

GCOM-C Mission design

Hiroshi Murakami Earth Observation Research Center, Japan Aerospace Exploration Agency

1

1. Mission Concept of GCOM-C

1.1 JAXA global earth observation missions

• GCOM-C for the global surface radiation budget and carbon cycle

- (1) GCOM-C: Long-term observation of the horizontal distribution of aerosol, cloud, and ecosystem CO₂ absorption and discharg€ (2) GCOM-W: Long-term observation of water-cycle such as the snow/ice coverage, water vapor, and SST
- (3) GOSAT: Observation of distribution and flux of the atmospheric greenhouse gases, CO_2 and CH_4
- ④ EarthCARE/CPR: Observation of vertical structure of clouds and aerosols
- (5) GPM/DPR: Accurate and frequent observation of precipitation with active and passive sensors
- **(6)** ALOS: Fine resolution mapping by optical and SAR instruments

1. Mission Concept of GCOM-C

1.2 Radiation budget by the atmosphere-surface system

Monitoring and process investigation about cloud and aerosol by GCOM-C & EarthCARE

Evaluation of model outputs and process parameterization

<u>Climate model prediction</u> present and future cloud and aerosol roles in the global warming scenarios

Today's the most significant <u>uncertainty</u> of radiative forcing is direct/indirect role of cloud-aerosol system

Today's the most significant factor:

Figure 2.4. Global average radiative forcing (RF) in 2005 (best estimates and 5 to 95% uncernainty ranges) with respect to 1750 for CO₂, CH₂, N₂O and other important agents and mechanisms, together with the typical geographical extent (spatial scan to of the forcing and the assessed level of scientific understanding (LOSU). Aversols from explosive volcanic eruptions contribute an additional ejocolic ock ing term for a few years following an eruption. The range for linear contrails does not include other possible effects of aviation on cloudiness. (WGI Figure SPM.2)

- Climate monitoring and research need long-term consistent observation
- GCOM-W/C observe more than 10 years by three satellites with one-year overlap.

1.5 Social needs of ocean area

Effective ocean-color-ecosystem research for the social needs

1.6 Science Targets

Social needs Ocean science targets	Global warming	Water-energy (heat) cycle	Coastal environment	Fishery
(1) Ocean primary production	0		0	0
(2) <i>Coastal ocean</i> eutrophication and land-sea substance exchange	0		0	0
(3) Marine biological resources				0
(4) Ocean-climate system by effective use of satellite-ground and ocean-land-atmosphere	0	0	0	
(5) Satellite sensor & data product improvement	0	0	0	0

They will also contribute to the implement plan and targets of GEOSS.

On

(1) Ocean Primary Production

- The ocean primary production can be a sink of the atmospheric CO_2 regulating the global warming.
 - Global trend and distribution
- The estimation needs integrative analysis of ocean colour with related parameters, such as solar irradiance (PAR), nutrient, water temperature, and a vertical mixing/stratification.
- Solutions: global ocean color observation by GCOM-C
 - Improvement of satellite ONPP algorithm
- Improvement of input parameters going
 - (CHL, SST, PAR, nLw, IOP, species..)
 - Sample number and accuracy of insitu observation
- Combination with ocean ecosystem Begin ning production models

(2) Coastal Ocean

- Coastal ocean has large productivity and strong relation to the human activities.
- Estimation of coastal primary production needs special considerations about irregular light, nutrient, plankton species and their vertical profiles due to inland-water and substance (including carbon).
- Solutions : 250m observation by GCOM-C
 - Local characterization/ standardization of *plankton taxa and optical properties*
 - ↑ Land aerosol correction
 - Sunglint correction (coastal area)
 - High spatial resolution sensor (<250m)
- *Begin* Adjacent scattering from bright surface
 - Land water inflow by cooperation with
 - hydrology and land surface model

Chlorophyll-a concentration east of Hokkaido Japan on 24 Sep. 2003 estimated by ADEOS-II/GLI 250m channels.

