Observation of Harmful Algal Blooms with Ocean Colour Radiometry

Edited by:
Stewart Bernard (CSIR, South Africa)

Report of an IOCCG and GEOHAB working group on Harmful Algal Blooms and Ocean Colour, chaired by Stewart Bernard and based on contributions from (in alphabetical order):

Stewart Bernard, Mariano Bresciani, Jennifer Cannizzaro, Hongtao Duan, Claudia Giardino, Patricia M. Glibert, Chuanmin Hu, Raphael M. Kudela, Tiit Kutser, Ronghua Ma, Erica Matta, Mark Matthews, Frank E. Muller-Karger, Susanne Roy, Stefan Simis, Inia M. Soto and Jennifer Wolny.

Series Editor: Venetia Stuart
Contents

1 Introduction 9

2 Harmful Algal Blooms, their changing ecosystem dynamics and related conceptual models 11
 2.1 Introduction to Harmful Algal Blooms and their effects 11
 2.2 HABs and Global Change 13
 2.2.1 Relationships with eutrophication 13
 2.2.2 Relationships with changing climate 15
 2.3 Trophic interactions: HABs as prey and as predators 16
 2.4 Conceptual models of the influence of nutrients and the physical environment on species selection 18
 2.5 The Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) Programme 21

3 Ocean Colour and Detecting Phytoplankton Biomass and Community Dynamics 25
 3.1 Introduction: HAB observation by satellite 25
 3.2 Understanding the OC signal 26
 3.2.1 The bulk waterleaving signal 26
 3.2.2 Constituent Optical Properties 27
 3.3 Optical Properties of Phytoplankton 28
 3.3.1 Determining PFT: assemblage characteristics 30
 3.3.2 Optical Constraints 31
 3.3.3 HAB detection techniques 32
 3.3.4 Observational and Pragmatic Constraints 35
 3.4 Research vs Operational OC Requirements 37

4 Dinoflagellates associated with Paralytic Shellfish Poisoning 41
 4.1 General description of causative organisms and their environment 41
 4.2 Morphological, bio-optical and ecophysiological characteristics of two important *Alexandrium* species 43
 4.2.1 Morphology 43
 4.2.2 Pigments 44
 4.2.3 Ecological and Trophic Characteristics 44
 4.3 Specific Case Studies 45
 4.3.1 St. Lawrence Estuary, Canada 45
6 • Observation of Harmful Algal Blooms with Ocean Colour Radiometry

4.3.2 California ... 48
4.3.3 Benguela .. 51

5 Application of Ocean Colour to Toxic Pseudo-nitzschia Diatom Blooms 55
5.1 Background .. 55
 5.1.1 Characteristics of Pseudo-nitzschia genus 56
5.2 California Case Study 58
 5.2.1 Regional occurrence 58
 5.2.2 Specific event description 60
 5.2.3 Major ocean colour considerations 60

6 Case Study: Blooms of the Neurotoxic Dinoflagellate Karenia brevis on the West Florida Shelf 65
6.1 Background .. 65
 6.1.1 Organism description, impact, and distribution 65
 6.1.2 Ecological niche, nutrient and environmental preferences, and bloom mechanism 68
6.2 Remote Sensing/Satellite Detection Principles 69
6.3 Data and Methods ... 72
6.4 Ocean Colour Case Demonstration 73
6.5 Discussion and Summary 77

