

Updates on the calibration status of SGLI

Hiroshi Murakami JAXA/EORC IOCCG calibration task force workshop 4 Feb. 2022

1. GCOM-C/SGLI:

width

10.6

10.3

10.1 10.3

19.1

19.8

22.0

21.9

11.4

20.9

20.8

20.6

20.3

21.1

20.1

195.0

50.4

756

759

Center

wavelength

379.9

412.3

443.3

490.0

529.7

566.1

672.3

672.4

763.1

867.1

867.4

672.2

866.3

1050

1390

1630

2210

10785

11975

nm

l: ob	servatio	on chanı	nels	GCOM-C Ekbel (king) Observation Mitston-ellinatio
Standard	Saturation	SNR	Pixel size	
			m	
60	μ 11 01 Kelvin	624 675	250/1000	ע 🗸 🗸 🗸 🗸 🗸 א
75	305-318	786-826	250 /1000	
64	457-467	487-531	250 /1000	Ocean color
53	147-150	858-870	250 /1000	Absorption by pigments
41	361-364	457-522	250 /1000	√250-m
33	95-96	1027-1064	250 /1000	
23	69-70	988-1088	250 /1000	Vegetation
25	213-217	537-564	250 /1000	
40	351-359	1592-1746	250/1000	│
8	37-38	470-510	250 /1000	
30	305-306	471-511	250 /1000	Aerosol
	295	609		ן / X ✓ Polarization
25	315	707	1000	
	293	614		Scattering by particles
	396	646		
30	424	763	1000	Cloud. Snow/Ice
	400	752		
57	289.2	951.8	1000	Absorbtion burnster/iss
8	118.9	347.3	1000	Absorption by water/ice
3	50.6	100.5	250 /1000	
1.9	21.7	378.7	1000	Land/Sea/Snow

250/500/1000

250/500/1000

300K Cited from Okamura et al., 2018. SNR is defined at the standard radiance and IFOV shown by bold

300K

340K

340K

0.08K

0.13K

1

characters

Scanner (IRS)

Infrare

Ó

system

Visible

and

Near Infrared

Radiometer (VNR)

-dnS

channel

VN01

VN02

VN03

VN04

VN05

VN06

VN07

VN08

VN09

VN10

VN11

PL01+60 PL01+0

PL01-60 PL02 +60 PL02 +0

PL02-60 SW01

SW02

SW03

SW04

TI01

TI02

GOM JAXA

Thermal emission

surface temperature

√250-m

2

2. GCOM-C/SGLI radiometric calibration system

- Post-launch Level-1 calibration will be based on the <u>onboard calibration</u> with sensor model developed by the <u>pre-launch characterization</u>
- Vicarious and cross calibration will be used for confirmation of the onboard calibration, and more accurate calibration (adjustment) required for the L2 algorithms

GCOM

3. SGLI Lunar CAL by GIRO

- ✓ GCOM-C SGLI lunar calibration is regularly updated by the monthly lunar observations (by the pitch maneuver; 58 times in 2018-2021) with GIRO
- The SGLI/GIRO trends are consistent with ones from the other onboard and vicarious calibrations
- Phase angle (+5~+10 degree) dependency is evaluated by AHI lunar observations at various phase angles

• Urabe, T., Xiong, X., Hashiguchi, T., Ando, S., Okamura, Y., Tanaka, K. (2020) Radiometric Model and Inter-Comparison Results of the SGLI-VNR On-Board Calibration, Remote Sensing, 12(1), 69. DOI: <u>10.3390/rs12010069</u>

Urabe, T., Xiong, X., Hashiguchi, T., Ando, S., Okamura, Y., Tanaka, K., Mokuno M., (2019) Lunar Calibration Inter-Comparison of SGLI, MODIS and VIIRS, Proc. of IEEE/IGARSS, pp. 8481–8484 (28 July 2019) DOI: 10.1109/IGARSS.2019.8897892

3. SGLI Lunar CAL by GIRO

✓ The gain degradation could be separated from the phase angle dependency by the simple multi regression model:

 $f_{ch,n} = a_{ch} \times g_n + b_{ch} \times d_n + c_{ch}$

f: SGLI/GIRO trend g: phase angle (deg) d: days since launch n: index of each lunar observation a_{ch}: phase angle dependent coefficient b_{ch}: sensor degradation coefficient c_{ch}: constant

 The phase angle dependency of SGLI were confirmed by comparing with one of Himawari-8 AHI/GIRO

✓ The gain degradation, $b_{ch} \times d$, has been considered in Ver.2 SGLI Level-1B $L_{L1B}(\lambda) = L_{orig}(\lambda) / (1.0 + b_{ch}(\lambda) \times d)$

Hashiguchi et al., SGLI Lunar Calibration Evaluation, 3rd Lunar Calibration Workshop, November 17, 2020, https://suzaku.eorc.jaxa.jp/GCOM_C/resources/files/17a_TaichiroHashiguchi_GCOM-C_SGLI_201117.pdf