Absorption spectra of different algae

On going

ning

(3) Marine biological resources

- Fishery estimation has been operated since OCTS
- Prediction and catch management of the marine resources are required today
- Solutions: Ocean color observation by GCOM-C
 - Near-real time *robust* products
 - Plankton taxa
 - Cooperation with ocean ecosystem/ bioresources model

Chlorophyll-a concentration in the northwestern Pacific in June 2003 overlaid on fisheries of skipjack and tuna.

Ocean current structure and marine ecosystem activity from GCOM-C observations, <u>sea surface</u> <u>temperature</u>, <u>chlorophyll-a concentration</u>, <u>light</u> <u>absorption</u> and <u>solar radiation</u> (PAR)

(4) Ocean-climate system by effective use

(4-1) Integrated use of different sensors and parameters

- Data merger through sensor cross-calibration and product cross-validation
 - Sensor cross-calibration in cooperation with CEOS/WGCV/IVOS
 - Product cross-validation in cooperation with CEOS/OCR-VC, IOCCG..

(4) Ocean-climate system by effective use

(4-2) Data/knowledge integration using numerical models

Solutions: Cooperation with model research,

Connecting model parameters with satellite observations directly

(5) Satellite sensor & data products

(5-1) High accuracy products for the climate research

- For every purposes, improvement of satellite products accuracy is still the most essential
- Solutions :
 - Improvement of in-water algorithms of complicated substance composition (e.g., coastal area),
 - Combination with bio-physical-optical model
 - Improvement of atmospheric correction (extraction of the waterleaving signals) in conditions of much suspended matter, whitecaps, sunglint and *irregular aerosols including absorptive aerosols*
 - Long-term/inter-sensor continuity & consistency
 - High sensor performance (SNR and perfect sensor calibration model)

- The next Japanese ocean color mission is Global Change Observation Mission for Climate research (GCOM-C)
- The mission focuses the carbon cycle and radiation budget, and will consist of three satellites for 13 years from early 2014 to contribute detection of the "global change".
- The GCOM-C will carry Second-generation Global Imager (SGLI) which is a radiometer of 380-12000nm wavelength, 1150-1400km swath width, and descending orbit around 10:30am, as a follow-on mission of ADEOS-II/GLI.
- Features of SGLI are 250m-spatial resolution (500m for thermal infrared) and polarization/along-track slant view channels (red and near-infrared), which will improve coastal ocean, land, and aerosol observations.

2. GCOM-C/SGLI design

Radianc	Common						
Radianc							
	• TOA radiance (includin	g system					
	geometric correction)	1					
	The second s		budget by the atmo		surface system	1	Contraction of the
10%	• C	arbon cy	r <mark>cle in the Lan</mark> d and	Ocean			
				1		1	1-32-
		10	STATISTICS AND				ST
	Land		Atmosphere		Ocean		Cryosphere
Surface	Precise geometric		• Cloud		Normalized water		Snow and Ice covere
flectan	correction		flag/Classification		leaving radiance		area
	 Atmospheric corrected reflectance 		Classified cloud fraction	Ocean	 Atmospheric correction parameter 	Area/	OKhotsk sea-ice distribution
	Vegetation index		Cloud top temp/height	color	Photosynthetically	distributi on	Snow and ice
	Above-ground biomass	Cloud	Water cloud optical		available radiation	011	classification
logotati	Vegetation roughness	cioda	thickness /effective		Euphotic zone depth		Snow covered area in
egetati n and	index		radius		Chlorophyll-a conc.		forest and mountain
arbon	Shadow index		 Ice cloud optical thickness 	In-water	Suspended solid conc.		 Snow and ice surface Temperature
ycle	Fraction of Absorbed		Water cloud geometrical		Colored dissolved		Snow grain size of
	Photosynthetically available radiation		thickness		organic matter		shallow layer
	Leaf area index		Aerosol over the ocean	In-water	Inherent optical properties		Snow grain size of
emp.	Surface temperature	Aerosol	Land aerosol by near	Temp.	Sea surface temp.	Surface	subsurface layer
<u> </u>	Land net primary	Aerosor	ultra violet		Ocean net primary	propertie s	Snow grain size of top
	production		 Aerosol by Polarization 		productivity	-	layer
pplicati	Water stress trend		Long-wave radiation flux		Phytoplankton functional		Snow and ice albedo
'n	Fire detection index	budget	Short-wave radiation flux	Applicati	type		Snow impurity
	Land cover type			on	Redtide		Ice sheet surface roughness
	Land surface albedo	Dhuo	standard products		multi sensor merged		
					ocean color	Boundary	Ice sheet boundary

