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Abstract

Governments around the world, as well as private industry, invest heavily in remote sensing spacecraft to obtain data about natural
and environmental resources, climate change, and the relationship of earth science to human health and quality of life. Numerous studies
have been undertaken to describe and measure the value of the data from these spacecraft in order to justify further investments. The
studies use a wide variety of methods and generally find a large range of benefits, from quite small to very large, in part because of
differences in methodologies. This article offers a general framework for measuring the value of information. The framework serves two
purposes. One is provision of a comprehensive and common basis by which to conduct and evaluate studies of the value of earth science.
The second is to better inform decision makers about the value of data. Decision makers comprise three communities: consumers and
producers of information, public officials whose job is to invest in data acquisition and information development (including sensors and
other hardware, algorithm design and software tools, and a trained labor force), and the public at large.
r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

We find the value of information (VOI) is not zero, but
it is not enormous, either. (William D. Nordhaus,
Sterling Professor of Economics, Yale University,
writing about the value of weather and climate
information, 1986) [1].

If we’d been able to produce a forecast last spring that
California would be deluged this winter, it would have
been worth whatever research investment was involved,
if only because of the human misery it would have
relieved. (D. James Baker, then Administrator of the
National Oceanic and Atmospheric Administration,
writing shortly after heavy rains had flooded many
parts of California, 1995) [2]

The mystery of the ‘value’ of information y So often
studies of information find its economic benefit—one
measure of its value—to be smaller than conventional
belief might suggest. In other cases, studies find benefits so
large as to justify nearly infinite amounts of investment.

The explanation lies in the characteristics of information,
how decision makers use it, and differences in how analysts
model this relationship.
This article first reviews frameworks previously devel-

oped by scholars for conceptualizing the economic VOI in
general terms. It then illustrates how the frameworks might
be used to value information from earth science data. The
article seeks to fill a gap in linking previous generic
research with its specific applicability to earth science from
space remote sensing. Filling this gap serves two purposes.
One purpose is provision of a common basis by which to
conduct and evaluate studies of the value of earth science
information in serving a variety of uses, from improving
environmental quality to protecting public health and
safety. The second is to better inform decision makers
about the value of data and information. Decision makers
include public officials and agencies, other consumers and
producers of information (such as farmers, climate change
scientists, oil companies), and the public at large. Equally
importantly, public officials whose job is to invest in
data acquisition and information development (including
sensors and other hardware, algorithm design and
software tools, and a trained labor force) wrestle with
how to justify these investments. As countries consider
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their contributions to the new Global Earth Observation
System of Systems (GEOSS), credibly communicating the
value of earth science information is key to engaging public
support as well as the support of finance ministers [3,4]. In
the USA the reallocation of the space budget towards
human exploration activities calls for evermore convincing
discussion of the relative merit of earth science activities [5].

The next section of this paper describes the VOI
framework and previous studies. The paper then assesses
directions for next steps in improving understanding of the
VOI obtainable from applications of earth science data to
real-world resource management. The focus is on the
economic value of information, which refers to many of the
benefits society obtains but does not include other
important benefits, such as, for example, the scientific
value of better understanding Earth’s geology or atmo-
sphere.

2. Overview: the ‘value’ of information

VOI is essentially an outcome of choice in uncertain
situations. Imagine the weather concerns of a farmer, a
businessperson on her way to work, or a trucking company
considering whether to place tarpaulins across the top of its
trucks to protect their cargo. These individuals may be
willing to pay for information depending on how uncertain
they are about the weather, and on what is at stake in the
event of bad weather. They may be willing to pay for
additional information, or improved information, as long
as the expected gain exceeds the cost of the information—
inclusive of the cost of gathering and processing these data
to render them useful in the particular circumstance.

More specifically, the general conclusions from models
of information [6,7] are that its value largely depends on
several factors, explained more fully below:

1. how uncertain decision makers are;
2. what is at stake as an outcome of their decisions;
3. how much it will cost to use the information to make

decisions; and
4. the price of the next-best substitute for the information.

