “stare” at a single location
and acquire data as long as it is in the sunlight (and resolve the tide affects in coastal
regions), but such a sensor can “see” at most only half of the Earth — the other half can
never be viewed. Here, we discuss the properties and special physical requirements of these
orbits.

11.6.1 Polar Orbit

Most environmental satellites for Earth observation are in what are called polar orbits.
However, the orbits do not go over the poles, i.e., neither the North or the South Poles are
ever at nadir as seen from the satellite. Consider Figure 11.26 (left panel), which shows
the motion of the Earth progressing around the Sun through the seasons. The thick black
line represents the plane of the orbit of the satellite in polar orbit around the Earth. If
the Earth were a perfect sphere, then the plane of the orbit would never change relative
to the “fixed” stars, i.e., the thick line would always be oriented in the same direction,
say horizontally in the figure. Then, in Spring and Fall the satellite would be over the
Solar-illuminated side of the Earth half of the time, but in Summer and Winter it would
spend all of its time with the Earth’s terminator in its view, i.e., it would always be viewing
some of the un-illuminated surface. Thus, to maximize the amount of the illuminated side
of the planet that is seen the orbit must precess as shown in the figure, i.e., it must turn
through an angle of 360◦ in 365.25 days. How can this be accomplished? Actually, the
shape of the Earth accomplishes the task. The equatorial radius of the Earth is greater
than the polar radius as shown in Figure 11.26 (right panel). If the satellite were at the
far left portion of it’s orbit, it would be more attracted to the point “W” than the point
“N,” so the gravitational force on the satellite is not toward the center of the Earth. This
results in a torque that causes the orbit to precess much like the precession of a gyroscope
with one fixed point, e.g. a child’s “top.” The rate of precision of the point “P,” where the
satellite crosses the Equator (called the node), toward “W” in degrees per orbit is given by

∆Ω = −360◦
J

a2

cos θi
(1− ε2)

,
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where ε is the eccentricity of the orbit (zero for a circular orbit), a is the semi-major axis
of the orbit divided by RE , and

J =
2

3

(
Iz − I
MR2

E

)
= 1.624× 10−3,

and I and Iz are the moments of inertia of the Earth about an axis lying in the Equatorial
plane and an axis perpendicular to the Equatorial plane through the poles, respectively. As
most “polar orbiting” satellites are in nearly circular orbits, ε ≈ 1 and a ≈ (RE +H)/RE .
For a sensor with H = 1000 km, the orbital period is 105.05 min, so there are 13.708 orbits
per day. In order that the orbit precesses 360◦ in 365.25 days or 0.9856◦ per day, we need
θi = 99.47◦. The CZCS was in an orbit with H = 955 km with θi = 99.28◦.

11.6.2 Geosynchronous Orbit

One ocean color scanner, the South Korean Geostationary Ocean Color Imager (GOCI), is
in a geosynchronous orbit. This orbit circles the Earth over the Equator, but always remains
over the same point on the Equator, i.e., the sub-satellite point is stationary relative to
the Earth. Clearly for this to happen, the period of the orbit must be one day. Recall that
the period of the orbit (τ the time for one revolution) is τ = 2π(RE + H)3/2/RE

√
g. For

this period to be one day requires H = 35, 879 km or 22,294 miles. Because this altitude is
much larger than that for imagers in polar orbit, the angular field of view α must be much
smaller. For such an imager to obtain a 1 km footprint, its angular field of view must be
about 35 times smaller than a sensor at 1000 km,26 with a reduction of approximately a
factor of 352 = 1225 in radiant power. Thus, longer integration times are required for such
a sensor compared to those in polar orbits, in order to achieve the same spatial resolution
and SNR. Note that a sensor in geosynchronous orbit will view the fully illuminated Earth
only at one time during the day, i.e., Earth is viewed at “full phase” once per day near
local noon at the sub-satellite point (ignoring the progression of seasons). The rest of the
time it will be be seen at partial phase or even in total darkness (local midnight).

11.7 Bibliographic Notes

11.1 Introduction

Specifications and requirements, as well as their evolution, for ocean color sensors now
under development are discussed McClain et al. [2014].

26GOCI is similar to MODIS, but with a footprint of 500 m so its α is about 70 times smaller than the
MODIS angular field of view.
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11.2.1 Spectral Bands

Figure 11.1 was originally prepared by the author and has appeared in several reports,
e.g., Hooker et al. [1992].

11.2.2 Acceptable Levels of Sensor Noise

A good discussion of the various noise sources in optical sensors can be found in Dereniak
and Crowe [1984]. Estimation of the NER’s required for an ocean color scanner was first
carried out in Gordon [1988] and later using stochastic methods in Gordon [1990].

11.2.3 Signal Quantization and Saturation Radiance

Most of the CZCS characteristics can be found in Ball Aerospace Division [1979]. Sea-
WiFS characteristics are from Barnes et al. [1994a].

11.4.1 The CZCS

Figure 11.21 is taken from Ball Aerospace Division [1979]. Figures 11.23 and 11.24 were
taken from Xiong et al. [2013].

11.4.2 The MODIS

The use of the 1375 nm band to observe thin cirrus clouds is described in Gao et al.
[1993].

11.6.1 Polar Orbit

The precession formula for the node of an inclined polar orbit is from Goldstein [1980].
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11.8 Figures

SeaWiFS 

Figure 11.1: Left panel: spectral bands for the CZCS superimposed over the surface
and top-of-atmosphere radiance spectrum for low (solid: CP = 0.01 mg/m3) and
high (dotted: CP = 10 mg/m3) pigment concentrations. Right panel: same as the
left panel but for SeaWiFS.
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Figure 11.2: Result of simulations of sensor noise on the pigment concentration.
Points represented as solid circles, diamonds, and squares are for NE∆ρt(NIR) =
0, 1× 10−4 and 2× 10−4, respectively. For these simulations, NE∆ρ’s were 4.58×
10−4 and 2.26 × 10−4 in [ρw]N at 443 and 555 nm, respectively, corresponding to
NE∆ρ’s for the sensor (NE∆ρt) of 3.48×10−4 and 2.02×10−4 at 443 and 555 nm,
respectively (nominal values θs = θv = 30◦ were used for computing the diffuse
transmittances).
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NIR:  NEΔρ = 1 ×10-4, CP = 0.10 mg/m3
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NIR:  NEΔρ = 1 ×10-4, CP = 0.30 mg/m3
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NIR:  NEΔρ = 1 ×10-4, CP =1.0 mg/m3
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Figure 11.3: Histograms of the distribution of retrieved values of CP for true values
of CP = 0.1, 0.3, 0.6, and 1.0 mg/m3. The mean values of the retrieved CP ’s were
0.099, 0.30, 0.61, and 1.04 mg/m3, and the corresponding relative standard devia-
tions (∆CP /CP ) were 13.1, 6.0, 11.0 and 20.2%. For these simulations, NE∆ρ’s
were 4.58× 10−4 and 2.26× 10−4 in [ρw]N at 443 and 555 nm, respectively, corre-
sponding to NE∆ρ’s for the sensor (NE∆ρt) of 3.48×10−4 and 2.02×10−4 at 443
and 555 nm, respectively (nominal values θs = θv = 30◦ were used for computing
the diffuse transmittances). For the NIR, the NE∆ρ for ρt was the same at both
765 and 865 nm with a value of 1× 10−4.
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Figure 11.4: Bilinear analog-to-digital conversion curve for the 412 band on Sea-
WiFS. SeaWiFS digitization was 10 bit, i.e., 1024 radiance values.
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Figure 11.5: Schematic of a simplified scanning radiometer. The Gershun tube
(plus detector element) rotates about an axis parallel to the velocity vector of the
spacecraft.
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! 
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Figure 11.6: One complete rotation of the Gershun tube in Figure 11.5 produces
a line of pixels slightly tilted to the velocity vector.
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Figure 11.7: Four rotations of the Gershun tube results in four lines of pixels
producing an image on the water surface. Here the pixel size s is related to the
rotation rate R by s = vg/R, where vg is the ground speed of the satellite.
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Figure 11.8: A sensor at “S” views a pixel at “P” on the surface of the Earth
centered at “C”.
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Figure 11.10: Schematic showing how the pixels increase in size (the “footprint”of
the sensor) as the scan passes from nadir to the edge.
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Figure 11.11: Bar chart and the result of imaging with several sized IFOVs. See
text for details.
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Figure 11.12: Schematic showing the sensor at S viewing a pixel P at nadir. Later,
the sensor moves to S’ and observes the nadir pixel P’. Clearly, in order to do this
the spacecraft must have rotated through an angle θ.
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Figure 11.13: Obtaining a spectrum of the surface using multiple sensors.
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Figure 11.14: The sampling of the water surface using the arrangement in Figure
11.13.

D1 

D2 

G 

Figure 11.15: An alternative for achieving two spectral bands. The principal
element here is a concave diffraction grating “G,” which separates the light into a
spectrum as well as imaging the aperture of the Gershun tube. Separate portions
the spectrum are imaged onto detectors D1 and D2. In this diagram, the size of
the detectors would determine the spectral bandwidths of the two bands. This
concept was used by the first ocean color scanner — CZCS.
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Figure 11.16: Alternative for achieving two spectral bands with a single Gershun
tube scanner. The elements L1, L2 and L3 are focussing lenses, F1 and F2 are nar-
row band spectral filters, D1 and D2 are the detectors, M is a plane mirror and Di
is a dichroic filter. The insert shows the transmission and reflective characteristics
of a typical dichroic filter. It is from Thorlabs, Inc (www.thorlabs.com) for filter
DMLP550, an example of a long-pass dichroic filter. An arrangement based on
this concept was used in SeaWiFS.
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Figure 11.17: This is a design that would produce an image (“Image”) of a pixel
(“Object”) on the water surface. The “Scan Mirror” rotates around an axis (dashed
line) parallel to the velocity vector of the spacecraft.
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Figure 11.18: This is a design that would produce an image (“Image”) of a pixel
(“Object”) on the water surface. The “Scan Mirror” rotates around an axis parallel
to the velocity vector of the spacecraft, but unlike Figure 11.17 the velocity vector
is now directed into the paper.
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Figure 11.19: Concept of a push broom scanner. Instead of a single detector,
there is a linear array of detectors aligned parallel to the Earth’s surface, but
perpendicular to the velocity vector. The footprints (large squares at the bottom)
are imaged by the optics (lens) onto the array (small squares at the top).
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Figure 11.20: Concept of a hyperspectral push broom scanner. Here a diffraction
grating has been placed behind the lens to disperse the spectrum and a rectangular
array rather than a linear array is used. (Note that now the aperture of the
instrument must be a line one pixel wide perpendicular to the flight line otherwise
the next scan line and the spectrum would be intermixed.)

Figure 11.21: The optical layout of the CZCS. From Ball Aerospace Division
[1979].
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Figure 11.22: Photograph of the CZCS. The dimensions of the instrument are 81
cm × 56 cm × 38 cm, and the total weight is 42 kg. The scan mirror can be seen
at an angle of 45◦ to the horizontal. Its size is approximately 20 cm × 28 cm. The
right box contains the scan motor assembly and the left box the spectrometer and
electronics. The large shiny object at the lower left is the cover to the radiative
cooler for the far-infrared detector.

Figure 11.23: This is a schematic of the visible focal plane of the MODIS in-
strument. The scan direction is horizontal and the direction of the velocity vector
of the satellite is vertical. The band numbers are along the bottom. Bands 8,
9, 10, 11, and 12 are visible bands for ocean observations with a resolution of 1
km at nadir. The resolution is determined by the physical size of the individual
detectors. Bands 3 and 4 are high resolution (0.5 km) visible bands for land ob-
servations. Each ocean band has ten individual detectors labeled 1 through 10.
When the scan mirror is in a position to image at nadir, an approximately 21 km
× 11 km image of the water surface falls on this focal plane.
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Figure 11.24: This is the same schematic as in Figure 11.23; however, a simulated
image of the water surface has been superimposed on the focal plane. This is what
happens in the operation of the sensor. As the scan mirror rotates the image will
move across the focal plane from left to right. The image is then sampled by the
individual detectors.

Figure 11.25: Schematic of the so-called “bowtie” effect in MODIS. The center
line of pixels represents the footprint of the ten detectors of one spectral band at
nadir. Note that they do not overlap. The pixels to the left and right are the
footprints later and earlier in a single scan. They are larger and overlap. The
overall footprint for one scan in shape resembles a bowtie.
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Figure 11.26: Left panel: the seasonal motion of the Earth around the Sun. The
thick black line represents the plane of a polar-orbiting satellite’s orbit. In order
for the satellite to be over the illuminated portion of the Earth half of the time,
the plane of the orbit must rotate through 360◦ in 365.25 days. Right panel: The
plane of the satellite orbit around the Earth (thick line) inclined at an angle θi
measured from the Equator at point “P” (the orbital node). This angle is adjusted
for the plane of the orbit to carry out the motion shown in the left panel.



Chapter 12

Calibration and Characterization

12.1 Introduction

So far in our study of the remote sensing of water properties from measurements of re-
flectance ρt (or radiance) of the ocean-atmosphere system made from satellite altitudes,
we defined the required (physical) quantity of interest, ρw, an apparent optical property,
and related it to the inherent optical properties of the water and its constituents: a, b and
β. We then used an example (the most important one, remote sensing the concentration
of Chlorophyll a) to show how the IOPs relate to the particular constituent of interest.
Finally, we developed a scheme to extract ρw from ρt — atmospheric correction. In all of
our discussion we assumed that the reflectance ρt was accurately measured, i.e., error free
(albeit not noise free). In this chapter we consider the consequences of error in ρt (a bias
in the absence of noise), which we refer to as “calibration” error, and methods to minimize
it.

In Chapters 9 and 10 we saw that in the blue ρw is at most 10-20% of ρt so, naively,
it would seem that at first glance, a 5% error in ρt in the blue would lead to a 25-50%
error in ρw. But wait, there is a somewhat complex atmospheric correction procedure
employed to find ρw that involves two other spectral bands, each of which have their own
calibration error. How does the error in these bands influence the error in the spectral
band of interest? We actually need to know the effect of calibration errors on the error in
the retrieved water-leaving reflectance after atmospheric correction. To estimate this, we
will again use the single scattering atmospheric correction algorithm, which will certainly
be adequate for the purpose. We start by writing the measured reflectance ρ′t(λi) (which

811
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includes the error)1 in terms of the true reflectance ρt(λi) and the fractional error in ρt(λi),
which we denote by α(λi):

2

ρ′t(λi) = ρt(λi)
(
1 + α(λi)

)
. (12.1)

These measured reflectances are then passed through the atmospheric correction algorithm
to compute the estimated ρ′w, i.e.,

t(λi)ρ
′
w(λi) = ρ′t(λi)− ρr(λi)− ε′(λi, λl)ρ′as(λl),

where

ρ′as(λl) = ρ′t(λl)− ρr(λl)
and

ε′(λi, λl) =
ρ′as(λi)

ρ′as(λl)
.

But,

t(λi)ρw(λi) = ρt(λi)− ρr(λi)− ε(λi, λl)ρas(λl),
so

t(λi)
(
ρ′w(λi)− ρw(λi)

)
≡ t(λi)∆ρw(λi) = α(λi)ρt(λi) + ε(λi, λl)ρas(λl)− ε′(λi, λl)ρ′as(λl).

The last term can be written

ε′(λi, λl)ρ
′
as(λl) =

(
ε(λi, λl) + ∆ε(λi, λl)

)(
ρ′t(λl)− ρr(λl)

)

=
(
ε(λi, λl) + ∆ε(λi, λl)

)(
ρas(λl) + α(λl)ρt(λl)

)
.

Assuming the calibration errors are small quantities, i.e., α(λi)� 1, and ∆ε(λi, λl)/ε(λi, λl)�
1, upon multiplying this out, the term ∆ε′(λi, λl)α(λl)ρt(λl) is second order in small quan-
tities, so we’ll ignore it compared to the others. Then

ε′(λi, λl)ρ
′
as(λl) = ε′(λi, λl)ρas(λl) + ε(λi, λl)α(λl)ρt(λl),

and

t(λi)∆ρw(λi) =
(
ε(λi, λl)− ε′(λi, λl)

)
ρas(λl) + α(λi)ρt(λi)− ε(λi, λl)α(λl)ρt(λl). (12.2)

1Here all the quantities that include the calibration error are indicated by primes. The error-free quan-
tities are unprimed.

2This is the error in ρt if the sensor is calibrated through a reflectance-based calibration (see Section
12.2.1 below). If a radiance-based calibration method is used, then the solar irradiance must be used to
turn radiance into reflectance. In that case α = αL − αF (where the α’s are considered to be much less
than unity), with L′t = (1 + αL)Lt and F ′0 = (1 + αF )F0.
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To complete the task, we need to evaluate ε(λi, λl)−ε′(λi, λl). For this we need a model for
ε(λi, λl), and will assume, as in the single-scattering algorithm, that ε(λi, λl) = exp[k(λl−
λi)]. Then

ε(λi, λl)− ε′(λi, λl) = ε(λi, λl)

(
1− ε′(λi, λl)

ε(λi, λl)

)

= ε(λi, λl)
(

1− exp[k′(λl − λi)− k(λl − λi)]
)

= ε(λi, λl)
(

1− exp[∆k(λl − λi)
)

= ε(λi, λl)
(
−∆k(λl − λi)

)
,

(12.3)

where ∆k = k′ − k, and in the last equation we have dropped terms of order (∆k)2 and
higher. We can find ∆k by using the band at λs, i.e.,

∆k = − 1

λl − λs

(
ε(λs, λl)− ε′(λs, λl)

ε(λs, λl)

)
. (12.4)

But, we still need ε(λs, λl)− ε′(λs, λl). Finding this is straightforward:

ε′(λs, λl) =
ρ′t(λs)− ρr(λs)
ρ′t(λl)− ρr(λl)

=
ρt(λs)− ρr(λs) + α(λs)ρt(λs)

ρt(λl)− ρr(λl) + α(λl)ρt(λl)
=
ρas(λs) + α(λs)ρt(λs)

ρas(λl) + α(λl)ρt(λl)

=

(
ρas(λs)

ρas(λl)

)(
1 + α(λs)ρt(λs)/ρas(λs)

1 + α(λl)ρt(λl)/ρas(λl)

)

=

(
ρas(λs)

ρas(λl)

)(
1 +

α(λs)ρt(λs)

ρas(λs)
− α(λl)ρt(λl)

ρas(λl)

)

= ε(λs, λl)

(
1 +

α(λs)ρt(λs)

ρas(λs)
− α(λl)ρt(λl)

ρas(λl)

)
,

(12.5)

where the next to last step is valid because of the smallness of the α’s. This yields
(
ε(λs, λl)− ε′(λs, λl)

ε(λs, λl)

)
=

(
−α(λs)ρt(λs)

ρas(λs)
+
α(λl)ρt(λl)

ρas(λl)

)
,

so

∆k =
1

λl − λs

(
α(λs)ρt(λs)

ρas(λs)
− α(λl)ρt(λl)

ρas(λl)

)
(12.6)

Substituting Eqs. (12.6) and (12.3) into Eq. (12.2) yields our final answer:

t(λi)∆ρw(λi) = α(λi)ρt(λi)− ε(λi, λl)α(λl)ρt(λl)

−
(
λl − λi
λl − λs

)(
ε(λi, λl)

ε(λs, λl)
α(λs)ρt(λs)− ε(λi, λl)α(λl)ρt(λl)

)
.

(12.7)
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The first term in Eq. (12.7) is the direct result of calibration error in the spectral band
of interest at λi, while the second results from error at λl propagated to λi through the
atmospheric correction process. The term on the second line is due to the error in ε(λs, λl)
generated by error at λs and λl and again propagated to λi through atmospheric correction.
We note that if all of the calibration biases have the same sign there will be some cancelation
of the terms in Eq. (12.7).

Let’s use an example to gain some insight into the magnitude of the various terms.
Recall that for SeaWiFS, λs = 765 nm and λl = 865 nm. From one of the stations in
Figure 10.4 in Chapter 10 we obtain ρt(443) ≈ 0.16, ρt(765) ≈ 0.022 and ρt(865) ≈ 0.019.
Note that for Maritime aerosols all of the ε values are close to unity, so we will assume for
the purpose of this example that they are unity. If we assume a calibration bias of +5%
in each spectral band, then the magnitudes of the three terms in Eq. (12.7) are

Term 1 = +8.00× 10−3

Term 2 = −9.50× 10−4

Term 3 = −6.33× 10−4

Clearly, the most important of the three biases is α(443). This would need to be reduced
to about 2% in order to achieve the desired accuracy in ρw(443) of ±0.002 (ignoring t
of course). Consider a different scenario. Let α(865) = −0.01 and α(765) = +0.01, i.e.,
calibration biases that are equal but of opposite sign in the two NIR bands. In this case

Term 2 + Term 3 = −1.58× 10−3,

i.e., contributing as much to the error in tρw(443) as they did in the case where α(865) =
α(765) = +0.05.3 This underscores the importance of the calibration errors in the two NIR
bands having the same sign. Later in this chapter we will develop a method of vicarious
calibration that guarantees that the calibration biases will all have the same sign.

Let us look at some sample results derived with the full multiple scattering algorithm.
In these cases the multiple scattering algorithm was operated by inserting values of ρ′t(λ)
rather than ρt(λ). We assumed that the actual aerosol is M80 and use the original set of
candidate aerosol models (M50, · · · , T99). The aerosol optical depth at 865 nm was 0.2,
and viewing was at nadir. The error in tρw(443) is provided as a function of the the solar
zenith angle for various bias scenarios in Figure 12.1. The various panels of Figure 12.1
are in quantitative agreement with the estimates above after allowance is made for the fact
that unity ε’s were used in the single-scattering algorithm estimates and the ρt’s probably
were not characteristic of M80. Assuming that all of the calibration biases are of the same

3If the calibration errors in the bands at 443, 765, and 865 nm were +5%, +5%, and -5%, respectively,
then the error in tρw(443) would only be +0.1×10−3, an excellent result. But, remember that the calibration
error is unknown, i.e., it is not at our disposal to adjust.



12.2. RADIOMETRIC CALIBRATION 815

sign, the results above and in the figure suggests that most of the error is due to α(443)
and that to achieve the desired accuracy, calibration uncertainty of only the order of 1%
can be tolerated. This accuracy is difficult to achieve even in a laboratory setting, but we
shall see that it can even be exceeded through methods of vicarious calibration described
later in this chapter.

We start our discussion of calibration of ocean color sensors by carefully defining what
we mean by “radiometric calibration,” and two ways to effect it. As this calibration is
usually carried out pre-launch, there is uncertainty as to how well it still applies after
launch. In fact, even in the laboratory it is difficult to achieve the necessary calibration
uncertainty required for adequate retrieval of ρw. Thus, post-launch on-orbit calibration
or “vicarious calibration” schemes have been developed for adjustment of the pre-launch
calibration. We discuss two of these techniques, and show that they result in a considerable
improvement in the radiometric calibration beyond the pre-launch effort. Then, realizing
that each sensor has its own peculiarities and idiosyncrasies, we discuss some prelaunch
measurements (“characterization”) that are required to account for their effects.

12.2 Radiometric Calibration

So far we have based our discussion on radiance, or reflectance derived from radiance. For
review, recall that the radiance is operationally defined in the following manner. Start
with a radiation detector of area ∆AD. This has the property that it provides an electrical
response, say a current i(P), when its sensitive area is fully illuminated by a radiant power
P. We assume that the radiant power is a continuous function of wavelength, i.e., if
∆P(ξ̂, λ0,∆λ) is the radiant power propagating in a direction ξ̂ with wavelength in the
interval between λ0 − ∆λ/2 and λ0 + ∆λ/2 falling on the detector, then as ∆λ → 0,
∆P(ξ̂, λ0,∆λ)/∆λ converges to a well defined limit. Now, restrict the field of view of the
detector by placing it at one end of a tube (Gershun tube), allowing the detector to receive
light propagating only within a narrow range of angles around a given direction (ξ̂) defined
by the solid angle ∆Ω(ξ̂).4 Arrange the surface of the detector to be perpendicular to the
direction ξ̂, and place a narrow band spectral filter in front of the detector so that only
light within a spectral interval ∆λ centered on the wavelength λ0 can reach the detector.5

4The open end of the tube is pointing in the direction −ξ̂. The solid angle ∆Ω(ξ̂) is the area of the open
end of the tube divided by the square of its length.

5We assume the spectral filter is 100% transmitting for radiation with wavelengths within ∆λ, and has
no transmission for wavelengths outside ∆λ. This assumption will be relaxed later in this chapter.
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Under these conditions the detector records ∆3P(ξ̂, λ0) and the radiance is defined by

L(ξ̂, λ0) =
∆3P(ξ̂, λ0)

∆Ω(ξ̂)∆AD∆λ

Because the ∆3P(ξ̂, λ0) is expected to be proportional to each of the quanitities in the
denominator, this ratio will approach a well defined limit for sufficiently small values of
∆Ω(ξ̂), ∆AD and ∆λ.

In Chapter 2 we found that the radiant power ∆3P and the current from the detector i
are proportional to one another, i.e.,

i(λ) ∝ ∆3P(λ) = L(λ)∆λ∆Ω∆AD.

Let κ′(λ) be the proportionality constant, so

i(λ) = κ′(λ)L(λ)∆λ∆Ω∆AD.

If the filter has transmittance T (λ), then the power reaching it is reduced the factor T (λ)
and in the above equation L(λ) is replaced by L(λ)T (λ). For a given radiometer ∆Ω
and ∆AD are fixed and so can be incorporated into the proportionality constant. It is
also convenient to incorporate T (λ) into the constant as well and write κ = κ′T∆Ω∆AD.
Then,

i(λ) = κ(λ)L(λ)∆λ. (12.8)

(Note that κ(λ) has dimensions of i/L∆λ, for example Amperes over Watts per meter
squared Steradian.) The proportionality “constant” κ(λ) is not only dependent on wave-
length (because of T and also because radiation detectors have a response that is wave-
length dependent) but on other factors such a temperature, etc. Where it is necessary to
remind ourselves of this, we will write κ as κ(λ, · · · ), where · · · represents these additional
dependencies.

If we measure κB(λ) for all wavelengths for a particular spectral band B, by introducing
quasi-monochromatic radiance6 into the radiometer, the resulting current will be

IB =

∫
κB(λ)L(λ) dλ.

Now let

SB(λ) ≡ κB(λ)∫
κB(λ) dλ

.

6This radiance need not be monochromatic, but must have a spectral band width ∆λ that is small
compared to the nominal spectral width of B.
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SB(λ) is usually called the relative spectral response or normalized spectral response for
band B. With the substitution,

IB =

(∫
SB(λ)L(λ) dλ

)(∫
κB(λ) dλ

)
=
〈
L
〉
B

∫
κB(λ) dλ,

where 〈
L
〉
B
≡
∫

SB(λ)L(λ) dλ (12.9)

is called the band-integrated radiance or just the band radiance in band B. It is convenient
to redefine the integrated κ to be 1/KB, i.e.,

KB =
1∫

κB(λ) dλ
,

so 〈
L
〉
B

= KBIB, (12.10)

and we shall refer to KB as the calibration constant for band B.

By radiometric calibration we mean the quantitative relating of the electrical output
of the detector (IB) in a radiometer to the radiance of the scene

〈
L
〉
B

being viewed as
in Eq. (12.10). This is usually accomplished by having the radiometer view a source of
known radiance; a process called radiance based calibration. Usually the source of radiance
is varied in magnitude to detect any nonlinearities in the current-radiance relationship. A
second kind of calibration is known as reflectance based. In this case the radiometer is
aimed at a target of known reflectance that is illuminated by a given source, and its output
recorded. Then when the radiometer views a scene that is illuminated by the same source
the radiometer’s output determines the scene’s “reflectance.”7

12.2.1 Radiance Based Calibration

For radiance based calibration, we need to provide a known source of radiance. This can
be accomplished by shining light onto a white diffusing material that has known reflecting
properties. For example, the reflected radiance might be almost independent of the viewing
angle and the illumination angle, as is nearly the case for reflection from a sheet of (non-
glossy) white paper, i.e., a lambertian reflector. Such surfaces are available and are called

7In both of these methods the source is usually broad-band radiance, i.e., from an incandescent lamp
rather than monochromatic radiation. Thus, we can find KB , but in order to find κ(λ) we need quasi-
monochromatic radiation. Because producing quasi-monochromatic radiance at the required power levels
that also fill the aperture of the sensor is very difficult, the calibration is usually carried out in two steps.
First, KB is determined using a broad-band source, then κ(λ) is estimated using radiance from a monochro-
mator and normalized to yield SB(λ).
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reflectance plaques. Here, for simplicity, we will assume that the plaque is lambertian and
has a known reflectance, RP (λ). The illuminated plaque must be large enough to fill the
field of view of the radiometer, defined by ∆Ω(ξ̂). The illumination of the plaque is from
a standard lamp, which provides a known spectral irradiance EL(λ,D) at a fixed distance
(D) from the plaque when operated at a specified current from a current-regulated power
supply. The lamp irradiance is traceable to similar lamps calibrated at national standards
laboratories. Because the source is an incandescent filament, its spectral irradiance will
vary slowly with wavelength. Thus, illuminating the plaque in this manner provides a
reflected irradiance of RP (λ)EL(λ,D). Because the plaque is lambertian, the reflected
radiance is L(λ,D) = RP (λ)EL(λ,D)/π. For band B,

RP (λB)EL(λB, D)

π
=
〈
L
〉
B

= KBIB(D), (12.11)

where λB is the nominal wavelength at the center of the band. Then, measuring IB(D),
provides KB. One then varies D noting that EL(λ,D)/EL(λ,D′) = D2/D′2, allowing a
determination of any nonlinearities in the detector (variation in KB with the magnitude of
the radiance measured).8 If the detector is linear, KB is a constant, and IB(D)/IB(D′) =
D2/D′2.

For large radiometers, such a ocean color sensors, rather than using a flat reflectance
plaque a calibration sphere is used. This is a hollow sphere painted with flat white paint
inside and containing a large number (usually more than 10) standard calibration lamps.
A hole is cut in the sphere and the radiometer to be calibrated is arranged to view into
the hole. The lamps are arranged so that none are in the field of view of the radiometer.
The radiance exiting the hole is totally diffuse, and known as a function of the number of
lamps that are turned on.

12.2.2 Reflectance Based Calibration

In our development of the atmospheric correction algorithm we found it convenient to use
the reflectance ρ(λ) in place of the radiance L(λ). The reflectance associated with a given
radiance was defined by

ρ(λ) =
πL(λ)

F0(λ) cos θ0
,

where F0(λ) is the instantaneous extraterrestrial solar irradiance (on a plane normal to
the solar beam) and as usual, θ0 is the solar zenith angle. For satellite radiometers it is

8The relationship EL(λ0, D)/EL(λ), D
′) = D2/D′2 is only approximate since the lamp filament is not

a point source. However, the actual relationship between EL(λ,D) and EL(λ,D′) can be determined
experimentally.
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actually more practical to calibrate the instrument in terms of reflectance, as this can be
accomplished on orbit.

All ocean color instruments are scanners, i.e., they have a mechanical mechanism that
allows them to view in different directions (Chapter 11). This is equivalent to pointing
a gershun tube in different directions. This is often accomplished via a rotating mirror.
Figure 12.2 shows a schematic of how on-orbit reflectance-based calibration might be carried
out. In the figure we see the radiometer viewing the scene in a nadir direction where the
radiance is Lt. Then it points in a different direction, viewing a reflectance plaque that is
also illuminated by the solar beam and records a radiance LP as shown in the figure. The
plaque has a reflectance RP (ξ̂P , ξ̂V ) when light propagating in a direction ξ̂P reflects off in
a direction ξ̂V . The reflectance RP (called the BRDF of the plaque) is determined for all
ξ̂P and ξ̂V prior to launch. If the plaque is lambertian, RP is independent of both ξ̂P and
ξ̂V . When viewing the scene the radiance is given by

〈
Lt
〉
B

= KBItB and when viewing

the plaque,
〈
LP
〉
B

= KBIPB. But

KBItB =
〈
Lt
〉
B

=
F0(λB) cos θ0

〈
ρt
〉
B

π
and KBIPB =

〈
LP
〉
B

=
F0(λB) cos θ0

〈
ρP
〉
B

π
,

where, as in the last section, we have assumed that F0 is a lowly varying function of λ.
Finally, since

〈
ρP
〉
B

=
〈
RP
〉
B

, we have

〈
ρt
〉
B

=
〈
RP
〉
B

[
cos θP
cos θ0

] [
ItB
IPB

]
.

Note that F0 and KB do not appear in the final result.9 So the calibration constant
K does not even have to be known, as long as the detection system is linear. Even if
the detection system is not precisely linear, if the ratio ItB/IPB is close to unity, which
requires Lt(λ)/LP (λ) to be close to unity, then the calibration constants are still not
needed; however, this is difficult to achieve, as most plaques have a reflectance that is more
or less spectrally neutral, but the scene Lt varies strongly from blue to the NIR.10

Experience shows that the reflectance of solar diffuser plaques in orbit degrade with
time. If account is not taken of this degradation, the estimated ρt will be too large. This
is remedied by monitoring the stability of RP . To effect this monitoring, SeaWiFS uses
the Moon (see Chapter 8), and MODIS uses an onboard monitoring device and occasional
Lunar views.

9If there are any nonlinearities in the detection system then there will be a ratio of K’s at the two
radiance levels, Lt and LP , in the final result.

10The above analysis is correct as long as the spectral band B is relatively narrow compared to the visible
spectrum. For SeaWiFS, the spectral bands were nominally 20 or 40 nm wide; however, some of them had
significant response outside the nominal bands. This requires special treatment that is discussed in a later
section.
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12.3 Vicarious Calibration

The radiometric calibration of ocean color sensors to be flown in space is a particularly
difficult task as the instruments are physically large and the calibration constants, KB(· · · ),
must be measured with the instrument in a vacuum chamber. This is expensive, but even
if it is effected, how do we know that the same values of KB(· · · ) apply after the violence of
launch? This question makes the concept of vicarious calibration very attractive. In general
vicarious calibration means calibrating the sensor in orbit by determining the radiance (or
reflectance) that it should be recording when viewing a particular scene.11 For ocean color
sensors this requires that surface measurements of the water-leaving radiance as well as
measurements to determine the state of the atmosphere, e.g., surface pressure, aerosol type
and concentration, etc., are carried out in order to use radiative transfer to determine what
we believe to be the actual radiance at the sensor.

In this section we describe two methods for carrying out vicarious calibration. The first
provides a near-radiometric calibration and the second is capable of providing a calibration
that in the blue is even better than could be achieved in a laboratory calibration. The latter
method has been used extensively for vicariously calibrating the U.S. ocean color sensors
SeaWiFS, MODIS Terra, and MODIS Aqua.

12.3.1 Direct — Using Surface Radiance Measurements

In the direct method, the basic idea is to use measurements of the sky radiance at the wa-
ter surface in various directions, made with a well-calibrated radiometer (and atmospheric
direct transmission for optical depth, if necessary), and deduce the radiance exiting the
top of the atmosphere toward the sensor. Ideally one would like measurements of the sky
radiance and satellite-sensed radiance to occur at the same time and location to minimize
the effects of changes in the atmosphere. As a simplified example of such a procedure, con-
sider a homogeneous atmosphere with a totally absorbing (nonreflecting) lower boundary.
Radiance exits the top of the atmosphere (TOA) propagating in a direction ξ̂T having been
scattered from the solar beam propagating in the direction ξ̂0. Assume for the present that
the optical thickness τ is sufficiently small that the single-scattering solution of the radia-
tive transfer equation accurately provides the exiting radiances. The reflectance ρT (ξ̂T ) is

11This is analogous to the methods in the previous section, where the radiance or reflectance was deter-
mined by reflectance plaques and standard lamps. The optical properties of these “tools” must be known
or determined prior to the calibration. In this case the “tool” is the ocean-atmosphere system whose prop-
erties need to be determined prior to the calibration. In this sense the term “vicarious” is a misnomer, as
the essential difference is the temporal stability of the tools: plaques and lamps are very stable, while the
reflectance of the ocean-atmosphere system is not.
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given by12

ρT (ξ̂T ) =
ωaτP (ΘT )

| cos θT | cos θ0
, (12.12)

where, cos ΘT = ξ̂T • ξ̂0, with

ξ̂0 = êx cosφ0 sin θ0 + êy sinφ0 sin θ0 + êz cos θ0,

ξ̂T = êx cosφT sin θT + êy sinφT sin θT + êz cos θT .

Now, for the radiometer at the bottom of the atmosphere (BOA), the reflectance13 is

ρB(ξ̂B) =
ωaτP (ΘB)

cos θB cos θ0
, (12.13)

where, cos ΘB = ξ̂B • ξ̂0, and

ξ̂B = êx cosφB sin θB + êy sinφB sin θB + êz cos θB.

Now, if it can be arranged that ΘB = ΘT , we have

| cos θT |ρT (ξ̂T ) = cos θBρB(ξ̂B) or | cos θT |LT (ξ̂T ) = cos θBLB(ξ̂B), (12.14)

so measurement of LB provides LT directly. In addition the uncertainty in LT is given
directly as the uncertainty in the measurement by the BOA radiometer, i.e., LB.

Is it always possible to arrange to have ΘB = ΘT ? Actually for this to be possible
usually requires a relatively large solar zenith angle. Given the sensing geometry, we can
always find ΘT . Then, if ΘB = ΘT ,

cos ΘT = cos ΘB = cosφB sin θB cosφ0 sin θ0 + sinφB sin θB sinφ0 sin θ0 + cos θB cos θ0

or
cos ΘT = sin θB sin θ0 cos(φB − φ0) + cos θB cos θ0, (12.15)

so

cos(φB − φ0) =
cos ΘT − cos θB cos θ0

sin θB sin θ0
. (12.16)

Consider a specific example. Let θ0 = 45◦ and φ0 = 0◦ along with θT = 135◦ and φT = 0◦.
A simple drawing, or the equation following Eq. (12.12), shows that ΘT = 90◦. Clearly,
if we choose θB = 45◦ and φB = 180◦, as shown below (where all of the ξ̂ vectors are
in the same plane, the principal plane), then ΘB = ΘT = 90◦. Equations (12.15) and

12Here, for simplicity, we will stop using the angle brackets to denote band averages, but understand that
these are band averages.

13The term “reflectance” here is a misnomer as there is nothing “reflected.” A better term might be
“normalized radiance.” In any event, as with all radiance-reflectance conversions, ρB = πLB/F0 cos θ0.
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(12.16) confirm that we are correct. Are there any other directions for ξ̂B that also have
ΘB = ΘT = 90◦? Clearly, if the plane formed by ξ̂T , ξ̂B, and ξ̂0 is rotated about ξ̂0, ΘT

and ΘB remain equal to 90◦. Does Eq. (12.16) confirm this? For a given θB Eq. (12.16)
shows that

cos(φB − φ0) =
−1

tan θB tan θ0
.

But for θ0 = 45◦ this gives cos(φB − φ0) = −1/tan θB. In order that φB − φ0 be in its
allowable range, i.e., −1 ≤ cos(φB − φ0) ≤ +1, we see that θB ≥ 45◦. For example, if
θB = 90◦, φB − φ0 = 90◦. Thus, for any 45◦ ≤ θB ≤ 90◦ there will always be a solution
with 90◦ ≤ φB − φ0 ≤ 180◦, so the answer is, yes. Clearly, Eq. (12.16) shows that as θ0

decreases, the range of ξ̂B’s over which ΘB = ΘT , decreases, i.e., the range of θB for which
φB−φ0 ≤ 180◦ are obtained, decreases. In practice, since we are using the single-scattering
formulae, we would want to use the ξ̂B with the smallest θB to minimize multiple-scattering
effects.

An alternative method to using these equations is to employ measurements of ρB for
various ξ̂B in Eq. (12.13) to determine ωaτP (Θ) and then use these in Eq. (12.12) to
determine ρT . The scattering angular range available to ρB is 0 ≤ ΘB ≤ θ0 + π/2 (in the
principal plane of the Sun φB − φ0 = 0 and π). As long as ΘT falls within this range for
ΘB the procedure will work and on-orbit calibration can be effected.

In the above discussion we have ignored any reflection by the water surface. The presence
of a Fresnel-reflecting water surface adds significant complications. Consider first, the
normalized radiance at the bottom of the atmosphere. We note that in the single-scattering
approximation, the contributions of Rayleigh and aerosol scattering to the reflectance are
completely separable. Furthermore, we can compute the Rayleigh contribution exactly, as
the Rayleigh phase function and optical thickness are both known. Thus, we will assume
in our discussion that this has been carried out and the Rayleigh contribution has been
removed from ρB (and ρT ), and confine our attention to the aerosol component. In the
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single-single scattering approximation this component is given by

ρB(θB) =
ωaτa

4 cos θB cos θ0

[
Pa(ΘB) + rf (θ0)Pa(Θ

(r)
B )
]
, (12.17)

where rf (θ0) is the Fresnel reflectance for an incident angle θ0,

cos ΘB = ξ̂0 • ξ̂B and cos Θ
(r)
B = ξ̂r0 • ξ̂B,

with ξ̂r0 being the direction of the solar beam after being reflected from the water surface
(note the “−” sign indicated in the equation below by the arrow):

ξ̂r0 = cosφ0 sin θ0êx + sinφ0 sin θ0êy
↓
− cos θ0êz.

These angles and the unit vectors are shown in the figure below, where for simplicity
all of the ξ̂’s are in the same plane, the principal plane. The first term in Eq. (12.17) 

 
 
 
 
 
 
 
 
 
 

!ξ̂0  

!!ξ̂0
r

 

zê  
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corresponds to direct scattering in the atmosphere toward the observer without interaction
with the surface, while the second term corresponds to photons reflected from the surface
and then scattered toward the observer. The second term is negligible when ΘB <∼ 60◦, i.e.,
when the surface radiometer is aimed within 60◦ of the Sun, because of the strong forward
scattering by the aerosol. However, there are configurations where the second term is
comparable in magnitude with the first. For example, consider ξ̂B = êz, i.e., a surface

radiometer viewing the zenith. In that case, cos ΘB = cos θ0 and cos Θ
(r)
B = − cos θ0. For

large θ0 the phase functions for both aerosol and Rayleigh scattering are comparable at

ΘB and Θ
(r)
B , and rf can be significant, e.g., for θ0 = 80◦, rf ≈ 0.35. As ρB depends on the

phase function at two angles, ΘB and Θ
(r)
B , it is not at all obvious that sufficiently accurate

values of ωaτaPa(Θ) can be retrieved to effect a meaningful vicarious calibration.