2.2 SGLI products and channels

СН	Г	λ	Δλ	Letd	Lmax	SNR	IFOV*3						Lar	ıd									Atn	nost	ohere	;								Oc	ean						I				Crv	osp	here	<u>,</u>			
	V	Ν, Ρ: Τ: μr	nm	W/m	N, P: ²/sr/µm Kelvin	at L _{std} VN, P: - T: NE∆T	m	mage	Atmospherically Corrected Land surface Reflectance	Vegetation Koughness Index Including BSI_P and BSI_V	Shadow Index	Land Surface Temperature	Fraction of Absorbec		Above Ground BIOmass		Fire Detection Index	Land Cover Type	Land surface ALBe	CLoud FlaG including Cloud Classification and Phase	Classified CLoud Fraction	Cloud Ton Temperature and Height		Wate	Ae	Land AeRos	AeRosol by Polarization	I ongWave Radiation Flux	ShortWayo Dadiation Flux	Atmospheric Correction Parameters	Ocean Photosynthetically Available Radiation	Euphotic Zone Depth	CHI oronbyll-A concentration	absorption co		Sea Surface Temperature	Ocean Net Primary Productivity	Red Tibe	multi sensor Merged Ocean Color parameters	multi sensor Merged Sea Surface Temperature	Snow and Ice Covered Area	OKhotsk sea-Ice Distribution	Snow and Ice Classification	Snow Covered Area in Forest and Mountain	Snow and Ice S		SNC	SNow	and Inc	Ice Sheet surface RouGHness	Ice Sheet Boundary Monitoring
VN1	3	80	10	60	210	250	250	U	U								T									U		1	ΙT	E			I	ΙU	U		IF	R R	2 0							U	Ι	ť	JM	í T	
VN2	4	12	10	75	250	400	250	U	ΤI	U	U	U	Ι	Ι	Ιl	1	Т	U	U			Т			U	Ε		I I	ΙT		U		Т	E	U		IF	R R	2 0				П					F	R R	1	
VN3	4	43	10	64	400	300	250	U	T	U	U	U	Ι	Ι	Ιl	J		U	U						U			1	ΙT		U	U	E	E	U		Ιl	JU	υU		U	U	U	U	S	U	U	Sυ	JM	1 S	U
VN4			10	53	120	400	250																						Т			υI	Μl	J	U		Ιl	JU	JU												
VN5			20	41	350	250	250	U	Т		U	U	Ι	Ι	Ιl	1		U	U	U	C	0	C	С	С	С	С		Т		U	U	E		U	С	IF	R R	2 U	С	U	U	U	U	S	S	S	SE	<u> S</u>	5 S	U
VN6	_		20	33	90	400	250															_							Т			UI	M	U	U		<u>1 l</u>	JU	υ				Ц	\square				\perp	┶	╞	\perp
			20	23	62	400	250		_					_							_		_		U				I T	М				<u> </u>	U		<u> </u> F	R R	2 U	_					_		_	_	\perp	╞	+
VN8	-	3.5	20	25	210	250	250	E		MN	1 U	U		1	IE	-	+	E		U	C) C	С		С	C	+		R	U	_	_		\square	С	<u> </u>	_	R	1C	U	U	U	U	S	S	S	<u>s l</u>	JS	R	U
VN9	-	63	12	40	350	1200	1000	\square	_					_		_	+				_	-		М											\square		+	_		\bot	R		\square	$ \rightarrow$				+	+	╄	\perp
VN10		8.5	20	8	30	400	250		-			<u> </u>	_			_	+				_				U	_	_			M		1	1		\square		<u> </u>	_	U			.		<u> </u>				<u></u>	+	╞	+
	-		20	30	300	200	250	U				U					+	U	U	U	C) C	C	С	С	C	_		R	U	-	-	-	\vdash	С		_	R	1C	U	U	U	U	S	М	S	sυ	<u>10</u>	J R	
P1	÷	_		25 ^{*1}	250 ^{*1}	250*1	1000		0				+	+		-	+	R	R		_	+	+	-			E	+		_	R	+	-	+	\vdash		+	+	╋	┢		\vdash	R R	-+	_		_	+	+	R	
P2	-	_	20	30 ^{*1}	300 ^{*1}	250*1	1000	U	U	U	I R		1	1			+	R	R		-		-				E	+		R		-	_	-	H		-	_	+	╋		_	к	4	-		_	┿	╋		
SW1	_		20	57	248	500	1000													М	C		N C	U						R	С	$ \rightarrow $			Ц		<u> </u>		⊥		U	U	U	U	S	S	_	sυ	1 <u>S</u>	; S	
SW2	-	380	20	8	103	150	1000							4						U												_			Ц		\perp	_	╇	⊢	М	U	С	С	С	С	-	СС	<u>; C</u>	; <u>c</u>	\perp
SW3	-		200	3	50	57	250	U	T			U		_	l	I R	U	Ε	U	U	C		С					+		R		_	_		\square		+	_	+	\bot	Μ	U	U	U	С	С	C	RU	ЛС	; C	U
SW4	2	210	50	1.9	20	211	1000	U	Т			U					U	U				Ν	N	U						R											U			U				\bot	\bot	⊥	
T1	1).8*2	0.7*2	300	180~340	0.2	500*4	U				U				U	U			U	C	U	U	U					1							М	1	R	2	М	U	U	U	U	М	S	S	SS	SS	5 S	
T2	1	2.0*2	0.7 [*] 2	300	180~340	0.2	500*4	U				М				U	U			U	C	U	U					RF	2			ſ			ΙĪ	Е				Ε	U		R		М						7