From (1), VOI depends on the mean and spread of
uncertainty surrounding the decision in question. In a
study of the use of space-derived earth science data about
crop leaf areas, Harris seeks to measure the reduction
enabled in the forecast error in British Sugar PLCs sugar
beet yield [8]. Harris thus illustrates that VOI can be
measured based on how its value changes with changes in
different attributes of information. Attributes may include
improved accuracy in terms of spatial, spectral, or
temporal resolution, or greater frequency of collection, or
other specific characteristics of the data product itself.

From (2), the value depends on the value of output in the
market—that is, the aggregate value of the resources or
activities that are managed, monitored, or regulated. In
other words, a willingness to pay for data about crop

production conditions depends in part on the value of
agricultural output, while the value of earth science data
about oil exploration potential is in part a function of
the price of gas. More formally, willingness to pay for
information is derived demand—demand emanating from
value of the services, products, or other results that in part
determine this worth. In cases where VOI pertains to non-
market goods and services, output measures can also used.
For instance, in the case of human health or safety, the
‘‘output’’ measure is typically expressed in terms of the
value of a statistical life (a measure routinely used by
government safety and health regulators). In cases where
the information pertains to the environment, the ‘output’
can be expressed in terms of measures of the value of
environmental quality or the value of damage avoided
thanks to actions that may be taken in light of the
information. In this regard, Backhaus and Beule acknowl-
edge the difficulty of conventional cost–benefit evaluation
of earth science because the data are about public goods—
the environment, natural resources have no ‘price’ against
which to measure costs and benefits [9]. As a result,
Backhaus and Beule suggest surveys of users to ascertain
which attributes of earth science products are most useful
(more on this in Section 2.2.3).
From (3) and (4), it is important to note that there are

usually substitutes for information (traditional ‘windshield’
surveys and aerial photography are used instead of satellite
data for monitoring some types of land use, for instance).
In addition, processing and interpreting data to make them
usable can often be a major roadblock to realizing the
value of data and information. For example, a recent US
National Research Council study emphasizes the gap
between raw data (the bytes or pixels) and the useable
information required by users, and identifies such problems
as the format of the data and whether they have been
validated and verified for accuracy [10]. The report
emphasizes further that most state and local decision
makers lack financial, workforce, and technical (hardware
and software) resources to use remote sensing data or apply
tools for its interpretation and use, even though the data
could prove very useful for certain types of decisions.
Sen discusses the usefulness to the energy industry of

space-derived remote sensing weather information, includ-
ing details such as solar irradiance and sea wind data [11].
He concludes (p. 23) ‘‘What we are really talking about
here is not the value of a physical product, but the
information it can yield (emphasis in the original). In this
regard, a satellite by itself is useless without the supporting
IT infrastructure to support the flow of data and make
sense of ity The data, too, are useless unless they can be
accessed and interpreted by people who need the informa-
tion they hold.’’
Generally, the larger are (1) and (2), the larger is VOI.

The larger are (3) and (4), the smaller is the value. These
values also depend on the individual who is using the
information. A decision maker usually has subjective
probabilities about the quality of the information and will
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make use of additional information to ‘update’ his or her
prior beliefs. (This influence on VOI—outside the scope of
this article—is the widely accepted applicability of Baye-
sian probabilities to characterize how individuals perform
this updating.)

2.1. The usual framework

A standard mathematical formulation describes these
general characteristics of information. Individuals are
assumed to form their own opinions about the probabilities
of two states of the world, say, the simple case of ‘rain’ and
‘no rain’. The VOI is in permitting the person to revise their
estimates of these probabilities. In the cases of some of the
applications currently under way in earth sciences activ-
ities, the counterparts to ‘rain’ and ‘no rain’ might be
described along these lines:

Energy forecasting: the presence of solar thermal or
geothermal resources compared with their absence. In
this application, a possible contribution of earth science
to supporting decisions is an improved toolkit with
which to assess the likelihood of quantities of these
resources and more accurately map their spatial
distribution for the purpose of using and managing
global energy resources.
Carbon management: improved modeling and measure-
ment of the carbon cycle compared with current
understanding of the cycle. Here, earth science may
provide improvements that are sufficiently adequate to
enable policy makers to implement an effective carbon
management regime (e.g. carbon control or carbon
trading).
Aviation safety: improvements in weather forecasting.
Earth science may enable increased efficiency and safety
of air travel.

