

Inherent Optical Properties (IOPs) Lecture 1

ZhongPing Lee, University of Massachusetts Boston

Absorption properties

Scattering properties

ocean (water) color

light within water medium

absorption coefficient: $a \pmod{m^{-1}}$

Volume Scattering Function (VSF): β (m⁻¹ sr⁻¹)

Scattering coefficient: b (m⁻¹)

forward-scattering coefficient: b_f (m⁻¹) $\rightarrow b_f = 2\pi \int_0^{\pi/2} \beta \sin(\theta) d\theta$

$$b = 2\pi \int_0^\pi \beta \sin(\theta) \, d\theta$$

backward-scattering coefficient: b_b (m⁻¹) $\rightarrow b_b = 2\pi \int_{\pi/2}^{\pi} \beta \sin(\theta) d\theta$

beam attenuation coefficient: c = a + b (m-1)

IOPs are additive.

 $a = a_w + \sum a_{xi}$ $b = b_{w} + \sum b_{xi}$

D. Stramski et al. | Progress in Oceanography 61 (2004) 27-56

Fig. 1. Schematic diagram showing various seawater constituents in the broad size range from molecular size of the order of 10^{-10} m to large particles and bubbles of the order of 10^{-3} – 10^{-2} m in size. The arrow ends generally indicate approximate rather than sharp boundaries for different constituent categories.

1. absorption properties $a = a_w + \sum a_{xi}$

Very detailed:

$$\begin{aligned} a(\lambda) &= a_w(\lambda) + \sum_{i=1}^{18} a_{\text{pla},i}(\lambda + a_{\text{det}}(\lambda) + a_{\min}(\lambda) + a_{\text{CDOM}}(\lambda) \\ &= a_w(\lambda) + \sum_{i=1}^{18} N_{\text{pla},i}\sigma_{a,\text{pla},i}(\lambda) + N_{\text{det}}\sigma_{a,\text{det}}(\lambda) \\ &+ N_{\min}\sigma_{a,\min}(\lambda) + a_{\text{CDOM}}(\lambda), \end{aligned}$$
(1)

(Stramski et al 2001)

Practical (and common) division:

$$a = a_w + a_p + a_g$$
$$a = a_w + a_{ph} + a_d + a_g$$

Pure water (seawater): a_w Particulate: $a_p = a_{ph} + a_d$ Pigments of living phytoplankton: a_{ph} Detritus: a_d Gelbstoff (yellow substance; colored dissolved organic matter): a_g

a_w spectrum

Menghua Wang, NOAA/NESDIS/STAR

 a_w

Table 3.1. Absorption coefficients for pure water: 280–320 nm, Quickenden & Irvin (1980); 366 nm, Boivin et al. (1986); 380–700 nm, Morel & Prieur (1977); 700–800 nm, Smith & Baker (1981)

λ (nm)	a (m ⁻¹)	λ (nm)	<i>a</i> (m ⁻¹)
280	0.0239ab	560	0.071
290	0.0140 ^{ab}	570	0.080
300	0.0085 ^{ab}	580	0.108
310	0.0082 ^{ab}	590	0.157
320	0.0077 ^{ab}	600	0.245
366	0.0055ª	610	0.290
380	0.023	620	0.310
390	0.020	630	0.320
400	0.018	640	0.330
410	0.017	650	0.350
420	0.016	660	0.410
430	0.015	670	0.430
440	0.015	680	0.450
450	0.015	690	0.500
460	0.016	700	0.650
470	0.016	710	0.839
480	0.018	720	1.169
490	0.020	730	1.799
500	0.026	740	2.38
510	0.036	750	2.47
520	0.048	760	2.55
530	0.051	770	2.51
540	0.056	780	2.36
550	0.064	790	2.16
		800	2.07

(Mobley 1994)

Uncertainties of a_w :

(Pope and Fry, 1997)

(Morel et al 2007)

(Lee et al 2000)

$a_{\rm w}$ is temperature and salinity dependent

 $a_w(\lambda, T, S) = a_w(\lambda, T_r, 0) + \Psi_T(T - T_r) + \Psi_S S,$ (1)