M: Most essential, E: essential, U: used channel, T: correction targets, R: future research, I: indirect use, C: cloud detection, S: Snow detection *1: defined as intensity of non-polarized light, *2 :Unit is µm, *3: 1km in the open ocean, *4: 250m mode possibility Green: Succession of GLI standard products, Red: New standard products, and White: research products.

Higher (250-m) resolution, multiband and frequent observation

Optimized for detecting seasonal change of land cover and vegetation

> Daily coverage of SGLI VNR (Simulated by GLI data on 20 March 2003)

File = A2GL1030320-gm0200-PV1B.2880-1441, RGB=678, 545, 460nm

Longitud

250m resolution to detect finer structure in the coastal area such as river outflow, regional blooms, and small current.

250m Ocean colour product simulated using GLI 250m channels

(a) GLI 1km Osaka Bay (1 Oct. 2003, CHL by LCI)

(b) GLI 250m Osaka Bay (1 Oct. 2003, CHL by LCI)

2.4 Special resolution of SGLI VNR (2)

250m resolution and 1150-km swath for regular monitoring of the land and coastal environment such as redtide

1-km and 250-m resolution RGB image simulated using AVNIR-2. Light red filaments in the 250m image were the Noctilca redtide on 19 April 2009 in Wakasa-Bay.

2.5 Special resolution of SGLI thermal infrared

500/250-m thermal bands and 1400-km swath for regular monitoring of the land and coastal heat condition influenced by the land cover and river outflow