Formally, the typical model follows this specification:

Maximize expected value: E(y9A) ¼ pyA1+(1- p )yA2

Subject to a budget constraint: y ¼ PXX+PI I.

In the first equation, y is a budget, A is the state of the
world (say, A1 is crop yield if it rains; A2 is yield if it does
not rain), and p is the probability of rain. The second
equation represents the limits, or budget constraint, facing
the individual in spending resources to purchase, process,
and use information I at price PI and to purchase and use
all other goods and services X at price PX.

The result of the maximization calculus is that the person
should buy additional information until the expected
marginal gain from another piece of information is equal
to its cost. Usually, this expected value is depicted to reflect
the individual’s attitude toward taking a risk (she can be a
risk lover, or be averse to risk, or be risk neutral).

One of the best textbook examples of how this model
operates is reproduced in Table 1 and Fig. 1 (this example
is from [12]; see also additional discussion in [13]). Suppose

a farmer can harvest his entire crop today at a cost of
$10 000 or half today, half tomorrow at a cost of $2500 per
day. The harvested crop is worth $50 000. Table 1 indicates
the ‘payoff’ to the farmer in the event of heavy rain.
In expected-value terms, these payoffs are $40 000 to
decision A and p ($22 500)+(1"p) ($45 000) to decision B.
If p ¼ 5/22.5, then the decisions give the same payoff if the
farmer is ‘risk neutral’. If he were risk averse, he would
want a lower value of p before he would wait to harvest.
If it is possible to forecast the weather, then p is the

probability that the information the farmer receives is that
there will be heavy rain tomorrow with certainty (and
(1"p) is no rain, with certainty). Since it is a subjective
probability, p can vary among farmers. The expected
payoff with information is then

pð$40 000Þ þ ð1" pÞ ð$45 000Þ.

If $x is the most the farmer would pay for information,
then $x is equal to the difference between the expected
payoff with information, and the expected payoff without
information.
The key message is that the VOI varies with p as in

Fig. 1. The value is greatest at p ¼ 5/22.5 (where
$x ¼ $3888); as above, this is the p at which the farmer
flips a coin. In other words, the VOI is largest when the
farmer is the most uncertain. Information can thus make
the biggest difference here. The VOI is zero at p ¼ 0 and
p ¼ 1, since, at these extremes, the farmer is already certain
in his own mind whether it is going to rain, and
information is extraneous (even if the farmer is wrong).
Applications of the model can show the effects of

changing the amount or quality of information as well as
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Table 1
The payoff matrix (from [7], p. 309)

Nature: decision: Heavy rain
tomorrow

No heavy rain
tomorrow

A. Harvest all today $40,000 $40,000
B. Harvest over two days $22,500 $45,000

$x

4000

3000

2000

1000

X=$17.500 p

X=$5000 (1-p)

1/4 1/2 3/4 1

p

Fig. 1. Value of information (based on [12] ).
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subsequent revisions that the individual may make of the
probability (the Bayesian updating referred to earlier).

Revisiting the overview in this section, then, the
implications for VOI from this approach are as follows:

Information is without value

& when individual’s beliefs are at extremes (p ¼ 0 or
p ¼ 1);
& when there are no costs associated with making the

wrong decision;
& when there are no actions that can be taken in light of

the information.

Information has less value

& when individual’s beliefs are close to extremes;
& when the costs of making the wrong decision are low;
& when actions to take are very limited.

Information has the most value

& the more indifferent is the decision maker among her
alternatives (she flips a coin);
& the larger are the costs of making the wrong decision;
& the more responsive are the actions that can be taken.

These implications explain the plight of many popula-
tions in developing countries: even if severe-weather
forecasts were more accurate, in many cases there are few
actions that can be taken in light of the information. They
also account for the well-documented incentive for people
in the USA to build homes along floodplains: even if these
are better mapped, the costs of making the wrong decision
can be low, mitigated by US federal flood insurance.

It is important to note that information cannot only
influence probability but also inform the decision maker by
affecting his expected value of the harvest based on
information about crop quality and other conditions
unrelated to the probability of rain. For example, the
choice of whether to harvest may be influenced by
information about crop health, irrespective of the prob-
ability of rain. A slightly more complex specification of the
mathematical model that makes these relationships explicit
is in [14].