Wavelength	Ψ_T , Pure Water	Standard Deviation, Pure Water	Ψ_T , Saltwater	Standard Deviation, Saltwater
412	0.0001	0.0003	0.0003	0.0003
440	0.0000	0.0002	0.0002	0.0002
488	0.0000	0.0002	0.0001	0.0002
510	0.0002	0.0001	0.0003	0.0001
520	0.0001	0.0002	0.0002	0.0002
532	0.0001	0.0002	0.0001	0.0002
555	0.0001	0.0001	0.0002	0.0002
560	0.0000	0.0002	0.0000	0.0002
650	-0.0001	0.0001	-0.0001	0.0001
676	-0.0001	0.0001	-0.0001	0.0002
715	0.0029	0.0001	0.0027	0.0001
750	0.0107	0.0003	0.0106	0.0005
850	-0.0065	0.0001	-0.0068	0.0001
900	-0.0088	0.0001	0.0001 -0.0090	
975	0.2272	0.0028	0.2273	0.0009

Table 2. Linear Slopes of the Temperature Dependence of the Absorption Coefficient Measured in the Laboratory^a

 a For pure water the results of five tests are combined. The results of two tests were combined for the saltwater results. The absorption and attenuation meter results have been pooled together as well as pooling the common wavelengths between instruments. The standard deviations of the pooled values are provided.

 $a_{ph} = a_p - a_d$ spectrum

Separated by size

(Ciotti et al 2002)

By species or groups

Separated by pigments

Modeling a_{ph} spectrum

Example of one parameter hyperspectral $a_{ph}(\lambda)$ model:

Bricaud et al (1995):

 $Chl^{-B_{ph}(\lambda)}$ $a_{ph}(\lambda) = A_{ph}(\lambda)$

Lee (1994); Lee et al (1998): $a_{ph}(\lambda) = (a_0(\lambda) + a_1)$

 $P = a_{ph}(440)$

Wavelength

Table 2. Parameters for the Empirical $a_{d}(\lambda)$ Simulation by Eq. (12)^a

 $a_0(\lambda)$

 $a_1(\lambda)$

Table 2. Spectral Values of the Constants Obtained When Fitting the Variations of $a_{ph}^*(\lambda)$ Versus the (chl a + div a) Concentration (Chl) to Power Laws of the Form $a_{ph}^*(\lambda) = A(\lambda)$ (Chl)^{-B(\lambda)} and Determination Coefficients on the Log-Transformed Data r^2

Log-Trans	formed Data r^2						200	0 5010	0.0005
λ. nm	A	В	r ²	λ. nm	A	В	390	0.5813	0.0235
400	0.0263	0.787	0.702	402	0.0271	0.281	400	0.6843	0.0205
404	0.0280	0.282	0.706	406	0.0290	0.281	410	0.7782	0.0129
408	0.0301 0.0323	0.282	0.710	410	0.0313	0.283	420	0 8637	0.006
416	0.0342	0.293	0.725	418	0.0349	0.296	420	0.0051	0.000
420	0.0356	0.299	0 733	472	0.0359	0 306	430	0.9603	0.002
424	0.0376	0.313	0.749	430	0.0386	0.314	440	1.0	0
432	0.0391	0.318	0.750	434	0.0395	0.324	150	0.000.1	0.000
436	0.0399	0.328	0.757	438	0.0401	0.332	450	0.9634	0.006
440	0.0403	0.332 0.348	0.762	442	0.0398	0.339	460	0.9311	0.0109
448	0.0375	0.360	0.783	450	0.0371	0.359	170	0.0007	0.0157
452	0.0365	0.362	0.783	454	0.0358	0.366	470	0.8697	0.0157
450	0.0354	0.367	0.789	458	0.0351 0.0347	0.368	480	0.789	0.0152
464	0.0343	0.368	0.792	466	0.0339	0.369	100	0.7559	0.0956
468	0.0335	0.369	0.793	470	0.0332	0.368	490	0.7558	0.0256
472	0.0325	0.371	0.792	474	0.0318	0.375	500	0.7333	0.0559
480	0.0301	0.377	0.791	482	0.0296	0.377	510	0 6011	0.0965
484	0.0290	0.376	0,788	486	0.0285	0.373	510	0.0911	0.0805
488	0.0279	0.369	0.783	490	0.0274	0.361	520	0.6327	0.0981
496	0.0249	0.341	0.763	498	0.0240	0.332	520	0 5681	0.0060
500	0.0230	0.321	0.747	502	0.0220	0.311	000	0.0001	0.0909
504	0.0209	0.300	0.722	506	0.0199	0.288	540	0.5046	0.09
512	0.0189	0.275	0.660	514	0.0160	0.260	550	0 4969	0.0791
516	0.0156	0.224	0.578	518	0.0149	0.211	550	0.4202	0.0781
520	0.0143	0.196	0.498	522	0.0137	0.184	560	0.3433	0.0659
524	0.0131	0.173	0.417	526	0.0126	0.162	570	0.005	0.00
528	0.0121	0.151	0.332	530	0.0117	0.139	570	0.295	0.06
536	0.0113	0,129	0.248	538	0.0108	0.119	580	0 2784	0.0581
540	0.0097	0.090	0.116	542	0.0093	0.081	000	0.2101	0.0001

