Shallow Water Remote Sensing
John Hedley, IOCCG Summer Class 2018

Overview - different methods and applications
“Physics-based” model inversion methods
High spatial resolution imagery and Sentinel-2
Bottom mapping

Satellite derived bathymetry (SDB)

Sun-glint correction of high spatial resolution images

Model inversion methods and uncertainty propagation



Objectives of shallow water remote sensing

* Bottom mapping

- corals, seagrasses, macroalgae
e Water optical properties
e Bathymetry (depth)

Applications

e Spatial ecology (science)
e MPA design (resource mapping)
* Assessing ecosystem services
- coastal protection and stabilisation
- fisheries, local subsistence

- blue carbon

- tourism



Applications on coral reefs and similar environments
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» Need higher spatial resolution than typical ocean colour satellites

Hedley et al. 2016, Remote Sensing, 8, 118; doi:10.3390/rs8020118
Hedley et al. 2018, RSE Sentinel-2 special issue (in press, probably)



(c) DigitalGlobe

WorldView-2 image of Yucatan coast, Mexico (15 Feb 2008)
(pixels < 2 m, 8 bands, ~5 usable)




High Spatial Resolution Imagery

Pixel size<5m

e Many past and present (archive imagery still available)

* Pleiades, WorldView-2, 3, QuickBird, GeoEye, IKONOS, RapidEye, Kompsat
e Typically 4 bands, R, G, B and NIR, but WorldView has 8 bands

Pixel size 10-30m

e SPOT (various)
e Landsat 8 (30 m)

e Sentinel 2 (10 m in four bands)

Notes:

* Radiometric calibration on commercial satellites is usually not as good as on space
agency satellites.

* For these sensors bands are spectrally wide, not narrow as with ocean colour satellites
- not always appropriate to just use centre wavelength
- may need to integrate over wavelength



(c) DigitalGlobe

WorldView-2 image of Yucatan coast, Mexico (15 Feb 2008)
(pixels < 2 m, 8 bands, ~5 usable)




ESA / Copernicus

Sentinel-2 image of Yucatan coast, Mexico (17 April 2018)
(pixels 10 m, ~5 usable bands)




Sentinel 2 - useful bands are at different resolutions

Band Wavelength range Pixel size
01 433 —453 nm 60 m
02 457 =523 nm 10 m
03 542 -578 nm 10m
04 650 — 680 nm 10 m
05 697 —713 nm 20 m
06 732 —-748 nm 20 m
07 773 =793 nm 20 m
08 784 —-900 nm 10 m
8A 855—-875 nm 20 m
09 935-955nm 60 m

— Interesting potential issues / artefacts



Methods for bottom mapping and/or bathymetry
Many and very diverse — overlap with terrestrial methods

Empirical, image based, requires training from in-situ data

e (lassification, depth invariant indices
e Bathymetry by regression methods

Physics based

e Radiative transfer model inversion

Hybrid
* Object orientated techniques - classificaton combined with rules
which can take data from other remote sensing and physics based

methods
e e.g.depth, wave energy (wind)



Empirical image based methods (e.g. bathymetry)

* Usually assume exponential attenuation of light with depth (i.e. constant K)
e Requires training of points from imagery (deep water, known depths etc.)

e Similar methods for water column correction, change detection, etc.

Lyzenga 1978 X; = In(L; = L), a0, al, a2 from regression
Z=a, +aX, + aX,
ln(an()\@))

Stumpfetal. 2003 =z =my + ™Mo mO, m1, from regression

hl(ﬂRw ()\j))

Depth (m)



Benthic classification example, Lizard Island, GBR
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Classification

* Works by identifying pixels that have similar spectral reflectances
e Supervised or unsupervised

* Need for water column correction

One method - depth invariant indices
X; = In(R; — R*P)

X — \ d only need ratio of attenuation coefficients
i j T Qg4 ) ) .
can extract from image using sand at different depths



Sun-glint : different types of glint dependent on spatial scale

Large images e.g. MERIS, pixels > 100 m
— function of solar-view geometry and sea state
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Eg. IKONOS, QuickBird, WorldView 2, Sentinel 2



Atmospheric contribution and surface glint

Figure 1: Three-way decomposition of photon paths underlying the atmospheric correction algo-

rithm, * - indicates a scattering event. (a) Direct transmission and reflection from a black ocean;
(b) Path radiance over a black ocean; (c) Total transmission of water penetrating photons. Note

that a combination of multiple bottom boundary interactions from (b) and (c) is also possible.

