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Introduction	
This IOCCG Technical report is the result of an IOCCG Scientific Working Group (WG) on the evaluation 

of atmospheric correction algorithms over optically-complex waters that started in 2014. This report 

aims at being a complementary updated report of the IOCCG report # 10 which primarily focused on 

open ocean waters and standard atmospheric correction algorithms.  

Optically-complex waters, especially turbid waters, have been the focus of several research efforts in 

the past decades and the IOCCG working group felt it was time not only to provide a comprehensive 

evaluation of the most common atmospheric correction schemes used in the ocean color community 

but also to provide guidance to the end-users where to use a specific atmospheric correction algorithm 

depending on the predominant optical water type (OWT). 

As the reader may already know, the atmospheric correction process is vital to get accurate ocean 

color radiometry, i.e. the remote sensing reflectance (Rrs). While this process is somewhat easy in open 

ocean waters (due to the fact that the ocean can be considered totally absorbing of Sunlight in the 

near-infrared spectral range), it is more complicated in optically-complex waters that are often 

encountered in coastal and inland waters. 

Remote sensing of coastal and inland waters is difficult because: 

● these areas are highly variable in space and time 

● the surrounding can affect the signal measured by the remote sensor (straylight contamination 

or adjacency effects) 

● the aerosols are non-maritime (e.g., dust, smoke) and can be absorbing. These conditions are 

not considered by most available atmospheric correction algorithms 

● high values of total suspended matter (SPM) and/or high colored dissolved organic matter 

concentrations (CDOM) can be observed, which complicate the estimation of Rrs(NIR) and the 

correction of the Bidirectional Reflectance Distribution Function  (BRDF). High concentrations 

of SPM can also saturate the remote sensor 

● there are anthropogenic emissions such as NO2 absorption in the Ultra-Violet (UV) and visible 

(VIS) parts of the spectrum overlapping with the absorption of CDOM 

In this report, the WG decided to focus mainly on turbid waters (non-zero Rrs(NIR)). This is mainly due 

to the availability of long-term time series of in-situ measurements in these coastal areas. The 

evaluation of the atmospheric correction algorithms has been done using MODIS-AQUA images. It does 

not mean that this report is focused on MODIS-AQUA, it is just an application. The main reason why 

MODIS-AQUA has been chosen is that it was the only remote sensor to have short-wave infra-red 

(SWIR) bands over a long-time period when the WG started and MODIS-AQUA provides the longest 

time series of Ocean Color Radiometry (20-+ years). Since then, the Sentinel-3A and -B OLCI as well as 

S-NPP, NOAA-20 and NOAA-21 VIIRS sensors have been launched. However, we believe that the results 

of this evaluation can be applicable to OLCI and VIIRS as the wavelengths are very similar and the 

principles of most algorithms are not sensor dependent (only the quality of the sensor changes such 

as the Signal-to-Noise Ratio, SNR). NN-based algorithms, however, require sensor-specific training 

data. As the application of this report is on MODIS-AQUA, atmospheric correction algorithms using the 

709 nm band (Moore et al., 1999) or the OLCI 1020 nm band (Gossn et al., 2019) were not included in 

this study. 
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After briefly presenting the different atmospheric correction algorithms included in the round-robin in 

Chapter 1, the three datasets used for the evaluation are presented in Chapter 2 and the definition of 

the match-ups and optical water types are provided in Chapter 3. Then the results based on these 

three datasets including sensitivity studies are presented in Chapters 4 and 5. The final Chapter 4 of 

this Technical Report discusses the environmental conditions that can occur and further complicate 

atmospheric correction when observing coastal and inland waters such as adjacency effects and 

absorbing aerosols, which have not been considered in the algorithm inter-comparison of this report. 
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I.	Atmospheric	correction	over	turbid	waters	
This chapter presents first the basis of the atmospheric correction and then the selected algorithms. 

The selection was based on availability of the algorithms, on the popularity of algorithms and on the 

willingness of the developers to share the code of their algorithm and/or to process the data. We tried 

to select algorithms that the community uses or is interested in and based on different hypotheses so 

we could investigate the sensitivity of the outputs to those hypotheses. 

1)	Principles	of	the	atmospheric	correction	
The purpose of the atmospheric correction process is to remove the contribution of the atmosphere 

to the signal measured by the remote sensor, leading to the estimation of the remote-sensing 

reflectance Rrs, i.e. the ocean color radiometry. The signal measured by the remote sensor at the top-

of-the atmosphere can be decomposed into several terms (Gordon and Wang 1994; Gordon, 1997, 

IOCCG, 2010; Mobley et al., 2016; Frouin et al., 2019): 

    LTOA=LR+La+Lra+T.Lg+t.Lwc+t.Lw                                           (1) 

with 

● LTOA, the radiance measured at the top of the atmosphere 

● LR, the radiance due to air molecules (Rayleigh scattering) 

● La, the radiance due to aerosols (aerosols scattering) 

● Lra, the radiance due to the interaction between the aerosols and the air molecules (aerosols-

Rayleigh scattering) 

● Lg, the radiance due to specular reflection of Sunlight by the sea surface (Sun glint) 

● Lwc, the radiance due to white caps 

● Lw, the water-leaving radiance (the final parameter of interest) 

● T, the direct transmittance 

● t, the diffuse transmittance 

The Rayleigh scattering, the whitecaps radiance, the Sun glint contributions as well as the gas 

absorption can be estimated from ancillary data (Mobley et al., 2016). 

So, the atmospheric correction process aims at estimating the contribution of the aerosols using the 

Rayleigh-corrected radiance: 

     Lrc=LTOA- LR= La+Lra+t.Lw=LA+t.Lw                                    (2) 

The reflectance is often used to develop AC and to process ocean color images. Eq.2 can be 
rewritten, considering that ρ=πL/F0.cosθ0 with F0; the extraterrestrial solar irradiance and, θ0  the 
solar zenith angle. 
 
Over open ocean waters, the water-leaving radiance can be considered negligible (black pixel 

assumption) in the near-infrared (NIR) bands so the Rayleigh-corrected measured signal is only due to  

aerosols. Using the NIR bands allows the aerosol models and optical properties to be estimated. But in 

more optically-complex waters, such as turbid waters (which are the main focus of this report), the 

black pixel assumption is not true anymore, as there is a contribution of the water to the top-of-

atmosphere signal (IOCCG, 2010). To overcome this challenge, many atmospheric correction 

algorithms were developed in the past two decades for the major past and current ocean color remote 
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sensors. They can be grouped into five different categories: (1) assignment of the hypothesis on the 

NIR aerosols or water contributions (Hu et al., 2010; Ruddick et al., 2010; Vanhellemont and Ruddick, 

2021), (2) use of the shortwave infrared bands (Wang and Shi, 2005; Wang and Shi, 2007; Wang, 2007; 

Shi and Wang, 2009; Chen et al., 2014; He and Chen, 2014; Gossn et al., 2021), (3) use of blue or ultra-

violet (UV) bands (He et al., 2004; Oo et al., 2008; He et al., 2012; Giao et al., 2021a, 2021b; Liu et al., 

2021; Wang et al., 2021), (4) correction or modeling of the non-negligible ocean in the NIR (Moore et 

al., 1999; Siegel et al., 2000; Stumpf et al., 2003; Lavender et al., 2005; Bailey et al., 2010; Ahn and 

Park, 2020; Xue et al., 2021; Wang et al., 2022), and (5) coupled ocean/atmosphere inversion based 

on artificial neural networks (Doerffer and Schiller, 2007; Schroeder et al., 2003, 2007, 2022; Fan et al., 

2017, 2020, 2021; Ssenyonga et al., 2021) or optimization techniques (Chomko et al., 2003; Stamnes 

et al., 2003; Jamet et al., 2004, Brajard et al., 2006, 2012; Kuchinke et al., 2009; Steinmetz et al., 2011; 

Ibrahim et al., 2022). 

2)	Choice	of	algorithms	
The algorithms used in this evaluation have been chosen based on their availability and use by the 

ocean color community. The goal was not to have all published atmospheric correction algorithms but 

to have algorithms that are based on different hypotheses to try to understand how these hypotheses 

impact the accuracy of the retrievals. 

a)	NASA	standard	AC	(Bailey	et	al.,	2010)	
The Bailey et al. (2010) approach estimates the NIR reflectance through an iterative approach based 

on a reflectance retrieval in the red (670 nm).  The initial condition is based on the black-pixel 

assumption, from which an estimate of the visible water reflectance is obtained.  The backscatter 

coefficient in the red (at 670 nm) is estimated by inversion of the reflectance.  This inversion assumes 

that the dominant absorption component is water, although an empirical estimate of the particulate 

absorption is employed as well.  The backscatter slope parameter defined by Lee et al. (2010) is derived 

from the retrieved reflectance spectrum and is used to propagate the backscatter coefficient from the 

red into the NIR (748 and 869 nm, for MODIS-AQUA).  This propagated backscatter coefficient is used 

in a forward model to retrieve an estimate of water reflectance in the NIR which is subtracted from 

the signal prior to the next iteration of the atmospheric correction.  The iteration is continued until 

convergence of the red reflectance or a maximum iteration threshold is reached. 

b)	NIR-SWIR	AC	(Wang	and	Shi,	2007)	
This method combined the historic NASA atmospheric correction algorithm (Gordon and Wang, 1994) 

for the open ocean waters with an atmospheric correction method using the Short-Wave-Infra-Red 

(SWIR) bands (Wang and Shi, 2005). The switch is based on a turbidity index (Shi and Wang, 2007). The 

principle of the SWIR AC is the same as that of Gordon and Wang (1994), which considers the ocean to 

be black in the SWIR bands. The epsilon parameter is calculated in the SWIR bands and then used to 

estimate the aerosol optical properties and models. The version used in this report is the version 

implemented in the SeaDAS software. 

c)	MUMM	AC	(Ruddick	et	al.,	2000)	
This algorithm replaces the assumption that the water leaving radiance is zero in the NIR by the 

assumptions of spatial homogeneity of the 748/869 nm ratios for aerosol and water-leaving 

reflectances over the subscene of interest. The ratio of ρA reflectances at 748 and 869 nm is named ε 

and is considered as a calibration parameter to be calculated for each sub-scene of interest. In addition, 
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the ratio of ρw at 748 and 869 nm, named α, is also considered as a calibration parameter and is fixed 

to a value of 1.945 for the MODIS-AQUA sensor (Ruddick et al., 2000, 2006). These assumptions are 

used to extend to turbid waters the Gordon and Wang (1994) algorithm (thereafter referred to as 

GW94). Using the definition of α and ε, the equations defining ρA(748) and ρA(869) become: 

    !!(748) = ((748,869). -
".$!"#(&'()*$!"#(+,&)

"*-(+,&,&'()
.       (3) 

                                                         !!(869) = -
".$!"#(&'()*$!"#(+,&)

"*-(+,&,&'()
.                   (4) 

The atmospheric correction algorithm can be summarized thus: 

(1) Enter the atmospheric correction routine (i.e. GW94) to produce a scatter plot of Rayleigh-

corrected reflectances ρcor(765) and ρcor(785) for the region of study. Select the calibration parameter 

ε on the basis of this scatter plot. 

(2) Reenter the atmospheric correction routine with data for Rayleigh-corrected reflectances ρcor(748) 

and ρcor(869) and use Eqs. (2) and (3) to determine ρA(748) and ρA(869), taking account of non-zero 

water-leaving reflectances. 

(3) Continue as for the standard GW94 algorithm. 

d)	SWIRE	AC	(He	and	Chen,	2014)	
A new shortwave infrared extrapolation (SWIRE) method is used to correct the NIR bands. The 

Rayleigh-corrected reflectances in the SWIR bands (1.24, 1.64, and 2.13 μm) are used to determine an 

exponential function with respect to wavelength, which is used to correct the NIR bands (0.748 and 

0.869 μm) for sediment scattering and hence estimate the aerosol scattering reflectances in these 

bands. The Rayleigh-corrected reflectances can be fitted with an exponential function in the NIR and 

SWIR bands for open ocean waters while only in SWIR for turbid waters. The fitted function is called 

the extrapolated Rayleigh-corrected reflectance and is used to calculate the epsilon parameter.  Then 

the Gordon and Wang AC approach is applied. 

e)	NN-based	OC-SMART	AC	(Fan	et	al.,	2017,	2021)	
OC-SMART is based on Multi-Layer Neural Networks (MLNNs) methods for retrieval of aerosol optical 

depth (AOD) and Rrs values (Fan et al., 2017, 2021). A radiative transfer model for the coupled 

atmosphere-water system (AccuRT, Stamnes et al., 2018) is used to simulate the top of the atmosphere 

(TOA) radiances (Ltoa) and Rrs values simultaneously, and this dataset is used to train MLNNs to 

determine AOD and Rrs values directly from Ltoa radiances. Application of these MLNN algorithms to 

MODIS Aqua images in several coastal areas shows that they are accurate (no negative Rrs values), 

robust, and resilient to contamination due to Sun glint or adjacency effects of land and cloud edges. 

These MLNN algorithms are very fast once the neural networks have been properly trained and are 

therefore suitable for operational use. A significant advantage is that they do not need SWIR bands, 

which implies significant cost reduction for dedicated OC missions. These MLNN algorithms have been 

extended for application to extreme atmospheric conditions (i.e. strongly polluted continental 

aerosols) over turbid coastal water by including appropriate aerosol and ocean bio-optical models to 

generate the required training datasets. Application of these extended MLNN algorithms to VIIRS 

images over areas with extreme atmospheric and marine conditions (such as the Yellow Sea and the 

East China Sea) shows very promising results. 
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OC-SMART is freely available at http://www.rtatmocn.com/oc-smart/ and version v1.0 was used. 

f)	NN-based	FUB	AC	(Schroeder	et	al.,	2007)	
The Artificial Neural Networks (ANN) algorithm deployed for this working group comparison was 

adapted to an approach previously developed by Schroeder (2005) Schroeder et al. (2007a) for MERIS 

but on the basis of a different learning algorithm. In contrast to atmospheric correction algorithms 

based on the Black-Pixel assumption - the ANN method does not attempt to decouple atmospheric 

and oceanic light fields. Rather, it performs the correction directly on a pixel-by-pixel basis from the 

full TOA spectrum. 

A scalar version of the Matrix-Operator-MOdel (MOMO) was used to simulate the light field in a 

coupled ocean-atmosphere system and to build a large database of more than 20 million reflectance 

spectra at the bottom of the atmosphere (BOA) and at the top of the atmosphere (TOA). A variety of 

different sun and observing angles as well as different concentrations of oceanic and atmospheric 

constituents were considered in the simulations, which were subsequently used to develop the ANN 

algorithm. The only difference in this study is the adoption of MODIS spectral band settings. ANN was 

implemented as a 3-layer perceptron and in this application represents a nonlinear function mapping 

between the TOA spectral reflectance (input) and the BOA spectral reflectance (output). Within such 

a network each layer consists of neurons – which are the basic, linear or non-linear, processing nodes. 

Each neuron is connected with each neuron of the next layer by a weight. The weights – in statistical 

term the free parameters - were estimated during a supervised learning procedure during which the 

network “learned” to associate an input vector /⃗ with a given output vector 1⃗ . The weights between 

two layers can be expressed as a matrix W and the complete analytic function represented by a 3-layer 

network is then given by the following equation: 

1⃗ = 2/ × {5/ × 20(50 × /⃗)}	 																																												(5)																											
	 	 	 	

In our case the activation function is linear for the output layer (S2) and non-linear (logistic) for the 

hidden layer (S1). Training of a network consisted of minimizing the sum of squared errors between all 

input and output training vectors by adapting the weight matrices (W1,W2) iteratively using a Limited 

Memory Broyden-Fletcher-Goldfarb-Shanno algorithm. The training data were extracted randomly 

from the simulated data base. In detail, we extracted 100,000 spectra at BOA and TOA, of which one 

input vector  /⃗	consisted of the full TOA spectral reflectance in MODIS ocean color bands 8-16 

(λ=[412.5-869.5] nm), the angular information of the observing geometry transformed into Cartesian 

coordinates, the cosine of the sun zenith cos(θ0) and the surface pressure P.  

The associated output vector  1⃗  contains the log-transformed remote sensing reflectance at BOA in 

the MODIS bands 8-15 (λ=[412.5-748] nm) and aerosol optical thickness (AOT) at four AERONET 

wavelengths (440, 550, 670 and 870 nm). 

As there are no direct pathways to obtain the optimum network architecture, a series of 170 different 

networks were trained by varying the number of hidden layers, the number of neurons on the hidden 

layers and several noise levels. Training was stopped for each configuration after 1,000 iteration cycles 

over the full training data set of 100,000 spectra and monitored by the Mean Squared Error (MSE). The 

best performing network was selected based on the results obtained from match-up analysis – the 

ANN method therefore had the advantage in this AC comparison that it was tuned to the in-situ 
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measurements. Its architecture consisted of 14 input nodes, 80 hidden layer neurons, and 12 neurons 

for the output layer trained with a random noise level of 0.8% for the TOA reflectance, 0.1% for each 

the geometry inputs and 2% for the surface pressure. 

g)	Polymer	AC	(Steinmetz	et	al.,	2011)	
The Polymer atmospheric correction algorithm (Steinmetz et al, 2011) is an advanced full-spectrum 

coupled spectral matching algorithm for ocean colour. It was originally developed for the atmospheric 

correction of MERIS observations, in particular in presence of sun glint contamination, but has been 

extended to many other sensors. This algorithm relies firstly on a water reflectance model based on 

Park and Ruddick (2005) having only two unknown parameters, the chlorophyll concentration and the 

particulate backscattering, to represent a large variability of the oceanic and coastal waters. Secondly, 

it relies on a model for the atmosphere and surface reflectance, whose particularity is to be 

represented as a linear combination of three terms: !12(9) = 	:3(9);3 + ;09*0 + ;/!456(9). This 

analytical formulation does not rely on aerosol models and allows fitting accurately not only the 

aerosol reflectance, but also other complex atmospheric and surface effects, in particular the residual 

sun glint. This formulation essentially relies on the general fact that atmospheric effects in !12(9) are 

spectrally smooth. 

