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Frédéric Mélin and Bryan A. Franz

1. Introduction 609
2. Validation of Satellite Products 610

2.1 Validation Protocol 610
2.2 Validation Metrics 612
2.3 Analysis of Validation Results 614
2.4 Model-Based Approaches to Uncertainty Analysis

and Error Propagation 618
3. Comparison of Cross-Mission Data Products 621

3.1 Band Shift Correction 622
3.2 Point-by-Point Comparison 624
3.3 Analysis of Time Series 626
3.4 Climate Signal Analysis 628

4. Conclusions 631
Acknowledgments 632
References 632

6.2. Assessment of Long-Term Satellite Derived Sea
Surface Temperature Records

Gary K. Corlett, Christopher J. Merchant, Peter J. Minnett
and Craig J. Donlon

1. Introduction 639
2. Background 640

2.1 Assessment of Top of Atmosphere Brightness
Temperatures 641

2.2 Validation Uncertainty Budget 643
2.3 Reference Data Sources 647

3. Assessment of Long-Term SST Datasets 649
3.1 Example 1: Long-Term SST Data Record Assessment 652
3.2 Example 2: Long-Term Component Assessment 654
3.3 Quantitative Metrics 657
3.4 Demonstrating Traceability to SI 659
3.5 Stability 663
3.6 Validation of Uncertainties 669

4. Summary and Recommendations 673
References 674

Index 679

Contents xiii



This page intentionally left blank



List of Contributors

Sean W. Bailey, Ocean Biology Processing Group, NASA Goddard Space Flight
Center, Greenbelt, MD, USA; FutureTech Corporation, Greenbelt, MD, USA

Ian Barton, CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia

Barbara Bulgarelli, European Commission, Joint Research Centre, Ispra, Italy

Kenneth S. Casey, NOAA Oceanographic Data Center, Silver Spring, MD, USA

Gary K. Corlett, Department of Physics and Astronomy, University of Leicester,
Leicester, UK

Davide D’Alimonte, Centre for Marine and Environmental Research, University of
Algarve, Faro, Portugal

Craig J. Donlon, European Space Agency/ESTEC, Noordwijk, The Netherlands

Mark D. Dowell, European Commission, Joint Research Centre, Ispra, Varese, Italy

Owen Embury, Department of Meteorology, University of Reading, Reading, UK

William Emery, Aerospace Engineering Sciences Department, University of Colorado,
Boulder, CO, USA

Robert E. Eplee, Jr, Ocean Biology Processing Group, NASA Goddard Space Flight
Center, Greenbelt, MD, USA; Science Applications International Corporation,
Beltsville, MD, USA

Nigel Fox, National Physical Laboratory (NPL), Teddington, Middlesex, UK

Bryan A. Franz, NASA, Goddard Space Flight Center, Greenbelt, MD, USA

Simon Hook, NASA Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA

Andrew Jessup, Applied Physics Laboratory, University of Washington, Seattle, WA,
USA

B. Carol Johnson, Sensor Science Division, National Institute of Standards and
Technology, Gaithersburg, MD, USA

Charles R. McClain, NASA Goddard Space Flight Center, Greenbelt, MD, USA

Gerhard Meister, NASA Goddard Space Flight Center, Greenbelt, MD, USA
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Foreword

The view of the Earth from space has become an icon of our time. First seen
through the spectacular photographs taken by the Apollo astronauts, it showed
us the Earth, which had seemed limitless to our ancestors, to be small and
fragile, a vulnerable oasis for life in the vast vacuum of space. If no other
benefit had ever come from the space age, those pictures alone would have
justified the effort to leave the Earth, for they changed our view of the planet
forever.

But those photographs, it turned out, were just the beginning of what can
be learned by looking down on the Earth from space. Only from the vantage
point in orbit above the planet can we really get the whole pictured
seeing far enough to give a truly global view, but also with sufficient detail to
get down to the local scale. Since the time of the early satellites, the number
and sophistication of remote sensing measurements has grown hugely, so that
we now have a nearly continuous view of the Earth from space that is highly
resolved in area, time, and wavelength. Terabytes of data now flood down from
our satellites, documenting the view of Earth from space in unprecedented
detail. If only we can make sense of it all, it offers the chance to understand
our home planet as never before, allowing us to see how every locality fits into
the whole picture. For the oceans in particular, this is a transformative view,
because over large areas they are only rarely visited by people or instruments
to make in situ observations. Much of our uncertainty over prediction of
seasonal and longer term changes originates in this ignorance of the oceans,
which are the main storage for heat in the climate system and the site of half
the world’s biological productivity.

