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Database Spectrum Matching 
Mobley et al., 2005. Applied Optics, 44(17), 3576-3592 

 
Use a radiative transfer code to create a database of Rrs spectra that 
correspond to all possible combinations of water absorption and 
scattering properties, bottom depths, and bottom reflectances that 
might be found in the area being studied. 
 
Each Rrs spectrum in the database corresponds to a known set of 
water properties (a, b and bb spectra), a bottom reflectance spectrum 
(bottom type), and a water depth. 
 
Then search the database to find the closest-matching database 
spectrum to the given image spectrum 
 
The retrieved environmental properties are then whatever values 
were used to create the closest-matching database spectrum. 



CRISTAL 
The following results were generated using CRISTAL 
 
CRISTAL (Comprehensive Reflectance Inversion based on Spectrum 
matching and TAble Lookup) is a software package developed by me to 
handle the creation of Rrs databases, retrieval of environmental 
properties (water IOPs, bottom depth, and bottom reflectance or type) 
from hyperspectral imagery, and display of retrieved results. 
 
Parts of CRISTAL are coverved by U.S. Patent 7369229 
 
Publications will be submitted asap and the code will eventually be 
made public. 



Rrs Database Creation: IOPs 

6 Chl values: 0.0, 0.05, 0.10, 0.15, 0.20, 
0.30 mg m-3 

11 aCDOM values: 0.0 to 0.1 m-1 by 0.01 m-1 

5 mineral concentrations: 0.0, 0.05, 0.1, 
0.2 and 0.3 gm m-3 
 

6x11x5 = 330 IOP sets 

For the Bahamas use 



32 different bottom 
reflectance spectra (pure 
bottom types and 
mixtures of bottom types) 
 
The bottom was placed 
at 56 depths: 
 zb = 0.25, 0.50, 0.75, 
1.0, ....,14.75, 15.0, 16.0, 
...,19, 20 m, and  

The database creation run shown here (for Bahamas waters) used 330 
sets of water properties x 32 bottom reflectances x 56 depths, so 
330 x (32*55 + 1) ≈ 581,130 RTE solutions to create Rrs spectra from 380 
to 750 nm by 5 nm (about a week of computer time on a 2 GHz PC).  
Database creation is a one-time calculation for a given environment. 

Rrs Database Creation: Bottom Reflectance 



Each Rrs spectrum in the database corresponds to a known set of 
water properties (a, b and bb spectra), a bottom reflectance spectrum 
(bottom type), and a water depth. 

Rrs Database Creation 



Image Processing 

retrieval: 
Depth 2.75 m 
80% sand, 20%  grass 
IOP set #17 

pixel Rrs 
extraction 

database of Rrs spectra 

database 
search 

spectrum match 

(after atmospheric correction) 



Example: Airborne Hyperspectral Image of 
Very Clear Water in the Bahamas 

NRL-DC PHILLS image from ONR CoBOP program, May 2000 
501x899 pixels at ~1.3 m resolution 

Horseshoe Reef ooid sand 

mixed sediment, 
corals, turf algae, 
seagrass 

Lee Stocking 
Island, Bahamas 

dense seagrass 



Bathymetry Retrieval 



Validation with Acoustic Bathymetry 

Black: NRL acoustic survey for ONR CoBOP program 
Color: CRISTAL depth retrieval 



Depth Retrieval vs. Acoustic Bathymetry 

These retrieval errors also include errors due to latitude-longitude calculations in 
mapping acoustic ping locations to image pixels (horizontal errors of several meters 
or more due to failure of built-in navigation instrument), and due to whitecaps 



Bottom Reflectance 

Rb(488) is what you would need for 
performance evaluation of a 488 nm 
bathymetric lidar 



Retrieval Information 
Keep in mind that a database spectrum matching retrieval 
retrieves full spectral information at each pixel 



http://www.bestpicturesof.com/misc/pictures%20of%20bull+kelp/?page=2#Google 

http://www.beachwatchers.wsu.edu/ezidweb/seaweeds/Nereocystis.htm 

Kelp Mapping 
Bull kelp (Nereocystis luetkeana) is very 
important for food, medicines, sheltering of 
fish, and recreational diving.  Harvesting is 
strictly managed in the US. 



