Shallow-water Remote Sensing:

Lecture 2B: Database Methods for
Spectrum Matching
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Database Spectrum Matching
Mobley et al., 2005. Applied Optics, 44(17), 3576-3592

Use a radiative transfer code to create a database of R, spectra that
correspond to all possible combinations of water absorption and
scattering properties, bottom depths, and bottom reflectances that
might be found in the area being studied.

Each R, spectrum in the database corresponds to a known set of
water properties (a, b and b, spectra), a bottom reflectance spectrum
(bottom type), and a water depth.

Then search the database to find the closest-matching database
spectrum to the given image spectrum

The retrieved environmental properties are then whatever values
were used to create the closest-matching database spectrum.



CRISTAL

The following results were generated using CRISTAL

CRISTAL (Comprehensive Reflectance Inversion based on Spectrum
matching and TAble Lookup) is a software package developed by me to
handle the creation of R, databases, retrieval of environmental
properties (water IOPs, bottom depth, and bottom reflectance or type)
from hyperspectral imagery, and display of retrieved results.

Parts of CRISTAL are coverved by U.S. Patent 7369229

Publications will be submitted asap and the code will eventually be
made public.
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| For the Bahamas use

| 6 Chl values: 0.0, 0.05, 0.10, 0.15, 0.20,
1 0.30 mg m3
1 11 acpoy values: 0.0 to 0.1 m-' by 0.01 m-*

5 mineral concentrations: 0.0, 0.05, 0.1,
1 0.2and 0.3 gm m-3
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R, Database Creation: Bottom Reflectance
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Database creation is a one-time calculation for a given environment.
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Example: Airborne Hyperspectral Image of
Very Clear Water in the Bahamas



Bathymetry Retrieval
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Depth Retrieval vs. Acoustic Bathymetry



Bottom Reflectance
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IOF label:
Generic Case 2: Chl canc = D.000 aoCDOM(440) = 0.070 Min canc = 0.100 bbfracmin{555) = 0.020 Min type = average
Ry label: 0.50 biofilmed sand + 0.50 avq seaqrass
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Imaqge file: CACRISTALNImagery\Horseshoe\HR2000 subsec_midavg\HR2000_ subsec_Sx5midavgLRISTAL S5x5_COR_IANN.bil
0P file: CACRISTAL\Create_Rrs_databaseynput_files\JOPs_generic_LSI_bbfrac.02.kxt
Rb file: CNCRISTAL\Create_Rrs_databasennput files\Rb _CRISTAL-LSLtxt



Kelp Mapping

Bull kelp (Nereocystis luetkeana) is very
important for food, medicines, sheltering of
fish, and recreational diving. Harvesting is
strictly managed in the US.

http://www.bestpicturesof.com/misc/pictures%200f%20bull+kelp/?page=2#Google

http://www.beachwatchers.wsu.edu/ezidweb/seaweeds/Nereocystis.htm



Mapping of Kelp Coverage
California Coast
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images courtesy of Paul Bissett, FERI




Mapping of Kelp Coverage
California Coast
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images courtesy of Paul Bissett, FERI




Humboldt Bay California
Eel Grass Mapping
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bottom reflectance

Error Analysis
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Does This Make Sense?

In these very clear waters, the water absorption determines how
much light gets to the bottom and back to the surface. Water-
column scattering and backscatter contribute less to the water-
leaving radiance in shallow water than does the bottom reflectance.

The retrieval was therefore most certain about the absorption
coefficient, and least certain about backscatter.

The bottom reflectances all had similar reflectance spectra
because it's the reflectance that is important. The retrieval wasn’t
able to distinguish between sea grass, turf algae, sargassum, and
macrophytes, which all have similar reflectances.

In very shallow (<5 m) clear water, the retrieved bottom reflectance
becomes very certain and the water scattering and backscatter
very uncertain (i.e., least important in determining R,)



Feature

CRISTAL

Semianalytical

Algorithm basis exact solution of the RTE as expressedin | approximate solution of the RTE as
the R,; database spectra expressed in the semi-analytical model

Fundamental advantage accounts for wavelength fine structure of | applicable to any water body without the
spectra, thus allowing for species-level need for pre-computing underlying
identification of biota databases

Fundamental limitation Retrievals are good only if the R, Retrievals are good only if the semi-

database is representative of the
environment.

analytical model is representative of the
environment.