This book describes the latest knowledge and techniques in visible and
infrared radiometry from satellites. These regions of the electromagnetic
spectrum can be used to give important information about several aspects of
the oceans: the infrared observations can be used to measure sea surface
temperature, which is a fundamental variable needed for climate and weather
prediction studies. Visible measurements characterize ocean color, from which
we can derive estimates of chlorophyll and other pigments to enable charac-
terization of the plankton community. The plankton are in turn the base of the
ocean food chain and play important roles in the Earth’s carbon cycle, both in
the rapid changes occurring today as a result of human activitiesdclimate
change and ocean acidificationdand over the longer term for in maintaining a
habitable planet.
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As the contributions here illustrate, making sense of the flood of data from
satellites is no easy task: it requires meticulous attention to detail. The sensors
must be continually calibrated and the data validated, so that long-term
records, constructed over time from successive instruments, can be relied on to
be free from drift. This is of critical importance for studies of climate change,
where any long-term change in temperature must be carefully separated from
instrumental effects. To achieve this kind of reliability requires continuous and
extended free exchange and cooperation between all those involveddfrom the
designers and engineers who build the sensors, those interpreting the data,
and researchers making in situ observations who provide the ground truth.
However, there is a rich return on this effort for our civilization as a whole, for
from it we can understand our home planet as never before.

Andrew Watson
University of Exeter 27th July 2014
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Preface

Climate change science relies on the combined use of models and measure-
ments to advance understanding of climate fluctuations and trends, and ulti-
mately to formulate predictions. Gathering measurements for climate change
investigations requires well-characterized observing systems and the imple-
mentation of strategies to detect decadal variations that are much smaller than
those occurring at daily or interannual scales. This requirement imposes the
collection of uninterrupted time series of highly accurate measurements
traceable to accepted international standards that collectively constitute the
evidence baseline for climate research.

Satellite systems provide a quasi-synoptic global sampling dimension of
climate data measured using a variety of instruments operated over the Earth’s
surface. Like any observing system devoted to the generation of climate-
quality data records, space-based instruments supporting climate change in-
vestigations need to deliver continuous highly accurate measurements with
defined uncertainties. This imposes lifetime calibration and validation
processes for each component of the end-to-end observing system and for the
derived data products.

During the last few decades, several space missions have been designed to
support ocean climate studies through measurement of physical, biological,
and chemical variables. Among the various remote sensing technologies,
optical sensors operating in the visible, near-infrared, and thermal infrared
spectrum are well suited to measure variables such as sea surface temperature
and water leaving radiance at timescales varying from hours to days and
geographical-scales from tens of meters to kilometers. While the sea surface
temperature has relevance for the heat, gas, and momentum coupling between
the atmosphere and ocean, reconstruction of patterns associated with
dynamical processes such as surface currents, eddies, and upwelling, the
water-leaving radiance in the visible spectral region is fundamental for the
quantification of optically significant seawater constituents, including phyto-
plankton biomass, that play a major role in the Earth’s carbon cycle.

Optical remote sensing technologies used to generate climate-quality data
records share the need for thorough prelaunch characterization and absolute
calibration of the satellite radiometer. These activities are then followed by the
postlaunch monitoring of the radiometer stability over the mission lifetime, the
continuous assessment of data product quality, and finally, successive
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reanalysis and reprocessing of all data in conjunction with better under-
standing of error sources. The postlaunch activities largely rely on in situ
reference measurements for the development and assessment of the algorithms
and methods applied to determine each climate variable, and successively for
the continuous validation of derived satellite products. Furthermore, reference
measurements are required to homogenize climate data records obtained from
multiple or successive satellite instruments. Because of this, advances in
remote sensing optical technology demand progress to deliver in situ reference
instrumentation, measurement methods, and field strategies. Such progress
embraces the design of increasingly precise and stable field optical radiome-
ters, the improvement of laboratory techniques for their characterization and
absolute calibration, the assessment of measurement methods and field
intercomparison strategies, and finally, advances in the creation and handling
of data repositories.

This book, through a number of contributions from various authors, pre-
sents the state of the art for optical remote sensing and shows how it can be
applied for the generation of marine climate-quality data products. The various
chapters are grouped into six thematic parts each introduced by a brief over-
view. The different parts include: (1) requirements for the generation of
climate data records from satellite ocean measurements and the basic radi-
ometry principles addressing terminology, standards, measurement equation,
and uncertainties; (2) satellite visible and thermal infrared radiometry
embracing instrument design, characterization, and pre- and postlaunch
calibration; (3) in situ visible and thermal infrared reference radiometry
including overviews on basic principles, technology, and measurement
methods required to support satellite missions devoted to climate change in-
vestigations; (4) computer model simulations as fundamental tools to support
interpretation and analysis of both in situ and satellite radiometric measure-
ments; (5) strategies for in situ reference radiometry to satisfy mission
requirements for the generation of climate data records; and finally, (6)
methods for the assessment of satellite data products.

The expectation of the editors is that this book will become a working
tool, as either a reference text or as background literature for discussions, for
students and scientists interested in ocean climate studies and satellite
radiometry.

Giuseppe Zibordi
Craig J. Donlon
Albert C. Parr
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