An iterative optimization scheme is applied pixel by pixel, using the Nelder-Mead simplex method, to 

retrieve the water and atmospheric parameters simultaneously. The final values of !12(9)  are 

subtracted from the observation, so that the final water reflectance is not the output of the model, 

and preserves fine spectral features from the observation. 

Polymer is freely available for non-commercial purposes on www.hygeos.com/polymer. 

h)	Gaussian-spectral	relationships	SS14	(Singh	and	Shanmugam,	2014)	
To mitigate the correction by the water constituents, a correction factor, κ, is introduced which is 

defined in terms of band ratio to determine the extent of radiance contributed by various optically 

active water constituents in the NIR bands (Singh and Shanmugam, 2014). In the spectral shape 

parameter (SSP) aerosol correction algorithm (Singh et al., 2019), κ helps in identifying the primary 

water types by obtaining the spectral slopes from Rayleigh-corrected reflectance (⍴rc) band ratios. The 

algorithm calculates the spectral slopes using the Violet (415 nm), Blue (490 nm), Green (536 nm), Red 

(667 nm), Fluorescence (684 nm), and NIR (747 nm) bands. At the initial stage of κ estimation 

algorithm, its value is assumed as unity for all the pixels, assuming the reflectance image covers only 

the clear open oceanic water pixels, and its value gets updated based on the ratios of the Rayleigh-

corrected reflectance ⍴rc as follows:  

1. The ratio of green and blue bands is sensitive to suspended sediments, and for such water types, 

the value of κ, i.e., will always be greater than one. 

2. Likewise, the ratio between red and violet becomes greater than one for extremely turbid waters. 

3. The ratio between the two red bands, becomes useful for low-moderate productive waters and 

helps to identify in-water blooms. 

4. The ratio between NIR and red bands, helps to identify the pixels dominated by floating algal blooms 

in highly productive waters.1 
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Once the spectral band ratios are determined for all the pixels, the maximum value is considered the 

final value of κ and used to correct water contribution in the NIR bands. Unlike the standard aerosol 

estimation algorithm(Gordon and Wang, 1994), which assumes the water signal as zero at the NIR 

wavelengths and often overestimates aerosol contributions at the visible wavelengths in turbid and 

productive waters (Singh and Shanmugam, 2014; Wang and Shi, 2007), this SSP algorithm does not 

follow such assumptions and is found to be highly accurate in aerosol estimation even in such water 

types where the water signal is usually non-zero at the NIR wavelengths (Banerjee and Shanmugam, 

2021). 

i)	UV-based	AC	(He	et	al.,	2012)	
The principle of the UV-AC algorithm is based on the fact that the water-leaving radiance at ultraviolet 

wavelengths can be neglected as compared with that at the visible light wavelengths or even near-

infrared wavelengths in most cases of highly turbid waters due to the strong absorption by detritus 

and colored dissolved organic matter. In turbid waters, the water-leaving radiances increase largely at 

longer VIS wavelengths and NIR due to strong particulate scattering, yet the strong combined 

absorption by detritus and CDOM contents cause a rapid decrease of the water-leaving radiance at the 

UV band. In extremely turbid waters, the water-leaving radiance at the UV band is much lower than at 

the NIR band. In such turbid coastal and inland waters, the UV band is more suited than the NIR band 

for estimating the aerosol scattering radiance. Since most of the launched satellite ocean color sensors 

do not have UV bands, the shortest wavelength (usually at 412 nm) can be used. Taking the SeaWiFS 

as an example, the shortest waveband (412 nm) was used as the reference to estimate the aerosol 

scattering radiance. Assuming that the water-leaving reflectance at 412 nm can be neglected in highly 

turbid waters, we can estimate the aerosol scattering reflectance at 412 nm [!1(412) = !78(412)]. 
Based on the extrapolation method, the aerosol scattering reflectance at 865 nm can be estimated as 

follows: 

{!1(865) = !78(412) @/A [;(412 − 865)]												  (6) 

; =
69	[$#!(+'<)/$#!(&'<)]	

(&'<*+'<)
											 	 	 	 	 		(7)	

For applications to satellite images from past and current sensors, the UV-AC algorithm was applied to 

the whole target region which may include not only the turbid waters, but also some of the clear 

waters. To avoid the overestimation of the aerosol scattering reflectance in clear waters, the 

!1(865EF) is limited to !78(865EF). Specifically, when the estimated !1(865EF) is larger than the 

!78(865EF), it will be set as !78(865EF). Finally, a “white” aerosol scattering reflectance spectrum 

is assumed for the entire target region, and the aerosol scattering reflectance at all bands will be equal 

to !1(865EF).  

j)	NN-based	C2RCC	AC	(Doerffer	and	Schiller,	2007)	
C2RCC is based on artificial neural networks (ANN) (Doerrfer and Schiller, 2007; Doerrfer, 2015). The 

ANN are trained with large datasets of simulated top of standard atmosphere reflectances and water-

leaving reflectances. The model of the atmosphere is based on analysis of AERONET data of coastal 

sites. The water-leaving reflectances are simulated using the Hydrolight software for a large number 

of different water constituents, including mineral particles, different species of phytoplankton, 

bacteria and protozoa, detritus. Then, the trained neural nets perform the inversion of the top of 
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standard atmosphere to estimate the water-leaving reflectances. C2RCC is similar to FUB and OC-

SMART. 
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II.	Datasets	
1)	Satellite	dataset	
For this round-robin comparison, we applied all AC to MODIS-AQUA satellite images. As mentioned, 

it’s just an application and not an exercise dedicated to MODIS-AQUA. The MODIS-AQUA L1B were 

downloaded from the OPBG website: https://oceancolor.gsfc.nasa.gov/. Reprocessing version 2014.0 

was used. Even if new reprocessings were released since version 2014, we do not expect the new 

reprocessing to change the conclusions of this report. The L1B were processed using the software 

SeaDAS v7.3.2 to get the Rayleigh-corrected reflectance. 

2)	Simulated	dataset	
An enhanced version of the simulated dataset developed in the IOCCG report #10 has been developed 

to encompass a wide range of coastal waters.  

The AccuRT radiative transfer code has been used to generate the radiances at the top-of-the-

atmosphere, at the top-of-the-atmosphere corrected from the gas absorptions, at the top-of-the-

atmosphere corrected from the gas absorptions and the Rayleigh scattering, the aerosol and the 

coupled Rayleigh/aerosol radiances, the diffuse transmittance and the remote-sensing reflectance (Jin 

and Stamnes, 1994; Stamnes et  al., 2017, 2018). The AccuRT simulations were checked against 

Hydrolight simulations and found to agree very well. Extensive comparisons with computations 

provided by Dr. X. He was also been done. These efforts are documented in the supplementary 

material (see files IOCCG-WG_SIM_DATA_v28 and IOCCG-WG_RTM_COMPARISONS_v16.pdf). 

The aerosol models are from Ahmad et al. (2010) and the inherent optical properties (IOPs) of the 

seawater from the COASTCOLOUR project (Ruddick et al., 2010). In order to cover a wide range of 

atmospheric and water conditions, we generated 20,000 cases as follows:  

For each ocean case, 4 aerosol models were randomly selected among the 80 possible models (4 

aerosol configurations x 5,000 water configurations). For each of these 20,000 cases, the geometry 

angles were randomly selected in the following ranges: 

- Solar zenith angle (θs = SZA): 0-70°  

- Viewing zenith angle (θv = VZA): 0-70°  

- Relative azimuth angle (ΔΦ= Φs-Φv = RAA): 0-180°. 

The sun-glint geometry was avoided in the simulations. 

The simulated dataset has been generated for SeaWiFS, MODIS-AQUA, VIIRS, MERIS and OLCI sensors. 

The following files are therefore provided with the dataset: 

1. "sensor_InputParameter.txt", 

2. "sensor_RadianceTOA.txt", 

3. "sensor_RadianceTOA gas corrected.txt", 

4. "sensor_RadianceTOA gas&rayleigh corrected.txt" 
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5. "sensor_Rrs.txt" 

6. "sensor_aerosolReflectance.txt" 

7. "sensor_diffuseTransmittance.txt" 

The file "sensor_InputParameter.txt" contains the input parameters for the simulations. The format is 

as follows: SZA, VZA, RAA, τa(865), angstrom(443/865), fv, RH, CHL, CDOM, MIN. 

The file "sensor_RadianceTOA.txt" includes the top of atmosphere (TOA) radiances for each simulation 

case. These radiances were simulated with atmospheric gas absorption, Rayleigh scattering, aerosol 

and ocean IOPs turned on. The number of columns in the file depends on the sensor. For example, 

there are 16 columns in each line for MODIS, one for each band. 

The file "sensor_RadianceTOA_gas_corrected.txt" contains "atmospheric-gas-corrected" TOA 

radiances for each simulation case. The radiances were simulated with atmospheric gas absorption 

turned off, but Rayleigh scattering, aerosol, and ocean IOPs turned on. The number of columns in the 

file depends on the sensor. For example, there are 16 columns in each line for MODIS, one for each 

band. These radiances can be used to validate the atmospheric gas correction algorithm. 

The file "sensor_RadianceTOA_gas&rayleigh_corrected.txt" contains "atmospheric-gas-and- Rayleigh-

corrected" TOA radiances using data from "sensor_RadianceTOA_gas_corrected.txt" with the pure 

Rayleigh scattering radiances subtracted. The pure Rayleigh scattering radiances were simulated with 

only Rayleigh scattering turned on, and atmospheric gas absorption, aerosol, and ocean IOPs turned 

off. The number of columns in the file depends on the sensor. For example, there are 16 columns in 

each line for MODIS, one for each band. 

The file "sensor_Rrs.txt" contains the remote sensing reflectance Rrs for each simulation case. The 

remote sensing reflectance was computed as the water leaving radiance divided by the downwelling 

irradiance just above the surface. The water leaving radiance was simulated as described in Appendix 

C. The simulation was done with atmospheric gas absorption, Rayleigh scattering, and aerosols turned 

on in the atmosphere. This file includes two sets of data. The first half of the columns include nadir Rrs 

values (θ0= SZA;  θ= 0; ΔΦ = 0) and the second half of the columns include the corresponding Rrs values 

at the geometry of (θ0= SZA; θ = VZA; ΔΦ = RAA). For example, there are 32 columns in the file "MODIS 

Rrs.txt". The first 16 columns contain the nadir Rrs values (SZA, 0, 0) for each band, while the next 16 

columns contain the corresponding Rrs values at geometry (SZA, VZA, RAA). The second set of Rrs data 

can be used to validate the atmospheric correction algorithm. The first set of Rrs data can be used to 

validate the BRDF algorithm. 

The file "sensor_aerosolReflectance.txt" contains the reflectance for aerosols (no molecular scattering 

or absorption, but including molecule/aerosol interactions) at the TOA. These reflectances were 

computed as Radianceaerosol(TOA)/Ed(TOA), and correspond to ρa + ρra as defined by Gordon and Wang 

(1994). But please note that there is a factor of π difference: Gordon and Wang (1994) defines the 

reflectance as ρ= πL/( μ0F0), while we use ρ= L/(μ0F0). Then Rrs is calculated as Rrs= ρw/π. 

The file "sensor_diffuseTransmittance.txt" contains two-way diffuse transmittance for aerosols and 

molecular scattering (no molecular absorption). 
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More information about the simulated dataset is provided in Supplementary material. The dataset is 

freely available at the following link:  

http://www.ioccg.org/data/ioccg2024_turbid_water_simulated_data.d/ 

3)	In-situ	dataset	
An in-situ dataset of remote-sensing reflectance and aerosol optical thickness has been gathered. 

These measurements are from the AERONET-Ocean Color network (Zibordi et al., 2009b, 2021). 

AERONET-OC is the ocean component of the Aerosol Robotic Network (AERONET, Holben et al., 1998). 

It is a system of autonomous sun photometers deployed around the globe (mainly in the northern 

hemisphere as shown in Figure 1) providing normalized water-leaving (nLw) radiance and the aerosol 

optical thickness at several wavelengths in the visible. 

 

Figure 1: Maps of the global AERONET-OC stations. The stations used in this report are mentioned in table 1 

The advantage of using AERONET-OC data is that the production of the measurements is standardized 

with identical systems and protocols, with calibration from a single source or method and with 

processing using the same code (Zibordi et al., 2006; 2009; 2021). Moreover, measurements are taken 

several times a day, every day (optimally), which leads to a high number of potential match-ups.  

Table 1 presents the different AERONET-OC stations used for the match-ups exercise. 

Table 1. AERONET-OC stations names, locations and number of data used 
 

S.No Station Year Lat Lon N 
1 VENICE 2002-2015 45.31 12.50 1192 
2 COVE  2006-2015 36.90 -75.71 38 
3 GDLT 2005-2015 58.59 17.46 268 
4 HLT 2006-2015 59.94 24.92 261 
5 MVCO 2004-2015 41.30 -70.55 412 
6 GLORIA 2011-2015 44.59 29.35 186 
7 LUCINDA 2009-2015 -18.50 146.30 83 
8  ZEEBRUGGE 2014 51.36 3.12 16 

 



 

19 
 

Characteristics of the selected AERONET-OC stations are provided in Feng et al. (2008); Zibordi et al. 

(2009, 2015, 2021); Mélin (2022); Van der Zande (2016). 
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III.	Match-ups	analysis	
1)	Extraction	of	the	match-ups	
The validation of the algorithms has been done through a classic match-ups analysis (Bailey and 

Werdell, 2006). The following steps have been taken: 

1. 1-hour interval between the satellite overpass and the AERONET-OC measurement 

2. Extraction over a 3-by-3-pixel box centered over the AERONET-OC station 

3. 6 out of 9 pixels must be valid over the 3-by-3-pixel box 

4. A coefficient of variability, CV, is calculated, i.e. standard deviation/mean values over the 3-

by-3-pixel box for Rrs(547) 

5. A match-ups is valid if CV(Rrs(547))<0.2 

6. Calculation of the mean values over the valid pixels 

7. AERONET-OC data are filtered for taking into account only turbid waters as defined by 

Robinson et al. (2003): Rrs(667)>0.0012 sr-1 

Concha et al. (2021) studied the impact of the different steps taken into this study. Their conclusion is 

that the chosen validation protocol impacts the statistics and those statistics may be difficult to 

compare with other studies using another validation protocol. 

Considering these different steps, out of 2456 possible match-ups, only 889 remained. 

2)	Statistical	parameters	
To quantitatively evaluate the performances of the algorithms the following statistical parameters 

have been calculated: 

● Relative Error:  GH =
0
?
∑J100 ×

@A#$$%&*A#$"'$@
A#$"'$

L 

 

● Root-Mean-Square-Error: GM2H = NO
∑CA#$$%&*A#$"'$D

(

?
P 

 

● Slope (a) and intercept (b) of the regression line 

● Bias: QRS2 =
0
?
∑T100 ×

A#$$%&*A#$"'$

A#$"'$
U 

 

● Correlation coefficient R2 

● Overall error (Pahlevan et al., 2021): V = 100 × WXYE(Z)[10|F| − 1\	  with ] =

M@^X_E T`aY03(
A#$$%&

A#$"'$
)U 

 

● Relative Bias in log (Pahlevan et al., 2021): b = 100 × (10G − 1)	 with  c =

M@^X_E Td`aY03(
A#$$%&

A#$"'$
)dU 

3)	Statistical	evaluation	of	the	retrieved	spectra	
Aside from the classic statistical parameters, investigations on the shape of the retrieved spectra were 

also performed through three parameters:  
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● Quality Assurance Score (QAS; Wei et al., 2016): this parameter provides quantification of the 

full Rrs spectrum quality of retrievals with regards to reference spectra. The value has to be 1. 

● χ2:  this parameter provides information about the full spectrum relative errors. The value has 

to be 0. 

● the Spectral Angle Mapper (SAM; Kruse et al., 1993; Keshava, 2004): this parameter indicates 

the mean of the full spectrum difference between the retrieved Rrs and in-situ Rrs spectra. The 

value has to be 0°. 

We considered the following wavelengths: 412, 443, 488, 531, 547, 667 nm. 

Other parameters could be used to provide information about the spectral shape of the Rrs retrievals. 

For instance, Dierssen et al. (2022) developed the Quality Water Index Polynomial (QWIP). 

4)	Ranking	of	the	algorithms	using	a	score	scheme	
The scoring scheme developed by Müller et al. (2015) was used to classify the algorithms. It is based 

on the values of the slope and intercept of the linear regression, BIAS, RMSE, RE R2 and the number of 

valid match-ups. The highest possible score is the number of parameters times the number of 

wavelengths. In our case, the maximal value is 42. This scheme converts the statistical parameters into 

relative scores.  

The score is calculated as follows: 

2H5H =e

'

IJ0

[2K65LM(9I) + 2I9HM78MLH(9I) + 2ANOP(9I) + 2APQ.PAA(9I) + 2RI1K(9I) + 2A((9I)

+ 2?(9I)\	

SX is the normalized value between 0 and 1 for each statistical parameter. 0 is given to the lowest value 

and 1 to the highest value. As the highest value for one given parameter is not always the best one, 

the normalization has to be adapted to the statistical parameter. For instance, the correlation 

coefficient is the best when equal to 1 but for the relative error, the best value is 0%. To consider this, 

WS was calculated as: 

WS(9I) =
|T(U))|*41S(|T(U))|)

4I9(|T(U))|)*41S(|T(U))|)
		 	 	 	 (8)	

for x=intercept or BIAS. 

WS  was calculated as: 

WS(9I) =
T(U))*41S(T(U)))

4I9(T(U)))*41S(T(U))|)
	 	 	 	 	 	(9)	

for x=RE or RMSE.  

WS was calculated as: 

WS(9I) =
T(U))

41S(T(U)))
	 	 	 							 													(10)	

for x=N.  
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WS  was calculated as: 

WS(9I) =
T(U))*4I9(T(U)))

41S(T(U)))*4I9(T(U)))
					 	 	 	  (11)	

for x=R2.  

WS was calculated as: 

WS(9I) =
|0*T(U))|*41S(|0*T(U))|)

4I9(0*|T(U))|)*41S(0*|T(U))|)
		 	 	 	 (12)	

		

For x=slope.	

