Radiometry and Apparent Optical properties (AOPs)

David Antoine

Professor, Remote Sensing & Satellite Research Group
Curtin University, Perth, Australia
Who am I?

- PhD in oceanography, January 1995, Université Pierre et Marie Curie, Paris 6. Carried out in the Villefranche optics group under supervision of Prof. André Morel
- Became CNRS research scientist at LOV in October 1996
- Was promoted to CNRS senior research scientist in 2008
- 1-year sabbatical at University of California at Santa Barbara (Dave Siegel’s group)
- Professor at Curtin University, Perth, Western Australia, since 2013. Director of the “Remote Sensing and Satellite Research Group”
- Along the way, I did work and have published on primary production from satellite ocean colour (OCR), atmospheric corrections of satellite OCR, bio-optical relationships, long-term changes of global phytoplankton, ...
- Have set up one of the longest oceanic time series of radiometry, optics and biogeochemical parameters (currently 15 years) (the “BOUSSOLE” time series)
- Have been significantly involved into national and international bodies in charge of coordinating science, defining satellite missions etc... (e.g., IOCCG, ESAC)
- Otherwise, I’m 53, I am married, have two children (19 and 24), and I am an occasional sailor
Lecture content

◆ The “grand scheme” linking IOPs, radiometric quantities, and AOPs
◆ Terminology, units, angles (geometry)
◆ Radiometry, calibration
◆ Radiance: the fundamental quantity, measuring radiances
◆ Irradiances, and measuring them
◆ Normalising radiances
◆ Bidirectionality of reflectance
◆ AOPs (K functions, R, Rrs, average cosines)
◆ From AOPs back to IOPs
◆ If time allows: polarization, asymptotic regime, light in the twilight zone
◆ If time further allows: a few words on the Case I / Case II water concept

Field measurement of radiometric quantities:
Matt Slivkoff’s lecture on Tuesday 3rd July, 11am
http://www.oceanopticsbook.info
Lecture sources, further reading

- A lot of what is shown in this lecture has been taken from: http://www.oceanopticsbook.info
- http://omtab.obs-vlfr.fr/fichiers_PDF/publications.htm (all papers from the Villefranche optics group since 1965)
- If you read French: Antoine D., 1998. Océanis 24, 81-150 (from the link above)
- https://licor.app.boxenterprise.net/s/liuswfuvtn7e9loxaht (from the “Licor” manufacturer)
The "Oceanic Optics Organization Chart"

Radiative Transfer Equation

- Downwelling average cosine: $\bar{\mu}_d = E_d/E_{od}$
- Irradiance reflectance: $R = E_u/E_d$
- Remote sensing reflectance: $R_{rs}(\theta, \phi) = L_w(\theta, \phi)/E_d$
- Normalized reflectance: $[\rho]^N_{ex}$
- Downwell plane irradi diffuse attenuation: $K_d = -\frac{1}{E_d} \frac{dE_d}{dz}$
- Upwell plane irradi diffuse attenuation: $K_u = -\frac{1}{E_u} \frac{dE_u}{dz}$
- Diffuse attenuation for radiance: $K_L(\theta, \phi) = -\frac{1}{L(\theta, \phi)} \frac{dL(\theta, \phi)}{dz}$
- Average cosine: $\bar{\mu} = \frac{E_d - E_u}{E_o}$
- Diffuse attenuation for PAR: $K_{PAR}(\theta, \phi) = -\frac{1}{PAR} \frac{dPAR}{dz}$

Apparent Optical Properties

- Absorption coefficient: a
- Volume scattering function: $\beta(\psi)$
- Total scattering coefficient: $b = \int_\psi \beta(\psi) d\Omega(\psi)$
- Backscatter coefficient: $b_b = \int_{2\pi b} \beta(\psi) d\Omega(\psi)$
- Sky radiance: $L_{sky}(\theta, \phi)$
- Sea state
- Bottom BRDF ($\theta', \phi' \rightarrow \theta, \phi$)

Figure courtesy: Curt Mobley, Sequoia Scientific
Terminology, units, angles (geometry)

<table>
<thead>
<tr>
<th>Quantity of radiant energy</th>
<th>(W, Q)</th>
<th>Energy emitted, transferred, or received as radiation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Radiant flux</th>
<th>(\Phi, F)</th>
<th>The time rate of flow of radiant energy.</th>
</tr>
</thead>
</table>

A photon is a quantum of electromagnetic radiation that has an energy equal to the product of the frequency of the radiation by the Plank's constant \(h \) (Quantum is entity of energy postulated in quantum theory).

