Ocean Colour Algorithms

Mark Dowell
Joint Research Centre
mark.dowell@jrc.ec.europa.eu
Session Outline

4 Sections

1. Historical foundations and development of Ocean Colour Algorithms
2. Basis for implementing semi-analytical algorithms
3. Alternative inversion methods and comparisons
4. Algorithm implementation issues, regional and class based algorithms
Disclaimers!

• I do not have an algorithm of my own that I will be pushing (but I do have opinions)

• The lectures can not be exhaustive (i.e. cover all algorithm types) – focus on common truths/lessons

• There may be some material which is already known by some – but hopefully there will be something useful for all
Overarching Issues (e.g.)

• The evolution of ocean colour algorithms has resulted from improvements on our knowledge on bio-optics but importantly also on the availability of relevant data.

• Beware of claims of a purely analytical algorithm, there is some degree of empiricism in all algorithms & we shouldn’t be ashamed of this.

• Use of the data is important – i.e. clear separation between “parameterisation” datasets and validation datasets.

• Understanding (ideally performing) in-situ measurements will help you to understand the caveats and applicability of algorithms you may develop.

• Beware of “assumptions” made by algorithms e.g. nLw products that have been constrained to an in water model during atmospheric correction.

• The scientific state-of-the-art is not always compatible with routine...
Broad topics not covered in detail

• Data Merging
• Uncertainties – Doerffer lectures
• IOP variability – Lee lectures
Section 1

Historical foundations and development of Ocean Colour Algorithms
URE 1 Distribution of primary production in the World Ocean. Units are in mg of C per m² per day. (1) Less than 100; (2) 100–150; 150–250; (4) 250–500; (5) more than 500. a = data from direct 14C measurements; b = data from phytoplankton biomass, hydrogen, oxygen saturation.
Coastal Zone Color Scanner (CZCS) Global Climatology (Nov. 1978-Jun. 1986)
\[R(1,3) = \frac{L_w(B_1=443)}{L_w(B_3=550)} \text{ vs Chl} \]

Suggests the band-ratio model:
\[
\log_{10}(\text{Chl}) = C_1 + C_2 \log_{10} \left[\frac{L_w(443)}{L_w(550)} \right]
\]

\(C_1\) and \(C_2\) are the model parameters whose values are determined by the data.

Note: only 33 data points were initially available!
Basic Ocean Colour

“paradigm”
Ocean colour algorithms

• Two kinds:
 1. Empirical: often (but not always) chlorophyll only
 2. Semi-analytic: chlorophyll, CDOM, particulates (but also more PSD, PFTs)
Inherent Optical Properties

Absorption
Scattering

Apparent Optical Properties

Radiance
Reflectance

In-Water Constituents
Pigments (Chl), Sediment, CDOM

Local parameterization for coastal & inland waters

Analytical algorithms

Empirical algorithms
Apparent Optical Properties

- Radiance
- Reflectance

In-Water Constituents
- Pigments (Chl), Sediment, CDOM

Empirical algorithms
Examples of Band-Ratio Algorithms

SeaWiFS OC4 for Chl:
\[X = \log_{10}\{\max[R_{rs}(443)/R_{rs}(555), R_{rs}(490)/R_{rs}(555), R_{rs}(510)/R_{rs}(555)]\} \]
\[\text{Chl} = 10^{(0.366 - 3.067X + 1.930X^2 + 0.649X^3 - 1.532X^4)} \]

MODIS for \(K_d(490) \):
\[X = L_w(488)/L_w(551) \]
\[K_d(490) = 0.016 + 0.156445X^{(-1.5401)} \]

MODIS for \(a_{CDOM}(400) \) and \(a_{phy}(675) \):
\[r_{15} = \log_{10}[R_{rs}(412)/R_{rs}(551)] \]
\[r_{25} = \log_{10}[R_{rs}(443)/R_{rs}(551)] \]
\[r_{35} = \log_{10}[R_{rs}(488)/R_{rs}(551)] \]
\[a_{CDOM}(400) = 1.5*10^{(-1.147 + 1.963r_{15} - 1.01r_{15}^2 - 0.856r_{25} + 1.02r_{25}^2)} \]
\[a_{phy}(675) = 0.328 \left[10^{(-0.919 + 1.037r_{25} - 0.407r_{25}^2 - 3.531r_{35} + 1.702r_{35}^2 - 0.008)}\right] \]

and so on, for dozens more....
SeaWiFS empirical OC4 algorithm for Chl-a; Called a *maximum-band ratio alg.*

\[
R_{\text{MAX}} = \text{Maximum of } \left[R_{\gamma} \text{-ratio}(443/555, 490/555, 510/555) \right] \\
R_L = \log_{10}(R_{\text{MAX}}) \\
\log_{10}(C_a) = 0.366 - 3.067 R_L + 1.930 R_L^2 + 0.649 R_L^3 - 1.532 R_L^4
\]
Approximate Comparison Between OC4 and CZCS-GPs

N = 2804 in situ Rrs-Chl Obs.