5)	Optical	water	classes	
For the classification of the optical water types proposed in this study, a self-organizing map (SOM, 

Kohonen, 2013) was used to initially cluster the AERONET-OC and simulated datasets in the SOM 

topology map. Each sample was assigned to a node (cluster center), which represents one of the 

possible classes. For the input layer, the normalized remote sensing reflectance (Rrs) at 412, 443, 488, 

531, 547 and 667 nm was used. The normalization was done following the equation: 

G7K_9(9) =
/
W
(G7K(9) ∗ G7Kgggg(9))/i(G7K(9))			 	 	 (13)	

where Rrs_n is the normalized Rrs spectra, G7Kgggg and i(GlW) are the mean and the standard deviation of 

the Rrs spectra for the whole training dataset, respectively. The classification of the optical water types 

(OWT) is based on the simulated dataset. 

The other initial parameters for SOM were a 100 training steps for initial covering the input space, an 

initial neighborhood size of 3, a hexagonal pattern for the topology function and a layer-based distance 

function between the layer’s neurons given their position.  

A 3-by-3 architecture was initially selected for the SOM, but it was deemed not sufficient to cluster the 

different shapes of Rrs. The N-by-N architecture was increased one by one, in which a 6x6 architecture 

was deemed sufficient. For each of the 6x6 nodes, the mean Rrs spectrum was calculated and this 

spectrum was used as a reference to regroup the classes based on the spectral shape. For each sample 

and each mean spectrum (36), the Euclidean distance was calculated and the minimum distance was 

used to select the corresponding class for each sample. 

The regrouping was done manually and the 36 mean spectra were assigned to 9 classes based on the 

shape of each mean spectrum (Figure 2). At this step, an emphasis was given on the contribution of 

each IOP to the Rrs spectrum (Figures 3 and 4). The classes 1 and 2 correspond to highly turbid waters, 

with a clear plateau between 547 and 667 nm, due to the high backscattering in the red, especially for 

class 1. For the classes 3 to 4, Rrs has a more triangular shape, with a maximum at 547 nmand with Rrs 

in the blue lower than the Rrs in the red, an indication of waters with mixed composition. From classes 

5 to 9, there is a gradual increase in the impact of the pure water absorption and scattering properties 

to the Rrs spectrum, switching the peak from green towards the blue and with an increase in the 

magnitude of Rrs in the blue wavelengths. 
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Figure 2: Rrs spectra and reference spectra (red) for each optical water class  based on the simulated dataset. 

 

Figure 3: Values of Chlorophyll-a, CDOM and mineral concentrations for each optical water class. 

OWT1 

OWT2 OWT3 

OWT4 OWT5 OWT6 

OWT9 OWT8 OWT7 
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Figure 4: Triangle diagram showing the distribution of the nine optical water class depending of the values of aCDOM(443), 
aphy(443) and anap(443). 

This classification was applied to the match-ups dataset. Figure 5 shows the reference spectra and the 

AERONET-OC spectra for each class on the individual match-ups dataset and Figure 6 is the same but 

for the common match-ups dataset. For both datasets, there are no AERONET-OC spectra attached to 

the most turbid waters (Class 1 and 2). For the common AERONET-OC dataset, there are no spectra 

attached to the most oligotrophic waters (Class 9). 
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Figure 5: Spectra and reference spectra (red) for each optical water class based on the AERONET-OC total dataset. The 
OWTs are the same as in Figure 4. From upper-left to lower-right: OWT1 to OWT9. 

 

Figure 6: Spectra and reference spectra (red) for each optical water class based on the AERONET-OC common dataset. The 
OWTs are the same as in Figure 4. From upper-left to lower-right: OWT1 to OWT9. 

Considering only turbid waters (Robinson et al., 2003), the number of spectra per optical water types 

for each dataset is provided in the following table. 

Table 2: Number of spectra per optical water types 

DATASET OWT1 OWT2 OWT3 OWT4 OWT5 OWT6 OWT7 OWT8 OWT9 
Individual 
match-ups 

0 0 10 174 165 302 177 66 2 

Common 
match-ups 

0 0 2 16 14 24 19 8 0 

Simulated 53 369 1656 6399 1898 1577 113 236 0 
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IV.	Results	on	the	in-situ	dataset	
In this section, we present the evaluation results over the in-situ dataset for two sets: the global match-

ups dataset and the common match-ups dataset. The first dataset provides information about global 

statistics and more specifically focused on the number of match-ups and the second dataset allows us 

to directly compare the statistics of the retrievals from the ten AC algorithms. 

1)	Individual	spectra	match-ups	analysis	
We present here the results for all individual match-ups obtained by each AC algorithm. Figure 7 shows 

the scatterplots of the satellite-retrieved Rrs vs the AERONET-OC in-situ values for all ten AC algorithms 

and Table 3 provides the statistical results. 

The first result concerns the number of match-ups. As shown in Table 3, the number of match-ups 

highly varies from 242 for SWIRE to 896 for SS14 with a total possible number of 896. Moreover, 

negative Rrs can also be retrieved in the blue or red bands. It is the case for NASA (6 at 412 nm), 

NIRSWIR (3 at 412 nm), MUMM (19 at 412 nm and 5 at 443 nm) and Polymer (1 at 488, 531 and 547 

nm) while the other AC algorithms do not provide any negative results. These two parameters are of 

high importance notably for time series globally or regionally. We expect to use the AC algorithm 

providing the highest number of match-ups without any negative values. 

Figure 7 shows that high scattering is observed at 412 and 443 nm for all AC while the scattering around 

the 1:1 line decreases at 488, 531 and 547 nm. It is a common behavior of AC algorithms (Goyens et 

al., 2013; Melin, 2022). At 412 and 443 nm, some algorithms provide high values of Rrs for low 

AERONET-OC Rrs (UV, SS14, SWIRE). Note that UV uses the band at 412 nm to correct from the 

atmosphere and is considered as the reference wavelength. This explains why the Rrs retrievals at this 

band are not as accurate as the ones from other AC. 

This translates into the statistical parameters (Table 3). The relative errors are the highest at 412 

(between 30% for FUB and 95% for SS14) and 443 nm (between 20% for NASA and NIRSWIR and 78% 

for SWIRE) and the lowest at 531 and 547 nm (between 12% for NASA and NIRSWIR and 30% for FUB 

and SWIRE at 531 nm and between 11% for NASA and 28% for FUB at 547 nm). The high scattering at 

412 and 443 nm can also be seen with the slope of the regression lines with the lowest values (between 

0.29 for SWIRE and 0.86 for NASA at 412 nm and between 0.61 for UV and 0.96 for NASA at 443 nm) 

and the closest values of the slope to 1 are obtained at 531 and 547 nm (between 0.75 for SS14 and 

1.00 for NASA and NIRSWIR at 531 nm and between 0.78 for SS14 and 1.02 for NASA and NIRSWIR at 

547 nm). The values of the slope are correlated with the values of the correlation coefficient R2 with 

the lowest values at 412 (between 0.13 for UV and 0.74 for Polymer) and 443 nm (between 0.39 for 

UV and 0.87 for NASA) and the highest values at 531 (between 0.70 for C2RCC and 0.92 for NASA) and 

547 nm (between 0.71 for UV and 0.92 for NASA). As the UV algorithm is mainly applicable for highly 

turbid waters, it is not surprising that its performance is not so good for the obtained matchups since 

the in-situ dataset only cover low-to-moderately turbid waters. 
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Figure 7: Scatterplots of the AC estimated Rrs vs in-situ Rrs from 412 (top left) to 667 nm (bottom right). The individual 
scatterplots are provided in Appendix I. 
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Table 3: The statistical results derived from the remote sensing reflectance, Rrs derived from various atmospheric correction 
algorithms and AERONET data Rrs (RE - mean relative error, RMSE – root mean square error, R2- regression, β- overall error, 
α - relative bias in log,  Nvm- number of valid data/model/wavelength). 

 RE(%) RMSE 
(sr-1) 

Slope 
(sr-1) 

Intercept Bias (sr-1) R2 β (%) α (%) Nvm #<0 

  NASA STD AC Model 
Rrs (412) 33 0.00155 0.86 0.00052 0.00015 0.70 -14 74 510 6 
Rrs (443) 20 0.00121 0.96 0.00028 0.00004 0.87 -0.5 38 510 0 
Rrs (488) 13 0.00121 0.98 0.0000 -0.00011 0.93 -6 25 510 0 
Rrs (531) 12 0.00137 1.00 -0.00025 -0.00019 0.92 -9 24 510 0 
Rrs (547) 11 0.00138 1.02 0.00039 -0.00015 0.92 -8 23 510 0 
Rrs (667) 24 0.00076 1.08 0.00043 -0.00023 0.92 -45 69 510 0 

  NIRSWIR AC Model 
Rrs (412) 32 0.00159 0.84 0.00072 -0.00005 0.69 -9 68 431 3 

Rrs (443) 20 0.00130 0.95 0.00047 0.00014 0.86 2 38 431 0 
Rrs (488) 13 0.00130 0.98 0.00015 -0.00003 0.92 -4 25 431 0 
Rrs (531) 12 0.00145 1.00 -0.00013 -0.00010 0.91 -7 26 431 0 
Rrs (547) 12 0.00146 1.02 -0.00028 -0.00005 0.91 -6 23 431 0 
Rrs (667) 25 0.00081 1.05 -0.00033 -0.00018 0.90 -41 68 431 0 

  MUMM AC Model 
Rrs (412) 40 0.00200 0.68 0.000123 -0.000324 0.50 -25 93 412 19 
Rrs (443) 25 0.00158 0.83 0.000902 -0.000117 0.76 -12 50 412 5 
Rrs (488) 16 0.00145 0.91 0.000498 -0.000266 0.89 -15 34 412 0 
Rrs (531) 13 0.00150 0.95 0.000176 -0.000337 0.90 -13 28 412 0 
Rrs (547) 13 0.00144 0.97 -0.000007 -0.000250 0.91 -11 26 412 0 
Rrs (667) 29 0.00082 0.99 -0.000321 -0.000336 0.90 -62 97 412 0 

  SS14 AC Model 
Rrs (412) 95 0.00323 0.64 0.0394 0.00226 0.40 171 179 896 0 
Rrs (443) 50 0.00227 0.69 0.00298 0.00122 0.65 64 82 896 0 
Rrs (488) 26 0.00185 0.73 0.00250 0.00038 0.82 14 45 896 0 
Rrs (531) 20 0.00190 0.75 0.00248 0.00022 0.82 10 38 896 0 
Rrs (547) 18 0.00182 0.78 0.00222 0.00026 0.82 9 35 896 0 
Rrs (667) 23 0.00081 0.79 0.00037 -0.00014 0.82 -17 57 896 0 

  SWIRE AC model 
Rrs (412) 73 0.00273 0.29 0.00375 0.00017 0.13 -13 122 242 0 
Rrs (443) 78 0.00331 0.64 0.00457 0.00239 0.53 106 107 242 0 
Rrs (488) 52 0.00333 0.86 0.00370 0.00253 0.77 76 76 242 0 
Rrs (531) 30 0.00277 0.94 0.00231 0.00178 0.82 41 43 242 0 
Rrs (547) 27 0.00275 1.01 0.00165 0.00175 0.84 36 43 242 0 
Rrs (667) 60 0.00153 1.02 0.00099 0.00106 0.85 111 118 242 0 
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 RE (%) RMSE 
(sr-1) 

Slope 
(sr-1) 

Intercept Bias (sr-1) R2 β (%) α (%) Nvm #<0 

  UV AC Model 
Rrs (412)     67 0.00327 0.35   0.0026 -0.00042 0.11    -40 244 620 0 
Rrs (443) 51 0.00291 0.61   0.0029   0.00069 0.39 22 142  620 0 
Rrs (488) 34 0.00286 0.81   0.0025 0.00103 0.65 15 107 620 0 
Rrs (531) 23 0.00259 0.85   0.0012   -0.00011 0.71 -38 135 620 0 
Rrs (547) 23 0.00359 0.90   0.0009 -0.000005 0.71 -44 137 620 0 
Rrs (667) 53 0.00164 0.92   0.0003   -0.00013 0.59 -69 333 620 0 

  Polymer AC Model 
Rrs (412) 31 0.00146 0.84 0.0012 0.00046 0.74 31 55 892 0 
Rrs (443) 21 0.00146 0.81 0.0012 0.00012 0.80 12 38 892 0 
Rrs (488) 17 0.00183 0.79 0.0014 -0.00022 0.81 -2 30 892 1 
Rrs (531) 16 0.00220 0.78 0.0014 -0.00057 0.76 -12 33 892 1 
Rrs (547) 16 0.00216 0.82 0.0013 -0.00029 0.75 -6 29 892 1 
Rrs (667) 28 0.00089 0.85 0.00003 -0.00033 0.80 -47 76 892 0 

  FUB AC model 
Rrs (412) 30 0.00152 0.70 0.0013 -0.00014 0.66 -1 70 721 0 
Rrs (443) 25 0.00162 0.73 0.0013 -0.00023 0.74 -4 62 721 0 
Rrs (488) 31 0.00244 0.94 0.0019 0.00144 0.81 53 60 721 0 
Rrs (531) 30 0.00310 1.10 0.0013 0.00220 0.83 62 64 721 0 
Rrs (547) 28 0.00327 1.16 0.0007 0.00216 0.81 59 61 721 0 
Rrs (667) 28 0.00119 1.30 -0.00045 0.00029 0.84 11 63 721 0 

  OC-SMART AC model 
Rrs (412) 35 0.00209 0.70 0.0011 -0.00026 0.49 -21 76 895 0 
Rrs (443) 23 0.00165 0.80 0.00087 -0.00027 0.75 -14 49 895 0 
Rrs (488) 15 0.00162 0.87 0.0075 -0.00028 0.85 -11 28 895 0 
Rrs (531) 14 0.00179 0.87 0.00068 -0.00055 0.85 -16 27 895 0 
Rrs (547) 13 0.00171 0.93 0.00044 -0.00022 0.85 -9 24 895 0 
Rrs (667) 29 0.00082 0.88 -0.00014 -0.000430 0.86 -74 86 895 0 

  C2RCC AC model 
Rrs (412) 37 0.00225 0.48 0.0012 -0.00114 0.43 -71 122 786 0 
Rrs (443) 34 0.00247 0.54 0.0017 -0.00084 0.46 -27 99 786 0 
Rrs (488) 35 0.00295 0.67 0.0027 0.00024 0.53 23 86 786 0 
Rrs (531) 25 0.00259 0.84 0.0023 0.00082 0.70 31 56 786 0 
Rrs (547) 23 0.00253 0.92 0.0018 0.00103 0.74 29 46 786 0 
Rrs (667) 29 0.00106 0.71 0.0002 -0.00050 0.77 -88 98 786 0 
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Figure 8 shows the variation of the relative errors and the root-mean-square error as a function of 

wavelength. For the relative error, we can observe the “smiley” shape, already mentioned by Jamet et 

al. (2011), Goyens et al. (2013) and Melin (2022). However, we can observe that some algorithms are 

less sensitive to wavelength in term of RMSE (NIRSWIR, NASA and OC-SMART) while others are very 

sensitive to the wavelengths (FUB, Polymer, UV, SWIRE, C2RCC).   

                    

Figure 8: (a) Variation of the relative error as a function of wavelength, (b) Variation of the RMSE as a function of 
wavelength 

Figure 9 shows a spider plot of all statistical parameters (except the intercept of the regression line). 

This sort of figure provides a general view of the performance of each algorithm. The values of the 

statistical parameters are normalized in such a way that the algorithm with the best value of a given 

statistical parameter gets 1 and the algorithm with the worst value of a given statistical parameter gets 

0. It means that the best overall AC algorithm over our in-situ dataset is the algorithm which gets the 

maximum number of 1. In Figure 9, we can observe that the accuracies of the AC algorithms depend 

on the wavelength, as mentioned earlier. In the blue bands (412 and 443 nm), NASA, NIRSWIR, Polymer 

are the most accurate. At 667 nm, most of the algorithms do not provide accurate retrievals of Rrs as 

the statistical parameters are not overall consistent. At 531 and 547 nm, NASA, NIRSWIR, OC-SMART, 

MUMM provide accurate retrievals. Overall, NASA, NIRSWIR and OC-SMART are the most accurate AC 

algorithms on our in-situ dataset covering low-to-moderately turbid waters. 
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Figure 9: Spider-plot of the normalized statistical parameters as a function of wavelength 

We now study the capability of the algorithms to retrieve the shape of the spectra. The previous 

analysis only considered the retrieval by wavelength. Here we use different statistical parameters 

(QAS, χ2, SAM) to analyze the shape of the retrieved spectra. The results are presented in Table 4. We 

first compared the retrieved spectra to reference spectra through the QAS parameter (Wei et al., 

2016). Most of the algorithms retrieve realistic spectra with values of QAS higher than 0.95 for MUMM, 

NIRSWIR, NASA, Polymer and OC-SMART. Two algorithms show less realistic spectra with QAS values 

of 0.78 (UV) and 0.82 (SWIRE). χ2 and SAM compare the retrieved spectra to our in-situ spectra. 

NIRSWIR, NASA, Polymer, and OC-SMART present the lowest values of those parameters (10.70%, 



 

32 
 

11.01%, 9.59% and 10.66% for χ2;  4.77°, 4.98°, 5.08° and 4.91° for SAM). Three algorithms (UV, SS13, 

C2RCC) show values of χ2 greater than 40% (43.73%, 48.14% and 47.41%) and values of SAM greater 

than 9° (9.70°, 9.10° and 9.11°). 

Table 4: Values of the statistical parameters calculated over the entire spectra. The bold value highlights the best value for 
a given statistical parameter. 

ALGORITHMS QAS χ2 (%) SAM (°) Stot 
UV 0.78 43.73 9.70 18.24 

SS14 0.91 48.14 9.10 27.61 
SWIRE 0.82 32.92 8.18 15.91 

MUMM 0.95 15.30 5.59 34.59 
NIRSWIR 0.96 10.70 4.77 37.55 

NASA 0.96 11.01 4.98 38.15 
Polymer 0.97 9.59 5.08 35.26 

FUB 0.93 20.03 6.91 29.31 
OC-SMART 0.97 10.66 4.91 36.34 

C2RCC 0.94 47.41 9.11 26.45 
 

We calculated the overall score (Müller et al., 2015) which considers the accuracies per wavelength 

and the shape of the spectra (Table 3). The maximum value of the score is 42. There is one group of 

AC algorithm with values higher than 35 (NASA (38.15), NIRSWIR (37.55), Polymer (35.26) and OC-

SMART (36.34)) and one group with low values of Stot less than 20 (UV (18.24) and SWIRE (15.91)).  

