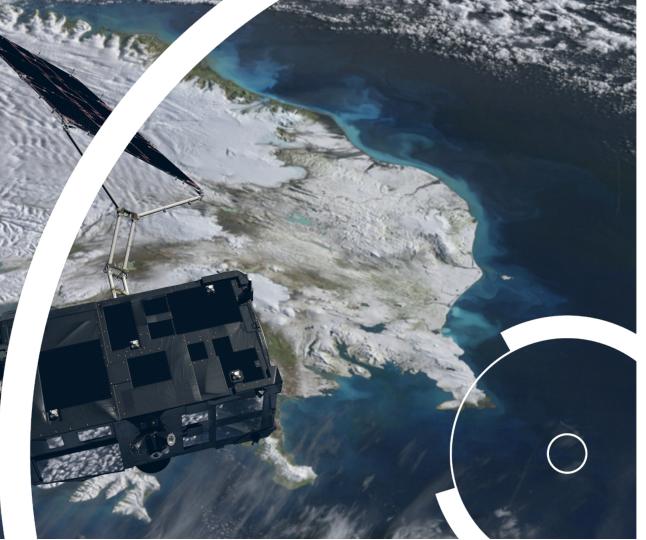


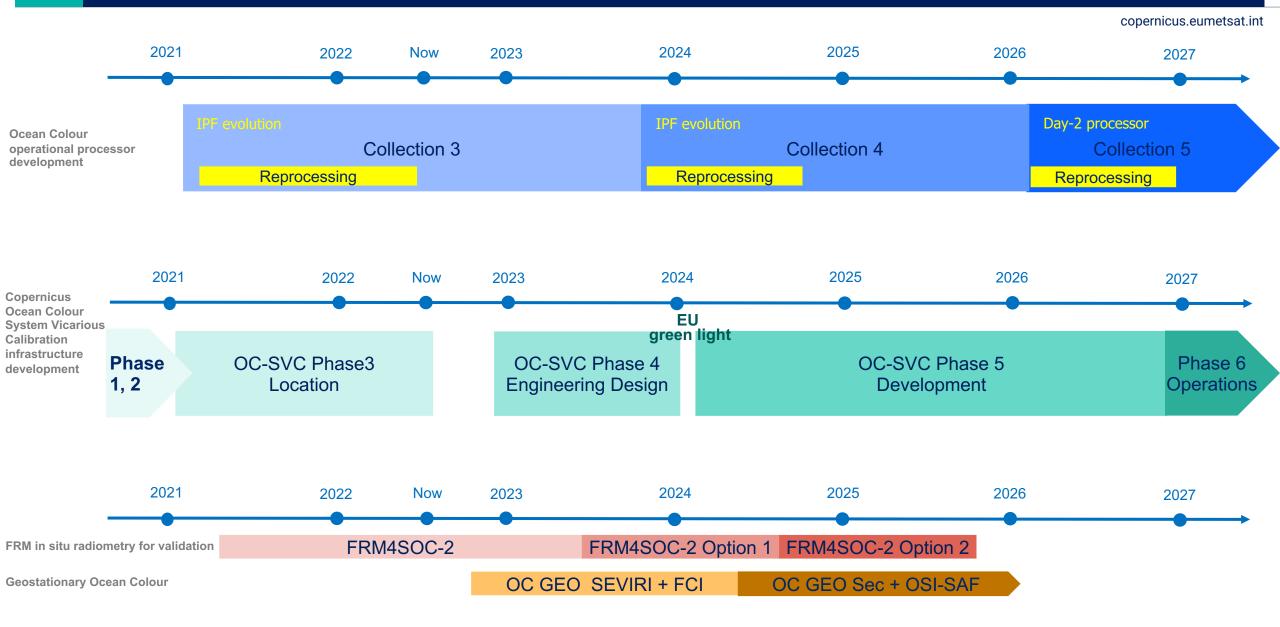


PROGRAMME OF THE EUROPEAN UNION




### EUMETSAT Agency update

<u>Ewa Kwiatkowska</u> David Dessailly, Juan Ignacio Gossn, Estelle Obligis


IOCCG-26 Committee Meeting

27 June 2022





### EUMETSAT L2 Ocean Colour main activities and tentative planning



PROGRAMME OF

THE EUROPEAN UNION

opernicus

2

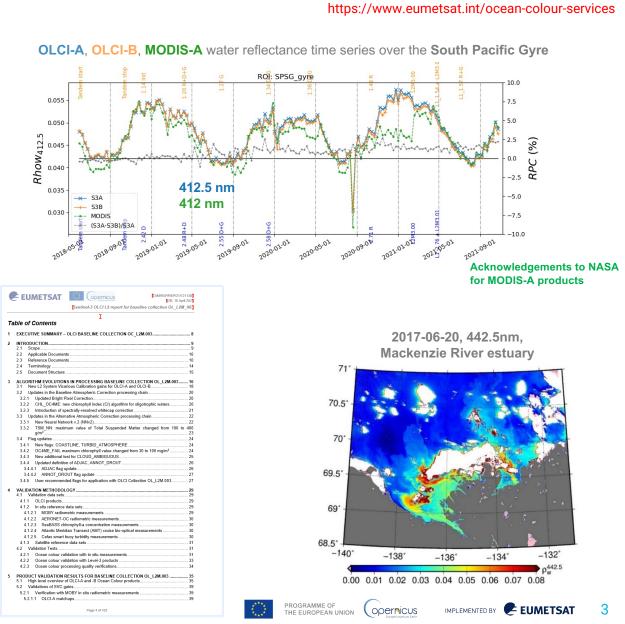
IMPLEMENTED BY 🗲 EUMETSAT

### Sentinel-3 OLCI Level-2 Ocean Colour Collection-3 product status

#### **Collection-3 in operations**

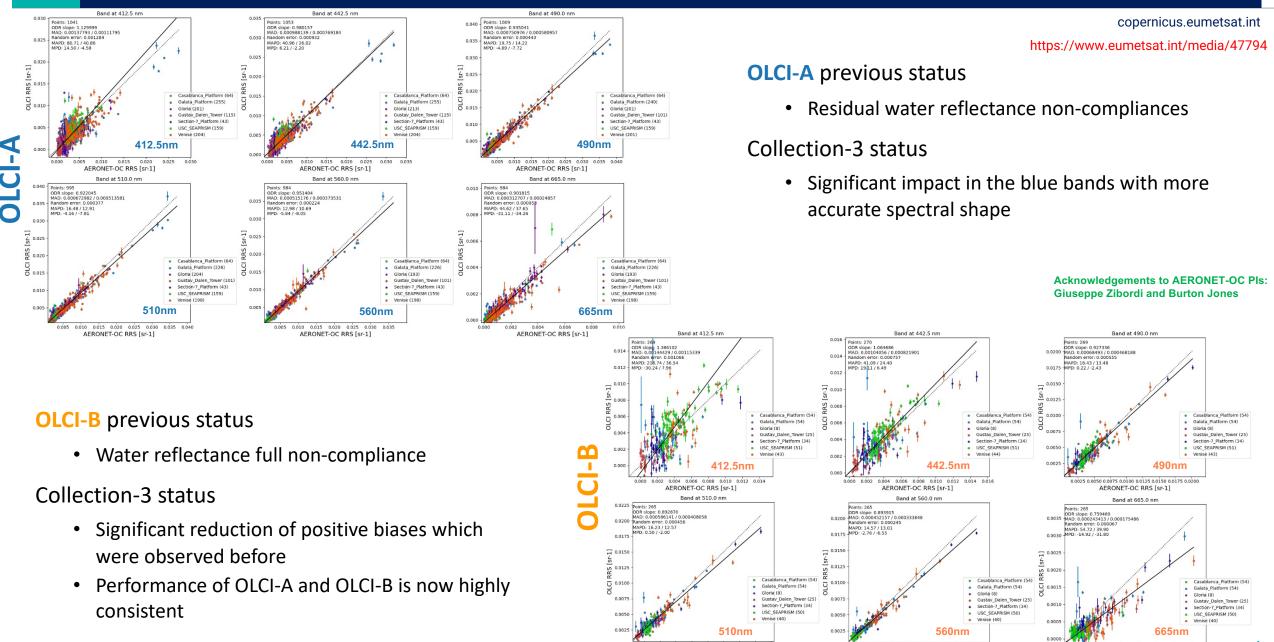
- v. 3.00 since 16 Feb 2021
- v. 3.01 since **28 Apr 2021** with two minor updates
- v. 3.02 since 19 Apr 2022 with new processor naming

#### **Collection-3 improvements summary**


- High consistency between OLCI-A and OLCI-B
- Open water chlorophyll within mission requirements