From this discussion, ultimately a decision maker must
process a host of information into a decision that reflects
assessment of the probabilities of various outcomes. To the
extent that information alters a priori probabilities (the
likelihood of rain) or improves understanding of the
choices themselves (the quality of the harvest) and allows
individuals to make better decisions, information is a
resource that has economic value.

In applying the model, government agencies may or may
not be able to express their budget constraint formally, but
most will certainly be able to describe the resources they
save, the productivity they gain, or the reallocation of
resources from other activities (the X) to the space-derived

information (the I). All of these are suitable approxima-
tions for the values reflected in the model.

2.2. Previous studies

Studies of the VOI have a long and far-ranging history
that brings a wealth of examples with which to extend
approaches for earth science applications. Analysts study-
ing the value of earth science information have used some
but not all of these techniques; accordingly, the next
sections inventory these approaches. The studies fall into
three types of models: econometric estimation of output or
productivity gains thanks to information; hedonic price
studies; and contingent valuation surveys.

2.2.1. VOI measured by gains in output or productivity
Most of the early VOI studies focused on the topic of the

value of weather information for agricultural production
and management. Johnson and Holt note 20 such studies
dating from the 1960s onwards, including applications to
bud damage and loss; haymaking; irrigation frequency;
production of peas, grain, soybeans and grapes (raisins);
fed beef; wool; and fruit [15]. More recently, Adams and
co-authors observed changes in crop yields associated with
phases of the El Niño-southern oscillation (ENSO) and
used the market value of the yield differences to estimate
the commercial value of the ENSO phenomenon [16].
Other studies include [17–22]. Some studies use a times
series of the behavior of commodity prices in futures
markets to infer weather-related values. Two examples are
Roll, who studied orange juice futures [23], and Bradford
and Kelejian, who studied stock prices of wheat [24].
Changes in futures and stock prices following weather
predictions over time are taken as measures of the value of
the forecast.
Additional studies have encompassed a wide variety of

other topics, ranging from the effects of weather forecasts
on the decision to use tarpaulins in the trucking industry
[25] to the effects of information about differences in oil
prices on petrol demand in urban areas [26] and the
problem of risk assessment by insurers. A classic discussion
of this extensive literature is in [27]. Other recent studies
focus on the value of space-derived data for natural
disasters [28,29], geomagnetic storm forecasts [30], geologic
maps [31] and deforestation in the Brazilian Amazon [32].
The latest detailed applications of VOI are to studies of the
information role played by the internet; for example, how
consumers’ ability to obtain information through the
internet and shop online influences prices charged for
goods and services [33].
The approaches used range from highly sophisticated

econometric studies and detailed simulation models to less
detailed, ‘back-of-the-envelope’ estimates. Given abundant
information—for example, the large amounts of data on
crop yields, rainfall, and crop prices in the case of
agricultural production—researchers can undertake rich
statistical analyses. The typical study of the value of
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weather information for agriculture compares expected
farm profits under average but uncertain weather patterns
with profits that might be expected if rain could be
accurately forecast. In other topic areas, too few data may
be available and the studies tend to be anecdotal.

All the studies start from the basis of the contribution of
information to the value of output, as pointed out above.
Many of the socioeconomic benefits described in current
earth science programs are based on a similar approach:
they multiply the total value of output, at-risk assets, and
other aggregate activity by an estimated percentage by
which the activity may be affected by earth science
‘‘information outputs.’’ For instance, the total annual
benefit to the electric utility industry of better forecasts of
hot and cold weather is a basis benchmark for measuring
the incremental contributions of earth science outputs.
Preparedness for disaster management can use the total
value of loss to life and property associated with natural
disasters as a basis benchmark.

In a review of studies that have followed this approach,
Nordhaus notes ([1], p. 3):

All of the studies I know of the value of perfect
information find its value to be on the order of one
percent of the value of output. For exampleyone study
found that if you halve the standard error of precipita-
tion and temperature, say from one percent to one-half
percent, or one degree to one-half a degree, you get an
improvement in the value of the output on the order of 2
percent of the value of wheat production. A study of
cotton gave the same order of magnitude. I have looked
at a number of studies in the area of nuclear power and
energy, trying to determine the value of knowing
whether nuclear power is ever going to pan out. Again,
perfect information is worth on the order of one percent
of the value of the output.