1-km and 250-m thermal images on 4 August 2003 simulated using ASTER 11um data

• The SGLI features are finer spatial resolution (250m (VNI) and 500m (T)) and polarization/along-track slant view channels (P), which will improve land, coastal, and aerosol observations. 250m over the Land or coastal

area, and 1km over offshore

GCOM-C SGLI	characteristics (Current baseline)							
Orbit	Sun-synchronous (descending local time: 10:30) Altitude: 798km, Inclination: 98.6deg							
Launch Date								
Mission Life	5 years (3 satellites; total 13 years))						
Scan Push-broom electric scan (VNR: VN & P) Wisk-broom mechanical scan (IRS: SW & T)								
Scan width1150km cross track (VNR: VN & P) 1400km cross track (IRS: SW & T)								
Digitalization	12bit Multi-an							
Polarization	3 polarization angles for P obs. for							
Along track direction	Nadir for VN, SW and T, +45 deg and -45 deg for P							
On-board calibration	 VN: Solar diffuser, Internal lamp (P by pitch maneuvers, and dark cu masked pixels and nighttime obs SW: Solar diffuser, Internal lamp, L and dark current by deep space T: Black body and dark current by deep space window All: Electric calibration 	unar, window						

		S	GLI cha	annels		
	λ	Δλ	L _{std}	L _{max}	SNR at Lstd	IFOV
СН	VN, P, S T: J		W/m ²	I, Ρ: /sr/μm (elvin	VN, P, SW: - T: NE∆T	m
VN1	380	10	60	210	250	250
VN2	412	10	75	250	400	250
VN3	443	10	64	400	300	250
VN4	490	10	53	120	400	250
VN5	530	20	41	350	250	250
VN6	565	20	33	90	400	250
VN7	673.5	20	23	62	400	250
VN8	673.5	20	25	210	250	250
VN9	763	12	40	350	1200	1000
VN10	868.5	20	8	30	400	250
VN11	868.5	20	30	300	200	250
P1	673.5	20	25	250	250	1000
P2	868.5	20	30	300	250	1000
SW1	1050	20	57	248	500	1000
SW2	1380	20	8	103	150	1000
SW3	1630	200	3	50	57	250
SW4	2210	50	1.9	20	211	1000
T1	10.8	0.7	300	340	0.2	500
T2	12.0	0.7	300	340	0.2 1	500

250m-mode possibility ~15min /path (TBC)

- Product definition and accuracy targets of GCOM-C have been set by GCOM advisory committee basing GLI achievements and current and future requirements from application organizations
- The accuracy value includes errors from
 - (1) Calibration of sensor observed radiance
 - (2) Sub-pixel (IFOV) mixing due to the spatial variation of observation targets
 - (3) Algorithm theory and input ancillary data
 - (4) In-situ observation for the validation (comparison)

We used practical accuracy values of current achievements, because these error sources vary with each observation condition.

- SGLI specification is set to achieve the accuracy targets of products within realistic sensor design and costs
- Target accuracy of SGLI ocean color products is set as same level of the GLI products* (by Mean Percent Difference), but try to do by 250m resolution
- (* Murakami et al., 2006: Validation of ADEOS-GLI ocean color products using in-situ observations, J. Oceanography, 62, 373-393)

2.7 GCOM-C products accuracy targets (Standard-1)

Area	group	Product	Day/night	Grid size	Release threshold ^{*1}	Standard accuracy ^{*1}	Target accuracy ^{*1}
Common		(including system geometric correction)		VNR,SWI Land/coast: 250m, offshore: 1km, polarimetory:1km TIR Land/coast: 500m, offshore: 1km	Radiometric 5% (absolute ^{*3}) ^{*5} Geometric<1pixel	VNR,SWI: 5% (absolute ^{*3}), 1% (relative ^{*4}) TIR: 0.5K (@300K) Geometric<0.5pixel	VNR,SWI: 3% (absolute ^{*3}), 0.5% (relative ^{*4}) TIR: 0.5K (@300K) Geometric<0.3pixel
	S ref	Precise geometric correction	both	250m	<1pixel ^{*6}	<0.5pixel ^{*6}	<0.25pixel ^{*6}
	urface lectan	Atmospheric corrected reflectance (incl. cloud detection)					0.05 (<=443nm), 0.025 (>443nm) (scene) ^{*7}
	€	Vegetation index		250m	Grass:25%(scene), forest:20%(scene)	Grass:20%(scene), forest:15%(scene)	Grass:10%(scene), forest:10%(scene)
Land	Vegetati carbon	Above-ground biomass	Daytime	1km	Grass:50%, forest: 100%	Grass:30%, forest:50%	Grass:10%, forest:20%
d d		Vegetation roughness index		1km	Grass&forest: 40% (scene)	Grass& forest:20% (scene)	Grass&forest:10% (scene)
	on a cycl	Shadow index		250m, 1km	Grass&forest: 30% (scene)	Grass& forest:20% (scene)	Grass&forest:10% (scene)
		fapar		250m	Grass:50%, forest: 50%	Grass:30%, forest:20%	Grass:20%, forest:10%
		Leaf area index		250m	Grass:50%, forest: 50%	Grass:30%, forest:30%	Grass:20%, forest:20%
	temper ature	Surface temperature	Both	500m	<3.0K (scene)	<2.5K (scene)	<1.5K (scene)