With:

\[
h = (6.626 \times 10^{-34} \text{ J Hz}^{-1})
\]
Terminology, units, angles (geometry)

Radiant intensity I
(of a source in a given direction)
(F. intensité énergétique).

The radiant flux emitted by a point source, or by an element of an extended source, in an infinitesimal cone containing the given direction, divided by that element of solid angle.

Relation: $I = \frac{d\Phi}{d\omega}$

Radiance L
(F. luminance énergétique)

Radiant flux in a given direction per unit solid angle per unit projected area.

Relation: $L(\theta, \phi) = \frac{d^2\Phi}{dA \cos\theta \, d\omega}$

Irradiance E
(at a point of a surface)
(F. éclairement)

The radiant flux incident on an infinitesimal element of a surface containing the point under consideration, divided by the area of that element.

Relation: $E = \frac{d\Phi}{dA}$
Terminology, units, angles (geometry)

- In radiative transfer, one normally refers to the direction where the light is going. Normally noted with θ and ϕ

- When measuring radiometric quantities, the opposite is made: direction of where we point the instruments

In an Earth frame (e.g., remote sensing or field measurements):
- Sun zenith angle: θ_s or θ_0
- View zenith angle: θ or θ_v
- Azimuth difference: $\Delta\phi$

From Morel and Gentili, Applied Optics, 1996
Terminology, units, angles (geometry)

The scattering angle:

\[\cos(\gamma) = \cos(\theta_v) \cos(\theta_s) + \sin(\theta_v) \sin(\theta_s) \cos(\Delta\phi) \]

Solid angles:

\[d\Omega = \sin(\theta) \, d\theta \, d\phi \]
Radiance: the fundamental quantity

\[L(\vec{x}, t, \hat{x}, \lambda) \equiv \frac{\Delta Q}{\Delta t \Delta A \Delta \Omega \Delta \lambda} \quad (J \text{s}^{-1} \text{m}^{-2} \text{sr}^{-1} \text{nm}^{-1}) \]
\[\text{W m}^{-2} \text{sr}^{-1} \text{nm}^{-1} \]

Radiant flux in a given direction per unit solid angle per unit projected area

This is the quantity that appears in the radiative transfer equation, e.g., under the following form as a function of depth \((z)\), and IOPs such as \(c\) and \(\beta\)

\[
\cos \theta \frac{dL(z, \theta, \phi, \lambda)}{dz} = -c(z, \lambda)L(z, \theta, \phi, \lambda) \\
+ \int_0^{2\pi} \int_0^\pi L(z, \theta', \phi', \lambda)\beta(z; \theta', \phi' \rightarrow \theta, \phi; \lambda) \sin \theta' d\theta' d\phi'
\]

Principle of “radiance invariance”: independent of distance, if homogeneous target of large etendue

IOCCG Summer Lecture Series 2018. Lecture on Radiometry and AOPs
Radiometry

- Radiometry is the science of measuring electromagnetic energy (optical “radiant” energy)
- So, basically you need to collect energy and transform this into a signal that you can measure and quantify
- You need to have SI units attached to it → Calibration in reference to a standard.
- What are the units and standard for radiometry?
SI base units

Definitions of the SI base units

<table>
<thead>
<tr>
<th>Unit of length</th>
<th>meter</th>
<th>The meter is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit of mass</td>
<td>kilogram</td>
<td>The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.</td>
</tr>
<tr>
<td>Unit of time</td>
<td>second</td>
<td>The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.</td>
</tr>
<tr>
<td>Unit of electric current</td>
<td>ampere</td>
<td>The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2 x 10^-7 newton per meter of length.</td>
</tr>
<tr>
<td>Unit of thermodynamic temperature</td>
<td>kelvin</td>
<td>The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.</td>
</tr>
</tbody>
</table>
| Unit of amount of substance | mole | 1. The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12; its symbol is “mol.”
2. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles. |
| Unit of luminous intensity | candela | The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540 x 10^{12} hertz and that has a radiant intensity in that direction of 1/683 watt per steradian. |