Finally, the statistical parameters for each OWT were studied. Only classes 3-9 are included here as 

there are no matchups belonging to classes 1-2. The total Score is provided in Table 5. Only four ACs 

provide retrievals for OWT9: SS14, Polymer, OC-SMART and C2RCC. OWT9 represents the least turbid 

optical waters. Only one AC has values greater than 30 for all OWT (NIRSWIR). NASA and OC-SMART 

AC have values of Stot greater than 30 for OWT 3-7 and values close to 30 for OWT 8 (29.87 and 28.49, 

respectively). SS14 shows similar values of Stot for all OWT, which is not the case for MUMM, Polymer, 

FUB and C2RCC.  

Table 5: Stot values for all AC as a function of optical water types (OWT). The bold value highlights the best value for a given 
OWT. 

 OWT1 OWT2 OWT3 OWT4 OWT5 OWT6 OWT7 OWT8 OWT9 
UV 0 0 21.17 22.87 18.50 20.68 18.84 21.75 0 
SS14 0 0 27.30 27.50 28.09 26.50 27.21 28.51 32.60 
SWIRE 0 0 24.65 10.11 18.34 10.09 10.38 20.80 0 
MUMM 0 0 28.76 33.47 34.42 34.83 29.42 24.61 0 
NASA 0 0 32.81 38.86 38.45 37.79 33.46 29.87 0 
NSWIR 0 0 33.73 36.88 37.87 36.20 33.35 30.00 0 
Polymer 0 0 29.62 36.02 25.29 33.98 21.29 25.57 20.39 
FUB 0 0 21.46 28.18 25.53 26.85 24.98 21.60 0 
OC-SMART 0 0 34.63 37.01 31.76 35.94 30.44 28.49 19.24 
C2RCC 0 0 29.27 24.16 22.47 26.90 25.13 27.47 31.72 
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2)	Common	match-ups	analysis	
In the previous section, we looked at the performance of the AC algorithms over their overall match-

ups dataset. Here we directly compare the AC algorithms on the common match-ups analysis, i.e. on 

the dates and locations that are common to all algorithms. As SWIRE provides the least number of 

match-ups (N=242), the common match-ups dataset is reduced further to N=83 values. But this dataset 

provides a direct comparison of the statistical parameters between the ten AC algorithms. 

Figure 10 provides the scatterplots per wavelength. As for the overall dataset, there is high scattering 

in the blue bands (412 and 443 nm) and the scattering decreases as 531 and 547 nm. UV, SS14 and 

SWIRE show very high values of retrieved Rrs compared to in-situ data at 412 and 443 nm. All algorithms 

seem to provide similar Rrs from 448 to 667 nm, except for FUB and C2RCC which provide high values 

for in-situ Rrs>0.2 sr-1 for few points at 531, 547 and 667 nm. 
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Figure 10: Scatterplots of the AC estimated Rrs vs in-situ Rrs from 412 (top left) to 667 nm (bottom right). The individual 
scatterplots are provided in Appendix II.  

Table 6 provides all statistical parameters per wavelength (similar as Table 3). On the common dataset, 

no algorithm provides negative values of Rrs and all statistics are better which means that all algorithms 

provide more accurate retrievals of Rrs on the common match-ups dataset. Even if the statistical errors 

decrease on this common dataset, the relative accuracies of the AC algorithms are similar to those for 

the individual match-ups dataset. Five AC algorithms (NASA, NIRSWIR, MUMM, Polymer, OC-SMART) 

provide accurate retrievals at 488, 531 and 547 nm (Table 6 and Figure 10), with relative errors lower 
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than 15% and correlation coefficients higher than 0.86 at those three wavelengths. The other five 

algorithms (UV, SS, SWIRE, FUB and C2RCC) provide retrievals with relative errors higher than 24% for 

those wavelengths. At 412 nm, low accuracies are obtained for three algorithms (UV, SWIRE and SS14) 

with relative errors higher than 40% leading to low slopes (lower than 0.6) and low correlation 

coefficients (lower than 0.51). Five algorithms (NASA, NIRSWIR, Polymer, FUB and OC-SMART) provide 

accurate retrievals with low relative errors (lower than 23% at 412 nm and lower than 20% at 443 nm). 

FUB seems to provide accurate retrievals at 412 and 443 nm but less accurate retrievals between 488 

and 547 nm, a behavior in contrast to the other AC algorithms which tend to have higher errors in the 

blue bands than in the green and red bands. NASA, NIRSWIR and OC-SMART are not very sensitive to 

the wavelengths providing accurate retrievals at all bands as the RMSE and relative errors vary slightly 

between bands (Figure 11). 

 

 

Figure 11: (a) Variation of the relative error as a function of wavelength, (b) Variation of the RMSE as a function of wavelength. 

Figure 12 presents all statistical parameters as a spider plot (same as Figure 9). For λ=412, 443 and 488 

nm, four algorithms (NASA, NIRSWIR, OC-SMART, FUB) show the best overall performances for the five 

statistical parameters considered. For λ=667 nm, SWIRE and C2RCC seem to be the least accurate while 

NIRSWIR, NASA, OC-SMART and FUB seem to be the most accurate (even if their slopes are not the 

best ones). For λ=531 and 547nm, SWIRE and C2RCC are the least accurate AC algorithms while MUMM 

NASA, NIRSWIR, OC-SMART are the AC algorithms with the best overall statistical parameters. 

  



 

36 
 

Table 6:  Same as Table 3 but on the common match-ups dataset. 

 RE(%) RMSE 
(sr-1) 

Slope 
(sr-1) 

Intercept Bias (sr-1) β (%) m (%) R2 Nvm 

  NASA STD AC Model 
Rrs (412) 22 0.00148 0.78 0.0011 -0.00017 -11 41 0.68 83 
Rrs (443) 14 0.00126 0.94 0.0005 0.00012 -5 26 0.84 83 
Rrs (488) 10 0.00126 1.00 -0.00008 -0.00011 -6 20 0.92 83 
Rrs (531) 10 0.00141 1.05 -0.0008 -0.00030 -11 22 0.93 83 
Rrs (547) 9 0.00136 1.09 -0.0012 -0.00024 -10 19 0.95 83 
Rrs (667) 23 0.00076 1.15 -0.0007 -0.00028 -54 59 0.96 83 

  NIRSWIR AC Model 
Rrs (412) 22 0.00143 0.80 0.0010 -0.00011 -1 43 0.69 83 
Rrs (443) 15 0.00120 0.95 0.0005 0.00016 8 26 0.86 83 
Rrs (488) 11 0.00120 1.00 -0.0001 -0.00009 -6 22 0.93 83 
Rrs (531) 10 0.00135 1.05 -0.0008 -0.00029 -11 23 0.94 83 
Rrs (547) 9 0.00130 1.09 -0.0012 -0.00022 -10 20 0.95 83 
Rrs (667) 23 0.00070 1.14 -0.0007 -0.00028 -53 57 0.96 83 

  MUMM AC Model 
Rrs (412) 33 0.00215 0.49 0.00233 -0.00056 -18 85 0.36 83 
Rrs (443) 22 0.00169 0.73 0.00170 -0.00018 -8 49 0.70 83 
Rrs (488) 14 0.00153 0.87 0.00086 -0.00034 -9 27 0.88 83 
Rrs (531) 11 0.00149 0.96 -0.00004 -0.00048 -13 23 0.92 83 
Rrs (547) 10 0.00137 1.01 -0.00051 -0.00040 -12 21 0.94 83 
Rrs (667) 28 0.00083 1.04 -0.00052 -0.00040 -44 82 0.93 83 

  SS14 AC Model 
Rrs (412) 74 0.00318 0.56 0.00514 0.00264 136 136 0.51 83 
Rrs (443) 40 0.00216 0.71 0.00361 0.00159 45 45 0.78 83 
Rrs (488) 19 0.00148 0.80 0.00238 0.00047 5 24 0.90 83 
Rrs (531) 13 0.00148 0.87 0.00159 0.00003 -2 22 0.91 83 
Rrs (547) 11 0.00132 0.92 0.00089 0.000006 -1 23 0.93 83 
Rrs (667) 19 0.00068 0.91 -0.00005 -0.00032 -31 47 0.95 83 

  SWIRE AC model 
Rrs (412) 47 0.00253 0.27 0.00359 -0.000542 -37 112 0.14 83 
Rrs (443) 47 0.00264 0.61 0.00439 0.00171 54 55 0.57 83 
Rrs (488) 34 0.00276 0.82 0.00368 0.00198 47 47 0.80 83 
Rrs (531) 21 0.00233 0.93 0.00202 0.00124 23 32 0.85 83 
Rrs (547) 20 0.00239 1.00 0.00131 0.00136 25 34 0.87 83 
Rrs (667) 39 0.00112 1.05 0.00057 0.00072 65 69 0.91 83 
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 RE (%) RMSE 
(sr-1) 

Slope 
(sr-1) 

Intercept Bias (sr-1) β (%) ε (%) R2 Nvm 

  UV AC Model 
Rrs (412) 44 0.00273 0.25 0.0005 -0.0008 -43 137 0.11 83 
Rrs (443)     33 0.00222 052 0.0018 0.0001 1 57 0.48 83 
Rrs (488) 19 0.00187 0.78 0.0014 0.0002 2      27 0.81 83 
Rrs (531) 16 0.00200 0.89 -0.0003 -0.0009 -28 39 0.87 83 
Rrs (547) 16 0.00188 0.97 -0.0010 -0.0007 -22 34 0.88 83 
Rrs (667) 34 0.00094 0.99 -0.0007 -0.0006 -120 137 0.93 83 

  Polymer AC Model 
Rrs (412) 23 0.00148 0.84 0.0013 0.00038 21 54 0.70 83 
Rrs (443) 19 0.00147 0.80 0.0015 0.00010 8 35 0.77 83 
Rrs (488) 15 0.00174 0.82 0.0014 -0.00033 -7 30 0.84 83 
Rrs (531) 14 0.00214 0.86 0.0007 -0.00084 -17 32 0.84 83 
Rrs (547) 13 0.00209 0.93 0.0003 -0.00057 -8 25 0.84 83 
Rrs (667) 26 0.00085 0.95 -0.0004 -0.00054 -68 77 0.93 83 

  FUB AC model 
Rrs (412) 23 0.00152 0.74 0.00139 -0.00007 -5 50 0.65 83 
Rrs (443) 20 0.00153 0.79 0.00139 -0.00004 -1 43 0.75 83 
Rrs (488) 31 0.00282 1.00 0.00217 0.00215 60 60 0.84 83 
Rrs (531) 29 0.00365 1.17 0.00098 0.00286 74 74 0.88 83 
Rrs (547) 27 0.00389 1.28 -0.00037 0.00273 63 63 0.87 83 
Rrs (667) 25 0.00165 1.45 -0.00096 0.00041 1 73 0.91 83 

  OC-SMART AC model 
Rrs (412) 22 0.00144 0.70 0.00120 -0.0005 -21 52 0.71 83 
Rrs (443) 15 0.00116 0.83 0.00069 -0.0005 -17 33 0.88 83 
Rrs (488)    10 0.00112 0.91 0.00044 -0.0004 -11 19 0.94 83 
Rrs (531) 9 0.00137 0.93 0.00008 -0.0007 -14 19 0.94 83 
Rrs (547) 8 0.00119 1.01 -0.00044 -0.0003 -8 15 0.95 83 
Rrs (667) 24 0.00073 0.96 -0.00042 -0.0005 -72 72 0.96 83 

  C2RCC model 
Rrs (412) 35 0.00222 0.50 0.00017 -0.0011 -87 139 0.43 83 
Rrs (443) 33 0.00240 0.54 0.00251 -0.0007 -28 88 0.45 83 
Rrs (488) 35 0.00335 0.59 0.00450 0.0007 22 66 0.45 83 
Rrs (531) 26 0.00358 0.70 0.00417 0.0009 30 46 0.55 83 
Rrs (547) 24 0.00362 0.77 0.00346 0.0009 29 49 0.57 83 
Rrs (667) 29 0.00161 0.62 0.00029 -0.0009 -98 103 0.73 83 
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Figure 12: Spider-plot of the normalized statistical parameters as a function of wavelength. 

Table 7 provides the statistical parameters on the shape of the retrieved spectra compared to the in-

situ spectra (same as Table 4). The algorithms can be partitioned into three groups depending of the 

values of Stot: 1) Stot≤20 (SWIRE, C2RCC), 2) 20≤Stot≤35 (UV, SS14, MUMM, FUB, Polymer) and 3) Stot>37 

(NASA, NIRSWIR and OC-SMART). In terms of shape, the vast majority of the algorithms provide 

accurate spectra compared to reference spectra with values of QAS >0.90, except for UV (QAS=0.89) 

and SWIRE (QAS=0.81). For χ2 and SAM, the results are similar as for the individual match-ups dataset. 

For χ2, the algorithms can be groups into three parts: 1)  χ2>20% (UV, SS14 and C2RCC), 2) 10≤χ2≤20% 
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(SWIRE, MUMM, Polymer and FUB) and 3) 10%>χ2 (NASA, NIRSWIR and OC-SMART). For SAM, the 

algorithms can also be grouped into three categories: 1)  SAM>8° (SS14 and C2RCC), 2) 5°≤SAM≤8° (UV, 

SWIRE, MUMM and FUB) and 3) 5°>SAM (NASA, NIRSWIR, Polymer and OC-SMART). 

Table 7: Values of the statistical parameters calculated over the entire spectral range. The bold value highlights the best value for a 
given statistical parameter. 

ALGORITHMS QAS χ2 (%) SAM (°) Stot 
UV 0.89 24.30 7.70 26.83 
SS14 0.92 21.94 8.96 29.24 
SWIRE 0.81 16.76 7.03 20.95 
MUMM 0.96 13.83 5.32 34.28 
NIRSWIR 0.96 7.01 3.98 39.24 
NASA 0.96 6.91 3.95 38.76 
Polymer 0.97 11.10 4.97 34.34 
FUB 0.95 14.90 6.32 25.06 
OC-SMART 0.97 7.56 4.09 38.69 
CR2CC 0.95 33.20 8.33 15.58 

 

Finally, as for the individual matchups dataset, the statistical parameters for each OWT were studied. 

Only classes 3-8 are included here as SWIRE does not provide any matchups for OWT 9. The total Score 

is provided in Table 8. The majority of matchups is included in OWT 6-7 (table 2), the less turbid waters. 

There are only a few matchups (2) for OWT 3. In term of total Scores (Table 7), the results are slightly 

different than for the individual matchups dataset. Stot decreases for all AC for OWT 3. This might be 

explained by the very low number of matchups for this OWT. For OWT 4-7, NIRSWIR and NASA show 

values greater than 36. Stot values tend to decrease from OWT 4 to OWT 8. This can be explained by 

the fact that all AC in this study were designed to deal with moderately to very turbid waters while the 

turbidity of our OWT decreases from OWT 3 to OWT 8. 

Table 8: Stot values for all AC as a function of OWT. The bold value highlights the best value for a given parameter. 

 OWT1 OWT2 OWT3 OWT4 OWT5 OWT6 OWT7 OWT8 OWT9 
UV 0 0 20.71 31.72 23.68 19.41 22.62 18.65 0 
SS14 0 0 16.72 26.75 26.03 25.59 31.17 37.41 0 
SWIRE 0 0 18.14 21.90 18.05 10.39 25.11 35.39 0 
MUMM 0 0 18.39 33.32 33.72 34.69 29.16 22.80 0 
NASA 0 0 14.51 39.80 40.37 37.08 36.23 28.21 0 
NSWIR 0 0 21.69 39.09 39.58 37.08 36.23 28.21 0 
Polymer 0 0 24.21 37.23 24.78 31.07 29.01 12.87 0 
FUB 0 0 12.37 26.79 24.80 23.93 24.41 24.05 0 
OC-SMART 0 0 26.02 40.56 35.42 37.17 28.98 26.76 0 
C2RCC 0 0 18.37 15.29 17.40 29.88 11.13 20.19 0 

 

3)	Sensitivity	studies	
 

In this section, we study the behavior of each algorithm to the content in aerosols (the aerosol optical 

thickness at 869 nm, τ(869)) and the turbidity of the coastal waters through the total suspended matter 
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(SPM).  τ(869) is directly measured by the AERONET-OC stations and SPM is estimated from in-situ Rrs 

using the algorithm of Han et al. (2016). This algorithm uses a switching threshold to better estimate 

the lower and higher values of SPM using Rrs(667).  

We also present the ratio of Rrs that are commonly used for the estimation of the chlorophyll-a 

concentration (O’Reilly et al., 1998, 2019): Rrs(443)/Rrs(547), Rrs(488)/Rrs(547) and Rrs(531)/Rrs(547). 

Note that in these sensitivities’ studies, we used all the match-ups dataset without fixing any 

parameter. Ideally, the sensitivities study should be done by fixing all parameters except one. In our 

case, it is not easy to do as the values of the aerosols and bio-optical parameters are not directly 

available.  

a)	Individual	spectra	match-ups	

Sensitivity	to	τ(869)		
Figure 13 shows the variation of the relative error on the retrieval of Rrs(λ) as a function of τ(869) for 

all ten algorithms. We can observe that there are two groups of algorithms. A first group of algorithms 

(NASA, NIRSWIR, MUMM, Polymer, OC-SMART, UV) for which the relative errors is slightly dependent 

on the values of τ(869) and a second group (SWIRE, SS14, FUB) for which the accuracy of the retrievals 

is highly dependent on the values of τ(869). It is particularly true for bands between 412 and 488 nm.  
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Figure 13: Variation of the relative error as a function of the aerosol optical thickness τ(869) for each wavelength. 

Sensitivity	to	SPM	
Figure 14 shows the variation of the relative errors as a function of SPM. We can observe that for all 

algorithms the shape of the relative errors has a smiley form, which means that they provide better 

retrievals for a specific range of SPM values. However, as for τ(869), we can observe the same two 

groups of AC algorithms depending on their sensitivities to SPM values.  
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Figure 14: Variation of the relative error as a function of the suspended particulate matter (SPM) for each wavelength. 