- **OC4 Band Ratio:**
 \(\frac{(Rrs_{443}>Rrs_{490}>Rrs_{510})}{Rrs_{555}} \)

- **GPs Band Ratio:**
 - \(\frac{Lwn_{443}}{Lwn_{550}} \) (Chl < 1.5 µg/l)
 - \(\frac{Lwn_{520}}{Lwn_{550}} \) (Chl > 1.5 µg/l)

GPs method:
Rrs520 estimated from Rrs510 (using model of Morel & Maritorena 2000)
Lwn estimated from Rrs
SeaWiFS composite image (1997-2000)
Section 2

Basis for implementing semi-analytical algorithms
Inherent Optical Properties

Absorption
Scattering

Apparent Optical Properties

Radiance
Reflectance

Empirical algorithms

Analytical algorithms

In-Water Constituents

Pigments (Chl), Sediment, CDOM
For most ocean waters, phytoplankton are the only substance affecting the color of the water. These waters are called “Case 1” waters.

Case 1 waters are those waters where phytoplankton and covarying decay products are the only substances affecting the optical properties of the water. This is true almost everywhere except where there is some influence of land (or bottom).
In the coastal ocean or near the coastal margins, materials derived from the land also affect the water color. These are called “Case 2” waters.

In Case 2 waters, there are at least three substances, varying independently, that affect the water color. Specifically, the three substances are:

- phytoplankton chlorophyll (and other pigments)
- colored dissolved organic matter (CDOM)
- non-living particles (sediments and organic detritus)
Inherent Optical Properties

Absorption
Scattering

Apparent Optical Properties

Radiance
Reflectance

In-Water Constituents

Pigments (Chl), Sediment, CDOM

Semi-analytical algorithms

Empirical algorithms
Inherent Optical Properties

Absorption
Scattering

Apparent Optical Properties

Radiance
Reflectance

Semi-analytical algorithms
R(1,3) = \frac{L_w(B_1=443)}{L_w(B_3=550)} \text{ vs Chl}

Suggests the band-ratio model: \(\log_{10}(\text{Chl}) = C_1 + C_2 \log_{10} \left[\frac{L_w(443)}{L_w(550)} \right] \)

C_1 and C_2 are the model parameters whose values are determined by the data

Note: only 33 data points were initially available!
Apparent Optical Properties

Remote Sensing Reflectance

Inherent Optical Properties

Absorption Backscattering

\[
R_{rs}(\lambda) = \left[\frac{f(\theta, \phi)}{Q(\theta, \phi)} \right] \left[\frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)} \right]
\]

.... and IOPs (a, VSF)
Inherent Optical Properties

Absorption
Scattering

Apparent Optical Properties

Radiance
Reflectance

Semi-analytical algorithms

In-Water Constituents

Pigments (Chl),
Sediment, CDOM

Local parameterization for coastal & inland waters
\[a(\lambda) = a_w(\lambda) + a_{ph}(\lambda, Chl) + a_d(\lambda, TSS) + a_{cdom}(\lambda, CDOM) \]

\[
a(\lambda) = a_w(\lambda) + A c(\lambda)[Chl]B c(\lambda) + [a_{cdm}(440)] \exp(-S(\lambda - 440));
\]

\[b_b(\lambda) = b_{bw}(\lambda) + b_{bp}(\lambda, Chl, TSS) \]

\[
b_b(\lambda) = b_{bw}(\lambda) + [b_{bp}(555)] [555 \lambda]^Y
\]
frequency distributions of IOP products in NOMAD
Two step process

• Distinction of different optically active constituents
• Quantification of individual optically active constituents
Section 3
Alternative inversion methods and comparisons
Inherent Optical Properties
- Absorption
- Scattering

Apparent Optical Properties
- Radiance
- Reflectance

In-Water Constituents
- Pigments (Chl), Sediment, CDOM

Semi-analytical algorithms
Inversion methods

- Direct inversion/Non linear optimization NLO
- Principal Component Inversion PCI
- Neural Network NN
- Semi-Analytical solution
- Local empirical
- Genetic Algorithms
Availability of methods

• Numerical Recipes
• MATLAB, MATHEMATICA, IDL
• Specific programs: SNNS, NNFit

• All routines can be found as off the shelf routines
Synthetic versus in-situ datasets for algorithm training

• Synthetic
 • allow to generate very large datasets for training/parameterisation
 • allow to quantifiably add noise & uncertainty

• In-situ
 • include actual information on the variance and covariance of IOPs and AOPs
 • No assumptions made on bulk IOP AOP relationships (e.g. bi-directional effects)
 • Independent of specific spectral parameterisation of individual IOP subcomponent
Sensor adopting semi-analytical algorithms