Example of two parameter model: (Ciotti et al 2002)

$$a_{\phi}(\lambda) = a_{\phi}(505) \cdot [S_f \cdot \overline{a}_{< pico>}(\lambda)] + [(1 - S_f) \cdot \overline{a}_{< micro>}(\lambda)]$$

Table 3. Basis vectors representing the normalized absorption for the smallest $(\overline{a}_{(pico)}(\lambda), Prochlorococcus)$ and biggest $(\overline{a}_{(micro)}(\lambda)$, average microplankton) cell sizes in our data set. Wavelength (λ) in nm. Basis vectors for $a_{ph}^*(\lambda)$ can be constructed by setting $\overline{a}_{(pico)}(676)$ to 0.023 m² mg⁻¹, $\overline{a}_{(micro)}(674)$ to 0.0086 m² mg⁻¹, and scaling for the other wavelengths accordingly.

λ	Pico	Micro	λ	Pico	Micro	λ	Pico	Micro	λ	Pico	Micro	λ	Pico	Micro
400	1.682	1.574	- G.S.		1.1.1.1.1.1					10.00	10.00	1.1		
402	1.734	1.584	462	2.526	1.623	522	0.544	1.013	582	0.111	0.459	642	0.191	0.528
404	1.800	1.600	464	2.455	1.616	524	0.522	0.992	584	0.072	0.452	644	0.174	0.526
406	1.890	1.617	466	2.402	1.606	526	0.486	0.977	586	0.073	0.452	646	0.197	0.528
408	1.978	1.633	468	2.331	1.592	528	0.448	0.959	588	0.073	0.449	648	0.176	0.538
410	2.057	1.654	470	2.281	1.568	530	0.391	0.944	590	0.099	0.443	650	0.168	0.549
412	2.162	1.669	472	2.205	1.542	532	0.375	0.927	592	0.070	0.433	652	0.160	0.574
414	2.269	1.674	474	2.136	1.509	534	0.336	0.909	594	0.095	0.424	654	0.217	0.605
416	2.327	1.684	476	2.063	1.481	536	0.305	0.888	596	0.085	0.416	656	0.244	0.655
418	2.398	1.697	478	2.049	1.459	538	0.292	0.868	598	0.090	0.406	658	0.286	0.720
420	2.457	1.708	480	1.998	1.437	540	0.288	0.847	600	0.086	0.401	660	0.381	0.798
422	2.533	1.710	482	1.930	1.415	542	0.261	0.826	602	0.068	0.400	662	0.437	0.889
424	2.614	1.716	484	1.918	1.399	544	0.245	0.806	604	0.078	0.403	664	0.520	0.979
426	2.663	1.737	486	1.897	1.387	546	0.214	0.785	606	0.069	0.408	666	0.660	1.068
428	2.749	1.763	488	1.867	1.377	548	0.194	0.764	608	0.090	0.416	668	0.716	1.147
430	2.804	1.793	490	1.812	1.367	550	0.187	0.737	610	0.096	0.429	670	0.824	1.207
432	2.840	1.812	492	1.776	1.349	552	0.138	0.711	612	0.094	0.443	672	0.846	1.243
434	2.915	1.827	494	1.701	1.338	554	0.137	0.682	614	0.084	0.458	674	0.816	1.249
436	2.947	1.830	496	1.648	1.319	556	0.111	0.653	616	0.105	0.473	676	0.891	1.227
438	2.978	1.834	498	1.522	1.301	558	0.094	0.626	618	0.128	0.487	678	0.869	1.174
440	3.014	1.824	500	1.439	1.271	560	0.095	0.604	620	0.119	0.495	680	0.812	1.096
442	3.032	1.800	502	1.373	1.242	562	0.070	0.580	622	0.126	0.499	682	0.741	1.004
444	3.011	1.771	504	1.270	1.222	564	0.053	0.555	624	0.138	0.504	684	0.605	0.893