Estimation	of	Rrs	ratios	
Figure 15 shows the ratios of Rrs(λ) commonly used in chlorophyll-a retrieval algorithms estimated by 

the ten algorithms vs the in-situ ratios. Even if the individual retrieval of Rrs(λ) shows high errors, the 

Rrs(λ) ratios can be of high quality. It means it is necessary to investigate the potential impact of the 

retrieval errors on the estimation of chlorophyll-a concentration. As expected, high scattering around 

the 1:1 line can be observed for Rrs(443)/Rrs(547), especially for UV, SS14 and SWIRE. This is related to 

the large errors observed at 443 nm for these algorithms. In contrast, NASA, NIRSWIR and OC-SMART 

show less scattering for this ratio. The scattering around the 1:1 line decreases as λ increases. For 

Rrs(531)/Rrs(547), most of the AC algorithms provide estimates close to the 1:1 line, except for values 

higher than 1.3 and less than 0.75. We can also observe that all algorithms tend to overestimate the 

low values of Rrs(531)/Rrs(547). This is in accordance with the statistical parameters (Table 9) with a 

decrease of the slopes between Rrs(488)/Rrs(547) and Rrs(531)/Rrs(547) for all algorithms. 
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Figure 15: Scatterplot of the retrieved vs in-situ ratios of Rrs over the individual match-ups dataset: left panel: 
Rrs(443)/Rrs(547); middle panel: Rrs(488)/Rrs(547); right panel: Rrs(531)/Rrs(547). 

It translates to the RE and RMSE values, both parameters decreasing from Rrs(443)/Rrs(547) to 

Rrs(531)/Rrs(547). RE varies between 14% (NIRSWIR and OC-SMART) and 38% (UV) for Rrs(443)/Rrs(547) 

and between 3% (NASA, NIRSWIR, MUMM and SWIRE) and 6% (C2RCC) for Rrs(531)/Rrs(547). 
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Table 9:  Same as Table 2 but for ratios Rrs(λ)/Rrs(547) with λ =443 or 488 or 531 nm on the individual match-ups dataset. 

 RE(%) RMSE Slope Intercept Bias R2 

NASA STD AC Model 
Rrs (443)/ Rrs (547) 15 0.109 0.79 0.147 0.0225 0.61 
Rrs (488)/ Rrs (547) 7 0.069 0.86 0.120 0.0063 0.86 
Rrs(531)/ Rrs (547) 3 0.039 0.71 0.290 -0.0022 0.74 

NIRSWIR AC Model 
Rrs (443)/ Rrs (547) 14 0.108 0.78 0.161 0.0274 0.60 
Rrs (488)/ Rrs (547) 6 0.068 0.86 0.127 0.0075 0.85 
Rrs(531))/ Rrs (547) 3 0.037 0.71 0.287 -0.0031 0.72 

MUMM AC Model 
Rrs (443)/ Rrs (547) 17 0.129 0.73 0.183 0.0159 0.48 
Rrs (488)/ Rrs (547) 7 0.076 0.83 0.145 0.0023 0.81 
Rrs(531)/ Rrs (547) 3 0.041 0.65 0.345 -0.0058 0.70 

SS14 AC Model 
Rrs (443)/ Rrs (547) 33 0.215 0.61 0.379 0.1408 0.34 
Rrs (488)/ Rrs (547) 11 0.108 0.66 0.321 0.0352 0.71 
Rrs(531)/ Rrs (547) 4 0.047 0.55 0.454 0.0026 0.65 

SWIRE AC model 
Rrs (443)/ Rrs (547) 37 0.234 0.48 0.485 0.1574 0.25 
Rrs (488)/ Rrs (547) 19 0.168 0.66 0.416 0.1254 0.66 
Rrs(531)/ Rrs (547) 3 0.043 0.63 0.380 0.0108 0.72 

UV AC Model 
Rrs (443)/ Rrs (547) 38 0.279 0.54 0.41 0.131 0.14 
Rrs (488)/ Rrs (547) 24 0.233 0.84 0.29 0.163 0.49 
Rrs(531)/ Rrs (547) 4 0.051 0.78 0.21 -0.003 0.63 

Polymer AC Model 
Rrs (443)/ Rrs (547) 17 0.141 1.10 0.002 0.0637 0.70 
Rrs (488)/ Rrs (547) 9 0.096 0.96 0.064 0.0271 0.80 
Rrs(531)/ Rrs (547) 4 0.048 0.75 0.223 -0.0255 0.72 

FUB AC model 
Rrs (443)/ Rrs (547) 24 0.178 0.73 0.059 -0.108 0.48 
Rrs (488)/ Rrs (547) 15 0.154 0.78 0.178 -0.0044 0.50 
Rrs(531)/ Rrs (547) 5 0.062 0.74 0.276 0.0139 0.50 

OC-SMART AC model 
Rrs (443)/ Rrs (547) 14 0.112 0.91 0.054 -0.0036 0.67 
Rrs (488)/ Rrs (547) 7 0.077 0.95 0.041 -0.0016 0.85 
Rrs(531)/ Rrs (547) 4 0.052 0.65 0.323 -0.0315 0.71 

C2RCC AC model 
Rrs (443)/ Rrs (547) 28 0.222 0.46 0.196 -0.1334 0.22 
Rrs (488)/ Rrs (547) 20 0.215 0.55 0.334 -0.0440 0.23 
Rrs(531)/ Rrs (547) 6 0.075 0.48 0.503 -0.0131 0.26 

 

Estimation	of	chlorophyll-a	concentration	CHL	
Finally, we studied the accuracy in retrieving the chlorophyll-a concentration using the OC3 algorithm 

(O’Reilly et al., 2019). Figure 16 shows a comparison between the AC derived chl-a for each AC versus 

the AERONET-OC derived chl-a. It is intended to go further than just estimating the accuracies of the 
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Rrs ratios as OC3 uses a maximum function to choose the ratio. So the retrievals of the chl-a can be 

estimated using different band ratios. As shown in Figure 16, most of the AC is able to provide accurate 

retrievals of chl-a for values between 1 and 10 mg.m-3, as most of the retrievals are close to the 1:1 

line. However, for values greater than 10 mg.m-3, there is an underestimation for all AC.  

 

Figure 16: Scatterplot of the retrieved chlorophyll-a concentration chl-a vs in-situ derived chl-a. 

Table 10 provides the statistical parameters on the estimation of the chl-a. There is one group of AC 

with lower values of RMSE and relative errors and higher values of R2: MUMM, NASA, NIRSWIR, OC-

SMART and Polymer with values between 19 and 23% for the relative errors and between 2.41 and 

4.84 mg.m-3 for RMSE. UV, FUB and C2RCC are the AC providing chl-a with the highest relative errors. 

This is in accordance with the highest RMSE and relative errors obtained for the band ratios.  

Table 10: Statistical parameters of the retrieval of chl-a. The bold value highlights the best value for a given parameter. 

 UV SS SWIRE MUMM NASA NIRSWIR Polymer FUB OC-
SMART  

C2RCC 

RMSE 
(mg.m-3) 

4.74 4.16 5.41 3.01 2.93 2.41 3.01 4.00 4.84 5.64 

Relative 
Error 
(%) 

41 27 33 21 20 19 23 51 23 111 

Bias 
(mg.m-3) 

-
2.20 

-1.31 -2.40 -0.38 -0.54 -0.49 -0.80 -0.31 0.58 1.05 

R2 0.33 0.28 0.27 0.48 0.67 0.72 0.71 0.31 0.63 0.09 
 

b)	Common	spectra	match-ups	
The same type of sensitivity studies was done for the common match-ups dataset.  
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Sensitivity	to	τ(869)	
Figure 17 shows the variation of the relative errors as a function of the values of τ(869). The values of 

τ(869) are limited to 0.15 for the common match-ups dataset (compared to values up to 0.28 for the 

individual match-ups dataset). The results and trends are similar to those for  the individual match-ups 

datasets.  Three main groups of algorithms are observed. The first group (UV, SS14, SWIRE) shows a 

high sensitivity to the values of τ(869) with increased relative errors with increased values of τ(869) for 

all wavelengths. The second group (NIRSWIR, NASA, MUMM, Polymer, OC-SMART) shows low 

sensitivity to the values of τ(869). The third group (FUB) shows a high sensitivity to the wavelength, 

especially at 531 and 547 nm. This corresponds to the bands where this algorithm is less accurate.  At 

the other bands, this algorithm is slightly sensitive to the value of τ(869). 

 

Figure 17: Variation of the relative error as a function of the aerosol optical thickness τ(869) for each wavelength. 

Sensitivity	to	SPM		
Figure 18 shows the variation of the relative error as a function of SPM. On the common match-ups 

dataset, the values of SPM are limited to 17 mg.m-3. As for the individual match-ups dataset, two 

groups of algorithms are observed. The first group (UV, SS14, SWIRE) is very sensitive to SPM values 

for all wavelengths while the second group (NIRSWIR, NASA, MUMM, Polymer, OC-SMART) is slightly 
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sensitive to SPM values for all wavelengths (except at 667 nm).  As for τ(869), FUB is very sensitive to 

SPM values at 531 and 547 nm with relative errors varying from 27% to 52% at 531 nm and between 

20% and 46% at 547 nm. 

 

 

Figure 18: Variation of the relative error as a function of the suspended particulate matter (SPM) for each wavelength. 

Estimation	of	Rrs	ratios	
Figure 19 shows scatterplots of the estimated ratios of Rrs(λ)/Rrs(547) vs in-situ Rrs(λ)/Rrs(547) with 

λ=443, 488 or 531 nm. As for the individual match-ups dataset, the ratio of Rrs(λ)/Rrs(547) is better 

retrieved at 537 nm than at 443 nm. This is, again, linked to the estimates of the retrievals at those 

bands. High scattering and over-estimation are observed for Rrs(443)/Rrs(547), especially for UV, SS14, 

SWIRE. FUB and C2RCC seem to under-estimate this ratio. For Rrs(488)/Rrs(547), most of the algorithms 

seem to over-estimate this ratio. This is especially true for UV, SS14, SWIRE. For Rrs(531)/Rrs(547), FUB 
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and C2RCC over-estimate this ratio while all other algorithms seem to provide estimates close to the 

1:1 line. This can be observed with the statistical parameters (Table 11). 

 

 

Figure 19: Scatterplot of the retrieved vs in-situ ratios of Rrs over the common match-ups dataset: left panel: 
Rrs(443)/Rrs(547); middle panel: Rrs(488)/Rrs(547); right panel: Rrs(531)/Rrs(547). 
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Table 11:  Same as Table 8 but for ratios Rrs(λ)/Rrs(547) with λ =443 or 488 or 531 nm on the common match-ups dataset. 

 RE(%) RMSE Slope Intercept Bias R2 

NASA STD AC Model 
Rrs (443)/ Rrs (547) 12 0.093 0.76 0.194 0.0391 0.74 
Rrs (488)/ Rrs (547) 5 0.056 0.97 0.129 0.021 0.92 
Rrs(531)/ Rrs (547) 2 0.030 0.77 0.221 -0.0009 0.83 

NIRSWIR AC Model 
Rrs (443)/ Rrs (547) 12 0.094 0.74 0.207 0.0391 0.74 
Rrs (488)/ Rrs (547) 5 0.057 0.87 0.138 0.0192 0.92 
Rrs(531))/ Rrs (547) 2 0.030 0.77 0.227 -0.0009 0.83 

MUMM AC Model 
Rrs (443)/ Rrs (547) 17 0.124 0.68 0.230 0.027 0.51 
Rrs (488)/ Rrs (547) 7 0.071 0.84 0.150 0.015 0.86 
Rrs(531)/ Rrs (547) 2 0.032 0.75 0.247 -0.001 0.81 

SS14 AC Model 
Rrs (443)/ Rrs (547) 34 0.225 0.64 0.410 0.181 0.44 
Rrs (488)/ Rrs (547) 11 0.107 0.70 0.323 0.064 0.79 
Rrs(531)/ Rrs (547) 3 0.038 0.64 0.371 0.010 0.76 

SWIRE AC model 
Rrs (443)/ Rrs (547) 24 0.176 0.60 0.363 0.104 0.38 
Rrs (488)/ Rrs (547) 14 0.132 0.79 0.282 0.096 0.76 
Rrs(531)/ Rrs (547) 3 0.035 0.73 0.268 -0.001 0.77 

UV AC Model 
Rrs (443)/ Rrs (547) 30 0.252 0.74 0.296 0.127 0.25 
Rrs (488)/ Rrs (547) 18 0.189 1.04 0.098 0.136 0.68 
Rrs(531)/ Rrs (547) 3 0.041 0.95 0.053 -0.001 0.74 

Polymer AC Model 
Rrs (443)/ Rrs (547) 18 0.172 1.13 -0.005 0.083 0.61 
Rrs (488)/ Rrs (547) 10 0.119 0.99 0.051 0.045 0.73 
Rrs(531)/ Rrs (547) 3 0.042 0.85 0.137 -0.018 0.75 

FUB AC model 
Rrs (443)/ Rrs (547) 20 0.156 0.85 -0.008 -0.104 0.60 
Rrs (488)/ Rrs (547) 12 0.129 0.91 0.097 0.020 0.64 
Rrs(531)/ Rrs (547) 5 0.056 0.90 0.128 0.024 0.62 

OC-SMART AC model 
Rrs (443)/ Rrs (547) 11 0.081 0.99 -0.001 -0.007 0.80 
Rrs (488)/ Rrs (547) 5 0.054 1.00 -0.0002 0.0008 0.92 
Rrs(531)/ Rrs (547) 3 0.042 0.73 0.247 -0.0268 0.82 

C2RCC model 
Rrs (443)/ Rrs (547) 26 0.195 0.46 0.250 -0.095 0.2 
Rrs (488)/ Rrs (547) 17 0.193 0.60 0.366 0.016 0.28 
Rrs(531)/ Rrs (547) 5 0.066 0.55 0.465 0.008 0.33 

 

Estimation	of	chlorophyll-a	concentration	CHL	
 

As for the individual matchups dataset, the retrieval of chl-a was investigated for the common 

dataset. 
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Figure 20: Scatterplot of the retrieved chlorophyll-a concentration chl-a vs in-situ derived chl-a 

Figure 20 shows the scatterplots of the AC derived chl-a versus the AERONET-OC derived chl-a and 

Table 12 shows the statistical parameters. The results are very similar to those for the individual 

matchups dataset. NASA and NIRSWIR show the lowest values of RMSE and relative errors and the 

highest values of R2 while UV, FUB and C2RCC show the highest values of relative errors and the lowest 

values of R2. 

Table 12: Statistical parameters of the retrieval of chl-a. The bold value highlights the best value for a given parameter. 

 UV SS SWIRE MUM
M 

NASA NIRSWI
R 

Polyme
r 

FUB OC-
SMART  

C2RCC 

RMSE 
(mg.m-3) 

3.65 3.55 3.58 2.54 1.95 2.02 2.25 3.06 5.86 0.31 

Relative 
Error 
(%) 

35 23 27 18 14 14 23 36 17 76 

Bias 
(mg.m-3) 

-
1.51 

-1.45 -1.57 -0.63 -0.66 -0.70 -0.68 -0.49 0.80 -0.014 

R2 0.28 0.45 0.43 0.64 0.86 0.85 0.75 0.41 0.68 0.25 
 

4)	Discussion	
NIRSWIR is based on a switching algorithm using either the SWIR bands or NASA algorithm to estimate 

the aerosol reflectance. To study the advantage of using NIRSWIR compared to NASA (i.e., the 

advantage to use SWIR bands), we investigate how often NIRSWIR switched to  using the SWIR bands. 

On the individual and common match-ups dataset, NIRSWIR used 51 and 13 times (out of 426 and 83, 

respectively) the SWIR bands, respectively. This means that the switching procedure is seldom chosen 

because of the threshold on the turbidity index in NIRSWIR. This is in accordance with Zhang et al. 

(2018). Figure 21 shows the scatterplot of Rrs estimated by NASA vs Rrs estimated by NIRSWIR on the 

individual match-ups dataset. NIRSWIR used the SWIR for all levels of Rrs. However, the number of 

match-ups is lower for NSWIR (431 for NSWIR and 510 for NASA) while Zhang et al. (2018) showed that 

NIRSWIR could provide more Rrs retrievals compared to NASA. This means that the MODIS-AQUA SWIR 

bands are not optimal for our in-situ dataset as they are not defined for studying the ocean. This is in 
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line with findings by Werdell et al. (2010), Wang and Shi (2012), Goyens et al. (2013) and Carswell et 

al. (2017). 

 

Figure 21: Scatterplot of NASA estimated Rrs vs NIRSWIR estimated Rrs from 412 (top left) to 667 nm (bottom right) over the 
individual match-ups dataset. 

Statistics were calculated on the 51 valid match-ups where the SWIR bands were used instead of the 

NIR bands (Table 13). On our in-situ dataset (i.e. including only low-to-moderately turbid waters) 

switching to the SWIR bands does not provide any advantages as the statistics are less favorable when 

using these bands. This might be explained by the low SNR in these bands and our waters being 

moderately turbid. Liu et al. (2021) showed that the turbidity index used in the NIR-SWIR AC for the 



 

52 
 

switching scheme is not always equal to one and varies between 0.7 and 2.2 depending on the aerosol 

concentrations and observing geometries. 

Table 13:  Statistics for the 51 match-ups using the SWIR bands. The bold value highlights the best value for a given 
parameter. 

Wavelengths 412 443 488 531 547 667 

Relative error (%) NASA 29 18 12 11 11 19 

Relative error (%) NIRSWIR 35 23 15 12 12 22 

RMSE NASA 0.0021 0.0018 0.0018 0.0020 0.0021 0.0011 

RMSE NIRSWIR 0.0022 0.0020 0.0020 0.0020 0.0021 0.0011 

 

For the comparison on the OWT, NIRSWIR provides less matchups on the individual matchups dataset 

than NASA for all OWTs except OWT 3 (8 vs 8) and OWT 8 (34 vs 33). The biggest difference is observed 

for OWT 4 and 6: 114 vs 86 and 177 and 151, respectively. 

NASA and NIRSWIR are vicariously calibrated which is not the case for the other algorithms. This could 

explain why these algorithms provide the most accurate and stable retrievals. 