- NLO – SeaWiFS (NASA) trial product
- PCI – MOS (DLR)
- NN – MERIS (ESA), GLI (NASDA)
- Semi-analytical solution MODIS (NASA), planned product for NPP and NPOESS
Critical issues

• An inversion algorithm is only as good as the reflectance (forward) model you use in describing the optical variability of the system/region modelled

• Methods requiring simulated datasets are also highly dependent on the permutation table used i.e. distribution functions of OACs and their covariance
Distribution functions for in-water constituents

\(\log[CHL] \)

\(\log[b_b(555)] \)

\(\log[a_{cdom}(440)] \)
Babin et. al. (2002)
Non-Linear Optimization

• Basic idea is to minimize the difference between the modelled and measured reflectance until a predefined converge threshold is met.

\[\chi^2 = \sum_\lambda \left(L_{sat} - L_{mod} \right)^2 \]

• Requires a first guess.

• Alternative methods: Levenberg Marquardt, Gauss-Newton, Simplex, differ mainly in the search criteria they use.

• Convergence may sometimes be a problem.
Apparent Optical Properties
Remote Sensing Reflectance

Inherent Optical Properties
Absorption Backscattering

\[R_{rs}(\lambda) = \left[\frac{f(\theta,\phi)}{Q(\theta,\phi)} \right] \left[\frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)} \right] \]

Sun/Viewing Geometry

..... and IOPs (a, VSF)
\[a(\lambda) = a_w(\lambda) + a_{ph}(\lambda, Chl) + a_d(\lambda, TSS) + a_{cdom}(\lambda, CDOM) \]

\[a(\lambda) = a_w(\lambda) + Ac(\lambda)[Chl]Bc(\lambda) + [a_{cdm}(440)] \exp(-S(\lambda - 440)); \]

\[b_b(\lambda) = b_{bw}(\lambda) + b_{bp}(\lambda, Chl, TSS) \]

\[b_b(\lambda) = b_{bw}(\lambda) + [b_{bp}(555)] [555\lambda]^Y \]
Example NLO application

Siegel et. al. 2005
<table>
<thead>
<tr>
<th></th>
<th>NLO</th>
<th>PCI</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Direct</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Independent of simulated dataset</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Non-linear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>• Convergence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CPU intensive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Initial guess</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Principal Component Inversion

• Principal Component Analysis allows you to extract the most significant information from large multivariate datasets

• Determines a linear transformations of the data to a smaller number of parameters essentially reproducing all of the information of the original data.

• Linear assumption

• Separates signal from noise
Step 1: Forward Model

Step 2: Principal Component Analysis

Step 3: Intrinsic Dimensionality

Step 4: Calculation of factor scores

Step 5: Determination of local fit coefficients
Example PCI application
<table>
<thead>
<tr>
<th>Advantages</th>
<th>NLO</th>
<th>PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct</td>
<td>Computationally cheap</td>
</tr>
<tr>
<td></td>
<td>• Direct</td>
<td>• Always convergence</td>
</tr>
<tr>
<td></td>
<td>• Independent of simulated dataset</td>
<td>• Separate signal from noise</td>
</tr>
<tr>
<td></td>
<td>• Non-linear</td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>• Convergence</td>
<td>• Dependent of simulated dataset</td>
</tr>
<tr>
<td></td>
<td>• CPU intensive</td>
<td>• Linear assumption</td>
</tr>
<tr>
<td></td>
<td>• Initial guess</td>
<td></td>
</tr>
</tbody>
</table>
Neural Network Inversion

- Requires simulated dataset - ~10000 spectra
- Simulated dataset split 2/3 training 1/3 testing
- Training results in “weights file”
- Capable of describing highly non-linear system
- CPU time – high for training v. low for running
Pre-processing

- Log10 transform
- Z-score normalisation

Fig. 1. The hyperbolic tangent activation function.
Scheme Neural Network

Input layer:
- water leaving radiance
- reflectances and solar angle

Hidden layer:
- R_1
- R_2
- R_3
- W

Output layer:
- chlorophyll
- suspended matter
- gelbstoff

$\Sigma \gamma X_1$
Things to Note

NN use the training data to determine a set of weights so that the given input produced the desired output. After training, we hope (in more complex networks) that new inputs (not in the training data set) will also produce correct outputs.

The “knowledge” or “memory” of a neural network is contained in the weights.

In a more complicated situation, you must balance having enough neurons to capture the science, but not so many that the network learns the noise in the training data.
Chlorophyll Emp. algorithm

Chlorophyll Neural Network

Tugela River Samples 22 May 2005

Sediment Neural Network

Dissolved Organics Neural Network
<table>
<thead>
<tr>
<th></th>
<th>NLO</th>
<th>PCI</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Direct</td>
<td>Computationally cheap</td>
<td>Computationally cheap</td>
</tr>
<tr>
<td></td>
<td>• Independent of simulated dataset</td>
<td>• Always convergence</td>
<td>• Always converges</td>
</tr>
<tr>
<td></td>
<td>• Non-linear</td>
<td>• Separates signal from noise</td>
<td>• Non-linear</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>• Convergence</td>
<td>• Dependent of simulated dataset</td>
<td>• Dependent of simulated dataset</td>
</tr>
<tr>
<td></td>
<td>• CPU intensive</td>
<td>• Linear assumption</td>
<td>• Slow Training</td>
</tr>
<tr>
<td></td>
<td>• Initial guess</td>
<td></td>
<td>• Choice of architecture</td>
</tr>
</tbody>
</table>

Which is the best?