7 Case Studies: Remote Sensing of Cyanobacteria Blooms 79
7.1 Introduction .. 79
 7.1.1 Terminology, taxonomy, and functional diversity ... 79
 7.1.2 Pigmentation ... 81
 7.1.3 Buoyancy .. 82
7.2 Case 1: Bloom Distribution in Lake Trasimeno 85
 7.2.1 Objective ... 85
 7.2.2 Study area ... 85
 7.2.3 Image processing 86
 7.2.4 Results .. 87
 7.2.5 Discussion .. 88
7.3 Case 2: Lake Taihu, China 88
 7.3.1 Objective ... 88
 7.3.2 Study area ... 89
 7.3.3 Image processing 89
 7.3.4 Image analysis 90
 7.3.5 Factors forcing blooms 92
 7.3.6 Discussion .. 94
7.4 Case 3: Trophic Status, Cyanobacteria and Surface Scums in Lakes 95
7.4.1 Introduction ... 95
7.4.2 The MPH algorithm .. 96
7.4.3 Detection of eukaryote and cyanobacteria dominated waters . 98
7.5 Case 4: Summer Blooms in the Baltic Sea 99
 7.5.1 Objective .. 100
 7.5.2 Study area .. 100
 7.5.3 Image analysis: Delineating blooms 100
 7.5.4 Spatial resolution ... 102
 7.5.5 Time series and matching in situ observations 103
 7.5.6 Discussion ... 105

8 Application of Ocean Colour to Fish-Killing Cochlodinium Blooms107
 8.1 Organism description, impact, and distribution 107
 8.2 Optical properties of Cochlodinium 109
 8.3 Case Study in the Gulf of OmanArabian Gulf 2008–2009 112

9 Application of Ocean Colour to Harmful High Biomass Algal Blooms115
 9.1 Phytoplankton associated with harmful high biomass blooms 115
 9.3 Hypoxia in the southern Benguela: Ceratium balechii, 2009 119
 9.4 Hypoxia in Paracas Bay, Peru: Gymnodinium sanguineum, March 2004122
 9.5 Hypoxia in the southern Benguela: Mesodinium rubrum, March 2004 125

10 Application of Ocean Colour to Ecologically Disruptive Algal Blooms
 (EDABS) ... 127
 10.1 Background .. 127
 10.2 Specific Case Studies 128
 10.2.1 Synechococcus elongates bloom — Florida Bay 2005–2006 . 128
 10.2.2 Aureococcus anophagefferens bloom in the Bohai Sea, China . 129

11 Developing operational Harmful Algal Bloom information services:
 the research to operational transition 131
 11.1 Introduction .. 131
 11.2 Components & Development Models 132
 11.3 Global Examples (e.g. 2 page summaries) 133
 11.3.1 South Africa (CSIR) 133
 11.3.2 NOAA .. 135
 11.3.3 EPA ... 135
 11.3.4 PML ... 135
 11.4 Conclusions ... 135
12 HABs and Ocean Colour: Future Perspectives and Recommendations

12.1 Draft Recommendations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1.1 Preamble</td>
<td>137</td>
</tr>
<tr>
<td>12.1.2 Sensors</td>
<td>137</td>
</tr>
<tr>
<td>12.1.3 Atmospheric Correction and In-Water Algorithms</td>
<td>138</td>
</tr>
<tr>
<td>12.1.4 Science Validation</td>
<td>138</td>
</tr>
<tr>
<td>12.1.5 User Driven Products</td>
<td>139</td>
</tr>
<tr>
<td>12.1.6 Policy & Economics</td>
<td>139</td>
</tr>
</tbody>
</table>

Acronyms and Abbreviations

141
HABs as part of ecosystem function; different types of HABS across systems; increased eutrophication/climate change outlooks and societal impact; methodological challenges for OC; larger context of operational, research, and integrated applications including multi-sensor approaches, etc. Significance, background, rationale type structure as per IOCCG.
Observation of Harmful Algal Blooms with Ocean Colour Radiometry
Chapter 2

Harmful Algal Blooms, their changing ecosystem dynamics and related conceptual models