Taken from the US National Institute of Standards (NIST):
SI derived units

Some of them

<table>
<thead>
<tr>
<th>SI Unit</th>
<th>Symbol</th>
<th>Dimension</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>plane angle</td>
<td>radian</td>
<td>rad</td>
<td>m⋅m⁻¹ = 1</td>
</tr>
<tr>
<td>solid angle</td>
<td>steradian</td>
<td>sr</td>
<td>m²⋅m⁻² = 1</td>
</tr>
<tr>
<td>energy, work, quantity of heat</td>
<td>joule</td>
<td>J</td>
<td>N⋅m</td>
</tr>
<tr>
<td>power, radiant flux</td>
<td>watt</td>
<td>W</td>
<td>J/s</td>
</tr>
</tbody>
</table>

Radiant flux in a given direction per unit solid angle per unit projected area

\[L(\vec{x}, t, \hat{\xi}, \lambda) \equiv \frac{\Delta Q}{\Delta t \Delta A \Delta \Omega \Delta \lambda} \]

\[(J \text{ s}^{-1} \text{ m}^{-2} \text{ sr}^{-1} \text{ nm}^{-1}) \quad \text{W m}^{-2} \text{ sr}^{-1} \text{ nm}^{-1}\]

Taken from the US National Institute of Standards (NIST):
SI standards

What about radiometry?

https://www.bipm.org/fr/measurement-units/history-si/metre_kilo.html
The primary radiometry standard: Cryogenic radiometer

The cryogenic radiometer uses the electrical substitution technique, whereby the optical power incident on an absorbing cavity is compared with the electrical power required to heat the cavity to the same temperature.

“cryogenic” because it is forced to very low temperature in order to improve sensitivity

[Image: A cryogenic radiometer of the UK NPL]

IOCCG Summer Lecture Series 2018. Lecture on Radiometry and AOPs
Electrical Substitution Radiometry – a 100 yr old technology

When thermometer temperature $T=T_o=T_E$ then $P_o=P_E$

Optical power = P_o

Absorbing black coating

Copper disk

Principle of Cryogenic radiometry

Cryogenic cooler

Cooling improves sensitivity by 1000 X

Absorbing cavity (~ 0.99999)
Calibrating in air, then measuring in water

Need to apply “immersion factors”:

For radiance:

\[C_{im} = \frac{1 - \left(\frac{n_g - 1}{n_g + 1} \right)^2}{1 - \left(\frac{n_g - n_w}{n_g + n_w} \right)^2} n_w^2 \]

\(n_g \): refractive index of glass
\(n_w \): refractive index of water

Has to account for the change of the solid angle

For irradiance:

Fig 6 in Zibordi et al., 2004; J. Ocean. Atm. Tech., 21, 501-514

Has to account for the change of the reflections, transmissions effects at the interface between the collector and the medium

To be determined experimentally
Measuring radiance

\[L(\vec{x}, t, \hat{\xi}, \lambda) \equiv \frac{\Delta Q}{\Delta t \Delta A \Delta \Omega \Delta \lambda} \quad (\text{J s}^{-1} \text{ m}^{-2} \text{ sr}^{-1} \text{ nm}^{-1}). \]

Often referred to as a “Gershun tube”

Figure: Schematic design of an instrument for measuring unpolarized spectral radiance.

From: http://www.oceanopticsbook.info
Measuring radiance: the 1ˢᵗ underwater radiance distribution

Unidirectional photometer with elevation scanning

Radiances distribution in Lake Pend’Oreille
Redrawn from the data published by Tyler, 1960

Measuring radiance

Measuring radiance

Radiance camera: getting simultaneously radiances in all directions of an hemisphere, at several wavelengths

Figures 2 and 3 in: Antoine et al., 2013, Journal of Atmospheric and Oceanic technology, vol 30, doi: 10.1175/JTECH-D-11-00215.1
Measuring radiance: under water upwelling radiances distributions

Figure 7 in: Antoine et al., 2013, Journal of Atmospheric and Oceanic technology, vol 30, doi: 10.1175/JTECH-D-11-00215.1
Measuring radiance: Underwater upwelling, $L(Ξ_u)$, and downwelling, $L(Ξ_d)$, radiances distributions

Figure 9 in: Antoine et al., 2013, Journal of Atmospheric and Oceanic technology, vol 30, doi: 10.1175/JTECH-D-11-00215.1
Measuring radiance:
what we actually do most of the time

We measure L_u at nadir and E_d
vertical profiles (from ships) or fixed depths (moorings)

From: http://www.seabird.com/profiler

From BOUSSOLE

From BOUSSOLE

Photo Credit: Boussole
Spectra of underwater upwelling radiances

Example measurements taken 60km off Villefranche, at the “BOUSSOLE” site

18th January 2011
Chl ~1 mg m⁻³

13th December 2015
Chl ~0.24 mg m⁻³
Spectra and vertical profiles of underwater upwelling radiances

