Harmful Algal Blooms (HABs) 2 methods

Remote Sensing for HAB Detection: Does the Bloom Change Water Color?

Yes? Optical techniques

Can distinguish some bloom types in case 1 water

Difficult in coastal areas due to sediment and CDOM Use absorption, backscatter, and spectral shape, relative patterns

Complements ecological detection techniques

Many blooms are not unique (Pn is a diatom in a diatom system)

Bloom Ecology techniques, Not just chl a

Does it dominate/correlate biomass?

Seasonality of blooms

Relationship to environmental conditions

No? Physical Forcing

Association between bloom and physical features, **use of SST** (e.g., fronts, upwelling, wind events)

Not direct bloom detection, difficult to view extent of bloom

Karenia can make strong blooms (major source of primary production on west Florida shelf). Pure *Karenia* blooms are great for Ocean Color Remote Sensing, gave illusion that "red tides" are easily solvable.

If you want a "red tide": *Nocticula*. Visually striking; usually harmless, sometimes causes fish kills

Cyanos in many areas

Baltic Large lakes (e.g. Lake Erie) Small lakes

Microcystis as scum example

• Aug 2009, Lake Erie

Remote Sensing & Optical methods for detecting and monitoring HABs

Uniquely identify bloom by Optical technique Non-Colored blooms Identify feature associated with field ID of HAB Find physical factors (but no bloom ID) Wind events Upwelling Currents

Chlorophyll

Generally not useful simply as chlorophyll (Chlorophyll may be inferred from FLH)

Gower et al., 2005, MERIS FLH Exceptions, chlorophyll threshold is useful: "red tide" in some bays in Japan (various species) Brown tide in US, *Aureococcus, Aureoumbra*

Why not chl-a?

Chlorophyll is usually used in an anomaly or "delta" technique

Qualitative anomaly.

This area is a "red tide" because we infer concentration is much higher than normal.

Most "chlorophyll" HABs are interpreted anomalies

Anomaly method can be quantified

Anomaly finds New Blooms

Demonstrated as effective for Karenia brevis

K. brevis dominates biomass in late summer

Better in case 2 water (with turbidity) than optical algorithms

Accuracy > 80% during summer and fall

HAB Detection from SeaWiFS

satellite provides full size

Change in chlorophyll, example for Korea

Persian Gulf during Cochlodinium bloom

MODIS Chlorophyll anomaly, Nov 2008

FLH anomaly

From: R. Kudela UCSC

Spectra: various pigments in algae

Analytical algorithms

- Phycocyanin, from Simis, Gons and others
- QAA for absorption (Lee and others)
 - Solve for absorption at MODIS or SeaWiFS bands
- With good data, quite effective; demonstrated to work with radiometry; satellite depends on atmospheric correction

Analytical optics, example from cyanobacteria

100

0

△ IJsselmeer 10 Apr 2003

25

50

Measured PC (mg m⁻³)

75

10

• Simis et al. (L&O, 2005) Netherlands, MERIS

♦ IJsselmeer 24 Jun 2003 □ IJsselmeer 5 Aug 2003 Solve for *a_{pc}(620)* from + IJsselmeer 9 Sep 2003 × + 75 × Loosdrecht Mar-Nov 2003 Retrieved PC (mg m⁻³) × R(709)/R(620) × 50 With **b**_b, **a**_w, **a**_{phi} 25 × $a(620)_{pc}/a_{pc}^{*}(620)$ y = 0.99x + 0.53 $r^2 = 0.94$

Empirical, backscatter against absorption,

example from Karenia, less scatter from cells and from cellular detritus

Spectral shape algorithms

MCI on MERIS (Gower 2005); (quantify by Binding 2011) CI on MERIS (Wynne et al., 2010) FLH MODIS (applied to a HAB, Hu et al., 2008) Other shape algorithms (SeaWiFS or MODIS; Tomlinson et al., 2010)

MCI determined at red-edge, related to chlorophyll

CI/SS681, intense blooms, more cyano sensitive

MODIS 19 November 2008; Cocchlodinium bloom, Persian Gulf impacting water supply .

chlorophyll, FLH. Figures from Raphe Kudela

Other Optical Algorithms

Bb/a (Cannizzaro/Carder

Karenia blooms scatter less than diatom & *Trichodesmium*.

Use Morel bb for reference. *Karenia* bloom when

(bb/a) < Morel bb/a).

bb from Rrs or Qaa, chl or FLH as surrogate for a.

Low is Karenia bloom.

intense blooms in water

Spectra of *Microcystis* "scum", bloom on water High in NIR, low in red

Obtaining cell counts from satellite

Satellite against field cell counts (now working on field radiometry)

MERIS spectral shapes, cyano & other bloom

MCI sensitive to lower chla, but also sensitive to high sediment concentration

A side note, true color is valuable but hard to interpret: Find the scum, July 27, 2010

NIR and red

Other sensors

Cyanobacteria under high concentrations and low winds produce scum, high NIR reflectance

NIR assigned red color

False-color IR Landsat, Potomac River, 1982

Anabaena bloom, AVHRR (only red and NIR) Lake Pontchartrain, Louisiana, USA (Blue-green algae can produce surface scums) False Color infrared (pink indicates high NIR reflectance)

Cell counts $< 10^3 \text{ mL}^{-1}$

 $> 10^5 \, mL^{-1}$

Extensive work done on blue-green blooms in the Baltic.

HABs with extreme scattering

(Nodularia spumigena dominated blooms in the Baltic Sea)

Strong scattering enhanced by the vacuoles in Nodularia cells (M. Kahru)

Courtesy: M. Kahru

Visible anomalies

Anoxic *Gymnodinium sangineum* HAB in Peru, turbidity anomaly *True-color "turbidity"*

UV spectra, Mycosporine amino acids (MAAs) for dinoflagellates?

- Sunscreen for algae More common in dinoflagellates
- Increased UV absorption
- Relevant with future UV sensors
- Issues:
- **CDOM** areas
- Not stable, scene by scene classification

Common algorithms.

- 1. Chl-a blue:green
- 2. Chl-a NIR:red
- 3. FLH
- 4. Chlorophyll anomaly
- 5. MCI (SS-708)

- 6. CI (SS-681)
- 7. Bb/a ratio
- 8. Brightness
- 9. Multi-band empirical relationship

Exercise. Identify whether potential algal blooms occur. Feb and May images. CI, MCI, & OC4 chl