- Improved product retrievals over turbid waters
- Reduced «salt and pepper» noise in products

#### **Collection-3 user validation support**

- Many validation collaborations during the Collection-3 development with
  - Sentinel-3 Validation Team-OC (S3VT-OC)
  - OLCI/SYN Quality Working Group members (QWG)
  - OC-TAC Copernicus Marine Environment Monitoring Service (CMEMS)
- Peer-reviewed papers published


### **Collection-3 detailed documentation online**

- Collection-3 Report (EUM/RSP/REP/21/1211386): https://www.eumetsat.int/media/47794
- Ocean Colour Services page: https://www.eumetsat.int/ocean-colour-services



copernicus.eumetsat.int

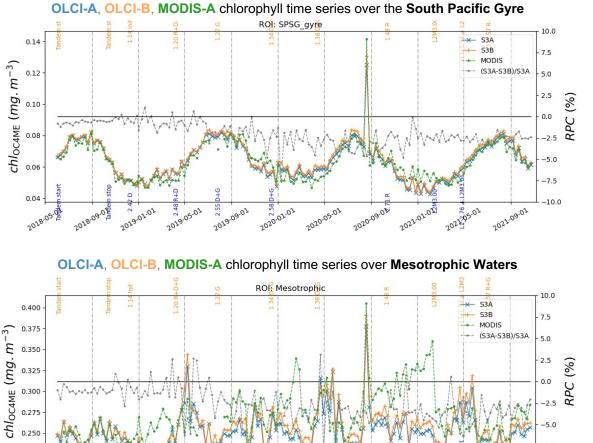
### Sentinel-3 OLCI L2 Collection-3 validation with AERONET-OC



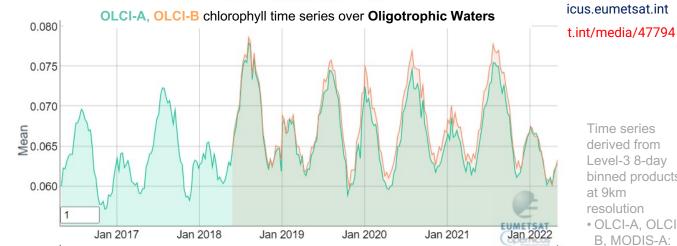
0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.022

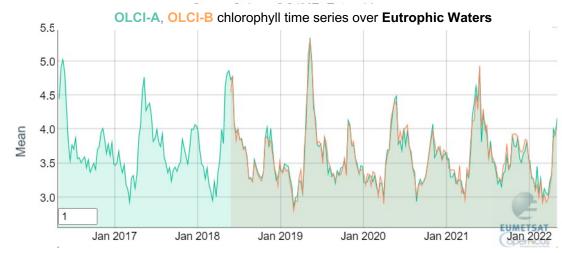
AERONET-OC RRS [sr-1]