13th December 2015
Chl \(\sim 0.24 \text{ mg m}^{-3} \)

The water-leaving radiance

\[
L_w(\theta, \phi) = L_u(0^-, \theta', \phi) \left[1 - \rho(\theta', \theta) \right] \frac{1}{n^2}
\]

\(L_u(z) (\text{W m}^{-2} \text{nm}^{-1} \text{sr}^{-1}) \)

\(\lambda = 340 \text{ nm} \)
\(\lambda = 412 \text{ nm} \)
\(\lambda = 443 \text{ nm} \)
\(\lambda = 555 \text{ nm} \)
\(\lambda = 665 \text{ nm} \)
Do we need to go any further?

If we know radiances in all directions and all (or at least multiple) depths in the water column, plus maybe their distribution above the surface: what else do we need?

In theory, nothing!

However, this is not what we get in the real world (or really exceptionally)
Irradiances

Scalar irradiance

\[\hat{E} = \int_{\Omega} L(\theta, \phi) \, d\Omega \]

Downward plane irradiance

\[E_d = \int_{\Omega_d} L(\theta, \phi) \cos\theta \, d\Omega \]

Upward plane irradiance

\[E_u = \int_{\Omega_u} L(\theta, \phi) |\cos\theta| \, d\Omega \]

The irradiance falling on a plane surface varies as the cosine of the incident angle (Lambert’s cosine law).

Irradiance also follows the “inverse square law”
Measuring irradiances

Plane irradiance
That’s what enters the ocean through the air-sea interface

\[E_a(\vec{x}, t, \lambda) = \frac{\Delta Q}{\Delta t \Delta A \Delta \lambda} \quad (W \text{ m}^{-2} \text{ nm}^{-1}). \]

Scalar irradiance
What provides energy for photosynthesis underwater

\[E_{od}(\vec{x}, t, \lambda) = \int_{\xi \in \Xi_d} L(\vec{x}, t, \hat{\xi}, \lambda) d\Omega(\hat{\xi}) \]
\[= \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} L(\vec{x}, t, \theta, \phi, \lambda) \sin \theta d\theta d\phi \]

From: http://www.oceanopticsbook.info
Measuring irradiances

A typical “free-fall” profiling radiometer: the Satlantic “SeaWiFS Profiling Multichannel Radiometer”

Hyperspectral Satlantic radiometers, as installed on the BOUSSOLE buoy
Photosynthetically available radiation (PAR)

PAR is the integrated radiation in the visible, from 400 to 700nm. Used in photosynthesis studies

This is the number of photons in the 400–700 nm waveband incident per unit time on a unit surface. The ideal PAR sensor responds equally to all photons in the 400–700 nm waveband and has a cosine response.

As far as possible, PAR should not be used for anything else than photosynthesis studies. It is not a very good descriptor of the underwater light environment for other purposes.

![Typical response of a PAR sensor](https://licor.app.boxenterprise.net/s/liuswfuvtn7e91oxaut)

Figure 2 from “Principles of Radiation Measurement”, Li-COR. See at: https://licor.app.boxenterprise.net/s/liuswfuvtn7e91oxaut
What can we do with “unmodified”, direct measurements of radiances or irradiances?

A few things, actually:
1- Know how much light is available for photosynthesis
2- Directly use L_w for vicarious calibration of satellite OCR sensors
3- ??? Unsure actually

We are a bit limited, however, in using radiances of irradiances. Why?

Because they depend too much on illumination conditions (sun elevation, cloudiness, other atmospheric properties, air-sea interface properties)
Cannot compare different sets of measurements

Another reason (the major one actually) is that getting the full radiance distribution is a difficult task

Therefore, we will need to combine radiances and/or irradiances in different ways, to normalize them in some way, and to use depth derivatives
The normalized water leaving radiance: $L_{w,n}$ or $[L_w]_N$

A quantity that can be compared with a standard measurement made \textit{in situ}, in the ocean, for whatever sun zenith angle, viewing direction, atmospheric conditions, and wave state occurred at the time of the satellite measurement.

$$L^n_w = \frac{L_w}{\varepsilon t_d \cos(\theta_s)}$$

\begin{equation}
\text{\textit{actually}: } L^n_w = L_w \frac{F_0}{E_d(0^+)}
\end{equation}

This normalisation is incomplete, however: it is for a particular viewing geometry. It does not account for the directionality of reflectance.
“Bidirectionality” of the ocean reflectance

Basically means that the radiance exiting the ocean (the “water-leaving radiance, L_w) has not the same value for all directions.