Common note:

*1: The "release threshold" is minimum levels for the first data release at one year from launch. The "standard" and "research" accuracies correspond to full- and extra success criteria of the mission respectively. Accuracies are shown by RMSE basically.

Radiance data note:

- *2: TOA radiance is derived from sensor output with the sensor characteristics, and other products are physical parameters estimated using algorithms including knowledge of physical, biological and optical processes
- *3: absolute error is defined as offset + noise
- *4: relative error is defined as relative errors among channels, FOV, and so on.
- *5: Release threshold of radiance is defined as estimated errors from vicarious, onboard solar diffuser, and onboard blackbody calibration because of lack of long-term moon samples

Land data note:

*6: Defined as RMSD from GCP

*7: Defined with land reflectance~0.2, solar zenith<30deg, and flat surface. Release threshold is defined with AOT@500nm<0.25

2.7 GCOM-C products accuracy targets (Standard-2)

Area	Group	Product	Day/night	Grid size	Release threshold ^{*1}	Standard accuracy ^{*1}	Target accuracy ^{*1}		
		Cloud flag/Classification	Both	1km	10% (with whole-sky camera)	Incl. below cloud amount	Incl. below cloud amount		
		Classified cloud fraction	Daytime		20% (on solar irradiance) ^{*8}	15%(on solar irradiance) ^{*8}	10% (on solar irradiance) ^{*8}		
Atr	Cloud	Cloud top temp/height	Both		1K ^{*9}	3K/2km (top temp/height)*10	1.5K/1km (temp/height) ^{*10}		
son		Water cloud OT/effective radius		11	10%/30% (CloudOT/radius) *11	100% (as cloud liquid water ^{*13})	50% ^{*12} / 20% ^{*13}		
Atmosphere		Ice cloud optical thickness		1km (scene), 0.1deg (global)	30% ^{*11}	70% ^{*13}	20%*13		
ere		Aerosol over the ocean	Daytime		0.1(Monthly τa_670,865) ^{*14}	0.1(scene τa_670,865)* ¹⁴	0.05(scene τa_670,865)		
	aerosol	Land aerosol by near ultra violet			0.15(Monthly τa_380) ^{*14}	0.15(scene τa_380) ^{*14}	0.1(scene τa_380)		
		Aerosol by Polarization			0.15(Monthly⊤a_670,865) ^{*14}	0.15(scene τa_670,865) ^{*14}	0.1(scene τa_670,865)		
		Normalized water leaving radiance (incl. cloud detection)			60% (443~565nm)	50% (<600nm) 0.5W/m²/str/um (>600nm)	30% (<600nm) 0.25W/m²/str/um (>600nm)		
	Ocean	Atmospheric correction param			80% (AOT@865nm)	50% (AOT@865nm)	30% (AOT@865nm)		
	color	Photosynthetically available radiatioin	Daytime	250m (coast) 1km (offshore)	20% (10km/month)	15% (10km/month)	10% (10km/month)		
Ocean		Chlorophyll-a concentration		4~9km (global)	–60~+150% (offshore)	-60~+150%	–35~+50% (offshore), –50~+100% (coast)		
	In-water	Suspended solid concentration			-60~+150% (offshore)	-60~+150%	-50~+100%		
		Colored dissolved organic matter			-60~+150% (offshore)	-60~+150%	-50~+100%		
	tempera ture	Sea surface temperature	Both	500m (coast) 1km (offshore) 4~9km (global)	0.8K (daytime)	0.8K (day&night time)	0.6K (day&night time)		
0	distributi	Snow and Ice covered area (incl. cloud detection)		250m (scene) 1km (global)	10% (vicarious val with other	7%	5%		
l X		OKhotsk sea-ice distribution		250m	10% sat. data)	5%	3%		
Cryosphere	Surface	Snow and ice surface Temperature	Daytime		5K (vicarious val with other sat. data and climatology)	2К	1K		
ů.	properti es	Snow grain size of shallow layer		250m (scene) 1km (global)	100%(vicarious val with climatology between temp-size)	50%	30%		