Patricia M. Glibert, Grant C. Pitcher

2.1 Introduction to Harmful Algal Blooms and their effects

Over the past several decades, the frequency of occurrence, the duration, and geographic extent of blooms of toxic or harmful microalgae have been increasing in many parts of the world (e.g. Glibert and Burkholder 2006; Heisler et al. 2008a; Glibert and Burford 2017), as has the appreciation of the serious impacts that such events can have on both ecosystems and on human health Backer and McGillicuddy 2006; Johnson et al. 2010. The scientific community refers to “harmful algal blooms” (HABs) as those proliferations of algae that can cause fish kills, contaminate seafood with toxins, and alter ecosystems in ways that humans perceive as harmful (e.g. GEOHAB 2001). The term HAB is used generally and non-specifically, recognizing that some species can cause harmful effects even at low densities not normally taken to be a “bloom”, while other species that have significant ecosystem or health effects are not technically “algae”. Some HABs are small protists which obtain their nutrition by grazing on other small algae or on bacteria; either they do not photosynthesize at all, or only do so in conjunction with grazing Glibert et al. 2005; Jeong et al. 2005; Burkholder et al. 2008; Jeong et al. 2010; Flynn et al. 2013. Other HABs are cyanobacteria (CyanoHABs), some of which have the ability to “fix” nitrogen (N) from the atmosphere as their N source. Thus, the term “HAB” is an operational term, not a technical one. Some HABs are planktonic, while others live in or near the sediment, or attached to surfaces for some or all of their life cycle. Among those that are planktonic, some form visible surface accumulations, while others remain well distributed throughout the water column. Relating the diversity of these characteristics to their observation using remote sensing of ocean colour is a challenge — but at least for many types of HABs the scale of expansion of HABs has been well established using ocean colour radiometry in conjunction with other approaches.

By definition, all HABs cause harm — either ecological, economic, or to human
health. Not all HABs make toxins; some are harmful in other ways. In a broad sense, there are two general types of HABs: those which produce toxins with the potential to contaminate seafood or wildlife, and those which can cause ecological harm through their sheer biomass production, which can cause anoxia and indiscriminate mortalities of marine life (Figure 2.1). The latter occurs when these cells either reach extremely dense accumulations or when blooms begin to die and oxygen is consumed through their decomposition. Some HABs have characteristics of both: they may be both toxic and may accumulate in high biomass blooms. Among those that are toxic, there are many types of toxins with new toxins being discovered frequently (e.g. Landsberg 2002; Backer and McGillicuddy 2006). Some algal toxins kill fish directly. Others do not have direct effects on the organisms that feed on them, such as fish or filter-feeding shellfish, but the toxin can accumulate in the shellfish and then cause harm to the humans who consume them. In other cases, such as cyanobacteria blooms in freshwaters, the toxins are released into the water column where they can get into the water supply and affect human consumers through their drinking water. Some toxins may also be aerosolized, as is the case with *Karenia brevis* in Florida USA, and respiratory distress can result for those in contact with these air-borne toxins. The task of understanding these phenomena is made all the more complex by the observation that not all species are toxic under all conditions, and it is not completely understood when and why different species may become toxic.

![Figure 2.1](image-url) Various images of HABs and their effect, including a “red tide” in East China Sea (upper left; photo by J. Li), a freshwater “green tide” (upper right; photo by T. Archer), a fish kill from toxic algae (lower left; photo by P. Glibert), and microscopic views of a common toxic red tide microorganism (lower right; photos by Y. Fukuyo).
There are many algal classes that can be considered HABs including dinoflagellates, diatoms, raphidophytes, prymnesiophytes, and cyanobacteria among others. The most common toxic marine HABs are dinoflagellates, and the most common toxic freshwater HABs are cyanobacteria, but toxic diatoms are also of increasing concern, particularly in coastal waters.

2.2 HABs and Global Change

2.2.1 Relationships with eutrophication

The expansion of HABs in relation to both local and global expansion in nutrient loading is now well recognized Anderson et al. 2002; Glibert et al. 2005; Heisler et al. 2008a; Glibert et al. 2014a; Glibert and Burford 2017. While the relationship between HABs and increased nutrient availability has been recognized for decades, in recent years there has been much that has been learned regarding how specific nutrient loads have changed, and how such changes may mechanistically or physiologically promote the growth of certain species. Adaptive strategies such as mixotrophy and/or use of organic substrates in addition to inorganic nutrients may infer some advantages for HABs, particularly when nutrient loads are not in stoichiometric proportion relative to the optima for growth of these cells Glibert and Burkholder 2011; Flynn et al. 2013; Glibert et al. 2014a. Moreover, the responses of ecosystems to nutrients have become better understood, including the types of systems that may be retentive of nutrients and the ones that may have high enough flushing rates for nutrients to be exported spatially from the point of loading (e.g. Dürr et al. 2011).

