

Status of Terra and Aqua MODIS Reflective Solar Bands Calibration and Performance

MODIS Characterization Support Team

Presented by Amit Angal (SSAI), Xiaoxiong Xiong (NASA GSFC)

February 4, 2022

IOCCG Calibration Task force Workshop 2022 Virtual Meeting

- MODIS Instrument Overview
- Reflective solar bands calibration methodology
- On-orbit Performance
- L1B status and Calibration Improvements
- Future Efforts
- Summary

MODIS Instrument Overview

- On-board Terra (since Dec 1999) and Aqua (since May 2002) spacecraft
- 36 spectral bands (0.4 14.4 μm)
 - Reflective Solar Bands (RSB): bands 1-19 and 26
 - Thermal Emissive Bands (TEB): bands 20 25 and 27-36
- Nearly 40 data products (land, oceans, atmosphere)
- 3 spatial resolutions: 250 m, 500 m, and 1000 m (nadir)
- 4 focal plane assemblies (FPA): 490 individual detectors
- More information: <u>https:/modis.gsfc.nasa.gov</u> and <u>https://mcst.gsfc.nasa.gov</u>

MODIS RSB Calibration Methodology: Solar Diffuser

vol 8. 083514. 2014.

 $\rho_{SD} \cdot cos(\theta_{SD}) = BRF, dn_{SD}^* = Signal from SD (temperature and background corrected), <math>\Delta_{SD} = SD$ degradation, $\Gamma_{SDS} = screen$ attenuation

4

MODIS RSB Calibration Methodology: Lunar Calibration

- Near-monthly lunar calibrations performed within a constrainted phase angle range.
- Aqua MODIS views a waxing moon while Terra MODIS observes a waning moon (55°-56°).
- Phase, Libration, and oversampling corrections provided by ROLO model

Sun, J.-Q., X. Xiong, W. L. Barnes, and B. Guenther, "MODIS Reflective Solar Bands On-Orbit Lunar Calibration", IEEE Transactions on Geoscience and Remote Sensing, vol. 45(7), 2383-2393, 2007.

• EV Reflectance

$$\rho_{EV} \cdot \cos(\theta_{EV}) = \frac{m_1 \cdot d_{Earth_Sun}^2 \cdot dn_{EV} \cdot (1 + k_{Inst} \cdot \Delta T_{Inst})}{RVS}$$

- Look-Up-Tables (LUTs) updated regularly for RSB
 - m_1 : Inversely proportion to gain at the AOI of SD
 - *RVS* : Sensor Response versus Scan angle (normalized to SD AOI)
 - Uncertainty tables
 - SWIR crosstalk correction (Terra)
- Calibration Source
 - SD/SDSM calibration
 - Lunar observation
 - EV mirror side (MS) ratios
 - Nighttime day mode observations (SWIR)
 - Response trending from Libya desert targets
 - Starting Collection 7, EV data from DCC and ocean targets also used

Sun, J., X. Xiong, A. Angal, H. Chen, A. Wu, and X. Geng, "Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands", IEEE Transactions on Geoscience and Remote Sensing, vol 52(6), 3159-3174. 2014.

On-orbit Performance

- Increased degradation after Terra SD door anomaly on July 2, 2003.
- Larger SD degradation at shorter wavelengths for both instruments
- SD degradation correction also applied at the SWIR wavelengths

Chen, H., X. Xiong, A. Angal, and K. A. Twedt, "On-orbit Characterization of the MODIS SDSM Screen for Solar Diffuser Degradation Estimation", IEEE Transactions on Geoscience and Remote Sensing, vol. 55(11), pp. 6456-6467, 2017.

Twedt, K. A., A. Angal, X. Xiong, X. Geng, and H. Chen, "MODIS solar diffuser degradation at short-wave infrared band wavelengths", Proc. SPIE 10402, Earth Observing Systems XXII, 104022K, 2017.

- Most change observed for short-wavelength bands
- Band 8 (.412 μ m) maximum change is ~40%
- Aqua VIS bands have a maximum mirror-side difference of about 3.5% at the SD AOI (Band 8)

- Most change observed for short-wavelength bands
- Band 8 (0.412 μm) changes by over 50%
- Terra VIS bands have a maximum mirror-side difference of about 11% at the SD AOI

Xiong, X., A. Angal, K. Twedt, H. Chen, D. Link, X. Geng, E. Aldoretta, Q. Mu, "MODIS Reflective Solar Bands On-Orbit Calibration and Performance", IEEE TGRS, vol 57, issue 9, pp 6355-6371, 2019