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200


AERONET-OC RRS [sr-1]

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035


AERONET-OC RRS [sr-1]


EUM/RSP/REP/22/1314524, v1 Draft, 24 June 2022

## Sentinel-3 OLCI L2 Collection-3 chlorophyll mission inter-comparisons



20-01-01





derived from Level-3 8-day binned products at 9km resolution • OLCI-A, OLCI-B, MODIS-A: only matching bins between sensors • OLCI-A, OLCI-B: complete time series (nonoverlapping bins)

#### Acknowledgements to NASA for MODIS-A products

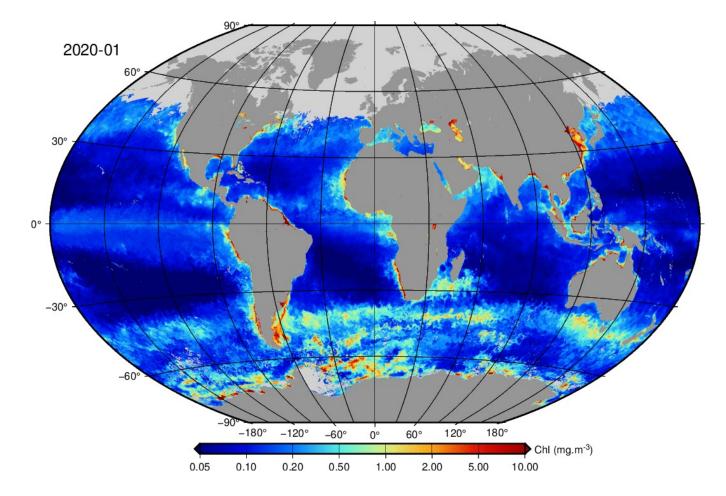
0.225

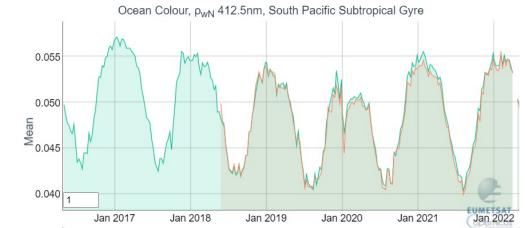
- Oligotrophic waters: chl < 0.1 mg/m<sup>3</sup>
- Mesotrophic waters: 0.1 ≤ chl < 1 mg/m<sup>3</sup>
- Eutrophic waters: chl ≥ 1 mg/m<sup>3</sup>

### Collection-3 status

- Excellent consistency between OLCI-A and OLCI-B, while OC-SVC gains were derived independently
  - for both sensors https://www.eumetsat.int/ocean-colour-system-vicarious-calibration-tool
- Good agreement with MODIS-A

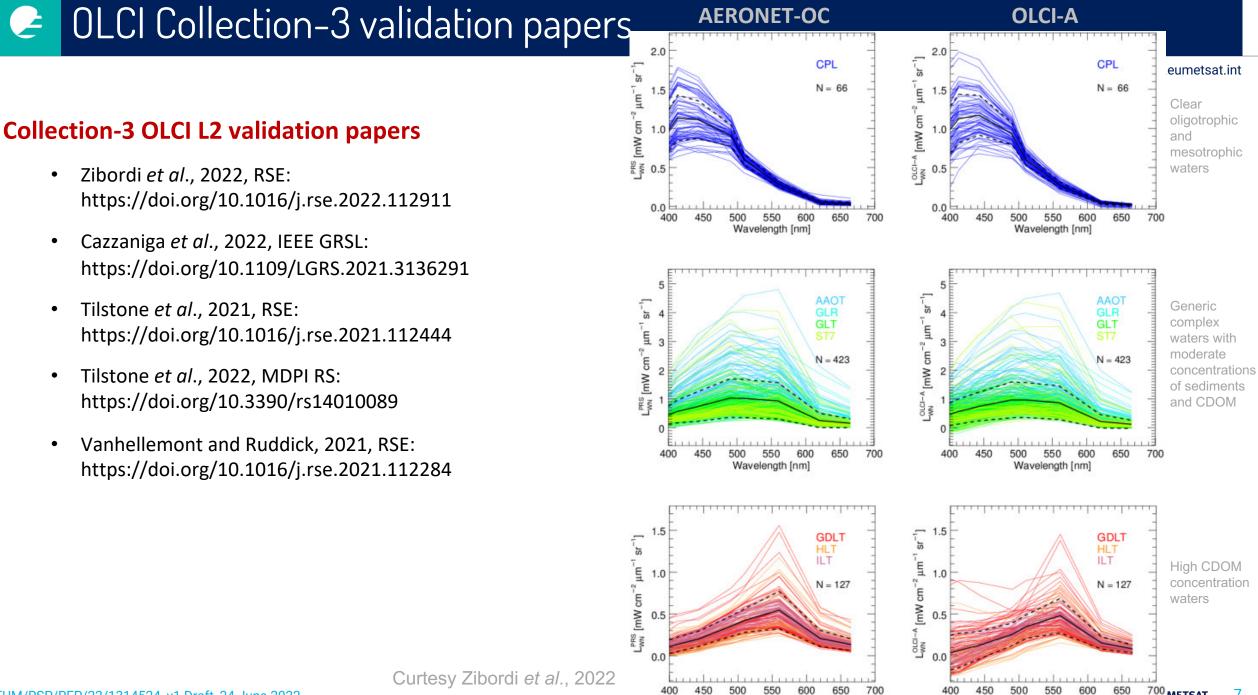
#### EUM/RSP/REP/22/1314524, v1 Draft, 24 June 2022





opernicus

### https://metis.eumetsat.int/oc

#### **METIS-OC**








opernicus

6



Wavelength [nm]