Similarly, the reflectance of the water-atmosphere system is

ρT (θ
(c)
T ) =

ωaτa

4 cos θ
(c)
T cos θ0

[
Pa(ΘT ) + [rf (θ

(c)
T ) + rf (θ0)]Pa(Θ

(r)
T )
]
, (12.18)



824 CHAPTER 12. CALIBRATION AND CHARACTERIZATION

where θ
(c)
T is the compliment of θT , i.e., θ

(c)
T = π − θT . Also

cos ΘT = ξ̂0 • ξ̂T and cos Θ
(r)
T = ξ̂r0 • ξ̂T ,

where
ξ̂T = cosφT sin θT êx + sinφT sin θT êy + cos θT êz

= cosφT sin θ
(c)
T êx + sinφT sin θ

(c)
T êy − cos θ

(c)
T êz.

From Eqs. (12.17) and (12.18) it is easy to see that, while we can still arrange to have
ΘT = ΘB, the presence of the Fresnel reflection terms destroys the nice symmetry we had
in Eq. (12.14), and the only way we can predict ρT from ρB is to use ρB to find ωaτaPa(Θ)
using Eq. (12.17) and then introduce the result into Eq. (12.18). This requires measuring
ρB(ξ̂B) for a sufficient number of directions ξ̂B to yield a reliable ωaτaPa(Θ). This is not
as straightforward as it might seem: ΘT corresponds mostly to scattering in the backward
hemisphere, while ΘB corresponds mostly to scattering in the forward hemisphere. An

example of this is shown in Figure 12.3, which provides ΘT and Θ
(r)
T as a function of

θ
(c)
T = π − θT , for θ0 = 60◦. The curves are for three cases φT − φ0 = 60◦, 90◦and 120◦.

For most of the viewing angles, ΘT > 90◦. In contrast the Θ
(r)
T ’s are mostly in the forward

hemisphere. Thus, in order to estimate ρT , the surface measurements must be carried out
so as to incorporate as accurate an estimation of ωaτaPa(Θ) as possible for Θ > 90◦. This
generally requires large solar zenith angles.

We want the ρB measurements to be made at the same solar zenith angle extant at the
satellite overpass. Ideally we also like the sensor to be viewing in the direction where the
surface-measurement site is in or near its field of view, so there will be the same atmospheric
state for both ρT and ρB. Remember, the whole idea is to measure ρB in various directions
and use Eq. (12.17) to estimate ωaτaPa(Θ) at enough values of Θ to allow Eq. (12.18) to be
used to estimate ρT at the sensor. This is accomplished by having the surface radiometer
scan over various portions of the sky. There are two important kinds of sky scans that we
will consider for ρB:14 the almucantar (A) scan for which θB = θ0 and φB − φ0 is varied
through 0 to 360◦; and the principal plane (PP) scan for which θB is varied from 0 to
90◦ for both φB − φ0 = 0 and φB − φ0 = 180◦. For the almucantar scan the maximum ΘB

is 2θ0, while for the PP scan it is θ0 + π/2. Figure 12.4 provides an example of Θ
(r)
B as

a function of ΘB for these two kinds of scans with θ0 = 60◦. Note that for a given ΘB,

Θ
(r)
B is always smaller in the almucantar scan than in the principal plane scan. Also, the

only way to reach the largest values of ΘB is with the PP scan, and for these Θ
(r)
B is near

ΘB but Pa(Θ
(r)
B ) can never be known for these angles because Θ

(r)
B > ΘB (except at the

maximum ΘB for which Θ
(r)
B = ΘB).

14Cameras with fisheye lenses now exist that can be used to quickly obtain the entire sky radiance (and
its polarization), so there is complete choice in what parts of the sky to use in the measurements. The
cameras can be mounted on gimbals for operation on a ship.
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For an example of recovering ωaτaPa(ΘB), we will assume that single scattering is the
correct physics (multiple scattering is considered later) and use it to simulate ρB(ξ̂B) for
the M99 aerosol model. This aerosol model has the most structure in the phase function
in the backward hemisphere of all of the models considered in Chapter 4 (see Figure 12.5,
left panel). Then we worked backward to estimate ωaτaPa(ΘB) from ρB. As in Figures
12.3 and 12.4 the case of θ0 = 60◦ is considered. First, the PP scan was used to estimate
ωaτaPa(ΘB) over the entire range of available angles 0 ≤ ΘB ≤ 140◦.15 We note that in
this case the retrieval for ΘB > 90◦ requires knowledge of ωaτaP (ΘB) for scattering angles

that are not available (Θ
(r)
B > 140◦). This necessitated that an assumption regarding Pa(Θ)

be made for the unavailable scattering angles. Here we assumed that Pa(Θ) = Pa(140◦)
for Θ > 140◦. The result of this exercise is provided in Figure 12.5, which gives the error
in the retrieved ωaτaPa(Θ) as a function of Θ (dashed line for PP scan). The error for

Θ <∼ 75◦ is usually quite small (< 1%) because both of the required angles, ΘB and Θ
(r)
B ,

are in the accessible range, but for larger Θ, where the assumption about the large-angle
phase function must be used, there is significantly more error. The error is maximum near
120◦ because of the large error in Pa near 180◦. The error is small again near 140◦, because
the assumed phase function at 160◦ is close to correct.

Examination of Figure 12.4 shows that for the whole range 0 ≤ ΘB ≤ 105◦, both of
the required angles are accessible to ρB in the almucantar scan. This suggest that the
almucantor scan should be better at retrieving ωaτaPa(ΘB) for the range 75◦ ≤ ΘB ≤ 105◦

than the PP scan. However, the PP scan is still required for ΘB > 120◦. Figure 12.5 (right
panel) shows the error in ωaPa(Θ) obtained with the PP and A+PP scans. Clearly, the
A+PP scan greatly reduces the error between 90◦and 129◦. The large error at 120◦ is again
due to the large error in Pa(180◦), and the small error at 90◦ is due to the error at 120◦.
The error in ωaτaPa(ΘB) in the region 90◦ ≤ ΘB ≤ 105◦ is second order in rf (θ0) for the
A+PP scans but first order in rf (θ0) for the PP scan. We note that for an aerosol phase
function with less structured backscattering, e.g., the T50 model (Figure 12.5, left panel),
the retrieval whould be much better. Actually, for the T50 aerosol model the largest error
for Θ ≤ 120◦ was 1.9% with this procedure, for θ0 = 60◦

How do these errors translate to error in the computed ρT ? Consider the case in Figure
12.3 (where θ0 = 60◦) with φT − φ0 = 90◦. Figure 12.6 shows the error in the computed

value of ρT as a function of θ
(c)
T for both estimates of ωaτaP (ΘB). Clearly the A+PP scan

provides a more accurate ρT than the PP scan alone. For the A+PP the maximum error

in ρT is 2.5% for θ
(c)
T > 15◦. Note that if φT −φ0 = 60◦, then the angles at which the phase

function must be known are smaller (Figure 12.3), which should result in an even better
prediction of ρT .

15The possible range is really 0 ≤ ΘB ≤ 150◦; however, considering the impossibility of measuring ρB
exactly at the horizon, we limited the available measurements to 10◦ above the horizon.
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In the above example we have assumed that the molecular scattering contribution has
been removed (or there is no molecular scattering). If molecular scattering is included, then
ωaτaPa(ΘB)→ ωaτaPa(ΘB) + τrPr(ΘB). Because the Rayleigh terms are known precisely
(given the surface atmospheric pressure) there is no error in the Rayleigh contribution.
The same is true for the computation of ρT . In general this means that the error is reduced
from what we see in Figure 12.6 by a factor (1 +ρM/ρa), where ρM and ρa are respectively
the molecular and aerosol contributions to ρT . However, note that as ρM increases, the
viability of single scattering decreases.

We see that when single scattering correctly describes the radiative transfer process in
the atmosphere, measurements of sky radiance at the bottom of the atmosphere can be used
to radiometrically “calibrate” a sensor in orbit with an uncertainty of the order of 2-3%. It
seems reasonable to ask; can the single scattering method still work reasonably well in a real
atmosphere, where there is some multiple scattering? Starting with values of ρB derived
from the exact solution to the radiative transfer equation for a two layer model atmosphere
with aerosols (M99 with τa = 0.2) in the lower layer and molecular scattering (for λ = 865
nm) in the upper layer, application of the single scattering formula (Eq. (12.17)) yielded
a phase function that was in error by as much as a factor of 2 for the important range
80◦ < Θ < 130◦, with θ0 = 60◦. So, the answer is no. Even when the aerosol concentration
is low (τa = 0.2), the fact that the solar zenith angle must be large, and that large values

of θ
(c)
B are required to find the phase function in the backward hemisphere, means that

we have to be looking in regions of the sky where multiple scattering is most important.
Thus, we must consider multiple scattering in order to implement such a scheme for sensor
calibration; however, as usual, we can use what we have learned from the single-scattering
analysis to guide us.

Fortunately, a method of inverting sky radiance measurements to phase function and
single scattering albedo in a multiple scattering atmosphere is available. The method is
described in the appendix to this chapter. Applying it to the exact values for ρB at 865
nm (i.e., computed including multiple scattering for a two layer model atmosphere having
aerosols described by the M99 model, with τa = 0.2 in the lower layer, and all the molecular
scattering in the upper layer) provided the retrieval of ωaPa(Θ) shown in Figure 12.7. The
same vertical structure was assumed in the retrieval as in the generation of the pseudo data
for ρB. The correct value of τa was used in the retrieval which means that this quantity
would have to be measured along with ρB. Note that the retrieval is excellent, with the
error being approximately the same as when single scattering was assumed to be the correct
physics. Figure 12.8 provides the resulting error in the top-of-atmosphere reflectance ρT
computed by introducing the retrieved ωaPa(Θ), along with τa, into the radiative transfer
code that included multiple scattering. To simulate the effect of error in τa, the various
curves in Figure 12.8 correspond to using values of 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, and
0.26, as an estimate for τa in both the retrieval and prediction codes. The actual τa used
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in generation of the pseudo data was 0.2. Noting that measurement of the sky radiance
cannot be made looking directly at the sun (ΘB = 0), there will be a minimum value of
ΘB that can be reached. Here ΘMin is the smallest value of ΘB obtained in the almucantar
scan, and in the figure it is 0.92◦. The predicted ρT is excellent, with the error being
only of the order of 1% when the correct value of τa is used, and no more than 2.5% in
error when an incorrect value of τa of up to 25% is used. The fact that the error is quite
insensitive to the value of τa used in the retrieval of ωaPa(Θ) and the prediction of ρT
actually owes to the property that when the value of τa that is used in the retrieval is too
large, a smaller value of ωa will be retrieved which partially compensates for the too-large
τa, and vice versa. Although we have applied this technique here to λ = 865 nm, where ρw
is typically negligible, a similar set of simulations shows that it works just as well at 443
nm, with the proviso that ρw(443) is also accurately measured. However, it is envisioned
that this method of direct vicarious calibration will be most useful in the NIR, where ρw
is known to be negligible.

What are the effects of error in the measurement of ρB or in the assumed vertical
structure of the atmosphere? We investigate the former by introducing a calibration error
of ±5% in the radiometer used to measure ρB. We added this error to the values of ρB in
the multiple scattering example above, and used it as pseudo data in the ωaPa(Θ)-retrieval
code and used its output in the ρT -prediction code. The result is provided in Figure 12.9
(left panel). This is a direct confirmation that what we discovered at the beginning of this
subsection — that calibration error in the surface radiometer for measuring ρB directly
translates to an equivalent error in the prediction of ρT . Here, unless the ρB error smaller
than about 1-2% it will dominate the overall error in ρT .

An example of the effect of an incorrect assumption regarding the vertical structure
of the atmosphere in the ωaPa(Θ)-retrieval algorithm is provided in Figure 12.9. In this
example, we prepared pseudo data for an atmosphere having an M99 aerosol in a 1 km thick
layer above the surface, uniformly mixed with air, and a second layer containing a different
aerosol (T50) and the remaining molecular scattering. The retrieval and prediction codes
assumed all of the aerosol to be in a thin layer just above the surface and used the correct
τa. The resulting error in ρT is shown in the right panel of Figure 12.9, and suggests that for
this aerosol optical thickness (0.2) and wavelength (865 nm) that uncertainty introduced
by an incorrect vertical structure is really not particularly significant.

There are many other assumptions made thus far that could affect the accuracy of
this method of vicarious calibration. These include (1) the assumption of a flat water
surface; (2) the use of a plane parallel atmosphere in the radiative transfer code rather
than a spherical shell atmosphere, which would be more appropriate for situations with
the required large values of θ0; (3) the neglect of polarization in the radiative transfer code;
and (4) the inability to make ρB measurements close to the Sun, i.e., in the solar aureole,
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which results in a larger ΘMin. These have all been studied through sensitivity analyses
(references given in the Bibliographic Notes). The most important of these appears to
be the neglect of polarization; however, this only increases the error by 1-2%. If needed,
a multiple scattering inversion algorithm for retrieving the most important parts of the
phase matrix ωaPa(Θ) is available, and a prediction of ρT in a manner similar to that
above using vector radiative transfer can be effected with excellent accuracy. Operation
of this inversion algorithm does, however, require measurement of the linear polarization
components of the Stokes vector associated with ρB.

In summary, the direct technique of vicarious calibration appears to be a robust ap-
proach to estimating the top-of-atmosphere reflectance based on surface measurements of
sky radiance (or normalized sky radiance).16 It is intended to be used in the NIR, where
measurement of ρw is unnecessary. Because the direct term in ρT is determined by atmo-
spheric scattering at Θ’s in the backward hemisphere, the surface measurements must be
made at large values of θ0, which requires high latitude in summer and/or mid latitude in
winter. Ideally, one would want the satellite sensor to be viewing the same portion of the
atmosphere as the surface radiometer. Although it might seem difficult to arrange this,
all that is required is that the surface measurement site be visible in the satellite image
for a particular overpass. One could use stations on small islands and simply make mea-
surements whenever the sensor can view the station. Probably the most difficult aspect of
utilizing this method is having a clear (cloud-free) sky for PP and A+PP scans, coincident
with an appropriate satellite overpass.

12.3.2 Full System Calibration

Some of the difficulties mentioned above can be circumvented by an alternate method
of vicarious calibration, which we refer to as system calibration. Pragmatically, in this
method, simultaneous measurements of ρw(λ) and ρ′t(λ), the “uncalibrated” ρt(λ), are
carried out. In effect, ρ′t is then inserted into the atmospheric correction algorithm and the
sensor calibration coefficients, K(λ, · · · ), are varied (which in turn vary the value of ρ′t)
until agreement between the sensor-retrieved ρw and the surface-measured ρw is achieved.
Simply speaking, the sensor calibration is adjusted so that the sensor plus algorithms
provide the correct answer. This section describes how this can be done in a systematic
manner.

As before, we start by assuming that single scattering is the correct physics for the
atmospheric radiative transfer. We let, as in Eq. (12.1), the measured reflectance (including

16It is possible to calibrate a surface radiometer directly to reflectance, i.e., ρB , without having to
introduce F0 from external sources.
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the calibration error) ρ′t be related to the true reflectance ρt through

ρ′t(λi) = ρt(λi)
(
1 + α(λi)

)
,

where the calibration error α is to be determined. In single-scattering physics,

ρ′t(λi) = ρr(λi) + ρas(λi) + t(λi)ρw(λi).

Because ρw(λi) is measured, we can compute the apparent value of ε(λi, λl), i.e., when
using ρ′t instead of ρt:

ε′(λi, λl) =
ρas(λi)

ρas(λl)
=
ρ′t(λi)− ρr(λi)− t(λi)ρw(λi)

ρ′t(λl)− ρr(λl)
. (12.19)

Inserting ρ′t gives

ε′(λi, λl) =
α(λi)ρt(λi) + ρas(λi)

α(λl)ρt(λl) + ρas(λl)
. (12.20)

If the radiometer is perfectly calibrated, the computed value, ε′, is equal to the true value,
ε; however, if the errors (α’s) are sufficiently large, ε′ could be significantly different from
ε, and likely may not even make physical sense. A numerical example may be helpful to
understand this. Consider the data presented in Figure 10.4 in Chapter 10. Focus on the
example from the station represented by the right pointing solid triangle and take λl = 865
nm. For this ρt(412) ≈ 0.2, ρt(865) ≈ 0.012, and ρa(412) ≈ ρa(865) ≈ 0.005. Approximate
ρas by ρa. Then the true value of ε(412, 865) ≈ 1, while the computed value of ε′(412, 865)
is dependent on α(412) and α(865):

ε′(412, 865) =
0.20α(412) + 0.005

0.012α(865) + 0.005
.

If α(412) = +0.05 and α(865) = +0.05, then ε′(412, 865) ≈ 2.7, while if α(412) = −0.05
and α(865) = +0.05, then ε′(412, 865) ≈ −0.9, which is most unlikely. Considering the
location from which the satellite data were taken, both of these values would be completely
inconsistent with the expectation of ε ≈ 1, and would indicate a significant calibration error.
Indeed, unrealistic ε values are a clear indicator of calibration error. Note also that the
clearer the atmosphere, the more dramatic the ε behavior would be, e.g., as ρas(λi)→ 0,

ε′(λi, λl)→
α(λi)[ρr(λi) + tρw(λi)]

α(λl)ρr(λl)
≈ α(λi)ρr(λi)

α(λl)ρr(λl)
≈ α(λi)

α(λl)
×
[
λl
λi

]4

,

and ε′ is totally determined by the calibration error.17 Thus, the clearer the atmosphere,
the more evident the calibration error.

17Perhaps it is better to refer to the α’s as calibration biases rather than calibration errors. They are a
systematic bias in the correct calibration slope K(λi, · · · ).
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Let’s assume that we know the correct value of ε(λi, λl). Then we could adjust the sensor
calibration, so that the correct value of ε′(λi, λl) is obtained in Eq. (12.19). To effect this,
multiply ρ′t(λi) by a factor 1 + γ(λi), so

(
1 + γ(λi)

)
ρ′t(λi) =

(
1 + γ(λi)

)(
1 + α(λi)

)
ρt(λi) ≈

(
1 + γ(λi) + α(λi)

)
ρt(λi),

where we have assumed γ(λi) will be� 1, and have therefore ignored the product of γ(λi)
and α(λi) compared to the other terms. Note, that the fractional error in ρ′t(λi) is α(λi),

but the fractional error in
(

1 + γ(λi)
)
ρ′t(λi) is γ(λi) + α(λi). Now, adjust γ(λi) to bring

ε′ into agreement with the true value ε. For simplicity take γ(λl) = 0. This gives

ε(λi, λl) =

(
γ(λi) + α(λi)

)
ρt(λi) + ρas(λi)

α(λl)ρt(λl) + ρas(λl)
, (12.21)

and solving for γ(λi):

γ(λi) + α(λi) = ε(λi, λl)α(λl)
ρt(λl)

ρt(λi)
. (12.22)

This tells us that if we know the true value of ε(λi, λl) and if there is no calibration error
at λl, i.e., α(λl) = 0, then18

(
1 + γ(λi)

)
ρ′t(λi) = ρt(λi),

and the calibration error α(λi) has been completely removed. If α(λl) 6= 0, the residual
fractional error in ρt(λ) is ε(λi, λl)α(λl)ρt(λl/ρt(λi). For the numerical example above,

γ(412) + α(412) = 0.06α(865),

and a 10% calibration error at 865 nm could be reduced to a 0.6% error in the total
reflectance at 412 nm. There is of course no magic here, the improvement is simply due
to the large Rayleigh component of ρt(412) that can be computed with little or no error.
A similar computation at 765 nm, where the Rayleigh component is significantly smaller,
shows that a 10% calibration error at 865 nm is only reduced to about a 7% error at 765
nm.

What if we use this procedure, but have error in the ε(λi, λl) estimation, i.e., we adjust
γ(λi) until ε′(λi, λl) is replaced by ε(λi, λl)+∆ε(λi, λl)? A similar computation shows that
in this case Eq. (12.22) is replaced by

γ(λi) + α(λi) = ε(λi, λl)α(λl)
ρt(λl)

ρt(λi)
+ ∆ε(λi, λl)

(
α(λl)

ρt(λl)

ρt(λi)
+
ρas(λl)

ρt(λi)

)

18Note: if we do not know the true value of ε(λi, λl) then the ρas(λi) and ρas(λl) terms will not sum to
zero.
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and
(

1 + γ(λi)
)
ρ′t(λ) = ρt(λ) + ε(λi, λl)α(λl)ρt(λl) + ∆ε(λi, λl)

(
α(λl)ρt(λl) + ρas(λl)

)
.

Again using the data from Figure 10.4, we find the relative error at 412 nm to be

γ(412) + α(412) = 0.06α(865) + ∆ε(412, 865)
(

0.06α(865) + 0.025
)
.

Let’s see what the result is if we make a terrible guess at ε. Consider Figure 10.5 in
Chapter 10. Assume that the actual aerosol model is M98, but we incorrectly choose M50.
The figure shows that ∆ε(412, 865) ≈ 0.4. Then for a 10% error at 865 nm, the residual
error in the estimate of ρt(412) would be about 1.85%, with two-thirds of the error due
to the improper choice of ∆ε(412, 865). The error is still small, but this underscores the
importance of making an informed choice of the aerosol model for the calibration site.

How can we estimate ε(λi, λl) over and above just assuming it is unity because the
procedure is carried out in a maritime environment? We cannot do it from the sensor itself
as that would require a calibrated sensor, i.e., the goal of vicarious calibration. Therefore
some surface measurements relating to ε(λi, λl) are required. One possibility is provided in
Figure 12.10, which shows that for a given geometry there is a close relationship between
ε(λi, λl) and τa(λi)/τa(λl) (here, for λi = 443 nm and λl = 865 nm) for the various aerosol
models used in Chapter 10. This suggests that, when geometry is taken into account,
surface measurements of the spectral variation of the aerosol optical depth could be used
to estimate ε(λi, λl). Another method would be to use surface measurements to select a
suitable aerosol model to use to provide an estimate for ε(λi, λl).

We have seen here that the vicarious system calibration is effective and very straightfor-
ward in the single-scattering approximation, but can it be implemented in a real setting,
i.e., in a multiple-scattering atmosphere? In what follows we provide a scheme for accom-
plishing this.

We will assume that the band at λl is calibrated correctly, i.e., ρ′t(λl) = ρt(λl). We also
assume that in addition to ρw(λi), atmospheric measurements are made that allow the
determination of the most appropriate aerosol model among the candidate models. Recall
from Chapter 10 that the atmospheric correction algorithm utilizes look up tables relating
the following quantities:

ρ
(j)
A (λ) = ρ

(j)
A

{
ρ(j)
as (λ)

}
, or the inverse ρ(j)

as (λ) = ρ(j)
as

{
ρ

(j)
A (λ)

}
,

where the notation Y = Y {X} means Y as a function of X, i.e., given X this relationship
determines Y , and the superscript “j” is the index of the aerosol model, e.g., M50 . . . T99.
Thus, given ρA(λl) = ρt(λl) − ρr(λl) and an aerosol model, we can find ρas(λl), which
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yields τa(λl). The model then also provides τa(λi), ρas(λi), t(λi) and ρA(λi). Finally,
ρt(λi) = ρr(λi) + ρA(λi) + t(λi)ρw(λi). This progression can be summarized through

ρt(λl)
ρr(λl)−→ ρA(λl)

Model j−→ ρ(j)
as (λl)

Model j−→ τ (j)
a (λl)

Model j−→ τ (j)
a (λi)

Model j−→ ρ(j)
as (λi)

Model j−→ ρ
(j)
A (λi)

followed by

ρ
(j)
A (λi)

t(j)(λi)ρw(λi)+ρr(λi)−→ ρ
(j)
t (λi)

ρ′t(λi)−→ γ(j)(λi),

where the superscript “j” is meant to remind the reader that the resulting quantity depends
on the aerosol model. In the last step, the sensor calibration is varied to bring ρ′t(λi) into
agreement with ρt(λi). Upon reflection, one sees that this procedure is identical to (1)
choosing an aerosol model, (2) applying the multiple-scattering atmospheric correction
algorithm using this model, and (3) varying the sensor calibration to bring the retrieved
ρw(λi) into agreement with the measured value. The critical ingredients are the choice
of the appropriate aerosol model and the measurement of the water-leaving reflectance.
With this procedure, one can expect an improvement in calibration accuracy similar to
that suggested by Eq. (12.22).

In principle this vicarious calibration procedure need only be applied once; however, in
practice neither the aerosol model nor the ρw-measurement are error free. So in general
one must make such measurements many times utilizing various Sun-viewing geometries.
The ideal measurement site would be one with a maritime aerosol of low optical depth (to
minimize the aerosol model error) and water with very low ρw (to minimize the ρw error).
In addition, the site must be of low enough latitude to provide a range of Sun angles. In
the case of the NIR, these requirements are easily met in oceanic central gyres, which are
far from land.19 However, in the visible, these requirements are basically incompatible, so
the requirement of low ρw is sacrificed in favor of the others; however, it is replaced by
a requirement that the reflectance be relatively stable. The site chosen for calibration of
U.S. color sensors in the visible is in the Hawaiian Islands off the island of Lanai. The ρw
measurements are made continuously from a moored buoy and atmospheric measurements
are made from the island. Vicarious calibration is effected whenever possible (given that
the area was sufficiently free of cloud etc.) and the resulting K’s averaged. The details
of the actual vicarious calibration of SeaWiFS are provided in Chapter 13 and papers
referenced in the Bibliographic notes.

Comparing the two methods of vicarious calibration described this section, one notes
that in the first, the ultimate accuracy is the accuracy of the surface radiometer used to
measure the sky radiance, while in the second it is basically the accuracy in the chosen

19Note that there is no reason that the vicarious calibration of the visible and NIR have to be performed
at the same location or time. In practice they are not.
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aerosol model to represent the actual conditions at the measurement site. If measurement
of ρw is required, as in the full system calibration method (in the visible), the error in ρw
is not significant as long as it is not too large. For example if the error in ρw(443) is 5%,
it’s contribution to the error in ρt(443) will only be 0.5%. Contrast this with a 5% error in
the sky radiance in the direct method which results in about a 5% error in ρt. The direct
method is the only one available for calibration of the band at λl. However, it turns out
that reduction of the error in this band has little effect on the accuracy of the retrieved ρw
in the visible.20

12.4 Characterization

The design and fabrication of all ocean color sensors is a sequence of compromises and trade
offs. As such, no completed sensor behaves as envisaged. All instruments have idiosyn-
crasies that can only be addressed and corrected in orbit through a thorough understanding
of their performance prior to launch. Realization of such understanding is termed instru-
ment characterization. Here we provide three examples of instrument “misbehavior,” i.e.,
departure from the ideal, that must be understood prior to launch in order to effect an
in-orbit correction: sensitivity of the instrument to the polarization state of the incident
radiance; response of the instrument to radiance with wavelength significantly outside the
nominal spectral bands; and light propagating within the instrument where it should not
— stray light. Future instruments with newer designs will likely have similar, and new,
idiosyncrasies.

12.4.1 Polarization Sensitivity

Most sophisticated radiometers have some sensitivity to the polarization state of the radi-
ance they are intended to measure. Ocean color sensors are no exception. They all contain
optical; components such as mirrors, beamsplitters, diffraction gratings, interference filters,
etc., that respond in a manner that depends on the polarization state of the radiant power.
Corrections can be made for this polarization sensitivity, but only if the characteristics of
the sensitivity is known, i.e., if it is characterized.

How do we specify the polarization sensitivity of an ocean color sensor? We note that

20This is an important fact because, along with the technique of vicarious calibration, it shows that it is
not productive to spend valuable resources resources to improve prelaunch radiometric calibration, which
is very expensive to start with. At most prelaunch calibration need only be sufficiently accurate to allow
setting of the sensor’s saturation radiances (the radiance corresponding to the sensor’s maximum number
of digital counts for each spectral band), which does not require great precision.
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the radiance from the atmosphere-ocean system into the sensor will possess some degree
of linear polarization but negligible elliptical polarization. Thus, we need to determine
only the linear polarization sensitivity of the instrument. As such, we introduce linearly
polarized and monochromatic (λ) light into the instrument, i.e., the Stokes vector of the
incident radiance is given by

I =




I
I cos 2χ
I sin 2χ

0


 .

where I propagates normal to the aperture of the instrument, χ is the angle with respect to
a fixed direction in the plane of the aperture, and I is the radiance that would be measured
by a sensor in the absence of polarization sensitivity. The response of the instrument can be
described by providing the measured Stokes vector Im through the sensor’s Mueller matrix
M : Im = MI. Because we are only interested in I given Im, we need only measure the
top row of the Mueller matrix. Thus,

Im = (M11 +M12 cos 2χ+M13 sin 2χ)I.

Now, let m12 = M12/M11 and m13 = M13/M11, and choose a and δ such that m12 = a cos 2δ
and m13 = a sin 2δ. Then

Im = M11I
(

1 + a cos 2(χ− δ)
)
.

Now, as the angle χ is varied from 0 to 2π, Im will vary sinusoidal with a period of π. At
its maximum value δ = χMax and at its minimum value δ = χMin ± π/2. Thus,

M11I =
1

2
(ImMax + ImMin),

and

a =
1

2M11I
(ImMax − ImMin).

This sequence of measurements determines a and δ or equivalently, m12 and m13 for the
instrument and the Mueller matrix becomes

M = M11




1 a cos 2δ a sin 2δ •
• • • •
• • • •
• • • •


 ,

where the entries indicated by • are irrelevant for our purposes.21 Now, when partially
polarized radiance enters the remote sensor, how does the sensor respond? Let the Stokes

21If the instrument is calibrated using unpolarized radiance, it will give the correct value of the radiance
when the source is unpolarized. This means that the value of M11 must be unity.
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vector of the incident radiance be written

It =




It
Qt
Ut
0


 =




It(1− Pt)
0
0
0


+




ItPt
Qt
Ut
0


 ,

where Pt is the degree of polarization: Pt =
√
Q2
t + U2

t + V 2
t /It. Now, for the polarized

component we can write Qt = PtIt cosχt and Ut = PtIt sinχt.
22 The radiance measured

by the sensor is Im = MIt, so

Im = M11It +M12Qt +M13Ut.

Substituting for the M ’s and Qt and Ut, we find

Im = M11It((1 + aPt cos δ cosχt + aPt sin δ sinχt) = M11It

(
1 + aPt cos(δ − χt)

)
.

Since M11 = 1, this shows that, if the polarization sensitivity of the instrument is ignored,
the error in the measured It, i.e., Im could be as much as ±aPt.

How large is this error for a real sensor? Consider the MODIS sensor on the satellite
TERRA. Figure 12.11 shows the prelaunch-measured polarization amplitude a as a function
of the angle of incidence of the incident radiance on the scan mirror. At the center of the
MODIS scan, the angle of incidence is 37.5◦. The measurements are shown for two spectral
bands: 412 and 865 nm. For each band there are two curves, which correspond to the two
sides of the scan mirror.23 So, if P=1, i.e., the radiance is 100% polarized, the error in the
measured radiance at 412 nm could be as much a 6%. In reality the radiance is never fully
polarized. Examples in Chapter 9 show that P can reach values as high as 60−70% at large
viewing angles. This means that the maximum error could be as much as 0.7×0.06 = 0.042,
or little over 4%. This translates to an error of the order of 40% in the retrieved value of ρw
(in the blue). Clearly, one must take into account this polarization sensitivity to have any
hope of retrieving accurate values of ρw. Given the polarization-sensitivity characteristics
of the instrument, we still need to know Pt (and χt) in order to make a correction for the

22One must be cautious here. The angle χt must be referenced to the same coordinate system as the
angle δ. This is not always the case; however, here, if the scan plane is the reference for the measurement of
a and δ, i.e., r̂ is normal to the scan plane and ˆ̀ is in the scan plane, then the reference for the two systems
will be the same as long as the sensor scans in a plane normal to the water surface (such as MODIS). This
is because the propagation direction ξ̂t must be in the scan plane and the standard reference system for
atmospheric radiative transfer when polarization is included is the plane containing ξ̂t and the vertical. For
a sensor that scans in a tilted plane (such as CZCS and SeaWiFS) a rotation of the reference plane must be
effected in order to bring the two systems into confluence. This is accomplished using the rotation matrix
R(α) discussed in Chapter 1.

23MODIS is a paddle-wheel scanner. The scan mirror’s rotation axis is parallel to the satellite velocity
vector, and both sides of the scan mirror are used.
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polarization. This is usually effected by assuming that the aerosol contribution ρA and the
water contribution tρw are totally unpolarized, so the polarization of It it totally due to
Rayleigh scattering by the air. Then we can write various Stokes vectors as

It = Ir + IA + tIw

=



Ir
Qr
Ur


+




IA + tIw
0
0
0


 =




Ir
Qr
Ur
0


+




It − Ir
0
0
0


 ,

where the It in It−Ir on the right is the uncorrected value of It. In this manner a sufficiently
accurate correction for polarization sensitivity can be effected.

12.4.2 Out-of-Band Response

It is difficult to build a radiometer as complex as an ocean color scanner with spectral
bands that have large sensitivity within the spectral band and zero outside, i.e, SB = 1
for λ within the band and SB = 0 outside the band. For example, Figure 12.12 shows
SB(λ) for the SeaWiFS band at 865 nm (Band 8). The response of the sensor to radiation
outside the principal transmittance region (845-885 nm for Band 8) is called the out-of-band
response. What is the significance of such out-of-band response? First, let’s start with our
basic equation for the radiance at the sensor,

Lt(λ) = Lr(λ) + LA(λ) + t(λ)Lw(λ),

and form the band-averaged radiance for band i

〈
Lt(λ)

〉
Si

=
〈
Lr(λ)

〉
Si

+
〈
LA(λ)

〉
Si

+
〈
t(λ)Lw(λ)

〉
Si
, (12.23)

where
〈
L(λ)

〉
Si

=
∫
L(λ)Si(λ) dλ.24 How important is the distinction between Lt(λB) and〈

Lt(λ)
〉
Si

, where λB is the nominal center of Band i? Consider Band 8 for SeaWiFS shown

in Figure 12.12. In the case of Lr, which varies with wavelength approximately as F0(λ)λ−4,
direct computation shows that approximately 9% of the contribution to

〈
Lr(λ)

〉
S8

comes

from λ < 600 nm! In contrast for LA(λ) which varies approximately according to F0(λ)
less than 2% comes from outside the band, and for a spectrally flat source only 0.7% comes
from λ < 600 nm. Thus, the out-of-band effect is significantly different for each term in
Eq. (12.23).

24Note that as usual LA stands for La + Lra, and Si is the normalized sensitivity:
∫
Si dλ = 1.
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How do we deal with this problem? A straightforward method is to appropriately modify
the computation of the various terms in Eq. (12.23). For example, in the single scattering
approximation

Lr(λi) =
F0(λi)τr(λi)

4π| cos θv|
(1 + cos2 Θ)

(
1 + rf (θ(c)

v ) + rf (θ0)
)
≡ F0(λi)τr(λi)G(θ0, θ

(c)
v ,Θ),

(12.24)
where G is a wavelength-independent geometrical factor. Then computing the band aver-
ages, 〈

Lr(λ)
〉
Si

=
〈
F0(λ)τr(λ)

〉
Si
G(θ0, θ

(c)
v ,Θ).

Now introduce a new notation. Let

〈
•
〉
X
≡
∫
•X(λ) dλ∫
X(λ) dλ

,

where • is any wavelength-dependent quantity. Then,

〈
F0(λ)τr(λ)

〉
Si

=

∫
F0(λ)τr(λ)Si(λ) dλ

=

∫
F0(λ)τr(λ)Si(λ) dλ∫
F0(λ)Si(λ) dλ

∫
F0(λ)Si(λ) dλ

=
〈
τr(λ)

〉
F0Si

〈
F0(λ)

〉
Si
,

so 〈
Lr(λ)

〉
Si

=
〈
τr(λ)

〉
F0Si

〈
F0(λ)

〉
Si
G(θ0, θ

(c)
v ,Θ). (12.25)

Thus, to calculate
〈
Lr(λ)

〉
Si

, use the same formula (Eq. (12.24)) but replace τr(λi) by τr(λ)

averaged with the weighting function F0(λ)Si(λ) and replace F0(λi) by F0(λ) averaged
with the weighting function Si(λ). Examples of the difference between the original and
averaged values of the these quantities is provided in Table 12.1 for SeaWiFS. In the case
of Band 8 the difference between

〈
τr(λ)

〉
F0S8

〈
F0(λ)

〉
S8

and F0(λ8)τr(λ8) is approximately

10%. But, this is for single scattering. What about multiple scattering? The procedure
for multiple scattering is similar: use

〈
τr(λ)

〉
F0Si

in the radiative transfer equation to

compute the ratio [Lr/F0] and, in analogy to the single-scattering procedure, then form〈
Lr(λ)

〉
Si

= [Lr/F0]
〈
F0(λ)

〉
Si

. This provides the correct
〈
Lr(λ)

〉
Si

with an error no greater

that 0.15%.

Now, we prefer to work with reflectance rather than radiance, so let’s see how to band
average the reflectance. Noting that L(λ) = ρ(λ)F0(λ) cos θ0/π,

〈
L(λ)

〉
Si

=
cos θ0

π

〈
ρ(λ)F0(λ)

〉
Si

=
cos θ0

π

〈
F0(λ)

〉
Si

〈
ρ(λ)

〉
F0Si

,
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Table 12.1: Quantities needed to compute
〈
Lr(λ)

〉
Si

and Lr(λi) for the SeaWiFS
bands.

Band λi
〈
τr(λ)

〉
F0Si

τr(λi)
〈
F0(λ)

〉
Si

F0(λi)

(i) nm mW/cm2µm sr mW/cm2µm sr

1 412 0.3132 0.3185 170.79 180.80
2 443 0.2336 0.2361 189.45 194.95
3 490 0.1547 0.1560 193.66 198.85
4 510 0.1330 0.1324 188.35 193.65
5 555 0.0947 0.0938 185.33 190.25
6 670 0.0446 0.0436 153.41 153.50
7 765 0.0256 0.0255 122.24 122.40
8 865 0.0169 0.0155 98.82 97.10

so

π

cos θ0

〈
L(λ)

〉
Si〈

F0(λ)
〉
Si

=
〈
ρ(λ)

〉
F0Si

,

and dividing
〈
L(λ)

〉
Si

by
〈
F0(λ)

〉
Si

automatically yields a quantity proportional to
〈
ρ(λ)

〉
F0Si

.

In the case of Rayleigh scattering, Eq. (12.25) shows that

〈
ρr(λi)

〉
F0Si

=
cos θ0

π

〈
τr(λi)

〉
F0Si

G(θ0, θ
(c)
v ,Θ), (12.26)

and, as Eq. (12.25) showed earlier, the relevant parameter is
〈
τr(λi)

〉
F0Si

.

As for the other terms in Eq. (12.23), when in doubt as to what to do use single
scattering as your guide (as we always do in these notes). For example, what do we do
with

〈
LA
〉
Si

? In single scattering, LA = Las or ρA = ρas. At the core of the atmospheric
correction algorithms is the spectral variation of the normalized single-scattered aerosol
reflectance, i.e.,

ρas(λi) = ε(λi, λl)ρas(λl),

or, effecting the band averaging,25

〈
ρas(λ)

〉
F0Si

=
〈
ε(λ, λl)

〉
F0Si

ρas(λl).

This equation also applies to the band at λl, i.e.,

〈
ρas(λ)

〉
F0Sl

=
〈
ε(λ, λl)

〉
F0Sl

ρas(λl),

25Remember that λl is a fixed constant in the above equation.
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so, eliminating ρas(λl) yields

〈
ρas(λ)

〉
F0Si

=

〈
ε(λ, λl)

〉
F0Si〈

ε(λ, λl)
〉
F0Sl

〈
ρas(λ)

〉
F0Sl

.

We can use the approximate values for ε (Chapter 10) to estimate the magnitude of the
effect of band averaging, i.e.,

ε(λi, λl) ≈ exp[k(λl − λi)]. (12.27)

The limits on k over the range 412 to 865 nm for the candidate models in Chapter 10 were
0 <∼ k <∼ 1.9×10−3 nm−1. Using k = 2×10−3 nm−1 (the largest spectral variation), Table
12.2 provides

〈
ε(λ, 865)

〉
F0Si

and ε(λi, 865) for SeaWiFS Band i, and their % difference. We

Table 12.2:
〈
ε(λ, 865)

〉
F0Si

, ε(λi, 865), and their % difference for k = 2 × 10−3

nm−1.

Band
〈
ε(λ, 865)

〉
F0Si

ε(λi, 865) % Diff.

1 2.4645 2.4744 −0.40
2 2.3192 2.3257 −0.28
3 2.1113 2.1170 −0.27
4 2.0350 2.0340 +0.05
5 1.8584 1.8590 +0.03
6 1.4842 1.4770 +0.49
7 1.2202 1.2214 −0.10
8 1.0131 1.0000 +1.31

note that, with the exception of Band 8, the effect of the out-of-band response is <∼ 0.5%
of the nominal ε(λi, 865). Thus, with the exception of Band 8,

〈
ε(λ, 865)

〉
F0Si

should follow

Eq. (12.27) nearly as well as ε(λi, 865), i.e., the spectral variations of
〈
ε(λ, 865)

〉
F0Si

, i = 1

to 7, and ε(λi, 865) will be nearly identical, i.e.,
〈
ε(λ, 865)

〉
F0Si
≈ ε(λi, 865).

Finally, how do we deal with absorbing gases? A simple example is Ozone, which we
model as consisting of an absorbing layer at the top of the atmosphere. This can be thought
of as simply a modification of F0, i.e., F0(λ) → F0(λ) exp[−MτOz(λ)], where τOz is the
Ozone optical depth and M is the two-way airmass (1/ cos θ0 + 1/| cos θv|). Noting that
τOz(λ)� 1, F0(λ) exp[−MτOz(λ)]→ F0(λ)[1−MτOz(λ)], so

〈
F0(λ) exp[−MτOz(λ)]

〉
Si
≈
〈
F0(λ)[1−MτOz(λ)]

〉
Si

=
〈
F0(λ)

〉
Si

[
1−M

〈
τOz(λ)]

〉
F0Si

]

≈
〈
F0(λ)

〉
Si

exp
[
−M

〈
τOz(λ)

〉
F0Si

]
,
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and as in the case of τr earlier, τOz must be averaged with weighting function F0Si. This
procedure works well for weakly absorbing gases, but for strongly absorbing gases like H2O
a detailed absorption line-by-absorption line analysis may be necessary. More detail is
provided in the references.

We will not discuss the out-of-band effects on Eq. (12.23) further, as the pattern of
dealing with these should now be clear. An important message to be taken from this is,
given that Si(λ) is required for all of the computations in this section, it must be measured,
i.e., the complete spectral properties of the individual spectral bands must be characterized.