- Terra MODIS (22+ years): from C2 (at launch) to C6.1 (current)
- Aqua MODIS (19+ years): from C3 (at launch) to C6.1 (current)
- Continuing support for ocean data reprocessing
- Terra MODIS data collection timeline (approximate)
 - C2: stated L+3 months
 - C3: started L+18 month
 - C4: started L+3 years
 - C5: started L+5 years
 - C6: started L+12.5 years (delayed due to a number of factors)
 - C6.1: started L+17 years
 - C7: Expected to start Spring 2022
- Aqua MODIS started from C3
 - Collections are synchronized with Terra with slightly different starting time

Collection 7 Improvements

- Terra
 - Polarization correction applied to desert data prior to deriving RVS for Terra bands 3, 4, 8, 9, and 10
 - Improvements to OOB/crosstalk correction algorithm for Terra SWIR bands applied for entire mission
 - Implemented in forward Terra C6/C6.1 LUT starting June 2019.
 - SWIR bands 5 and 26 use time-dependent RVS based on DCC data
 - Use an inter-band approach that relies on relative trends of ocean data to derive RVS for Terra bands 11 and 12
 - Improvements to desert data fitting methods for RVS derivation
 - Extend detector-dependent RVS to Terra band 4
- Aqua
 - Improved SD screen transmission function applied for ocean bands 8-16
 - Improvements to desert data fitting methods for RVS derivation

- The polarization sensitivity of scan mirror has impacted performance of Terra MODIS shortwavelength RSB
 - C6/C6.1 L1B does not include any correction for polarization effects
- Current mitigation strategy for L2 products
 - NASA OBPG has derived polarization correction coefficients from a cross-cal with SeaWIFS/Aqua MODIS over ocean targets
 - For land products, use the OBPG polarization coefficients to generate a L1B_PC product followed by de-trending to correct gain based on desert site trends
- Collection 7
 - MCST will apply polarization correction prior to derivation of gain from desert sites for Terra bands 8, 9, 3, 4, and 10.
 - Significant improvement in accuracy of L1B product and forward-predicted gain.
 - Will significantly reduce the magnitude of downstream gain (M11) and de-trending corrections.
 - These changes will improve the instrument gain calibration only; there will still be scene-dependent impacts from polarization in the L1B product.

- Trends of C6.1 reflectance from DCC and Libya desert sites indicate need for on-orbit RVS
 - Plots show DCC reflectance calculated with only SD-based m_1 and pre-launch RVS.
 - Fit in time and frame to derive time-dependent RVS and time-dependent m_1 correction.
- EV-based RVS applied to band 5 (up to 2% impact) and band 26 (up to 1% impact). Bands 6 and 7 don't show indication of on-orbit RVS change and will continue to use pre-launch RVS.
- EV-based m_1 correction applied to all SWIR bands.
- Results agree with desert data for bands 5, 6, and 7.

- In C6.1 Terra bands 11 and 12 use only SD and lunar data to characterize m_1 and RVS.
 - Desert trends are used in calibration for other short-wavelength bands 8, 9, 3, 10, and 4.
 - However, the desert-based approach is not viable for bands 11 and 12 (and other high-gain ocean bands) as they saturate while viewing the high-radiance desert.
- An inter-band calibration approach with band 4 (spectrally overlapping) as a reference is used to monitor the long-term reflectance for bands 11 and 12 using ocean scenes.
- Using SD-lunar based calibration, a long-term drift is observed at nadir and SD AOIs for both bands with band 11 showing more than 2% drift, demonstrating the need for EV-based calibration of these bands.
- For C7, these reflectance trends are fit in time and frame to provide adjustment to m_1 and RVS LUTs.

L1B Status and Calibration Improvements

Noticeable improvements in the long-term reflectance trends with C7. Similar improvements also seen for Terra MODIS bands 3 and 9

- Continue to monitor sensor performance and to derive and update calibration LUTs in support of C6, C6.1, and future C7 data production
 - C6 L1B expected to be discontinued in June, 2022
- Support FOT for Terra and Aqua Constellation Exit Maneuver (CEM) activities
- Develop post-CEM calibration strategies in support of extended Terra and Aqua MODIS missions (use of OBC and lunar observations, vicarious calibration targets, and alternative approaches)
 - Use new fitting approach for RSB RVS (single-site AOI fitting, site-independent approaches, DCC, inter-band calibration, ...)
- Assessing the calibration consistency between Terra and Aqua MODIS (& with future VIIRS instruments)

- Both Terra (launched in 1999) and Aqua (launched in 2002) MODIS and their on-board calibrators continue to operate and function normally
- Dedicated efforts have been made by the MCST
 - Characterize on-orbit sensor performance
 - Evaluate and address issues identified, including cross-sensor calibration differences (critical to consistent and long-term data records)
 - Support science data production and reprocessing (MODIS C6/C6.1/C7)
 - Develop post-CEM (constellation exit maneuver) calibration strategies (Terra and Aqua)