Atmosphere note:

- *8: Comparison with in-situ observation on monthly 0.1-degree
- *9: Vicarious val. on sea surface and comparison with objective analysis data
- *10: Inter comparison with airplane remote sensing on water clouds of middle optical thickness
- *11: Release threshold is defined by vicarious val with other satellite data (e.g., global monthly statistics in the mid-low latitudes)
- *12: Comparison with cloud liquid water by in-situ microwave radiometer
- *13: Comparison with optical thickness by sky-radiometer (the difference can be large due to time-space inconsistence and large error of the ground measurements)
- *14: Estimated by experience of aerosol products by GLI and POLDER

2.7 GCOM-C products accuracy targets (Research product)

Area	Group	Product	Day/night	Grid size	Release threshold ^{*1}				
		Land net primary production	Daytime	1km	30% (yearly)				
		Water stress trend	N/A	500m	10% ^{*15} (error judgment rate)				
Land	Application	Fire detection index	Both	500m	20% ^{*16} (error judgment rate)				
		Land cover type	Daytime	250m	30% (error judgment rate)				
		Land surface albedo	Daytime	1km	10%				
Atn	Cloud	Water cloud geometrical thickness			300m				
Atmosphe re	Radiation	Long-wave radiation flux	Daytime	1km (scene), 0.1deg (global)	Downward 10W/m2, upward 15W/m2 (monthly)				
ohe	budget	Short-wave radiation flux			Downward 13W/m2, upward 10W/m2				
	Ocean color	Euphotic zone depth		250m (coast), 1km (offshore),	30%				
	In-water	Inherent optical properties		4~9km (global)	a(440): RMSE<0.25, bbp(550): RMSE<0.25				
		Ocean net primary productivity		500m (coast), 1km (offshore), 4~9km (global)	70% (monthly)				
Ocean	Application	Phytoplankton functional type	Daytime	250m (coast), 1km (offshore), 4~9km (global)	error judgment rate of large/ small phytoplankton dominance<20%; or error judgment rate of the dominant phytoplankton functional group <40%				
		Redtide			error judgment rate <20%				
		multi sensor merged ocean color		250m (coast), 1km (offshore)	-35~+50% (offshore), -50~+100% (coast)				
		multi sensor merged SST	Both	500m (coast), 1km (offshore)	0.8K (day&night time)				
	Area/	Snow and ice classification	N/A	1km	10%				
	distribution	Snow covered area in forest and mountain		250m	30%				
Ç		Snow grain size of subsurface layer		1km	50%				
yos		Snow grain size of top layer	Daytime	250m(scene), 1km (global)	50%				
Cryosphere	Surface propaties	Snow and ice albedo	1	1km	7%				
re	proparies	Snow impurity]	250m(scene), 1km (global)	50%				
		Ice sheet surface roughness	N/A	1km	0.05 (height/width)				
	Boundary	Ice sheet boundary monitoring	N/A	250m	<500m				

Research product note:

*15: Evaluate in semiarid regions (steppe climate etc.)

*16: Fires >1000K occupying >1/1000 on 1km pixel at night (using 2.2um of 1 km and thermal infrared channels)