It is interesting to note that in a sense in the quantity
〈
ρt(λ)

〉
F0Si

, the averaging over
F0 takes place automatically in reflectance-based calibration. From Section 12.2.2, the
two currents (one viewing the scene and the other viewing the reflectance plaque) should
actually be written

KSiItSi =
〈
Lt
〉
Si

=

〈
F0(λ)ρt(λ)

〉
Si

cos θ0

π
and KSiIPSi =

〈
LP
〉
Si

=

〈
F0(λ)RP (λ)

〉
Si

cos θP

π
,

and noting that
〈
F0(λ)ρt(λ)

〉
Si

=
〈
F0(λ)

〉
Si

〈
ρt(λ)

〉
F0Si

, etc., we have

〈
ρt
〉
F0Si

=
〈
RP
〉
F0Si

[
cos θP
cos θ0

] [
ItSi
IPSi

]
,

so
〈
ρt
〉
F0Si

is what we would actually measure in a setup as shown in Figure 12.2.

12.4.3 Stray Light

Stray light is simply light that ends up where it should not. Newer sensors have large focal
planes containing linear or rectangular arrays of detectors. An example is the MODIS
focal plane array shown schematically in Figure 12.13. The individual detectors are shown
as small squares for the 36 bands. There are 10 detectors (in a vertical column) for each
spectral band used to view the oceans. The velocity vector of the space craft is parallel
to each column. The ocean bands are 8–16. Bands with more detectors are those with
higher than the nominal 1 km spatial resolution for the “ocean bands.” As the scan mirror
of MODIS rotates, the image is swept across the focal planes resulting in ten scan lines
per mirror rotation.26 The red object covering the lower right corner of each focal plane
simulates the image of a cloud in the scene focussed by the scanner optics onto the focal
plane. In the blue, the reflectance of a cloud is 4-5 times that of the ocean-atmosphere

26Actually, as described in Chapter 11, the MODIS instrument uses a two-sided scan mirror, so a full
rotation of the scan mirror results in twenty scan lines.
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system, while in the NIR the associated factor is 30-40 times. The cloud moves across the
focal planes as the instrument scans. One can imagine that some of the cloud’s radiant
energy can be scattered off the focal plane and end up in a detector that is far away from
the cloud’s image. It is necessary to characterize such effects prior to launch.

The seriousness of the stray light effect is dependent to a large part on the design of the
instrument. Instruments with large focal planes (like MODIS) are particularly susceptible.
However, an instrument designed like CZCS, which used a concave diffraction grating to
focus the spectrum on single detectors placed in the focal plane, could also have stray light
problems, even in the absence of clouds, as the instrument chamber could have scattered
blue light falling on the detector placed at the position for red light, etc. In instrument
design, every effort must be made to minimize the stray-light affects.

Sections 12.4.1–12.4.3 have provided examples of the kinds of phenomena that require
characterization prior to launch. Failure to effect such characterization can seriously jeop-
ardize the success of any satellite remote sensing mission.

12.5 Summary and Discussion

The “radiometric calibration” of the sensor is critical to the success of any ocean color
mission. In this chapter we have reviewed the operational definition of radiance and the
two kinds of radiometric calibration: radiance based and reflectance based. We determined
the effect of error in the radiometric calibration and showed that, considering the accuracy
required in the water-leaving reflectance, even error of the order of a few percent could be
detrimental to an ocean color mission. We demonstrated that if the error has the same
sign in all spectral bands, the propagation of the error through the processing algorithms
is considerably reduced. Considering the difficulty of achieving the required calibration
accuracy (even in a laboratory setting) and the stresses placed on the instrument dur-
ing launch, on-orbit calibration (known as vicarious calibration) is a logical solution. We
then looked at two different types of vicarious calibration. In the first, measurements of
sky radiance are carried out with a well-calibrated radiometer. Simultaneously, the sensor
views the water near the measurement site. The surface measurements allow estimation
of the radiance the sensor “should” be viewing and the calibration is adjusted so that the
sensor provides the indicated radiance. This method is most attractive in the NIR , where
the water-leaving reflectance is essentially zero. The accuracy of this method is limited to
the accuracy of the sky radiometer. In the second method, measurements of ρw(λ) and
atmospheric parameters (surface pressure, aerosol spectral optical depth, etc.) are made
primarily to determine ρr(λ) and the most likely of the atmospheric correction algorithm’s
candidate aerosol models. The algorithm is then operated with the chosen model and the
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sensor calibration is adjusted to bring the measured and retrieved values of ρw(λ) into con-
fluence. This then is a vicarious calibration of the entire system; sensor plus algorithms.
It is not radiometric, but it is shown that when employed, the calibration in the blue is
uncertain to no more than a fraction of 1%. Any change in the atmospheric correction
algorithm requires a revision of the calibration coefficients. In the final analysis, the vi-
carious calibration is a pragmatic exercise focussed on forcing the sensor plus algorithms
to provide the correct result in a certain (restricted) setting in the hope that it will work
equally well in other settings.

Finally, we discussed the need to characterize the sensor, and gave three examples of
quantities that need to be assessed prior to launch: polarization sensitivity, out-of-band
response, and stray light contamination.

The term “radiometric calibration” can take on different meanings depending on the
context. For ocean color instruments, the author likes to think about it in a hierarchical
manner: pre-launch to vicarious. First, the prelaunch radiometric calibration is really
only necessary to set the saturation radiances of the sensor.27 If the saturation radiance
is set too low, then color data from some brighter features in the water or from some
exceptionally hazy days may be lost. Conversely, if it is set too high, then the radiometric
resolution available for the water-leaving radiance will be too low. Calibration accuracies of
the order of 5-10% should be sufficient for this purpose.28 More important than an accurate
radiometric calibration is the short-term (∼ days) radiometric stability of the instrument
in orbit, and the availability of a means of assessing it. Although the short-term stability
of CZCS appeared to be quite good, there was no provision for assessing it. SeaWiFS had
a solar diffuser that could be used on each orbit if necessary to assess short-term stability.
The MODIS instrument actually had an on-board calibration sphere for this purpose.

Once in orbit, vicarious calibration can commence by examining the central gyres of the
oceans where the water-leaving reflectance is known and relatively stable. In such regions,
the aerosol is known to be mostly maritime and the surface atmospheric pressure can be
estimated based on numerical weather models. Thus, an initial system calibration along
the lines described in Section 12.3.2 can be carried out. Concurrently, a marine facility such
a MOBY specifically designed to provide normalized water-leaving reflectance and some
atmospheric measurements on a continuous basis can be utilized for providing the more
accurate system calibration for each satellite overpass with the appropriate meteorological
conditions and begin a time-series of calibration adjustments. In addition, views of the
moon (if possible) can be used to assess the long-term stability. Only after a sufficient

27The saturation radiance is the radiance associated with the maximum number of digital counts available
for the analog-to-digital conversion of the current from the individual detectors.

28Remember that radiometric calibration is very expensive. Halving the calibration uncertainty will likely
increase the cost by much more than a factor of two.
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number of calibration facility-sensor match ups are available (30 to 40) can the system
calibration be considered complete. At this time the entire mission data set is reprocessed
to provide a retrospective time series of imagery.29 The “final” calibration uncertainty
will be dependent on the uncertainty at λl, which can be reduced (or assessed) by the
methods on Section 12.3.1. It is important to stress that this system calibration (sensor
plus algorithms) must be reassessed if any changes are made to the algorithms, e.g., using
a new set of candidate aerosol models or a revised extraterrestrial solar irradiance.

12.6 Appendix: Retrieval of ωa and Pa(Θ) from ρB(ξ̂B).

This appendix describes an algorithm that can be used to invert measurements of sky
radiance to obtain the aerosol phase function and single scattering albedo, when the aerosol
optical thickeness is known. The retrieved ωa and Pa(Θ) are defined to be those that,
when inserted into the radiative transfer equation, result in a solution that reproduces
the measured radiances. This is the multiple scattering algorithm that was employed in
Section 12.3.1.

As in the atmospheric correction algorithm, we simplify the atmosphere as a two-layer
system with molecules above the aerosols. Then we can write the total downward normal-
ized radiance measured at the bottom of the atmosphere, ρB in a given direction as

ρB = ρre
−τa/uB + ρae

−τr/u0 + ρra + ρSune
−(τr+τa)/u0δ(uB − u0)δ(φB − φ0),

where ρr is the normalized radiance resulting from multiple scattering by air molecules
(Rayleigh scattering) in the absence of aerosols and then transmitted through the aerosol
layer, ρa is the normalized radiance resulting from multiple scattering by aerosols in the
absence of the air but modified by the fact that the solar beam had to pass through
the Rayleigh layer, ρra is the interaction term between molecules and aerosols, i.e., the
contribution to the normalized radiance from photons scattered by both molecules and
aerosols, and ρSun is the downward normalized radiance of the direct solar beam. The
variables uB and u0 as usual are, respectively, the cosine of viewing and solar zenith angles,
while φB and φ0 and the viewing and solar azimuth angles. The ρSun term in the above
equation can be measured by a Sun photometer and is used to determine τa. For uB 6= u0

or φB 6= φ0, we can write

ρB = ρre
−τa/uB + ρae

−τr/u0 + ρra.

29In practice, the data set is likely to be reprocessed many times, and even before, the calibration is
deemed reliable.
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To relate the downward normalized radiance to the optical properties of aerosols, we rewrite
the above equation as follows:

ρB − ρre−τa/uB = ρae
−τr/u0 + ρra.

The dominant term in ρB − ρre−τa/uB is the result of downward single scattering by the
aerosol, ρas.

30 In the single scattering approximation, the downward normalized radiance is
composed of two parts: direct scattering without reflection from the surface; and reflection
of the direct solar beam from the sea surface followed by backscattering in the atmosphere.
The second term, however, is an order of magnitude less than the first term. Therefore,
for a specific viewing-sun geometry, in the single (aerosol) scattering approximation, it is
legitimate to write

ρB − ρre−τa/uB ∝ ρas, (12.28)

where ρas is the direct downward single scattering normalized radiance without reflection
from the sea surface, given by

ρas =
ωaτaPa(Θ)

4 cos θB cos θ0
, (12.29)

with
cos Θ = cos θ0 cos θB + sin θ0 sin θB cos(φ− φ0).

We assume that ρr can be predicted to any desired accuracy, and τa is measured at the
bottom of atmosphere, so the left-hand-side of Eq. (12.28) is known. We also assume that
we are given ρB measurements in a large enough number of directions (uB, φB) to provide
as full a range of scattering angles Θ as possible. Then Eq. (12.29) provides ωaPa(Θ) for
that range of scattering angles.

We denote ρ
(m)
B as the total downward normalized radiance measured (“m”) by the

sensor, ρ
(c)
B as the total downward normalized radiance computed (“c”) via the radiative

transfer equation using estimated optical properties for the aerosol, ωaPa, and the measured
τa, along with distributing the aerosol according to the two-layer model. In the computation

of ρ
(c)
B the atmosphere is bounded by a flat Fresnel-reflecting ocean at the bottom. Radiance

backscattered out of the water is ignored as we will be most interested in applying these

results to the red and NIR, where ρw is small or negligible. In addition ρ
(c)
r is the computed

downward normalized radiance in the absence of aerosols. Then Eq. (12.28) becomes

ρ
(m)
B − ρ(c)

r e−τa/uB ∝ ρ(m)
as and ρ

(c)
B − ρ(c)

r e−τa/uB ∝ ρ(c)
as

where

ρ(m)
as =

τa
[
ωaPa(Θ)

](t)

4 cos θB cos θ0
and ρ(c)

as =
τa
[
ωaPa(Θ)

](c)

4 cos θB cos θ0
.

30For sufficiently small τa, the right hand side is equal to ρas exp(−τr/u0).
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The superscript “t” stands for the “true” value. Combining these equations, we have

ρ
(c)
B − ρ

(m)
B

ρ
(m)
B − ρ(c)

r e−τa/uB
=

∆
[
ωaPa(Θ)

]
[
ωaPa(Θ)

](t) ,

where
∆
[
ωaPa(Θ)

]
=
[
ωaPa(Θ)

](c) −
[
ωaPa(Θ)

](t)
.

Note we have assumed the same proportionality constant for the measured and calculated
quantities. The error in ωaPa(Θ) is then

∆
[
ωaPa(Θ)

]
=

ρ
(c)
B − ρ

(m)
B

ρ
(m)
B − ρ(c)

r e−τa/uB

[
ωaPa(Θ)

](t)
. (12.30)

Retrieval of ωaPa(Θ) can be achieved through iteration on the above equation. Replac-

ing the unknown
[
ωaPa(Θ)

](t)
by
[
ωaPa(Θ)

](c)
in the above equation, a new estimate of[

ωaPa(Θ)
]

can be written as

[
ωaPa(Θ)

]
new

=
[
ωaPa(Θ)

]
old
− C∆

[
ωaPa(Θ)

]
, (12.31)

where C is a constant, the value of which is chosen so as to avoid instabilities in the iteration
scheme when there are errors in the measured radiances (here we use C = 1/2). At the
end, both Pa(Θ) and ωa can be retrieved using the normalization of the phase function,
i.e.,

ωa =
1

2

∫ π

0

[
ωaPa(Θ)

]
sin ΘdΘ, (12.32)

Pa(Θ) =
1

ωa

[
ωaPa(Θ)

]
. (12.33)

Note that aerosol phase function Pa(Θ) is normalized to 4π. The basic idea then is to
use Eqs. (12.30) and (12.31) to nudge ωaP (Θ) in a direction that will tend to decrease

ρ
(c)
B − ρ

(m)
B . However, we need an initial guess for ωaP (Θ) to be able to solve the radiative

transfer equation to provide the initial ρ
(c)
B .

The initial guess for ωaP (Θ) is provided by a series of simulations showing that ρB −
ρre
−τa/uB is approximately related to ρas quadratically, i.e.,

ρB − ρre−τa/uB ≈ a+ bρas + cρ2
as. (12.34)

A set of such simulations for one particular geometry is provided in Figure 12.14. The
figure is for θB = 60◦, θ0 = 60◦ and φB − φ0 = 90◦ at λ = 865 nm with three aerosol
models: M99, M70, and T50. The computations for preparing the figure are for τa = 0.05,
0.10, 0.15, 0.20, 0.30 and 0.40. The line is computed using a least-squares determination
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of a, b, and c in Eq. (12.34). The quality of the fit suggests that by knowing a, b, c, and

ρ
(m)
B − ρ(c)

r e−τa/uB , ρas can be estimated from Eq. (12.34), with an error no greater than
20%. This will provide an estimate for ωaPa(Θ) using Eq. (12.29). This estimate will be
used only to initiate the algorithm. However, as we discussed in the text, the maximum
scattering angle available is θ0 +π/2, so in order to use Eq. (12.32) and (12.33) to estimate
ωa and Pa(Θ), we have to make an assumption concerning ωaPa(Θ) for Θ = Θmax to 180◦.
The simplest is to assume Pa is simply constant for Θ > Θmax, i.e.,

ωaPa(Θ) = ωaPa(Θmax), if Θ > Θmax.

The algorithm then consists of six steps delineated below.

1. Calculate a, b, and c of the quadratic fit of ρ
(c)
B −ρ

(c)
r e−τa/uB to ρas for each wavelength,

wind speed (surface roughness), and the given geometry using a variety of aerosol
models, e.g., the candidates of the atmospheric correction algorithm.

2. Use the measured value of ρ
(m)
B and τa to compute ρas through Eq. (12.34), where a,

b, and c are known from (1) for the given geometry. Then ωaPa(Θ) can be initially
estimated for the whole range Θ through Eqs. (12.29) and the assumption for ωaP (Θ)
for Θ > ΘMax.

3. Use the retrieved ωaPa(Θ) and the radiative transfer equation to calculate the total

downward radiances ρ
(c)
B .

4. The new value of ωaPa(Θ) for Θ ≤ Θmax can then be retrieved through

∆
[
ωaPa(Θ)

]
=

ρ
(c)
B − ρ

(m)
B

ρ
(m)
B − ρ(c)

r e−τa/uB

[
ωaPa(Θ)

]
old

and [
ωaPa(Θ)

]
new

=
[
ωaPa(Θ)

]
old
− 1

2
∆
[
ωaPa(Θ)

]
,

where Θmax = θ0 + π/2, and the subscripts “new” and “old” indicate, respectively,
the new and the previously retrieved value of ωaPa(Θ).

5. From Eqs. (12.32) and (12.33), ωa and Pa(Θ) can then be retrieved using the as-
sumption of a constant ωaPa(Θ) for Θ > ΘMax.

6. Repeat steps (3) to (5) until convergence is achieved, i.e., ρ
(c)
B − ρ

(m)
B is minimized

over all of the measured ρB’s.

This algorithm was used in the preparation of Figures 12.7-12.9 in the text. The reader
should note the similarity between this algorithm and that for retrieving the IOPs from
measurement of the AOPs in Appendix 1 of Chapter 6.
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12.7 Bibliographic Notes

12.1 Introduction

The influence of radiometric calibration error on the retrieved values of ρw follows the
development in Gordon [1997].

12.2 Radiometric Calibration

Portions of the discussion here on radiometric calibration draw on the author’s contri-
bution to the IOCCG [2013] Report. An excellent discussion of radiometric calibration in
general, including basic definitions, standards, and methods can be found in Johnson et al.
[2014].

12.2.2 Reflectance Based

Reflectance-based calibration of satellite sensors is discussed in Slater et al. [1987].

12.3 Vicarious Calibration

The method of vicarious calibration was introduced by Koepke [1982] and first applied to
METEOSAT. An excellent description of vicarious calibration applied to several different
sensors is provided in IOCCG [2013] .

12.3.1 Direct — Using Surface Radiance Measurements

The direct method of vicarious calibration and a sensitivity study of the influence of the
particular assumptions is detailed in Gordon and Zhang [1996]. The method of inverting
sky radiance to obtain ωaP (Θ) was first developed by Wang and Gordon [1993] and later
extended to the inversion of the surface-measured Stokes vector to obtain portions of
the phase matrix ωaPa(Θ) by Zhang and Gordon [1997]. In anticipation of using the
direct method from stations located on small islands, Yang et al. [1995] studied the island
perturbation effects on the retrieval of ωaPa(Θ). An application of the method in the NIR
is provided in Martiny et al. [2005].

A method for reflectance-based calibration of surface radiometers is detailed in Cattrall
et al. [2002].

12.3.2 Full System Calibration

The calibration requirements (and vicarious methodology) for ocean color sensors is
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described in Gordon [1987]. The full system calibration concept (for CZCS) was first
discussed by Gordon [1981] (see also Viollier [1982]), and in considerable detail in Gordon
[1998]. Wang and Gordon [2002] showed that when applying such a calibration method as
described in the text, the actual value of the calibration error at λl is relatively unimportant
as long as it is not too large. They also suggest that it is unnecessary to try to reduce the
prelaunch calibration uncertainties to very low values, as in-orbit calibration is sufficiently
accurate. Instead it is more useful to use resources to improve the instrument’s stability
or to fully characterize the instrument, e.g, to determine the effect of the instrument’s
temperature on the measured calibration coefficients, K(λ, · · · ), even though they are not
as accurate as they could be, etc.

The Marine Optical Buoy (MOBY) is described in Clark et al. [1997] and references
therein. The application of MOBY to the full system vicarious calibration of SeaWiFS
is detailed in Franz et al. [2007], where, interestingly, over a period of nine years there
were 1450 contemporaneous MOBY measurements and satellite overpasses with only 150
of those passing their stringent quality control metrics. In addition, they show that it
takes roughly 30 to 40 samples to reach a stable vicarious calibration, requiring 2-3 years
to achieve. Thus, frequent reprocessing of the imagery starting from the first usable image
is necessary.

12.4 Characterization

Portions of the discussion here on characterization draw on the author’s contribution to
the IOCCG [2013] Report.

12.4.1 Polarization Sensitivity

The material in the section is taken mostly from Gordon et al. [1997a], wherein the
polarization sensitivity is discussed along with several examples of its possible affect on the
retrieved ρt. In addition a method for correction of such effects is provided. An end-to-end
example of the characterization and correction procedure as applied to MODIS (Aqua) is
given in Meister et al. [2005].

12.4.2 Out-of-Band Response

A through discussion of the out-of-band problem for SeaWiFS is provided in Gordon
[1995]. Wang et al. [2001] used this as a basis for the analysis of the effect of the out-of-
band response on SeaWiFS-derived normalized water-leaving radiances and concentration
of Chlorophyll a. They emphasized the importance of pre-launch characterization of the
spectral response, not only in understanding the performance of a given sensor, but also
in merging data from different sensors, e.g., SeaWIFS and MODIS.
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12.5 Appendix: Retrieval of ωa and Pa(Θ) from ρB(ξ̂B).

This was taken from Wang and Gordon [1993], wherein examples of several simulated
retrievals are provided. A similar algorithm has been developed for measurements of the
full Stokes vector of the sky radiance and using the vector radiative transfer equation to
retrieve ωa, P11(Θ) and P12(Θ) for aerosols [Zhang and Gordon, 1997].
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12.8 Figures
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Figure 12.1: Error in the retrieved t(443)ρw(443) for viewing at the center of the
scan with a Maritime aerosol at RH = 80% as a function of the solar zenith angle
with τa(865) = 0.2 and calibration errors α(443), α(765), and α(865) in Eq. (12.1)
(open circles). Solid circles are for α(λi) = 0 for all λi. Redrawn from Gordon
[1997].
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On-Orbit Reflectance Calibration 
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Figure 12.2: Schematic of the reflectance-based calibration of a sensor in orbit.
From IOCCG [2013].
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Figure 12.4: The quantity Θ
(r)
B as a function of ΘB for principal plane “PP” and

almucantor “A” scans with θ0 = 60◦.
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Figure 12.5: Phase functions for the M99 and T50 aerosol models. Error in the
retrieved ωaPa(Θ) for M99 assuming that single scattering is the correct physics.
From Gordon and Zhang [1996].
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Figure 12.6: Error in the estimate of ρT as a function of θ
(c)
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the figure) when single scattering is the correct physics. Here, θ0 = 60◦ and
φT − φ0 = 90◦. The curves correspond to using the PP scan alone or the PP+A
scans to retrieve τaωaP (Θ). From Gordon and Zhang [1996].
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Figure 12.7: Retrieved ωaPa(Θ) when multiple scattering is included in both the
generation of the ρB pseudo data and the retrieval of ωaPa(Θ) from ρB (left panel).
Error in the corresponding retrieved ωaPa(Θ) (right panel). From Gordon and
Zhang [1996].
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and Zhang [1996].

10 20 30 40 50
-10

-5

0

5

10

θT (Deg.)

Er
ro

r i
n 

Es
tim

at
e 

of
 ρ

T 
(%

)

 M99, τa = 0.20, θ0 = 60°, ΘMin = 0.92°

 Retrieval uses: τa = 0.20

 Solid:    +5% error in measured ρB
 Dotted: −5% error in measured ρB

10 20 30 40 50 60
−10

−5

0

5

10

15

θT  (Deg.)

Er
ro

r i
n 

Es
tim

at
e 

of
 ρ

T 
 (%

)

True
Atmosphere

R(78%) + T50(τT=0.05)

R(22%) + M99(τB=0.15)

Retrieval-assumed
Atmosphere

R(100%)

A(τB=0.20)

θ0 = 60°, ΘMin = 0.92°
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Figure 12.13: The four focal planes of the MODIS instruments. The individual
detectors are shown as small squares for the 36 bands. There are 10 detectors (in
a vertical column) for each spectral band for ocean applications. The ocean bands
are 8–16. Bands with more detectors are those with higher than the nominal 1
km spatial resolution. The red object covering the lower right corner of each focal
plane simulates the image of a cloud in the scene. The cloud moves across the focal
planes as the instrument scans.
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Chapter 13

Vicarious Calibration and
Validation — How Well Does It
All Work?

13.1 Introduction

We have finally reached the point in our development when we begin to answer the question,
how well does remote sensing of the ocean, through estimating the water-leaving radiance
from measurements made by satellite-borne sensors, actually work? The process of deter-
mining its effectiveness, within a certain range of uncertainty, is called validation. Since
we have already demonstrated that products of ecological and climatological importance in
oceanography such as the concentrations of Chlorophyll a (C) or the pigment concentration
(CP ) can be derived, with a roughly-known uncertainty, given the normalized water-leaving
reflectances [ρw(λ)]N , e.g., Figures 6.64 or 10.1 and Eq. (10.1), it is quite obvious that we
should focus the validation effort mainly on [ρw(λ)]N . However, validation of the principal
scientific products, e.g., C or CP , is still necessary, as an understanding of their accuracy
is crucial in further applications.

Before we begin, it is useful to consider the differences between measurements at the
surface, made perhaps from a ship, and measurements from a sensor in space. The ship-
borne sensor can only effect measurement of a given quantity at a single location, or at
most a small number of locations on the surface, or provide a time series of measurements
at a single location. The space-borne sensor, through its capability of imaging large swaths
of the water surface in a short period of time (minutes), and even global-scale images

859
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over a period of ∼ one week, can produce a snapshot of the large scale environment and
provide the context in which any variation observed on the small scale takes place. Thus,
the two kinds of measurements are complementary, but focus on different views of the
same phenomenon — the spatial-temporal variation of the examined property. There is
no reason to expect that these should have the same accuracy in the quantification of said
property, and indeed, they need not in order for both to be useful. Considering the overall
scope of the instrumentation and data processing required for the remote retrieval of most
quantities of interest here, we should actually expect more uncertainty in the space-borne
sensor. However, one can sacrifice some accuracy in the remote measurement to gain the
perspective offered by the view from space. The purpose of validation is to understand
the ability of the space-borne measurement to reproduce the surface measurement, and
to quantify the uncertainty in the former, usually by taking the surface measurement as
“truth,” or at least as having an uncertainty significantly less than the space measurement.

In the case of ocean color sensors and the role of the oceans in climate change, we have
an additional goal — obtaining a long-term (decades or longer) data record having enough
sensitivity to detect and document any long-term trends in the measured quantity, e.g.,
Chlorophyll a. For this, knowing the uncertainty in the data record is paramount, and
raises an important point. Few measuring devices can maintain their original performance
over a long period of time, e.g., their calibration. Space-borne ocean color sensors are no
exception (neither are laboratory radiometers for that matter). Thus, repeat calibration
and validation exercises must be carried out during the entirety of a mission, and there can
be no single “validation” of the remotely-sensed product — it is a never-ending on-going
process throughout the lifetime of the sensor. In this sense, fully-validated ocean color
products must of necessity be retrospective and produced at the completion of the mission.

With the above comments in mind, we proceed here to explain in detail what must be
done for an ocean color sensor to validate its products, principally [ρw]N , but also C or
CP , and follow with two examples of validation: first the CZCS, where validation was only
crudely carried out; and then MODIS, for which the detailed requirements for validation
have been fully met.

13.2 How Do We Perform Validation?

Clearly, we need to compare sensor and surface measurements of [ρw]N to assess the fidelity
of its remote measurement. We note that [ρw(λ, ξ̂v, ξ̂0)]N is measured at an extremely large
number of ∼1 km×1 km (pixels) at a given instant of time tv. However, unlike the sensor’s
measurement, the surface measurement, e.g., from a ship, is never instantaneous and may in
fact require hours (as in the case of the CZCS validation measurements). So, we are forced
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to admit that simultaneous measurement of [ρw]N by the sensor and a surface observer
is not (at this time) possible, and we are forced to be satisfied with contemporaneous
measurements, e.g, measurements at the same place on the same day but maybe a few
hours apart. In this section we will focus on what measurements are needed and how
they must be processed in order to provide a meaningful comparison between surface and
satellite measurements of [ρw]N . At the end we briefly consider the validation of derived
products.

13.2.1 Surface Measurements of [ρw]N .

The goal of the validation exercise is to determine the accuracy with which [ρw(λ, ξ̂v, ξ̂0)]N
(where we have included the full dependence on the viewing and illumination directions as
well as the wavelength in the argument list) can be derived from the sensor, in a variety of
situations. To effect this we will need to measure [ρw]N at the water surface and compare
it to the estimate of the same quantity, made by applying all of the machinery developed
in previous chapters, from the radiance Lt (or reflectance ρt) measured by the sensor in
space.

Before starting, as we must determine [ρw]N at the water surface, we will review in
some detail how it is defined, so we can delineate the procedure for its measurement. The
water-leaving reflectance ρw is related to the water-leaving radiance Lw through

ρw(λ, ξ̂v, ξ̂0) =
πLw(λ, ξ̂v, ξ̂0)

F0(λ) cos θ0
.

In addition, the normalized water-leaving radiance [Lw]N is related to Lw through

[Lw(λ, ξ̂v, ξ̂0)]N = Lw(λ, ξ̂v, ξ̂0)
a2
⊕

cos θ0tE(λ, ξ̂0)
,

where tE(ξ̂0) is the transmittance of irradiance from the top of the atmosphere to the
water surface, and a⊕ is the Earth-Sun distance, in astronomical units, at the time of the
measurement. This leads to (see all of the steps in Chapter 7)

π[Lw(λ, ξ̂v, ξ̂0)]N
F̄0(λ)

=
ρw(λ, ξ̂v, ξ̂0)

tE(ξ̂0)
,

with F̄0 the solar irradiance for a⊕ = 1 AU. The left-hand-side in the above equation is
defined to be the normalized water-leaving reflectance [ρw(λ, ξ̂v, ξ̂0)]N , i.e.,

[ρw(λ, ξ̂v, ξ̂0)]N ≡
π[Lw(λ, ξ̂v, ξ̂0)]N

F̄0(λ)
, (13.1)
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so

[ρw(λ, ξ̂v, ξ̂0)]N =
πLw(λ, ξ̂v, ξ̂0)

F0(λ) cos θ0tE(λ, ξ̂0)
= π

Lw(λ, ξ̂v, ξ̂0)

E+
d (λ, ξ̂0)

= πRrs(λ, ξ̂v, ξ̂0), (13.2)

where Rrs is the remote sensing reflectance.1

Accordingly, from Eq. (13.2), the quantities that must be measured at the surface to
determine [ρw]N are Lw and E+

d , for the appropriate Sun and viewing directions. In most
cases, these are not measured. More often the upwelling radiance Lu and downwelling
radiance Ed are measured (or extrapolated to) just beneath the water surface. In this case,
these need to be transformed to [ρw]N in the viewing direction. To understand how this is
done, recall from Chapter 7 that

Rrs(λ, ξ̂v, ξ̂0) = <(λ, ξ̂v, ξ̂0)

(
Lu(λ, ξ̂′v, ξ̂

′
0)

Ed(λ, ξ̂
′
0)

)
= <(λ, ξ̂v, ξ̂0)RL(λ, ξ̂′v, ξ̂

′
0), (13.3)

where ξ̂0 and ξ̂′0 as well as ξ̂v and ξ̂′v are related by Snell’s law, and

<(λ, ξ̂v, ξ̂s) =
tf (ξ̂v, ξ̂

′
v)tf (ξ̂0, ξ̂

′
0)

m2
w

(
1− rR(λ, ξ̂′0)

) (13.4)

can be computed for a flat air-water interface.2 These lead to Eq. (7.38), which can
be rewritten as the following relationship between normalized water-leaving reflectances
viewed with ξ̂v1 and ξ̂v2 for solar propagation vectors ξ̂01 and ξ̂02, respectively:

[ρw(λ, ξ̂v1, ξ̂01)]N

<(λ, ξ̂v1, ξ̂01)RL(λ, ξ̂′v1, ξ̂
′
01)

=
[ρw(λ, ξ̂v2, ξ̂02)]N

<(λ, ξ̂v2, ξ̂02)RL(λ, ξ̂′v2, ξ̂
′
02)

. (13.5)

We will find it helpful to use a short-hand notation for the recurring fraction

<(λ, ξ̂v1, ξ̂01)RL(λ, ξ̂′v1, ξ̂
′
01)

<(λ, ξ̂v2, ξ̂02)RL(λ, ξ̂′v2, ξ̂
′
02)
≡ F(λ; ξ̂v1, ξ̂01; ξ̂v2, ξ̂02) =

1

F(λ; ξ̂v2, ξ̂02; ξ̂v1, ξ̂01)

so

[ρw(λ, ξ̂v1, ξ̂01)]N = F(λ; ξ̂v1, ξ̂01; ξ̂v2, ξ̂02)[ρw(λ, ξ̂v2, ξ̂02)]N .

1The variation of Rrs with ξ̂v and ξ̂0 is usually termed the “BRDF effect” (see Chapter 2, Section 2.8.4).
2The unknown irradiance ratio R, which is usually much less or at least less than 0.1, can be determined

by measuring Eu along with Ed, can be estimated by modeling, or can be estimated by πLu, which assumes
that Lu is totally diffuse.
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It is easy to see that the following relationships among different F ’s are valid:

F(λ; ξ̂v1, ξ̂01; ξ̂v2, ξ̂02)

F(λ; ξ̂v1, ξ̂01; ξ̂v3, ξ̂03)
= F(λ; ξ̂v3, ξ̂03; ξ̂v2, ξ̂02) =

1

F(λ; ξ̂v2, ξ̂02; ξ̂v3, ξ̂03)
; and

F(λ; ξ̂v1, ξ̂01; ξ̂v3, ξ̂03)

F(λ; ξ̂v2, ξ̂02; ξ̂v3, ξ̂03)
= F(λ; ξ̂v1, ξ̂01; ξ̂v2, ξ̂02) =

1

F(λ; ξ̂v2, ξ̂02; ξ̂v1, ξ̂01)

(13.6)

These will be useful in developing the validation procedures.

Let us now briefly consider the relevant radiometric measurements typically made above
and/or below the water surface. There are very few instruments (probably fewer that 5 in
2018) capable of measuring Lu(λ, ξ̂′v, ξ̂

′
0) for all ξ̂′v, so the full spectral radiance distribution

is rarely measured. Rather, the most common radiance measurement is Lu(λ, n̂S , ξ̂
′
0), where

n̂S is the upward normal to the undisturbed water surface (radiometer aimed toward −n̂S ,
the nadir). The downward irradiance Ed(λ, ξ̂

′
0) cannot be measured just beneath the water

surface because of the wild fluctuations in its value (at the irradiance meter) due to surface
waves. Thus, it is usually measured at depth (> 10-15 m) and extrapolated to determine
its value just beneath the surface.3 These measurements and extrapolations then yield
estimates of Rrs(λ, n̂S , ξ̂0) or [ρw(λ, n̂S , ξ̂0)]N .

For radiometers attempting to measure Lw(λ, ξ̂v, ξ̂0) from just above the surface us-
ing a down-looking radiometer to measure LSurf(λ, ξ̂v, ξ̂0), that portion of the measured
radiance due to Sun glint and reflected skylight must be subtracted from the measured
LSurf(λ, ξ̂v, ξ̂0) to obtain Lw(λ, ξ̂v, ξ̂0). However, since skylight and Sun glint can over-
whelm Lw (as anyone looking down at the water in certain directions from a boat can
attest), the viewing geometry must be such as to minimize the effects of these reflec-
tions. The protocols (“PC”) for such measurements provide that the viewing direction

ξ̂PC should have components (θ
(c)
PC , φPC) ≈ (40◦ to 45◦, φ0 + 135◦) if possible, but always

with 90◦ ≤ φPC − φ0 ≤ 180◦. Therefore, the water-surface measurement can only provide
Lw(λ, ξ̂PC , ξ̂0). The measurement of E+

d (λ, ξ̂0) is relatively straightforward, needing only
to be corrected for any perturbations (e.g., shadows, etc.) produced by structures near
the irradiance meter, which must of course be designed and calibrated for operation in air.
The surface or “ground truth” measurements then yield

[ρw(λ, n̂S , ξ̂0)]N or [ρw(λ, ξ̂PC , ξ̂0)]N

for measurements made below and above the water surface, respectively, rather than the
desired [ρw(λ, ξ̂v, ξ̂0)]N .

3The irradiance Ed profile, i.e., Ed(z), is measured and fit to Ed(z) = Ed(zMin) exp[−Kd(z − zMin)
to determine Kd. Then Ed(0) = Ed(zMin) exp(+KdzMin), where zMin is the minimum depth of reliable
measurements.
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13.2.2 How Do We Compare Surface and Sensor Measurements of [ρw]N?

The space-borne estimate of the normalized water-leaving reflectance [ρw(λ, ξ̂v, ξ̂0)]N is
made in a viewing direction that is almost always different from ξ̂PC or n̂S . Thus, we must
transform either the space-borne or the surface measurement of [ρw]N to the geometry
of the other. Formally this can be done using Eq. (13.5). Let us transform the surface
measurements to the space-view geometry.4 We have for the in-water measurement

N =

[
<(λ, ξ̂v, ξ̂0)

<(λ, n̂S , ξ̂0)

]
×
{
RL(λ, ξ̂′v, ξ̂

′
0)

RL(λ, n̂S , ξ̂′0)

}
× [ρw(λ, n̂S , ξ̂0)]N

= F(λ; ξ̂v, ξ̂0; n̂S , ξ̂0)× [ρw(λ, n̂S , ξ̂0)]N ,

and for the above-water measurement

N =

[
<(λ, ξ̂v, ξ̂0)

<(λ, ξ̂PC , ξ̂0)

]
×
{

RL(λ, ξ̂′v, ξ̂
′
0)

RL(λ, ξ̂′PC , ξ̂
′
0)

}
× [ρw(λ, ξ̂PC , ξ̂0)]N

= F(λ; ξ̂v, ξ̂0; ξ̂PC , ξ̂0)× [ρw(λ, ξ̂PC , ξ̂0)]N .

The quantity on the left side of these equations is what needs to be compared to the
estimate of [ρw]N by the sensor. The term in the square brackets in each equation is nearly
constant and can be estimated with negligible error. In contrast, the term in the curly
brackets can vary significantly with the viewing directions indicated. We can estimate the
variation via the QSSA by recalling (Eq. (6.24))

RL(ξ̂′v, ξ̂
′
0) = QSSA′L(ξ̂′v, ξ̂

′
0) =

ω0

4π[1− ω0(1−B)]

Pr(ξ̂
′
0 → ξ̂′v)

u0w + µ′v
,

where, as in our usual notation, u′0 = cos θ0w and µ′v = cos θ cvw = − cos(π − θvw).5 This
gives, for example,

{
RL(λ, ξ̂′v, ξ̂

′
0)

RL(λ, n̂S , ξ̂′0)

}
=

u0w + 1

u0w + µ′v
× Pr(ξ̂

′
0 → ξ̂′v)

Pr(ξ̂′0 → n̂S)
,

4So far we have assumed that the surface and the satellite measurement are made with the same ξ̂0
which will be the case for simultaneous measurements. However, for measurements that are separated in
time by several hours, this will not be the case. Extension to contemporaneous measurements is immediate
using Eq. (13.5) as long as one assumes that there is no change in the IOPs of the water during the time
interval between the two measurements.

5The reader should recall that the subscript “(r)” on the scattering phase function in the QSSA stands
for “remainder,” i.e., that remainder for the actual phase function of the medium after the forward peak is
replaced by a Dirac delta function.
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etc. This can give us an estimate of the variation of the term in the curly brackets with ξ̂v
and ξ̂0. As an example, assume the Sun is at the zenith, so ξ̂0 = −n̂S , then

{
RL(λ, ξ̂′v,−n̂S)

RL(λ, n̂S ,−n̂S)

}
=

2

1 + µ′v
× Pr(−n̂S → ξ̂′v)

Pr(−n̂S → n̂S)
.

Figure 13.1 provides the quantity in the curly brackets as a function of the angle θ′cv = π−θ′v
for the QSSA formula above. The phase function used in preparation of the figure is a
combination of that of water and particles:

Pr =
bwPw + bpPp
bw + bp

=
Pw + (bp/bw)Pp

1 + (bp/bw)
.

Noting that bp/bw = (Bw/Bp)[(bb)p/(bb)w], one can compute the BRDF effect as a function
of the relative particle concentration by varying the ratio (bb)p/(bb)w, which for Case 1
waters is related to the Chlorophyll a concentration as provided in Table 13.1. The results
in Figure 13.1, show a strong variation in the RL ratio with both the viewing direction
and with the contribution of particle backscattering relative to water. Clear ocean waters
have (bb)p/(bb)w less than unity and most mesotrophic waters have this ratio between 1
and 10. The variation with wavelength is caused largely by the strong spectral dependence
of (bb)w. We expect that the QSSA results to be further modified by multiple scattering.

Table 13.1: The quantity (bb)p/(bb)w as a function of λ (nm) and the concentration
of Chlorophyll a (C) in mg/m3 using the IOP model for (bb)p in Chapter 5.

λ C = 0.01 C = 0.10 C = 1.00 C = 10.0 C = 100

443 0.09 0.36 1.40 4.77 11.0
550 0.17 0.78 3.37 12.7 32.0
670 0.31 1.58 7.50 31.1 88.9

How much? Figure 13.2 provides the results of exact calculations for (bb)p/(bb)w = 0.1 (left
panel) and for (bb)p/(bb)w = 100 (right panel), values that for the most part span the full
range of this parameter in Figure 13.1. In the figure, the solid symbols refer to ω0 = 0.1,
0.2, 0.4, 0.6, 0.8, 0.85, and 0.9. The open symbols at the very bottom are the result of the
QSSA approximation from Figure 13.1. Several conclusions can be drawn from the Figures
13.1 and 13.2:

First, as the maximum value of θ′cv is about 48.6◦ for a flat surface, the
results suggest that ignoring the BRDF effect, i.e., assuming Lu(ξ̂′, ξ̂′0) is
independent of ξ̂′, can result in an error in [ρw(λ, ξ̂v,−n̂S)]N computed from
[ρw(λ, n̂S ,−n̂S)]N by as much as −14 to +25%, which would severely limit
the ability perform validation. (Recall, the original goal for the uncertainty



866 CHAPTER 13. VICARIOUS CALIBRATION AND VALIDATION

in [ρw(λ, ξ̂v, ξ̂0)]N in the blue was ±5% in waters with low Chlorophyll a
concentration).

Second, if viewing angles θcv are restricted to be <∼ 42◦ (θ′cv ≤ 30◦), the
error in ignoring the BRDF effect altogether can be reduced to ∼ ±5%.

Third, for waters with ω0 <∼ 0.4, the QSSA estimation can reduce this error
to about 2%.

Fourth, to reduce the error to acceptable limits, i.e., to ∼ 1− 2%, requires
significant knowledge of the IOPs of the medium, so one could carry out
detailed radiative transfer computations to properly assess the effect (e.g.,
of the kind leading to Figure 13.2). This is true even when the QSSA is
appropriate for the assessment, because the scattering phase function of the
water plus particles is required at the appropriate scattering angles — here,
Θ = arccos(ξ̂′v • n̂S) and Θ = 180◦.6

As the full sub-surface upwelling radiance distribution is rarely measured, we are led to
the inescapable conclusion that the BRDF effect must be modeled to complete a validation
that can reveal the true performance of the in-orbit sensor, and that the IOPs (or enough of
the IOPs) at the validation site must be measured along with the water-leaving reflectance
to carry out the modeling.7 In practice, there are practically no validation experiments
with as comprehensive a suite of measurements as required to assess the BRDF effect.
Therefore, the BRDF effect must be determined through models based on a combination of
the surface and the satellite measurements. Such measurements usually provide incomplete
estimates of the needed IOPs. The efficacy of such models will likely be a limiting factor
in the accuracy of the validation process.