2002 2004 

Mapping of Kelp Coverage 
California Coast  

DEM Land 0 % 10 % 20 % 30 % 40 % 50 % 

90 % 100 % *100 % 80 % 60 % 70 % 

images courtesy of Paul Bissett, FERI 



2002 2004 

images courtesy of Paul Bissett, FERI 



Humboldt Bay California 
 Eel Grass Mapping 

Chaeli Judd, MS Thesis, Judd et al., 2006 

HSI determined eel grass 
distributions, previously 

unknown. 

image courtesy of Paul Bissett, FERI 



Error Analysis 
Being able to place error bars or confidence estimates on retrievals is 
often as important as the retrieved value itself 
 
Can do this statistically from the distribution of retrieved values for the k 
closest matching spectra (k Nearest Neighbors, or kNN) 

the 30 closest matches give a 
histogram of retrieved depths 

the average or median gives a 
better estimate of the depth, plus 
an error estimate 



The closest and most 
frequently retrieved 
bottom reflectance 
spectrum was 30% 
sand and 70% 
seagrass. 
 
The other bottoms are 
similar mixtures of 
sand and grass, 
sargassum, turf algae, 
and macrophytes. 
 
So we can be fairly 
certain that the bottom 
is dense vegetation, 
probably sea grass 

Error Analysis 



The retrieval is very certain about 
the absorption coefficient 

The retrieval is fairly certain about 
the scattering coefficient 

The retrieval is UNcertain about 
the backscatter coefficient 

Error Analysis 



all depths the same; 
very confident 

bottoms very similar 
(sand or grapestone); 
very confident 

absorption; very 
confident 

scattering; uncertain backscatter; very 
uncertain 

Error Analysis: A Shallow-water Pixel 



Does This Make Sense? 

• In these very clear waters, the water absorption determines how 
much light gets to the bottom and back to the surface.  Water-
column scattering and backscatter contribute less to the water-
leaving radiance in shallow water than does the bottom reflectance.  

 
• The retrieval was therefore most certain about the absorption 

coefficient, and least certain about backscatter. 
 

• The bottom reflectances all had similar reflectance spectra 
because it’s the reflectance that is important.  The retrieval wasn’t 
able to distinguish between sea grass, turf algae, sargassum, and 
macrophytes, which all have similar reflectances. 

 
• In very shallow (<5 m) clear water, the retrieved bottom reflectance 

becomes very certain and the water scattering and backscatter 
very uncertain (i.e., least important in determining Rrs) 



Comparison of Database & SA Algorithms 

CRISTAL Users’ Guide Table 1.1 



Comparison of Algorithms 
preprocessing time / image processing time / pixels per sec 

CRISTAL 

Bahamas Image.  From Dekker et al., Limnol Ocean. Methods, 2011 

(Lee, semi-analytic) 



Comparison of Algorithms 

CRISTAL 

Bahamas Image.  From Dekker et al., Limnol Ocean. Methods, 2011 



Other Issues 

• What is the best metric for spectrum matching? 
• What is the best metric for quantifying results? 
• How to do glint  and whitecap removal? 
• Constrained inversions 

 
• How to do atmospheric correction (next lecture) 



Computational Issues: 
Metrics for Spectrum Matching 
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There is no unique way to say 
which two spectra are 
“closest”. 
 
The simple Euclidean and 
Manhattan metrics run the 
fastest and usually give the 
best results. 
 
Spectral angle and 
correlational metrics run 
slowly and often give poor 
results because they discard 
the magnitude information 
(they compare only the 
spectral shapes), but are less 
sensitive to bad atmospheric 
correction. 