Roll reaches similar conclusions in his study of the effect
of weather information on the behavior of futures markets
for orange juice and the effect of weather information on
these markets, finding that ‘‘there is a puzzle in the orange
juice futures market. Even though weather is the most
obvious and significant influence on the orange crop,
weather surprises explain only a small fraction of the
observed variability in futures prices’’ [23].

If conclusions such as these are borne out, then
compared with the value of the final product, whether
measured as the value of production or capitalized into
futures prices, the incremental gain from information
appears to be small. But of course, in industries where
the value of output is in the billions of dollars, a small
percentage of a large number is a large number for the
value of information.

Many observers wonder why the values are not larger.
This observation is illustrated in an editorial by a former
administrator of the National Oceanic and Atmospheric
Administration, quoted in the introduction [2]. His
conclusion might be easier after the fact (‘‘If only I had

known’’). It is much more difficult to arrive at such a
conclusion before the fact, however. Some of the reasons
why relate to the four characteristics of information in
Section 2: using information can be costly, and there are
often good substitutes for different kinds of information at
lower cost. In general, it is only ex ante—before the event—
that we are willing to pay for information, because
afterward it is less important. Indeed, the ex ante, or
expected value, is what experts agree determines the value
of information, as in the model described earlier. If the
probability of an event is either very unlikely or very likely,
or if the actions that can be taken to avert its effects are
minimal, then this value can be quite low.
In addition, VOI can be reduced after second- and third-

order effects, or repercussions, formally known as the
dynamic responses. For instance, in the case of agricultural
production, increased output brought about by better
weather information can cause crop prices to fall, thereby
resulting in a decline in the value of output and a decline in
the VOI for the industry (although of course, consumers
would benefit from the lower prices).

2.2.2. Hedonic pricing studies
Another large literature has not yet been applied to earth

science but may prove useful. These studies date from the
1970s and use wages and housing prices to infer the value
of weather information, under the hypothesis that it is
capitalized into the prices of such goods and services. These
studies are premised on hedonic price theory, by which
researchers model the market for a commodity and then
infer the value of specific characteristics of the commodity.
Rosen’s study is among the seminal theoretical and

empirical research that considers the extent to which
differences in wages among workers in different cities (in
a given set of occupations) reflect differences in urban
quality of life [35]. He considers not only personal
characteristics influencing wages, such as education and
age, but also measures of urban amenities and disame-
nities. These ‘quality-of-life’ factors include pollution
(water pollution, particulates, sulfur dioxide, inversion
events), the crime rate, crowding (population density,
population size, central city density), market conditions
(unemployment rate, population growth), and climate
(number of rainy and sunny days, number of extremely
hot days). He expects higher wages in cities with
disamenities compared with nicer cities, and this compen-
sating differential is expected to work in the opposite
direction for urban amenities: a city with pleasant weather,
for example, may not have to offer higher-than-average
wages to attract workers and may even be able to offer
lower wages. Rosen finds that climate variables are
statistically significant in the expected directions. Wage
rates are higher, for instance, in cities with rainy or
extremely hot weather.
In a study of housing prices Blomquist and co-authors

estimate differences in inter-urban quality-of-life measures
using households’ monthly housing expenditures (rent for
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tenants, imputed rent for homeowners) and measures of
climate, environmental quality, crime, and other variables
[36]. The climate measures include precipitation, humidity,
heating degree-days, cooling degree-days, wind speed, and
sunshine. All the climate variables are found to be
statistically significant determinants of housing expendi-
ture, with an inverse correlation between expenditure and
precipitation, humidity, and heating and cooling degree-
days and a positive correlation between expenditure, wind,
and sunshine.

Blomquist and co-authors also include wages in their
study and combine the housing expenditure and wage data
in a model that estimates the ‘‘full implicit price’’ of urban
area quality-of-life variables. They find negative prices
(that is, a marginal net disamenity) for precipitation,
humidity, heating and cooling degree-days, and wind
speed.