4. Image quality: possible noise pattern

6

Horizontal stripe noise: selection of mask detectors

	Observation data																																																	
CH_telescope PreSCAN								PreOPB												PostOPB										PostSCAN																				
							Pre-Sca	n					_	Pre-OPB Du m										my Post-OPB																Pos	t-Scan			_			-			
1	~20 21	22 23	3 24	25	26	27	28 2	9 3/	0 31	1 32	: 33	34	35	36	37	38	39	40	41	1 42	43	44	45	46	47	48	49	50	51	52	53	54	55 5	56 5	57 5	58 5	9 61	0 61	62	63	64	65	66	67	68	69	70	71	72	73~9
VN01_L	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1 1	1 1	1	1	1	. 1	1	1	1 1	N/A
VN02_L	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 0	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1 1	1 1	1	1	1	. 1	1	1	ι <u>1</u>	N/A
VN03_L	N/A 0	1	1 1	1	1	1	1	1		1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	. 1	N/A
VN04_L	V/A 0	1	1 1	1		1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1 1	1 1	1	1		1	<u></u>	1	. 1	N/A
VINU5_L	V/A U	1	1 1	1	1	1	1		1		1	1	1	1	1	1	0	1	1	1			U	N/A	N/A	U U	0	U	U	0	U	0	0		1	1	1	1	1	1			1	1	1	1			· · · · · ·	N/A
VINUO_L	N/A U	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1		-	0		N/A	U	0		0	0	0	0	0	0	0	1	1	1	1	1			1	1	1		- 1		. 1	N/A
VN07_L	V/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0			0	0	0	0	0	0	0	0	1	1	1	1	1	1	1		1 1	1	1	1	1	1	1	1 1	
VNO0_L		1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1		0				0	0	0	0	0	0	0	1		1	1	1	1	1	1	1 1	1	1	1		1		1 1	N/A
VN10 I		1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1 1		0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1 1	1	1	1	1	1		1 1	N/A
VN11 I		1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1		0	N/A	N/A	Ő	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1	1	1	1		1		1 1	N/A
VN01 N	V/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 0	H	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1 1			1		$\frac{1}{1}$	ار	1 1	N/A
VN02 N	V/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A		0	0	- 0	0	0	0	0	0	1	1	1	1	1	1	1	1 1	1		1	1	1	1	1 1	N/A
VN03 N	V/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	- 0	N/A	N/A		0	0	0	0		0	0	0	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1 1	N/A
VN04 N	V/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1 1	1	1	1	1 1	1	1	1 1	N/A
VN05_N	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 1	1	1	1	1 1	1	1	1 1	N/A
VN06_N	V/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1 1	C	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1 1	1	1	1	1 1	1	1	1 1	N/A
VN07_N	V/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1 1	1	1	1	1 1	1	1	1 1	N/A
VN08_N	V/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 1	1	1	1	1 1	1	. 1	1 1	N/A
VN09_N	V/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1	1	1	1	1 1	1	1	1 1	N/A
VN10_N	N/A 0	1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1 1	1	1	1	1	. 1]	1 1	N/A
VN11_N	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1	1	1	1	1 1	1	1	1 1	N/A
VN01_R	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	C	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1 1	1	1	1	1	1	1	1 1	N/A
VN02_R	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 1	1	1	1	. 1	. 1	1	1 1	N/A
VN03_R 1	N/A 0	1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1 1	C	0	N/A	N/A	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 1	1	1	1	. 1	. 1	1	1 1	N/A
VN04_R	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	C	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1 1	1	1	1	. 1	1	1	1 1	N/A
VN05_R	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 1	1	1	1	1 1	. 1	1	1 1	N/A
VN06_R 1	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1 7	1 1	1	1	1	1 1	. 1	1	1 1	N/A
VN07_R	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1 7	1 1	1	1	1	. 1	1	1	1 1	N/A
VN08_R 1	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 0	1	0	N/A	N/A	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 ?	1 1	1	1	1	1	1	1	1 1	N/A
VN09_R	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1	1	1	1	. 1	1	1	1 1	N/A
VN10_R	N/A 0	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1 1	1	0	N/A	N/A	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1 ?	1 1	1	1	1	. 1	1	1	1 1	N/A
VN11_R	N/A 0	1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1 1	1	0	I N/A	N/A	0	0	0		0	0	0	0	1	1	1	1	1	1	1	1	4 1	1	<u> </u>			1		(<u> </u>	N/A
	T					Us	ed	de	tec	:tor	rs				l	Jse	ed (de	teo	ctor	ſS (.							. .											U	Jse	d d	lete	ect	or	S				

										1											Det	ec	tor	s c	of r	ed	re	cta	na	iles	s ai	re	use	ed	de	tec	to	rs i	n t	the	lo :	d r	ro	ces	ssi	na	(V	'er	(.1)	
			Gr	av	an	d (Dra	ng	e d	lete	ect	or	s a	re	ex	clu	ıde	ed																								- P					· ·		/	
				/																																														

- ✓ Some detectors (especially in Post OPB) used for the offset correction showed <u>variance uncorrelated with the observation detectors</u>; they cause horizontal stripe on the L1B image
- \checkmark By excluding the irregular pixels, the horizontal stripe has been improved

Example of SGLI stripe noise

Chl-a test by Ver.1 L1B

Chl-a test by Ver.2 L1B

GCOM

Chl-a image off the Shikoku island, Japan on 15 Jan 2020

✓ Along track and cross track stripes are improved by the revision of the offset correction (Ver.2)

5. New CEOS recommended Solar Spectral Irradiance Spectrum

9

5. New CEOS recommended Solar Spectral Irradiance Spectrum

✓ No influence on the Lunar cal. because we use the temporal change

 \checkmark L1B reflectance and vicarious calibration is influenced by the F₀

6. Summary

- ✓ Monthly lunar calibration works well by using GIRO
- ✓ The phase angle dependency has been corrected by lunar observations by the geostationary satellite imager, AHI
- ✓ The temporal change has been corrected in the L1B processing
- ✓ Revision of the offset correction has improved the along track and cross track stripe noise on L1B and OC images
- ✓ The new solar irradiance spectra make smooth spectra of the vicarious calibration: indicating consistency with the pre-launch calibration