Depends on the shape of the VSF, and on how diffuse the underwater light regime is (e.g., ratios b/c and b_w/b_p), and how diffuse the incoming solar radiation is (so: θ_s and atmosphere optical thickness).

This has to be taken into account for comparing measurements or using them in various algorithms or when using OCR remote sensing observations.

Simple examples:

Everything being equal in terms of IOPs:

L_w at nadir and L_w at a viewing angle of 45° can be different by, say, about 10%.

or

L_w at nadir when the satellite crosses the equator and when it arrives above Villefranche will differ by, again, something like ~10% (change of solar zenith angle).
“Bidirectionality” of the ocean reflectance

\[\frac{L_u(0^-)}{E_u(0^-)} \]

Figure 9 in: Antoine et al., 2013, Journal of Atmospheric and Oceanic Technology, vol 30, doi: 10.1175/JTECH-D-11-00215.1

\[\frac{L_u(0^-)}{E_u(0^-)} \]

Figure 10 in: Morel A. et al., 2002, Applied Optics 41(30), 6289-6306.

\[\frac{L_u(0^-)}{E_u(0^-)} \]

\[\lambda = 442.5 \text{ nm} \]
\[\theta_e = 45^\circ \]
\[\lambda = 560.0 \text{ nm} \]

\[\eta_b = 0.88 \]
\[\bar{n} = 3.9 \]
\[\theta_e = 48^\circ \]
\[<\text{Chl}> = 0.03 \text{ mg m}^{-3} \]

\[\eta_b = 0.76 \]
\[\bar{n} = 1.5 \]

\[\eta_b = 0.45 \]
\[\bar{n} = 5.9 \]
\[<\text{Chl}> = 0.01 \text{ mg m}^{-3} \]

\[\eta_b = 0.18 \]
\[\bar{n} = 7.1 \]
\[<\text{Chl}> = 0.00 \text{ mg m}^{-3} \]

\[\eta_b = 0.07 \]
\[\bar{n} = 15 \]
Full normalisation is needed

André Morel (Villefranche optics group) and coworkers developed a theoretical framework for the bidirectional aspects, and how to take it into account practically.

\[Q = \frac{E_u(0^-)}{L_u(0^-)} \quad \text{and} \quad f = \frac{E_u(0^-)}{E_d(0^-)} \frac{a}{b} \]

\(f/Q \) described as a function of Chl and geometry
Apparent Optical Properties (AOPs)

The idea is to define quantities that:

1) can be relatively easily determined from *in situ* measurements, without having to use overly sophisticated and difficult-to-handle instrumentation and,

2) Are related to the quantities of interest, such as the chlorophyll concentration or the amount of particles

That’s where the concept of “Apparent Optical Properties” (AOPs) comes into play

These quantities have to be related to the IOPs if we want them to be useful to determine “quantities of interest” (chlorophyll, particles...), and they have to be only weakly depending on environment conditions to be useful.
Apparent Optical Properties (AOPs)

\[K_d(z, \lambda) \equiv - \frac{1}{E_d(z, \lambda)} \frac{dE_d(z, \lambda)}{dz} \]

\[= - \frac{d \ln E_d(z, \lambda)}{dz} \text{ m}^{-1} \]
Apparent Optical Properties (AOPs)

Practically, K_d can be derived in a number of ways, e.g.:

$$K_d(\lambda) = -\frac{\log\left[\frac{E_d(z_1, \lambda)}{E_d(z_2, \lambda)}\right]}{z_2 - z_1}$$

Local K_d realisation at any given depth ($z_2=z_1+\Delta z$, with Δz small)

$$K_d = -\frac{\log\left[\frac{E_d(z)}{E_d(0^-)}\right]}{z}$$

K_d over layers of any depth from the surface (“0-” means just below the surface)

$$K_{d,av}(\lambda) = \frac{\int_0^z K_d(z, \lambda) E_d(z, \lambda) dz}{\int_0^z E_d(z, \lambda) dz}$$

An “irradiance-weighted K_d”

Apparent Optical Properties (AOPs)

K_d (m⁻¹)

Wavelength (nm)

IOCCG Summer Lecture Series 2018. Lecture on Radiometry and AOPs
Apparent Optical Properties (AOPs)