EUM/RSP/REP/22/1314524, v1 Draft, 24 June 2022

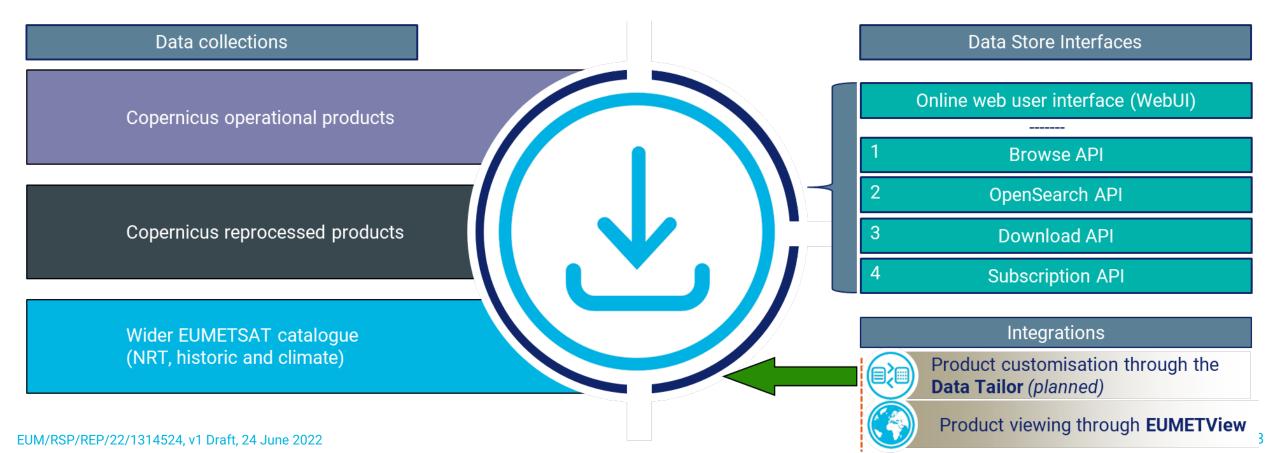
٠

٠

٠

700 METSAT

Wavelength [nm]


### EUMEISAI Data Store – ULCI Collection–3 operational + reprocessed data

copernicus.eumetsat.int

### EUMETSAT Data Store – a single online access point for all operational and reprocessed data

https://data.eumetsat.int

- EUMETSAT Data Store: https://data.eumetsat.int
- Collection-3 reprocessed and operational data are available on EUMETSAT Data Store
- CODA will be discontinued the end of September 2022
- https://www.eumetsat.int/sentinel-3-data-coming-data-store



## Sentinel-3 OLCI Collection-3 limitations and ongoing development

#### **Collection-3 User feedback:**

copernicus.eumetsat.int https://www.eumetsat.int/media/47794

#### **Collection-3 is a good achievement but there is room for improvements**

• Known product open issues and limitations are described in Collection-3 Report https://www.eumetsat.int/media/47794

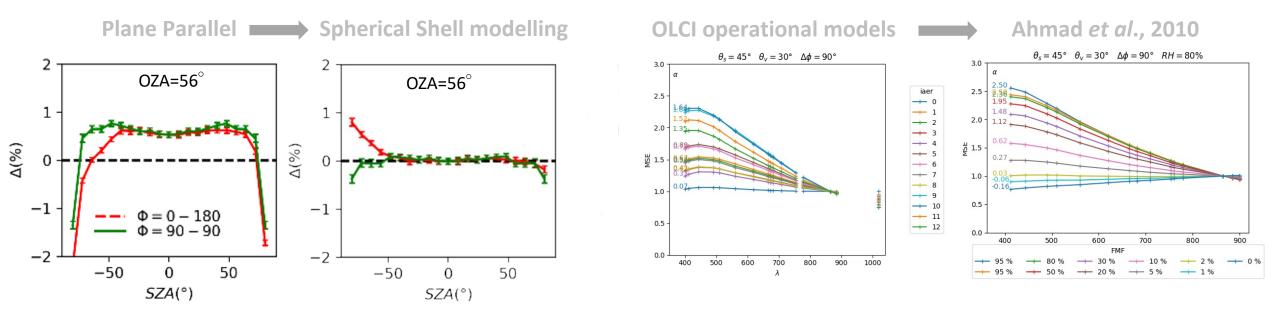
#### Ocean Colour product open issues and the need for improvements have been identified

- Water Reflectance products only partially meet the S3 Mission Requirements
- Problems with the standard atmospheric correction, including aerosol model limitations with Angstrom ≤ 1.6
- Large uncertainties are still present in complex waters, particularly in CDOM-dominated waters, e.g. Baltic Sea
- Geometry or camera dependences are showing as cross-track product biases
- Underestimated NIR water reflectances in coastal waters with low-to-moderate turbidities, e.g. in 753, 778 nm bands
- Residual L2 flag limitations
- L2 'error' uncertainty parameters need to be applied with caution as they are not validated and do not include L1 uncertainty budget

### Ocean Colour product evolution and development are ongoing

- Redevelopment of the Standard Atmospheric Correction
- BRDF-correction development for water reflectance products
- Implementation of new OLCI L2 products, IOP and Fluorescence
- Additional Ocean Colour algorithm evolutions, e.g. flags, chlorophyll product, optical water types

### **Ocean Colour processing towards OLCI Level-2 Collection-4 and onwards**


- Working towards Collection-4, tentative timeframe of the next two years
- Working towards Collection-5, Day-2 Multi-Mission Modular Ocean Colour processor in longer timeframe