- Depends on your application, water type
- My suggestion:
 - spend time defining a good reflectance model
 - Characterize distribution functions and covariance of OACs
- You can always try different inversion method to see which suits your application
Implementing Algorithms – an OCR Agency Perspective
(B. Franz, NASA – pers. com.)

• Require that the algorithm has been validated (at some level) using satellite inputs and field measurement (ideally published)

• Require that the algorithm or product is something of interest to the broader community (requests, forum etc)

• Implement in the NASA processing code: this is more likely to happen if the algorithm has already been implemented in I2gen by the developer… At this stage we also need to be sure that quality screening is adequate (warning and failure conditions trapped).

• Distribute in SeaDAS: this provides an opportunity for the community to test a new algorithm or product, and to see the details of implementation. We may receive feedback through the ocean color forum.
Implementing Algorithms (2)

- Produce global test products: this is a primary function we perform for algorithm development, to take something that has only been done on small scales and show how it performs on the global scale. We may also do global match-up analyses if this is a product for which we have many field measurements. There may be some iteration with the algorithm developer... At this stage, the algorithm may fail when confronted with the full range of radiant path geometries and water properties, or it may be impractical for global application due to resource requirements, and thus we stop.

- Reprocess and distribute global, life-of-mission Level-3 products for evaluation: for derived products, this is typically done by processing Level-3 Rrs to Level-3 products, which we can do quickly with little resource and no impact to standard products... If they are found to be useful, then we may consider step 7.

- Incorporate the product or algorithm as part of standard Level-2 and Level-3 production, at the next full mission reprocessing.
Day 2
IOCCG WG 5

- Working group on Ocean-Colour Algorithms (Chaired by ZhongPing Lee)
Objectives

• The objectives of the group were to perform algorithm cross comparisons, to make recommendations on specific algorithms and to report on the progress of algorithm development.

• The group assembled a database from in situ measurements and also developed a synthesized dataset based on known relationships, in order to perform algorithm cross-comparisons and evaluations. The synthesized datasets, as well as the software for the various algorithms, are available on the IOCCG webpage.
Terms of Reference

• Synthesize a database of inherent (IOP) and apparent optical properties (AOP), and assemble a database of in situ measurements.

• Perform cross-comparisons and evaluations on existing ocean-colour inversion algorithms.

• Make recommendations on specific algorithms.

• Report on the progress of algorithm development.
Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Type</th>
<th>Key features</th>
</tr>
</thead>
<tbody>
<tr>
<td>L98</td>
<td>Empirical</td>
<td>Empirical constants; products at 440 nm only</td>
</tr>
<tr>
<td>B99</td>
<td>Semi-empirical</td>
<td>Relationships between total absorption coefficients</td>
</tr>
<tr>
<td>MM01</td>
<td>Semi-empirical</td>
<td>Bio-optical models; hyperspectral</td>
</tr>
<tr>
<td>Loisel</td>
<td>Neural Network</td>
<td>$K_d(\lambda)$ from $R_{rs}(\lambda)$ empirically</td>
</tr>
<tr>
<td>D&S</td>
<td>Neural Network</td>
<td>Neural constants; MERIS only</td>
</tr>
<tr>
<td>Lyon</td>
<td>Algebraic (Linear Matrix Inversion)</td>
<td>Spectral models for $a_{ph}(\lambda)$, $a_{dg}(\lambda)$, and $b_{bp}(\lambda)$</td>
</tr>
<tr>
<td>Boss</td>
<td>Algebraic for low absorption waters (iterative solution); empirical for other</td>
<td>Varying spectral shapes for $a_{ph}(\lambda)$, $a_{dg}(\lambda)$, and $b_{bp}(\lambda)$; statistical selection of solution; generates output confidence intervals; applicable to multi- and hyperspectral data</td>
</tr>
<tr>
<td>Carder</td>
<td>Algebraic</td>
<td>Spectral models for $a_{ph}(\lambda)$, $a_{dg}(\lambda)$, and $b_{bp}(\lambda)$; empirical coefficients for different properties</td>
</tr>
<tr>
<td>QAA</td>
<td>Algebraic</td>
<td>Separate derivations for the total and individual components; spectral models for $a_{dg}(\lambda)$ and $b_{bp}(\lambda)$; retrieve multi- or hyperspectral a_{ph} spectrum</td>
</tr>
<tr>
<td>GSM</td>
<td>Spectral optimization</td>
<td>Optimized spectral shapes for $a_{ph}(\lambda)$, $a_{dg}(\lambda)$, and $b_{bp}(\lambda)$; applicable to multi- and hyperspectral data; can use input uncertainties and generates output confidence intervals</td>
</tr>
<tr>
<td>SPD</td>
<td>Spectral optimization</td>
<td>Varying spectral shapes for $a_{ph}(\lambda)$, $a_{dg}(\lambda)$, and $b_{bp}(\lambda)$; applicable to multi- and hyperspectral data</td>
</tr>
</tbody>
</table>
Simulated vs In-situ dataset