Considering the fact that in the above example we had to transform [ρw(λ, n̂S , ξ̂0)]N to
a different viewing angle, i.e., to form [ρw(λ, ξ̂v, ξ̂0)]N , to carry out a validation, and that
because such transformations are (at present) always necessary, one might wonder if there
is some optimum set of transformations for carrying out such a validation. For example,
SeaWIFS and MODIS report the radiometric output product as [ρw(λ, n̂S ,−n̂S)]Sat

N .8 This

6In Chapter 6 Section 6.8 we examined two alternatives (beyond the QSSA) to detailed radiative transfer
calculations that might be used to assess the BRDF effect (the Zaneveld approximation in Section 6.8 and the
modified δ-Isotropic approximation in Section 6.9); however, both still require knowledge of the scattering
phase function.

7The same comments apply to the effect of the BRDF in a vicarious calibration exercise. If a procedure
such as this is not followed at the calibration site, then any calibration adjustment based in-water nadir ra-
diance measurements will be accompanied by a larger uncertainty than necessary. Because the surface data
requirements for calibration and validation are similar, such exercises are usually referred to as “cal/val”
field experiments, meaning they can apply equally well to calibration or validation.

8The associated [Lw(n̂S ,−n̂S)]N is the actual Lw(n̂S ,−n̂S) that would be extant if the atmosphere were
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is derived from the retrieved quantity [ρw(λ, ξ̂v, ξ̂0)]Sat
N through

[ρw(λ, n̂S ,−n̂S)]Sat
N = F(λ; n̂S ,−n̂S ; ξ̂v, ξ̂0)× [ρw(λ, ξ̂v, ξ̂0)]Sat

N ,

They then compare this with [ρw(λ, n̂S ,−n̂S)]Surf
N , which is derived from the measured

quantity [ρw(λ, n̂S , ξ̂0)]Surf
N by

[ρw(λ, n̂S ,−n̂S)]Surf
N = F(λ; n̂S ,−n̂S ; n̂S , ξ̂0)× [ρw(λ, n̂S , ξ̂0)]Surf

N ,

So to compare the two, we consider

[ρw(λ, n̂S ,−n̂S)]Sat
N

[ρw(λ, n̂S ,−n̂S)]Surf
N

=
F(λ; n̂S ,−n̂S ; ξ̂v, ξ̂0)

F(λ; n̂S ,−n̂S ; n̂S , ξ̂0)
×
[

[ρw(λ, ξ̂v, ξ̂0)]Sat
N

[ρw(λ, n̂S , ξ̂0)]Surf
N

]
, (13.7)

where the measured quantities are in the square brackets; one by the sensor in space
(“Sat”) and one by the in-water sensor (“Surf”). What if instead, we transformed the
surface measurement to the spacecraft’s geometry, i.e.,

[ρw(λ, ξ̂v, ξ̂0)]Surf
N = F(λ; ξ̂v, ξ̂0; n̂S , ξ̂0)× [ρw(λ, n̂S , ξ̂0)]Surf

N .

Then
[ρw(λ, ξ̂v, ξ̂0]Sat

N

[ρw(λ, ξ̂v, ξ̂0]Surf
N

=
1

F(λ; ξ̂v, ξ̂0; n̂S , ξ̂0)
×
[

[ρw(λ, ξ̂v, ξ̂0)]Sat
N

[ρw(λ, n̂S , ξ̂0)]Surf
N

]
, (13.8)

Equation (13.6) shows that the terms with F factors are the same in both equations,
which means that the same BRDF ratio is required for both comparisons. Thus, it is safe
to conclude that there is no advantage of one set of [ρw]N comparisons over any other in
terms of improving on the uncertainty introduced by the (unknown) BRDF.

13.2.3 Validation of Derived Products.

As mentioned earlier, it is important to validate the principal derived products (i.e., es-
timate the uncertainty associated with the determination from the space-borne system).
For the CZCS this was CP , while for the follow-on sensors SeaWiFS and MODIS, it was
C. As with [ρw]N , the idea is to compare surface measurements with satellite sensor mea-
surements. This is usually done at a single location, where ship-borne determinations are
carried out. One can also make continuous measurements along the ship’s track and com-
pare these with the satellite measurement, understanding that there can be a significant
time difference between the ship and satellite measurement. Usually, only surface mea-
surements of C or CP are required, as the depth of the mixed layer is usually below the

absent and the Sun were at the zenith (Chapter 7).
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depth of penetration (Chapter 6, Section 6.4.10). Because the retrieval involves the use
of a bio-optical algorithm that relates the product to [ρw]N , one must require that the
protocols used in measuring the surface validation product are the same as those in place
for producing the bio-optical algorithm, although this may not always be possible.

13.3 Validation of CZCS and MODIS

Here we describe the very different validation experiences for CZCS and MODIS. For the
proof-of-concept mission, CZCS, the validation was more of a verification, i.e., showing that
the concept worked and providing a path forward to future instruments. For the mature
MODIS sensor, the validation was built on the SeaWiFS experience, for which extensive,
carefully quailty-controlled, surface data were acquired using well-developed measurement
protocols. The amount of contemporaneous surface and sensor data for validating MODIS
was close to two orders of magnitude more than for CZCS. As such, in the case of MODIS,
the uncertainty in both [ρw]N and C potentially could be estimated for a variety of waters.

13.3.1 Verification of CZCS Concept

Before describing the CZCS verification procedure, it is useful to recall some details of the
CZCS atmospheric correction. The atmospheric correction algorithm for CZCS was based
on single scattering. Because were no NIR bands on CZCS the algorithm could not be
operated as described in Chapter 10; however, ρw(670) can generally be taken to be zero,
if the pigment concentration (CP ) is sufficiently low, which is valid in oligotrophic and
mesotrophic ocean waters. Thus, the single scattering algorithm was typically operated
with λl = 670 nm, using the assumption that ρw(λl) = 0. On CZCS, there was no
shorter wavelength (λs) for which ρw = 0; however for CP <∼ 0.25 mg/m3, [ρw(550)]N
is approximately a known constant (the “clear-water radiance concept,” Figure 9.20), so
t∗ρw(550) can be estimated and subtracted from ρt(550)− ρr(550) to yield ρas(550). This
was used along with ρas(670) to estimate ε(550, 670) for “clear water” regions in a scene,
i.e., regions for which CP <∼ 0.25 mg/m3, and provided a basis for extrapolation to 520 and
443 nm by assuming the ε varies in a known manner with λ, e.g., ε(λ, λl) = (λl/λ)n.9 Then
assuming that the resulting ε(λ, λl) was valid for the entire image, retrieval of [ρw(λ)]N at
443, 520, and 550 could be effected for the entire image, even those areas that do not qualify

9In Chapter 10 an exponential variation of ε(λ, λl) was found for the Shettle and Fenn aerosol models;
however, prior to those models, aerosols were often characterized by Junge size distributions (Chapter 4)
for which ε(λ, λl) ≈ (λl/λ)n. The exponent n is related to the Junge size distribution parameter ν through
n = ν − 2.
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as “clear water.”10 Evidence that the latter assumption was viable was provided in scenes
where the “aerosol radiance,” La(670) ≡ Lt(670)− Lr(670) varied considerably, while the
associated ε(λ, 670) showed significantly less variation. An example is provided in Figures
13.3 and 13.4. Figure 13.3 shows La(670) and ε(520, 670) for a CZCS image obtained in the
Gulf of Mexico off the Mississippi Delta. Note that there is significant variation in La(670)
but much less variation in ε(520, 670).11 Quantification of the variations is provided in
Figure 13.4, suggesting that over the boxed area in Figure 13.3, where La(670) varied by
roughly ±20%, ε(520, 670) varied by only about ±5%, and some of the ε(520, 670) variation
is the result of variations in Lw(520), which were unaccounted for here. This atmospheric
correction procedure was used in the verification studies.12

For CZCS there was very little surface data to effect either a vicarious calibration or a
validation. The main reason for this was the existence of only a small number of radiometers
(<∼ 5) capable of measuring Lu(λ). All that could be done with the small quantity of surface
data was to verify that the system — sensor plus algorithms — performed as anticipated.
This meant that with scenes for which surface measurements were available, the surface
data were first used to effect a crude vicarious calibration at the ship location, and then
the “calibrated” radiances were used to show, that when applied to the complete images,
acceptable results were obtained over several days. This is what we mean by verification.

Based on the above discussion, the verification procedure was predicated on four as-
sumptions:

• Lw(670) = 0 over the portion of interest in the image;

• ε(λ, λl) is constant over an image;

• for the open ocean far from land, ε(λ, λl) = (λl/λ)n; and

• the pre-launch CZCS calibration at 670 nm was perfect.

The last assumption was required, as at that time there was no way to effect vicarious
calibration of the band at 670 nm, so in effect, the other bands had to be calibrated
relative to the band at 670 nm.

10Even with these assumptions, it is still a requirement that [ρw(670)]N ≈ 0 for proper operation of the
algorithm.

11The ε(520, 670) image is highly “stretched,” which magnifies any variation in ε(520, 670) compared to
that in La(670).

12Actually, when CP <∼ 0.25 mg/m3, [ρw(520)]N is also approximately constant (Figure 9.20), allowing
ε(520, 670) to be estimated in the same manner. Taking ε(λ, λl) = (λl/λ)n, the values of n at λ = 520 and
550 nm were averaged to provide n and determine ε(443, 670).
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A sequence of images was examined in the Northwestern Sargasso Sea near the Gulf
Stream for which contemporaneous surface measurements of [Lw]N had been carried out.13

For much of the area of these images, the first assumption, i.e., Lw(670) = 0, was justified.
A portion of one of these images is shown in Figure 10.3 in Chapter 10. The surface
measurements were used to estimate La(λ) = Lt(λ) − Lr(λ) − t∗[Lw(λ)]N and then form
ε(λ, 670). The calibration constants of the sensor at 443, 520, and 550 nm were then
adjusted by trial and error using sensor data over clear water areas of the images to
yield values of ε(λ, 670) which were stable from day to day and not unreasonable in their
dependence on λ. For these, n ≈ 0.75. Although one might expect n ≈ 0 for a pure
maritime aerosol, i,e., one that is locally generated, it was felt that n ≈ 0.75 was not
unreasonable, as the area is subjected to some fraction of continental aerosol from the
U.S. East Coast. The factors by which the pre-launch calibration constants needed to be
multiplied by to produce the desired results were 1.069, 0.993, and 0.955, respectively, for
the spectral bands at 443, 520, and 550 nm. Using these calibration adjustments, the
mean absolute errors in the retrieved [Lw]N for the three orbits used in the calibration
adjustment (3157, 3171, and 3240) were 7.4, 6.1, and 11.8% at 443, 520, and 550 nm,
respectively. For these, [Lw]N ≈ 0.6, 0.5, and 0.3 mW/cm2µm Sr or [ρw]N ≈ 0.01, 0.008,
0.005 at 443, 520, and 550 nm, respectively, and La(670) ≈ 0.2 → 0.45 mW/cm2µm Sr or
ρa(670) ≈ 0.004→ 0.0093. The values of ρa(670) are similar to those shown in Figure 10.4,
and those of [ρw]N similar to those in Figure 9.20 for low-Chlorophyll waters.

There were no other scenes in this time frame with which to test the quality of the derived
calibration coefficients. However, during the field experiments, continuous measurements
of CP were carried out. Thus, we could examine the performance of the entire system by
comparing the surface and CZCS measurements of CP along the ship track. The ship track
data examined covered a two-day period that spanned two CZCS images (Orbits 3151 and
3171). The track of the ship is shown as the white line on the left panel of Figure 13.5, which
is an image of CP from Orbit 3226 over the Northwestern Sargasso Sea and the Gulf Stream
(unfortunately, the ship was in port at the time of this image). The image of CP is in false
color (blue→ green→ red in the direction of increasing CP ). The right panel in the figure
compares the CZCS-retrieved values of CP (thick line) along the ship track with the ship
measurements (thin line) along the same track. The agreement between the two is excellent
over most of the track, but degrades in the water over the Continental Shelf (however, it is
still within a factor of 2). There are many reasons for the disagreement nearer the coast: (1)
the assumption Lw(670) = 0 breaks down as one approaches the coast; (2) the bio-optical
algorithm becomes less accurate as the water becomes more turbid; (3) the aerosol may have
a more continental character resulting in a gradual change in ε(λ, 670) as one approaches
the coast; and (4) the advection of water features can change CP considerably over the
time period between the CZCS image acquisition and surface measurements. However, the

13These images were from Orbits 3157, 3171, 3226, 3240, and 3351.
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comparisons do suggest that the system worked as advertised, and thus would constitute
a verification of the CZCS concept.

Unfortunately, when the vicarious calibration above was used to process the few images
with contemporaneous surface data obtained considerably earlier than those near Orbit
3200, it was found that the retrieved [Lw]N values at 443 nm were too high by many tens
of percent. This was attributed to a change in sensitivity of the CZCS with time — the
CZCS-determined radiances in the blue were too high compared to those in the Orbit 3200
time frame. Little or no additional error was detected in the green bands, although the
use of “clear water” areas to determine ε(λ, 670) would mask the effect of any decay in the
sensitivity at these wavelengths.

In order to accurately assess any variation in the sensitivity of CZCS with time a signif-
icant quantity of surface data would be required, but there was little or no possibility that
such would become available. This paucity of surface data was overcome by again using
the “clear water radiance” concept. In the same area as shown in Figure 13.5, regions of
sufficiently low CP were identified, so [ρw]N could be accurately estimated. For these, a
value of CP = 0.10 mg/m3 was assumed to fix the value of [ρw(443)]N at 0.025 (Figure
9.20). For 0.05 ≤ CP ≤ 0.25 mg/m3 the values of [ρw(520)]N and [ρw(550)]N can be taken
to be 0.008 and 0.005, respectively, and a precise value of CP is not needed. For these
areas the atmospheric correction algorithm was operated with values of ε(λ, 670) fixed by
choosing n = 0.75 and the calibration was again adjusted to result in the given “clear
water” values for [ρw(λ)]N . Specifically, let the reflectance of the ocean-atmosphere system
for Orbit Number N , ρCalc

t , be the reflectance calculated using the adjustments determined
near N = 3200. Then relate this to the true reflectance for Orbit Number N , ρTrue

t , through

ρt(λ)Calc = f(N,λ)ρt(λ)True,

where f(N,λ) is the time-varying sensitivity of the sensor. Then,

[f(N,λ)]−1ρt(λ)Calc = ρr(λ) + ε(λ, 670)
(
ρt(670)− ρr(670)

)
+ t∗(λ)[ρw(λ)]N .

Since ρr can be accurately computed, if ε and [ρw]N are provided, the only unknown in
the above equation is f at each λ. Figure 13.6 provides the resulting f(N,λ) estimated
in the manner described above. As we have taken ρTrue

t to be the values computed using
the vicarious calibration determined for Orbit Numbers around 3200, f(3200, λ) = 1. The
figure shows a significant decay in the sensitivity of the blue band, with detectible, but
considerably smaller, decays in the green and yellow bands.

In the light of the assumptions employed in estimating f(N,λ), it is important to try
and assess its uncertainty. Taking the atmospheric correction algorithm that was used to
be exact, the contributors to the uncertainty in f are the uncertainties in CP , which causes
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uncertainty in [ρw(443)]N , and the uncertainty in ε(λ, 670) (or equivalently in n). Let Q

be t∗[ρw]N or ε(λ, 670)
(
ρt(670) − ρr(670)

)
. Then the error in f is related to the error in

Q though, ∆f−1 = ∆Q/ρCalc
t or ∆f = −f2∆Q/ρTrue

t , where to the accuracy required we
have replaced ρCalc

t by ρTrue
t . Thus,

∆fCP = f2t∗
∆[ρw]N

ρTrue
t

and ∆fε = f2 ρa(670)

ρTrue
t

∆ε,

where ρa(670) = ρt(670)−ρr(670), for the error in f due to error in CP and ε, respectively.
For images with 0.05 ≤ CP ≤ 0.25 mg/m3, for which CP = 0.10 mg/m3 was assumed,
∆[ρw(443)]N ≈ ±0.005, while for the other bands the error is negligible (Figure 9.20).
Minimum values of ρt(443) are ∼ 0.13 (Figure 10.4), and choosing nominal values for f
and t∗ (1 and 0.88, respectively), gives ∆fCP (443) ≈ 0.034, with negligible ∆fCP in the
other bands. The points for f(N, 443) in Figure 13.6 labeled with a (∗), which are for the
summer months, are expected to have this error. For imagery acquired in the spring and
labeled by (+) the uncertainty of CP was much larger, i.e., 0.05 ≤ CP ≤ 0.40 mg/m3,
so the assumption of CP = 0.10 mg/m3 was likely too small and the associated value of
[ρw(443)]N too large, perhaps by as much as 0.005. Thus, for these points, there is a bias
due to the too small [ρw(443)]N and an increased uncertainty in [∆ρw(443)]N to about
±0.007. Thus, these points marked (+) should probably be moved upward by about 0.034
and have associated errors of the order of ±0.05.

In the case of error in the estimated ε, note that we chose n = 0.75, where for a pure
maritime aerosol n might be assumed to be closer to zero (Chapter 4). Thus, we might
legitimately assume that ∆ε(λ, 670) = ε(λ, 670)−1, i.e., we chose n = 0.75, but the correct
value was n = 0. Imagery was specifically chosen with ρa(670) < 0.008, and taking ρt(λ)
from Figure 10.4, we find ∆fε(443) ≈ −0.02, ∆fε(520) ≈ −0.02 and ∆fε(550) ≈ −0.025.
Therefore, error in ε might cause the points in Figure 13.6 to move vertically up by as
much as 0.020-0.025, but probably not downward. Clearly, the uncertainties in f due to
uncertainty in CP and ε would not change the conclusion that the CZCS underwent a
slow decay in radiometric sensitivity. When this decay equation was implemented into the
data processing, water-leaving reflectances and CP were retrieved with accuracies similar
to those near Orbit 3200.

A complete study of the radiometric performance of the CZCS, as revealed by vicarious
calibration effected as described above (but with n = 0), was carried out dividing the data
into ten day intervals through the entire mission. That study indicated that the green and
yellow bands begin to show random variations in sensitivity at the several digital count
level starting at about Orbit 14,000 (Fall 1981). These variations were correlated between
the two bands. There was no way to determine if the changes were also present in the blue
and red bands.



13.3. VALIDATION OF CZCS AND MODIS 873

Finally, although the uncertainty in the pre-launch radiometric calibration of CZCS
was basically unknown,14 based on the results of this vicarious calibration exercise and
extrapolating the sensor decay to N = 0, it appeares that it was of the order of 5-16%
(but note that it was assumed that there was no uncertainty in the 670 nm band). This
suggests that ocean color sensors can be made to function well even in the absence of a pre-
launch calibration with low uncertainties. This is a testimony to the viability of vicarious
calibration.

In sum the comparisons (which might be called “bootstrap”15 comparisons) between
surface data (radiance and CP ) suggested that, while the sensor was far from ideal for the
application, the CZCS concept of studying the dynamics of phytoplankton biomass from
space was viable. This led proponents to advocate the development of a new satellite ocean
color program based the lessons learned from the CZCS experience. Let us delineate some
of these lessons.

• The CZCS could only effect accurate atmospheric correction for waters
for which CP ≤ 0.25 mg/m3, so the first, and most obvious lesson
was the requirement for spectral bands in the NIR for atmospheric
correction. In fact, for very turbid water, spectral bands in the
atmospheric “windows” at 1200, 1600, and 2100 nm, the SWIR, are
desirable. (The desirability of NIR bands was actually known before
launch.)

• The fact that most of the radiance is due to backscattering from the
atmosphere, a follow-on sensor should have lower noise and a higher
digitization rate than CZCS (e.g., 10 bit or more instead of 8). (Note
that at 550 nm, the entire range of variation in [ρw(550)]N shown in
Figure 9.20 corresponded to only about 12 CZCS digital counts.).

• Because pre-launch calibration cannot be carried out with accuracy
sufficient for proper operation of the algorithms, and even if it could,
there is no guarantee that the calibration would be maintained
through the violence of launch, vicarious calibration is required.

• Although high-quality pre-launch calibration is not essential, determi-

14The final report describing the design, fabrication and testing of CZCS [.Ball Bros Report V2.] did
not specify the calibration uncertainty. However, it did document the linearity of the output with input
radiance, the noise characteristics of each spectral band as a function of the incident radiance and the
spectral sensitivity S(λ) (Chapter 12) of each spectral band.

15This refers to the old adage that one can lift oneself up by one’s bootstraps. Here it refers to the
fact that the data used for vicarious calibration and for validation were essentially one and the same. In
addition, these data were used in developing the bio-optical algorithms relating CP to [ρw]N , as well.
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nation of the sensor characteristics such as polarization sensitivity,
linearity to radiance (or characterizing non-linearity) of the detec-
tors, signal-to-noise ratio, spectral response, etc., is vital, as these
cannot be determined vicariously.

• Because the radiometric sensitivity of the CZCS was found to de-
cay with time, vicarious calibration should be carried out frequently
throughout the mission. In addition, in the design of future instru-
ments, consideration should be given to ways to ensure and monitor
the stability of the sensor. Stability is far more important than
prelaunch calibration accuracy. Stability monitoring methods in-
clude viewing the Sun in diffuse reflection or providing a mechanism
for Lunar views (or both).

• Vicarious calibration and validation both require a large quantity of
surface radiance data and, for validation, derived product data as
well (e.g., CP and now C). The difficulty and expense of collecting
such data means that it must be a community effort, not just that
of a small number of investigators. As such, strict protocols for
collection of surface data must be developed and a quality controlled
database of such data maintained.

All of these lessons were in one way or another actually incorporated into the four follow-on
U.S. ocean color missions — SeaWiFS, MODIS/Terra, MODIS/Aqua and VIIRS.

13.3.2 Validation of MODIS Performance

The validation of the MODIS sensor data provides an example of how accurate one can
expect retrievals of [ρw]N and the concentration of Chlorophyll a with a well-designed ocean
color system. With few exceptions, the procedures described here were also applied to the
validation of SeaWiFS.

For SeaWiFS and MODIS a dedicated vicarious calibration site was established in the
waters off Lanai in the Hawaiian Islands by the U.S. National Oceanic and Atmospheric
Administration (NOAA). At this site a mooring with an attached scientific buoy — the
Marine Optical Buoy or MOBY — was operated continually since July 1997 to the present
(2019). Development of MOBY begin in 1985 as a direct result of the lessons from the
CZCS experience, and in anticipation of a follow-on sensor to CZCS. Figure 13.7 provides
a schematic of the buoy. The principal sensors on MOBY measure the upwelling spec-
tral radiance propagating toward the zenith, Lu(λ, n̂s, ξ̂

′
0) and the downwelling irradiance
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Ed(λ, ξ̂
′
0) at three depths (1, 5, and 9 m), which provides the attenuation coefficients re-

quired for propagating the 1 m measurement to the water surface. The spectral resolution
is of the order of 1 nm, allowing MOBY spectra to be combined with the sensor’s spectral
response function to produce the in-band normalized water-leaving reflectance. The total
spectral range of MOBY, 340 to 955 nm, is covered by two spectrometers (called “MOS
System” in Figure 13.7). The sensors are on arms that extend up to 3 m from the buoy’s
core to avoid shadowing by its surface structure. There is a sensor above the surface to
measure the incident irradiance from the Sun and sky, E+

d (λ, ξ̂0). The radiometers are be-
lieved to have a calibration uncertainty of the order of 3%, derived through NIST-tracable
procedures. MOBY provides surface vicarious calibration data for every sensor overpass
of the Hawaiian Islands, except when clouds or Sun glint contaminate the sensor imagery.

In preparation for the launch of the CZCS follow-on sensors, NASA developed several
programs at Goddard Space Flight Center (GSFC) in the area of data processing and
quality control. The main activities were carried out by the Ocean Biology Processing
Group (OBPG), which provided support for calibrating, validating, processing, archiving
and distributing ocean color products, e.g., [ρw]N , etc. As part of the OBPG effort was
to develop a system for archiving data collected in support of the vicarious calibration
and validation effort: the “SeaWiFS Bio-optical Archive and Storage System” (SeaBASS).
In a parallel effort a NASA program, the “Sensor Intercomparison for Marine Biological
and Interdisciplinary Ocean Studies (SIMBIOS),” developed a set of protocols for surface
measurements made in support of vicarious calibration and validation. Following these
protocols was required of investigators in order that the surface data they collected be
included in the SeaBASS archive. This provided a high level of quality control. The
OBPG also led the development of the “SeaWiFS Data Analysis System” (SeaDAS) for
processing, display and analysis of ocean color data, i.e., a total end-to-end processing
system, and the “NASA bio-Optical Marine Algorithm Dataset” (NOMAD) a high quality
global in situ bio-optical data set for use in algorithm development and sensor validation.
Thus, a complete structure for calibrating (vicariously), validating, and processing ocean
color data was assembled for the CZCS successors. Next, we summarize the results of the
vicarious calibration and validation with examples from MODIS and SeaWiFS.

First, we describe the vicarious calibration procedure that was used, as it is central to
the validation effort. The familiar equation relating ρt(λ, ξ̂, ξ̂0) to [ρw(λ, ξ̂v, ξ̂0)]N is

ρt(λ, ξ̂v, ξ̂0) = ρr(λ, ξ̂v, ξ̂0) + ρA(λ, ξ̂v, ξ̂0) + t(λ, ξ̂v)[ρw(λ, ξ̂v, ξ̂0)]N ,

where we have used the usual abbreviation ρA for the combination ρa + ρra and assumed
that proper account has been taken of the contributions of Sun glint and whitecaps. We
take it as given that the band at λl in the NIR is perfectly calibrated. Then the band at
λs in the NIR can be calibrated by choosing sites in the open ocean far from land where
the aerosol is totally maritime and stable from clear day to clear day. For such, using
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the presumably-known long-term aerosol properties at that site, the quantity ε(λs, λl) is
estimated. Then, the reflectance formed from

ρVC
t (λs, ξ̂v, ξ̂0) = ρr(λs, ξ̂v, ξ̂0) + ε(λs, λl)ρA(λl, ξ̂v, ξ̂0),

where the superscript “VC” stands for vicarious calibration, and ρVC
t (λs, ξ̂v, ξ̂0) is taken

to be the true reflectance. This value of ρVC
t (λs, ξ̂v, ξ̂0) is then compared to that com-

puted using the original sensor calibration (“OC”) combined with any long-term change
as indicated by the on-board devices and/or Lunar views, ρOC

t (λs, ξ̂v, ξ̂0), and the ratio

g(λs) =
ρVC
t (λs, ξ̂v, ξ̂0)

ρOC
t (λs, ξ̂v, ξ̂0)

,

is formed. The quantity g(λs) is called the “vicarious gain” at λs. It is the factor that the
original calibrated reflectance ρOC

t must be multiplied by to produce what is believed to
be the correct reflectance, ρVC

t . This process is carried out over a long time period (and
wide range of ξ̂v and ξ̂0) resulting in an average value g(λs). The averaging process is
important as the estimated values of ε, i.e., the aerosol model chosen for the site, may only
be correct in an average sense. It is noteworthy that this process only requires an area for
which [ρw(λs, ξ̂v, ξ̂0)]N is known to be negligible (oligotrophic waters) and the atmosphere
guaranteed to be maritime (central ocean gyres in the Southern Hemisphere).

For the visible bands, the [ρw(λ)]N data from MOBY are used to estimate vicarious gain
coefficients. Specifically, the atmospheric correction algorithm is operated at the MOBY
site, utilizing the already-estimated the NIR vicarious gain g(λs), to derive ε(λ, λl) and
then ρA(λ, ξ̂v, ξ̂0) = ε(λ, λl)ρA(λ, ξ̂v, ξ̂0) yielding ρVC

t (λ, ξ̂v, ξ̂0) given by

ρVC
t (λ, ξ̂v, ξ̂0) = ρr(λ, ξ̂v, ξ̂0) + ε(λ, λl)ρA(λl, ξ̂v, ξ̂0)

+ t(λ, ξ̂v)F(λ, ξ̂v, ξ̂0; n̂S , ξ̂0)[ρw(λ, n̂S , θ0)]N ,
MOBY

(13.9)

where t(λ, ξ̂v) is actually estimated by t∗(λ, ξ̂v). The quantity F(λ, ξ̂v, ξ̂0; n̂S , ξ̂0) is esti-
mated from look-up tables based on radiative transfer computations with the IOPs of the
water modeled as a function of the concentration of Chlorophyll a. The whole process
sounds simple, but it is not. Over a period of nine years, MOBY provided 1450 samples
of contemporaneous data with SeaWiFS, which after quality control yielded 150 match
ups, or roughly 15 per year. It took averaging of the order of 40 match ups before the
vicarious gain factors g(λ) became stable, i.e., about 2.5 years of data. This shows the
time and effort (and money) that must go into what, on paper, seems to be a relatively
straightforward procedure.

One must realize that the procedure described above is a vicarious calibration of the
entire system — sensor plus atmospheric correction algorithm: the sensor is being forced
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to provide the top-of-atmosphere reflectance that the atmospheric correction algorithm
requires. If any changes in the algorithm are made, e.g., using a revised set of candidate
aerosol models, a better approximation to t, or a different model to compute F , the above
procedure must be redone.

Upon completion of the vicarious calibration, validation can be carried out by using the
vicarious gains to examine an independent (from MOBY) set of images for which surface
truth is available, i.e.,

[ρw(λ, ξ̂v, ξ̂0)]N = [t(λ, ξ̂v)]
−1
(
g(λ)ρOC

t (λ, ξ̂v, ξ̂0)− ρr(λ, ξ̂v, ξ̂0)− ε(λ, λl)ρA(λl, ξ̂v, ξ̂0)
)
.

The available surface reflectance data are usually in the form of [ρw(λ, n̂S , ξ̂
′
0)]N or

[ρw(λ, ξ̂PC , ξ̂
′
0)]N , where we take the solar beam, ξ̂′0, for the surface measurement in a direc-

tion different from ξ̂0,16 as the surface and satellite data are usually contemporaneous rather
than simultaneous. So, to effect a comparison requires estimation of F(λ, ξ̂v, ξ̂0; n̂S , ξ̂

′
0) or

F(λ, ξ̂v, ξ̂0; ξ̂PC , ξ̂
′
0). These are determined using the same lookup tables based on C as

in vicarious calibration. This is done with an iterative procedure as follows. The Chloro-
phyll concentration is usually determined using the reflectances [ρw(λ, n̂S ,−n̂S)]N in the
blue and green spectral regions (see below); however, in the first iteration it is determined
using [ρw(λ, ξ̂v, ξ̂0)]N . This value of C is then used in the lookup tables to determine
F(λ, ξ̂v, ξ̂0; n̂S ,−n̂S), to find [ρw(λ, n̂S ,−n̂S ]N , and a new value of C, etc. Through this
procedure the retrieved [ρw(λ, ξ̂v, ξ̂0)]N can be transformed to the Sun-viewing geometry
of the surface data, or vice versa.

Figure 13.8 provides the remote sensing reflectance Rrs(λ) match ups at 443 nm and
555 nm using the above procedure for MODIS/Aqua over a wide range of Rrs values.17

This was the result of 589 match ups at 443 nm and 429 at 555 nm. For these results,
the surface and satellite data were considered contemporaneous if they were no more than
±3 hours apart. There is no stratification of the data here between Case 1 and Case 2
waters; however, the three outliers (high in-situ but low MODIS) at 555 nm come from
Case 2 coastal waters, for which adequate atmospheric correction was likely not achieved.
For other coastal areas which one expects are Case 2, the correction appears adequate.
The mean absolute error in Rrs at 443 and 555 nm was 0.00091 and 0.00064, respectively
(or 0.0029 and 0.0020 in [ρw]N ). There are some retrieved values of Rrs(443) that are less
than zero. These are associated with already low values of Rrs and usually result from
inadequate atmospheric correction due to the presence of absorbing aerosols (Chapter 10).
The comparisons suggest that the error is somewhat higher than that expected from at-
mospheric correction (the largest source of uncertainty in the processing stream); however,

16Here, ξ̂′0 is not related to ξ̂0 by Snell’s law as they were earlier. They are simply different directions of
the solar beam propagating above the surface.

17Recall, [ρw]N = πRrs.
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these data were not screened to ensure that all of the assumptions underlying the algorithm
are valid, so the result is not surprising. In addition, there is uncertainty in the surface
measurement that has not been included in these retrievals.

How close does MODIS come to meeting the performance goal of the mission — retrieving
[ρw]N over oligotrophic waters in the blue region of the spectrum with an uncertainty of
5% or less? An overall mean absolute error in [ρw]N at 443 nm of 0.0029 is a relative error
of around 10% or a little more. If we take the uncertainty in the surface measurements
to be about 5%, then in an RMS sense the error in [ρw]N is about 8.6%. So in a sense,
MODIS did not meet the performance goal, it only approached it; however, Figure 13.8 is
for all of the validation data, i.e., the statistics represent all waters investigated, not just
those for oligotrophic waters. With this caveat in mind, it is likely that MODIS came very
close to meeting the goal.

Similar vicarious calibration and validation efforts have been carried out using above
water measurements of [ρw]N . These are not discussed here, but are referenced in the
Bibliographic Notes.

Figure 13.9 compares the retrieved concentration of Chlorophyll a with contemporaneous
surface measurements. The bio-optical algorithm relating remote sensing reflectance and
C used in the retrieval of C from MODIS data is called “OC3M” and is given by18

log10C = a0 +

4∑

n=1

an

(
Rrs(λ)

Rrs(551)

)n
(13.10)

with

a0 = 0.2424 a1 = −2.7423 a2 = 1.8017 a4 = 0.0015 a5 = −1.2280

and λ is the larger of Rrs(443) and Rrs(488) observed in the retrieved Rrs(λ). Figure 13.9
provides the comparison of the retrieved C with the surface measurements. In the figure,
the line is the one-to-one line. Statistics associated with the comparison are the mean
absolute error (MAE) and the bias (BIAS) of the log-transformed concentrations. These
are defined by

log10(MAE) = N−1
N∑

i=1

∣∣∣ log10C
Sat.
i − log10C

Surf.
i

∣∣∣

18Unlike the algorithms described in Chapter 6, that used two searate bands, modern algorithms use
three or four bands. These were developed when, after surface data for a wide range in C became available,
it was realized that for the SeaWiFS band set, the ratio Rrs(443)/Rrs(555) worked best for oligotrophic
waters, Rrs(490)/Rrs(555) for mesotrophic waters, and Rrs(510)/Rrs(555) for eutrophic waters. Thus, an
algorithm called OC4 that incorporated all of these ratios, was developed. In the case of MODIS, there is
no band at 510 nm, so it uses two ratios (three bands); hence the designation “OC3M.” The “M” stands
for MODIS.
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and

log10(BIAS) = N−1
N∑

i=1

(
log10C

Sat.
i − log10C

Surf.
i

)
.

The two metrics can be interpreted through a simple example as follows. Assume that
the individual satellite retrievals are all a factor of x too high. Then CSat.

i = xCSurf.
i and

log10(MAE) = log10(x) or MAE = x, so MAE is a measure of the multiplicative error in
CSat.
i . In this case the BIAS would also be x: however, if half the retrievals were a factor

of x too high and the other half a factor of x too low, i.e., for half CSat.
i = xCSurf.

i and for
the other half CSat.

i = CSurf.
i /x , then the MAE would be the same but the BIAS would be

unity. For the data in Figure 13.9, MAE = 1.68 and BIAS = 1.18, so the retrieved differ
on the average from the measured by 68% and the bias is about 18%. In log transformed
space, log10(MAE) = 0.225 (or about a quarter of a decade on the vertical axis of Figure
13.9) and log10(BIAS) = 0.072. Some of the error in the retrievals is due to error in
the surface measurements, but a larger component is error in the OC3M algorithm itself.
The algorithm developers did not provide MAE for the algorithm fit of C to Rrs ratios;
however they did provide the RMSE defined as

RSME =

√√√√√√




N∑

i=1

(
log10C

Fit
i − log10C

Meas.
i

)2

N


,

where CFit
i is that retrieved by the algorithm, i.e., Eq. (13.10) applied to the reflectance

data that was actually used in developing the algorithm, and CMeas.
i is the measured value.

This is a measure of the inherent error in the algorithm itself, and the value obtained was
about 0.25.19 The same quantity evaluated for the data in Figure 13.9 is 0.314. Thus,
one could argue that a significant component of the error in the retrievals from satellite
measurements is due to the inherent uncertainty in the bio-optical algorithm itself: about
half in an RMS sense. Considering that the surface measurements cover more than three
orders of magnitude in C, it is clear that the combination of MODIS (and SeaWiFS) along
with the algorithms — atmospheric correction and bio-optical — can provide excellent
global-scale estimations of C; however, it is important to understand that the accuracy
possible on regional scales with more regional-specific algorithms should be significantly
better.

19Most of the various algorithms developed using the NOMAD data base also have RSME ≈ 0.25,
resulting from natural variability in the data themselves.
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13.3.3 Effect and Robustness of Vicarious Calibration

We have spent a considerable amount of time discussing vicarious calibration, both theory
and practice, but how essential is it? What if we ignore it altogether? What if we only
perform part of it? What if there were no facility dedicated to calibration such a MOBY?
Now we can address these questions using results from the SeaWiFS experience. Tables
13.2 and 13.3 provide performance results from the various stages of vicarious calibration.
After

Table 13.2: Demonstration of the effect of vicarious
calibration using MOBY data on the relative accu-
racy of SeaWiFS retrievals of [ρw(λ)]N and Chloro-
phyll a (C) compared to surface measurements. The
numbers correspond to the median absolute percent
difference.

λ MOBY Full VC No VC NIR VC

412 1.22 11.8 80.8 40.6
443 1.18 15.5 55.4 23.5
490 1.19 12.2 25.7 11.3
510 1.03 10.6 24.7 10.7
550 2.27 14.8 − 15.0
C 25.64 26.1 − 26.1

MOBY: Fit of retrieval of MOBY data after vicarious
calibration, e.g, fit of the MOBY data itself.

Full VC: Relative error in the retrievals for the “deep
water” validation data set after full (visible and NIR)
vicarious calibration.

No VC: Relative error in the retrievals for the “deep
water” validation data in the absence of vicarious cali-
bration.

NIR VC: Relative error in the retrievals for the “deep wa-
ter” validation data set if only the NIR is vicariously cali-
brated, i.e., the prelaunch calibration, corrected for long-
term sensitivity changes, is used for the visible bands.

the full vicarious calibration was carried out, the [ρw(λ)]N retrieval algorithm was operated,
using the “correct” ρVC

t (λ) in place of the original ρOC
t (λ), with the MOBY data used in the

vicarious calibration, and [ρw(λ)]N recalculated for each of the vicarious calibration data
points and compared to the original measured values. The median % difference between the
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Table 13.3: Same as Table 13.2, except that the quantity given is the median ratio
of satellite retrieval to surface measurement of [ρw(λ)]N .

λ MOBY Full VC No VC NIR VC

412 1.002 1.002 0.245 0.595
443 1.003 0.950 0.447 0.779
490 1.001 0.942 0.760 1.002
510 1.003 0.957 0.753 0.964
550 0.998 0.968 − 0.965
C − 0.994 − 0.984

originally measured and the recalculated values of [ρw(λ)]N is provided in the first column
of Table 13.2 under the label “MOBY.” (Table 13.3 provides the ratio of the retrieved to the
measured values of [ρw]N .) With the exception of the band at 555 nm, the medians are all
roughly 1% (2% at 555 nm). So, when the vicariously-calibrated SeaWiFS is applied to the
MOBY data itself, Tables 13.2 and 13.3 show that almost perfect retrievals are obtained.
Next, when the correct ρVC

t (λ) are applied to an independent data set (from waters with
bottom depth greater than 1000 m — a “deep water” data set that is a stand-in for Case 1
waters) the result in the second column under “Full VC” are obtained. Now the errors are
mostly a little over 10% and the ratios mostly around 0.95. This is considerably poorer than
that for the “MOBY” set, but the surface data are likely to be of poorer quality and have a
much wider range of aerosol types. Next, we examine the case where there is no vicarious
calibration at all. These results are in the third column of Tables 2 and 3. Note the large
error at 412 nm (∼ 80%) with a steadily decreasing error in the blue and blue-green. These
results would be totally unacceptable, so omitting vicarious calibration is not an option.
Finally, the NIR vicarious calibration did not require a dedicated calibration facility such
as MOBY. What if the NIR vicarious calibration were the only one effected, with the pre-
launch calibration used for the other bands? This question is answered in the forth column
of Tables 2 and 3 labeled “NIR VC.” There, we see that excellent results are obtained for
all of the bands except the two in the blue. These two bands clearly require MOBY. It
seems that vicarious calibration is not needed in the blue-green and green bands; however,
this is misleading. It results from the fact that the vicarious gains in these bands was very
close to unity. (The gain g(λ) values were 1.0377, 1.014, 0.9927, 0.9993, 1.000, 0.9738, and
0.9720 for 412, 443, 490, 510, 555, 670, and 765 nm, respectively.) The vicarious calibration
of the 490, 510, and 555 nm bands simply showed that the original calibration was very
close to being correct.

In carrying out the vicarious calibration it was taken as given that the band at λl (865
nm on SeaWiFS) was perfectly calibrated before launch. In addition, an aerosol model
that was thought to be “appropriate” for the calibration site was used tor estimating
ε(λs, λl). What if the pre-launch calibration of the λl band was not actually perfect, or an
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incorrect aerosol model was chosen? Tables 13.4 and 13.5 examine these questions. The
two columns labeled “λl : +4%” and “λl : −4%” provide the results of the full vicarious
calibration carried out with the sensor-measured reflectances ρOC

t (λl) at λl increased and
decreased by 4%, respectively (i.e., the pre-launch calibrated value ρOV

t (λl) was multiplied
by 1.04 or 0.96). The results show only minor changes in the quality of the vicarious
calibration. The last two columns in the tables labeled “M50” and “O99” provide the
results obtained when the band at λl is assumed to be perfectly calibrated, but the aerosol
model used for

Table 13.4: Demonstration of the effect of the scheme
used in the NIR portion of the vicarious calibration using
MOBY data on the relative accuracy of SeaWiFS retrievals
of [ρw(λ)]N and Chlorophyll a (C) compared to surface
measurements. The numbers correspond to the median
absolute percent difference.