Multiple parameter model:

$$a_{ph}(\lambda) = \sum_{j=1}^{l} C_{ja} *_{j}(\lambda_{mj}) \exp\left[\frac{(\lambda - \lambda_{mj})^{2}}{2\sigma_{j}^{2}}\right]$$
(7)

TABLE 2. Input Values and Mean Characteristics of Gaussian Bands Reflecting Absorption by Chlorophylls and Carotenoids

	Gaussian Band Number and Associated Figment Species												
Characteristic	1 chi a	2 chl a	3 chl #	4 chl c	5 chil b	6 carot.	7 carot.	s chi c	9 chla	10 chi c	11 chl b	12 chl <i>a</i>	13 chi a
Input parameters Half width, nm Center, nm	53.8 384	21.3 413	32.1 435	27.2 461	45.0 464	45.4 490	45.9 532	46.3 583	35.0 623	28.9 644	24.4 655	21.6 676	33.5 700
Output parameters Half width, nm Center, nm Specific absorption coefficient, m ² (mg pigment) ⁻¹	43.2 381.5 0.042	22.7 410.8 0.019	34.5 433.5 0.047	29.3 459.2 0.110	36.0 456.6 0.115	46.8 487.8 0.035	49.6 532.0 0.019	46.8 585.6 0.044	38.0 620.6 0.005	24.9 640.7 0.044	25.4 652.9 0.029	24.7 675.6 0.021	29.0 699.8 0.00

Specific absorption coefficients of each pigment are ratios of Gaussian band absorptions (in reciprocal meters) to high-performance liquid chromatography concentrations (in milligrams per cubic meter) of that pigment. Chl, chlorophyll; Carot., carotenoid.

(Hoepffner and Sathyendranath, 1993)

Package effect

Specific absorption/scattering coefficient = Concentration normalized absorption/scattering coefficient

Increase of absorption is NOT linearly proportionally to Chl concentration!

Absorption spectra of yellow substance (gelbstoff)

(Bricaud et al 1981)

Table 1

Spectral slope values for marine samples reported in the	literature with spectral range	, CDOM absorption at 412 nm, and reported precision
(ordered according to starting wavelength range)		