# Improvement in Ucean Colour Standard Atmospheric Correction LUC-

### **OC-SAC key new elements**

- Radiative Transfer Modelling at detector wavelength, no smile correction
- Atmosphere Spherical effect, mainly for the molecular Rayleigh scattering
- Aerosol vertical profile, through a rough estimate of aerosol layer height with O<sub>2</sub>-absorption bands
- Aerosol standard models from Ahmad et al., 2010, with continuous discretization
- Extension of standard aerosol models to strongly absorbing models with increased refractive index
- Aerosol detection with 6 NIR bands (instead of 2), and uncertainty estimates
- New Rayleigh and atmospheric pressure correction based on Rayleigh optical thickness





PROGRAMME OI

THE EUROPEAN UNION

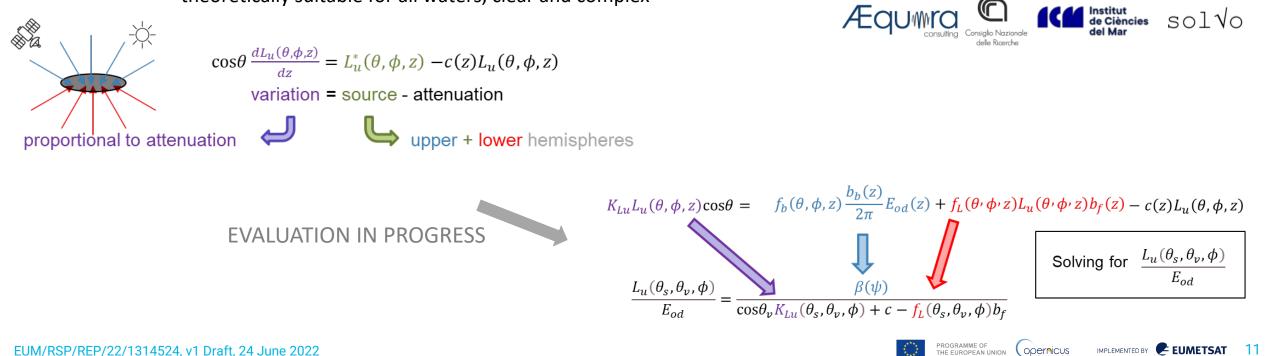
opernicus

copernicus.eumetsat.int

https://www.eumetsat.int/oc-sac

IMPLEMENTED BY FEUMETSAT

10


### BRDF correction development for clear and complex water reflectance

copernicus.eumetsat.int

https://www.eumetsat.int/brdf-correction-s3-olci-water-reflectance-products

### **BRDF correction key new elements**

- Several tested BRDF models:
  - Morel et al., 2002; Park and Ruddick, 2005; Lee et al., 2011; He et al., 2017; Twardowski and Tonizzo, 2018
- Focus on Twardowski and Tonizzo, 2018 (T18)
  - the most analytical of all models
  - based on simplified expression of the radiative transfer equation (RTE) from Zaneveld, 1995
  - includes Raman scattering
  - modular and customizable
  - theoretically suitable for all waters, clear and complex



## OLCI water Inherent Optical Property RR test products available (IOP)

### **OLCI IOP test products**

- $a_{nw}(\lambda), b_{bp}(\lambda), a_{phy}(\lambda), a_{cdm}(\lambda), a_{cdom}(\lambda), K_d(\lambda), b_{bp}$  spectral slope, optical water class
- a and  $b_{bp}$  are at 442.5 nm and  $K_d$  is at 490 nm ٠
- Description: https://www.eumetsat.int/S3-OLCI-IOP

BROCKMANN SNAP toolbox: http://s3vt.skytek.com/group/s3vt-oc/home

Gitlab source code: https://gitlab.eumetsat.int/eumetlab/oceans/ocean-science-studies/olci-iop-processor

### IOP OLCI-A and OLCI-B RR time series is available from the mission start to March 2022

Distribution via ftp for bulk download (~25TB) ٠

Access available to S3VT

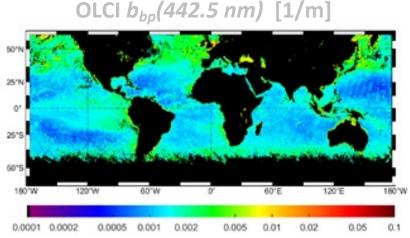
Credential from David.Dessailly@eumetsat.int

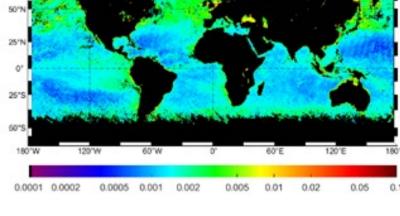
- EUMETSAT Data Store, from end of Q3 2022 (TBC) ٠
- One NetCDF file added: ٠

iop lsd.nc

Product name: Non-standard SAFE name ٠

S3A\_OL\_2\_WRR\_\_\_\_20180312T183717\_20180312T192111\_20211015T072412\_2634\_029\_013\_\_IOP\_MAR\_D\_NT\_003.SEN3


Attributes (source, disclaimer, product documentation, bibliography) clearly identify the products as «Aspirational» ٠