Figure 2.3 Comparison between in situ and synthetic data sets. (a) Ranges and variations of $R_{rs}(440)$ and $a(440)$. (b) Ranges and variations of $R_{rs}(410)/R_{rs}(440)$ and $R_{rs}(490)/R_{rs}(555)$.
Bulk vs Constituent retrievals
Conclusions (1)

• In general, the best properties that can be obtained from ocean-colour data, regardless of the algorithm used … are the spectral absorption and backscattering coefficients of the total water volume.

• Using the synthetic data set as a reference, more reliable results are obtained for clearer waters \(a(440) < \sim 0.3 \text{ m}^{-1}\)… than more absorbing waters \(a(440) > \sim 0.3 \text{ m}^{-1}\).

• When decomposing the total absorption coefficient into the components of phytoplankton and coloured material, less accurate results are anticipated due to overlapping of spectral signals and because the spectral shapes of the components are not constant.

• If the chlorophyll-a concentration \((C)\) is desired from ocean colour, more uncertainties will be introduced because the chlorophyll-specific absorption coefficient is not constant at a given wavelength…
• The robust and stable results of the total absorption and backscattering coefficients from these various algorithms, …these optical properties should be taken as standard products for all ocean-colour satellite missions. …

• Space-based sensors should be equipped with at least one spectral band in the region of 620-640 nm. Such a band is very important for coastal remote sensing ...

• Algorithms based on the fundamentals of hydrological optics are strongly advocated…
Recommendations

- Increased high-quality, co-located measurements of remote-sensing reflectance and IOPs.
- Improved methods to select model parameters such as the spectral shapes of individual IOPs.
- Better quantification of uncertainties in derived products.
- Improved procedure for atmospheric correction.
- And, finally, enhance and broaden applications.
Inversion method inter-comparison

Study undertaken at UNH with OPAL PhD student Hui Feng

Objectives:
For the different inversion algorithms and optically distinct water classes:
- Estimate errors in the retrieved C
- Quantitatively, and
- Quantify the effect of the noise-contained ocean color signals on the accuracy in the retrieved C.
Non-Linear Optimization
Neural Network
Principal Component Inversion
Spectral Unmixing - QAA

Fig. 1. Schematic chart to show variables and steps (S1–S7) involved in the QAA procedure, redrawn from Lee et al. [23]. Variables with uncertainties (U1–U4) discussed in this study are highlighted with gray, while all others assumed error free.
construction (& deconstruction) of an SAA ...

\[R_{rs} \text{ func } \frac{b_b}{a + b_b} \]

serves as the desired products \(a(\lambda) \) and \(b_b(\lambda) \)

- **Spectral Optimization:**
 - Define shape functions for (e.g.) \(b_{bp}(\lambda), a_{dg}(\lambda), a_{ph}(\lambda) \)
 - Solution via L-M, matrix inversion, etc.
 - Ex: RP95, HL96, GSM

- **Spectral Deconvolution:**
 - Partially define shape functions for \(b_{bp}(\lambda), a_{dg}(\lambda) \)
 - Piece-wise solution: \(b_{bp}(\lambda) \), then \(a(\lambda) \), then \(a_{dg}(\lambda) + a_{ph}(\lambda) \)
 - Ex: QAA, PML, NIWA

- **Bulk Inversion:**
 - No predefined shapes
 - Piece-wise solution: \(b_{bp}(\lambda) \), then \(a(\lambda) \), via empirical \(K_d(\lambda) \) via RTE
 - Ex: LS00

Satellite provides \(R_{rs}(\lambda) \)
Spectral Optimization:
* define shape functions for (e.g.) $b_{bp}(\lambda)$, $a_{dg}(\lambda)$, $a_{ph}(\lambda)$
* optimization via L-M

given R_{rs} func $\frac{b}{a + b}$

our STARTING point:
* dynamic bbp retrieval
* dynamic aph spectral model
* IOP-based f/Q tables
* Raman scattering
* fluorescence
* T/S dependence on aw & bbw
* optical water class parameterization
* uncertainties & propagation of error

metrics defined to evaluate progress
generalized IOP model (GIOP) in l2gen

- specify sensor wavelengths to fit
 - e.g., 412,443,490,510,555

- select \(a_{ph} \) form and set params
 - tabulated: \(\lambda, a_{ph}*(\lambda) \)
 - gaussian: \(\lambda_0, \sigma \)
 - dynamic: Bricaud, Ciotti, Lee