λ Original λl : +4% λl : −4% M50 O99

412 11.8 11.8 11.0 10.8 12.0
443 15.5 14.8 15.2 16.0 14.2
490 12.2 12.5 12.4 13.4 12.2
510 10.6 10.8 11.2 10.6 10.6
550 14.8 15.3 14.0 14.3 14.9
C 26.1 26.2 24.7 26.0 25.5

Original: Relative error in the retrievals for the “deep water”
validation data set after the original full (visible and NIR) vicar-
ious calibration.

λl + 4%: Relative error in the retrievals for the “deep water”
validation data set if the calibration of the band at λl = 865 nm
is increased by 4%.

λl − 4%: Relative error in the retrievals for the “deep water”
validation data set if the calibration of the band at λl = 865 nm
is decreased by 4%.

M50: Relative error in the retrievals for the “deep water”
validation data set if the M50 aerosol model is used in the NIR
vicarious calibration.

O99: Relative error in the retrievals for the “deep water”
validation data set if the O99 aerosol model is used in the NIR
vicarious calibration.
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Table 13.5: Same as Table 13.4, except that the quantity given is the median ratio
of satellite retrieval to surface measurement of [ρw(λ)]N .

λ Original λl : +4% λl : −4% M50 O99

412 1.002 0.998 1.005 0.995 0.999
443 0.950 0.953 0.954 0.955 0.957
490 0.942 0.944 0.940 0.934 0.947
510 0.957 0.965 0.953 0.953 0.968
550 0.968 0.977 0.958 0.961 0.967
C 0.984 0.980 0.987 1.007 0.943

the NIR vicarious calibration was the Maritime model at 50% RH (M50) or the Oceanic
model20 at 99% RH, respectively from the pre-launch calibration. These are likely end-
members of aerosol models applicable to the open ocean. Again, we see that the particular
model used is unimportant for vicarious calibration.21 The statistics for the retrieved C are
also provided in Tables 13.2-13.5, and show a similar lack of sensitivity to the assumptions
for the NIR. The results recounted above for SeaWiFS data acquired over deep water
(∼ Case 1) show conclusively that (1) vicarious calibration is absolutely necessary, (2) a
calibration facility like MOBY is required for the blue bands and generally the green bands
as well, (3) vicarious calibration is quite insensitive to the assumption of the absence of
error at λl, and (4) the NIR vicarious calibration is insensitive to the aerosol model used
for the estimation of ε(λs, λl). These suggest that vicarious calibration is a very robust
method for adjustment of sensor calibration post-launch.

It should be noted that in the case of SeaWiFS, the vicarious calibration was carried
out on data that had already been corrected for long-term sensitivity changes by using
the on-board solar diffuser and Lunar views. It is reasonable to wonder then whether the
performance could be maintained even if these facilities for long-term sensitivity monitoring
were not available. That is, could the retrieved ρw quality be maintained on the basis
of vicarious calibration alone? In the case of SeaWiFS, the sensitivity of the band at
865 nm decreased about 20% over approximately ten years. Let’s assume that excellent
vicarious calibrations were performed over that period of time. In particular, consider an
ideal situation where at the vicarious calibration site, the O99 aerosol was extant, and the
aerosol optical depth was 0.05 (very clear). Further, assume that a very close aerosol model,
M99, was used in the vicarious calibration. Simulations have been carried out (including
multiple scattering) similar to those described in Chapter 12 (Section 12.3.2) to effect the

20The Oceanic model is the large-particle component of the Maritime model (no small-particle component
is present) and should be extant far from land, where the principal aerosol is that generated by breaking
waves (see Chapter 4).

21This may seem confusing, but at the vicarious calibration sites chosen for the NIR, the aerosol optical
depth is low, which minimized the influence of the aerosol on the top-of-atmosphere reflectance.
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vicarious calibration as a function of the calibration error at 865 nm, α(865). After the
resulting calibration adjustment, the atmospheric correction algorithm was invoked and
the error in the retrieved value of ρw(443) derived. The simulated aerosol was assumed
to be M80, with τa(865) = 0.05, 0.1, and 0.2. The results are presented in Figure 13.10,
showing that the error in the retrieved ρw(443) is within the desired ±0.002 as long as
τa(865) is not too large. For τa(865) ≤ 0.1 the retrievals could be made with excellent
accuracy for |α(865)| ≤ 15%. However, the error grows with increasing |α(865)| and
becomes excessive when |α(865)| ≈ 15%| for τa(865) = 0.20. We can see what this means
in terms of ocean coverage by examining long-term averages of aerosol optical depths as
shown in Figure 13.11. Clearly, over much of the open oceans, τa(550) is 0.222 or less; with
large areas 0.111 or less.22 However, there are large areas, in particular in the vicinity of
coasts, where 0.222 ≤ τa(550) ≤ 0.333, and for these, |α(865)| >∼ 15% would yield a very
poor atmospheric correction. So, it seems that for any sensor which displays SeaWiFS-like
sensitivity decay, vicarious calibration without sensitivity monitoring, would be successful
only for a limited time after launch.23 The prudent approach is to provide such stability
monitoring.

13.4 Concluding Remarks

The experience with the CZCS showed that a very rudimentary ocean color sensor could
provide important data concerning biological processes in the ocean. Indeed, one need only
examine Figure 13.5 see the close coupling between physical and biological processes, i.e.,
the motion of the water (physics) is a principal driver of biology through the resupplying
of nutrients. In the early 1990s a well-known-marine biologist, presenting a plenary paper
at an international meeting on the most important developments in marine biology in the
past 50 years, placed the CZCS and ocean color among the top six. This was his assessment
even though the uncertainty in the derived biological produce CP was about a factor of
two at that time. If the uncertainty could be significantly reduced, the potential of ocean
color sensors seemed unlimited because of its global nature and the perspective offered by
the view from space. Of particular interest was the role of phytoplankton in global carbon
cycle.

Now it is clear from the experiences with SeaWiFS and MODIS that ocean color sensors
that are well characterized and vicariously calibrated can provide water-leaving reflectances
and Chlorophyll concentrations with accuracies closely approaching those made with sur-
face measurements. In the case of Chlorophyll a, it is clear that much of the dispersion

22The relationship between τa(550) and τa(865) depends on the aerosol type. For M80, τa(550) is about
10% larger than τa(865) (see Chapter 4, Figure 4.9).

23The VIIRS instrument shows a larger sensitivity decline with time than SeaWiFS.
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between the remotely-retrieved and the surface-measured concentration is due to similar
dispersion between surface-measured radiances and concentration, i.e., uncertainty within
the bio-optical method itself. Much of the latter uncertainty is the result of natural varia-
tions, presumably due to variations of IOPs within and among species for a given Chloro-
phyll value (Chapter 5). This simply points to the fact that the Chlorophyll concentration
is not an adequate characterization of the retinue of plankton present in Case 1 waters. It
is indeed remarkable that its characterization does as well as it does.

The vicarious calibration and validation are ongoing processes that are basically unend-
ing. Any improvement (or change) in the algorithms, in the understanding of the operation
of the sensor, or in the processing of the MOBY vicarious calibration data, not only requires
a reanalysis of retrievals at the validation targets, but prior to that, a reanalysis of the
vicarious calibration data to determine any effect the change may have on the calibration
adjustments. In this sense, while ocean color data may be of some value in real time, e.g.,
to locate ideal positions for fishing, its greater value must of necessity be retrospective in
nature.

13.5 Bibliographic Notes

13.2.1 Surface Measurement of [ρw]N

A set of protocols have been developed for surface measurements in support of validation,
e.g., measurement of [ρw]N , IOPs, etc. They were developed as part of the SIMBIOS
project and are reported in the Bibliography under Mueller, Fargion, and McClain, Ocean
Optics Protocols For Satellite Ocean Color Sensor Validation, Volumes I–VI [Mueller et al.,
2003a,b,c,d,e,f].

13.3.1 Verification of CZCS Concept

The first demonstration of the capability of CZCS for deriving CP was described in
Gordon et al. [1980]. Later, with expanded computational resources and a better under-
standing of the sensor, a more complete verification was presented in Gordon et al. [1983].
Study of the stability of the CZCS in orbit, principally variations in its radiometric sensi-
tivity, were first described in Gordon et al. [1983] and then, over the course of the entire
mission, by Evans and Gordon [1994]. The “clear water radiance” concept used in the
verification of CZCS was initiated in Gordon and Clark [1981].

13.3.2 Validation of MODIS Performance
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Discussion of the post-CZCS needs and requirements for the validation of atmospheric
correction are given in Clark et al. [1997]. Various components of NASA’s SeaWiFS vali-
dation program and initial results are outlined in Hooker and McClain [2000]. The MOBY
system is described in Clark et al. [2003], and a discussion of propagating the MOBY mea-
surements to the surface is found in Voss et al. [2017]. An initial vicarious calibration was
described by Eplee Jr. et al. [2001], the OPBG’s definitive calibration reported by Franz
et al. [2007], and a report comparing the calibration of several sensors is Eplee Jr. and
Bailey [2014]. Details for insitu measurements of the relevant vicarious calibration and
validation quantities are found in Zibordi and Voss [2014]. The bio-optical algorithm for
MODIS (OC3M) was originally developed by O’Reilly et al. [2000].

Validation using above surface measurements are mostly based on a modified AERONET
sensor [Zibordi et al., 2009]. Match ups with above-surface measurements and several space-
borne sensors are presented in Zibordi et al. [2006], with some additional comparisons in
Zibordi and Voss [2014].

13.3.3 Effect and Robustness of Vicarious Calibration

Tables 13.2-13.5 were compiled from similar tables in Franz et al. [2007]. Wang and
Gordon [2002] suggested that the pre-launch calibration at 865 was really not important,
and their calculations were used in the preparation of Figure 13.10.
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Figure 13.1: QSSA estimate of the ratio of RL(θ′cv ) to RL at nadir, where θ′cv (=
π − θ′v) is the angle that the viewing direction makes with the upward normal,
i.e., n̂S , just beneath the surface. The curves correspond to computations using a
combination of water and particles, which are characterized by the Petzmas phase
function. The relative particle contribution is determined by x = (bb)p/(bb)w.
The curves are for x = 0.01, 0.1, 1.0, 10.0 and 100.0 (from top to bottom near
θ′cv = 10◦).
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Figure 13.2: Exact computations of the ratio of RL(θ′cv ) to RL at nadir as in Figure
13.1 compared with the QSSA estimate. The solid symbols refer to ω0 = 0.1, 0.2,
0.4, 0.6, 0.8, 0.85, and 0.9 from the bottom to the top. The open symbols at the very
bottom are the result of the QSSA approximation. Left panel: (bb)p/(bb)w = 0.1.
Right panel: (bb)p/(bb)w = 100.

Figure 13.3: Left Panel: Image of La(670) = Lt(670)−Lr(670) from CZCS Orbit
130 over the Mississippi Delta region. Right Panel: Image of ε(520, 670) from
CZCS Orbit 130 over the Mississippi Delta region.
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Figure 13.4: Histogram of the variations La(670) and ε(520, 670) from pixels in
the box drawn on Figure 13.3.
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Figure 13.5: Left Panel: A four-minute CZCS scene from Orbit 3226 over the
Northern Sargasso Sea and the Gulf Stream. Long Island can be seen at the
extension of the top of the white line toward the northwest. The image displays the
retrieved CP in false color (blue→ green→ red in the direction of increasing CP ).
Right Panel: The retrieved values of CP (thick line) along the ship track (white
line shown in the right panel), compared to ship measurements of CP (thin line)
along the same track. The ship and CZCS data were obtained contemporaneously
with Orbits 3151 and 3171 several days before this image. Thus, the ship track
spans two days. (Thick sold line is from Orbit 3157 and thick dashed line is from
Orbit 3171.)
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Figure 13.6: Decay factor f(N) as a function of CZCS Orbit Number N . The
order of the spectral bands from bottom to top near Orbit Number 20,000 is 443,
520, and 550 nm. For 443 nm the (+) symbols refer to early spring, March and
April, while the (∗) symbols are for June through September. From Gordon et al.
[1983].



892 CHAPTER 13. VICARIOUS CALIBRATION AND VALIDATION

Figure 13.7: Schematic of the Marine Optical Buoy (MOBY). The key parts for
vicarious calibration of MODIS are the three arms on the right, which measure
Lu(n̂S , ξ̂

′
0, λ) and Ed(λ, ξ̂

′
0) at three different depths — 1, 5, and 9 m. Figure

downloaded from https://www.mlml.calstate.edu/moby/moby-photo-gallery/.
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Figure 13.8: Comparison of Rrs = [ρw]N/π retrieved from MODIS Aqua with in-
situ surface measurements for 443 nm (left) and 555 nm (right). Solid line is the
one:one line. Data are from the 2018 reprocessing. Data citation: NASA God-
dard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing
Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Ocean
Color Data; 2018 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. doi:
10.5067/AQUA/MODIS/L2/OC/2018. Accessed on 04/27/2018.
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Figure 13.9: Comparison of Chlorophyll a concentration retrieved from MODIS
Aqua with in-situ surface measurements. Solid line is the one:one line. Data are
from the 2018 reprocessing. Data citation: NASA Goddard Space Flight Center,
Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution
Imaging Spectroradiometer (MODIS) Aqua Ocean Color Data; 2018 Reprocessing.
NASA OB.DAAC, Greenbelt, MD, USA.
doi: 10.5067/AQUA/MODIS/L2/OC/2018. Accessed on 04/27/2018.
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Figure 13.10: Simulated error in the retrieved value of ρw(443), after vicarious
calibration, as a function of the prelaunch calibration error in ρt(865). The different
sets correspond to different values of τa(865) at the target site: Circles, τa(865) =
0.05; Diamonds, τa(865) = 0.10; Squares, τa(865) = 0.20.

Figure 13.11: Image of τa(550) for the month of April averaged for 1997-2010 from
SeaWiFS retrievals. Citation: N. Christina Hsu, Andrew M. Sayer, M.-J. Jeong,
and Corey Bettenhausen (2013), SeaWiFS Deep Blue Aerosol Optical Depth and
Angstrom Exponent Monthly Level 3 Data Gridded at 0.5 Degrees V004, Green-
belt, MD, USA, Goddard Earth Sciences Data and Information Services Center
(GES DISC), Accessed [May 6, 2018] 10.5067/MEASURES/SWDB/DATA303.



Chapter 14

Mathematical Appendix

In this appendix we provide most of the mathematics (other than basic algebra) that is
required to understand the mathematical operations used in the text. We start with the
algebra of complex numbers. Next, we describe the operations of single variable calculus
followed by multivariable calculus and vectors, which are best treated together. This is
followed by a description of matrix algebra and coordinate transformations, which is useful
for understanding and manipulating polarized light. We end the appendix with some
selected topics that it is hoped will enhance understanding of some of the derivations and
concepts in the text.

14.1 Complex Numbers and Their Manipulation

The quadratic equation x2 + 1 = 0 has no real number x as a solution; however, if the
number system is expanded to include complex numbers, there is a solution. Complex
numbers are ordered pairs of real numbers (a, b) usually written in the form z = a + ib,
with i ,

√
−1. In this expanded system of numbers, the solutions to z2 + 1 = 0 are the

complex numbers z = ±i. If z = a+ ib, a is called the real part, often written <(z), and b
is called the imaginary part, written =(z). The manipulation of complex numbers is easy
when written in the form z = a + ib because their manipulation follows all of the usual
rules of algebra, e.g., the sum of two complex numbers is

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2) = z3

=⇒ a3 = a1 + a2 and b3 = b1 + b2,

895
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(x,y)	  

x	  

y	  

θ
r	  

•

and the product of two complex numbers is

z1z2 = (a1 + ib1)(a2 + ib2) = a1a2 + i(a1b2 + a2b1) + i2(b1b2)

= a1a2 − b1b2 + i(a1b2 + a2b1) = z3,

where a3 = a1a2 − b1b2 and b3 = a1b2 + a2b1.

A useful way to think about complex numbers is that they are a point (a, b) in the
complex plane. The complex plane is prescribed as follows. Consider a plane where each
point has cartesian coordinates (x, y). Then the complex number z = x + iy is just the
point (x, y) in that plane, as shown in the figure above, in which the complex number z is
represented by the large dot.1 One can also use polar coordinates in the plane to represent
z through

x = r cos θ, y = r sin θ, where r =
√
x2 + y2 and θ = arctan(y/x).

Thus, z = x + iy = r(cos θ + i sin θ). The beauty of this is that, as we show later using
power series, (cos θ + i sin θ) = exp(iθ), so

z = x+ iy = r exp(iθ),

which greatly facilitates the manipulation of complex numbers. For example, if we are given
the complex number 1/(a+ib), how do we write it in the form x+iy? Let a+ib = r exp(iθ),
then 1/(a+ ib) = r−1 exp(−iθ) = r−1(cos θ − i sin θ), so

x =
1√

a2 + b2
cos θ, y = − 1√

a2 + b2
sin θ and θ = arctan(b/a).

Before continuing we need to define some additional quantities. The magnitude of a
complex number z = x + iy = r exp(iθ), written |z|, is

√
x2 + y2 = r. The complex

1If the line from the origin to the dot on the figure is thought of as a vector in this plane (pointing
toward the dot), the the sum of two complex numbers z1 + z2 is determined in a manner identical to the
sum of the two vectors.
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conjugate of z = x + iy = r exp(iθ), written z∗, is x − iy = r exp(−iθ). Notice that the
product z∗z = r2 = |z|2. The notion of the complex conjugate provides another way to
write z = 1/(a + ib) in a simpler form: multiply z by the complex conjugate of a + ib
divided by itself, i.e.,

z = z
z∗

z∗
=

1

a+ ib

(
a− ib
a− ib

)
=

a− ib
a2 + b2

, and so x =
a

a2 + b2
, y =

−b
a2 + b2

.

One should note that the meaning of the statement z1 = z2 is just a1 = a2 and b1 = b2,
while statements like z1 < z2 are meaningless; however, the statement |z1| < |z2| is well
defined.

Many functions carry over from the real to the complex domain quite simply. For
example, what is sin(iϑ) in terms of elementary functions? Noting that

sin(ϑ) =
1

2i
[exp(iϑ)− exp(−iϑ)] ,

we have

sin(iϑ) =
1

2i
[exp(iiϑ)− exp(−iiϑ)] ,

=
1

2i
[exp(−ϑ)− exp(ϑ)] ,

= − 1

2i
[exp(+ϑ)− exp(−ϑ)] ,

= i sinh(ϑ),

so sin(iϑ) is pure imaginary (no real part). Many trigonometric identities are easily derived
using complex numbers. For example, consider the following

exp(iθ1) exp(iθ2) = exp[i(θ1 + θ2)] = cos(θ1 + θ2) + i sin(θ1 + θ2),

= (cos θ1 + i sin θ1)(cos θ2 + i sin θ2),

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2),

which implies
cos(θ1 + θ2) = (cos θ1 cos θ2 − sin θ1 sin θ2),

sin(θ1 + θ2) = (cos θ1 sin θ2 + sin θ1 cos θ2).

The study of functions of a complex variable is vast and rewarding, but we have covered
all that is necessary for our purpose.

14.2 Single Variable Calculus

In this section we review single variable calculus focussing on the concepts of differentiation
and integration, including a discussion of the Dirac delta function. We end the section with
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a detailed description of the solution of second-order differential equations with constant
coefficients.

14.2.1 Derivatives of a Function

Consider a function f of a single variable x. This is usually written f(x), where the notation
means that given a value of x, say x0, then the value of the function f is f(x0).2 It is
important to note that f(x0) is a number (which may or may not have dimensions, e.g.,
meters. etc.). To emphasize this, one often writes y = f(x), where x and y are numbers.
The subject of calculus is centered on the question; if I change x a little, e.g., by ∆x, how
much does f change? The change in f , written ∆f is given by

∆f(x) ≈ f ′(x)∆x

where f ′(x) is called the derivative of f with respect to x and is usually written df/dx.
The approximation gets better and better as ∆x gets smaller and smaller. Formally we
define f ′(x) using the above as

f ′(x) , lim
∆x→0

f(x+ ∆x)− f(x)

∆x
or f ′(x) , lim

∆x→0

f(x+ ∆x/2)− f(x−∆x/2)

∆x
,

so as ∆x gets smaller and smaller, the quotients in the above formulas get closer and closer
to f ′(x).3 Note that if we make a graph of y = f(x), then f ′(x) is simply the slope of the
curve of f(x) at the point x. Often in the text, ∆x and dx are used almost interchangeably
as shortcuts, but one can easily figure out the actual meaning by the context. The fact
that f ′(x) is the slope of f(x) at x shows that values of x for which f ′(x) = 0 are either
maxima or minima of f(x).4

The definition of the derivative can be used to find its value (but it’s not always simple),
e.g., let f(x) = x2. Then

f ′(x) = lim
∆x→0

(x+ ∆x)2 − x2

∆x
= lim

∆x→0

2x∆x+ (∆x)2

∆x
= lim

∆x→0
(2x+ ∆x) = 2x.

2Colloquially, feed x0 to the function f and you get its value f(x0).
3At the risk of being too formal, we define what is meant by a limit. The limit, limx→a f(x) = A, means

that if we chose an ε > 0, one can always find a δ > 0, such that if
∣∣x − a∣∣ < δ, then

∣∣f(x) − A
∣∣ < ε.

Similarly, limx→∞ f(x) = A means, choosing an ε > 0, one can always find an a, such that if x > a, then∣∣f(x)−A
∣∣ < ε.

4To determine which, i.e., maximum or minimum, one computes f ′′(x) at the point x where f ′(x) = 0.
If f ′′(x) < 0, f(x) is a maximum, if f ′′(x) > 0, f(x) is a minimum, and if f ′′(x) = 0, f(x) is said to have a
point of inflection at x.
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A sample of the derivatives of some well-known functions are:

dxn

dx
= nxn−1,

d sin(x)

dx
= cos(x),

d cos(x)

dx
= − sin(x),

d exp(x)

dx
= exp(x),

d`n(x)

dx
=

1

x
.

From these, others can be derived,5 e.g., given the second, we know that

d sin(ax)

d(ax)
= cos(ax) so

d sin(ax)

d(x)
= a cos(ax).

Higher order derivatives are indicated by more primes and are defined in a similar manner,
i.e., the second derivative of f is

d2f

dx2
= f ′′(x) , lim

∆x→0

f ′(x+ ∆x)− f ′(x)

∆x
.

The number of primes on the function refer to the number of derivatives, or the order of
the differentiation.

14.2.2 Taylor Series Representation of a Function

Consider the function f(x). Can it be represented as an infinite series

f(x) = a0 + a1x+ a2x
2 + · · · =

∞∑

n=1

anx
n ? (14.1)

If it can, the an’s are easy to find. Let x = 0, then a0 = f(0). Again, if it can be represented
as above, compute

f ′(x) = a1 + 2a2x+ 3a3x
2 · · · ,

and again letting x = 0 shows that a1 = f ′(0). Continuing in this manner,

an =
f (n)(0)

n!
,

5Another example is the derivative of a product. From the definition of the derivative, it is easy to show
that, given f(x) and g(x), then (fg)′ = f ′g + fg′.
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where the superscript “(n)” on f indicates the nth derivative of f . Thus for f(x) to be
represented by the series, it is necessary that it can be differentiated an infinite number of
times.6 Some useful (and hopefully familiar) series that are easily derived are

1

1− x = 1 + x+ x2 + x3 · · · ,

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
· · · ,

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
· · · ,

exp(x) = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
· · · .

If we write the last series for ix, where i2 = −1, rather than just x, and compare the result
with the second and third series, we find

exp(ix) = 1 + ix− x2

2!
− ix

3

3!
+
x4

4!
+ i

x5

5!
· · · ,

= cos(x) + i sin(x),

an important relationship when dealing with functions involving complex numbers, as we
have seen earlier. A generalization of Eq. (14.1) is

f(x) = a0 + a1(x− x0) + a2(x− x0)2 + · · · =
∞∑

n=1

an(x− x0)n. (14.2)

In this case,

an =
f (n)(x0)

n!
,

where the notation f (n)(x0) means; differentiate f a total of n times and evaluate the result
at x = x0. Series of the type indicated in Eq. (14.2) are called Taylor series, and functions
for which Taylor series can be written (and converge) are called analytic functions.

An important application of Taylor series is in the evaluation of limits. Suppose one
wants to evaluate

lim
x→0

f(x)

g(x)
but both lim

x→0
f(x) = 0 and lim

x→0
g(x) = 0,

6We will not discuss the important question of convergence of such series, i.e., for what range of values
of x the sum in Eq. (14.1) actually adds up to the value of the function at the given x. All of the series
discussed here do converge to the function they represent for some range of x.



14.2. SINGLE VARIABLE CALCULUS 901

yielding 0/0 for the limit; and indeterminate form. If both f(x) and g(x) can be expanded
in a Taylor series about x = 0, i.e.,

f(x) = a0 + a1x+ a2x
2 + · · · =

∞∑

n=1

anx
n

g(x) = b0 + b1x+ b2x
2 + · · · =

∞∑

n=1

bnx
n,

where in the proposed problem a0 = 0 and b0 = 0. Then

lim
x→0

f(x)

g(x)
= lim

x→0

(∑∞
n=1 anx

n

∑∞
n=1 bnx

n

)
→ a1

b1
=
f ′(0)

g′(0)
,

assuming that a1/b1 6= 0/0. If a1/b1 = 0/0, one can continue this procedure n times until
an/bn 6= 0/0, in which case the required limit is fn(0)/gn(0). This is known as L’hospital’s
rule. A very simple example of L’hospital’s rule is limx→0

(
sin(x)/x

)
= 1.

14.2.3 Integration

An important concept in calculus is integration. We review this now. What do we mean
by the definite integral I =

∫ b
a f(x) dx ? I is operationally defined as follows. Divide the x

axis between a and b into N intervals and let ∆x = (b− a)/N , then

I , lim
N→∞

N∑

i=1

f(ξi)∆x, (14.3)

where ξi is a point on the x axis anywhere in the ith interval, i.e., xi−1 ≤ ξi ≤ xi.
7 If

we graph the function y = f(x), from the definition it should be clear the I is the area
between the curve of f and the x-axis, with the area positive above the axis and negative
below it.

An important theorem regarding integration can be justified by examining

∫ b

a
f ′(x) dx = lim

N→∞

N∑

i=1

f ′(ξi)∆x.

7This is not the most general definition of the integral. More generally, the intervals (∆x’s) do not have
to all be the same size, but then in the limiting procedure one must require that the largest interval goes
to zero as N →∞.
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Writing f ′(xi)∆x =
(
f(xi+1) − f(xi−1)

)
/2, and writing out the sum term by term, we

discover that all of the f ’s cancel except the two at the endpoints, i.e.,
∫ b

a
f ′(x) dx = f(b)− f(a). (14.4)

This suggests that the indefinite integral of f ′(x) is
∫

f ′(x) dx = f(x) + C,

where C is an arbitrary constant. Then the definite integral (i.e., that with the limits) is

∫ b

a
f ′(x) dx = f(x)

∣∣∣
b

a
.

This establishes f(x) as the antiderivative of f ′(x). Equation Eq. (14.4) is sometimes
called the Fundamental Theorem of Integral Calculus.

14.2.4 The Dirac Delta Function

Consider the function δn(x), where

δn(x) = n, − 1

2n
≤ x ≤ +

1

2n
δn(x) = 0 otherwise.

Then

An =

∫ +∞

−∞
δn(x) dx = 1,

and limn→∞ (An) = 1. The function δn(x) is well defined and integrable, but δ∞ is poorly
defined, it is a “spike” of infinite height and zero thickness, and is hardly integrable as
defined in Eq. (14.3).8 However, the sequence of integrals An is well defined and, in the
limit, they converge to 1 (because each term in the sequence is unity). Now consider

Bn =

∫ +∞

−∞
δn(x)f(x) dx,

8There are other representations that can be used for δn(x) rather than the “box” function used here.
Two continuous examples are

δn(x) =
n√
π

exp(−n2x2) and δn(x) =
1

nπ

sin2(nx)

x2
,

which become larger and narrower near the origin as n becomes larger. Both of these, along with the
box function, have the property that

∫ +∞
−∞ δn(x) dx = 1; however, these two have continuous and finite

derivatives.



14.2. SINGLE VARIABLE CALCULUS 903

where f(x) is a continuous function. Clearly,

Bn = f(ξn), − 1

2n
≤ ξn ≤ +

1

2n
,

where ξn is some value of x in the above range. Clearly, limn→∞ (Bn) = f(0). We define
the Dirac delta function, δ(x) through

∫ +∞

−∞
δ(x)f(x)dx = lim

n→∞

∫ +∞

−∞
δn(x)f(x) dx = f(0).

This is easily extended to

∫ +∞

−∞
δ(x− x0)f(x)dx = lim

n→∞

∫ +∞

−∞
δn(x− x0)f(x) dx = f(x0), (14.5)

where

δn(x− x0) = n, − 1

2n
≤ (x− x0) ≤ +

1

2n
δn(x− x0) = 0 otherwise.

Thus, the Dirac delta function has the property that when integrated with another function
it provides the value of the other function at the point where the argument of the delta
function is zero. This is sometimes called the sifting property. The neat thing about the
delta function as defined in Eq. (14.5) is that (often) it can be treated as an ordinary func-
tion. For example, treating δ(x) as an ordinary continuous function and using integration
by parts,9

f ′(x0) =

∫ +∞

−∞
δ(x)f ′(x)dx = δ(x)f(x)

∣∣∣
+∞

−∞
−
∫ +∞

−∞
δ′(x)f(x)dx = −

∫ +∞

−∞
δ′(x)f(x)dx,

so the meaning of δ′(x) is defined through10

∫ +∞

−∞
δ′(x− x0)f(x)dx = −f ′(x0).

9Integration by parts follows from the derivative of a product. Thus integrating∫ b

a

d(fg) =

∫ b

a

f dg +

∫ b

a

g df =⇒
∫ b

a

f dg = fg
∣∣∣b
a
−
∫ b

a

g df.

10This can be understood qualitatively by using one of the continuous representations of δn(x), for which
the derivative results in two spikes (one positive and one negative) near the origin.



904 CHAPTER 14. MATHEMATICAL APPENDIX

Using the sequences, or treating δ(x) as an ordinary function (it isn’t), we can develop the
following relationships;

δ(ax) =
1∣∣a
∣∣δ(x), a 6= 0,

xδ(x) = 0,

δ(x2 − a2) =
1

2a
[δ(x+ a) + δ(x− a)], a 6= 0.

There should be joy in seeing a Dirac delta function in an integral as it means evaluation of
the integral is trivial (but remember, the delta function only has meaning under an integral
sign).

14.2.5 Differential Equations

Differential equations are equations that relate derivatives of various orders. For example,
consider

f ′(x) = f(x).

From the list of derivatives above we see that f(x) = exp(x) +C, where C is an arbitrary
number (constant). Why must we add C? Because by specifying the derivative of f , we
are providing only information about the slope of the function at x. All of the functions
f(x) = exp(x)+C have the same slope at x. Thus, there are an infinite number of solutions
to the differential equation above. If the differential equation represents a physical process,
we need to figure out which value of C applies in the given problem, and this requires
some additional information. This information is usually referred to as initial or boundary
conditions. A simple example illustrating this is radioactive decay, for which the rate of
change in the number of decay candidates present at any given time is proportional to the
number of decay candidates (N) present at any given time:

dN

dt
= −λN,

where λ is a constant and the minus sign is due to the fact that N decreases with time,
so its change must be negative. Rewriting, using our table of derivatives, and working
backward, we have

d `n(N) =
dN

N
= −λdt so `nN = λt+ C

What must C be? If we have N = N0 present at t = 0, then C = `nN0, so

N = N0 exp(−λt).
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This provides the number of undecayed atoms present at time t, given N0 present at t = 0.

Many of the differential equations of mathematical physics are second order. A simple
example is Newton’s second law, which states that in one dimension, e.g., x,

F = ma = m
dv

dt
= m

d2x

dt2
,

where F is the force acting on a particle, m is the (constant) mass of the particle, v is the
velocity of the particle, and x is the position of the particle along the x-axis. A simple,
and poignant, example is that of a mass attached to a spring (force constant k) moving in
a viscous fluid (damping constant b) and subjected to an external force that is harmonic
in time. For this, Newton’s law reads

m
d2x

dt2
= −k(x− x0)− bdx

dt
+ F0 cos(ωt),

where x0 is the equilibrium position of the mass. If we move the origin to x = x0 rather
than x = 0, then we can remove x0 from the equation and rewrite this as

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x =
F0

m
cos(ωt), (14.6)

where γ = b/2m and ω2
0 = k/m. Equation (14.6) is in the form

a2
d2x

dt2
+ a1

dx

dt
+ a0x = f(t). (14.7)

It is called a second order inhomogeneous differential equation with constant coefficients
(the ai’s). If f(t) = 0 the differential equation is said to be homogeneous. We now describe
how to solve differential equations such as Eq. (14.7).

Consider first the homogeneous counterpart to the above differential equation,

a2
d2x

dt2
+ a1

dx

dt
+ a0x = 0,

There is a theorem that states that the general solution of this equation consists of an
arbitrary linear sum of two linearly independent functions x1(t) and x2(t), each of which
satisfy the differential equation, i.e., if

a2
d2x1

dt2
+ a1

dx1

dt
+ a0x1 = 0,

and

a2
d2x2

dt2
+ a1

dx2

dt
+ a0x2 = 0,



906 CHAPTER 14. MATHEMATICAL APPENDIX

then the general solution is
x(t) = C1x1(t) + C1x2(t).

What does linear independence mean? By definition x1(t) and x2(t) are linearly indepen-
dent if the only solution to c1x1(t) + c2x2(t) = 0 (where the c’s are constants) that is valid
for all t, is c1 = c2 = 0. Thus, for example, x1(t) = t and x1(t) = 2t are not linearly
independent because, if c1 +2c2 = 0, the condition is satisfied for all t without c1 = c2 = 0;
however, if x1(t) = exp(t) and x2(t) = exp(2t), these functions are linearly independent
since, although c1 exp(t) + c2 exp(2t) = 0 can be satisfied for some particular t (and c’s), it
cannot be satisfied for all t unless c1 = c2 = 0.

There is a simple prescription for finding the general solution of Eq. (14.7): first find
the general solution xh(t) to the homogeneous counterpart,

a2
d2xh
dt2

+ a1
dxh
dt

+ a0xh = 0,

which must contain two arbitrary constants as above; second find any function xi(t) such
that

a2
d2xi
dt2

+ a1
dxi
dt

+ a0xi = f(t);

then the general solution to Eq. (14.7) is

x(t) = xh(t) + xi(t).

For the special case we are considering, where the coefficients (the ai’s) are constants, there
is a particularly simple way of solving the homogeneous equation for xh(t): we assume a
solution of the form xh(t) = C exp(pt), where C and p are constants and determine the
value of p that makes xh a solution. Let’s try it on the homogeneous equation above:

a2
d2xh
dt2

+ a1
dxh
dt

+ a0xh = 0 with xh(t) = C exp(pt)

=⇒ a2p
2 + a1p+ a0 = 0 or p =

−a1 ±
√
a2
i − 4a2a0

2a2
,

using the quadratic formula. Each of the two values of p provides a solution, so the general
solution for xh(t) is11

xh(t) = C+ exp(p+t) + C− exp(p−t).

There are several methods for finding a single solution for xi(t); however, as we will see
below, a simple guess may sometimes suffice.

11If a2
i − 4a2a0 = 0, there is only one value of p, so only one solution, x1(t), is provided. In this case, a

second, linearly independent solution can be shown to be x2(t) = tx1(t).
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As an illustrative example of the whole procedure, we now apply these steps to Eq.
(14.6). First, let xh = C exp(pt). Then

p2 + 2γp+ ω2
0 = 0 or p = −γ ±

√
γ2 − ω2

0.

There are three possibilities depending on the relative magnitudes of γ and ω0:

(1) γ = ω0 =⇒ xh(t) = (C1 + C2t) exp(−γt);
(2) γ > ω0 =⇒ xh(t) = C+ exp(−γ+t) + C− exp(−γ−t); and

(3) γ < ω0 =⇒ xh(t) = exp(−γt)
(
C+ exp(+iω1t) + C− exp(−iω1t).

(14.8)

In these equations,

γ± = −γ ±
√
γ2 − ω2

0,

ω2
1 = ω2

0 − γ2,

and i =
√
−1. Now that we have found the general solution the homogeneous counterpart

of Eq. (14.6), we need to find any solution to the inhomogeneous equation. To effect this
we consider its complex counterpart

d2z

dt2
+ 2γ

dz

dt
+ ω2

0z =
F0

m
exp(iωt), (14.9)

where z = x+iy. Note that the real part of Eq. (14.9) is just Eq. (14.6), so the solution x(t)
is just <[z(t)]. Since the derivative of an exponential function is proportional to the same
exponential function, we can guess that a solution must be of the form z(t) = A exp(iωt),
where the constant A is yet to be determined. Inserting our guess into Eq. (14.9) results
in

−ω2A+ 2iγωA+ ω2
0A =

F0

m
or A =

F0/m

ω2
0 − ω2 + 2iγω

.

As might have been expected, A is a complex number, which we need to simplify. In the
manner discussed earlier, we write

ω2
0 − ω2 + 2iγω =

√
(ω2

0 − ω2)2 + 4γ2ω2 exp (iφ),

where

tanφ =
2γω

ω2
0 − ω2

so

A =
(F0/m) exp (−iφ)√
(ω2

0 − ω2)2 + 4γ2ω2
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and

z(t) =
(F0/m) exp (iωt− iφ)√

(ω2
0 − ω2)2 + 4γ2ω2

or xi(t) =
(F0/m)√

(ω2
0 − ω2)2 + 4γ2ω2

cos(ωt− φ).

The general solution to Eq. (14.6) is then

x(t) = xh(t) +
(F0/m)√

(ω2
0 − ω2)2 + 4γ2ω2

cos(ωt− φ), (14.10)

where xh(t) is one of the three possibilities given in Eq. (14.8). We can evaluate the
arbitrary constants C+ and C− (or C1 and C2) in the solution by using the initial conditions,
the position and velocity of the mass at some arbitrary time, e.g., say t = 0, after which
Eq. (14.10) provides the position of the mass for all time. In all three cases in Eq. (14.8),
xh → 0 as t → ∞, i.e., the solution to the homogeneous equation dies away in time and
we are left only with

x(t)→ (F0/m)√
(ω2

0 − ω2)2 + 4γ2ω2
cos(ωt− φ) as t→∞.

This is called the steady state part of the solution and xh is called the transient part of the
solution. Thus, after the transient dies away, the motion of the mass is purely sinusoidal
with a definite phase difference (φ) in time between it and the driving force. The fact
that the denominator in the solution becomes small for ω close to ω0, leading to large
values of x, is the mathematical demonstration of the phenomenon called resonance. In
our study of electromagnetic fields in matter, we used the techniques described here (with
some notational variations) to discuss the dynamic properties of dielectrics (Section 1.4.5).

In Chapter 1, we generally represented the complex electric field of a traveling wave
(in the +x direction) as ~E(x, t) = ~E0 exp[i(κx − ωt)], and when we needed to know the
actual electric field, we took the real part to get ~E(x, t) = ~E0 cos(κx − ωt). If we wanted
to compute the average energy density associated with one oscillation of the electric field,
it would be

〈ue〉 =
1

τ

∫ τ

0

ε0
2
~E(x, t) • ~E(x, t) dt =

[ ω
2π

] ε0
2

∫ 2π/ω

0

~E(x, t) • ~E(x, t) dt

=
[ ω

2π

] ε0
2

∫ 2π/ω

0
E2

0 cos2(κx− ωt) dt =
1

2

ε0E
2
0

2
=

1

2

ε0
2
~E∗(x, t) • ~E(x, t),

where τ is the period of one oscillation. Thus, the product ~E∗(x, t) • ~E(x, t) is related to
the time-average energy density, not the instantaneous energy density. More generally, the
time average of the square of an oscillatory function f(t) over one cycle can be replaced by
f∗(t)f(t)/2; however, it is safer to convert the complex functions to their real counterparts
before computing quantities like energy that are dependent on their products.



14.3. VECTORS AND MULTIVARIABLE CALCULUS 909

x	  

y	  

θ
! 
!r

!!êx

!!ê y !
ry

!rx

x	  

y	  

!! 
!r1

!!êx
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14.3 Vectors and Multivariable Calculus

The calculus of functions of more than one variable is closely related to the calculus of
vectors, and are reviewed together in this section.

14.3.1 Vectors — the Elements

In elementary physics we usually call quantities like temperature, that are described by a
single number, scalars. In contrast, quantities like velocity, which have a certain magnitude
(e.g., 10 mph) and direction (e.g., northeast) are called vectors. Another example of a vector
is the displacement vector ~d defined as follows.12 Assume you are walking on a plane (the
x–y plane shown in the figure above; left panel). You start at the origin and walk along the
+x axis a distance rx and then parallel to the y axis a distance ry. Draw an arrow from
the point (0,0) to the point (rx, ry) (pointing away from the origin) and label it ~r. The
vector ~r is the displacement vector associated with your walk. It has units of length, e.g.,
meters, and makes an angle θ with the x axis. The magnitude of the displacement vector

is simply its length, i.e.,
√
r2
x + r2

y, and is indicated by r (without the arrow) or by
∣∣~r
∣∣.

The magnitude of a vector is a scalar. A unit vector pointing in the same direction as ~r,
and indicated by r̂, is defined through r̂ , ~r/r. Note that the magnitude of the unit vector
r̂ is

∣∣r̂
∣∣ =

∣∣~r/r
∣∣ =

∣∣~r
∣∣/r = r/r = 1 (with no units!). Here we see that multiplication of a

vector (~r ) by a scalar (1/r) simply changes the magnitude of the vector, not its direction.
In the left figure, the quantities êx and êy are (cartesian) unit vectors pointing toward the
+x and +y directions, respectively.

12Here vectors are indicated by an arrow over the symbol. Unit vectors are indicated by a carrot over
the symbol, e.g., d̂.
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Now look at the right panel in the figure. Assume that you first take a path that
results in at the displacement vector ~r1, and then take another path that results in ~r2. The
displacement vector ~r3 from the original starting point to the finish is given by ~r3 = ~r1 +~r2,
which defines vector addition. Using this rule for vector addition one sees that in the left
panel of the figure

~r = êxrx + êyry = êxr cos θ + êyr sin θ,

and in the right panel

~r3 = êxr1x + êyr1y + êxr2x + êyr2y = êx(r1x + r2x) + êy(r1y + r2y) = êxr3x + êyr3y

The quantities multiplying the cartesian unit vectors in these equations are called the
components of the given vector, e.g., r1x is the x component of ~r1, etc., so we see that to
add two vectors one need only add their individual x and y components.