Reference	Location	л	Slope (nm ⁻¹) ⁹	Wavelength range	$a_g(412) (m^{-1})^c$	Prec (m ⁻¹)
Højerslev and Aas (2001)	Katlegat-Skagerrak	1305	0.0234 ± 0.0036 , 10.0075 - 0.0420	[250-450]	1.28 ± 0.70	0.002
Brown (1977)	North Sea	37	[0.0187-0.0306]	280,310	[0.022-0.327]	?
	Baltic proper	157	[0.0247-0.0305]	280,310	[0.136-0.284]	2
	Baltic riverine	1	0.0173	280,310	2.49	?
Nelson et al. (1998)	Bermuda	2	0.0235	280-350	~ 0.1-0.4	0.03
Blough et al. (1993)	Gulf of Paria (samples <30 ppt)	47	0.0140 ± 0.0003	[290-600+] ^d	[1.25-4.59]	0.092
Green and Blough (1994)	S. Florida/Gulf of Mexico	31	0.021 ± 0.005 [0.015-0.034]	[290-(330-675)] ^d	[0.01-6.32]	0.092
	Amazon R. estuary	12	0.019 ± 0.005 [0.014 - 0.033]	[290-(370-590)]*	[0.03-1.33]	0.092
Vodacek et al. (1997)	coastal Mid-Atlantic					
	Bight: non-Nov.	~ 40	0.018 average	[290-(440-550)] ^d	[0.14-0.71]	0.092
	Nov.	- 25	0.014 average	[290-(400-550)] ⁴	[0.14-0.63]	0.092
	offshore Mid-Atlantic Bight	~ 150	[0.010-0.034]	[290-(340-440)] ^d	[0.009-0.14]	0.092
Del Castillo et al.	Gulf of Paria and	8	0.018 ± 0.002	[290-var]*	(0.09-1.34)	0.046
(1999)	surrounding waters	8	0.017 ± 0.002	[290-var] ^d	[0.09-1.34]	0.046
Zepp and Schlotzhauer	Gulf of Mexico,	1	0.0151	[300-500]	2	2
(1981)	SL Marks, FL					
	"Marine aquatic humus"	3	0.0147	[300-500]	2	2
Davies-Colley (1992)	coastal N. Zealand	28	0.015 ± 0.002	[300-460]	[0.023-0.165]	0.017
	Doubtful Sound	6	0.014 ± 0.0004	[300-460]	[0.678-2.60]	0.017
Stedmon et al. (2000)	Danish fjords and	586	$0.0194 \pm 0.0032^{ m f}$	[300-650]	[0.14-3.46]	7
Stedmon and Markager	Greenland Sea, Nov 98	20	0.02016 ± 0.00252	[300-650]	[0.04-0.08]	0.05
(2001)	Greenland Sea, Jun 99	107	0.01651 ± 0.00352	1300-6501	(0.04-0.70)	0.05
(man)	Greenland Sea, Aug 99	67	0.01622 ± 0.00297	[300-650]	10.04-0.311	0.05
Bricaud et al. (1981)	Mauritanian unwelling	24	0.015 ± 0.0023	350:10:5008	10.03-0.121	0.01
and the second second	Gulf of Guinea	35	0.014 ± 0.0041	350:25:5008	[0.04-0.17]	0.01
	Villefrance Bay	11	0.014 ± 0.0024	350:25:500#	10.09-0.241	0.01
	Var River	1	0.015	350:25:500#	0.21	0.01
	Baltic Sea	1	0.018	350:25:500*	2.18	0.01
	Gulf of Fos-sur-Mer	14	0.013 ± 0.0012	350:25:500*	[0.12-0.82]	0.01
Kowalczuk et al.	Baltic, open sea	754	0.019 ± 0.004	[350-var]	[0.18 - 1.46]	0.023/0.046
(in press)	Baltic, coastal	221	0.020 ± 0.003	[350-var]	[0.20-1.88]	0.023/0.046
	Pomeranian Bight	312	0.020 ± 0.004	[350-var]	[0.21-1.71]	0.023/0.046
	Bay of Gdansk	1292	0.019 ± 0.004	[3.50 - var]	[0.20-3.52]	0.023/0.046
Schwarz et al. (2002)	Globally representative	877	0.01725 ± 0.0034	(350-var)	[~ 0.003-10.0]	0.046 ^h
Carder et al. (1989)	Gulf of Mexico	11	[0.0115-0.0172]	[370-440]	[0.002-0.074]	~ 0.01
Kopelevich and Burenkov (1977)	Deep Indian and Pacific	2	0.017	390:20:490 [#]	~ 0.06	?
Roesler et al. (1989)	San Juan Islands	21	0.017 ± 0.003	[400-7507]	0.32 average	2
Del Castillo et al. (1999)	Gulf of Paria and surrounding waters	8	0.015 ± 0.001	[400-500]	[0.09-1.34]	0.046
Maske et al. (1998)	Gulf of California	?	0.014	412,440,512	~ 0.095	0.002

(continued on next page)

(Twardowski et al 2004)

Slope changes with wavelength range

(Twardowski et al 2004)

Power-law model for a_g spectrum:

A generic, representative CDOM absorption model from this study which requires one absorption estimate at 412 nm as input is:

