Updates on NPP/NPOESS; NOAA Ocean Color Activities

Dr. Paul M. DiGiacomo
NOAA/NESDIS/STAR
Chief, Marine Ecosystems & Climate Branch;
NOAA CoastWatch Program Manager

13th IOCCG Committee Meeting
Paris, France, 12-14 February 2008
Mission

- National, operational, polar-orbiting environmental monitoring capability
- Converges DoD & NOAA weather satellite programs
- Incorporates new technology from NASA programs
- International cooperation with European MetOp satellite

Benefits

- Critical input to weather forecast models
 - NPOESS will improve accuracy and expedite data products
- Greatly improved direct broadcast data to users worldwide
- Science-quality data to all users – including research scientists and continuity of climate data records
• NPOESS has completed restructure and is executing to re-baseline contract
• Performance on NPOESS Engineering, Manufacturing & Development program
 ▪ On schedule and budget for last two years
 ▪ Contract modification signed in July 2007
 ▪ System design meets requirements for improvements in data delivery for current and accurate weather forecasting
 ▪ On track to deliver essential weather measurements and 14 of 26 essential climate variables
 ▪ System capacity to accommodate de-manifested sensors and other sensors to provide additional monitoring
 ▪ Currently re-manifesting OMPS-Limb and CERES on NPP
• NPOESS sensors are in final testing for delivery for NPOESS Preparatory Project launch
• NPOESS remains on track for Jan 2013 launch of C1 spacecraft
Systems Engineering & Science Progress

Integration and Test
- Critical Design Review scheduled for April 2009
- NPOESS Preparatory Project compatibility tests completed
- Command, Control, Communications (C3) Segment for NPP is complete

Algorithms & Verification
- Algorithms functioning as an integrated system
- Initial phase of algorithm development is ~85% complete
- Near-term focus is on completing test & verification of operational algorithm software

Operations & Support
- Effective transition from C3 to Operations & Support (O&S) in Jan 07
- On track for Integrated Data Processing System and C3S development teams to perform O&S through EMD
Sensor Payload Development Progress

VIIRS EDU
- Completed system data handling testing while integrated on NPP

VIIRS Flight Unit
- System integration completed
- Environmental testing in Spring 08

OMPS Flight Unit
- Nadir environmental testing completed
- Electrical and mechanical interface to NPP verified
- OMPS Limb re-manifested on NPP
- Integrated Sensor Suite Testing in Spring

OMPS Instrument (BATC)

CrIS EDU
- Completed system data handling testing while integrating on NPP

CrIS Flight Unit
- Frame testing successfully completed
- System integration and test started in October 2007
- Delivery in May 2008

CrIS Instrument (ITT)

VIIRS EDU (Raytheon) integrated on NPP (BATC)
Ground Segment Progress

- **Ground Segment**
 - NOAA Satellite Operations Facility (NSOF) complete
 - Command and Control completed and installed at 4 locations
 - NPP Flight Vehicle Simulator installed

- **NOAA Satellite Operations Facility**

- **NPP Svalbard Modifications Completed**
 - Communications services to NSOF established
 - End to End compatibility checkouts conducted
 - WindSat data relay operational

- **IDP Segment**
 - Build 1.4 completed qualification testing
 - Final NPP Software Increment Build 1.5 in development
 - Acceptance Test at sites in Summer 2008

- **Downlink at Svalbard**
NPP-VIIRS Ocean Color Status, Impacts & Plans

• The Visible/Infrared Imager/Radiometer Suite (VIIRS) on the NPOESS Preparatory Project (NPP) does not appear capable of providing climate-quality ocean color data for the U.S. research and applications communities.

• Regardless if NPP delayed, unable to seek changes to VIIRS to ensure adequate performance for ocean color imaging that meets radiometric standards for climate-quality data; there would be unreasonable risk in opening up the optics module in which the filter resides.

• Every effort is being made to implement changes to VIIRS on NPOESS C1 to ensure performance for ocean color imaging that meets radiometric standards for climate-quality data, and will do with other climate products, make pre-flight test data sets available in a timely and transparent manner.