This slide is borrowed from Curt Mobley’s IOCCG lecture in 2016

Pros and Cons of K_d’s

Pros:
- K’s are defined as rates of change with depth, so don’t need absolutely calibrated instruments
- K_d is very strongly influenced by absorption, so correlates with chlorophyll concentration (in Case 1 water)
- about 90% of water-leaving radiance comes from a depth of $1/K_d$ (called the penetration depth by Gordon)
- radiative transfer theory provides connections between K’s and IOPs and other AOPs (e.g., Gershun’s equation: $a = K_{net} \mu$)

Cons:
- not constant with depth, even in homogeneous water
- greatest variation is near the surface
- difficult to compute derivatives with noisy data
Apparent Optical Properties (AOPs)

Other K functions

\[K_d(z, \lambda) \equiv - \frac{1}{E_d(z, \lambda)} \frac{dE_d(z, \lambda)}{dz} \]

Replace \(E_d \) by:

\(L_u \): often used to extrapolate \(L_u \) to the 0\(^{-}\) level

\(E_u \): not commonly measured

\(L(\theta,\phi) \): not commonly measured
Apparent Optical Properties (AOPs)

Irradiance reflectance

\[R(\lambda) = \frac{E_u(\lambda)}{E_d(\lambda)}, \quad \text{often taken at } 0^\circ, \quad \text{so } R(\lambda) = \frac{E_u(0^\circ, \lambda)}{E_d(0^\circ, \lambda)} \]

Apparent Optical Properties (AOPs)

Band-ratio algorithms, using reflectance ratios, have been the basis of satellite OCR for long
Remote-sensing reflectance \(R_{rs}(\lambda) = \frac{L_w(\lambda)}{E_s(\lambda)} \)

Contrary to R, \(R_{rs} \) is defined above the surface.

Similar behaviour and use than R

\(R_{rs} \), however, is slightly less dependent on environment conditions than R is.

https://seabass.gsfc.nasa.gov/wiki/Hyperspectral_Rrs_Examples
Apparent Optical Properties (AOPs)

Average (mean) cosines

For E_d (radiances over one hemisphere):

$$
\bar{\mu}_d = \frac{\int_0^{2\pi} \int_0^{\pi/2} L(\theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi}{\int_0^{2\pi} \int_0^{\pi/2} L(\theta, \phi) \sin \theta \, d\theta \, d\phi} = \frac{E_d}{E_{od}}
$$

The more diffuse the radiance field, the smaller μ_d is.

For net irradiance $E_d - E_u$ (full radiance distribution):

$$
\bar{\mu} = \frac{\int_0^{2\pi} \int_0^{\pi} L(\theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi}{\int_0^{2\pi} \int_0^{\pi} L(\theta, \phi) \sin \theta \, d\theta \, d\phi} = \frac{E_d - E_u}{E_o}
$$

Value of μ_d, μ_u and μ for an isotropic radiance distribution?
The use of AOPs

\(K_d \): how much light at what depth (photosynthesis)
\(K_d \): how much heat is absorbed along the vertical (physics)
\(R \) or \(R_{rs} \): how much chlorophyll is in there? (e.g., satellite band ratio algorithms)

SeaWiFS global Chl composite © GSFC/NASA OBPG
From AOPs back to IOPs

Examples:

Gershun’s law (Gershun 1939). Valid without internal radiative sources such as Raman scattering or fluorescence (in other words without inelastic scattering).

Are we really using this?
Sometimes, yes

Figure 11 in: Antoine et al., 2013, Journal of Atmospheric and Oceanic technology, vol 30, doi: 10.1175/JTECH-D-11-00215.1
From AOPs back to IOPs

The real world is:

Most of the time, only L_u at nadir and E_d are measured, giving access to K functions only, and to R_{rs} after extrapolation.

That is actually a rather poor description of the underwater environment.

Therefore, to develop numerical inversion of AOPs into IOPs, one has to include a number of assumptions, introduce simplifications or some empiricism, and to rely on radiative transfer computations.
From AOPs back to IOPs

The one you likely know:

\[R = f \frac{b_b}{a} \quad \text{or} \quad R = f' \frac{b_b}{a + b_b} \]

Can be combined with, e.g., (from Gordon, H.R., 1989. Limnol. Oceanogr. 34, 1389–1409)

\[K_d = \frac{1.0395(a + b_b)}{\mu_d} \]

So that (Morel et al., 2006, Deep-Sea Res, 53, 1439–1459):

\[a = 0.962 \ K_d \ \mu_d \left(1 - \frac{R}{f'} \right) \quad \text{and} \quad b_b = 0.962 \ K_d \ \mu_d \left(\frac{R}{f'} \right) \]