Hedonic approaches to valuing amenities are not with-
out problems of data availability, modeling assumptions,
and econometric issues. Freeman surveys and critiques the
methodology of most of the studies to date linking wages
and housing prices with environmental amenities [37].
Nonetheless, extending the approaches to include not only
average temperatures but also, say, weather variability
could enable the models to more closely proxy the VOI
associated with weather forecasting.

In addition, the hedonic methods could be used to
identify the most useful attributes of data. To illustrate,
Ausubel [38] shows the influence of the accuracy of data,
based on a statistical measure of accuracy, the standard
deviation, on the value of a weather forecast (see Fig. 2).
The shape of the curve plotted in that figure shows
important information for a decision maker who must
decide how to invest in a new system, say, if the goal is

‘‘better data.’’ At an accuracy level of a 2-degree or 2 inch
error, the graph shows that the value of the forecast is quite
low. Unless the new system can do better in terms of data
accuracy, it may not be worth the investment.
In similar spirit, Nelson and Winter use an expected

value approach to show which attributes of a forecast, such
as spatial coverage, accuracy in degrees or inches, or
frequency of updating, matter most to the trucking
industry [25]. These authors do not use hedonic techniques
but their data could be amenable to these techniques
because the writers focus on attributes of the data—their
accuracy (standard deviation) and other specific character-
istics. As noted earlier, Harris [8] identifies data character-
istics—specifically, measures of accuracy—in his study of
the value of space data in producing British sugar beet.

3. Further applications to space-derived earth science

This section illustrates approaches for future in-depth
study, review, and application. The purpose of the VOI
studies would be to better understand, explain, and where
possible assess the cost-effectiveness of assimilation and
operational use of earth science data and science results.
Linking the application of earth science to services

provided for the public—the situation of space-derived
earth science in most countries—means that demand for
applications tools is derived demand—that is, demand
derived from government requirements to fulfill responsi-
bilities. A critical challenge in this case is separating
progress toward objectives from the impact of external
factors, since the objectives of many government programs
are the result of complex political decisions outside the
program’s control. It may also be the case that a tool
designed for a specific government project may be
orphaned if the project is canceled. In a narrow sense the
usefulness of earth science applications is thus critically
dependent on other government policies for public health
and safety, the environment, and natural resources.
Table 2 outlines a set of questions that might be asked of

government offices to document the value of earth science
outputs or information as they implement a hypothetical
mandate to monitor invasive plant species. The questions
ask what difference the earth science contribution has
made in improving the ability of the office to carry out its
tasks more productively or achieve its goals. A key to
credible responses from agencies is the criterion underlying
contingent valuation (CV) in Section 2. The aim is to
ascertain what agencies would be willing to pay to use the
outputs: what do the outputs save or enable, what would
an agency do without the outputs, and how much more
would it cost or how much less effective would the results
be? That is, rather than saying, ‘‘The earth science
contribution is terrific!’’ the agency’s response should be,
‘‘Because of the earth science contribution, we have saved x
amount of money and improved implementation of our
mission by y.’’
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Fig. 2. The value of information and its characteristics ([38]).
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In the illustration in Table 2 it is assumed in column (a)
that data to monitor invasive plants can be collected
in situ at a cost of $20 million/year, or remotely for
$10 million/year. In addition, quality control (validation
and verification) costs $0.05 million/year and analysis to
render the data useful information (transforming the pixels
into useful information) costs $15 million/year. In column
(b), for collecting the data, 80% of the cost is to access the
location of the invasive plants, and the other 20% is spread
across the costs of making a measurement, how frequently
the measurements are made, and other quality dimensions
of the data. For the category of data analysis, the costs are
spread among interpretation, prediction, and validation
and verification. With this explicit list of cost categories,
the potential VOI of a new sensor for data on invasive
species becomes clearer. In other words, if the space earth

science community says that it can design a new sensor to
enable cost reductions in some of these cost factors as
shown as a percentage in column (c), the cost savings
enabled by the space-derived data are as in column (d).
These potential cost savings can be used by the decision
maker in comparing the cost of the sensor with these
savings to decide if the investment is justified. The virtue of
a table such as that illustrated here is to make explicit the
exact nature of the improvement in the VOI that will be
offered by, say, a new sensor.
Table 3 suggests steps to take to identify and measure the

most difficult but most salient performance measure,
‘socioeconomic benefit’. These steps follow the VOI model
in Section 2. In the table, an agency is assumed to have a
mandate such as to save lives or to improve agricultural
productivity. In order to use most data, the agency
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Table 2
Enabling and improving human health and environmental protection: a Hypothetical earth science application for monitoring invasive plant species