OC-SMART was developed based partly on a synthetic dataset generated by using the COASTCOLOUR 

(Ruddick, 2010) bio-optical model for coastal waters (among others) and validated using AERONET-OC 

data, which could explain why this algorithm is one of the most suitable for our in-situ dataset. Actually, 

OC-SMART is based on three different bio-optical models and constructed to provide a seamless 

transition between clear open ocean water and turbid coastal waters (Fan et al. 2021). 

UV uses the hypothesis that in the UV spectral range, the ocean is totally absorbing due to sediments 

or CDOM. MODIS-AQUA does not have UV bands so the version of UV algorithms used the band at 412 

nm as the “UV” bands. This can explain why the retrieval at 412 and 443 nm are not accurate with this 

algorithm. The PACE sensor will have UV bands and the UV algorithm may be more suitable for this 

ocean color sensor. Moreover, UV uses a spectrally flat aerosol reflectance. This second assumption is 

valid for coastal and maritime aerosol models, typical of coastal regions. Unfortunately, the aerosol 

models with the AERONET-OC data are not directly available. He et al. (2012) showed that their 

algorithm under-estimated the water-leaving reflectance for extremely turbid waters. However, our 

in-situ dataset does not represent extremely turbid waters as the maximum estimated in-situ SPM 

values is 32.2 mg.m-3. One advantage of this algorithm is that it does not provide any negative values 

of Rrs. 

SS14 is based on three thresholds calculated using ratios of Lrc through a κ parameter. SS14 was 

validated using in-situ measurements along the coasts of India (sediment-laden waters) and in open 

ocean waters. κ is used to calculate a reference spectrum which is then used to estimate the aerosol 

reflectance in the visible and NIR infra-reds. When we look at the estimates when κ values are 

considered as in-water bloom or floating bloom, the accuracy of the retrievals decreases. It means that 

SS14 took turbid waters for floating bloom or in-water bloom. The definition of κ should be revised to 

better discriminate the turbid waters. An updated version of this algorithm (UV-NIR) has been 

published by Singh et al. (2019) for considering extremely turbid waters using the band at 412 nm and 
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has been applied to HICO images and compared to SS14. The retrievals are compared to AERONET-OC 

data and the results showed an improvement of the estimation of Rrs with UV-NIR. 

SWIRE assumes that the ocean is totally absorbing in the SWIR bands even for high sediments 

concentrations and is based on an extrapolated Rayleigh-corrected reflectance defined as ρef = aebλ, 

where a and b are fitting coefficients, the values of which were different for each pixel using the 1.24, 

1.64, and 2.13 μm bands. The authors assumed that ρef is the aerosol-related reflectance and therefore 

can be used to estimate the aerosols parameter ε(748,869) and then the contribution of the aerosols 

in the visible bands. The lower number of match-ups might be explained by the non-adequacy of the 

extrapolation function and by the fact that the ocean is not totally absorbing for high concentrations 

of sediments in the SWIR bands (Knaeps et al., 2012). 
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V.	Results	on	the	simulated	dataset	
 

In this section, we present the evaluation results over the simulated dataset for only the global 

match-ups dataset for brevity. Because of the inherent assumptions in MUMM (spatial estimation of 

the aerosol ratio over a region of 1°-by-1°), this algorithm is not included in this study. C2RCC is also 

not included because of the inability to process the simulated dataset format. 

1)	Individual	match-ups	studies	
 

We present here the results for all individual match-ups obtained by each AC algorithm. Figure 22 

shows the scatterplots of the satellite-retrieved Rrs vs the simulated values for all eight AC algorithms 

and Table 14 provides the statistical results. 12,301 simulated cases are considered as turbid waters 

(with the same threshold as Robinson et al. (2003). 

The first result concerns the number of match-ups. As shown in Table 13, the number of match-ups 

highly varies from 3007 for FUB to 12,198 for SS14. The number of retrievals for FUB is low because of 

the different flags inherent to this algorithm. The input parameters are checked if their values are 

inside the range of values of the dataset used to train the NN. In addition, to this min/max 'out of 

range' test, we also excluded simulated data for FUB that were not within the simulated concentration 

ranges used to train the network specifically, CHL=[0.05-50] mg.m-3, SPM=[0.05-50] g.m-3 and 

CDOM=[0.005-1] m-1 

Negative Rrs can also be retrieved. It is the case for NASA (between 45 (0.6%) at 547 nm and 574 (7.4%)  

at 412 nm), NIRSWIR (between 73 (0.9%) at 547 nm and 666 (7.8%) at 412 nm), SS14 (between 13 

(0.1%) at 488 nm and 90 (0.7%) at 443 nm), SWIRE (between 9 (0.1%) at 667 nm and 4151 (52%) at 

412 nm) and UV (between 842 (8%) at 547 nm and 1781 (17%) at 412 nm) while Polymer, FUB, and 

OC-SMART do not yield  any negative results. It is also worth to note that the number of matchups 

obtained with NIRSWIR is higher than the number obtained with NASA with a value of 8,499 for 

NIRSWIR and 7,720 for NASA. It shows the contribution of the scheme developed in NIRSWIR for highly 

turbid waters. 

Figure 22 shows that “scatter” (spread) is observed at all wavelengths. This is especially true at 412 nm 

for all AC, except OC-SMART. The scatter tends to decrease with increasing wavelength. However, few 

algorithms still show high scatter for all bands (SWIRE, SS14) while FUB, OC-SMART and Polymer show 

a decrease of a scattering around the 1:1 line at 488, 531 and 547 nm. OC-SMART shows the least 

scatter. This can be explained as this NN was partly trained using simulated datasets generated by a 

forward radiative transfer model for the coupled atmosphere-ocean system (Stamnes et al., 2018) 

similar to the one used in this study. SWIRE, UV and FUB show over-estimation of Rrs at most 

wavelengths while SS14 shows under-estimation for all wavelengths. Polymer tends to over-estimate 

Rrs at 412 and 443 and to slightly under-estimate Rrs at 488, 531 and 547 nm. NASA and NIRSWIR slightly 

over-estimate Rrs at 412 and 443 nm and do not show any bias at the other wavelengths.  

This translates into the statistical parameters (Table 14). The relative errors are the highest at 412 

(between 3.5% for OC-SMART and 123% for SWIRE) and 443 nm (between 3.2% for OC-SMART and 

79% for SWIRE) and the lowest at 531 and 547 nm (between 2.6% for OC-SMART and 45% for SS14 at 
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531 nm and between 2.7% for OC-SMART and 46% for SWIRE at 547 nm). The high scatter at 412 and 

443 nm can also be seen with the slope of the regression lines with the lowest values (between 0.43 

for SS14 and 0.99 for OC-SMART at 412 nm and between 0.42 for S14 and 1 for OC-SMART at 443 nm) 

and the closest values of the slope to 1 are obtained at 531 and 547 nm (between 0.48 for SS14 and 1 

for OC-SMART at 531 nm and between 0.48 for SS14 and 1 for OC-SMART at 547 nm). The low values 

of the slope for SS14 is explained by the high under-estimation of the retrievals obtained with this 

algorithm. The values of the slope are correlated with the values of the correlation coefficient R2 with 

the lowest values at 412 (between 0.0001 for SWIRE and 0.99 for OC-SMART, values being lower than 

0.45 for all AC except OC-SMART, FUB and NIRSWIR) and 443 nm (between 0.015 for SWIRE and 0.99 

for OC-SMART, values being lower than 0.7 for all AC except for OC-SMART and FUB) and the highest 

values at 531 (between 0.58 for SWIRE and 0.99 for OC-SMART, values being higher than 0.70 for most 

of the AC) and 547 nm (between 0.65 for SWIRE and 0.99 for OC-SMART, values being higher than 0.75 

for most of the AC).  
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Figure 22: Scatterplots of the AC estimated Rrs vs simulated Rrs from 412 (top left) to 667 nm (bottom right). The individual 
scatterplots are provided in Appendix III  
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Table 14: The statistical results derived from the remote sensing reflectance, Rrs derived from various atmospheric 
correction algorithms and simulated data Rrs (RE - mean relative error, RMSE – root mean square error, R2- regression, Nvm- 
number of valid data/model/wavelength). 

 RE(%) RMSE 
(sr-1) 

Slope 
(sr-1) 

Intercept Bias  
(sr-1) 

R2 Nvm #<0 

NASA STD AC Model 
Rrs (412) 30 0.0029 1.08 -2.62.10-5 0.00032 0.43 7720 574 
Rrs (443) 18 0.0029 1.08 -0.00011 0.00038 0.59 7720 187 
Rrs (488) 8 0.0028 1.05 -0.00020 0.00038 0.78 7720 55 
Rrs (531) 5 0.0028 1.05 -0.00038 0.00034 0.86 7720 46 
Rrs (547) 4 0.0027 1.05 -0.00044 0.00029 0.89 7720 45 
Rrs (667) 14 0.0028 1.12 -5.50.10-5 0.00039 0.67 7720 52 

NIRSWIR AC Model 
Rrs (412) 24 0.0020 0.97 0.0026 0.00012 0.61 8499 666 

Rrs (443) 14 0.0019 0.99 0.0024 0.00018 0.78 8499 340 
Rrs (488) 6.2 0.0018 1.00 0.0020 0.00020 0.92 8499 140 
Rrs (531) 3.7 0.0017 1.01 9.27.10-5 0.00018 0.96 8499 78 
Rrs (547) 3.2 0.0017 1.01 4.56.10-5 0.00014 0.97 8499 73 
Rrs (667) 9.7 0.0017 0.99 0.0003 0.00022 0.93 8499 159 

SS14 AC Model 
Rrs (412) 53 0.00273 0.43 0.0017 -0.0011 0.24 12198 72 
Rrs (443) 43 0.00388 0.42 0.0012 -0.0029 0.53 12198 90 
Rrs (488) 47 0.00695 0.43 0.0009 -0.0059 0.79 12198 13 
Rrs (531) 45 0.00896 0.48 0.0010 -0.0076 0.84 12198 0 
Rrs (547) 46 0.00981 0.48 0.0009 -0.0083 0.86 12198 0 
Rrs (667) 44 0.00409 0.60 0.0014 -0.0008 0.71 12198 0 

SWIRE AC model 
Rrs (412) 123 0.0582 0.59 0.0041 0.0019 0.0001 8021 4151 
Rrs (443) 79 0.0231 0.75 0.0048 0.0028 0.015 8021 1684 
Rrs (488) 38 0.0092 0.88 0.0047 0.0030 0.28 8021 434 
Rrs (531) 29 0.0081 0.96 0.0046 0.0039 0.58 8021 109 
Rrs (547) 28 0.0081 0.99 0.0044 0.0041 0.65 8021 49 
Rrs (667) 86 0.0061 0.97 0.0026 0.0024 0.66 8021 9 
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 RE (%) RMSE 
(sr-1) 

Slope 
(sr-1) 

Intercept Bias (sr-1) R2 Nvm #<0 

UV AC Model 
Rrs (412) 93 0.00430 0.48 0.0028 0.0002 0.08 10516 1781 
Rrs (443) 52 0.00371 0.69 0.0026 0.0003 0.34 10516 975 
Rrs (488) 23 0.00322 0.84 0.0026 0.0006 0.73 10516 864 
Rrs (531) 13 0.00277 0.90 0.0022 0.0004 0.89 10516 844 
Rrs (547) 11 0.00262 0.91 0.0020 0.0004 0.92 10516 842 
Rrs (667) 37 0.00194 0.93 0.0006 0.0002 0.93 10516 844 

Polymer AC Model 
Rrs (412) 80 0.00633 1.37 0.00129 0.00308 0.31 12116 0 
Rrs (443) 38 0.00494 1.19 0.00091 0.00173 0.45 12116 0 
Rrs (488) 16 0.00452 0.96 0.00072 0.00020 0.62 12116 0 
Rrs (531) 11 0.00481 0.95 0.00030 -0.00059 0.74 12116 0 
Rrs (547) 11 0.00497 0.94 2.61.10-5 -0.00107 0.77 12116 0 
Rrs (667) 19 0.00363 1.03 -0.00027 -0.00012 0.82 12116 0 

FUB AC model 
Rrs (412) 36 0.00183 0.93 0.0014 0.00105 0.68 3007 0 
Rrs (443) 24 0.00191    0.92 0.0014 0.00086 0.77   3007 0 
Rrs (488) 26 0.00356 1.07 0.0017 0.00247 0.84 3007 0 
Rrs (531) 30 0.00524 1.15 0.0019 0.00427 0.91 3007 0 
Rrs (547) 25 0.00490 1.13 0.0017 0.00386 0.92 3007 0 
Rrs (667) 38 0.00168 1.01 0.0011 0.00112 0.94 3007 0 

OC-SMART AC model 
Rrs (412) 3.5 0.0003 0.99 3.98.10-5 4.78.10-6 0.99 12065 0 
Rrs (443) 3.2 0.0003 1.00 3.41.10-5 4.92.10-6 0.99 12065 0 
Rrs (488) 2.8 0.0005 1.00 3.14.10-5 5.53.10-7 0.99 12065 0 
Rrs (531) 2.6 0.0007 1.00 3.07.10-5 -2.49.10-6 0.99 12065 0 
Rrs (547) 2.7 0.0007 1.00 2.24.10-5 -4.28.10-6 0.99 12065 0 
Rrs (667) 3.7 0.0006 0.99 3.94.10-5 -8.03.10-6 0.99 12065 0 
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Figure 23 shows the variation of the relative error and the root-mean-square error as a function of 

wavelength. For the relative error, we can observe the “smiley” shape, already mentioned in the 

match-ups sections. However, we can observe that some algorithms are less sensitive to wavelength 

in terms of RMSE (NASA, NIRSWIR, OC-SMART and Polymer) while others are more sensitive to 

wavelength (SS14, FUB, SWIRE). For the relative error, most of the algorithms show the lowest errors 

at 531 and 547 nm (Table 14). SS14, FUB and OC-SMART are not very sensitive to wavelength while 

SWIRE, UV and Polymer are very sensitive, especially at 412, 443, and 667 nm. 

 

Figure 23: (a) Variation of the relative error as a function of wavelength, (b) Variation of the RMSE as a function of 
wavelength. 

Figure 24 shows a spider plot of all statistical parameters (except the intercept of the regression line). 

The accuracies of the AC algorithms depend on wavelength, as mentioned earlier. In the blue bands 

(412 and 443 nm), OC-SMART, NASA, NIRSWIR are the most accurate. At 667 nm, most of the 

algorithms do not provide accurate retrievals of Rrs as the statistical parameters are not overall 

consistent. At 531 and 547 nm, NASA, NIRSWIR, OC-SMART, UV and Polymer provide accurate 

retrievals. Overall, NASA, NIRSWIR and OC-SMART are the most accurate AC algorithms and SS14 and 

SWIRE are the least accurate AC algorithms on our simulated dataset. 
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Figure 24: Spider-plot of the normalized statistical parameters as a function of wavelength. 

We now study the capability of the algorithms to retrieve the shape of the spectra. The previous 

analysis only considered the retrieval by wavelength. Here we use different statistical parameters 

(QAS, χ2, SAM) to analyze the shape of the retrieved spectra. The results are presented in Table 15. We 

first compared the retrieved spectra to reference spectra through the QAS parameter. A majority of 

the algorithms retrieve realistic spectra with values of QAS higher than 0.93 for NIRSWIR, NASA, 

Polymer, and OC-SMART. Four algorithms show less realistic spectra with QAS values lower than 0.90 

(0.81 for UV, 0.85 for SWIRE and 0.87 for SS14 and FUB). χ2 and SAM compare the retrieved spectra to 

our simulated spectra. NIRSWIR, NASA, FUB and OC-SMART present the lowest values of those 

parameters (5.77%, 7.73%, 3.88% and 0.17% for χ2;  2.03°, 2.26°, 3.32° and 0.47° for SAM). As UV and 
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SWIRE yield high inaccuracies at 412 and 443 nm, they show the highest values of χ2 (150.65% and 

130.29%, respectively). SS14 shows the highest value of SAM (9.33°). 

Table 15: Values of the statistical parameters calculated over the entire spectra. The bold value highlights the best value for 
a given parameter. 

ALGORITHMS QAS χ2 (%) SAM (°) Stot 

UV 0.81 150.65 7.41 29.05 
SS14 0.87 27.40 9.33 18.40 

SWIRE 0.85 130.29 7.01 11.61 
NIRSWIR 0.93 5.77 2.03 37.41 

NASA 0.93 7.73 2.26 33.32 
Polymer 0.95 23.21 7.81 30.30 

FUB 0.87 3.88 3.32 26.25 
OC-SMART 0.93 0.17 0.47 41.93 

 

We calculated the overall score which considers the accuracies per wavelength and the shape of the 

spectra (Table 15). The maximum value of the score is 42. There is one group of AC algorithms with 

values higher than 33 (NASA (33.32), NIRSWIR (37.41) and OC-SMART (41.93)) and one group with 

values lower than 20: SWIRE (11.61) and SS14 (18.40). A third group show values between 20 and 33 

(FUB, UV, Polymer).  

The simulated dataset is mainly representative of OWT 4 and then of OWT 3, 5 and 6. The most 

oligotrophic waters are not included in the simulated dataset as there are no retrievals for OWT 9. The 

total Score values per OWT is provided in Table 16. OC-SMART shows the highest values of the score 

for OWT 2 to OWT 8. For OWT 1, UV has the highest score (38.04) followed by NIRSWIR (36.20) and 

SWIRE (31.41) and Polymer has the lowest value (7.69), as expected. For this OWT, NASA and FUB do 

not provide any retrievals. NIRSWIR shows highest values of the score compared to NASA for OWT 2 

to OWT 6. It shows the benefit to use the SWIR bands when the turbidity of the waters increases. 

NIRSWIR, NASA and Polymer are relevant for OWT 4 to OWT 6. UV and FUB show similar score values 

for OWT3 to OWT6. 

Table 16: Total score values for all AC as a function of OWT. 