- select \(a_{dg} \) form and set params
 - exponential: \(\lambda_0, S \)
 - dynamic: QAA, OBPG

- select \(b_{bp} \) form and set params
 - power law: \(\lambda_0, \eta \)
 - dynamic: HL96, QAA, LS00, Ciotti, Morel

- select \(\text{rrs}[0-] \) to \(bb/(a+bb) \)
 - quadratic
 - f/Q: Morel (tbd: PML, Lee)

- specify inversion method
 - Levenburg-Marquart
 - Amoeba (downhill simplex)
 - Lower-Upper Decomposition
 - Singular-Value Decomposition

- specify output products
 - \(a(\lambda), a_{ph}(\lambda), a_{dg}(\lambda), b_b(\lambda), b_{bp}(\lambda) \)
 - \(\lambda \) = any sensor wavelength(s)
 - \(C_a \) (given \(a_{ph}^* \) at \(\lambda_0 \))
 - \(\eta, S \) (dynamic model params)
 - internal flags
Other inversion methods

• Genetic algorithms
• Other Neural Network methods (e.g. radial basis algorithm)
• Look Up Tables
• Ambiguity issues
Ocean color products
(REASoN, MEaSUREs and EOS programs)

<table>
<thead>
<tr>
<th>Product</th>
<th>Link to biogeochemistry</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>Phytoplankton biomass; Primary Production</td>
<td>GSM semi-analytical model</td>
</tr>
<tr>
<td>$a_{cdm}(\lambda)$</td>
<td>Photochemistry; Heterotrophic production; Light budget</td>
<td>GSM & QAA algorithms</td>
</tr>
<tr>
<td>$a_{ph}(\lambda)$</td>
<td>Physiology and type of phytoplankton; Primary Production; trophic state</td>
<td>GSM & QAA algorithms</td>
</tr>
<tr>
<td>$b_{bp}(\lambda)$</td>
<td>Particulate material; POC</td>
<td>GSM & QAA Loisel et al. (2006)</td>
</tr>
<tr>
<td>$S - a_{cdm}(\lambda)$ spectral slope</td>
<td>Photochemistry, CDOM origin & bleaching history</td>
<td>GSM semi-analytical model QAA algorithm</td>
</tr>
<tr>
<td>$\eta - b_{bp}(\lambda)$ spectral slope</td>
<td>Particle size distribution Export flux</td>
<td>Loisel et al., (2006)</td>
</tr>
<tr>
<td>$K_d(\lambda_{UV})$</td>
<td>Light Budget, Photochemistry</td>
<td>Siegel et al. (2007)</td>
</tr>
<tr>
<td>Phytoplankton Functional Types</td>
<td>Primary Production Carbon fluxes</td>
<td>Alvain et al. (2004, 2006)</td>
</tr>
<tr>
<td>Net Primary Production</td>
<td>Primary Production Carbon fluxes</td>
<td>VGPM & CbPM</td>
</tr>
<tr>
<td>Merged products (chl, $a_{cdm}(443)$, $b_{bp}(443)$)</td>
<td>Phytoplankton biomass, Primary & secondary production, Particulates, POC, Photochemistry</td>
<td>Maritorena & Siegel (2005)</td>
</tr>
</tbody>
</table>
3 main families of techniques:

- statistical techniques (1D, 2D):
 - averaging (AVG)
 - blending (BA)
 - objective analysis (OA)
 - EOF-based
 - wavelet analysis (WA)
 - machine learning (MLA)

- optically-based techniques (OB):
 - uses full spectral information

- numerical model-based methods
 - assimilation in BGC models

(Gregg 2008)

.... Different approaches can/must be combined
WP2800: OB Techniques

03-04/10/2011 - CCI London, UK

1. model inversion

\[L_{WN,1}(\lambda_{i1}) \]
\[L_{WN,2}(\lambda_{i2}) \]
...

MÉLIN & ZIBORDI, AO 2007
MÉLIN ET AL., ASR 2009

MERGER

Choice of parameters

\[L_{WN,1}(\lambda_{i1}) \]
\[L_{WN,2}(\lambda_{i2}) \]
...

MERGER

IOPs, Chla

Provides only merged IOPs + Chla

Maritorena et al., RSE 2005, 2010

1. model inversion

\[L_{WN,1}(\lambda_{i1}) \]
\[L_{WN,2}(\lambda_{i2}) \]
...