The negative of a vector is just a vector pointing in the opposite direction (or a vector
whose components are the negative of the original vector. Thus, ~r − ~r = ~r + (−~r) = ~0
according to the rule of vector addition (usually the vector sign is left off the null or
zero vector). A vector times a scalar simply changes the magnitude of the vector, not its
direction, i.e.,

∣∣a~r
∣∣ = a

∣∣~r
∣∣.

We have seen that vectors can be added and subtracted. They can also be multiplied.
There are two ways for multiplication. The first yields a scalar and is called the “dot” or
“scalar” product. Referring to the figure below, where the vectors ~A and ~B are both in

x	  

y	  

! 
!
A

!!ê y
!!êz

!!êx

! 
!
B

θ

z	  

the x-y plane, the scalar product is given by

~A • ~B , AB cos θ.

The other product of two vectors yields a vector as follows. If the two vectors are in the
x-y plane (as in the figure) then the “cross” or “vector” product is defined as

~A× ~B , (AB sin θ) êz,
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so the magnitude of the cross product is
∣∣AB sin θ

∣∣ and the direction is êz. Finding the
direction of the cross product seems give some people trouble, but it is easy. In words,
~A× ~B is perpendicular to the plane formed by ~A and ~B. To find which direction it points
normal to the plane; (1) place the fingers of your right hand along the first vector ( ~A) with
the palm of your right hand pointing toward the second vector ( ~B) through the smaller
of the two angles between ~A and ~B (in the figure the smaller angle is θ and the larger is
π−θ), and (2) the direction of ~A× ~B is given by the general direction in which your thumb
is pointing. Try it and verify that if θ > π the direction for the case in the figure will be
−êz, just as the formula says. Note ~B × ~A = − ~A× ~B, but ~B • ~A = ~A • ~B.

Can we find these products of two vectors in terms of component vectors? Let’s try the
dot product.

~A • ~B = (Axêx +Ay êy) • (Bxêx +By êy)

= Axêx •Bxêx +Axêx •By êy +Ay êy •Bxêx +Ay êy •By êy,
but êx • êx = êy • êy = 1 and êy • êx = 0, so

~A • ~B = AxBx +AyBy.

For the cross product,

~A× ~B = (Axêx +Ay êy)× (Bxêx +By êy)

= Axêx ×Bxêx +Axêx ×By êy +Ay êy ×Bxêx +Ay êy ×By êy,
but êx × êx = êy × êy = 0 and êx × êy = êz = −êy × êx, so

~A× ~B = (AxBy −AyBx) êz.

In three dimensions (and cartesian coordinates), where ~A = Axêx + Ay êy + Az êz and
~B = Bxêx +By êy +Bz êz, it is easy to show that

~A • ~B = AxBx +AyBy +AzBz,

and the cross product is given by the determinant

~A× ~B =

∣∣∣∣∣∣

êx êy êz
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣

14.3.2 Functions of Several Variables

In complete analogy to a function f(x) of a single variable x, we can have functions of
several variables, e.g., f(x, y, · · · ). Examples are f(x, y) = sin(x) cos(y), or f(x, y) = xy.
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To emphasize the fact that f(x, y) is a single number (with or without dimensions), it is
sometimes written z = f(x, y). Another way to write f(x, y) is f(~r ), where ~r is the vector
shown on the left graph page 909, but now has components x and y, i.e., ~r = xêx + yêy.
When written this way, ~r is called the position vector: it indicates the “position” of the
point (x, y).13 The components of ~r are related to direction cosines of ~r : x = ~r • êx and
y = ~r • êy, so

~r = (~r • êx) êx + (~r • êy) êy,

where the dot products (~r • êx) and (~r • êy) are r times the cosines of the angles that ~r
makes with the x and y axes, respectively, the “direction cosines.”

14.3.3 Differentiation of Multivariable Functions and Vectors

As in the case of single variable calculus, differentiation is motivated by asking questions
of the sort — “if I change x a little but do not change y, how much does f change?” We
define the change in f for an infinitesimal change in x to be the partial derivative of f with
respect to x, i.e.,

∂f

∂x
, lim

∆x→0

[
f(x+ ∆x, y)− f(x, y)

∆x

]
.

Similarly,
∂f

∂y
, lim

∆y→0

[
f(x, y + ∆y)− f(x, y)

∆y

]
.

When there might be confusion as to what is being held constant in the derivative (in the
last equation it is x), one often indicates this by putting parenthesis around the derivative
with a subscript indicating the variable(s) held constant, i.e., (∂f/∂y)x.14 What if both x
and y change a little? The change in f , ∆f is

∆f = f(x+ ∆x, y + ∆y)− f(x, y)

= f(x+ ∆x, y + ∆y)− f(x+ ∆x, y) + f(x+ ∆x, y)− f(x, y)

=
∂

∂y

(
f(x+ ∆x, y)

)
∆y +

∂

∂x
f(x, y)∆x,

or letting ∆x and ∆y become infinitesimals,

df =
∂f

∂x
dx+

∂f

∂y
dy.

13This can clearly be extended to any number of variables, i.e., dimensions.
14It’s of course possible that something peculiar is being held constant, e.g., 2x + y, then the notation

would be (∂f/∂y)2x+y, and when y changes x changes as well, but in the prescribed manner.
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If we write ~r = êxx+ êyy, then the change in ~r is ∆~r = êx∆x+ êy∆y. It is useful to define
a vector called the gradient of f , written ∇f as

∇f , êx
∂f

∂x
+ êy

∂f

∂y
,

then
∆f = ∇f •∆~r or df = ∇f • d~r. (14.11)

The symbol ∇ is called the “gradient operator” or just “del.” It is a vector operator15

defined through

∇ = êx
∂

∂x
+ êy

∂

∂y
.

Consider a point ~r. If one moves from ~r to ~r + ∆~r, the change in f is ∇f(~r ) • ∆~r. If
f(~r + ∆~r ) is the same as f(~r ), i.e., f doesn’t change, then either ∇f(~r ) = 0 or ∇f(~r )
is perpendicular to ∆~r. If f doesn’t change that means one has moved along a line of
constant f , i.e., along a contour line of f .16 Thus, ∇f(~r ) is everywhere perpendicular
to lines of constant values of f , and in fact points in the direction of increasing f (i.e.,
uphill on a topographic map). Thus, if we have a curve y = f(x), which we could write
as g(x, y) = y − f(x) = c, where c is a constant and equal to zero for the curve we are
interested in, we can find a vector ~n that is normal to the curve through ~n = ∇g(x, y), or
n̂ = ∇g(x, y)/

∣∣∇g(x, y)
∣∣. If we write d~r in Eq. (14.11) as d~r = ˆ̀d`, then the quantity

df

d`
= ∇f(~r ) • ˆ̀

is called the directional derivative of f in the direction ˆ̀.

The extension of this to three (or more) dimensions is immediate: just add another
coordinate, e.g., in three dimensions

∇ = êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
and ~r = êxx+ êyy + êzz, etc.,

and ∇f(~r ) is normal to surfaces of constant f(~r ), and can be used to find the normal to
such surfaces.17

There are other operations that can be defined with the gradient operator. Two that we
need are the “divergence” and the “curl.” Given a vector function of the position vector,

15It is customary to leave off the vector sign for this operator.
16The term “contour line” comes from an analogy to topographic maps, where lines of constant height

above sea level are called contour lines.
17As an example, consider a sphere centered on the origin, i.e., x2+y2+z2 = R2. Write this as g(x, y, z) =

x2 +y2 +z2−R2 = c, where c = 0 for the particular sphere of interest. Then ∇g = 2xêx+2yêy+2zêz = 2~r,
so the unit normal to the surface is r̂.
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~A(~r ) = Ax(~r )êx +Ay(~r )êy +Az(~r )êz in three dimensions,18 the divergence of ~A is defined
as

∇ • ~A ,
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

,

and the curl of ~A is given by

∇× ~A =

∣∣∣∣∣∣

êx êy êz
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣

where the partial derivatives operate on the components of ~A, i.e.,

∇× ~A = êx

(
∂Az
∂y
− ∂Ay

∂z

)
+ êy

(
∂Ax
∂z
− ∂Az

∂x

)
+ êz

(
∂Ay
∂x
− ∂Ax

∂y

)
.

A second derivative which can be formed and is very important is ∇(∇ • ~A) , ∇2 ~A, and
is easily seen to be

∇2 ~A =
∂2Ax
∂x2

+
∂2Ay
∂y2

+
∂2Az
∂z2

,

where
∂2Ax
∂x2

=
∂

∂x

(
∂Ax
∂x

)
, etc.

the operator ∇2 is called the Laplacian operator. Note that one can apply the Laplacian
operator to both scalar and vector functions.

There are many relationships among vectors and their derivatives that are normally
called “vector identities.” We list several below.

~A • ( ~B × ~C) = ~B • (~C × ~A) = ~C • ( ~A× ~B)

~A× ( ~B × ~C) = ~B( ~A • ~C)− ~C( ~A • ~B)

∇× ( ~A× ~B) = ~B • (∇× ~A)− ~A • (∇× ~B)

∇(fg) = f∇(f) + g∇(f)

∇ • (f ~A) = f(∇ • ~A) +A • ∇(f)

∇× (f ~A) = f(∇× ~A)−A×∇(f)

∇ • (∇× ~A) = 0

∇× (∇f) = 0

∇× (∇× ~A) = ∇(∇ • ~A)−∇2 ~A.

(14.12)

18This is usually called a vector field. At each point in space there is an associated vector ~A, e.g., the
velocity of a fluid at each point in space.
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14.3.4 Integration of Multivariable Functions and Vectors

The integration of functions of more than one variable proceeds in a manner similar to
single variables. Thus,

∫ b

a

∫ d

c
f(x, y) dx dy , lim

Nx→∞
lim

Ny→∞

Nx∑

i=1

Ny∑

j=1

f(ξi, ζj)∆x∆y,

where Nx∆x = b− a, Ny∆x = c− d, xi −∆x/2 ≤ ξi ≤ xi + ∆x/2, and yi −∆y/2 ≤ ζi ≤
yi + ∆y/2. One also encounters “line integrals,” for example

∫ ~b

~a
A(~r) • d~r,

where d~r is along some curve C, as shown for the case of two dimensions in the figure below
(the dotted line). The definition of the integral is

x	  

y	  

! 
!r

!!êx

!!ê y

! Δ
!r

! 
!a

! 
!
b

! 
!
A !C

∫ ~b

~a
A(~r ) • d~r , lim

N→∞

N∑

i=1

A(~ξi) •∆~ri,

where the ∆~ri’s, joined tip-to-tail, constitute the curve C, and ~ξi is a point on the curve
between ~r and ~r + ∆~r. Choose

∣∣∆~ri
∣∣ = L/N , so that L = limN→∞

∑N
i=1

∣∣∆~ri
∣∣ is the arc

length of the curve C. Clearly, it follows that

∫ ~b

~a
d~r = lim

N→∞

N∑

i=1

∆~ri = ~b− ~a.

This is an example of an integral that is independent of the path C, i.e., it only depends
on the end points ~b and ~a. Another path integral that doesn’t depend on the path of
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integration is ∫ ~b

~a
df(~r ) =

∫ ~b

~a
∇
(
f(~r )

)
• d~r = f(~b)− f(~a). (14.13)

Note that when the path s a closed curve, i.e., ~b = ~a,

∮
∇
(
f(~r )

)
• d~r = 0.

Area and volume integrals are defined in a similar manner.

Two very important theorems relating multiple integrals are the divergence theorem and
Stokes theorem. The divergence theorem states

∫

V
∇ • ~B(~r ) dV =

∫

S

~B(~r ) • n̂ dA, (14.14)

where V is a volume bounded by the surface S. The quantity dV is the volume element,
(e.g., dx dy dz in cartesian coordinates), dA is an element of surface area (e.g., dx dy if a
part of the surface in parallel to the x-y plane), n̂ is the (outward) normal to the surface
at dA. The name “divergence” comes from the fact that if, for example, ~B were a fluid
velocity, when the surface integral is positive the fluid would have a net flow away from
the volume, i.e., diverge from the interior of the volume.

Stokes theorem states
∫

S
n̂ •
(
∇× ~B(~r )

)
dA =

∮

C

~B • d~r, (14.15)

where S is a surface bounded by the curve C, i.e., C is the edge of S. The unit vector n̂
is again the surface normal at dA, but as the surface in general is not closed, how do we
specify the direction? The direction of n̂ is related to the direction of integration around
the closed curve. To see how, imagine that S is a disk and C is its edge. If one wraps
one’s fingers of the right hand around C in the direction of integration (the direction d~r ’s
point), then n̂ is normal to the area pointing in the general direction of the thumb. If S
is morphed into any surface, but still bounded by C, the normal is still on the same side
of S. This is a quite amazing theorem. Consider a coffee cup and let C be the rim. The
theorem says the the integral over the surface formed by the plane of the top is the same
as the integral over the sides, since both end on C. In addition, what if ~B = ∇f? Then
the integral on th right hand side is zero, so

∫
S n̂ •

(
∇×∇f(~r )

)
dA = 0. But this is true

regardless of the shape of the surface S. The only way this can be true for all surfaces is if
the integrand is zero, i.e., ∇×∇f(~r ) = 0. This is one of the vector identities listed earlier.
In a manner similar to Eq. (14.4), Eqs. (14.13). (14.14), and (14.15) are fundamental
theorems of vector calculus.
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In analogy to single variable calculus, we can define the Dirac delta function in multiple
dimensions. Multidimensional Dirac delta functions work in a manner similar to the single
dimensional version we discussed earlier. For example, in two dimensions

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x− x0)δ(y − y0) dx dy = f(x0, y0).

In vector notation this becomes
∫

All A
f(~r)δ(2)(~r − ~r0) dA = f(~r0),

where dA is the element of area in the plane.19 Now, what if we use plane polar coordinates
for dA, i.e., dA = rdr dθ, in the above equation. We may be tempted to write δ(2)(~r−~r0) =
δ(r − r0)δ(θ − θ0). However, if we did that, then the result would be

∫

All A
f(~r)δ(2)(~r − ~r0) dA =

∫ 2π

θ=0

∫ ∞

r=0
f(r, θ)δ(r − r0)δ(θ − θ0) r dr dθ = r0f(r0, θ0),

which is not the same answer found using cartesian coordinates (the correct one). To get
the correct answer we need to take

δ(2)(~r − ~r0) =
δ(r − r0)δ(θ − θ0)

r
=
δ(r − r0)δ(θ − θ0)

r0
.

In the general case, if the multidimensional volume element dx1 dx2 dx3, · · · , becomes
f(y1, y2, y3, · · · ) dy1 dy2 dy3 · · · when a transformation is made from the cartesian ~x =
(x1, x2, x3, · · · ) to the non-cartesian ~y = (y1, y2, y3, · · · ) coordinate system, then the multi-
dimensional Dirac delta function becomes

δ(n)(~r−~r0) = δ(x1−x10)δ(x2−x20)δ(x3−x30) · · · −→ δ(y1 − y10)δ(y2 − y20)δ(y3 − y30) · · ·
f(y1, y2, y3, · · · )

.

Clearly, the appearance of a Dirac delta function in an integral greatly simplifies its eval-
uation. In the text we used a two dimensional delta function to represent the radiance of
a parallel beam of irradiance F0, i.e., L(ξ̂) = F0δ

(2)(ξ̂ − ξ̂0), so

∫

Ω
L(ξ̂) dΩ(ξ̂) = F0,

if the direction ξ̂0 is in the range of directions within the solid angle Ω, and zero otherwise.

19Note, the integral need not extend over the whole plane. If it covers an area S in the plane, then the
value is f(~r0) if the point ~r0 is within S, and zero otherwise.
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Finally, we state the Leibnitz integral rule for differentiating an integral. It is

d

dy

[∫ b(y)

a(y)
f(x, y) dx

]
=

∫ b(y)

a(y)

∂f(x, y)

∂y
dx+ f(b, y)

∂b(y)

∂y
− f(a, y)

∂a(y)

∂y
.

Therefore if the limits are fixed, an ordinary derivative operating on an integral becomes
a partial derivative operating on the integrand.

14.3.5 Functions and Vectors in Spherical Coordinates

In many cases it is advantageous to represent a vector in another coordinate system rather
than the cartesian system we have used so far in our discussion of multivariable functions
and vectors. We now examine their representation in spherical coordinates. The transfor-
mation from cartesian coordinates (x, y, z) to spherical coordinates (r, θ, φ) is given by (see
figure below)

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

so

y	  

z	  

! 
!r

!!
ê y

!!êz θ

!!êx

x	  

φ

!!r̂

!θ̂

!φ̂

~r = êxx+ êyy + êzz = êxr sin θ cosφ+ êyr sin θ sinφ+ êzr cos θ,

and

r̂ = êx sin θ cosφ+ êy sin θ sinφ+ êz cos θ.



14.3. VECTORS AND MULTIVARIABLE CALCULUS 919

The other unit vectors θ̂ and φ̂ are seen from the figure above to be20

θ̂ = êx cos θ cosφ+ êy cos θ sinφ− êz sin θ,

φ̂ = −êx cosφ+ êy sinφ.

The unit vector θ̂ is in the plane formed by êz and ~r, while the unit vector φ̂ is in the
x-y plane, normal to the projection of ~r on that plane. Note that the set of unit vectors
are mutually orthogonal so ~r • θ̂ = 0, ~r × θ̂ = φ̂, etc. We can write a small change in the
position of a particle, i.e., d~r, as

d~r = êxdx+ êydy + êzdz = r̂ dr + θ̂ rdθ + φ̂ r sin θ dφ.

The volume and area elements in cartesian coordinates, dV = dx dy dz and dA = dx dx,
respectively, become dV = r2 sin θ dr dθ dφ and dA = r2 sin θ dθ dφ, where dA is on the
surface of a sphere centered at r = 0. Note that the volume and area elements in spherical
coordinate are not just the products of the differentials (they couldn’t be because the
differentials do not all have the units of length!), but include other factors. In general,
if one makes a transformation from cartesian coordinates (x, y) to another system (u, v),
where u = u(x, y) and v = v(x, y), the product of differentials transform according to

du dv =

∣∣∣∣∣

∣∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣

∣∣∣∣∣ dx dy =
∣∣J(u, v;x, y)

∣∣ dx dy.

The determinant J is called the Jacobian of the transformation. In higher dimensions, the
Jacobian determinant simply becomes larger (in three dimensions, it is 3× 3). For a par-
ticularly simple example, consider two dimensions and the transformation from cartesian
to plane polar coordinates for which the transformation equations are given by x = r cosφ,
y = r sinφ. Then

J =

∣∣∣∣∣
∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

∣∣∣∣∣ =

∣∣∣∣
cosφ −r sinφ
sinφ +r cosφ

∣∣∣∣ = r

and so, dx dy = r dr dθ. One can of course write formulas for the gradient, divergence, and
curl in terms of derivatives with respect to r, θ, and φ; however, we shall not write them
down as they are not actually used in the text.21

20In the text, r̂, θ̂, and φ̂, are also referred to as êr, êθ, and êφ.
21Virtually any book on advanced calculus has these formulas (as well as various internet sites).
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14.4 Linear Transformations and Matrices

Consider a linear transformation between two coordinate systems (x, y, z) and (x′, y′, z′),
where

x′ = ax′xx+ ax′yy + ax′zz

y′ = ay′xx+ ay′yy + ay′zz

z′ = az′xx+ az′yy + az′zz,

i.e., a point (x, y, z) in the first system is transformed to the point (x′, y′, z′) in the second.
We can write these equations as a single matrix equation as follows. Write the array of a’s
in the following form:

A ,



ax′x ax′y ax′z
ay′x ay′y ay′z
az′x az′y az′z


 .

Also write the coordinates (x′, y′, z′) and (x, y, z) as column arrays x′ and x, where

x′ ,



x′

y′

z′


 and x ,



x
y
z


 .

Then
x′ = Ax,

where for equality we must take the sum of the products of the elements in the top row of
A with the first (and only) column of x to get the top element of the column representing
x′. This procedure can be simplified by relabeling (x, y, z) as (x1, x2, x3), (x′, y′, z′) as
(x′1, x

′
2, x
′
3), and ax′x as a11, ax′y as a12, etc. Then

A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 , x′ =



x′1
x′2
x′3


 and x =



x1

x2

x3


 , (14.16)

and the rule for finding x′ = Ax can be simply stated:

x′i =
3∑

j=1

aij xj .

The object A is called a 3× 3 matrix, and x′ and x are 3× 1 matrices or column vectors.
This algebra can be generalized. For example let B and C be two 3× 3 matrices, then the
product of B and C,

BC, means (BC)ij =

3∑

k=1

BikCkj ,
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where (BC)ij is the ijth element of BC. Likewise

CB means (CB)ij =

3∑

k=1

CikBkj ,

which clearly shows that BC 6= CB, i.e., matrix multiplication is non-commutative. Note
that it is not always possible to multiply two matrices. For multiplication, as defined
according to (BC)ij =

∑p
k=1 BikCkj , the number of rows of B must be the same as the

number of columns of C, i.e., B must be n × p and C must be p × m, where n and m
are arbitrary.22 The sum of two matrices is as one might expect, just the sum of the
corresponding elements: (A +B)ij = Aij + Bij . Clearly, to add two matrices they must
be of the same size.

Given the matrix A in Eq. (14.16), many related matrices can be defined: the transpose
of A, written Ã is the matrix with the rows and columns interchanged, i.e.,

Ã =



a11 a21 a31

a12 a22 a32

a13 a32 a33


 ;

if Ã = A the matrix is said to be symmetric; if the elements of A (the aij ’s) are real A is
said to be real; the inverse of A, written A−1 is defined such that

A−1A = AA−1 = 1, where 1 ,




1 0 0
0 1 0
0 0 1




is called the unit matrix. If A−1 = Ã the matrix is said to be orthogonal. For an example
of an orthogonal matrix, consider the transformation from (x, y) to (x′, y′) corresponding
to a rotation of the axes in the x-y plane through an angle θ:

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

so

A =

(
cos θ sin θ
− sin θ cos θ

)
, x′ =

(
x′

y′

)
and x =

(
x
y

)
.

Note that

Ã =

(
cos θ − sin θ
sin θ cos θ

)
and ÃA = AÃ = 1,

22Note that when we designate the size of a matrix it is always the number of rows × the number of
columns, e.g., a column vector is as 3× 1 matrix.
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and so A−1 = Ã, i.e., the matrix A is orthogonal. One can show from the definition of
matrix multiplication that for two matrices A and B, that ÃB = B̃Ã. If the matrix A
has elements with the property that aij = 0 when i 6= j, A is called a diagonal matrix. The
sum of the diagonal elements of A is called its trace and written Tr(A) ,

∑n
i=1 Aii. To

form the product of a matrix A and a scalar s, i.e., sA, simply multiply all of the elements
of A by s.

Often we will write vectors as column matrices, i.e., the vector ~V = Vxêx + Vy êy + Vz êx
is sometimes written

~V = Vxêx + Vy êy + Vz êx, or

V =



Vx
Vy
Vz


 ,

so, when ~V is used it normally refers to the first representation, and when V is used it refers
to the second; however, often these two notations are used interchangeably and confusion
is unlikely. When vectors are represented by column matrices, the scalar or dot product of
two vectors is

~V1 • ~V2 = Ṽ1V2 =
(
V11 V12 V13 · · ·

)




V11

V22

V23

...


 = V11V21 + V12V22 + V13V23 · · · .

The transformation of unit vectors can also be represented by matrices. To go from
cartesian to polar representation of a vector, the unit vectors are transformed via

r̂ = êx cos θ + êy sin θ,

θ̂ = −êx sin θ + êy cos θ,

which can be written

(
r̂

θ̂

)
=

(
cos θ sin θ
− sin θ cos θ

)(
êx
êy

)
, so

(
êx
êy

)
=

(
cos θ − sin θ
sin θ cos θ

)(
r̂

θ̂

)
,

and we see that the êx and êy are transformed into r̂ and θ̂ through23
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x	  

y	  

θ
! 
!r

!!êx

!!ê y

!!r̂!θ̂

(
r̂

θ̂

)
= A

(
êx
êy

)
.

If we have a vector ~V = Vxêx + Vy êy and we make this transformation, how do the com-

ponents transform, i.e., in ~V = Vrr̂ + Vθθ̂, how do Vr and Vθ relate to Vx and Vy? This is
easy to work out using the transformation equations for the unit vectors:

~V = Vxêx + Vy êy

= Vx(r̂ cos θ − θ̂ sin θ) + Vy(r̂ sin θ + θ̂ cos θ)

= r̂(Vx cos θ + Vy sin θ) + θ̂(−Vx sin θ + Vy cos θ)

= r̂Vr + θ̂Vθ, so

Vr = Vx cos θ + Vy sin θ

Vθ = −Vx sin θ + Vy cos θ

Thus, (
Vr
Vθ

)
=

(
cos θ + sin θ
− sin θ cos θ

)(
Vx
Vy

)
or

(
Vr
Vθ

)
= A

(
Vx
Vy,

)

and both the unit vectors and the components of a vector transform according to A.
However this is not true in general. If

ê′ = Mê, or ê′i =
2∑

j=1

mij êj ,

23Note that the matrix A is the matrix of the direction cosines, i.e., writing

r̂ = êx(êx • r̂) + êy(êy • r̂)

θ̂ = êx(êx • θ̂) + êy(êy • θ̂)

A =

(
êx • r̂ êy • r̂
êx • θ̂ êy • θ̂

)
,

where every entry is the cosine of the angle between the two unit vectors.
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it is easy to show, given ~V =
∑2

i=1 Viêi =
∑2

i=1 V
′
i ê
′
i, that

(
V1

V2

)
= M̃

(
V ′1
V ′2

)
, or V = M̃V ′, and we have V ′ = (M̃)−1V .

In the case above with A, recall that A = Ã = A−1, so (Ã)−1 = A.

In the text, we used matrices in the study of polarization of electromagnetic waves
(Chapter 1) and in the discrete ordinate and matrix operator methods of solving the
radiative transfer equation. In the application to polarization, a 4× 1 column vector, the
Stokes vector I, described the state of polarization of radiance, and 4×4 matrices describe
the action of polarizers, scattering, and changes of coordinate axes, on the Stokes vector
— Mueller matrices M . The action of several elements is described by the product of their
individual element Mueller matrices, e.g., I ′ = M2M1I, where the light is subjected to
element 1 first, then element 2. The noncommutative nature of the matrices representing
polarizing elements is easily demonstrated. If natural light passes through a linear polarizer
and then a quarter-wave plate, it emerges as elliptically polarized light, while if it first passes
through a quarter-wave plate and then linear polarizer, it emerges as linearly polarized light.

14.5 Selected Topics

14.5.1 Spherical Triangles: The Laws of Sines and Cosines

Spherical triangles are formed by the intersection of three arcs of great circles on a sphere.
In this section we derive the relationships between the sides and the angles of a spherical
triangle. In the limit that the radius of the sphere becomes very large, the spherical
triangle approaches a plane triangle, for which the relationships are equally valid. Let
three unit vectors êz, êA and êB have their tails on the origin O and ends on the surface of
a sphere of unit radius as shown in the figure below. The plane formed by any two of these
vectors intersects the sphere along a great circle. The figure on the sphere formed by the
intersection of the planes containing pairs of the three vectors is a spherical triangle. The
arcs of the triangle (the sides) have angles a, b, and c given by a = êA • êB, b = êz • êB,
c = êz • êA. The angles formed by the intersection of the arcs on the sphere are A, B, and
C, the angles of the spherical triangle. By convention, the angles of a spherical triangle
are all ≤ 180◦. Note that the arc opposing the angle A is a, etc. Assume for the moment
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!!êz

!A

!!êA !!êB

!B !a
!C!c

!b

!O

that êz is along the z axis of a spherical coordinate system. Then

êA = êx sin c cosφA + êy sin c sinφA + êz cos c

êB = êx sin b cosφB + êy sin b sinφB + êz cos b

êA • êB = sin c cosφA sin b cosφB + sin c sinφA sin b sinφ+ cos c cos b

= sin c sin b cos(φB − φA) + cos c cos b

= sin c sin b cosA+ cos c cos b,

where the last step derives from the fact that in this particular coordinate system φB−φA =
A. This is the law of cosines for spherical triangles:

cos a = cos b cos c+ sin b sin c cosA.

But, since the spherical triangle is independent of the coordinate system used to describe
the three vectors, we actually have three relationships referred to as the law of cosines:

cos a = cos b cos c+ sin b sin c cosA,

cos b = cos c cos a+ sin c sin a cosB,

cos c = cos a cos b+ sin a sin b cosC.

(14.17)

We can establish another important set of relationships by converting cosA to sinA, etc.,
as follows. Manipulate the top equation in Eq. (14.17)

cosA =
cos a− cos b cos c

sin b sin c

cos2A =
(cos a− cos b cos c)2

sin2 b sin2 c

sin2A = 1− (cos a− cos b cos c)2

sin2 b sin2 c
.
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From the second equation in Eq. (14.17)

sin2B = 1− (cos b− cos c cos a)2

sin2 c sin2 a

Forming sin2A/ sin2B, it is then a manner of algebra to show that

sin2A

sin2B
=

sin2 a

sin2 b
or

sinA

sin a
=

sinB

sin b
,

where the positive square root is taken because all the angles are ≤ π. There are actually
a total of three such relationships that can be formed from Eq. (14.17). They are

sinA

sin a
=

sinB

sin b
=

sinC

sin c
.

These constitute the law of sines for spherical triangles.

14.5.2 Least-Squares Analysis

Least-squares analysis was used in Chapter 6 to fit the results of detailed radiative trans-
fer computations to simple relationships suggested by the QSSA. It has also been used
extensively to develop empirical relationships between radiometric quantities and the con-
centration of Chlorophyll a or the pigment concentration. Here we describe and develop
the mathematics of least-squares analysis.

Least-Squares is a method of fitting measurements to a given functional form. When
the functional form is linear, the method is also called linear regression. For example,
suppose that we are given a set of N measurements of a variable y, i.e., yi, i = 1 → N ,
corresponding respectively to known values of the variable x, xi. We assume here that the
xi values are known exactly (but this is not always the case). If we believe there is a linear
relationship between x and y, e.g., y = a+ bx, how do we find the “best” values of a and
b? Of course we cannot answer this until we have a definition of “best.” In the method
of least-squares, best means that we minimize the average of

(
yi − y(e)

i

)2
, where y

(e)
i is the

“expected” value of y given x = xi, over the data set, i.e., minimize

S2 ,
1

N

N∑

i=1

(
yi − y(e)

i

)2
=

N∑

i=1

[yi − (a+ bxi)]
2

How do we do this? We note S2 is a function of a and b, i.e., S2 = S2(a, b), so we minimize
S in the way we normally minimize a function:24 we require

∂S2

∂a
= 0 and

∂S2

∂b
= 0.

24The subscript “2” on S is to remind us that we are minimizing the square of yi− (a+ bxi), rather than
some other measure of the deviation.
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Carrying out the indicated differentiation results in

N∑

i=1

[yi − (a+ bxi)] = 0, or Na+ b
N∑

i=1

xi =
N∑

i=1

yi

N∑

i=1

xi[yi − (a+ bxi)] = 0, or a

N∑

i=1

xi + b

N∑

i=1

x2
i =

N∑

i=1

xiyi

Let
N∑

i=1

xi = N〈x〉,

N∑

i=1

x2
i = N〈x2〉,

N∑

i=1

yi = N〈y〉,

N∑

i=1

xiyy = N〈xy〉.

Then, the solution for a and b is

a =
〈x2〉〈y〉 − 〈x〉〈xy〉
〈x2〉 − 〈x〉2 and b =

〈xy〉 − 〈x〉〈y〉
〈x2〉 − 〈x〉2 .

These equations also apply directly to several other kinds of fitting functions. For ex-
ample, suppose we believe that x and y should be related by y = AxB. Then taking
logarithms, log(y) = log(A) +B log(x). So if we carry out the linear analysis on the pairs(

log(yi), log(xi)
)
, we have log(A) = a and B = b. Similarly, if we believe y = A exp(Bx),

then `n(y) = `n(A) +Bx, and using the pairing
(
`n(yi), xi

)
, yields `n(A) = a, and B = b.

Generally, (a+bxi) can be replaced by any function y = f(yi, a, b · · · ), e.g., y = a+bx+cx2,
etc., and the procedure can be carried out as above; however, solving for a, b, · · · , may be
challenging. When the linear function yi = (a + bxi) is assumed, the resulting linear re-
lationship is often referred to as the regression line. Here, we refer to this version of the
least squares method as ordinary least squares (OLS).

What if we assumed that the yi’s were exact, but not the xi’s? Letting x
(e)
i be the

expected value of xi given yi, using the same model y = a′ + b′x, we could minimize∑
i

(
xi − x(e)

i

)2
or

S′2 ,
1

N

N∑

i=1

(
xi − x(e)

i

)2
=

N∑

i=1

[
xi −

(
yi − a′
b′

)]2

.

Carrying out the minimization of S′2 as we did for S2 above yields

a′ = 〈y〉 − b′〈x〉 and b′ =
〈y2〉 − 〈y〉2
〈xy〉 − 〈x〉〈y〉 .
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We call this version of the least squares method, backward least squares (BLS).

We can also consider cases where both xi and yi are in error, which is typical of empirical
ocean color data, e.g., the pigment concentration as a function of radiance ratios (see Figure
6.64 and 6.65). One of the more popular regression method is called reduced major axis
regression (RMA). In this case one minimizes

SRMA ,
1

N

N∑

i=1

(
xi − x(e)

i

)(
yi − y(e)

i

)
, with the constraint y

(e)
i = aRMA + bRMAx

(e)
i .

Although tricky to carry out,25 the result is

aRMA = 〈y〉 − bRMA〈x〉 and bRMA = ±
√
bb′,

where the sign of the square root is the same as the sign of 〈xy〉 − 〈x〉〈y〉, b is the result
of the OLS and b′, the BLS. An example of the difference between various least squares
approaches is shown below, where we fit the CZCS blue-green pigment algorithm in Figure

lo
g 1
0(C

P)

−2.00

−1.50

−1.00

−0.50

0.00

0.50

1.00

log10(R)
−0.25 0.00 0.25 0.50 0.75 1.00

6.64 with both the OLS (solid line) and the BLS (dashed line) methods. Clearly, large
differences in the resulting fit are not to be expected among the various approaches.

In the analysis of experimental data using the ordinary least squares, the statistical
theory that is underlying the method assumes that the xi values are exact, and the yi
values have errors that are normally distributed with a standard deviation σ, i.e., N(〈y〉, σ),
with σ assumed here to be the same for all values of y. However, often some values of yi
are more accurately measured than others. If we know the standard deviation σi for each

25One must use the method of Lagrange multipliers to effect the minimization of SRMA.
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of the individual data points, then we can take into account the accuracy variation by
minimizing

S2 =
1

N

N∑

i=1

(
yi − (a+ bxi)

σi

)2

.

In this case, points with smaller standard deviations are weighted more heavily than those
with larger σ’s.

Finally, the case where both the xi’s and the yi’s have normally-distributed errors char-
acterized by σx and σy, respectively (assumed to be independent of i), has been worked
out and is called Deming regression. The resulting aD and bD in y = aD + bDx are then
functions of both σx and σy. Letting δ = σy/σx, and

Sxx , 〈x2〉 − 〈x〉2,
Syy , 〈y2〉 − 〈y〉2,
Sxy , 〈xy〉 − 〈x〉〈y〉,

it is found that
aD = 〈y〉 − bD〈y〉

where

bD =
Syy − δSxx +

√
(Syy − δSxx)2 + 4δS2

xy

2Sxy
.

One can easily verify that for large δ (large error in the yi’s compared to the xi’s), bD → b,
while for small δ (small error in the yi’s compared to the xi’s), bD → b′.

Anyone with experience with linear regression will recall cases in which a few data points
(or even one point) that appear to be outliers (i.e., do not seem to follow the “trend” of
the data) will strongly influence the regression slope (the parameter b). In the ordinary
least squares the assumption that the errors in yi are normally distributed implies that
deviations of several σ’s, from their likely values are highly improbable, so they are treated
by the method as being correct (i.e., valid). This causes data outliers to significantly affect
the resulting a and b. In contrast, choosing to minimize

SAbs ,
1

N

N∑

i=1

∣∣yi − (a+ bxi)
∣∣,

implicitly assumes that the error in the yi’s is exponentially distributed, which implies
larger deviations are more likely than for normally-distributed errors with the same σ.
Minimizing SAbs provides values of a and b that are more tolerant to outliers. Clearly, in
data analysis it would be valuable to have some understanding of the distribution of the
error.
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14.5.3 Eigenvalues and Eigenfunctions of a Square Matrix

The representation we choose for writing a vector, e.g., in two dimensions we write an
arbitrary vector ~V as ~V = V1ê1 + V2ê2, is called a basis and the unit vectors ê1 and ê2 are
called the basis vectors. In matrix form the basis vectors are written

ê1 =

(
1
0

)
and ê2 =

(
0
1

)
, and the vector V =

(
V1

V2

)
.

Usually, one chooses basis vectors so that ê1 • ê2 = 0, i.e., an orthogonal basis, but this is
not necessary, it is only a convenience.

Consider a matrixM defined to operate on vectors. (This matrix will typically represent
some physical process, for example ~V might be a displacement, and M ~V a force.) To
understand the action of the matrix on a given vector, it is useful to first examine its
action on the basis vectors. Writing

M =

(
m11 m12

m21 m22

)
,

It is clear that

M ê1 = m11ê1 +m21ê2, and M ê2 = m12ê1 +m22ê2. (14.18)

so
M ~V = M(V1ê1 + V2ê2)

= V1(m11ê1 +m21ê2) + V2(m12ê1 +m22ê2)

= (m11V1 +m12V2)ê1 + (m21V1 +m22V2)ê2, or

M ~V =

(
m11V1 +m12V2

m21V1 +m22V2

)
.

(14.19)

Of course the last step could have been carried out by direct multiplication of the matrix
M and the ~V using its matrix representation V ; however, we prefer to use Eq. (14.18)
to explicitly demonstrate that knowing the action of M on the basis vectors, provides its
action on any vector in the space.

We now ask an important question: are there special directions (or vectors) such that
when the matrix operates on a vector pointing in one of these special directions, the
resulting vector is the same direction, with only its magnitude changed? Or restated
mathematically, can we find a unit vector in our space of two-dimensional vectors, êa, such
that

M êa = λaêa
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where λa is a constant? Note that simplicity of this relationship compared to that in Eqs.
(14.18). Such vectors are easy to find. First expand the unknown vector using the basis
vectors, i.e., êa = αê1 + βê2, where α2 + β2 = 1 because êa is a unit vector. Then, find the
action of M on êa:

M êa = M(αê1 + βê2)

= α(m11ê1 +m21ê2) + β(m12ê1 +m22ê2)

= λaêa = λa(αê1 + βê2),

so,

α[(m11 − λa)ê1 +m21ê2] + β[m12ê1 + (m22 − λa)ê2] = 0.

Taking the scalar product of this last equation with ê1 and ê2, yields the set of simultaneous
equations,

(m11 − λa)α+m12β = 0

m21α+ (m22 − λa)β = 0
(14.20)

This set of equations has a solution, other than α = β = 0, only if the determinate of the
coefficients of α and β vanishes,26 i.e.,

∣∣∣∣
(m11 − λa) m12

m21 (m22 − λa)

∣∣∣∣ = 0. (14.21)

This determinant is a quadratic equation, which (usually) yields two distinct values of λa.
We will continue to call one of these λa and will call the other λb. The two values λa and
λb are called the eigenvalues of M . Given the eigenvalues, we can find α and β (there are
two sets, one for êa corresponding to λa, and another êb corresponding to λb), by inserting
the λ’s into Eq. (14.20).27 For example, for λa we have

β = −(m11 − λa)
m12

α,

with a similar equation with λb. This relationship is combined with α2 + β2 = 1 to
provide α and β. The resulting vectors êa and êb are called the eigenvectors of M . If

26Recall from algebra that the solution to the set of equations

a11x+ a12y = b1

a21x+ a22y = b2
is x =

∣∣∣∣b1 a12

b2 a22

∣∣∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣ and y =

∣∣∣∣a11 b1
a21 b2

∣∣∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣ .
If b1 = b2 = 0, yielding zero for the numerators in the solution, in order that there be a solution, other
than x = y = 0, the denominators must also vanish, i.e., the determinate of the coefficients of x and y must
vanish.

27Of course, only the ratio of the components is needed to establish the direction of êa.
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the matrix M is real and symmetric, the eigenvalues and eigenvectors have some special
properties: (1) the eigenvalues and eigenvectors are real; and (2) the eigenvectors are
mutually perpendicular.28

Once we have derived the eigenvectors êa and êb, we can write vectors in terms of these
rather than ê1 and ê2, i.e., ~V = Vaêa + Vbêb, then the action of M on ~V is

M ~V = M(Vaêa + Vbêb) = Vaλaêa + Vbλbêb. (14.22)

Clearly, Eq. (14.22) is much simpler than Eq. (14.19). In fact, if we represent the new
basis vectors as column vectors in the usual manner, i.e.,

êa =

(
1
0

)
and êb =

(
0
1

)
, so in this system ~V =

(
Va
Vb

)
,

then

M ~V =

(
λaVa
λbVb

)
= λ

(
Va
Vb

)
, where λ =

(
λa 0
0 λb

)
(14.23)

Thus, when the new basis vectors are chosen to be the eigenfunctions of M , the action of
M on a vector ~V , expanded in terms of the eigenfunctions, is the same as the action of a
diagonal matrix λ, which has the eigenvalues along the diagonal.29

28These properties are easy to demonstrate.

M êa = λaêa =⇒ ˜̂e∗bM êa = λa ˜̂e∗b êa
M êb = λbêb =⇒ ˜̂e∗aM êb = λb ˜̂e∗aêb =⇒ ˜̂̃eaM∗ê∗b = λ∗b

˜̂̃
eaê∗b =⇒ ˜̂e∗bM̃∗êa = λ∗b ˜̂e∗b êa

Subtract the last of the upper equations from the last of the lower, and the result is˜̂e∗bM̃∗êa − ˜̂e∗bM êa = (λ∗b − λa) ˜̂e∗b êa.
If M is real and symmetric, M̃∗ = M , and the left hand side of the above equation vanishes. If we choose
êb to be êa, then the last equation reads (λ∗a − λa) ˜̂e∗aêa = 0, but ˜̂e∗aêa cannot vanish (its equal to 1), so
(λ∗a = λa), i.e., λa is real. But, given the way êa and êb are determined, if λa is real, then êa must be also

be real, i.e., êa = ê∗a, etc. But in this case, as long as (λb 6= λa), ˜̂ebêa = 0, showing that êb • êa = 0, and
êb is perpendicular to êa. Aside: the reader can easily verify by direct calculation with Eq. (14.21), that if
m12 = m21, and the mij ’s are real, then λa is real.