$$a_g(\lambda) = a_g(412) \left(\frac{\lambda}{412}\right)^{-6.92}$$

(4

Values of a_{ph} and a_g of natural waters

Water body	(m ⁻¹)	$p_{440} (m^{-1})$	Reference
Adelaide L., Wisc., USA	1.85		100
Otisco L., N.Y., USA	0.27	0.27	408
Irondequoit Bay, L. Ontario, USA	0.90	0.65	981
Bluff L., N.S., Canada	0.94	0.05	980
Punch Bowl, N.S., Canada	6.22	-	328
South America			520
Guri Reservoir, Venezuela	1.81		204
Carrao R., Venezuela	12.44	_	558
Australia			558
(a) Southern tablelands			
Cotter Dam	1 20 1 40		
Corin Dam	1.28-1.46	0.77	483, 495a
Ginninderra	1.19-1.61	0.11	483, 495 <i>a</i>
(3-vear range)	1.54 ± 0.78	0.16-0.58	478, 479, 483, 495a
L George	0.67-2.81		
(5-vear range)	1.80 ± 1.06	3.73-4.21	478, 479, 483, 495a
Burriniuck Dom	0.69-3.04		
(5-veer renge)	2.21 ± 1.13	0.63-1.44	478, 479, 483, 495a
Burlow Criffen	0.81-3.87		,,,,
L. Burley Orillin	2.95 ± 1.70	2.91-2.96	478, 479, 483, 4950
(J-year range)	0.99-7.00		110, 119, 100, 1994
Joogong Dam	3.42	0.83	483
Queanbeyan R.	2.42		4950
Molonglo R.	0.44		4950
Aolongio R. below confluence			4954
with Queanbeyan R.	1.84	-	495a
Creek draining boggy ground	11.61		495a
(b) Murrav-Darling system			
Aurrumbidgee R Gogeldrie Weir	04-32		677
(10 months)	0.4 5.2		077
Wyangan	1.13	0.38	1050
Griffith Reservoir	1.13	3 73	4950
Barren Box Swamp	1.54	2.55	4950
Main canal MIA	1.39	5.25	4950
Main drain MIA	2.12	5.55	4950
Murray D. unstrage of Dealing	2.12	10.34	495a
wurray K., upstream of Darling	0.01 0.05		
Confluence	0.81-0.85	-	677
Jarning K., above confluence	07.05		100
vith Murray	0.7-2.5		677
(c) Northern Territory (Magela Creek billabongs)	1.11		
Mudginberri	1.11	1.13	498
Gulungul	2.28	1.68	498

(Kirk 1994)

Contrast of absorption spectra of optically active components

2. Scattering properties

D. Stramski et al. / Progress in Oceanography 61 (2004) 27-56

Fig. 1. Schematic diagram showing various seawater constituents in the broad size range from molecular size of the order of 10^{-10} m to large particles and bubbles of the order of 10^{-3} – 10^{-2} m in size. The arrow ends generally indicate approximate rather than sharp boundaries for different constituent categories.

Size distribution

(Stramski and Kiefer 1991)

$$b = b_{w} + \sum b_{xi}$$
 $b_{b} = b_{w} + \sum b_{bxi}$

Very detailed:

$$b(\lambda) = b_w(\lambda) + \sum_{i=1}^{18} b_{\text{pla},i}(\lambda) + b_{\text{det}}(\lambda) + b_{\min}(\lambda) + b_{\text{bub}}(\lambda)$$
$$= b_w(\lambda) + \sum_{i=1}^{18} N_{\text{pla},i}\sigma_{b,\text{pla},i}(\lambda) + N_{\text{det}}\sigma_{b,\text{det}}(\lambda)$$
$$+ N_{\min}\sigma_{b,\min}(\lambda) + N_{\text{bub}}\sigma_{b,\text{bub}}(\lambda), \qquad (2)$$

(Stramski et al 2001)

Commonly used terms for scattering:

Molecules

Suspended 'particles'

Bubbles

Turbulence

$$b = b_{_W} + b_{_P}$$
 Or,
$$b = b_{_W} + b_{_{PIM}} + b_{_{POM}}$$

Scattering of water molecules

Spectral dependence

Morel 1974:

$$\beta_{w} = \beta_{0} \left(\frac{450}{\lambda}\right)^{4.32}$$

Shifrin: 1988

$$\beta_{w} = \beta_{0} \left(\frac{450}{\lambda}\right)^{4.17}$$

βw is also found salinity dependent; its value could be ~30% higher for marine waters.

Value and spectrum of seawater b_{bw}:

$$b_{bw}(\lambda) = 0.0023 \left(\frac{450}{\lambda}\right)^{4.32}$$

(Morel 1974)

$$b_{bw}(\lambda) = 0.0020 \left(\frac{450}{\lambda}\right)^{4.3}$$

(Zhang et al 2009)

Volume Scattering Function with particles

(Petzold 1972)

MASCOT measurements

MVSM measurements 1E+3

Normalized Volume Scattering Function (sr⁻¹) 1E+2 1E+1 1E+0 1E-1 1E-2 1E-3 1E-4 1.00 100.00 10.00 Angle (Degrees)

(Lee and Lewis, 2003)