(a) Benchmark: cost factors (b) Benchmark:
allocation of costs

(c) Earth science
contribution to cost
reduction

(d) Enabled cost
reduction$ millions/ year

Data collection In situ $20
million/year

Access 80% k 5% to 8% $0.8–1.28
Routine measurement 5%
Frequency of
measurement

5% k 20% to 25% $0.2–0.25

Quality 10%
Remote $10 million/year
Validation and verification
$.05 million/year
Data analysis $15 million/ year

Interpretation 80%
Forecast, prediction 15% k 3% to 8% $.07–0.2
Quality control 5%

Note: All entries are fictional.

Table 3
‘‘Impact’’ or ‘‘socioeconomic benefit’’ measures based on earth science VOI: a stylized description

(1) Agency mandate: save lives, protect environment, improve agricultural competitiveness, etc.
- (2a) Range of values of agency cost of DSS to implement (1).

(3a) Range of values of savings or productivity gains due to earth science data
By way of DSS.

(4a) Rough estimate of VOI (subtract (3a) from (2a) and express as a range, with
associated contingencies/uncertainties/caveats described).

_Toc104259113OR_Toc104259113
- (2b) Range of size of benefit due to earth science via DSS in implementing (1).

(3b) Rough estimate of VOI (weight (multiply) (2b) by relevant base value).
Examples:
Aviation safety
Benefits per year (estimates of lives saved) enabled by earth science data: y to z lives/year.
Implied earth science ‘‘VOI’’: y to z multiplied by federal value of statistical life ($/year).
Agricultural competitiveness
Value of output: $x/year.
Improvement in output due to earth science data via DSS: y to z%/year.
Implied earth science ‘‘VOI’’: product of $x and y to z%/ year.

NOTE: DSS is ‘‘decision support system,’’ or the computer models and other tools that make use of earth science data.
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typically will employ a ‘decision support tool’, often a
computer model or other framework. (In the USA, for
example, the Department of Energy has a large model
called The National Energy Modeling System, the Envir-
onmental Protection Agency has numerous air quality
models, and the weather service has many forecast models.)
The VOI from the data is, then, the difference between the
model results with and without the earth science data.
Table 3 lists examples for aviation safety, where the VOI is
related to lives saved, and agricultural competitiveness,
where the VOI is related to the value of farm production.
As an actual example, in the case of renewable energy
forecasting, the US space agency NASA identifies the
potential percentage cost savings in energy forecasts
carried out by the US Department of Energy and expected
to be enabled by earth science outputs, then multiplies
these savings by the forecasted value of the output of
the relevant energy industries to project dollar benefits
(see [39]).

4. Conclusions

This paper has reviewed models and studies of the VOI
and offered preliminary observations about using these
approaches to design and implement measures of perfor-
mance for earth science activities.

The state of the art in understanding the VOI reflects
general agreement on how to model an individual’s or a
government’s decision and some useful implications about
the value of information: when it is most and least
valuable, its relationship to subjective prior opinions, and
the decision maker’s ability to take action in light of the
information. The VOI can be nil if, say, a decision maker
cannot take action even if good information is available.
The VOI can be quite large if the decision maker can take
action—saving lives, increasing productivity, and so forth.
Most estimates of the VOI suggest that it is not large as a
percentage of final output (in agriculture, road transporta-
tion, and other markets). This result seems inconsistent
with some perspectives of the value of information, such as
information on natural disasters and loss of life. But in
these cases, the ex ante and ex post values of information
need to be distinguished; in some instances, people’s prior
beliefs about the low probability of hazards figure
prominently in reducing the perceived value of the
information. Finally, consideration must be given to the
costs of actions that could be taken, or not taken, in
anticipation of and in response to the information. The
paper has reviewed generic models of information and
suggested several approaches for analysts to use in
systematically assessing the VOI from space-derived earth
science.
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