29This can be shown directly. Consider a matrix T , in which the columns are the eigenvectors, i.e.,

T =

(
αa αb
βa βb

)
, which has the property, T̃ T = T T̃ = 1.

Direct calculation shows that

T̃MT = λwhere λ =

(
λa 0
0 λb

)
,

and so

T̃ ~V =

(
αa αb
βa βb

)(
V1

V2

)
=

(
V1αa + V2βa
V1αb + V2βb

)
=

(
êa • ~V
êb • ~V

)
=

(
Va
Vb

)
.
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The procedure we have carried out here can be extended to any number of dimensions.
In higher dimensions, the number of eigenvalues will equal the dimensionality of the space,
i.e., in the generalization to N dimensions, Eq. (14.21) will be an N ×N determinant that
when expanded will be an N th order polynomial in λ. The algebra becomes more tedious
a N increases, but the procedure is the same as outlined here.

Although little used in the text, nevertheless this procedure was implicit in our discussion
of the polarizability tensor in Section 1.7.5. There, we wrote the molecular polarizability
of an anisotropic molecule, e.g., a diatomic molecule, as

α =



αx 0 0
0 αy 0
0 0 αz


 =



α⊥ 0 0
0 α⊥ 0

0 0 α‖


 ,

whereas in general we would have

α =



αxx αxy αxz
αyx αyy αyz
αzx αzy αzz


 .

Thus, we assumed that we had already performed the procedure to find a set of coordinate
axes for which α was rendered diagonal. (We didn’t actually carry out the procedure, but
knowing that such a set of axes had to exist, we surmised that they had to be symmetry
axes of the molecule.)

14.5.4 Random Variables and the Central Limit Theorem

In order to understand the development of Monte Carlo methods for solving the radiative
transfer equation we need some basics concerning the description of random variables.
Random variables are basically variables whose values cannot be determined exactly from
one sample to the next. For example, if one places a macroscopic ball in a vat of (still)
water, and takes a sequence of photographs of it, its position will remain fixed in time,
i.e., it will not move and a prediction of its position is highly accurate. However, if the
ball is microscopic and the same experiment is preformed, the position of the ball will
be different in each photograph (due to Brownian motion) — its position will appear to
follow an erratic path. In the latter case, the position coordinates (x, y) are both random
variables, i.e., they cannot be accurately predicted.

Written this way, (T̃MT )(T̃ ~V ) = λT̃ ~V ), and the transformation T̃MT turns M into the diagonal matrix

λ. General vectors ~V before the transformation are transformed into T̃ ~V .
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14.5.4.1 Random Variables

We begin our discussion of random variables by looking at an example we have seen before
in the text, and for which we know the answer. Consider a non-scattering medium, i.e.,
one that only has absorption. Let photons enter the medium. Individual photons travel a
distance X before being absorbed, with X, of course, being different for each photon. We
want to describe the distribution of distances traveled in the medium before absorption.
How do we do it? We perform the experiment and simply tally the values of X for
each of a large number (N) of photons, counting the number that are absorbed within
various intervals of distance into the medium, i.e., we determine nx, the number for which
X ≤ x ≤ X + ∆X, for the full range of X from 0 → ∞. Then, the probability that
X ≤ x ≤ X + ∆X is defined by

∆PX(x) , lim
N→∞

nx
N
,

and the probability density of X as

pX(x) ,
∆PX(x)

∆X
.

As we let the intervals become small, i,.e., ∆X → 0,

pX(x)→ dPX(x)

dX
.

This is the probability density of paths that terminate at x. Since all paths must terminate
somewhere, a requirement for P is

∫ ∞

0
dPX(x) =

∫ ∞

0
pX(x) dx = 1,

where a probability of unity represents absolute certainty. If the above integral is satisfied,
pX(x) is said to be normalized, and normalization is a requirement for all probability
densities. In probability theory one defines the expected value or expectation of x to be

E [x] ,
∫ ∞

0
x dPx(x) =

∫ ∞

0
x px(x) dx,

and the variance of X as
V[x] , E

[
(x− E [x])2

]
.

The expectation of x is often designated by µx, so V[x] = E [(x− µx)2]

What distance on the average do photons travel in the medium before absorption? Given
all of the x’s in our experiment, the average of the measurements is

〈x〉 =
1

N

N∑

i=1

xi.
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Consider the expectation of the average, E [〈x〉],

E [〈x〉] =
1

N

N∑

i=1

E [xi] =
1

N
NE [x] = E [x],

because the expected values of any of the samples (labeled by i) are identical. When the
expectation value of an estimate for a variable is equal to the actual expectation value
of the variable, the estimate is said to be an unbiased estimate. Thus, 〈x〉 is an unbiased
estimate of E [x] and, because of this, the expectation of x is often referred to as the average
of x. Likewise, consider

S2 ,
1

N

N∑

i=1

(xi − 〈x〉)2.

A straightforward but tedious calculation shows that

E [S2] =

(
1− 1

N

)
V[x],

so S2 is not an unbiased estimate of the variance of x, but

N

N − 1
S2

is an unbiased estimate, i.e., its expectation is equal to the variance. The square root of
the variance is called the standard deviation denoted by σ, i.e., σ ,

√
V[x].

In general, we would have to perform an experiment to determine pX(x); however, in
the example being used for discussion here, we can determine it from the definition of
the absorption coefficient. From the definition of the absorption coefficient in Chapter 2,
in a medium, if there are n photons present in a beam, the change in that number due
to absorption dn in traversing a distance dx is dn = −na dx. Thus, if N photons are
introduced at x = 0, the number remaining at any value of x is

∫ n

N

dn

n
= −

∫ x

0
a dx or n(x) = N exp(−ax).

We want the probability of absorption between x and x+ dx. If we introduce N photons
at x = 0, this is just

dPX =
number absorbed in dx

N
=
n(x)− n(x+ dx)

N
= a exp(−ax) dx,

so pX(x) = a exp(−ax).30 Now, we can calculate some expectation values. First, let’s
calculate the expectation of x. This is just

E [x] =

∫ ∞

0
x exp(−ax) dx =

1

a
,

30Note that
∫∞

0
pX(x) dx =

∫∞
0

a exp(−ax) dx = 1, so the density function automatically satisfies the
normalization requirement.
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or loosely, the average distance traveled by a photon in the medium before absorption is
just 1/a. This is sometimes called the mean free path for absorption.31 What about the
variance? We will need

E [x2] =

∫ ∞

0
x2 exp(−ax) dx =

2

a2
,

because
V[x] = E

[
(x− E [x])2

]
= E

[
x2 − 2xE [x] + E [x]2

]
.

Since E [x] is just a number, E
[
2xE [x]

]
= 2E [x]2, so

V[x] = E [x2]− E [x]2 =
2

a2
−
(

1

a

)2

=
1

a2
, and σ =

1

a
.

14.5.4.2 The Central Limit Theorem

Assume we are given random variables x1, x2 , . . . xN distributed according to the prob-
ability densities px1(x1), px2(x2), . . . pxN (xN ). We wish to find the probability density
px1+x2···xN for the sum x1+ x2 + · · · + xN . In particular, we are most interested in the
special case where all of the xi’s have the same probability density, px(x). To effect this
we consider the expectation of exp(ikx), i.e.,

E [exp(ikx)] =

∫ +∞

−∞
px(x) exp(ikx) dx , Φx(k). (14.24)

The function Φx(k) is called the characteristic function. One immediately recognizes that
Φx(k) and px(x) are Fourier transform pairs, i.e.,32

px(x) =
1

2π

∫ +∞

−∞
Φx(k) exp(−ikx) dk.

31Likewise, in a scattering medium the mean free path between scattering events is 1/b. When both
absorption and scattering are present, the mean free path between interactions (absorption or scattering)
is 1/(a+ b) = 1/c.

32In the time domain, Fourier transform pairs h(t) and ĥ(f) are defined through

ĥ(f) =

∫ +∞

−∞
h(t) exp(2πift) dt and h(t) =

∫ +∞

−∞
ĥ(f) exp(−2πift) df.

In the usual convention, where one uses angular frequency ω = 2πf , these become

ĥ(ω) =

∫ +∞

−∞
h(t) exp(iωt) dt and h(t) =

1

2π

∫ +∞

−∞
ĥ(ω) exp(−ωt) dω.

If the factors of 2π are left out of the arguments of the exponentials, then a factor of 1/(2π) must be
introduced in one to the integrals of the pair. Alternatively, the factor 1/

√
2π could appear in both. All

of these conventions are used making for a somewhat confused literature on Fourier transforms. Make sure
you know the convention employed in any source used as reference.
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Often it is easier to work with Φ compared to p. Consider the sum of two random variables

Φx1+x2(k) =

∫ +∞

−∞

∫ +∞

−∞
px1(x1)px2(x2) exp[ik(x1 + x2)] dx1 dx2

=

(∫ +∞

−∞
px1(x1) exp(ikx1) dx1

)(∫ +∞

−∞
px2(x2) exp(ikx2) dx2

)

= Φx1(k)Φx2(k),

and if x1 and x2 have the same density px(x), then Φx1+x2(k) = [Φx(k)]2.

Another feature of the characteristic function is that it generates moments of the dis-
tribution. Expand the exponential in Eq. (14.24), noting that k is a constant, and we
get

E [exp(ikx)] = 1 + ikE [x]− k2

2
E [x2]− ik

3

6
E [x3] · · ·

= 1 + ik〈x〉 − k2

2
〈x2〉 − ik

3

6
〈x3〉 · · ·

Thus,
Φx(0) = 1

Φ′x(0) = i〈x〉
Φ′′x(0) = −〈x2〉
Φ′′′x (0) = −i〈x3〉

...

(14.25)

where the prime indicates differentiation with respect to k. So repeated differentiation of
the characteristic function n times with respect to k generates the moment 〈xn〉 of the
probability density.

Now we are ready to answer the question posed at the beginning of this section: We
wish to find the probability density px1+x2···xN for the sum S = x1+ x2 + · · · + xN , where
all of the xi’s have the same probability density, px(x). But, rather than this let’s find the
density for the sum

y =
x1 + x2 + x3 + · · ·+ xN −N〈x〉√

Nσ2
=
S −N〈x〉√

Nσ2

=
N∑

i=1

xi − 〈xi〉√
Nσ2

=
N∑

i=1

yi√
N
, where yi =

xi − 〈xi〉
σ

and σ2 = 〈x2
i 〉 − 〈xi〉2.
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Note, the variable yi has zero mean, and unit variance. With this substitution, Φy(k) =
[Φyi/

√
N (k)]N , but usng Eq. (14.25)

Φy(k) = [Φyi/
√
N (k)]N =

[
1 + ik

〈yi〉√
N
− k2

2

〈y2
i 〉
N
− k3

6

〈x3
i 〉

N3/2
· · ·
]N

=

[
1− k2

2

〈y2
i 〉
N
− k3

6

〈x3
i 〉

N3/2
· · ·
]N

.

To find the limiting distribution for large values of N , we need to evaluate the last expres-
sion as N →∞, i.e., to find limN→∞[Φyi/

√
N (k)]N . This can be done most easily by taking

the natural logarithm of the equation, i.e.,

`n[Φyi/
√
N (k)]N = N`n[Φyi/

√
N (k)]

= N`n

[
1− k2

2

〈y2
i 〉
N
− k3

6

〈x3
i 〉

N3/2
· · ·
]
.

Taking the direct limit of this yields the indeterminate 0 ×∞, so we rewrite it in a form
to be able to use L’Hospital’s rule for limits:

`n[Φyi/
√
N (k)]N =

1

1/N
`n

[
1− k2

2

〈y2
i 〉
N
− k3

6

〈x3
i 〉

N3/2
· · ·
]

and the indeterminate is now 0/0, and we can use the rule directly. Carrying this out we
find

lim
N→∞

`n[Φyi/
√
N (k)]N → −k

2

2
or Φy(k) = [Φyi/

√
N (k)]N → exp

[
−k

2

2

]

Now

py(y) =
1

2π

∫ +∞

−∞
Φy(k) exp(−ikx) dk

=
1

2π

∫ +∞

−∞
exp

(
−k

2

2

)
exp(−ikx) dk

=
1√
2π

exp

(
−y

2

2

)

Noting that pS(S) dS = py(y) dy,

pS(S) =
1√

2πNσ2
exp

(
−(S −N〈x〉)2

2Nσ2

)
.

Thus, S has a normal distribution33 with mean N〈x〉 and variance Nσ2. This is the
Central Limit Theorem. Note that 〈S〉 = N〈x〉 =⇒ 〈x〉 = 〈S〉/N . Also, σ2

S/N , 〈(S/N −
33Writing the normal probability density as px(x) dx = (1/

√
2πs2) exp[−(x−µ)2/(2s2)] dx, one can show
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〈S〉/N)2〉 = (〈S2〉 − 〈S〉2)/N2 = Nσ2/N2 = σ2/N , so the variance in S/N = 〈x〉 is σ2/N
and the standard deviation is σ/

√
N .

This theorem has wide application in physics and mathematics. For example, if one
measures a quantity x with an error that is distributed according to some distribution
having a standard deviation σ, then the mean of a large number N of measurements of x
is an unbiased estimator of x and the standard deviation of the mean is σ/

√
N . We used

this fact in assessing the variance of integrals computed using the Monte Carlo method.

Another interesting application is the generation of random numbers with a normal
distribution. Assume that we can generate random numbers x with a uniform distribution
on the interval [0,r], i.e., p(x) = 1/r. Then the mean x is r/2, and the variance in x is
σ2 =

∫ r
0 x

2 dx−〈x〉2 = r2/3− r2/4 = r2/12. According to the Central Limit Theorem, the

sum
∑N

i=1 xi−N〈x〉 =
∑N

i=1 xi−Nr/2 =
∑N

i=1(xi−r/2) approaches a normal distribution
with mean zero and variance Nσ2 = Nr2/12. Say we want the variance of the normal
distribution σ2

N to be a given number. Then σ2
N = Nr2/12, and this fixes r. How do we

generate random numbers on the interval 0 → r? Just use a random number generator
that is U[0,1] providing uniform ρ’s on the interval 0 to 1 (there are plenty of these) and
multiply each ρ by r. Do this N times, sum the result to give S, which will be N[(r/2),σ2

N ].
To get N[0,σ2

N ], just subtract r/2 from each value of rρ. To generate N[0,1], we need
r =

√
12/N . So one generates ρi from U[0,1], takes

ρN =

√(
12

N

) N∑

i=1

(
ρi −

1

2

)
,

and the resulting ρN ’s will be N[0,1]. This is the method used to generate the noise models
in Chapter 11.

14.5.5 Monte Carlo Evaluation of Integrals

It was shown in Chapter 2 that the solution to the radiative transfer equation can be
written as a multi-dimensional integral. The integral was evaluated there using Monte
Carlo methods and provided a basis for solution of the radiative transfer equation by
Monte Carlo techniques. In this section we will show how one can perform an integration

by direct integration that

〈x〉 =

∫ +∞

−∞
x px(x) dx = µ and 〈x2〉 =

∫ +∞

−∞
x2 px(x) dx = s2 + µ2,

so σx = 〈x2〉 − µ2 = s2.
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numerically using random variables (the Monte Carlo method), determine the variance
of the Monte Carlo estimate of an integral, and discuss the possibility of reducing the
variance.

14.5.5.1 Basic Ideas

Assume that we want to evaluate the integral I =
∫ 1

0 f(x) dx. Recall that the integral is
defined as follows. Divide the x axis between 0 and 1 into N intervals and let ∆x = 1/N ,
then

I , lim
N→∞

N∑

i=1

f(ξi)∆x,

where ξi is a point on the x axis anywhere in the ith interval, i.e., xi−1 ≤ ξi ≤ xi.34 Thus,
a straightforward procedure for evaluating the integral numerically is

∫ 1

0
f(x) dx = lim

N→∞

1

N

N∑

i=1

f(ξi),

i.e., it is just the value of f in each interval averaged over all of the intervals.35 The choice
of the position of ξi within the intervals is arbitrary, but certain choices yield familiar
approximations. For example, if ξi is in the center of the interval, this is just the trapezoidal
rule for integration.

How do we use random variables to evaluate the integral? It is simple. Let X be a
random variable on the interval 0→ 1. Assume further that X is uniformly distributed on
the interval, i.e., pX(x) = 1. Then,

I =

∫ 1

0
f(x) dx =

∫ 1

0
pX(x)f(x) dx = E [f ].

So, we get the value of the integral by computing the expectation of f(x) when x is a
uniformly distributed random variable. How do we do this in practice? There are many
freely-available random number generators36 for computers that provide a random sequence
on the interval 0 → 1 with a uniform distribution (denoted U[0,1]). Using one of these, a

34This is not the most general definition of the integral. More generally, the intervals (∆x’s) do not have
to all be the same size, but then in the limiting procedure one must require that the largest internal goes
to zero as N →∞.

35Note, the “1” in the equation has the same units as x.
36Really pseudo random number generators, as they always produce the same sequence of random numbers

starting from a given random number.
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sequence of N random values of X, i.e., x1, x2, . . ., xN , are selected, and used to compute

〈f〉 =
1

N

N∑

i=1

f(xi),

which is an unbiased estimate of E [f ] and thus of I.

Now, what is the variance in I? Here we need to appeal to the Central Limit Theorem,
which roughly states that if gi, i = 1, N are random variables all with the same distribution,
then the variance of their sum, σ2

Sum, is the individual variance of the g’s, σ2
g , divided by

N . Thus, the variance in the estimate of I above is

V[I] =
1

N
V[f ] or σ2

I =
1

N
σ2
f .

This shows that the “spread” of I values from multiple Monte Carlo evaluations of I,37

roughly
√
V[I], is proportional to 1/

√
N . Loosely speaking, this is the error in any single

evaluation of I. Thus, to get an order of magnitude improvement in the accuracy of the
value of the integral, i.e., one decimal point, N must increase by a factor of 100.38 An
unbiased estimate of V[f ] is simply S2

f/(N − 1), i.e.,

V[f ] = σ2
f ≈

N

N − 1
S2
f =

1

N − 1

N∑

i=1

(
f(xi)− 〈f〉

)2
=

1

N − 1

[(
N∑

i=1

f(xi)
2

)
− 〈f〉2

]
,

so an unbiased estimate of the variance of the Monte Carlo estimate of the integral is

σ2
I =

(
1

N

)(
1

N − 1

)[( N∑

i=1

f(xi)
2

)
− 〈f〉2

]
.

There are other approaches that can be employed in Monte Carlo evaluations. For
example, what if we wanted to evaluate

I =

∫ 1

0
f(x)w(x) dx ?

Following the above procedure, we would evaluate it as follows:

I =

∫ 1

0
f(x)w(x) dx =

∫ 1

0
f(x)w(x)pX(x) dx = E [fw] ≈ 1

N

N∑

i=1

f(xi)w(xi)

37Of course, with different sets of random values of x.
38For reference, the error in the trapezoidal rule for this integral is f ′′(ζ)/(12N2), where ζ is some

(unknown) x between 0 and 1, and N is the number of intervals. Noting that the number of function
evaluations for Monte Carlo and trapezoidal integration is N (roughly the “cost” of doing the integral), the
trapezoidal rule is clearly far more accurate for the same number of function evaluations.
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where the N values of x (xi, i = 1, N) are sampled from pX(x), the uniform distribution.
But there is another way (actually many other ways). Assuming that the integral Iw ,∫ 1

0 w(x) dx < ∞ (it better be, or the desired integral will probably diverge as well), we
could define a new probability density

pw(x) ,
w(x)

Iw
,

and write the desired integral as

I = Iw

∫ 1

0
f(x)pw(x) dx = IwEpw [f ] ≈ Iw

N

N∑

i=1

f(xi),

where the N values of x (xi, i = 1, N) are sampled from pw(x).39 But, in practice, how
does one sample from the distribution pw(x)? It’s easy. We already have a random number
generator U[0,1] generating numbers with a uniform density (call it pU (y)). Start with the
uniform distribution and demand that

pw(x) dx = pU (y) dy = dy,

or in words, we want the probability that x is between x and x+ dx to be the same as the
probability that y is between y and y+dy. Integrate this from y = 0→ ρi and x = 0→ xi:

ρi =

∫ xi

0
pw(x) dx.

This relates xi sampled from pw(x) to ρi sampled from pU (y). For our example, if w(x) = x,
then, Iw = 1/2, pw(x) = 2x and

ρi =

∫ xi

0
2x dx = x2

i or xi =
√
ρi.

So, selecting ρi, i = 1→ N , from U[0,1] and taking xi to be
√
ρi we have

I =

∫ 1

0
x f(x) dx ≈ 1

2N

N∑

i=1

f(xi).

A second example relevant to radiative transfer is

I =

∫ ∞

0
f(x) exp(−ax) dx,

39Here we add the subscript “pw” to E to indicate that the expectation is with respect to the density pw.
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where w(x) = exp(−ax). Here, Iw = 1/a, pw(x) = a exp(−ax), so

ρi =

∫ xi

0
a exp(−ax) dx = 1− exp(−axi) or xi = −1

a
`n(1− ρi),

and

I =

∫ ∞

0
f(x) exp(−ax) dx ≈ 1

aN

N∑

i=1

f(xi),

where ρi is sampled from U[0,1].40

14.5.5.2 Example of an Evaluation

As an example of the evaluation of an integral consider

I =

∫ ∞

0
x exp(−x) dx.

Here, we take f(x) = x and use p(x) = exp(−x). Then I = Ep[x] and σ2
f = Ep[x2]−

(
Ep[x]

)2
.

For this case we know the answers already by direct integration: I = 1 and σ2
f = 1. The

random numbers ρi are chosen from U[0,1] and the xi-values are given by xi = −`n(ρi).
The integral is then approximated by

I = Ep[x] ≈
N∑

i=1

xi and Ep[x2] ≈
N∑

i=1

x2
i .

We now perform the following numerical experiment. Choose a value for N and compute an
estimate of I and σ2

f . Carry this out 100 times yielding 100 estimates for I. Compute the

mean I (IAvg), its variance (σ2
I ), the minimum I (IMin) and the maximum (IMax) values of

I over the 100 evaluations. The following table provides the results of this exercise.41 One

N = 101 N = 102 N = 103 N = 104

IAvg 0.986 1.022 1.001 1.000

IMin 0.375 0.777 0.899 0.976

IMax 2.052 1.332 1.083 1.026

σf 0.848 0.998 0.996 1.000

σI 0.341 0.101 0.032 0.009

40Notice that ρ and 1− ρ have the same distribution, therefore we could let xi = − 1
a
`n(ρi) as well.

41The value of σ2
f in the table is the average σ2

f over the 100 evaluations and provides an unbiased estimate
of
∫∞

0
x2 exp(−x) dx = σ2

f + I2.
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can make several conclusions from this experiment: first, using a small N can result in large
fluctuations in the result as indicated by IMin and IMax; second, to a good approximation
σI = σf/

√
N ; and finally very accurate results can be obtained for sufficiently large N .

14.5.5.3 Reduction of Variance

Sometimes it is possible to reduce the variance by sampling from a different probability
density. Consider again, I =

∫ 1
0 f(x) dx =

∫ 1
0 f(x)p(x) dx = Ep[f ], where, as earlier, the

“p” subscript on E (and σ2
I below) denotes expectation when p(x) is the density function

(here uniform, but we still include it for clarity). The variance in the integral is

σ2
Ip =

Ep[f2]−
(
Ep[f ]

)2

N
.

Now let’s change the sampling density from p(x) to p̃(x) as follows:

I =

∫ 1

0
f(x)p(x) dx =

∫ 1

0

[
p(x)

p̃(x)

]
f(x)p̃(x) dx ,

∫ 1

0
w(x)f(x)p̃(x) dx = Ep̃[wf ].

The variance in I in this case is

σ2
Ip̃

=
Ep̃[w2f2]−

(
Ep̃[wf ]

)2

N
.

Now,

Ep̃[w2f2] =

∫ 1

0

[
w(x)f(x)

]2
p̃(x) dx =

∫ 1

0

1

p̃(x)

[
f(x)

]2
dx =

∫ 1

0

1

p̃(x)

[
f(x)

]2
p(x) dx,

but if p̃(x) is large where f(x) is large,

∫ 1

0

1

p̃(x)

[
f(x)

]2
p(x) dx <

∫ 1

0

[
f(x)

]2
p(x) dx = Ep[f2].

In this case,
Ep̃[w2f2] < Ep[f2] but Ep̃[wf ] = Ep[f ]

so σ2
Ip̃
< σ2

Ip
, i.e., the variance in the estimate is reduced if the sampling density p(x) is

replaced by one
(
p̃(x)

)
that has a shape similar to f(x).42 Thus, we can reduce the variance

by choosing a p̃ that is large where f(x) is large, yielding many samples there, and small
where f(x) is small, providing sparce sampling in those regions. The strategy of using such
a p̃ is often referred to as importance sampling.

42This would suggest that the best p̃ would be f itself. Unfortunately, the probability density must be
normalized, and if p̃ were taken to be f itself, that would require knowing

∫ 1

0
f(x) dx, just the integral we

are trying to evaluate.
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14.5.5.4 Singular Integrands

Although one might not expect it, the Monte Carlo method can also be used even when
the integrand is singular. In such cases, one can try to shift the singularity to the sampling
function, e.g., consider

I =

∫ 1

0

f(x)√
x
dx.

If f(x) is finite on the interval [0, 1], because the singularity is so mild, the integral is finite
even though the integrand is infinite at x = 0. If we try to integrate using choosing xi from
U[0,1], i.e.,

I

∫ 1

0

f(x)√
x
p(x) dx. ≈ 1

N

N∑

i=1

f(xi)√
xi
,

then, the variance will be large as values of xi too close to x = 0 make an abnormally large
contribution to the sum. However, if we can find a probability density that is ∝ √x−1

, we
can use that rather than the uniform distribution. We note that

p1(x) =
1

2
√
x

is such a density.43 Thus,

I =

∫ 1

0

f(x)√
x
dx =

∫ 1

0
2f(x)p1(x) dx ≈ 1

N

N∑

i=1

2f(xi),

where the xi’s are chosen from p1(x). How do we sample from p1(x)? Using the technique
developed earlier, if ρi is sampled from U[0,1], then the associated xi, given by

ρi =

∫ xi

0
p1(x) dx or xi = ρ2

i ,

will be distributed according to p1(x).

For an example of evaluating an integral with a singular integrand, consider the case
where f(x) = exp(x). Then, sampling from p1(x) using the method described above,

I =

∫ 1

0

exp(x)√
x

dx ≈ 1

N

N∑

i=1

2 exp(xi).

For 1000 realizations, each with N = 100, we find I ≈ 2.9293, compared to the exact result
I = 2.925304 · · · .44

43It is imperative that the integral of the new density can be computed, as it is required to effect
normalization.

44This integral could also be evaluated using the direct Monte Carlo method after the substitution x = y2,
which removes the singularity.
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14.5.6 Fourier Series

In Section 2.7.1.2 of Chapter 2, we expanded the azimuthal dependence of the scattering
phase function P (ξ̂ → ξ̂′) in a Fourier series in φ−φ′. Here, we describe Fourier series and
how to derive them.

14.5.6.1 Derivation of Fourier Series

The expansion of a function in a series of sines and/or cosines is called a Fourier series.
Assume we have a function f(x) defined on the interval [−π, π]. Can we represent the
function in the following form

f(x) =
a0

2
+

∞∑

n=1

an cos(nx) +
∞∑

n=1

bn sin(nx) ? (14.26)

Let’s assume we can. How do we find the constants an and bn? The procedure is quite
simple. First, we note the following integrals:

∫ π

−π
sin(mx) sin(nx) dx = πδmn,

∫ π

−π
cos(mx) cos(nx) dx = πδmn,

∫ π

−π
cos(mx) sin(nx) dx = 0,

(14.27)

where, m and n are integers, neither of which is zero. The function δmn = 0, if m 6= n,
and δmn = 1, if m = n. It is called the Kronecker delta. Clearly, in the first integral, if
m = 0 or n = 0, the integral is zero, and in the second integral, if m = 0 and n = 0, the
integral is 2π. The integrals above are usually referred to as the orthogonality of the sines
and cosines or the orthogonality conditions for the sines and cosines. Given these integrals,
multiplying the series in Eq. (14.26) by sin(`x), where ` is an integer, integrating from
−π → π, and using the integrals above, we get

∫ π

−π
f(x) sin(`x) dx =

a0

2

∫ π

−π
sin(`x) dx

+
∞∑

n=1

an

∫ π

−π
cos(nx) sin(`x) dx

+
∞∑

n=1

bn

∫ π

−π
sin(nx) sin(`x) dx

= πb`.
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In a similar manner, ∫ π

−π
f(x) cos(`x) dx = πa`,

∫ π

−π
f(x) dx = πa0.

Thus, the evaluation of the an’s and bn’s is remarkably simple. The Fourier series will
converge point wise if the function f(x) is continuous on the interval; however, even if it
is discontinuous at a finite number of points within the interval the series still converges
as long as the discontinuities are finite. Where f(x) is discontinuous, the series converges
to the midpoint of the discontinuity.45 Note that the function f(x) is only defined for the
interval [−π, π]; however, its Fourier series representation exists for all x and is periodic
with period 2π. Furthermore, since cos(nx) is an even function of x and sin(nx) is an odd
function of x, if f(x) is an even function, b` = 0, while if f(x) is an odd function a` = 0.46

If the function f(x) is only defined for part of then interval [−π, π], e.g., only for [0, π], one
can still derive a Fourier series simply by defining f in the range for which it is undefined
to have whatever (finite) values one wishes. For example, one could define f(x) to be zero
for [−π, 0]. The Fourier series would then converge to f(x) for 0 ≤ x ≤ π and to zero for
−π ≤ x ≤ 0, i.e., it would converge to the correct f for the range of x for which f was
originally defined. However, it is important to note that the speed of convergence — the
number of terms in the series required for a given accuracy — of the series to f in the
defined range can depend significantly on what is chosen for f in the undefined part of the
range.

What if we have a more general interval than [−π, π], i.e., what if f(x) is defined on the
interval [−L,L]? Noting the strong relationship between Eqs. (14.26) and (14.27), if we
make the substitution

y =
πx

L
, so x =

L

π
y and dx =

L

π
dy,

we find ∫ L

−L
sin
(mπy

L

)
sin
(nπy
L

)
dy = Lδmn,

∫ L

−L
cos
(mπy

L

)
cos
(nπy
L

)
dy = Lδmn,

∫ L

−L
cos
(mπy

L

)
sin
(nπy
L

)
dy = 0.

(14.28)

45If f(x) has a finite discontinuity at x0, then lim
x→x+0

f(x) = f+(x0) and lim
x→x−0

f(x) = f−(x0), where

x→ x±0 means x approaches x0 from x < x0 (−. i.e., smaller values of x), or from x > x0, (+. i.e., larger
values of x). At x0 the Fourier series converges to 1

2

(
f+(x0) + f−(x0)

)
.

46Recall, f(x) is even if f(−x) = f(x), while f(x) is odd if f(−x) = −f(x). So f(x) = x is odd, and
f(x) = x2 is even, but f(x) = x+ x2 or f(x) = 1 + x are neither even nor odd.
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Thus if we write

f(x) =
a0

2
+
∞∑

n=1

an cos
(nπx
L

)
+
∞∑

n=1

bn sin
(nπx
L

)
, (14.29)

then

a` =
1

L

∫ L

−L
f(x) cos

(`πx
L

)
) dx,

b` =
1

L

∫ L

−L
f(x) sin

(`πx
L

)
) dx.

(14.30)

In complex analysis, the sines and cosines are related to exponentials through

cos θ + i sin θ = exp(iθ).

This suggests we can write Fourier series as a series of complex exponentials by noting that

cos
(`πx
L

)
) =

1

2

[
exp

(
i
`πx

L

)
+ exp

(
− i`πx

L

)]

sin
(`πx
L

)
) =

1

2i

[
exp

(
i
`πx

L

)
− exp

(
− i`πx

L

)]

Inserting these into (14.29) yields

f(x) =

∞∑

n=−∞
cn exp

(
i
nπx

L

)

where

cn =
1

2
(an − ibn), n > 0

cn =
1

2
(an + ibn), n < 0

cn =
1

2
a0, n = 0

Noting that ∫ L

−L
exp

(
− inπx

L

)
exp

(
+ i

mπx

L

)
dx = 2Lδmn,

we can find c` directly by multiplying the series by exp
(
− i `πxL

)
and integrating over the

range of x:

c` =
1

2L

∫ L

−L
f(x) exp

(
− i`πx

L

)
dx (14.31)
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14.5.6.2 The Fourier Transform

It is interesting to note that if we let `π/L = k`, then ∆k` = k`+1 − k` = π/L, and

f(x) =
∞∑

`=−∞
c` exp

(
i
`πx

L

)
=

∞∑

k`=−∞

(
L

π
c`

)
exp

(
ik`x

)
∆kl. (14.32)

Also, (
L

π

)
c` =

1

2π

∫ L

−L
f(x) exp(−ik`x) dx. (14.33)

These suggest, but by no means prove, that when L→∞,

g(k) ,
1

2π

∫ ∞

−∞
f(x) exp(−ikx) dx,

and

f(x) ,
∫ ∞

−∞
g(k) exp(ikx) dk.

These can be rigorously established. The functions f(x) and g(k) are called Fourier trans-
form pairs.47 The function g(k) is called the Fourier transform of f(x) and is sometimes
written g(k) = F [f(x)], with f(x) = F−1[g(k)], where F indicates Fourier transforma-
tion and F−1 the inverse transformation. The Fourier transform can be helpful in solving
differential equations through their property that

F
[
df(x)

dx

]
= ikF [f(x)],

if F [f(x)] exists.

14.5.6.3 Generalized Fourier Series

Assume that we have a set of functions un(x), n = 1, 2, · · · ,∞, where u may be complex,
that have the property ∫ b

a
u∗n(x)um(x) dx = δmn.

47A requirement for these to exist and be valid is∫ ∞
−∞

f(x)2 dx <∞,

which means at a minimum f(x)→ 0 as x→ ±∞.
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We desire to find an such that, for any function f(x) defined on the interval [a, b],

f(x) =

∞∑

n=1

anun(x).

This is simple using the same procedure as with Fourier series. First multiply the series
by u∗` (x), then integrate the result from a→ b. This yields,

a` =

∫ b

a
u∗` (x)f(x) dx

The requirements on f are similar to those for a Fourier series. The proof that the series
converges can be difficult. It hinges on the completeness of the functions un(x), which has
been established for many of the so-called special functions. An example of a set such
functions is the Legendre polynomials associated with Mie scattering theory presented in
Section 3.3.1 of Chapter 3.

14.5.6.4 Relationship Between Fourier series and Least-Squares

An interesting question is, what are the best choices for an and bn if we only use a finite
number N of terms in Eq. (14.26)? Let’s try a least-squares estimate for the coefficients.
Let

SN (x) =
a0

2
+

N∑

n=1

an cos(nx) +

N∑

n=1

bn sin(nx),

i.e., the finite sum of the series. Let us choose the an’s and bn’s in a manner that minimizes

Γ =

∫ π

−π

(
f(x)− SN (x)

)2
dx,

i.e., a quantity proportional to the square of the difference between f(x) and SN (x) aver-
aged over all x in the interval. Thus, we require

∂Γ

∂a`
= 0 and

∂Γ

∂b`
= 0.

Now,
∂Γ

∂a`
= 2

∫ π

−π

(
f(x)− SN (x)

)∂SN (x)

∂a`
dx

= 2

∫ π

−π

(
f(x)− SN (x)

)
cos(`x) dx

= 0.
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Evaluating the integral yields,

a` =
1

π

∫ π

−π
f(x) cos(`x) dx,

exactly the same as a` evaluated for Fourier series using the method described earlier.
Similar results are obtained for b`. Thus, the Fourier coefficients are the least-squares fit
of f(x) to SN (x) averaged over the interval. In exactly the same way, it can be shown
that the coefficients an in a generalized Fourier series SN (x) =

∑N
n=1 anun(x), represent

the least-squares fit of f(x) to SN (x) for the given N .

14.5.7 Orientational Averaging of Direction Cosines

In Section 14.4 we briefly considered in two dimensions what are known as direction cosines.
Here we consider three dimensions and, in particular, the transformation between coordi-
nate systems sharing a common origin, but rotated through an angle about some axis with
respect to one another. We then compute the orientational average of various products of
these direction cosines. One application is the computation of the orientational average of
the induced dipole moment of an anisotropic molecule placed in an electric field (Chapter
1).

14.5.7.1 Direction Cosines

Consider a fixed coordinate system with cartesian axes denoted by X, Y , and Z, and a
second system with cartesian axes denoted by x, y, and z. The second system shares
the same origin as the fixed system but is rotated through an arbitrary angle about an
arbitrary axis with respect to it. Let the unit vectors along the three axes in the (X,Y, Z)
system be êX , êY and êZ and along the (x, y, x) system be êx, êy and êz. The two sets of
unit vectors are related by

êx = (êx • êX)êX + (êx • êY )êY + (êx • êZ)êZ ,

êy = (êy • êX)êX + (êy • êY )êY + (êy • êZ)êZ ,

êz = (êz • êX)êX + (êz • êY )êY + (êz • êZ)êZ ,

(14.34)

which in matrix form becomes



êx
êy
êz


 =



axX axY axZ
ayX ayY ayZ
azX azY azZ





êX
êY
êZ


 , a



êX
êY
êZ


 , (14.35)
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where axX = êx • êX , axY = êx • êY , etc., are called direction cosines. The reverse
transformation is

êX = (êx • êX)êx + (êy • êX)êy + (êz • êX)êz,

êY = (êx • êY )êx + (êy • êY )êy + (êz • êY )êz,

êZ = (êx • êZ)êX + (êy • êZ)êy + (êz • êZ)êz,

(14.36)

and in matrix form is written



êX
êY
êZ


 =



axX ayX azX
axY ayY azY
axZ ayZ azZ


 =



êx
êy
êz


 = ã



êx
êy
êz


 , (14.37)

Thus, if we use the notation

ês =



êx
êy
êz


 , and êL =



êX
êY
êZ


 ,

where the subscripts “s” and “L” stand for unit vectors with “small” and “large” subscripts,
respectively, then simply

ês = a êL and êL = ã ês

This shows that ã = a−1, i.e., the inverse of the matrix a is the transpose of a.

Now, any vector ~V can be written in terms of its components in the X,Y, Z or the x, y, z
systems. To distinguish these two representations let

~V = VX êX + VY êY + VZ êZ

~v = vxêx + vy êy + vz êz.

where ~V and ~v are the same vector, but expanded in terms of components in different
ways. Different symbols are used for this vector for the purpose of clarity. How are the
components in the two systems related? To find out, use Eqs. (14.34) and (14.35) to
replace the êx, êy, etc. with the êX , êY , etc:

~v = vxêx + vy êy + vz êz

= axXvxêX + axY vxêY + axZvxêZ + · · ·+ azZvz êZ

= (axXvx + ayXvy + azXvz)êX + · · ·+ azZvz)êZ

or

Vx = axXvx + ayXvy + azXvz, etc.
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In matrix form

V =



axX ayX azX
axY ayY azY
axZ ayZ azZ


v = ã v.

Similarly, v = aV . Now, although the components of the vector ~V change when the
coordinate system is rotated, its magnitude should not, i.e., Ṽ V = ṽ v. Is this satisfied?
Let’s check

Ṽ V = (̃ãv)ãv = ṽaãv = ṽ(aã)v = ṽ v,

where the last step derives from ã = a−1, i.e., a ã = 1.

At this point it is useful to simplify the notation. Let’s use upper case indices to denote
the unit vectors in the fixed system, e.g., êI = êX , for I = 1, etc., and lower case indices
to denote the e.g., êi = êx, for i = 1, etc. So, more compactly, Eq. (14.34) can be written

êi =
3∑

I=1

(êi • êI)êI =
3∑

I=1

aiI êI , (14.38)

and the reverse (inverse) equations;

êI =
3∑

i=1

(êI • êi)êi
3∑

I=1

aiI êi. (14.39)

Since the cartesian axes are all mutually perpendicular, êi • êj = δij , where δij = 1, if i = j,
and 0, if i 6= j, and similarly êI • êJ = δIJ . Because êi • êj = δij ,

êi • êj = δij =
3∑

I=1

3∑

J=1

aiI ajJ êI • êJ =
3∑

I=1

3∑

J=1

aiI ajJ δIJ =
3∑

I=1

aiI ajI .

Therefore,
3∑

I=1

a2
iI = 1 and

3∑

I=1

aiI ajI = 0 for i 6= j. (14.40)

Similarly,
3∑

i=1

a2
iI = 1 and

3∑

i=1

aiI aiJ = 0 for I 6= J. (14.41)

Thus, there are a total of six relationships among the nine aiJ ’s, so only three are indepen-
dent. This reflects that fact that any position of x, y, z relative to X,Y, Z can be achieved
by rotating x, y, z relative to X,Y, Z through a single angle (requiring one parameter to
specify) about a given direction (requiring two parameters to specify).
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14.5.7.2 Orientational Averaging

In Chapter 1, Section 1.7.5, we needed to compute the orientational average of the dipole
moment of an anisotropic molecule subjected to an electric field with a direction fixed
relative to a laboratory coordinate system. This required averages of quantities like

aiI aiJ and aiI aiJ ajI ajM ,

where some or all of the indices may be the same, over all orientations of the molecular-
fixed (rotated) system relative to the laboratory (fixed) system. By such an orientational
average, denoted by angle brackets 〈· · · 〉, we mean

〈f〉 =
1

4π

∫
f dΩ,

where f is a function of direction (e.g., θ and φ in spherical coordinates), Ω is the solid
angle in the fixed system, and the integration is to be taken over the entire range of solid
angles (4π).

Although somewhat tedious, the averages of quantities such as given above are not
difficult to find. For example, consider the case where all the indices are all the same, i.e.,

Y	  
!!êY

!!êZ θ

!!êX

X	  

φ

Z	  

!!êz

a2
iI . The figure above shows that

êz = sin θ cosφ êX + sin θ sinφ êY + cos θ êZ .

Using this it is easy to find 〈a2
zZ〉 since azZ = êz • êZ = cos θ:

〈a2
zZ〉 =

1

4π

∫
(êz • êZ)2 dΩ =

1

4π

∫ 2π

0
dφ

∫ π

0
cos2 θ sin θ dθ =

1

3
.
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Now, by symmetry, the average of the cosine to any power of the angle between êz and êZ
must be the same as the average of the cosine to the same power of the angle between êx
and êX or between êy and êY . Thus,

〈a2
xX〉 = 〈a2

yY 〉 = 〈a2
zZ〉.

Note that any of these three terms can be transformed into any other by a simple relabeling
of the axes. For example, letting x→ y, y → z, z → x, X → Y , Y → Z and Z → X, the
first is transformed into the second, etc. In what follows we shall employ the rule that any
terms that can be transformed into one another by a relabeling of one or both sets of axes
must have identical orientational averages, i.e., a relabeling of the axes cannot change the
averages. Therefore

〈a2
iI〉 =

1

3
.