Eutrophication of both inland and coastal waters is the result of human population growth and the production of food (agriculture, animal operations and aquaculture) and energy, and is considered one of the largest pollution problems globally (e.g. Howarth et al. 2002; Howarth 2008). Population growth and increased food production result in major changes to the landscape, in turn increasing sewage discharges and runoff from farmed and populated lands. In addition to population growth, eutrophication arises from the large increase in chemical fertilizers that began in the 1950s and which are projected to continue to escalate in the coming decades (e.g. Smil 2001; Glibert et al. 2006; Glibert et al. 2014a). For HAB growth, it is also of importance to note that the rate of change in use of N fertilizers has eclipsed that of phosphorus (P) fertilizers in large part due to this large-scale capacity for anthropogenic synthesis. Global use of N fertilizer has increased nine-fold, while that of P has increased three-fold Sutton et al. 2013; Glibert et al. 2014a.

Nutrients can stimulate or enhance the impact of toxic or harmful species in several ways Anderson et al. 2002; Glibert et al. 2011. At the simplest level, harmful phytoplankton may increase in abundance due to increased nutrient enrichment, but may stay at the relative fraction of the total phytoplankton biomass. Even though non-HAB species are stimulated proportionately, a modest increase in the abundance
of a HAB species may cause it to have increased effects on the ecosystem. A more frequent response to nutrient enrichment occurs when a species or group of species begins to dominate under the altered nutrient regime. High biomass blooms, which are easier to detect using ocean colour radiometry, occur when the HAB species is disproportionately stimulated, often to the point where the HAB becomes the dominant species. In the extreme, the HAB species may displace virtually all other algal species and the bloom becomes essentially mono-specific.

One of the results of alterations in global N and P is that many receiving waters are now not only enriched with nutrients, but nutrient loads to many aquatic environments also diverge considerably from those that have long been associated with phytoplankton growth. The ratio of dissolved inorganic N:P (DIN:DIP) — when in the proportion of 16:1 on a molar basis — is classically identified as the Redfield ratio Redfield 1934. Various surveys of the “optimal” N:P molar ratios in a broad range of phytoplankton groups have found that, while the data cluster around the Redfield ratio, there are numerous examples at both the high and low ends of the spectrum (e.g. Hecky 1988; Klausmeier et al. 2004). Note that the “optimum” N:P is the ratio of the values where the cell maintains the minimum N and P cell quotas Klausmeier et al. 2004. Changes in this ratio have been compared to shifts in phytoplankton composition, yielding insight about the dynamics of nutrient regulation of plankton assemblages (e.g. Tilman 1977; Smayda 1990; Hodgkiss and Ho 1997; Hodgkiss 2001; Heil et al. 2007).

Efforts to understand the relationships between nutrient loading and algal blooms have largely focused on total nutrient loads and altered N:P or N:Si (silica) nutrient ratios that result from selected nutrient addition or removal. Alterations to the composition of nutrient loads have correlated with shifts from diatom-dominated to flagellate- and /or cyanobacteria-dominated algal assemblages in many regions. The form in which particular nutrients are supplied may also affect the likelihood for a specific nutrient load to promote HABs, in addition to the impact of nutrient ratios promoting certain species with a higher or lower requirement for a particular nutrient. Organic nutrients have been shown to be important in the development of blooms of various HAB species, in particular cyanobacteria and dinoflagellates (e.g. Paerl 1988; Glibert et al. 2001) and the importance of this phenomenon is being recognized in blooms around the world (e.g. Granéli et al. 1985; Berman 1997; Berg et al. 2003; Berman and Bronk 2003). It has been well demonstrated, for example, that cyanobacterial blooms in Florida Bay and on the southwest Florida shelf are positively correlated with the fraction of N taken up as urea and negatively correlated with the fraction of N taken up as nitrate Glibert et al. 2004.