https://www.eumetsat.int/S3-OLCI-IOP

copernicus.eumetsat.int

Jorge et al., 2021 RSE IOP Bonelli et al., 2021 RSE CDOM

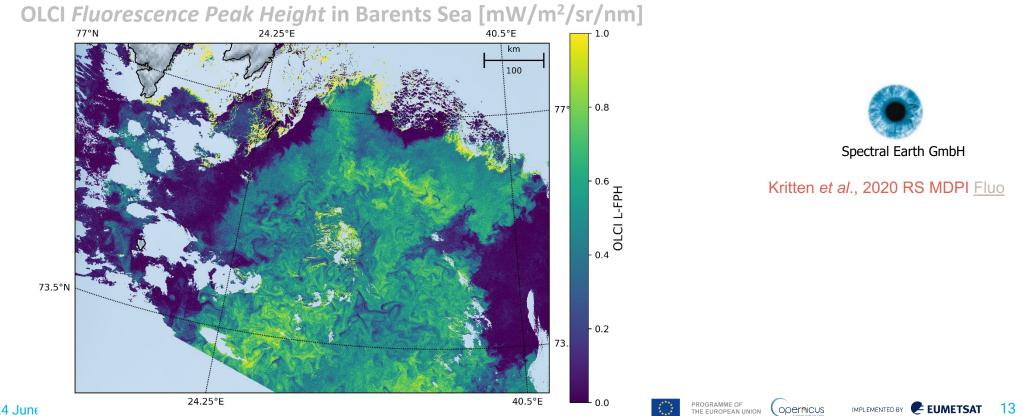








### OLCI Fluorescence test products available in a toolbox


copernicus.eumetsat.int https://www.eumetsat.int/S3-OLCI-FLUO

#### **OLCI Fluorescence test products**

- TOA-radiance and Water-reflectance Fluorescence Peak Height
- Description: https://www.eumetsat.int/S3-OLCI-FLUO

BROCKMANN SNAP plugin: http://s3vt.skytek.com/group/s3vt-oc/home

### Fluorescence OLCI-A and OLCI-B RR time series will be processed next for user validation



### S3VT meeting – 18 – 20 October 2022 – ESA ESRIN

cus.eumetsat.int

HOME OBJECTIVES ORGANISING COMMITTEE IMPORTANT DATES REGISTRATION ABSTRACT SUBMISSION VENUE & ACCOMMAttbs://nika0.eventsair.com/7th-sentinel-3-vtm-2022/



OF THE ION



EUMETSAT

7th Sentinel-3 Validation Team Meeting 18–20 October 2022 | ESA–ESRIN | Frascati (Rm), Italy

### 7<sup>th</sup> Sentinel-3 Validation Team (S3VT) meeting 2022

18 - 20 October 2022

This meeting will focus on comparison of data from both Sentine 3A and -3B missions and latest validation results.

The organisation of the meeting will be centred, as usual, around the sub-groups for Altimetry, Sea Surface Temperature, Ocean Colour, Land and Atmosphere.



opernicus

·eesa

co-funded with



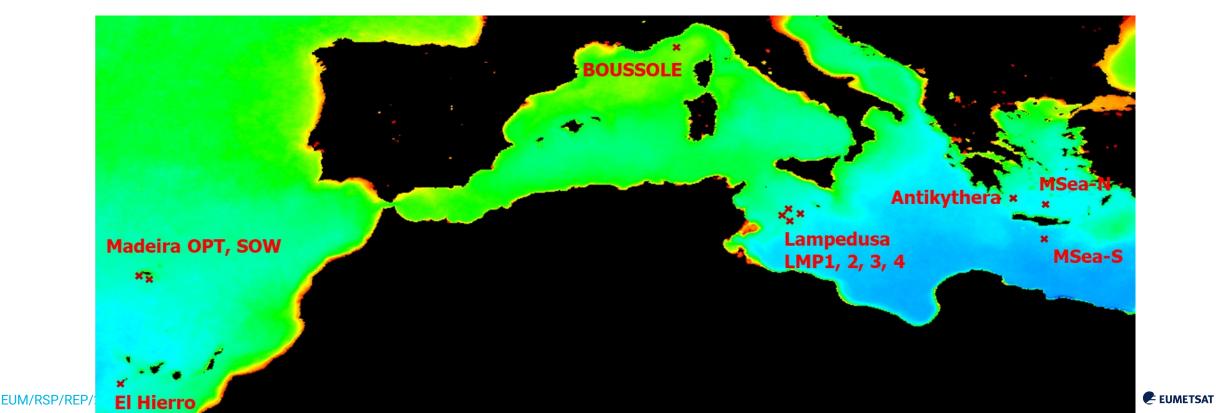
### Copernicus Ucean Colour System Vicarious Calibration LUC-SVCJ

<u>roadman</u>

copernicus.eumetsat.int https://www.eumetsat.int/OC-SVC

EUMETSAT manages OC-SVC infrastructure development activities for the Copernicus Programme on behalf of the European Commission

- 1.Requirements 🗸
- 2. Preliminary Design, Project Plan and Costing ✓
- 3. Infrastructure Location  $\leftarrow$
- 4. Engineering Design, Technical Definition, Specifications
- 5. Development, Testing and Demonstration in the Field
- 6. Operations




### Copernicus OC-SVC infrastructure candidate locations

16

### Five candidate locations for the Copernicus Ocean Colour System Vicarious Calibration infrastructure

- BOUSSOLE: 43.366N, 7.9E (investigated by LOV/IMEV/ACRI-ST)
- Crete: MSEA-N: 35.74N, 25.07E; MSEA-S: 34N, 25E; Antikythera: 36.2N, 23.55E (investigated by HCMR/Crete Uni.)
- El Hierro: 27.5876N, 18.1573W (investigated by IEO/AEMET)
- Lampedusa: LMP1: 35.5N, 12.8E; LMP2: 35.75N, 12.35E; LMP3: 35.85N, 12.73E; LMP4: 35.78N, 13.07E (investigated by CNR/ENEA)
- Madeira: SOW: 32.25N, 17W; OPT: 32.62N, 17.27W (investigated by IPMA)