If you measure \(R \) and \(K_d \), you still have to know \(\mu_d \) and \(f' \), or you have to “guess”, i.e., to model them from chlorophyll.
From AOPs back to IOPs

Another example: Gordon & Boynton, 1997, Applied Optics, 36(12), 2636-2641

Again, they used Gershun

\[a(z)^o E(z) = -\frac{d[E_d(z) - E_u(z)]}{dz} \]

And:

\[R = f \frac{b_b}{a} \text{ with } f = 0.33, \text{ or } b_b = 3 \ R \ a \]

Otherwise, you can enter into the real of semianalytical algorithms, e.g., the “GSM” (Garver and Siegel, 1997. J. Geophys. Res. 102, 18607–18625. Maritorena et al., 2002, Applied Optics, 41(15)):

\[L_{wN}(\lambda) = \frac{tF_0(\lambda)}{n_w^2} \sum_{i=1}^{2} g_i \left\{ \frac{b_{bw}(\lambda) + b_{bp}(\lambda_0)(\lambda/\lambda_0)^{-\eta}}{b_{bw}(\lambda) + b_{bp}(\lambda_0)(\lambda/\lambda_0)^{-\eta} + a_w(\lambda) + \text{Chl} \ a_{ph}^*(\lambda) + a_{cdm}(\lambda_0) \exp[-S(\lambda - \lambda_0)]} \right\}^i \]
A few last things
Polarisation

Quick summary:

Related to the orientation of the Electric fields (see Dariusz Stramski’s lecture)

Linear or circular

Described through the Stokes vector $[I, Q, U, V]$

Why can this be of interest?

- Because polarisation (degree of) depends on the size distribution, shape, and index of refraction of particles
- Because reflected solar light at the air-sea interface is polarized so can be “eliminated” by using appropriately oriented polarized filters

Note: radiative transfer (John Hedley’s lectures) can be performed either by ignoring (“scalar”) or by taking into account (“vector”) polarisation. Remind that in the former case, radiances can be in error by a few % (up to about 10%)
Reproduced and quoted from Fig. 5 in Bhandari et al., J. Geophys. Res., 116, , C00H10, doi:10.1029/2011JC0073202011:

“Angular distribution of DoLP ... Graphs show the DoLP along the solar principal plane. The (middle) in-water and (right) sky data are given. Also shown in graph is the DoLP of the refracted skylight, including polarization effects due to the surface”

Data from the Santa Barbara Channel, Sept. 2008, “DPOL” instrument by K. Voss
The asymptotic regime

When at multiple optical depths, the shape of the radiance distribution, in relative terms, becomes invariant ("constant azimuthally and dependent only on the absorption and scattering properties")

This distribution then becomes an IOP (independent of illumination conditions, and only dependent on absorption and scattering)

Upwelling radiances ($90^\circ < \theta < 180^\circ$) would be between about 2 and 4 orders of magnitude lower than the downwelling radiances, depending on the proportion between molecular and particle scattering, and on the ratio k_∞ / c

As far as I’m aware, full radiance distributions under this regime have never been measured

Twardowski M. and A. Tonizzo, 2017. Optics Express, 25(15),
https://doi.org/10.1364/OE.25.018122
Light at great depths: The twilight zone

Essentially all field measurements of radiometric quantities are performed within the upper layers of the ocean.

For instance, we often use the 1% light-level as the depth above which all light-driven phenomena (e.g., photosynthesis) occur. Sometimes the 0.1% level is used.

In geometrical depths, this can be from just a few meters to nearly 200m in the clearest oceanic waters.

There is still light deeper, actually, and it maybe still significant for a number of processes there, and for certain marine life forms with highly sensitive “detectors”.

Therefore, there is some interest these days in trying to measure light at those great depths (200-500m).

Need special prototypes, with highly sensitive detector.

See, e.g., Haag J.M. et al., 2014. Optics Express, 22(24), DOI:10.1364/OE.22.030074

They measured light down to 440m!

http://www.esa.int/Our_Activities/Observing_the_Earth/Satellites_help_understand_what_fuels_the_twilight_zone
Thanks for your attention
The Case I / Case II waters paradigm
In Summary

Co-variation of substances having an optical effect

Dynamic range is large, so it works!

Dominance of phytoplankton absorption?