CRISTAL Users’ Guide Table 3.1 



Computational Issues: 
Metrics for Validation of Retrievals 

Name Description Quantity Computed
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There is no unique 
way to say which 
retrieval is “best”. 
 
What is “best” often 
depends on the 
application. 

CRISTAL Users’ Guide Table 3.1 



Glint and Whitecap Removal 
Sun glint can usually be avoided, but background sky glint is always 
present.  Whitecaps and  clouds may be present.  All raise the spectrum 
magnitude at all wavelengths. 



glint-contaminated deep 
water (red, orange, 
brown) 
 
uncontaminated 
shallow-water, bright-
bottom (purple, blue) 
 
uncontaminated 
shallow-water dark 
bottom (green) 

Glint removal algorithms for deep water look at the magnitude of Rrs at 
NIR wavelengths, and flag if too high.  However, uncontaminated 
shallow-water spectra can also be high because of bottom reflectance. 

Glint and Whitecap Removal 



Glint and Whitecap Removal 
Correct and incorrect glint removal using a single-spectrum NIR 
threshold algorithm 

shallow areas 
incorrectly removed 

deeper areas 
correctly removed 



Glint and Whitecap Removal 
Can use spatial filtering.  Look at bright pixel and surrounding pixels.  
replace bright pixel with median or average of surrounding dark pixels.  
Can remove most glint, but degrades spatial resolution. 

Original (dark is bright pixels) 
Spatially filtered with 5x5 pixel 
block; discard brightest 2 spectra 



Constrained Inversions 

Usually do not know anything about the imaged area, so must do 
simultaneous retrieval of depth, bottom reflectance, and water 
IOPs. 
 
However, if some information is known (e.g., depth from acoustics 
or a bathymetric lidar, or IOPs from measurement), we can make 
use of that information and do a constrained inversion.  This adds 
information to the inversion, and should improve the retrievals of 
the remaining unknowns. 



Depth-constrained Inversions 

acoustic bathymetry for Bahamas image 



Depth-constrained Inversions 

acoustic bathymetry 
interpolated to each image 
pixel 



Depth-constrained Inversions 

Now consider the depth known at each pixel where acoustic info 
was available for interpolation.   
 
Search the database at each pixel only for spectra that correspond 
to a depth close to the known depth.  Retrieve just bottom 
reflectance and IOPs. 



Depth-constrained Inversions 

unconstrained bottom-type retrieval.  Overall pretty good, but 
lots of “noise” over deep, dark bottoms, probably due to glint.  
Not sure what is a coral and what isn’t. 



Depth-constrained Inversions 

depth-constrained bottom-type 
retrieval.  Less “noise” over deep, 
dark bottoms, and now picks up 
the corals on Horseshoe Reef. 

corals 



dots and squares: two sets of ac9 data from the Horseshoe Reef area.  
lines:  similar a and b from the LUT IOP database; the four backscatter 
curves have particle backscatter fractions of 0.01, 0.02, 0.03, and 0.04 

To constrain the IOPs, assume that a and b are constant over the 
image area (probably wrong:  CDOM decreases as go off shore, and 
resuspended sediment likely higher near shore) 

IOP-constrained Inversions 



IOP-constrained Inversions 

IOP-constrained 
inversion for 
depth.  Not much 
different because 
the unconstrained 
depth retrieval 
was already very 
good. 

Unconstrained 
inversion for 
depth 



Computer Processing Times 

Even if constrained inversions do not greatly improve the remaining 
retrievals because the unconstrained inversion were already good, 
constraining the retrieval does greatly speed up the image processing time 
because less of the Rrs database needs to be searched for each pixel.   
 
For the Horseshoe Reef image (on a 2 GHz PC): 

 
unconstrained inversion:    71 minutes (>1010 Rrs comparisons) 
depth-constrained inversion:   25 min 
IOP-constrained inversion:   27 min 
depth- and IOP-constrained inversion:  3.5 min 



Kayak Camp, Lofoten Islands, Norway, June 2010 


