OCI ETU Calibration and Characterization

Shihyan Lee and OCI Calibration Team

Feb 4, 2022 IOCCG Calibration Working Group

Summary

- OCI ETU calibration/characterization testing campaign:
 - Performance verification (requirements)
 - Characterization, potential new capability, issues and limitation.
 - Aid instrument development R&D (Feed back, components test, modeling)
- OCI complexity poses challenges in test design and data analysis
- ETU Tests & results

OCI Calibration Challenges

- 3 focal planes:
- Blue/red CCD: 340 890 nm
 - Hyperspectral, 0.625 5 nm bands
 - time delay integration (TDI)
 - Variable spectral/spatial aggregation modes
- SWIR: 940 2260 nm
 - 9 multi-spectral bands
 - No TDI or spectral/spatial aggregation
- Rotating Telescope Assembly (RTA)
- Solar-cal: diffusor, port angle not in EV

- Challenges:
 - Hyper and multi-spectral bands + RTA design
 - Very high sensitivity and requirement
 - Multiple data collection configurations
 - Ever evolving test configuration and data formats
 - High data volume and complexity (128-1024 CCD bands + 9 (32) SWIR bands)
- ETU:
 - Red FPA only (no blue FPA)
 - only 10 SWIR detectors (vs 32 in flight)
 - no solar diffuser

Test setup

- Source:
 - Integrating sphere
 - Monochromatic: GLAMR
 - Flood: Tungsten, or others
- Optional adaptor
 - Collimator, slit (LSF)
 - polarizer
- OCI
 - GAToR (spatial position)

XINA (Test) Marker

- A web based, searchable interface
- Record each test's configuration and associated GSE data
- Greatly facilitated data analysis

12 intervals found (1-12)						C	Ł	٥	\$	
Int ID Contains - (,)
Label / Meta Contains 🕶									S	٩
Start	End	DOY	Duration	Pri ID	Sec ID	Laber	☑ test ☑ mar			
2022-01-13T13:36:52.002	2022-01-13T13:43:48.284	013	00:06:56.283	6111	1	1x1_Li0p0_A RED_SsmY DEBUG = NO	t100_n	1Secs	_1x1	-
2022-01-13T13:36:14.544	2022-01-13T13:43:49.317	013	00:07:34.773	6110	0	1x1 DEBUG = NO				
2022-01-13T12:09:45.141	2022-01-13T12:18:25.291	013	00:08:40.15	6111	1	1x1_Li0p0_A RED_SsmY DEBUG = NO	t100_n	1Secs	_1x1	-
2022-01-13T12:09:13.994	2022-01-13T12:18:26.372	013	00:09:12.378	6110	0	1x1 DEBUG = NO				

Real-time Quick-look Tool

- A real-time quick-look tool to facilitate QA and trouble shooting prior to taking data
- Spotter for issues for further analysis
- Example show CCD dark pulses

Response vs. source intensity

- Power stepping
 - Monochromatic: GLAMR
 - Flood: Tungsten, or others
- Progressive TDI (hyperspectral bands only)

- Results: Gain, SNR, saturation, linearity
- GLAMR power stepping vs. pTDI

Linearity

- GLAMR power stepping performed one band per tap (20 nm) and all SWIR bands.
- pTDI performed for all CCD bands
- (Left) Verify linearity for pTDI matches GLAMR power stepping.
- Linearity characterization: CCD bands pTDI, SWIR bands GLAMR

SNR

- Left: SNR vs. power level, red CCD
- Mid: 5nm band SNR@Ltyp
- Right: multi-spectral band SNR@Ltyp. (heritage sensor)

Spectral Response

Spectral response vs. Temperature

- Track spectral shift due to temperature change use OCI hyperspectral band response
- Left: OCI response to GLAMR
- Right: GLAMR: hot/cold plateaus at all wavelengths
- Pen-Ray: few selected wavelengths to track OCI spectral shift during temperatures transition

LSF Bench

Straylight / Crosstalk

Stress vs. Science scene impact

ETU Cross-Track only

straylight (%)

0.002

0.003

0.005

678

748

869

crosstalk

(%)

0.017

0.03

0.068

- spatial dimension (track/scan), spectral (xtalk)
- Build a straylight/xtalk model base on GLAMR data.
- Estimate science impact in 1-day MODIS data.

Response vs. view angle: RVS

- Change OCI view angle to the source
- OCI response vs. scan angle

Polarization Sensitivity

- OCI response vs. polarizer angle
 - CPT1 has a different setup, results not comparable with the rest CPTs.

Response vs. Temp

- OCI sensitivity is most sensitive to FPA temperature. Slightly sensitive to MOB temperature
- Top: OCI response vs. FPA CCD temperature
- Bottom: OCI gain before and after temperature correction

Additional Tests

- Cal2: gain/SNR/offset stability test
- EMI/EMC test: radiation susceptibility test
- Repeat tests to track instrument performance over time
 - CPT: comprehensive performance trending
 - LPT: limited performance trending

Going Forward

- OCI Flight Unit (FU) testing
- New hardware and tuning
 - Both blue/red CCD + complete SWIR band assembly
- Test program updates based on lesson learned
 - GLAMR radiance sweeps
 - LSF slits, timing delay
 - pTDI steps

Backup

GSE: GAToR

Key GAToR specs demonstrated with OCI mass and CG:

- Rotation: +/-100deg Az, +90deg,-30deg El.
- Step Precision: subphysical pixel equivalent. stepping (<40arcsec)