Now, taking the orientational average of Eq. (14.41) provides

3∑

i=1

〈aiI aiJ〉 = 0 for I 6= J,

or

〈axI axJ〉+ 〈ayI ayJ〉+ 〈azI azJ〉 = 0 for I 6= J.

Relabeling the x, y, and z axes simply transforms the various terms into one another, so
they are all identical. Since they sum to zero, 〈aiI aiJ〉 = 0 for I 6= J . Thus,

〈aiI aiJ〉 =
1

3
δIJ .

Using a similar procedure orientational averages of the product of four direction cosines
are easily found. Letting all of the indices be the same, we have

〈a4
zZ〉 =

1

4π

∫ 2π

0
dφ

∫ π

0
cos4 θ sin θ dθ =

1

5
.

By the same reasoning as for 〈a2
zZ〉,

〈a4
xX〉 = 〈a4

yY 〉 = 〈a4
zZ〉,

therefore

〈a4
iI〉 =

1

5
.
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Now, if we square the relationship
∑3

I=1 a
2
iI = 1, and take the orientational average of

the result we get

〈a4
xX〉+ 〈a4

yY 〉+ 〈a4
zZ〉+ 2〈a2

xX a
2
yY 〉+ 2〈a2

yY a
2
zZ〉+ 2〈a2

xX a
2
zZ〉 = 1

or
3∑

I=1

〈a4
iI〉+ 2

3∑

I=1

3∑

J>I=1

〈a2
iI a

2
iJ〉 = 1

Consider the terms multiplied by two in the above equation. If we make the transformation
x→ y, y → z, z → x, X → Y , Y → Z and Z → X, then the first term becomes the second,
the second becomes the third and the third becomes the first, so each term in the each of
the individual sums can be transformed into another term in the sum by a relabeling of
the axes. As stated above the average of any terms that can be transformed to each other
by a relabeling of the axes must be equal, therefore

3

5
+ 6〈a2

iI a
2
iJ〉 = 1 so 〈a2

iI a
2
iJ〉 =

1

15
, I 6= J.

Note that when writing 〈a2
iI a

2
iJ〉 in the equation above we implicitly used the fact that

I 6= J in the second term (if I = J the answer is 1/5 not 1/15).

Now, do the same for i 6= j, i.e., average
(∑3

I=1 aiI ajI

)2
= 0. Combining terms that

are simple renumbering of the axes, we have

3〈a2
iI a

2
jI〉+ 6〈aiI aiJ ajI ajJ〉 = 0

or

〈aiI aiJ ajI ajJ〉 = − 1

30
, i 6= j, I 6= J.

Now consider 〈aiI aiI ajI ajJ〉 with i 6= j and I 6= J . This kind of product can be
examined by multiplying

∑3
i=1 aiI aiI = 1 by

∑3
j=1 ajI ajJ = 0. Then as before,

3〈a3
iI aiJ〉+ 6〈a2

iI ajI ajJ〉 = 0.

The first term can be evaluated in a manner similar to the evaluation of 〈a4
zZ〉: take i = z,

I = X, and J = Y , then

〈a3
iI aiJ〉 = 〈(êz • êX)3(êz • êY )〉 = 〈sin4 θ cos3 φ sinφ〉 = 0,

where the last equality results form a direct evaluation of the integral. This shows that

〈a3
iI aiJ〉 = 0, i 6= j and 〈a2

iI ajI ajJ〉 = 0, i 6= j, I 6= J.
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Finally, consider 〈aiI aiJ ajI ajM 〉, where i 6= j and I 6= J 6= M , by examining

〈
(

3∑

i=1

aiI aiJ

)


3∑

j=1

ajI ajM


〉 = 0,

which yields
3〈aiJ aiM a2

iI〉+ 6〈aiI aiJ ajI ajM 〉 = 0.

The first term can be evaluated directly (let i = x, I = Z, J = X, and M = Y ) to give
zero, so

〈aiJ aiM a2
iI〉 = 0, I 6= J 6= M, and 〈aiI aiJ ajI ajM 〉 = 0, i 6= j, I 6= J 6= M.

These are all of the averages that are needed in the text and are conveniently summarized
in the table below.

Orientation averages of direction cosines.

Average Result Conditions

〈a2
iI〉 1/3

〈aiI aiJ〉 0 I 6= J
〈a4
iI〉 1/5

〈a2
iI a

2
iJ〉 1/15 I 6= J

〈aiI aiJ ajI ajJ〉 -1/30 i 6= j, I 6= J
〈a3
iI aiJ〉 0 i 6= j

〈a2
iI ajI ajJ〉 0 i 6= j, I 6= J

〈a2
iI aiJ aiM 〉 0 I 6= J 6= M

〈aiI aiJ ajI ajM 〉 0 i 6= j, I 6= J 6= M

14.6 Bibliographic Notes

The material here can be found in any number of books on mathematical methods in
physics. They are available at both the undergraduate and graduate level. Having taught
mathematical methods at both the undergraduate and graduate levels, the author believes
the best at the undergraduate level is Nearing [2010]. It can be found online and down-
loaded in several forms at “http://web2.physics.miami.edu/∼nearing/mathmethods/”. At
the graduate level, two excellent books that treat most of the topics discussed here are Ar-
fken [1970] and Butkov [1968]. For numerical analysis and curve fitting, i.e., least squares,
an essential reference is Press et al. [1992].
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in the sea. Union Géodesique et Géophysiqué Internationale 10, 11–30.

Preisendorfer, R. W. (1965). Radiative Transfer on Discrete Spaces. Oxford: Pergamon.

Preisendorfer, R. W. (1976a). Hydrologic Optics V. 1: Introduction. Springfield: National
Technical Information Service PB-259 793/8ST.

Preisendorfer, R. W. (1976b). Hydrologic Optics V. 2: Foundations. Springfield: National
Technical Information Service PB-259 794/6ST.

Preisendorfer, R. W. (1976c). Hydrologic Optics V. 3: Solutions. Springfield: National
Technical Information Service PB-259 795/3ST.

Preisendorfer, R. W. (1976d). Hydrologic Optics V. 4: Imbeddings. Springfield: National
Technical Information Service PB-259 796/1ST.

Preisendorfer, R. W. (1976e). Hydrologic Optics V. 5: Properties. Springfield: National
Technical Information Service PB-259 797/9ST.

Preisendorfer, R. W. (1976f). Hydrologic Optics V. 6: Surfaces. Springfield: National
Technical Information Service PB-268 704/4ST.

Preisendorfer, R. W. and C. D. Mobley (1986). Albedos and glitter patterns of a wind-
roughened sea surface. Journal of Physical Oceanography 16, 1293–1316.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1992). Numerical
Recipes in FORTRAN. Cambridge: Cambridge University Press.

Purcell, E. M. and C. R. Pennypacker (1973). Scattering and absorption of light by non-
spherical dielectric grains. Astrophysical Journal 186, 705–714.

Raman, C. V. (1921). The colour of the sea. Nature (London) 108, 367.

Rayleigh, L. (1910). Colours of the sea and sky. Nature (London) 83, 48–50.

Rougier, M. G. (1934). L’Astronomie 48, 224.

Sathyendranath, S. and T. Platt (1989). Remote sensing of ocean chlorophyll: Conse-
quences of a nonuniform pigment profile. Applied Optics 28, 490–495.



BIBLIOGRAPHY 977

Sathyendranath, S. and T. Platt (1998). Ocean-color model incorporating transspectral
processes. Applied Optics 37, 2216–2227.

Saunders, P. M. (1967). Shadowing on the ocean and the existence of the horizon. Journal
of Geophysical Research 72, 4643–4649.

Schneider, W., G. K. Moortgat, J. P. Burrows, and G. S. Tyndall (1987). Absorption
cross-sections of NO2 in the UV and visible region (200 - 700 nm) at 298 K. Journal of
Photochemistry and Photobiology 40, 195–217.

Shaw, J. A. and J. H. Churnside (1997). Scanning-laser glint measurements of sea-surface
slope statistics. Applied Optics 36, 4202–4213.

Shettle, E. P. (1984). Optical and radiative properties of a desert dust model. In G. Fiocco
(Ed.), Proceedings of the Symposium on Radiation in the Atmosphere, pp. 74–77. Hamp-
ton, VA: A. Deepak.

Shettle, E. P. and R. W. Fenn (1979). Models for the aerosols of the lower atmosphere
and the effects of humidity variations on their optical properties. Air Force Geophysics
Laboratory, Hanscomb AFB, MA 01731, AFGL-TR-79-0214.

Shibata, K. (1958). Spectrophotometry of intact biological materials. Journal of Biochem-
istry (Tokyo) 45, 599–604.

Siegel, D. A., M. Wang, S. Maritorena, and W. Robinson (2000). Atmospheric correction of
satellite ocean color imagery: the black pixel assumption. Applied Optics 39, 3582–3591.

Simmons, J. W. and M. J. Guttman (1970). States Waves and Photons: A Modern Intro-
duction to Light. Reading, MA: Addison-Wesley.

Slater, P. N., S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer,
and B. Yuan (1987). Reflectance- and radiance-based methods for the in-flight absolute
calibration of multispectral sensors. Remote Sensing of Environment 22, 11–37.

Smirnov, A., B. N. Holben, O. Dubovik, R. Frouin, T. F. Eck, and I. Slutsker (2003).
Maritime component in aerosol optical models derived from Aerosol Robotic Network
data. Journal of Geophysical Research 108 (D1), 4033.

Smirnov, A., B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker (2003). Effect of wind
speed on columnar aerosol optical properties at Midway Island. Journal of Geophysical
Research 108 (D24), D4802.

Smirnov, A., B. N. Holben, I. Slutsker, D. M. Giles, C. R. McClain, T. F. Eck, S. M. Sakerin,
A. Macke, P. Croot, G. Zibordi, P. K. Quinn, J. Sciare, S. Kinne, M. Harvey, T. J. Smyth,
S. Piketh, T. Zielinski, A. Proshutinsky, J. I. Goes, N. B. Nelson, P. Larouche, V. F.



978 BIBLIOGRAPHY

Ra-dionov, P. Goloub, K. K. Moorthy, R. Matarrese, E. J. Robertson, and F. Jourdin
(2009). Maritime Aerosol Network as a component of Aerosol Robotic Network. Journal
of Geophysical Research 114 (D06), 204.

Sogandares, F. M. and E. S. Fry (1997). Absorption spectrum (340-640 nm) of pure water.
I. photothermal measurements. Applied Optics 36, 8699–8709.

Spanier, J. and E. M. Gelbard (1969). Monte Carlo principles and neutron transport
problems. Reading, MA: Addison-Wesley.

Spencer, J. W. (1971). Fourier series representation of the position of the Sun. Search 2,
172.

Stabeno, P. J. and E. C. Monahan (1986). The influence of whitecaps on the albedo of
the sea surface. In E. C. Monahan and G. M. Niocaill (Eds.), Oceanic Whitecaps, pp.
261–266. Dordrecht: Reidel.

Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera (1988). Numerically stable algo-
rithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting
layered media. Applied Optics 27, 2502–2509.

Stavn, R. H. and A. D. Weidemann (1988). Optical modeling of clear ocean light fields:
Raman scattering effects. Applied Optics 27, 4002–4011.

Stramski, D., E. Boss, D. Bogucki, and K. J. Voss (2004). The role of seawater constituents
in light backscattering in the ocean. Progress in Oceanography 61, 27–56.

Sugihara, S., M. Kishino, and N. Okami (1984). Contribution of Raman scattering to
upward irradiance in the sea. Journal of the Oceanographical Society of Japan 40, 397–
404.

Sullivan, J. M. and M. S. Twardowski (2009). Angular shape of the oceanic particulate
volume scattering function in the backward direction. Applied Optics 48, 6811–6819.

Sytinskaya, N. N. (1953). Russian Astronomical Journal 30, 295.

Takano, Y. and K. N. Liou (1989). Solar radiative transfer in cirrus clouds Part I: Single-
scattering and optical properties of hexagonal ice crystals. Journal of Atmospheric Sci-
ence 46, 224–240.

Tyler, J. E. and R. C. Smith (1970). Measurements of Spectral Irradiance Underwater.
New York, NY: Gordon and Breach.

van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York, NY: Wiley.

van de Hulst, H. C. (1980). Multiple Light Scattering. New York, NY: Academic.



BIBLIOGRAPHY 979

Viollier, M. (1982). Radiance calibration of the Coastal Zone Color Scanner: A proposed
adjustment. Applied Optics 21, 1142–1145.

Viollier, M., D. Tanre, and P. Y. Deschamps (1980). An algorithm for remote sensing of
water color from space. Boundary-Layer Meteorology 18, 247–267.

Volten, H., J. F. de Haan, J. W. Hovenier, W. V. R. Schreurs, A. G. Dekker, H. J. Hoogen-
boom, F. Charlton, and R. Wouts (1998). Laboratory measurements of angular distribu-
tions of light scattered by phytoplankton and silt. Limnology and Oceanography 43(6),
1180–1197.

Voss, K. J. and E. S. Fry (1984). Measurement of the mueller matrix for ocean water.
Applied Optics 23, 4427–4439.

Voss, K. J., H. R. Gordon, S. Flora, B. C. Johnson, M. Yarbrough, M. Feinholtz, and
A. T. Houlihan (2017). Method to extrapolate the upwelling radiance attenuation co-
efficient to the surface as applied to the Marine Optical Buoy (MOBY). Journal of
Atmospheric and Oceanic Technology 34, 1423–1432.

Walker, R. E. (1994). Marine Light Field Statistics. New York, NY: Wiley.

Wang, M., B. A. Franz, R. A. Barnes, and C. R. McClain (2001). Effects of spectral
bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean. Applied
Optics 40, 343–348.

Wang, M. and H. R. Gordon (1993). Retrieval of the columnar aerosol phase function
and single scattering albedo from sky radiance over the ocean: Simulations. Applied
Optics 32, 4598–4609.

Wang, M. and H. R. Gordon (1994). A simple, moderately accurate, atmospheric correction
algorithm for SeaWiFS. Remote Sensing of Environment 50, 231–239.

Wang, M. and H. R. Gordon (2002). Calibration of ocean color scanners: How much error
is acceptable in the near infrared? Remote Sensing of Environment 82, 497–504.

Wang, M. and W. Shi (2007). The NIR-SWIR combined atmospheric correction approach
for MODIS ocean color data processing. Optics Express 15 (24), 15722–15733.

Wang, M., S. Son, and W. Shi (2009). Evaluation of MODIS SWIR and NIR-SWIR
atmospheric correction algorithm using SeaBASS data. Remote Sensing of Environ-
ment 113 (3), 635–644.

Wehrli, C. (1985). Extraterrestrial Solar Spectrum. Publication no. 615, Physikalisch-
Meteorologisches Observatorium + World Radiation Center (PMO/WRC) Davos Dorf,
Switzerland.



980 BIBLIOGRAPHY

Whitlock, C. H., D. S. Bartlett, and E. A. Gurganus (1982). Sea foam reflectance and
influence on optimum wavelength for remote sensing of ocean aerosols. Geophysical
Research Letters 7, 719–722.

Wilson, Jr., E. B., J. C. Decius, and P. C. Cross (1980). Molecular Vibrations: The Theory
of Infrared and Raman Vibrational Spectra. Mineola, NY: Dover Publications.

Xiong, J., G. Toller, J. Sun, B. Wenny, A. Angal, and W. Barnes (2013). MODIS Level 1B
Algorithm Theoretical Basis Document (V. 4). NASA Goddard Splace Flight Center.

Yang, H. and H. R. Gordon (1997). Remote sensing of ocean color: Assessment of the
water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance.
Applied Optics 36, 7887–7897.

Yang, H., H. R. Gordon, and T. Zhang (1995). Island perturbation to the sky radiance
over the ocean: Simulations. Applied Optics 34, 8354–8362.

Yariv, A. (1988). Quantum Electronics. New York, NY: Wiley.

Yentsch, C. S. (1962). Measurement of visible light absorption by particulate matter in
the ocean. Limnology and Oceanography 7, 207–217.

Zaneveld, J. R. V. (1982). Remotely sensed reflectance and its dependence on vertical
structure: A theoretical derivation. Applied Optics 21, 4146–4150.

Zaneveld, J. R. V. (1995). A theoretical derivation of the dependence of the remotely
sensed reflectance of the ocean on the inherent optical properties. Journal of Geophysical
Research 100(C7), 13135–13142.

Zaneveld, J. R. V., A. H. Barnard, and E. Boss (2005). Theoretical derivation of the depth
average of remotely sensed optical parameters. Optics Express 13, 9052–9061.

Zaneveld, J. R. V., J. C. Kitchen, A. Bricaud, and C. Moore (1992). Analysis of insitu
spectral absorption meter data. Society of Photo-Optical Instrumentation Engineers,
Ocean Optics XI 1750, 187–200.

Zhang, J., H. Lu, and L. J. Wang (2008). Precision refractive index measurements of air
N2, O2, Ar, and CO2 with a frequency comb. Applied Optics 17, 3143–3151.

Zhang, T. and H. R. Gordon (1997). Retrieval of elements of the columnar aerosol scattering
phase matrix from polarized sky radiance over the ocean: Simulations. Applied Optics 36,
7948–7959.

Zhang, X. and L. Hu (2009). Estimating scattering of pure water from density fluctuation
of the refractive index. Optics Express 17, 1671–1678.



BIBLIOGRAPHY 981

Zhang, X., L. Hu, and M.-X. He (2009). Scattering by pure seawater: Effect of salinity.
Optics Express 17, 5698–5710.

Zibordi, G., B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, F. Mélin, J.-F. Berthon,
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H-functions, 517

δ-Isotropic approximation

modified (MDIA), 517

absorbing aerosols, 729

atmospheric correction for, 731–741

effect of vertical distribution, 731

the spectral matching algorithm for, 734

absorptance, 321

absorption

NO2, 328

atmospheric windows in, 328

by aerosols, 714, 729

by atmospheric gases, 315

by CDOM, 353

by cylinders, 375

by detrital materials, 369

by non-algal particles, 353

by particles in natural waters, 353

by phytoplankton, 353

coefficient, 338

coefficient of water, 340

coefficient, definition of, 118

coefficient, intracellular, 365

coefficient, relation to refractive index,
47, 365

coefficient, specific, 365

cross section, 221, 318

efficiency, 234

index, 739

lines, 317

mean efficiency, 383

mean free path, 936

molecular oxygen, 326

optical depth, 318

optical thickness, 318, 366

Ozone, 328, 727

Rayleigh-Gans efficiency, 244

specific coefficient, 366, 384

temperature effects in water, 341

vertical distribution in atmosphere, 323

water vapor, 327

AERONET, 305, 706, 716

aerosol

vertical structure, 313

aerosol models, 295

Bermuda, 305

candidates for atmospheric correction, 719

cirrus clouds, 311

Coastal, 300

El Chichon, 311

Haze C, 296, 714

Kaashidoo, 305

Lanai, 305

Maritime, 300, 717

Oceanic, 300

physical models, 295–312

Saharan dust, 308, 736

Shettle and Fenn, 713

Smirnov et al., 305

stratospheric, 310

Tropospheric, 300, 717

Urban, 300

volcanic, 311

windblown dust, 736

aerosol optical depth
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estimation from ocean color data, 720

albedo, 113, 671

disk equivalent of Moon, 634

almucantar, 824

analemma, 643

ancillary data, 706

Angstrom’s law, 297

angular field of view, 784

anomalous diffraction, 391

apparent optical properties

examples from field measurements, 443

influence of inelastic processes on, 484–
500

apparent optical properties (AOPs), 435

definitions of, 438

examples from field measurements, 442

examples from simulations, 444–446

hybrid model of, 474

influence of fluorescence on, 487–490

influence of Raman scattering on, 490–
500

Arabian Sea, 740

astronomical unit, 598, 626, 676, 861

atmospheric correction, 655

atmospheric windows, 329, 341

attenuation

coefficient for radiance, 439

coefficient for vector irradiance, 445

coefficient, definition of, 118

coefficient, diffuse, 438

coefficient, relation to optical depth, 134

coefficients for irradiance, 438

cross section, 221

cross section in DDA, 257

efficiency, 234

length, 436

Rayleigh-Gans efficiency, 244

average cosine, 445, 461

definition of, 440

Babinet’s principle, 252

backscattering

coefficient, definition of, 358

by a coated sphere, 373

by cylinders, 378

coefficient of natural waters, 359, 360

coefficient, relation to Chlorophyll, 360

efficiency, definition of, 372

influence of the size distribution, 386

of spherical particles, 372

probability, 359

probability, relation to Chlorophyll, 359

Balmer series, 631

band head, 326

band spectra, 325

basis vectors, 930

Bessel functions, 233

bi-directional reflectance distribution func-
tion

BRDF, definition of, 170

bio-optical algorithm, 509

black body, 206, 631

radiation, 206

spectral radiance, 207

Wien’s law, 207

Bohr radius a0, 35

Boltzmann constant, 284

boundary conditions

in matrix operator technique, 159

bowtie effect, 793

BRDF, 170, 470, 517, 634

effect, 862

of reflectance plaque, 819

BRDF effect, 598

Brownian motion, 933

cal/val, 866

calculus, 897

fundamental theorem of, 902

multivariable, 909, 911

calibration

constant, 132
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error, 811
full system, 828
radiance based, 817
radiometric, 815
reflectance based, 817, 818
sphere, 818
vicarious, 815, 833, 871
vicarious(, 820

candidate aerosol models, 719
carotenoids, 775
cascade impactor, 290
Case 1, 509
Case 1 waters, 443

definition of, 349
Case 2 waters, 443, 729, 746

definition of, 349
CDOM, 350
Central Limit Theorem, 936, 941
characteristic function, 936
characterization, 833–841
charge

bound, 38
density of, 23
free, 38
on electron, 35

Chlorophyll, 485
Chlorophyll a, 355, 705, 775, 859

fluorescence of, 775
Chlorophyll a

absorption spectrum, 367
cirrus, 311
Clausius-Mossotti, 42
clear-water radiance, 678, 869
coccolith, 356
coccolithiphore, 350
coccolithophore, 356
columnar

aerosol phase function, 292
aerosol size distribution, 292
number density, 292
number distribution, 305

volume distribution, 305

complex

algebra, 895

conjugate, 897

numbers, 895

plane, 896

conservation

of energy, 26

constrained linear inversion, 289

continuity

equation of, 23

cosine collector, 132

cosines

law of, 925

Coulter counter, 367, 376, 380

Cox-Munk, 444, 460, 462

analysis of surface roughness, 575

surface slope variance, 444, 576

critical angle, 58, 458

cross section

for absorption, 221, 222

for attenuation, 221

for extinction, 221

for scattering, 118, 221

scattering, Rayleigh with anisotropy, 226

current, 23

bound, 39

density of, 23

free, 39

CZCS, 509, 706, 773, 788, 790

atmospheric correction for, 712

imagery, 712

verification of, 868

declination, of the Sun, 627

degree of polarization, 684

definition of, 86

of Lu, 472

of scattered light, 234

of scattering, effect of size distribution,
389
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depolarization factor
definition of, 225
of air, 285

derivative
anti, 902
definition of, 898
directional, 913
partial, 912

detrital material, 349
dielectric, 35

linear-homogeneous-isotropic, 43
polarizability, 36
polarization of, 36

dielectric constant
and susceptibility, 42
complex form of, 45
defined, 42
mean square fluctuation, 230

differential equations
homogeneous, 905
inhomogeneous, 905
initial conditions, 908
second order, 905
steady state solution, 908
transient solution, 908
with constant coefficients, 905

diffraction
contribution to scattering, 250–253
Huygens-Fresnel principle, 250

diffuse attenuation coefficient, 438
diffuse transmittance, 656, 663–667

rigorous computation of, 722–726
dipole, 36

field of, 36
mean moment, 225
moment, 36
polarization of a dielectric sphere, 37
polarization of a medium, 37

Dirac delta function
definition of, 902
in multiple dimensions, 917

direct transmittance, 663

direction cosines, 144

definition of, 952

Discrete-Dipole Approximation (DDA), 253–
257

dispersion, 48

anomalous, 48

Kronig-Kramers relation, 369

relation, 369

dissolved organic material, 350

distribution function, 440

relation to average cosine, 440

divergence theorem, 23

Dobson Unit, 319

Dobson units (DU), 727

Doppler effect, 321

E. Huxleyi, 350

eccentricity, of Earth’s orbit, 626

ecliptic, 627, 637

effective radius, 295

effective variance, 295

eigenvalues, 931

eigenvectors, 931

Einstein, 96, 441

El Chichon, 311

electric

susceptibility, 40

electric field, 22

of a dipole, 34

of a spherical ball, 33

of a spherical cavity, 33

boundary conditions for, 52

Gauss’ law for, 33

in matter, 32

of a dielectric sphere, 72

of a dipole (total), 64

of a moving charge, 60

of a point charge, 33

electromagnetic field, 26

electromagnetic radiation
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damping due to, 44
detection of, 95, 96
detectors, 96
from accelerated charge, 60
from oscillating dipole, 62
scattered, 60
spectrum of, 98

electromagnetic wave, 26
absorption coefficient of, 47
analysis of polarization of, 75
analysis of polarization of , 92
boundary conditions for, 52
energy density, 29
from a dipole, 63
harmonic in time, 26
in a dielectric, 42, 46
linear polarization of, 75
one-dimensional, 27
plane, 28
polarization of, 54
Poynting vector, 30
radiation of, 62
reflected at a boundary, 54
reflection at a boundary, 51
scattering of, 64
speed of, in a dielectric, 43
speed of, in vacuum, 27
Stokes representation, 77
three-dimensional, 26
total internal reflection, 59
transmitted at a boundary, 54
transverse, 27
wave period, 28
wave speed, 27
wavelength, 28
wavelength in a dielectric, 48
wavenumber, 27

emissivity, 211
directional spectral, 211
spectral, 211

energy density

of electric field, 26

of magnetic field, 26

relation to scalar irradiance, 130

equation of time, 629, 637–643

equinox, 627

equipartition theorem, 320

equivalent homogeneous medium, 508

Euler angles, 393

euphotic depth, 441

extinction

by cylinders, 376

cross section, 221

cross section in DDA, 257

efficiency, 234

mean efficiency, 383

Rayleigh-Gans efficiency, 244

extraterrestrial solar irradiance

at mean Earth-Sun distance, 597

first-order solution to RTE

derivation of, 174

fluorescence, 443, 485

of Chlorophyll a, 775

quantum efficiency of, 489

flux

definition of, 23

footprint, 784

Fourier series, 946

generalized, 949

relation to least squares, 950

Fourier transform, 936

Fournier-Forand phase function, 358, 390

Fraunhofer lines, 631

Fresnel

reflection coefficient, 57

transmission coefficient, 57

full width at half maximum

FWHM, 319, 321

Gaussian quadratures, 153

division points, 154
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weights, 154

gelbstoff, 350

Gershun tube, 104

Gershun’s equation, 171, 445

Gershun’s law

derivation of, 171

interpretation of, 173

glitter pattern, 570

global carbon cycle, 356, 705

GMT, 629

GOCI, 795

Greenwich Mean Time, 629

Hankel functions, 233

Heisenberg uncertainty principle, 320

Henyey-Greenstein, 358

Hermitian conjugate, 90

hour angle, 628

HPLC, 355

hybrid model, 474

HydroLight, 522

hyperspectral, 789

ideal gas, 230, 284

IFOV, 791

instantaneous field of view, 784

ill conditioned, 289

immerison effect, 132

incoherent, 99

inelastic, 484

processes, 525

inelastic processes, 436

inelastic scattering, 485

inherent optical properties (IOPs), 113, 436

effect of particle size distribution, 380

estimation from AOPs, 503–509

for Junge-distributed particles in water,
384

measurement of, 339

of natural waters, 337–364

of the atmosphere, 329

of water, 340–349

summability over components, 119, 338

instantaneous field of view, 784

integrating cavity absorption meter, 341

integration

by parts, 904

definition of, 901

multivariable, 915

integration time, 776, 785

irradiance, 110

attenuation coefficient for, 438

attenuation coefficient for vector , 445

attenuation of PAR, KPAR, 441

depth of penetration, 477–480

downwelling, 128, 437

extraterrestrial solar, 441, 630

in one-dimensional media, 128

mean extraterrestrial solar, 631

measurement of, 131

meter, 132

of the sun, 112

photosynthetically available (PAR), 441

plane, 128

quantum, 133, 440

ratio, 439

reflectance, 439

scalar, 129, 437

transmittance of, 597

upwelling, 128, 437

vector, 129, 437

Jacobian determinant, 573

Jacobian determinate, 919

Junge, 868

Junge distribution

for aerosols, 292

for particles in water, 381

particles in water, IOPs for, 384

King factor, 285

Kishino, 352
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Kronecker delta, 946

L’hospital’s rule, 901

lambertian

emitter, 105

reflector, 165, 168, 170, 341

reflector, albedo of, 113

Lanai, Hawaii, 442

Laplacian operator, 914

law of cosines, 925

law of sines, 926

least squares

backward, 928

Deming, 929

method of, 926

ordinary, 927

reduced major axis regression, 928

Legendré polynomials, 153

Legendre polynomials, 233

Leibnitz integral rule, 918

LIDAR, 313, 741

limb darkening, 633

of the Sun, 112

line width, 319

natural, 320

linear independence, 905

linear regression, 926

LITE, 313, 741

local property, 484

Lorentz force, 22

Lorentz-Lorenz, 42

lunar

opposition effect, 651

surge, 651

magnetic field, 22

boundary conditions for, 52

marine boundary layer, 313

MASCOT, 358

matrix, 920

definition of, 920

diagonal, 921
eigenvalues of, 931
eigenvectors of, 931
inverse, 921
Mueller, 924
multiplication, 920
multiplication by a scalar, 922
orthogonal, 921
symmetric, 921
trace of, 922

Mauna Loa, 311
Maxwell equations, 22

linearity of, 24
mean free path, 936
meter-atmosphere, 318
micron, 288
Mie theory, 232

attenuation cross section, 234
attenuation efficiency, 234
scattering cross section, 234
scattering efficiency, 234

MOBY, 874
MODIS, 709, 712, 773, 788, 791, 819
modulation, 786
Monte Carlo, 185, 446

naive, 190
backward, 198
evaluation of integrals by, 940
for irradiance, 197
for wind-ruffled surface, 592–596
forward, 191
heuristic introduction, 139
importance sampling, 944
integration by, 939
variance reduction, 147
variance reduction in, 944

Moon, 633
Mueller matrix, 82

of ocean color sensor, 834
and coherency matrix, 89
combinations of optical elements, 83
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definition of, 82

for dielectric reflection, 89

for linear polarizer, 82

for Rayleigh scattering, 181

for scattering, 87

for scattering in Case 1 waters, 360

in terms of spin matrices, 91

non-communtative nature, 83

N[0,σ2
N ], 939

N[0,1], 939

natural fluorescence, 485

Newton’s law, 44

Newton’s laws, 784

noise

induced, 779

intrinsic, 779

Johnson, 776

photon, 776

quantization, 781

shot, 776

non-algal particles, 350

normalized water-leaving radiance, 596–599,
675, 743

definition of, 597

normalized water-leaving reflectance, 708, 743

definition of, 599

OC4, 509

omnidirectional wind, 594

definition of, 579

optical depth

absorption, 318

definition of, 134

of Ozone, 727

of scattering, 717

Rayleigh scattering by air, 286

optical theorem, 222, 268

derivation of, 264–270

orbit

geosynchronous, 795

polar, 794

orthogonality condition, 946

oscillator strength, 50

out-of-band

sensor response to, 836

package effect, 367, 369

and detrital absorption, 370

and plankton absorption, 369

PAR, 441

particulate inorganic Carbon (PIC), 356

particulate organic carbon (POC), 352, 356

path length amplification factor, 352

Pauli spin matrices, 89

penetration depth, 477–480

perihelion, definition of, 626

permeability of free space, µ0, 24

permittivity of free space, ε0, 24

perpendicular plane, definition of, 671

Petzmas, 358, 455, 471, 476, 726

Petzold, 357, 444, 471

Phase-T, 357, 726

phase angle, 634

phase function

phase matrix — Rayleigh scattering, 226

for Rayleigh scattering, 134

for single particle, 374

Fourier expansion in azimuth of, 149

Fournier-Forand, 390

Henyey-Greenstein, 358

influence of the size distribution, 389

Mueller matrix for Case 1 waters, 360

Mueller matrix for Raman scattering, 273

Mueller matrix for Rayleigh scattering,
181

of cylinders, 379

Petzmas, 358

Petzold Phase-T, 357

phase matrix – Rayleigh scattering, 284

Rayleigh scattering by air, 286

symmetries of, 149
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WetLab Average, 358
Phase T, 357
Phase-T, 444, 452, 456, 476, 506
photocurrent, 97
photosynthesis, 356, 440
phototube, 96
phytoplankton, 349, 485
PIC, 356
pigment concentration, 443, 705, 859

definition of, 355
pixel, 783

variation in size, 785
Planck function, 207
Planck’s constant, 50
plane of incidence, 54
POC, 356

relation to scattering coefficient, 356
polarizability, 36

tensor, 933
polarization

and incoherence, 86
degree of, 87, 184, 684
elliptical, 59, 77
left circular, 77
linear, 78
of a dielectric, 37
of an electromagnetic wave, 54
partial, 86
pass direction, 78
quarter-wave plate, 79
right circular, 77
sensor sensitivity to, 833
Stokes vector representation of, 80
unpolarized light, 83

power-law, 292, 381
Poynting’s

theorem, 25
vector, 25

primary production, 705
principal plane, 823
probability, 934

density of, 934

normalization of, 934

probability density, 141

pure rotational spectrum, 326

Q-factor, 446, 507

definition of, 439

QSSA

application to diffuse transmittance, 726

development of, 447–451

effect of atmosphere on, 462

effect of environment on, 457–467

effect of refracting interface on, 458

effect of scattering by water on, 455

hybrid model, 474

modeling with, 500

range of validity of, 451–455

vertical structure in IOPs, 480–484

quantization, 781

quantum efficiency of fluorescence, 489

quantum irradiance, 440

quasi-single scattering approximation (QSSA),
436, 447

radiance, 102

across a refracting interface, 109

aperture, 106

apparent, 106

as a conserved quantity, 103

asymptotic distribution, 158, 525

attenuation coefficient for, 439

average cosine of, 440

band, 817

band integrated, 817

clear-water concept of, 678, 869

definition of, 102

distribution functions of, 440

field, 106

multidimensional integral for, 185

nadir viewing, 439

normalized water-leaving, 596–599, 743
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of a beam, 111
of a surface, 105
of the Moon, 113, 634
of the Sun, 112
path, 707
polarized, 108, 684
reflected by an interface, 568
reflected from a rough surface, 573
reflection of sky, 588
saturation, 781, 842
transmittance of sky, 589
transmitted by a rough surface, 582
transmitted through an interface, 568
water-leaving, 439, 509, 521, 656

radiant emittance, 111
radiant intensity, 100
radiant power )spectral, 99
radiative transfer equation, 120

complete, 123
derivation of, 120
expansion in azimuth, 151
in medium with varying refractive index,

125
in one-dimensional media, 127
including polarization, 123, 185
reflecting and transmitting boundaries,

164
solution methods, 135–163
superposition of solutions, 124
uniqueness of solutions, 124
with internal sources, 121

radiometry, 100
Raman scattering, 270–273, 442, 485

by water, 344–349
inelastic volume scattering function, 348
Mueller matrix for, 273
wavelength dependence in water, 348

random numbers
pseudo, 141
U[0,1], 141
uniform distribution, 141, 260

random variable, 934

unbiased estimate of, 935

expectation of, 934

probability density of, 934

standard deviation of, 935

uniform distribution of, 941

variance of, 934, 935

Rayleigh scattering, 222

by air, 286

Mueller matrix for, 222

Rayleigh-Gans approximation, 238–244

reciprocal centimeters, 325

reciprocity principle, 125, 149, 677, 722

across a refracting interface, 586

in single scattering solution, 180

Redfield ratios, 356

reflectance

definition of, 170

diffuse, 518

normalized water-leaving, 510, 599, 708,
743

of lambertian reflector, 170

plaque, 818

relation to BRDF, 170

remote sensing, 439, 509, 599

reflection

Brewster’s angle for, 57

Fresnel equations, 57

Fresnel equations for, 57

function of a boundary, 164

law of, 55

law of in vector form, 570

of diffuse radiance by a rough surface,
585

of radiance from a rough surface, 572,
573

of sky radiance, 588

of Sun light from a rough surface, 574

total internal, 59

refraction
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of diffuse radiance by a rough surface,
585

of radiance by a rough surface, 580

Snell’s law in vector form, 580

refractive index

complex form of, 46

defined, 43

refractivity, 285

regularization, 289

remote sensing augmented reflectance

definition of, 601

remote sensing problem, 656, 668

remote sensing ratio, 439, 597

QSSA result for, 453

remote sensing reflectance, 439, 462, 599

augmented by whitecaps, 601

resistive pulse particle counter, 290, 367

resolution

spatial, 784

resonance, 908

retarded time, 61

rotation matrix, 680

RTE solution methods, 135–163

adding, 160

boundary conditions, 135

discrete-ordinate, 154

doubling, 160

first-order solution, 174

first-order with polarization, 180

inclusion of a wind-ruffled surface, 590–
596

invariant imbedding, 161, 478

matrix operator, 159

Monte Carlo, 139

single scattering solution, 174, 177

successive order of scattering, 135, 486

Saharan dust

absorption of, 309

models, 308

size distribution of, 308

sampling time, 785
saturation radiance, 781
scalar irradiances, 437
scalars, 909
scattering

albedo of single, 134
amplitude, 218
approximations for, 238–263
average number, 137
by a coated sphere, 373
by a homogeneous, 232
by a molecule, 67
by an atom, 64–72
by cylinders, 376
by irregularly-shaped particles, 253
by particles in natural waters, 354
by sea water, effect of salinity, 343
by small sphere, 72
by water, effect of temperature, 344
coefficient, 221
coefficient of, 115
coefficient, specific, 372
cross section, 221
depolarization factor for, 225
differential cross section of, 256
efficiency, 234
elastic, 118, 338
geometrical optics approximation of, 257–

263
inelastic, 118, 338, 484
influence of particle shape, 375
influence of the size distribution, 386
mean efficiency, 383
Mie theory, 232
Mueller matrix for in Case 1 waters, 360
multiple, 826
multiple in atmospheric correction, 718–

720
of water, 341
phase function, 134
phase function of, 134
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plane of, 64
polarization of in Case 1 waters, 360
Raman, 444
Raman, by water, 344–349
Rayleigh, 222
Rayleigh by liquids, 226
Rayleigh with molecular anisotropy, 226
single scattering approximation, 177
specific coefficient, 384
table of for pure water, 342
table of for sea water, 343
volume scattering function (VSF), 113

scattering coefficient, 221
definition of, 115
for atomic scattering, 117
for inelastic scattering, 119
measurement of in natural waters, 354
Rayleigh with molecular anisotropy, 225
relation to pigment concentration, 355

scattering cross section
Rayleigh with molecular anisotropy, 223

SeaWiFS, 712, 773, 788, 819
test of SMA with, 736

selenographic, 634
series

Fourier, 946
Taylor, 899

seston, 355, 356
shadowing factor, 585
shape factor, 512
Shettle and Fenn, 299
sidereal day, 637
sines

law of, 926
single-scattering approximation, 655, 706
single-scattering solution

accuracy of, 671
application in QSSA, 448
application to atmospheric correction, 710–

713
derivation of, 177

size distribution, 238
columnar volume, 305
influence on IOPs in water, 382
Junge, 292, 381
Junge distribution, IOPs for, 384
log normal, 293
log-normal, 381
modified gamma, 311
number, 292
of aerosols, 289
of volume, 292
power-law, 381

Snell’s law, 55
vector form of, 56

SNR
quantization, 781
signal-to-noise ratio, 776
usable, 782

solar constant, 631
solar day

mean, 629
solid angle, 100
solstice, 627
spatial frequency, 786
spatial period, 786
spatial resolution, 784
spectral line broadening

Doppler broadening, 321
pressure broadening, 320

spectral matching algorithm (SMA), 734–740
spherical coordinates

definition of, 918
spherical triangle, 924

law of cosines, 926
law of sines, 926

standard lamp, 818
Stokes

Mueller matrix, 82
rotation matrix, 81, 182
vector, 77–80, 828
vector for intensity, 107
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vector for radiance, 107

Stokes vector

for irradiance (of a beam), 111

stratosphere, 310

stray light, 840

Sun dogs, 312

Sun glint, 570, 662

Sun glitter, 470, 570, 662

Sun halos, 312

superposition

in a dielectric, 41

of balls of charge, 34

principle of, 24

SWIR, 341

for atmospheric correction of MODIS,
729

synodic period, 633

T-Matrix, 331

Taylor series, 899

Total Ozone Mapping Spectrometer (TOMS),
727

transmission

function of a boundary, 164

transmittance

diffuse, 656, 663–667, 722

direct, 287, 663

of irradiance, 597

of sky radiance, 589

Rayleigh, of atmosphere, 287

trapezoidal rule, 940

troposphere, 310

validation

definition of, 859

van de Hulst approximation, 244–248

for absorption, 365

for extinction, 370

vectors, 909

basis, 930

components of, 910

cross product of, 910
curl of, 914
divergence of, 914
divergence theorem, 916
dot product of, 910
gradient operator, 913
gradient vector, 913
identities for, 914
Laplacian operator, 914
magnitude of, 909
multiplication by scalars, 910
negative of, 910
position vector, 912
representation as column matrix, 922
scalar product of, 910
Stokes theorem, 916
sum of two, 910
unit, 909
vector product of, 910

verification, 869
vibration-rotation spectrum, 326
vicarious gain, 876
volume scattering function

definition of, 113
diffraction contribution to, 252
for atomic scattering, 117
for inelastic scattering, 119
for Rayleigh scattering, 222
in the DDA, 256
inelastic for Raman scattering, 348
of particles in Case 1 waters, 357
of pure liquids, 231
phase function of, 134
Rayleigh with molecular anisotropy, 225

volume scattering matrix
definition of, 114
for anisotropic Rayleigh scattering, 226
for particle scattering, 221
for Raman scattering, 273
for Rayleigh scattering, 181, 222
Mueller matrix for atomic scattering, 117
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of Case 1 waters, 360
of pure water, 342

Voss-Fry, 472

Wadsworth mounting, 791
water-leaving radiance, 439, 509, 521, 656
wave equation

one-dimensional, 27
three-dimensional, 26

wave function (in quantum mechanics), 50
wave number

definition, 325
wave packet, 84
WetLab Average, 357
whitecaps, 567, 600–602
work

done by fields, 24

yellow substance, 350
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