Convergence to a solution

no convergence problems because a
closest-matching database spectrum is
always found (even if the match is poor
because the database is not representative
of the environment)

the optimization may not converge or may
converge to a local minimum if the initial
guess parameter values are not
sufficiently accurate or if the model is not
representative of the environment

Applicable environment any water body described by the R, any water body described by the semi-
database analytical model
Imagery required R spectra must be well calibrated and R, spectra must be well calibrated and
atmospherically corrected atmospherically corrected
Preprocessing An R, database must be pre-computed for | No preprocessing is required.
the given environment before image
processing
Image processing time fast when optimized database searches are | fast or slow, depending on search

used

algorithm and implementation




Comparison of Algorithms

(Lee, semi-analytic) CRISTAL



Comparison of Algorithms



Other Issues

What is the best metric for spectrum matching?
What is the best metric for quantifying results?
How to do glint and whitecap removal?
Constrained inversions

How to do atmospheric correction (next lecture)



Name

Euclidean

Manhattan

Chebyshev

Canberra

Bray-
Curtis

Spectral
Angle

Correlation
Coefficient

Key

Iword|

EUC

CHE

CAN

BRA

COS

COR

Description

sum of squared
differences

sum of absolute
differences

largest absolute
difference

sum of absolute
differences divided
by sum of values

sum of absolute
differences divided
by sum of absolute
values

cosine of the angle
between the spectra

cosine of the angle
between the spectra
after the spectra are
centered on their
means
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CRISTAL Users’ Guide Table 3.1



Name

pct diff

z diff

z sd

pct+1lm

pct+25%

Description

average signed relative
difference in retrieved vs
true depth, in per cent

average signed difference
in retrieved vs true depth,
in meters

standard deviation
between retrieved and true

depths, in meters

square of linear
correlation coefficient

percent of pixels with a
retrieved depth within = 1
m of the true depth

percent of pixels with a
retrieved depth within +
25 % of the true depth
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Glint and Whitecap Removal
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Glint and Whitecap Removal



Glint and Whitecap Removal

Can use spatial filtering. Look at bright pixel and surrounding pixels.
replace bright pixel with median or average of surrounding dark pixels.
Can remove most glint, but degrades spatial resolution.

Spatially filtered with 5x5 pixel

Original (dark is bright pixels
iginal ( 's bright pixels) block; discard brightest 2 spectra



Constrained Inversions

Usually do not know anything about the imaged area, so must do
simultaneous retrieval of depth, bottom reflectance, and water
|OPs.

However, if some information is known (e.g., depth from acoustics
or a bathymetric lidar, or IOPs from measurement), we can make
use of that information and do a constrained inversion. This adds
information to the inversion, and should improve the retrievals of
the remaining unknowns.



Depth-constrained Inversions



acoustic bathymetry
interpolated to each image
pixel



Depth-constrained Inversions



Depth-constrained Inversions



corals

depth-constrained bottom-type
retrieval. Less “noise” over deep,
dark bottoms, and now picks up
the corals on Horseshoe Reef.



total a, b or b, [Mm™']

O5¢F T
- abs coef
045_ scat coef E
' E backscat coef * 10 .
0.3
0.2
0.1
0.0F

400 450

500 550 600 650 700

wavelength A [nm]



|OP-constrained Inversions




Computer Processing Times

Even if constrained inversions do not greatly improve the remaining
retrievals because the unconstrained inversion were already good,
constraining the retrieval does greatly speed up the image processing time
because less of the R, database needs to be searched for each pixel.

For the Horseshoe Reef image (on a 2 GHz PC):

unconstrained inversion: 71 minutes (>10%° R, comparisons)
depth-constrained inversion: 25 min
|OP-constrained inversion: 27 min

depth- and IOP-constrained inversion: 3.5 min



Kayak Camp, Lofoten Islands, Norway, June 2010

—