T T T

1) Direct Glint 2) Atmospheric Reflectance 3) Part We Want



Glint prediction and correction - large scale

Cox and Munk equations
e 1950s - based on photographs of surface glitter
 Many subsequent studies: all agree

Cox & Munk (1956) Slopes of the Sea Surface Deduced

from Photographs of Sun Glitter. Scripps Inst.
Oceanogr. Bull. 6(9): 401-88

Result is statistical model of the sea surface:

Mean square slope = 0.003 + 0.00512 U,

Sun-glint depends only on: \

1) sun position wind speed ms!
2) sensor position
3) wind speed (and to a small extent wind direction)

e Statistical description at large scales and open ocean — large pixels (100s m)

 No use for high resolution imagery and shallow areas



High spatial resolution

e Atmospheric contribution may
be assumed uniform over the
area of interest

e Surface glint is not uniform

sensor
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Glint correction or “deglint” of high spatial resolution images

e Can correct using a Near-Infra Red (NIR) band to assess the glint
e Assumption 1 - Glint has a uniform spectral signature

e Assumption 2 - NIR from below the water surface is zero

WorldView-2 Image
(c) DigitalGlobe

pixels ~2 m

e Start with a sample of pixels over deep water, where it is
assumed there is no sub-surface variation in reflectance



Glint correction or “deglint” of high spatial resolution images
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Hedley et al. (2005) International Journal of Remote Sensing 26: 2107-2112
and other similar methods - see Kay et al. (2009) Remote Sensing 1: 697-730



Glint correction or “deglint” of high spatial resolution images

reflectance
with glint
removed
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Sample over deep water

 Before or after atmospheric correction? — using minimum NIR reflectance means it
probably doesn’t matter if you assume uniform atmospheric contribution



Before deglint




After deglint




Deglint example (Landsat 8)




Deglint example (Landsat 8)




Note 1: Glint corrected images are quite noisy

After

Before

1) Signal to noise issue - take a big signal away to leave
a small signal, but noise was on the big signal.

2) Also, combining noise from two bands - visible band
and NIR band.

3) Process is not perfect - band alignment, etc.

— Spatial filtering (smoothing) may be useful Pixel-to-pixel noise



Note 2: The need for precise band alignment
* Image bands are not always perfectly spatially aligned
e (Causes serious problems for glint removal algorithm

e WorldView-2 has various striping artefacts

» glint corrected
» band alighment on right side is bad

e Sentinel-2 detector edges — similar problems



Note 3: Over-correction when NIR below surface is not zero
e Assumption of zero NIR from below the water is not valid in shallow water
e Resultis “dark halo” effect around land features

e (Causes problems for subsequently applied algorithms

Before




Problem of sub-pixel glint (Sentinel-2)

Sea surface undulations occur at
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Specific challenges with Sentinel-2

PIxel size means hard to get a “no glint” reference

reflectance
with glint
removed
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The darkest pixels probably still contain some glint
So glint correction is incomplete and there remains a glint contribution



Specific challenges with Sentinel-2

PIxel size means hard to get a “no glint” reference

reflectance
with glint
removed

Visible Band Value

7 ¥ pixel fo be deglinted

G)ﬁ““—- deglin’refd pixel

regression line

o siope = by

Lt T sample

N

i i >
MinniR RNIR NIR Band Value

Force correction to assume zero NIR reflectance rather than empirical minimum

But that assumes NIR really should be zero

- i.e. atmospheric correction has removed any aerosol contribution in the NIR
- but atmospheric corrections often use NIR to estimate aerosol!



» Very difficult to disentangle glint from aerosol contribution
in Sentinel-2 imagery - without additional information

Atmospheric reflectance, Marine 99% RH aerosol model (libRadtran)
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* In this plot sun and view are directly overhead (zenith and nadir)
* Indirect surface reflectance but no direct glint included

e Top two lines include aerosols, bottom line Rayleigh only

SWIR doesn’t help much - there still is an aerosol and glint contribution



Harmel et al. 2018

Glint correction for Sentinel-2
Uses SWIR to characterise glint

Wavelength dependence based
on refractive index of water

But still relies on a-priori
separation of atmospheric
reflectance from surface glint

Need this data for atmospheric
correction, e.g. from AERONET
station.