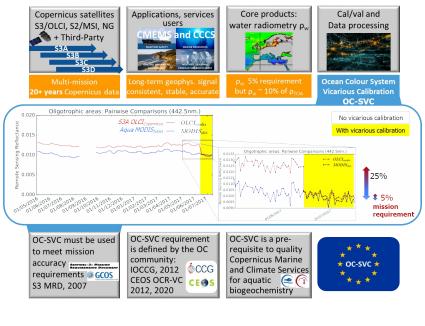
### Review process of Copernicus candidate OC-SVC infrastructure locations

copernicus.eumetsat.int

https://www.eumetsat.int/OC-SVC

IMPLEMENTED BY **EUMETSAT** 

### Goal is to achieve the state-of-the-art, autonomous and dependable Copernicus OC-SVC capability for the coming 20+ years of the Copernicus Programme, including the Next Generation and Expansion missions


### **Review process is supported by an international Expert Review Board**

### Foundations for the review

- must be based on solid scientific evidence
  - must support the highest quality operational Ocean Colour observations and data services from the Copernicus Programme and international missions
  - must be driven by the uncertainty budget of the complete OC-SVC process
- must ensure value for money for the Copernicus Programme
- firstly, focus on mandatory selection criteria
- prioritise two sites in order to have a backup

### **Types of criteria**

- potential of a location for OC-SVC high quality matchups with satellite missions
- marine and atmospheric criteria
- logistical and safety criteria
- location cost considerations



PROGRAMME OF

THE EUROPEAN UNION

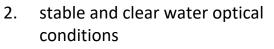
### Analysed site characteristics and climatologies

Soloction critoria

Daramotor

### Copernicus OC-SVC location review focus

copernicus.eumetsat.int https://www.eumetsat.int/OC-SVC


| Parameter                             | Selection criteria                                                                                 |
|---------------------------------------|----------------------------------------------------------------------------------------------------|
| OC-SVC matchup potential              | <ul> <li>large numbers of matchups</li> </ul>                                                      |
|                                       | <ul> <li>matchups well spread throughout the four seasons of the year</li> </ul>                   |
| cloud cover                           | <ul> <li>low, per season/month/day, high persistence of cloud free conditions</li> </ul>           |
|                                       | <ul> <li>statistic: number of days per year where fractional cloud cover is &gt; 0.1</li> </ul>    |
| chlorophyll concentration             | <ul> <li>stable daily/monthly/seasonally and spatially homogeneous</li> </ul>                      |
|                                       | <ul> <li>statistic: Chl &lt; 0.2 mg/m<sup>3</sup></li> </ul>                                       |
| radiometric variability               | <ul> <li>low seasonal, diurnal and long-term variability in water spectra</li> </ul>               |
|                                       | <ul> <li>statistic: optical range distributions: single peak dist., seasonal histograms</li> </ul> |
| water bio-optical properties          | <ul> <li>stable and spatially uniform IOPs, uniform within buoy depth</li> </ul>                   |
| SST, salinity                         | <ul> <li>stable and spatially uniform</li> </ul>                                                   |
| currents                              | <ul> <li>no major currents in the vicinity</li> </ul>                                              |
|                                       | <ul> <li>low to minimise buoy tilt</li> </ul>                                                      |
| waves, winds                          | <ul> <li>low wave height, no wave anomalies, low frequency of swells</li> </ul>                    |
|                                       | <ul> <li>low surface wind to minimise hydrosol advection, per season/month/day</li> </ul>          |
| aerosol optical thickness             | <ul> <li>stable and spatially uniform</li> </ul>                                                   |
|                                       | <ul> <li>statistic: τ(550 nm) &lt; 0.15</li> </ul>                                                 |
| aerosol type                          | <ul> <li>only quantified and limited episodes of dust, biomass burning, pollution</li> </ul>       |
|                                       | <ul> <li>statistical number of days per year of unfavourable aerosol outbreaks</li> </ul>          |
|                                       | <ul> <li>dust: τ≥0.15 and α≤0.5</li> </ul>                                                         |
|                                       | • biomass-burning and urban/industrial particles: $\tau \ge 0.1$ and $\alpha \ge 1.5$              |
|                                       | <ul> <li>small urban-type aerosols: α &gt; 1</li> </ul>                                            |
| atmospheric gases                     | <ul> <li>quantified and limited absorbing gases: ozone, stratospheric and</li> </ul>               |
|                                       | tropospheric NO <sub>2</sub> from cities and ship emissions), H <sub>2</sub> O                     |
| prevailing marine/atmospheric         |                                                                                                    |
| circulation patterns                  |                                                                                                    |
| solar illumination                    | <ul> <li>maximising light availability per season/month/day</li> </ul>                             |
| logistics and existing                | <ul> <li>distance from land optimised</li> </ul>                                                   |
| supporting infrastructures            | • to reach the clearest offshore waters and atmospheric conditions, and to                         |
|                                       | avoid the adjacency effect from the land                                                           |
|                                       | • to ensure easy ship journey and quick accessibility in case of emergency                         |
|                                       | <ul> <li>nearby port, divers, workshops to support field maintenance operations</li> </ul>         |
|                                       | <ul> <li>nearby facility to support storage, maintenance and calibration operations</li> </ul>     |
|                                       | <ul> <li>existing supporting infrastructures are an advantage, e.g. atmospheric and</li> </ul>     |
|                                       | marine observatories                                                                               |
|                                       | <ul> <li>availability of local qualified personnel is an advantage</li> </ul>                      |
| communication links                   | <ul> <li>high volume data communication links between the water infrastructure and</li> </ul>      |
|                                       | land, and the land, the 'Ground Segment' and the data dissemination point                          |
| bathymetry                            | <ul> <li>depth &gt; 800 m, low sea floor slope</li> </ul>                                          |
| traffic                               | <ul> <li>minimal impact from maritime traffic</li> </ul>                                           |
|                                       | - statistics: nearby shipping routes, and fishing and recreational traffic density                 |
| physical safety                       | <ul> <li>hurricanes / medicanes, statistics: frequency, intensity and trends</li> </ul>            |
|                                       | - site protection in the field: placement on nautical charts, beacons etc.                         |
| seismic or volcanic activity          | <ul> <li>none in the vicinity of the site or no impact on the site</li> </ul>                      |
| costing                               | <ul> <li>not prohibitive and within the existing Routh Order of Magnitude costs</li> </ul>         |
| · · · · · · · · · · · · · · · · · · · |                                                                                                    |