Coastal vs. offshore

What determine optical properties vs. what can be used to describe their overall changes

Optically complex vs. optically simple?
“Case 1 waters representation”: global relationships exist between Chl and IOPs or AOPs when considering the whole range of the Chl variation (3-4 orders of magnitude)

Loisel and Morel, 1998

Morel and Maritorena, 2001
Part 2: Various green waters

Among the curves corresponding to green waters shown in Fig. 1, two extreme cases can be identified and separated. Case 1 is that of a concentration of phytoplankton high compared to that of other particles. The pigments (chlorophylls, carotenoids) play a major role in actual absorption. In contrast, the inorganic particles are dominant in case 2, and pigment absorption is of comparatively minor importance. In both cases dissolved yellow substance is present in variable amounts and also contributes to total absorption. An ideal case 1 would be a pure culture of phytoplankton and an ideal case 2 a suspension of nonliving material with a zero concentration of pigments. Obviously, these ideal situations are not encountered in nature, and the

from the ocean were sought.

The first such algorithm was given (although not as such) by Morel and Prieur (1977), who presented a graph relating

\[\rho(440, 560) = \frac{R(440)}{R(560)} \]

to \(C \). It was clear from their data that a rough relationship

\[C = A[\rho(440, 560)]^B \]

(14)

could be established. In the same paper they classified ocean water according to the relative importance of phytoplankton and their covarying detrital products compared to various inorganic and organic sediments. 'Case 1' waters being those for which phytoplankton and their derivative products play a dominant role in determining the optical properties of the ocean, and 'Case 2' waters those for which the inorganic and/or organic sediments make an important or dominant contribution to the optical properties. This is summarized in Figure 2.

Waters ranging from oligotrophic (very low pigment content) to eutrophic waters (very high pigment content) belong to Case 1 provided that the agents 4, 5, 6 and 7 do not exert a significant influence; the always-associated agents 1, 2 and 3 determine the optical properties. According to Briceaud, Morel and Prieur (1981), the measurable

From:

CASE 1 WATERS

1. LIVING ALGAL CELLS
 variable concentration

2. ASSOCIATE DEBRIS
 originating from grazing by zooplankton and natural decay

3. DISSOLVED ORGANIC MATTER
 liberated by algae and their debris (yellow substance)

RESUSPENDED SEDIMENTS
from bottom along the coastline and in shallow areas

TERRIGENOUS PARTICLES
river and glacial runoff

DISSOLVED ORGANIC MATTER
land drainage (terrigenous yellow substance)

ANTHROPOGENIC INFLUX
particulate and dissolved materials

CASE 2 WATERS
influence of ‘marine’ yellow substance, 3, (i.e., a by-product of algae degradation) remains weak, even in eutrophic areas.

Case 2 waters may (or not) contain the components 1, 2 and 3. Waters depart from Case 1 to enter into Case 2 because of i) their high turbidity (sediment load) due to the influence of 4 and/or 5 (they are then sediment-dominated Case 2 waters); ii) their high terrigenous yellow substance content (6) (they are then yellow-substance-dominated Case 2 waters, or gilvin dominated, according to Kirk, 1980); and iii) their cumulated influence. Human activity, urban sources, industrial wastes, (7), can also create Case 2 waters, or superimpose their effects on existing Case 2 waters.

Oceanic waters, as a rule, form the Case 1 waters. These waters, however, are also present even in coastal areas in the absence of terrigenous influx (arid climate) and of the continental shelf.

Eutrophic Case 1 waters occur in certain upwelling regions, when the upwelled waters appear offshore, over the outer shelf or shelf break. When they appear over the inner shelf, they are often transformed into Case 2 waters as the sediment resuspension, mainly caused by waves and vertical mixing, maintains a high turbidity. Both these situations are encountered, for instance, along the N.E. African coast (see, e.g., Barton et al., 1977; Morel, 1982). Case 2 waters of diverse kinds are normally encountered in coastal zones (estuaries, shelf areas, inlets, etc.) and possibly far from the coast in the case of extended shelves or shallow banks.

Finally, note that among the constituents (1 to 7) considered, aeolian and meteoric dusts as well as zooplankton have not been represented for the reason that they have a negligible influence upon the optical properties.

In contrast to Case 1 waters, sediment-dominated Case 2 waters show relatively higher scattering, which, in general, does not covary with phytoplankton. At high phytoplankton concentrations, Case 1 waters would appear dark green, while Case 2 waters would appear a bright-milky green. Yellow

From:
This is still obtained as an application of the « Case 1 waters paradigm »