 OWT1 OWT2 OWT3 OWT4 OWT5 OWT6 OWT7 OWT8 OWT9 
UV 38.04 31.97 26.93 25.41 27.30 25.18 32.65 28.97 0 
SS14 27.00 17.09 14.24 19.31 17.39 18.72 29.30 15.65 0 
SWIRE 31.41 25.66 16.96 9.13 13.44 9.24 5.00 14.83 0 
NASA 0 26.50 22.28 33.22 35.91 32.30 38.29 36.38 0 
NIRSWIR 36.20 37.42 30.70 37.41 36.39 34.39 38.23 35.87 0 
Polymer 7.69 22.14 27.79 31.44 30.38 31.52 33.83 26.71 0 
FUB 0 23.84 23.73 25.01 26.18 22.82 27.32 21.49 0 
OC-SMART 30.52 40.00 41.88 42.00 41.97 41.98 41.50 40.84 0 

 

2)	Sensitivity	studies	
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Note that in these sensitivities’ studies, we used all the simulated dataset without fixing any 

parameter. As mentioned previously, ideally, the sensitivities study should be done by fixing all 

parameters except one.  

Sensitivity	to	τ(869)		
Figure 25 shows the variation of the relative error on the retrieval of Rrs(λ) as a function of τ(869) for 

all eight algorithms. For most of the AC, the relative error increases with the increase of τ(869). The 

relative errors are higher at 412 and 667 nm and lower at 531 and 547 nm. For SS14, the relative error 

shows a U-shape with the lowest values for τ(869) around 0.20-0.25. Two groups of algorithms can be 

observed depending on their values of the relative errors. A first group of algorithms (NASA, NIRSWIR, 

Polymer, OC-SMART, UV) for which the relative error is slightly dependent of the values of τ(869) and 

a second group (SWIRE, SS14, UV, FUB) for which the accuracy of the retrievals is highly dependent of 

the values of τ(869).  

 

Figure 25: Variation of the relative error as a function of the aerosol optical thickness τ(869) for each wavelength. 
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Sensitivity	to	Angström	coefficient	
Figure 26 shows the variation of the relative error as a function of the Ångström coefficient α(443,869) 

for each wavelength. Compared to τ(869), the relative error is slightly dependent on the value of 

α(443,869) for all AC, except for SWIRE, UV and FUB. For SWIRE, the relative error sharply increases 

with the increase of α(443,869). For instance at 412 nm, the relative error increases from 20% 

(α(443,869)=-0.5) to 150% (α(443,869)=2.2). This behavior can be observed at all wavelengths. The 

values of the relative error vary slightly with wavelength with the lowest values at 488, 531 and 547 

nm. 

 

Figure 26: Variation of the relative error as a function of the Ångström coefficient α(531,869) for each wavelength. 

Sensitivity	to	SPM	
Figure 26 shows the variation of the relative errors as a function of SPM. The values of SPM vary from 

0.09 to 493 mg.m-3. However, some AC are not able to retrieve Rrs for values greater than 300 mg.m-3. 

It is the case for SS14, NASA, NIRSWIR and FUB and OC-SMART. FUB algorithm shows the lowest range 

of values of SPM (up to 42 mg.m-3), because of its flags. The behavior of the AC is very different. Some 
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algorithms show a U-shape of the relative error. It is the case for SWIRE and SS14, meaning that these 

algorithms perform better for a specific range of values of SPM. For instance, this range is [150-200] 

mg.m-3 for SWIRE. SS14 shows its highest relative errors from SPM around 130-140 mg.m-3 at 443, 488, 

531 and 547 nm. At those bands, the relative errors are lower for the lowest and highest values of SPM 

for SWIRE. FUB shows a constant increase of the relative errors with the increase of SPM. This is also 

the case for Polymer and NASA. NIRSWIR is less sensitive to the values of SPM than NASA with relative 

errors of the same order as the ones from OC-SMART which is the AC providing the smallest relative 

errors at all wavelengths.   

 

Figure 26: Variation of the relative error as a function of the suspended particulate matter (SPM) for each wavelength. 

Sensitivity	to	CDOM	
Figure 27 shows the variation of the relative errors as a function of CDOM. As for SPM, not all AC 

provide retrievals for the entire range of CDOM values. It is the case for NASA (max values=4.06 m-1) 

and FUB (max values=0.99 m-1). Most of the algorithms show a variation of the relative error as an 

inverted U-shape with lowest values of the relative error for the lowest and highest values of CDOM. 

This is not the case for SS14, NIRSWIR and OC-SMART for which the relative error does not seem to be 
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sensitive to the values of CDOM. At 667 nm, the relative error shows a different behavior, with a U-

shape, with the lowest relative errors for a given range of CDOM. 

 

Figure 27: Variation of the relative error as a function of the CDOM value for each wavelength. 

Sensitivity	to	CHL	
Figure 28 shows the variation of the relative error as a function of the CHL value for each wavelength. 

The first thing to notice is the range of CHL values for each AC. As for SPM and CDOM, NASA is not able 

to estimate Rrs for the entire range of CHL ([0.83-214 mg.m-3]) as well as FUB ([0.96-42 mg.m-3]). Most 

of the algorithm shows an inverted U-shape of the relative error with CHL for wavelengths between 

412 and 547. At 667 nm, the variation of the relative error shows a U-shape with the lowest relative 

errors for a specific range of CHL. Most of the algorithms are sensitive to CHL. OC-SMART, SS14, UV 

and NIRSWIR are the AC with the less sensitivity dependence to the increase of CHL. Polymer shows a 

strict increase of the relative error with the increase of CHL at 488, 531, 547 and 667 nm. 



 

66 
 

 

 

Figure 28: Variation of the relative error as a function of the CHL value for each wavelength. 

 

Estimation	of	Rrs	ratios	
Figure 29 shows the ratios of Rrs(λ) commonly used in chlorophyll-a retrieval algorithms estimated by 

the eight algorithms vs the simulated ratios. As expected, high scatter around the 1:1 line can be 

observed for Rrs(443)/Rrs(547) and Rrs(488)/Rrs(547), especially for UV, SS14, SWIRE and Polymer. This 

is related to the large errors observed at 443 and 488 for these algorithms. In contrast, NASA, NIRSWIR 
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and OC-SMART show less scatter for this ratio. OC-SMART is the AC showing very good retrievals of all 

ratios, with almost no scatter around the 1:1 line. The scatter around the 1:1 line decreases as the 

wavelength increases. It translates to the RE and RMSE (Table 17), both parameters decreasing from 

Rrs(443)/Rrs(547) to Rrs(531)/Rrs(547). RE varies between 1.7% (OC-SMART) and 42% (Polymer) for 

Rrs(443)/Rrs(547) and between 0.3% (OC-SMART) and 4% (FUB) for Rrs(531)/Rrs(547).  

 

Figure 29: Scatterplot of the retrieved vs in-situ ratios of Rrs over the individual match-ups dataset: left panel: 
Rrs(443)/Rrs(547); middle panel: Rrs(488)/Rrs(547); right panel: Rrs(531)/Rrs(547). 
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Table 17:  Same as Table 2 but for ratios Rrs(λ)/Rrs(547) with λ =443 or 488 or 531 nm on the individual match-ups dataset. 

 RE(%) RMSE Slope Intercept Bias R2 

NASA STD AC Model 
Rrs (443)/ Rrs (547) 11 0.0.68 0.82 0.080 0.0072 0.66 
Rrs (488)/ Rrs (547) 3.3 0.038 0.91 0.077 0.0079 0.91 
Rrs(531)/ Rrs (547) 0.65 0.012 0.93 0.069 0.0042 0.96 

NIRSWIR AC Model 
Rrs (443)/ Rrs (547) 10 0.061 0.86 0.061 0.0056 0.72 
Rrs (488)/ Rrs (547) 3 0.033 0.93 0.055 0.0064 0.93 
Rrs(531))/ Rrs (547) 5.8 0.010 0.96 0.043 0.0035 0.97 

SS14 AC Model 
Rrs (443)/ Rrs (547) 29 0.147 0.62 0.198 0.0507 0.21 
Rrs (488)/ Rrs (547) 9.4 0.081 0.71 0.170 -0.0270 0.64 
Rrs(531)/ Rrs (547) 2 0.030 0.82 0.180 0.0108 0.73 

SWIRE AC model 
Rrs (443)/ Rrs (547) 33 0.248 0.59 0.200 0.0373 0.07 
Rrs (488)/ Rrs (547) 9.5 0.095 0.72 0.193 0.0020 0.51 
Rrs(531)/ Rrs (547) 1.7 0.025 0.79 0.194 0.0012 0.77 

UV AC Model 
Rrs (443)/ Rrs (547) 35 0.166 0.67 0.14 0.013 0.17 
Rrs (488)/ Rrs (547) 9.7 0.0.91 0.85 0.12 0.019 0.60 
Rrs(531)/ Rrs (547) 1.6 0.023 0.90 0.10 0.005 0.81 

Polymer AC Model 
Rrs (443)/ Rrs (547) 42 0.297 0.90 0.182 0.145 0.13 
Rrs (488)/ Rrs (547) 11 0.106 0.88 0.146 0.064 0.64 
Rrs(531)/ Rrs (547) 3.2 0.048 0.92 0.106 0.029 0.67 

FUB AC model 
Rrs (443)/ Rrs (547) 14 0.070 0.69 0.095 -0.027 0.62 
Rrs (488)/ Rrs (547) 8 0.071 0.79 0.143 -0.003 0.66 
Rrs(531)/ Rrs (547) 4 0.043 1.04 -0.0002 0.0351 0.80 

OC-SMART AC model 
Rrs (443)/ Rrs (547) 1.7 0.017 1.00 0.0005 0.00065 0.98 
Rrs (488)/ Rrs (547) 1.1 0.017 1.00 -0.0021 0.00033 0.98 
Rrs(531)/ Rrs (547) 0.3 0.005 1.00 -0.0027 0.00016 0.99 

 

Estimation	of	chlorophyll-a	concentration	CHL	
Figure 30 shows scatterplots of the MODIS-AQUA derived chl-a versus the chl-a used as input to 

develop the simulated dataset and Table 18 shows the statistical parameters. High scatter can be 

observed in Figure 30. This is especially true for UV and SS14. Most of the AC show an over-estimation 

of CHL. OC-SMART, NASA, NIRSWIR and FUB show the lowest scatter. Polymer, NASA and NIRSWIR 

show the lowest values of the relative errors (63%, 78% and 79%, respectively) while UV, SS14, SWIRE 

and Polymer show the highest values of RMSE (14.34, 25.93 14.03 and 14.11, respectively).  
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Figure 30: Scatterplot of the retrieved chlorophyll-a concentration chl-a vs exact simulated chl-a. 

Table 18: Statistical parameters of the retrieval of chl-a 

 UV SS14 SWIRE NASA NIRSWIR Polymer FUB OC-SMART 
RMSE (mg.m-3) 14.34 25.93 14.03 9.95 12.15 14.11 6.81 12.31 

Relative Error (%) 90 125 95 79 78 63 85 88 
Bias (mg.m-3) -2.08 -0.14 -2.29 -1.94 -2.38 -4.00 -0.31 -1.44 

R2 0.009 0.004 0.02 0.05 0.04 0.05 0.10 0.04 
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VI.	Unconsidered	corrections	–	additional	complexity	
In this chapter, we briefly describe other issues when observing coastal and inland waters which lead 

to additional uncertainties in the estimates of Rrs. The main issues are the contamination by the land 

to the TOA reflectance, the so-called adjacency effect and the presence of absorbing aerosols, such as 

smoke and dust. None of the AC algorithms used in this inter-comparison correct for those issues. 

There are difficult tasks to solve. Continuous efforts exist to tackle those issues. We present here a 

brief summary of the latest solutions. 

1)	Adjacency	effects	
Satellite measurements of coastal waters suffer from land adjacency effects. In coastal areas, a fraction 

of the light reflected by the land reaches the sensor. Adjacency effect occurs when light reflected by 

nearby land is scattered into the field of view of the sensor. The adjacency effect, thus, modifies the 

at-sensor radiance recorded of the water pixel. The magnitude of the adjacency effect depends on 

various factors, such as the aerosol optical properties and vertical distribution/scale height, the 

contrast between land and water albedo (wavelength dependent), viewing and illumination geometry, 

distance to land (Santer and Schmechtig, 2000; Bulgarelli and Zibordi, 2018a; Bulgarelli et al., 2018). 

Adjacency effects are not confined to the first km offshore, particularly for highly reflecting land covers, 

in the NIR and for highly sensitive sensors. Extensive theoretical simulations of land adjacency effects 

in typical OC observation conditions (Bulgarelli and Zibordi, 2018b) (and summarized in IOCCG report 

#18, IOCCG (2019)) showed that the average adjacency effect in data from MODIS-A, MERIS, S3-OLCI, 

are still detectable (i.e. above the sensor noise level) up to 36 km offshore, except for adjacency effects 

caused by green vegetation at the red wavelengths.  

When neglected, the adjacency effect can introduce significant errors in retrieving the water-leaving 

signal leading in complex ways to uncertainties in derived products. The impact of the adjacency effect 

however depends on the characteristics of the AC algorithm. For atmospheric correction schemes not 

deriving the atmospheric properties from satellite data and/or from the water pixel, simulations 

(Bulgarelli and Zibordi, 2017, 2018a) showed that adjacency effect induced artifacts in the water 

reflectance are positive for all wavelengths, with biases monotonically decreasing with distance from 

land.  For atmospheric correction schemes inferring the aerosol properties from NIR data, biases are 

mainly negative apart from cloud-induced adjacency effects and perturbations induced by adjacency 

effects at NIR and visible wavelengths might compensate each other. Consequently, biases induced by 

adjacency effects on the water reflectance are not strictly correlated to the intensity of the reflectance 

of the nearby land. 

Some studies exclude pixels within a fixed distance from the shoreline. The horizontal range of the 

adjacency effect is however not fixed and impacted by various factors such as the vertical distribution 

of aerosol in the atmosphere. A conservative threshold might remove water pixels which are not 

affected by land. Several approaches have been developed to identify and flag the pixels influenced by 

adjacency effects. Sterckx et al. (2011) proposed a method to flag pixels based on the deviations from 

the NIR similarity spectrum. Jiang et al. (2023) developed new optical water types (OWT) containing 

the land-affected signal to flag and mask land affected observations in inland water scenes. Feng and 

Hu (2017) explored the elevated radiance in the MODIS SWIR bands at 1240 and 2130 nm to develop 

a statistical method to quantify land adjacency effects.  Burazerovic et al. (2013) proposed spectral 

unmixing techniques to quantify adjacency effects.  
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While full 3D Monte-Carlo simulations allow accurate simulation of adjacency effects, simplified 

formulations are needed for implementation of an operationally fast correction scheme. Physical 

correction approaches often involve the use of the atmospheric Point Spread Function (PSF), which 

allows calculation of contributions from neighboring pixels to the at-sensor radiance from a target 

pixel. To calculate the atmospheric PSF in a time-efficient manner, they mostly rely on the single 

scattering approximation (Santer and Schmecting, 2000). This primary scattering assumption is used 

in the sensor-independent adjacency correction algorithm developed by Kiselev et al. (2015). The 

adjacency correction module is integrated within the Modular Inversion and Processing (MIP) system 

(Heege et al., 2014).  Also, the Improved Contrast between Ocean and Land (ICOL) processor (Santer 

et al., 2007; Santer and Zagolski, 2009) developed specifically for MERIS relies on the primary scattering 

assumption. RADCOR (Castagna and Vanhellemont, 2022) is a new physically based adjacency 

correction algorithm using dark Spectrum Fitting (DSF)-integrated adjacency correction algorithm 

working in the frequency domain. Some approaches incorporate empirical assumptions into the 

physical methods to determine the adjacency range or background contribution.  Sterckx et al. (2015), 

for instance, proposed the SIMilarity Environment Correction (SIMEC) which estimates the 

contribution of the background iteratively by checking the correspondence of the retrieved water 

reflectance with the NIR similarity spectrum defined by Ruddick et al. (2006).   

2)	Absorbing	aerosols		
Most of the atmospheric correction algorithms do not consider absorbing aerosols (dust, smoke). It is 

especially true for the standard AC from the space agencies. The reason is that it is complicated to 

handle and all the already published methods are time-consuming. Absorbing aerosols, especially dust, 

are not detectable using only NIR bands as they have a spectral dependency and they have spectral 

absorbing signatures similar to optically active components of the ocean. Finally, they absorb in the 

shorter UV which makes them difficult to be detected by the NIR/SWIR algorithms.  

Song et al. (2022) calculated the percentages of days dominated by maritime and dust, smoke, and 

mixed aerosols and found that absorbing aerosols occurred frequently over the coasts of the Sahara 

and Arabian desert, China, south-central Africa, and the Indian Peninsula, as shown in Figs. 31 (a) and 

(b). Moreover, Song et al. (2022) found that the impact of vertical distribution of absorbing aerosols 

was up to ±8% for dust and ±10% for smoke based on radiative transfer simulations, as shown in Fig. 

31 (c). Two-layer atmosphere model may lead to errors of water-leaving radiance up to ∼30%–40% in 

the cases of dust in traditional NASA standard AC algorithm (Song et al., 2022). Based on multiple years 

satellite lidar observations from CALIPSO, a prediction model of vertical distribution of absorbing 

aerosol was constructed, which can quantitatively estimate the vertical distribution of absorbing 

aerosol from the meteorological reanalysis products (Song et al., 2020). 
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Figure 31: (a, b) Spatial distributions of the annual occurrence frequencies of (a) dust and (b) smoke aerosols over the 
ocean averaged from 2013 to 2020. Dark gray areas indicate no data. (c) Polar diagrams of the relative differences of 

simulated TOA reflectance (Δh) at 412 nm along the mean height (Hm) of dust aerosols (AOD = 0.3) and RAA with SZA (= 0◦ 
and 60◦) and VZA (=20◦ and 60◦) used for the radiative transfer simulations. Note that the radius of the polar diagram 

represents a change in Hm from 0.1 to 2.9 km in steps of 0.1 km, and the polar angle denotes a change in RAA from 0◦ to 
180◦ in steps of 5◦; RAA = 180◦ indicates that the sensor and the sun are in the same direction, corresponding to the solar 

plane. This figure was modified from Song et al. (2022). 