### Selected mandatory criteria

- potential of a location for OC-SVC high quality matchups with satellite missions
- cloud cover
- chlorophyll concentration, water reflectance
- aerosol optical thickness, aerosol type
- currents, waves and winds
- logistics and existing supporting infrastructures
- communication links
- bathymetry
- physical safety, traffic, hurricanes
- seismic or volcanic activity

### Most fundamental criteria

 potential of a location for OC-SVC high quality matchups with satellite missions



IMPLEMENTED BY EUMETSAT

18

- 3. stable, clear and maritime atmospheric conditions
- 4. logistical readiness

opernicus

THE EUROPEAN UNION





### Fiducial Reference Measurements for Satellite Ucean Colour LFRM4SUC-





copernicus.eumetsat.int https://frm4soc2.eumetsat.int

#### FRM4SOC-2 overarching goal

• To ensure the adoption of FRM principles across the Ocean Colour (Water Quality, Aquatic Ecosystem...) community

### FRM4SOC-2 developments to achieve the goal – a set of "cooking recipes" to make the adoption of FRM principles as simple as possible for the community

- Fully characterise the two most common Ocean Colour Radiometer classes (TriOS-RAMSES, Sea-Bird HyperOCR)
- Provide community guidelines on radiometer cal/char schedules
- Develop radiometer cal/char guidelines for laboratories (includes a lab exercise to test the guidelines and inter-compare results)
- Provide highly prescriptive and detailed FRM measurement procedures (following from the IOCCG protocols and FRM4SOC-1 experience)
- Develop community processor for in situ radiometric measurements (cooperating with NASA on HyperInSPACE)
- Develop a complete end-to-end uncertainty budget for the instruments and the measurements and include the uncertainty calculations in the community processor
- Review and test the developed procedures, guidelines and tools via a field experiment and a workshop with international participation

EUM/RSP/REP/22/1314524, v1 Draft, 24 June 2022





# FRM4SUC-2, Project Workshop – international participation very

copernicus.eumetsat.int

https://frm4soc2.eumetsat.int

Fiducial Reference Measurements for Satellite Ocean Colour Phase 2

# FRM4SOC-2 Project Workshop

Save the date! 5 – 7 December 2022 – Darmstadt/Online

Consortium partners and project-related experts will attend physically. You are invited to join either physically or online. No registration fees will be charged.

Funded by the European Union



UNIVERSITY OF TARTU









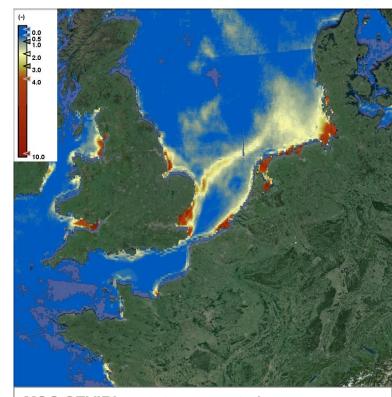
#### EUM/RSP/REP/22/1314524, v1 Draft, 24 June 2022



### Geostationary ocean colour

### **Broad interest in Ocean Colour geostationary products**

- Emerging activity for EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSI-SAF)
- Requirement from CMEMS OC-TAC


### **Building on initial EUMETSAT activities in 2015/16**

- User Requirements analysis
- Prototype Processor development and validation

### **Development of extended geostationary capabilities from EUMETSAT's** missions, starting Q4 2022

- Scientific and technical development of the Prototype Processor into the Day-2 Multi-Mission processor
- MSG-SEVIRI demonstration products: water turbidity time series
- MTG-FCI potential for additional and improved products, like chlorophyll

### **Geostationary test products in off-line processing for validation**



MSG SEVIRI prototype geostationary water turbidity product August 2008 East Anglian sediment plume

opernicus

PROGRAMME OF THE EUROPEAN UNION IMPLEMENTED BY 🗲 EUMETSAT 21

### Summary

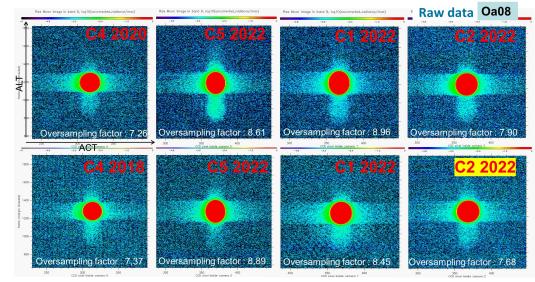
#### **EUMETSAT's Ocean Colour L2 main development activities**

- Ocean Colour operational processor improvements
- Copernicus System Vicarious Calibration (OC-SVC) infrastructure
- FRM4SOC-2 in situ radiometry
- Geostationary Ocean Colour from EUMETSAT's missions

#### Sentinel-3 OLCI L1 activities, not described

• e.g. lunar observations

#### Many of the activities match the IOCCG recommendations


- IOCCG/CEOS INSITU-OCR White Paper
- CEOS OCR-VC deliverable

#### copernicus.eumetsat.int https://www.eumetsat.int/ocean-colour-services

22



#### **OLCI-A and OLCI-B Moon observations per camera**



PROGRAMME OF THE EUROPEAN UNION

opernicus