OSMI Applications Overview

Yongseung Kim

Remote Sensing Department Korea Aerospace Research Institute

Introduction

• Since the successful launch of KOrea Multi-Purpose SATellite-1 (KOMPSAT-1) on Dec. 21, 1999, the Ocean Scanning Multi-spectral Imager (OSMI) aboard KOMPSAT-1 has been observing the global ocean.

• KARI distributed the OSMI data to government agencies, government-supported research institutes and universities for public use. And Korea Aerospace Industries (KAI) undertook the data dissemination for commercial use.

• To promote the development of remote sensing technology using the KOMPSAT-1 data, KARI has been collaborating with three research groups, each representing land applications, marine applications, and meteorological applications.

• Although much effort has been made in the calibration and validation of OSMI data, they have been successfully used to monitor yellow dust, forest fire, red tide, and typhoon. The cross-calibration efforts in collaboration with the NASA SIMBIOS team are successful and expected to bring more outcomes related to the ocean color research. Anyone interested in OSMI data for research purpose, please contact Dr. Yongseung Kim at yskim@kari.re.kr.

• The presentation will highlight some of OSMI data applications and introduce the future ocean color mission.

KOMPSAT-1 Overview

- Development Period : 1995 ~ 1999
- Joint development with TRW
- Payload Instruments
 - EOC: Panchromatic Camera, GSD= 6.6 m, swath=17 km, Quantization=8 bits
 - OSMI: Ocean Color Imager with 6 band GSD=1 km, swath=800 km, Quantization=10 bits
 - SPS : Space Physics Sensor
- Satellite Spec.
 - 3 Axis Stabilization
 - 470 kg mass, 600 Watt power
- KOMPSAT-1 was launched successfully in Dec. 1999 and is now normal operation

Disaster Monitoring

March 13, 2002

April 13, 2000

IOCCG 2003

Forest Fires in Korea

Disaster Monitoring

Red Tide in the southern seas

March 31, 2001

August 23, 2001

Meteorological Applications

Typhoon Saomai Sept. 14, 2000 Yellow Dust March 22, 2002

Marine Applications

IOCCG 2003

Monitoring of Fisheries

Marine Applications

Quantification of basic diet of fishing grounds in the southern seas

Global Distribution of Chlorophyll-a

High Resolution Visible and IR Sensors (HiRVIS) on Geostationary Satellite

- Meteorological satellite
- High Resolution Visible & IR sensor (tentatively, HiRVIS) for ocean observation
- Communication satellite

- Detecting, monitoring, predicting short-term marine natural hazards
 - toxic algal blooms, turbid water, low saline water, cold water, warm waste water/atomic power plant, dumping site monitoring, oil spill.
- Marine ecosystem monitoring
- Coastal resource management
- Providing marine fishery information for fisherman

- Orbit : Geostationary satellite (launch in 2008)
- Spatial resolution : 250m x 250m
- Field of view : > 500km

Frame transfer CCD array : 2000 x 2000

- Spectral coverage : 0.4 μ m 12 μ m
- Number of spectral bands : 11 (Visible-NIR; 8, IR; 3)
- Data download : < 15min
- Digitization : 12 bit

Coverage (global mode, 12,000km x 12,000km)