Frouin et al. (2019) provides a review of the algorithms dealing with absorbing aerosols and the 

limitations of the current approaches. The AC incorporating absorbing aerosols have been mostly 

developed for open ocean waters (Moulin et al., 2001a, 2001b; Chomko and Gordon, 1998, Chomko 

et al., 2001; Nobileau and Antoine, 2005; Banzon et al., 2009; Mao et al., 2020) and were specifically 

designed to only detect absorbing aerosols. Few tackle at the same time non-zero Rrs(NIR) and 

absorbing aerosols. Those algorithms are based either on spectral optimization algorithms to estimate 

Rrs (Brajard et al., 2006, 2012; Kuchinke et al., 2009) or spectral relationships of the aerosol reflectance 

(Al Shehhi et al., 2017) or a modification of current algorithm such as Polymer (Zhang et al., 2019). Bai 

et al. (2020, 2023) developed a practical interpolation-based algorithm (UV-SWIR-AC algorithm) to 

remove absorbing aerosol effect in turbid waters. 

Recently, Song et al. (2023) proposed an atmospheric correction algorithm (OC-XGBRT) to retrieve Rrs 

at short wavelength bands of visible light in the presence of absorbing aerosols, which considers the 

vertical distributions of absorbing aerosol. Based on the extensive simulation dataset, the OC-XGBRT 

algorithm was established using a machine learning method. The reflectance at the top of atmosphere 

and Rrs were simulated considering multiple types of absorbing aerosols (dust, smoke, and urban 

aerosols) and their vertical distribution under the comprehensive aquatic environment. Application 

results revealed that the OC-XGBRT algorithm substantially improved the quality of the retrieved Rrs at 

blue light bands compared with the original Rrs products in the presence of absorbing aerosols. 
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VI.	Conclusions	
Atmospheric correction over turbid waters is still a complex task and numerous atmospheric correction 

algorithms have been developed for the past twenty years. For end-users interested in using remote-

sensing reflectance for estimating inherent optical properties of seawater or biogeochemical 

parameters, it can be difficult to know which algorithm to apply. In this IOCCG report, we compared 

ten atmospheric correction algorithms for MODIS-AQUA based on different assumptions and widely 

used for some of them. We performed a standard match-ups exercise using in-situ measurements from 

the AERONET-OC network and a simulated dataset to evaluate the accuracy of the different algorithms 

AC. As the AERONET-OC stations only represent low to moderate turbid waters, a simulated dataset 

has been developed for considering very turbid waters. We did not consider absorbing aerosols in the 

study as the aerosol models used in the simulated dataset are the ones included in the NASA 

processing.  

Based on our analysis, we propose the following ranking for MODIS-AQUA depending on the optical 

water types. This ranking is based on the results of the general match-up and the simulated datasets, 

provided in Tables 19-21. It must be noted that the remarkable performance of OC-SMART on the 

simulated data is because the training of the algorithm included a very similar simulated subset 

generated with the same bio-optical used in this study except for the absorption of chlorophyll. The 

full training data of OC-SMART, however, includes a much larger set of simulations accounting for other 

bio-optical models and a significantly wider range of concentrations compared to the simulations 

tested in this study. 

In summary: 

    • For MODIS-Aqua we recommend using OC-SMART, NIRSWIR and NASA standard for OWTs 3-8 and 

NIRSWIR for extremely turbid water with OWTs 1 and 2.  

    • UV shows best performance for extremely turbid waters classified as OWT 1. 

    • NIRSWIR shows consistently good performance across all OWTs.  
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Table 19: Algorithm ranking based on total score values of table 15 (simulated data set) excluding OWT 9. Note: 
No results available for MUMM and C2RCC. No outputs from NASA and FUB algorithms for OWT 1. 

Rank OWT 

1 2 3 4 5 6 7 8 9 

1 UV 

(38.04) 
OC-

SMART 

(40.00) 

OC-

SMART 

(41.88) 

OC-

SMART 

(42.00) 

OC-SMART 

(41.97) 

OC-SMART 

(41.97) 

OC-SMART 

(41.50) 

OC-SMART 

(40.84) 

n/a 

2 NIRSWIR 

(36.20) 
NIRSWIR 

(37.42) 
NIRSWIR 

(30.70) 
NIRSWIR 

(37.41) 
NIRSWIR 

(36.39) 
NIRSWIR 

(34.39) 
NASA 

(38.29) 

NASA 

(36.38) 

n/a 

3 SWIRE 

(31.41) 

UV 

(31.97) 

Polymer 

(27.79) 

NASA 

(33.22) 

NASA 

(35.91) 

NASA 

(32.30) 

NIRSWIR 

(38.23) 
NIRSWIR 

(35.87) 
n/a 

4 OC-

SMART 

(30.52) 

NASA 

(26.50) 

UV 

(26.93) 

Polymer 

(31.44) 

Polymer 

(30.38) 

Polymer 

(31.52) 

Polymer 

(33.83) 

UV (28.97) n/a 

5 SS14 

(27.00) 
SWIRE 

(25.66) 

FUB 

(23.73) 

UV 

(25.41) 

UV (27.30) UV (25.18) UV (32.65) Polymer 

(26.71) 

n/a 

6 Polymer 

(7.69) 
FUB 

(23.84) 

NASA 

(22.28) 

FUB 

(25.01) 

FUB (26.18) FUB (22.82) SS14 

(29.30) 

FUB (21.49) n/a 

7  Polymer 

(22.14) 

SWIRE 

(16.96) 

SS14 

(19.31) 

SS14 

(17.39) 

SS14 

(18.72) 

FUB (27.32) SS14 

(15.65) 

n/a 

8  SS14 

(17.09) 
SS14 

(14.24) 
SWIRE 

(9.13) 
SWIRE 

(13.44) 
SWIRE 

(9.24) 
SWIRE 

(5.00) 
SWIRE 

(14.83) 
n/a 
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Table 20: Algorithm ranking based on total score values of table 7 (combined AERONET-OC match-ups) excluding 
OWTs 1, 2 and 9. 

Rank OWT 

1 2 3 4 5 6 7 8 9 

1 n/a n/a OC-SMART 

(26.02) 

OC-SMART 

(40.56) 

NASA 

(40.37) 

OC-SMART 

(37.17) 

NASA 

(36.23) 

SS14 

(37.41) 

n/a 

2 n/a n/a Polymer 

(24.21) 

NASA 

(39.80) 

NIRSWIR 

(39.58) 
NASA 

(37.08) 

NIRSWIR 

(36.23) 
SWIRE 

(35.39) 
n/a 

3 n/a n/a NIRSWIR 

(21.96) 
NIRSWIR 

(39.09) 
OC-SMART 

(35.42) 

NIRSWIR 

(37.08) 
SS14 

(31.17) 

NASA 

(28.21) 

n/a 

4 n/a n/a UV (20.71) Polymer 

(37.23) 

MUMM 

(33.72) 

MUMM 

(34.69) 

MUMM 

(29.16) 

NIRSWIR 

(28.21) 
n/a 

5 n/a n/a MUMM 

(18.39) 

MUMM 

(33.32) 

SS14 

(26.03) 

Polymer 

(31.07) 

Polymer 

(29.01) 

OC-SMART 

(26.76) 

n/a 

6 n/a n/a C2RCC 

(18.37) 

UV (31.72) FUB (24.80) C2RCC 

(29.88) 

OC-

SMART 

(28.98) 

FUB (24.05) n/a 

7 n/a n/a SWIRE 

(18.14) 

FUB (26.79) Polymer 

(24.78) 

SS14 

(25.59) 

SWIRE 

(25.11) 
MUMM 

(22.80) 

n/a 

8 n/a n/a SS14 

(16.72) 

SS14 

(26.75) 

SS14 

(26.03) 

FUB (23.93) FUB 

(24.41) 
C2RCC 

(20.19) 

n/a 

9 n/a n/a NASA 

(14.51) 
SWIRE 

(21.90) 

SWIRE 

(18.05) 

UV (19.41) UV 

(22.62) 

UV (18.65) n/a 

10 n/a n/a FUB (12.37) C2RCC 

(15.29) 

C2RCC 

(17.40) 

SWIRE 

(10.39) 

C2RCC 

(11.13) 

Polymer 

(12.87) 

n/a 
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Table 21: Combined algorithm ranking based on the mean total score values of Tab 7 + 15 excluding MUMM 
and C2RCC in addition to OWTs 1, 2 and 9.  

Rank OWT 

1 2 3 4 5 6 7 8 9 

1 n/a n/a OC-

SMART 

(54.89) 

OC-

SMART 

(62.28) 

OC-SMART 

(59.68) 
OC-

SMART 

(60.57) 

NASA 

(56.41) 

OC-

SMART 

(54.22) 

n/a 

2 n/a n/a NIRSWIR 

(41.55) 
NIRSWIR 

(56.96) 
NIRSWIR 

(56.18) 
NIRSWIR 

(52.93) 
NIRSWIR 

(56.35) 
NASA 

(50.49) 

n/a 

3 n/a n/a Polymer 

(39.90) 
NASA 

(53.12) 
NASA 

(56.10) 

NASA 

(50.84) 

OC-

SMART 

(55.99) 

NIRSWIR 

(49.98) 
n/a 

4 n/a n/a UV 

(37.29) 

Polymer 

(50.06) 
Polymer 

(42.77) 
Polymer 

(47.06) 
Polymer 

(48.34) 
UV 

(38.30) 

n/a 

5 n/a n/a FUB 

(29.92) 

UV 

(41.27) 

UV (39.14) UV 

(34.89) 

SS14 

(44.89) 

SS14 

(34.36) 

n/a 

6 n/a n/a NASA 

(29.54) 
FUB 

(38.41) 

FUB (38.58) FUB 

(34.79) 

UV 

(43.96) 

SWIRE 

(32.53) 

n/a 

7 n/a n/a SWIRE 

(26.03) 

SS14 

(32.69) 

SS14 

(30.14) 

SS14 

(31.52) 

FUB 

(39.53) 

FUB 

(33.52) 

n/a 

8 n/a n/a SS14 

(22.60) 

SWIRE 

(20.08) 

SWIRE 

(22.47) 

SWIRE 

(14.44) 

SWIRE 

(17.56) 

Polymer 

(33.15) 
n/a 

	

The following table provides a brief overview of some of the advantages and limitations of the 
algorithms: 

 Advantages Limitations 
UV • Good applicability for high turbid or eutrophic 

waters 
• No aerosol models 
• No bio-optical models 

•  Need the assumption of 
negligible water-leaving 
radiance at UV or short blue 
bands which is not suitable for 
low turbidity waters 
• Applicable only to weakly 
absorbing aerosols  

SS14 • Atmospheric correction per optical water types 
• Calculation of a single parameter κ 
• Empirical relationships to correct the aerosol 
radiance 

• Applicable only to weakly 
absorbing aerosols 
• Empirical relationships  
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• No aerosol models 
• Easy to implement 

• Extrapolation to estimate the 
aerosol radiance 
• Results deteriorated in dense 
bloom waters 

SWIRE • Based on Gordon and Wang (1994) for the first 
step 
• Developed for suspended sediments 
• Use of SWIR bands 
• Empirical function to extrapolate the Rayleigh-
corrected reflectance from SWIR to NIR used as a 
reference 
 

• Applicable only to weakly 
absorbing aerosols 
• Extrapolation depend of the 
dataset used to define the 
function 
 
 

MUMM • No need aerosol models 
• No bio-optical models 
• Available for SeaWiFS, MODIS-AQUA, MERIS and 
OLCI 
• Based on Gordon and Wang (1994) for the first 
step 
 

 

• Three steps 
• Need to estimate the epsilon 
parameter for each pixel of a 
given image 
• The ocean parameter, α, is 
not constant when the turbid 
is high 
• Applicable only to weakly 
absorbing aerosols 
 

NASA • Diverse optical domains 
• 80 aerosol models 
• iteration processing 
• Based on Gordon and Wang (1994) for the first 
step 
 
 

• Need aerosol models 
• Use of empirical optical 
models (e.g. spectral 
backscattering, particulate and 
dissolved absorption) 
limits the applicability 
•  Practical implementation of 
the iteration scheme can result 
in conditions of non-
convergence 
• Applicable only to weakly 
absorbing aerosols 
• Need a first step 
 

NSWIR • No bio-optical model 
• Assumption of black pixel 
 

• Need aerosol models 
•Extrapolation of model 
aerosol from SWIR to VIS 
• Applicable only to weakly 
absorbing aerosols 
 

Polymer • Spectral matching inversion 
• No aerosol models 
• Spectral approximation of the atmospheric 
component 
• Analytical formulation does not rely on aerosol 
models  
• Correction of Sun glint 
• Applicable to moderately absorbing aerosols 
• Available for MODIS-AQUA, MERIS and OLCI 

• Limited to moderate turbid 
waters due to the bio-optical 
model 
•Need bio-optical model 
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FUB • Direction inversion of full spectral TOA radiance 

signal 
• Fast to process data once the networks are 
trained 
• Bio-optical model used on forward radiative 
transfer simulations based on European coastal 
waters 
• No negative reflectance retrieval due to 
logarithmic transformation of the training data 
• Robust to input errors as training included noise 
• Available for MODIS-AQUA, MERIS and OLCI. The 
MERIS and OLCI plugins for SNAP also provide 
estimates of Chl-a, TSS and CDOM with per-pixel 
uncertainties included for OLCI 

• Applicable only to weakly 
absorbing aerosols 
• Limited to moderately turbid 
waters with maximum 
concentrations of 50 g.m-3 for 
TSS and 50 mg.m-3 for Chl-a 
with CDOM at 443 nm not 
exceeding 1 m-1 
• Dependent of the training 
dataset 

OC-
SMART 

• Global application: OC-SMART is applicable in both 
open ocean and coastal/inland waters, as well as in 
extreme conditions such as heavy aerosol loadings, 
extremely turbid water, etc.  
• Reliability: OC-SMART provides a complete 
resolution of the negative water-leaving radiance 
issue which plagues heritage AC algorithms.  
• Flexibility: The framework of OC-SMART is, in 
principle, applicable to any suitable combination of 
spectral bands but requires some effort in 
forward/inverse modeling and validation to fully 
integrate a new sensor.  
• Noise handling: OC-SMART appears to be weakly 
affected by noise in the satellite measurements and 
therefore applicable to sensors with low signal to 
noise ratio (SNR).  
• Accuracy: OC-SMART provides improved retrievals 
of water-leaving radiances and ocean IOPs 
compared to the heritage algorithms, especially in 
complex coastal and inland water areas.  
• Robustness: OC-SMART appears to be robust and 
resilient to contamination due to sunglint and 
adjacency effects of land or cloud edges based on 
extensive testing (not documented in this report).  
• Efficiency: OC-SMART is fast (about 10 times faster 
than NASA’s SeaDAS package) and suitable for 
operational use.  
• Multi-sensor support: OC-SMART currently 
supports 11 sensors: SeaWiFS, Aqua/MODIS, 
SNPP/VIIRS, ISS/HICO, Landsat8/OLI, DSCOVR/EPIC, 
Sentinel-2/MSI, Sentinel-3/OLCI, COMS/GOCI, 
GCOM-C/SGLI and FengYun-3D/MERSI2.  
• Earth curvature effects are considered in the 
radiative transfer model (RTM) for the coupled 
atmosphere-ocean system employed to generate 
the synthetic dataset used for MLNN training. 

• Applicable only to weakly 
absorbing aerosols 
• Based on a scalar RTM 
(polarization effects not 
considered) 
• Coupled RTM based on a flat 
air-water interface (surface 
roughness effects not 
included) – sky glint and 
“weak” sun glint included, but 
not “strong” sun glint 
• Inelastic scattering processes 
(Raman, fluorescence 
scattering) not included in 
RTM 
• Dependent of the training 
dataset 
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• Implementation of OC-SMART for application to 
PACE/OCI data is in progress. 
 

C2RCC • Direct inversion 
• Fast to process the images 
• Available for OLCI, MERIS and MODIS-AQUA 

• Dependent of the training 
dataset 

 

Applicability to other sensors: 

As mentioned, this round-robin comparison of AC was applied to MODIS-AQUA. But the results of this 

report should be applicable to other sensors. NASA has been tuned to process all major ocean color 

satellite images including OLCI. Algorithms based on the direct inversion of the full TOA spectral signal 

such as FUB, CR2CC and OC-SMART are expected to perform differently when applied to other Ocean 

Colour missions. We expect the accuracy will increase with an increased number of spectral bands such 

as for OLCI, and slightly decrease for sensors with less bands compared to Aqua such as VIIRS. The 

overall performance of these NN-based methods however, will strongly depend on the applicability of 

the training data set and underlying bio-optical model assumptions. Hieronymi et al. (2023) compared 

five atmospheric correction algorithms for the OLCI-A and -B on-board Sentinel-3 using mainly the 

AERONET-OC in-situ dataset. Polymer and C2RCC are included in this exercise. The authors also 

provided comparison over different optical water types. They showed that C2RCC and Polymer 

provided good estimates of the spectral shape and magnitude of Rrs.  

Limitations of the study: 

- The match-ups exercise does not include very turbid waters with SPM exceeding 32.2 mg.m-3 

- Absorbing aerosols and adjacency effects were not considered 

- NASA and NIRSWIR are vicariously calibrated which is not the case for the other AC 

- The design of the sensitivity study remains too complex as the dependent variables were not fully 

isolated resulting in inconclusive interpretation and ambiguous results.  

- Sensitivity studies (in-situ and simulations) remain ambiguous 

- Detailed transfer of AC performance results to other sensors remains problematic.  

Perspectives/recommendations 

- Continuous effort to collect more in-situ measurements over a wide range of atmospheric and 

oceanic conditions. AERONET-OC network is very useful but the diversity of the optical water types 

should be improved (OWT1-3). Systematic concomitant measurements of Rrs, the inherent optical 

properties and the aerosol parameters should be encouraged.  

- Future inter-comparisons experiments should consider including adjacency effects and very 

absorbing aerosols. 
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- With the launch of the PACE mission on February 8th, 2024, efforts should be dedicated to use the 

polarization to better derive Rrs. Polarization observations can obtain more optical properties of 

aerosol scattering which is greatly helpful for improving AC accuracy not only in open oceans but also 

in turbid waters (He et al., 2024). 

- Using lidar technique could help to quantify the highly absorbing aerosols  

- Continuous effort to inter-compare AC for a wider range of OC sensors and for new AC 
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Appendix I: Individual scatterplot on the individual match-ups dataset 
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Appendix II: Individual scatterplot on the common match-ups dataset 
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Appendix III: Individual scatterplot on the simulated dataset 
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