Effectively this adds information
to reduce uncertainty between
aerosol and glint
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Harmel T. et al. (2018) Remote Sensing of Environment, 204: 308-321 doi: 10.1016/j.rse.2017.10.022



Inversion methods for shallow water applications
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Shallow water models for R,

1) HydrolLight-EcoLight

Build look-up tables for different depths, water
column optical properties and bottom reflectances HYDROLIGHT

Mobley et al. (2005) Applied Optics 44, 3576-3592

2) Semi-analytical models

Develop a simpler conceptual model and estimate coefficients or
parameters from a physically exact model such as HydroLight

Results in a forward model that is faster to compute

Lee et al. (1998) Applied Optics 37, 6329-6338
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shallow water reflectance
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H = depth in metres Also incorporates sun
P = phytoplankton concentration (proxy) and view zenith angles
G = dissolved organic matter concentration (proxy)
X = backscatter

Y = (spectral slope of backscatter) is fixed at 1

Various factors derived
from HydroLight



Inversion of the model

This is a forward model it describes what can occur in every
individual pixel based on what is in the pixel

@ ~ f(P,G,X,H,m,E)\

Six values describe every pixel

v

But we start with this
and wish to deduce this

1) Look-Up Tables - just try every combination of P, G, X, H, m, E within
their bounds and find which produces the best match for the pixel r,())

2) Successive approximation technique such as the Levenberg-Marquardt
algorithm, keeps adjusting solution to try and improve it.



LUT (look-up table)

Depth,

Im
2m
3m

Phytoplankton,
0.1 mg m3
0.1 mg m3
0.1 mg m3

CDOM, ... etc

Image pixel

430 480 530 580 630 680
Wavgtlength (nm)

Estimate:

Depth =2 m

Phytopankton = 0.2 mg m3
... etc



Adaptive LUT construction

TARGET FUNCTION

b1 a=0\a (b1, b2)=f(a), 0<a<l1

ADAPTIVE POINT-BASED LUT

A iteration 0 A iteration 1 A iteration 2
Aa=10.2 a=0.1
3 /\/’. ) 3 '\/,
a=0.3
> > >
bo b2 b2

Hedley et al. 2009, Remote Sens. Environ.



Example slice through ALUT structure
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Uncertainty Propagation

Fundamental uncertainty

— similar spectra from differing parameters

Remote Sensing Reflectance, r,
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Sources of "noise" — uncertainty
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Reflectance

Propagation through inversion

CASI deep water
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Bathymetry estimation with uncertainty
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Latitude (°)

Sentinel-2 bathymetry of Lizard Island (GBR) by model inversion

e Usesbands11,2,3,4and5
e ALUT inversion of Lee et al. equations

e [In-situ echo-sound data for comparison
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Direct result (single inversion)

Depth (m)




Mean of 20 noise perturbed results

Depth (m)




Single inversion vs. mean of noise perturbed inversions

Image derived depth (m, MSL)
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Marginally better statistics, r-squared, mean absolute residual, etc.

Cosmetically better (spatially smoother)



Shallow (upstanding) coral heads

Depth (m)

e Correctly identified as being shallow even though are dark pixels

e Benefit of variable bottom reflectance in the forward model.



Latitude (°)

Uncertainty (Quickbird image)
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0
Uncertainty (m)

 Dark patches (coral heads) have relatively higher uncertainty in depth

 Because there reflectance is similar to that of deeper pixels, within
the bounds defined by the noise model



Bolinao, Philippines (QuickBird image)

Coral reef

Coral™
Reet ...

Capacity Building Tor Management




Light absorption due to CDOM

Total absorption
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Light absorption due to CDOM

Total absorption
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Latitude (°)

Bottom reflectance

e Use the bathymetry estimate and water optical properties to make
water column correction
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Bottom reflectance

e Use the bathymetry estimate and water optical properties to make
water column correction

Latitude (°)

Longitude (°)




Coral Bleaching

Corals turn temporarily white when stressed by elevated temperature
Key indicator of climate change stresses on coral reefs




Coral Bleaching Detection (Sentinel-2)
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Coral Bleaching Detection (Sentinel-2)
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Object-orientated / machine learning techniques
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Sen2Coral Toolkit in SNAP W
\\\K eSa

Mmmipheric Sentinel Application Platform
correction http://step.esa.int/main/toolboxes/snap/
e oo

Al: Spatial registration

A2: Deglint

A3: Land, cloud and white cap mask

Change detection

Mapping
A4: Radiometric AS5: Depth
normalisation via invariant
PIFs indices
AS8: Empirical A9: Physics
bathymetry based model
inversion
Alo: Ch.ange A6: Classification
detection - Bathymetry
Bathymetry
Bottom type

Geomorphology

Basic change
Habitat map

Bleaching

+  Water optical properties



Questions...
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