• Discussion and coordination efforts underway with ESA (MERIS) and ISRO (OCM-II) regarding international sources of ocean color data
NPOESS Data Exploitation (NDE)

NDE Mission Statement: Deliver data products and assist NOAA and other civilian operational users to realize the potential of NPOESS observations.

NDE will be a critical link to achieve return on the NPOESS investment.

NPOESS Ground Systems

- SafetyNet
- Command and Control

NPOESS Data Exploitation

- Ingest
- Process
- Quality Control

(operated in ESPC)

Near Real-time Delivery

Archive and Access

Operational User Community

NOAA Science Center
NDE Operational System Objectives

- Disseminate NPOESS Data Records to customers
- Generate and disseminate tailored NPOESS Data Records (versions of NPOESS Data Records in previously agreed alternative formats and views)
- Generate and disseminate NOAA-unique products (augmented environmental products constructed from NPOESS Data Records)
- Deliver NOAA-unique products, product processing elements, and associated metadata to CLASS for long-term archiving
- Provide services to customers, including NDE product training, product enhancement, and implementation support across NOAA
- Provide software for NPOESS Data Record format translation and other data manipulations
NDE User Community

US GOVERNMENT

- DOC / NOAA
 - National Weather Service
 - Ocean Service
 - Fisheries
 - Research
 - Satellites & Information
- Department of Agriculture
- Federal Aviation Administration
- Coast Watch
- NOAA/Navy National Ice Center

DOMESTIC AND INTERNATIONAL

- Commercial Sector (e.g. Energy Industry)
- Universities, Researchers et al.
- European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)
- International Meteorological Services (India, Japan, Brazil, UK, ECMWF, etc.)
- World Meteorological Organization
- Data Collection Service
- Search and Rescue
NPP Phase 1

Legacy mission continuity replacement products comprised of currently funded NOAA Unique Products (NUPs) and xDRs

<table>
<thead>
<tr>
<th>CrIS Thinned Radiances</th>
<th>SST Anomalies</th>
<th>Ozone Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrIS Cloud Cleared Radiances</td>
<td>Coral Reef Degree Heating</td>
<td>Ozone Total Column</td>
</tr>
<tr>
<td>Total Precipitable Water (ATMS)</td>
<td>Coral Reef Bleaching</td>
<td>Snow Cover</td>
</tr>
<tr>
<td>Snow Cover (ATMS)</td>
<td>Total Ozone (CrIS)</td>
<td>Imagery</td>
</tr>
<tr>
<td>Precipitation Type/Rate (ATMS)</td>
<td>Carbon products</td>
<td>Ocean Color/Chlorophyll</td>
</tr>
<tr>
<td>Surface Emissivity (ATMS)</td>
<td>SST (AVHRR-like)</td>
<td>Vegetation Index</td>
</tr>
<tr>
<td>Cloud Liquid Water (ATMS)</td>
<td>Aerosol (AVHRR-like)</td>
<td>Active Fires</td>
</tr>
<tr>
<td>Sea Ice Cover/Concentration (ATMS)</td>
<td>Rain Water Path/Profile (ATMS)</td>
<td>Atmospheric Temperature Profile</td>
</tr>
<tr>
<td>Snow Water Equivalent (ATMS)</td>
<td>ATMS Radiiances</td>
<td>Atmospheric Moisture Profile</td>
</tr>
<tr>
<td>Ice Water Path (ATMS)</td>
<td>CrIS Radiances</td>
<td>Aerosol Optical Thickness</td>
</tr>
<tr>
<td>Land Surface Temperature (ATMS)</td>
<td>VIIRS Radiances</td>
<td>Surface Type & Vegetation Cover</td>
</tr>
<tr>
<td>Temperature Profiles (ATMS)</td>
<td>OMPS Radiances</td>
<td>Surface Albedo</td>
</tr>
<tr>
<td>Moisture Profiles (ATMS)</td>
<td>Cloud Mask</td>
<td>Cloud Cover/Layers</td>
</tr>
<tr>
<td>Blended SST</td>
<td>Sea Surface Temperature (SST)</td>
<td></td>
</tr>
</tbody>
</table>
NPP Phase 2