(Mobley 1994)

β shape changes in a narrow range in the backward domain

Particles are strongly forward scatters!

$$\begin{aligned} \widetilde{b}_{bw} &= 0.5; \\ \widetilde{b}_{bp} &\sim 0.005 - 0.05 \end{aligned}$$

$\widetilde{b}_{\!\scriptscriptstyle bp}$ and refractive index

Twardowski et al (2001)

Examples of β model

Henyey-Greenstein (1941)

$$\beta = \frac{1}{4\pi} \frac{1 - g^2}{(1 + g^2 - 2g\cos\psi)^{1.5}}$$

Beardsley and Zaneveld (1969)

$$\beta \sim \frac{1}{\left(1 - \varepsilon_f \cos \psi\right)^4 \left(1 + \varepsilon_b \cos \psi\right)^4}$$

Fournier and Forand (1994)

$$\begin{split} \tilde{\beta}_{\rm FF}(\psi) &= \frac{1}{4\pi (1-\delta)^2 \delta^{\nu}} \left[\nu \left(1-\delta\right) - \left(1-\delta^{\nu}\right) + \left[\delta (1-\delta^{\nu}) - \nu (1-\delta)\right] \sin^{-2} \left(\frac{\psi}{2}\right) \right] \\ &+ \frac{1-\delta_{180}^{\nu}}{16\pi (\delta_{180}-1)\delta_{180}^{\nu}} (3\cos^2\psi-1) \ , \\ \nu &= \frac{3-\mu}{2} \quad \text{and} \quad \delta = \frac{4}{3(n-1)^2} \sin^2 \left(\frac{\psi}{2}\right) \ . \end{split}$$

Spectrum of scattering coefficient

vary weakly with wavelength

$$b(\lambda) = b(\lambda_r) \frac{-0.00113\,\lambda + 1.625}{-0.00113\,\lambda_r + 1.625}$$
 (Go

Gould et al 1999)

b_b spectrum contrast

η: ~0-2.0

bubbles

Not known the spectral characteristics of bubble scattering, considered spectrally flat

Organic vs inorganic separation

(Stavn and Richter 2008)

(Stramski et al 2001)

Light scattering by microorganisms in the open ocean

DARIUSZ STRAMSKI and DALE A. KIEFER

Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371, U.S.A.

(Prog. Oceanog. 28, 343-383, 1991)

Progress in Oceanography 61 (2004) 27-56

Oceanography

www.elsevier.com/locate/pocean

Review

The role of seawater constituents in light backscattering in the ocean

Dariusz Stramski ^{a,*}, Emmanuel Boss ^b, Darek Bogucki ^c, Kenneth J. Voss ^d

 ^a Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0238, USA
 ^b University of Maine, School of Marine Sciences, 5741 Libby Hall, Orono, ME 04469-5741, USA
 ^c University of Miami, Rosenstiel School of Marine and Atmospheric Science, Division of Applied Marine Physics, 4600 Rickenbacker Cswy, Miami, FL 33149-1098, USA

^d University of Miami, Department of Physics, Coral Gables, FL 33124, USA

Received 3 November 2003; revised 4 July 2004; accepted 9 July 2004 Available online 19 August 2004

Key points:

1. In addition to boundary conditions, IOPs play the key role in forming ocean/water color.

2. Primary IOPs include absorption and scattering coefficients; the latter is direction dependent.

3. Bulk IOPs are lump sum contributions of the many individual, dissolved and suspended, molecules and particles.

4. Absorption and scattering coefficients of pure (sea)water are considered constant (change with temperature/salinity), but uncertainties still exist, especially for absorption in the UV range. 5. In addition to water molecules, practically and generally, for absorption: there are three major optically active components: phytoplankton pigments, detritus and gelbstoff (CDOM); for scattering: there are organic and inorganic particulates, bubbles, and many times lumped into one term.

6. Spectrally,

water molecules are strong absorber in the longer wavelengths; phytoplankton absorption generally has two distinct peaks with a stronger peak centered around 440 nm and weaker peak centered around 675 nm; have varying spectral shapes detritus and gelbstoff are strong absorbers in the shorter wavelengths, and gelbstoff has steeper spectral slope;

Water molecules are strong scatter in the shorter wavelengths; 'particle' scattering is weakly wavelength dependent. It is strongly dependent on size, refractive index, and abundance.