MERGER

\[L_{WN,m}(\lambda) \]

Provides merged \(R_{RS} \), but with implicit IOPs except with multiple solutions

‘Choice’ of bio-optical model imbedded in \(R_{RS} \)
Merged data sets

Temporal coverage

Spatial coverage

Matchups

ftp:ftp.oceancolor.ucsb.edu/pub/org/oceancolor/REASoN/
OPeNDAP server: http://dap.oceancolor.ucsb.edu/cgi-bin/nph-dods/data/oceancolor/
Section 4
Algorithm implementation issues, regional and class based algorithms
Global vs Regional algorithms

• Global dataset now consist of multiple “products” geophysical variables and IOPs

• They have the advantage of being routinely produced by the space agencies globally

• They also generally have “mean” uncertainties associated with them

• It may be that one of the available products perform well in your region

• Alternative is to produce your own regional algorithm, with local parameterisation
Data Requirements for Regional Algorithms (from “cheap” to expensive”)

1. Simple validation of standard SA products: Fluorometer -> HPLC for Chl a
2. Spectrophotometric estimate of aph and aCDOM some estimate of bbp
3. Validation of nLw, Rrs (15-25 K$)
4. Full in-water IOP AOP dataset (80K$ equipment)
5. Full CAL/VAL IOP AOP programme with fully traceable persistently calibrated instruments > 150K$ /year
Regional vs. Class-Based

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Regional</th>
<th>Class-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Explicitly linked to locally measured in-situ data</td>
<td>2. May be “simpler”</td>
<td>1. Generic, “global”, can be generalised</td>
</tr>
<tr>
<td></td>
<td>3. Accounts for physiological differences</td>
<td>2. Can be used as a tool to identify “black holes”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Seamless transitions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Continuous improvements through additional on in-situ data</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>1. Explicitly link to locally measured in-situ data – not generalized</td>
<td>1. More complicated to implement</td>
</tr>
<tr>
<td></td>
<td>2. May result in regional discontinuities</td>
<td>2. Computational more expensive – not much!</td>
</tr>
</tbody>
</table>
Rationale

• There is necessity to describe a considerable amount of variability in Inherent Optical Property (IOP) subcomponent models.

• This is particularly true, if inversion algorithms are to be applicable at global scale yet remain quantitatively accurate in coastal & shelf seas.

• This is unlikely to be achieved in the foreseeable future, with a single representation of IOP subcomponents.

— BEAM – Case2R

• The proposed approach is an algorithm framework more than a specific algorithm.
Conceptual Framework for Case based algorithms

In-situ Database

- R_{rs}
- Cluster analysis
- 8 classes
- Station data sorted by class
- Class based relationships

Satellite Measurements

- R_{rs}
- Individual class derived products
- Merged Product
- Calculate membership
8 objectively identified classes in radiance space
May 2004 SeaWiFS Composite
Apparent Optical Properties

Radiance
Reflectance

Inherent Optical Properties
Absorption
Scattering

In-Water Constituents
Pigments (Chl), Sediment, CDOM

Analytical algorithms

Local parameterization for coastal & inland waters
What to parameterize?

- Variance and Co-variance of Optically Active Constituents
- Parameterising IOP subcomponent models (or fit coefficients – for empirical algorithms)
- Different OWT different inversions method
- Avenue to spatial uncertainty estimates
- Regional value-added products
Distribution functions for in-water constituents

\[
\log[\text{CHL}]
\]

\[
\log[b_{b}(555)]
\]

\[
\log[a_{\text{cdom}(440)}]
\]
\[a(\lambda) = a_w(\lambda) + a_{ph}(\lambda, \text{Chl}) + a_d(\lambda, \text{TSS}) + a_{cdom}(\lambda, \text{CDOM}) \]

\[a(\lambda) = a_w(\lambda) + A_c(\lambda) [\text{Chl}]^{B_c(\lambda)} + [a_{cdom}(440)] e^{-S(\lambda - 440)} \]

\[b_b(\lambda) = b_{bw}(\lambda) + b_{bp}(\lambda, \text{Chl, TSS}) \]

\[b_b(\lambda) = b_{bw}(\lambda) + [b_{bp}(555)] [555\lambda]^\gamma \]
Methods for Class-based algorithms

- Novelty Detection (D’Alimonte 2002)
- Fuzzy Logic (Moore et. al. 2001)
- Lubac et. al. 2007 - EOF & PCA
Fuzzy versus Hard classification

Hard

Traditional minimum-distance criteria

Fuzzy

Fuzzy graded membership

Water = 0.05
Wetland = 0.65
Forest = 0.30
Advantages of fuzzy logic defined provinces

- They allow for dynamics both seasonal and inter-annual in the optical properties of a given region.
- They address the issue of transitions at the boundaries of provinces (through the fuzzy membership function of each class) thus resulting finally in the seamless reconstruction of a single geophysical product.
May 2004

MERIS/SeaWIFS/MODIS

Channel 1-5

Channel 1, 2, 3, 5

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
High resolution provinces for European Seas
Med May 2004
Relation to current understanding
turbid water flag

After Morel and Bélanger
2006
Relation to current understanding
turbid water flag
Class persistence