Enhanced products comprised of additional NUPs and xDRs not linked to mission continuity

<table>
<thead>
<tr>
<th>NOAA-Unique Products</th>
<th>Tailored Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar Winds (VIIRS)</td>
<td>Aerosol Particle Size</td>
</tr>
<tr>
<td>Clear Sky Radiances (VIIRS)</td>
<td>Cloud Top Temperature</td>
</tr>
<tr>
<td>Vegetation Health</td>
<td>Cloud Top Pressure</td>
</tr>
<tr>
<td>Vegetation Moisture</td>
<td>Land Surface Temperature (VIIRS)</td>
</tr>
<tr>
<td>Drought Indices</td>
<td>Cloud Base Height</td>
</tr>
<tr>
<td>Vegetation Thermal Conditions</td>
<td>Cloud Effective Particle Size</td>
</tr>
<tr>
<td>Leaf Area Index</td>
<td>Cloud Optical Thickness</td>
</tr>
<tr>
<td>Fire Potential</td>
<td>Cloud Top Height (VIIRS)</td>
</tr>
<tr>
<td>Near Coast Ocean Color</td>
<td>Ice Surface Temperature</td>
</tr>
<tr>
<td>Integrated xDRs at CrIS Resolution</td>
<td>Net Heat Flux</td>
</tr>
<tr>
<td>Cloud Liquid Water Path (VIIRS)</td>
<td>Sea Ice Characterization (VIIRS)</td>
</tr>
<tr>
<td>Cloud Ice Water Path (VIIRS)</td>
<td>Suspended Matter</td>
</tr>
<tr>
<td>Cloud Top Temperature (VIIRS)</td>
<td>Atmospheric Pressure Profile</td>
</tr>
</tbody>
</table>
Coastal Waters Imaging (CWI)

- **Analysis of Alternatives (AoA)**
 - Due to cancellation of GOES-R HES, the NOAA-NESDIS Office of Systems Development led an AoA study including NOAA Goal Teams, Academia, Contractors and other participants to address NOAA requirements for advanced sounding and coastal waters imaging capability.

- **Summary**
 - Both LEO and GEO solutions studied in AoA can meet NOAA requirements for High-temporal, operational Coastal Waters Imaging (CWI) in 2014.
 - Four small satellites with CW Imagers could provide the required frequency of sampling.
 - Designs for a low-risk operational multispectral or hyperspectral coastal waters imager exists for Low Earth Orbit (LEO).
 - Coverage includes WA, ME, AK and HI, which are not covered at 300 meters resolution by a single GEO sensor.
 - Preliminary designs for multispectral CWI for Geostationary Orbit (GEO) look promising, but require long integration times.
 - Spacecraft stability may not be adequate for ocean color imaging at 300 m GSD; requires further study.
 - Conflicting estimates on the cost of the ground segment need to be resolved.
 - Cost of ground segment for LEO or GEO solution similar – not a deciding factor when comparing the two approaches.
Path Forward for Coastal Waters Imaging

- Recommended path forward for a 2014 operational CWI system involves an earlier demonstration to:
 - Allow time for algorithm development and testing and user familiarization
 - Provide risk reduction in the product generation, product distribution, and user readiness
 - Take advantage of Hyperspectral Imager for the Coastal Ocean (HICO) to be launched in July 2009 on the Japanese External Module on the International Space Station (JEM-ISS) to collect a demonstration data set
 - Office of Naval Research funded instrument, Space Test Program funding integration and launch, NASA and Japanese Space Agency (JAXA) providing space and support on the ISS
 - ISS orbit allows for the collection of data at all times of day to assess optimal timing of coastal waters imaging
 - Support the COAST science team for related activities
 - Requires support for operational in situ calibration source (i.e., MOBY/next generation replacement)
 - At the same time initiate a Pre-Phase A study to evaluate issues with geostationary ocean color imaging and choose between the LEO or GEO solution (should be pursued in coordination with NASA).