36 month Time-series

Class 5

Class 6

Class 7 & 8
Class Persistence

distribution of classes dominant for more than 70% of observations
Producing the Uncertainty Map

For each pixel, \(C \hat{f}_i * \)

\[i = 1 \ldots 8 \]

<table>
<thead>
<tr>
<th>Aqua OC3 Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>83</td>
</tr>
</tbody>
</table>

= Uncertainty image
May 2005

SeaWiFS OC4

Aqua OC3

Relative Error (%)
Bi-variate Distribution Function of Optical Constituents
Class specific steps of QAA

<table>
<thead>
<tr>
<th>Steps</th>
<th>Property</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>r_{rs}</td>
<td>$= R_w (0.52 + 1.7 R_n)$</td>
</tr>
<tr>
<td>Step 1</td>
<td>$u(\lambda) = \frac{bb(\lambda)}{a(\lambda) + bb(\lambda)}$</td>
<td>$= -0.0895 + \sqrt{(0.0895)^2 + 4 g_1 r_{rs}(\lambda)}$</td>
</tr>
<tr>
<td>Step 2</td>
<td>$a(\lambda_0)$: $a(555)$ or $a(640)$</td>
<td>$a(555) = 0.0596 + 0.2(a(440)_1 - 0.01)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$a(440)_1 = \exp(-1.8 - 1.4 \rho + 0.2 \rho^2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\rho = \ln(r_n(440)/r_n(555))$</td>
</tr>
<tr>
<td>Step 3</td>
<td>$bb_p(\lambda_0)$</td>
<td>$= \frac{u(\lambda_0)a(\lambda_0)}{1 - u(\lambda_0)} - bb_w(\lambda_0)$</td>
</tr>
<tr>
<td>Step 4</td>
<td>γ</td>
<td>$= 2.2 (1 - 1.2 e^{-0.9 r_n(440)/r_n(555)})$</td>
</tr>
<tr>
<td>Step 5</td>
<td>$bb_p(\lambda)$</td>
<td>$= bb_p(\lambda_0) \left(\frac{\lambda_0}{\lambda} \right)^\gamma$</td>
</tr>
<tr>
<td>Step 6</td>
<td>$a(\lambda)$</td>
<td>$= \frac{(1 - u(\lambda))(bb_w(\lambda) + bb_p(\lambda))}{u(\lambda)}$</td>
</tr>
<tr>
<td>Step 7</td>
<td>$\zeta = a_0(410)/a_0(440)$</td>
<td>$= 0.71 + \frac{0.06}{0.8 + r_n(440)/r_n(555)}$</td>
</tr>
<tr>
<td>Step 8</td>
<td>$\xi = a_0(410)/a_0(440)$</td>
<td>$= e^{-5a(440)-440}$</td>
</tr>
<tr>
<td>Step 9</td>
<td>$a_0(440)$</td>
<td>$= \frac{(a(410) - \xi a(440)) - (a_w(410) - \xi a_w(440))}{\xi - \zeta}$</td>
</tr>
<tr>
<td>Step 10</td>
<td>$a_0(\lambda)$</td>
<td>$= a(\lambda) - a_0(440)e^{-5a(\lambda)-440} - a_w(\lambda)$</td>
</tr>
</tbody>
</table>
Class –based GSM | Class –based QAA
--- | ---

S_{gd} varies based on class
[0.0175, 0.0164, 0.0139, 0.0147, 0.0153, 0.0128, 0.0138, 0.0121]

$a_{ph}^*(\lambda)$ varies dependent on class

η (i.e. slope of bbp) using Carder’s relationship

S_{gd} variable based on class
$a_t(443)$ versus $r_{rs}(443)/r_{rs}(555)$

class based

$a_t(555)$ versus $a_t(443)$ class

based

$a_{ph}(443)$ versus Chl class

based $a_{ph}^*(443)$

One could imagine applying a tuning algorithm (e.g. simulated annealing) to each class to determine optimal class based model coefficients.
Amoeba - NLO

Spectral Unmixing
Fuzzy logic based dynamic provinces provide a powerful tool for describing the optical variability of the world oceans.

Effective in identifying bio-optical “end-members” locations for use in identifying cal/val sites, as well as identifying “under-sampled” optical water types.

Can also be used to determine spatial uncertainty estimates benefiting from the availability of the membership functions.

Statistically rigorous means of parameterizing bio-optical models.

Capable of describing the strong non-linearity of optical variability across many decades of variability.
Uncovered, relevant topics

• Inversion in optically shallow waters

• Effect on inversion of transpectral processes (fluorescence and Raman scattering)

• Detail on ATBDs of specific space agency algorithms

• Ambiguity issues

• Data merging
Current efforts/Emphasis

• Using red NIR part of spectrum in highly turbid waters
• Systematic validation of IOP inversion
• Uncertainty estimate
• Algorithms & Data merging