The impacts of differing anthropogenic activities with respect to HABs are not necessarily the same. For example, nutrient delivery associated with sewage may bear little similarity in quantity or composition to that associated with inputs from agriculture, aquaculture or dredging operations, depending on what form of sewage treatment (if any) exists. In turn, nutrients from these sources may also differ
in quantity and composition from those associated with natural nutrient delivery mechanisms such as groundwater flow and atmospheric deposition, recognizing that these sources may be influenced by human activities as well. The timing of nutrient delivery also affects the extent to which the associated nutrients may stimulate HABs. Long-distance transport of nutrients, and of organisms (e.g. Franks and Anderson 1992), accumulation of biomass in response to water flows, buoyancy regulation and swimming behaviours (e.g. Kamykowski and Yamazaki 1997), and maintenance of suitable environmental conditions (including temperature, salinity, stratification, irradiance) as well as nutrient supply, are all critical to understanding the environmental response to nutrients.

Among the high biomass bloom formers, pelagic Prorocentrum, especially P. minimum, has been well documented to be a species expanding in global distribution in concert with eutrophication Heil et al. 2005; Glibert et al. 2008, 2012. Global maps of nutrient loads, by form and dominant source Dumont et al. 2005; Harrison et al. 2005a,b; Seitzinger et al. 2005 illustrate that this species is most prevalent when N loads are high, where these N loads are in organic form, and where the organic nutrients are predominantly from anthropogenic origin Glibert et al. 2008, 2012. Other studies have shown that P. minimum is common near sewage outfalls and near nutrient-rich shrimp ponds or other aquaculture operations Cannon 1990; Sierra-Beltran et al. 2005. In the Baltic Sea, its expansion has also been linked to impacts from human activities Olenina et al. 2010.

2.2.2 Relationships with changing climate

Average sea surface temperatures are expected to rise as much as 5°C over the coming century and many parts of the ocean are expected to freshen significantly due to ice melt and altered precipitation (Fu et al. 2012 and references therein). These changes will alter stratification, availability of nutrients and their forms and ratios, and will also alter pCO₂ and light regimes among other factors (e.g. Boyd and Doney 2003).

Massive changes in the carbon (C) cycle are also expected, and are actually occurring, with large effects on pH. The change in C chemistry is expected not only to affect those organisms that are pH sensitive, but may also affect, and favour, those algae that depend on diffusive CO₂ rather than HCO⁻₃ as their C source. This includes many of the HABs, such as Amphidium carterae and Heterocapsa oceanica Dason et al. 2004, but this is certainly not the case for all HABs. High CO₂ may also affect toxicity of HABs through a variety of routes. The synthesis of some toxins is light dependent, as is the case with karlotoxin in Karlodinium veneficum and saxitoxin in Alexandrium catenella Proctor et al. 1975; Adolf et al. 2009, suggesting that as photosynthesis is affected by changing pCO₂, so too is toxin synthesis. Reactive oxygen species (ROS) such as the raphidophytes, which produce copious amounts of reactive oxygen, also produce more under elevated light
conditions (Fu et al. 2012 and references therein). In the diatom *Pseudo-nitzschia*, concentrations of the toxin domoic acid appear to increase at high CO$_2$/low pH levels, at least as shown in some studies (e.g. Sun et al. 2011a; Tatters et al. 2012), and this effect is more pronounced when cells are nutrient limited or when forms of N shift away from oxidized to reduced forms (Glibert et al. 2016 and references therein).

Temperature alone also affects metabolism in multiple ways. It affects growth rate, pigment content, enzyme reactions and photosynthesis, among other processes, but not always in the direction of increasing with higher temperatures. As an example, the uptake of NO$_3^-$ and its reduction actually generally decrease at higher temperatures, at least in many diatoms (e.g. Lomas and Glibert 1999; Glibert et al. 2016), suggesting that diatoms may be negatively impacted as temperatures continue to rise. Toxicity of many HABs also increases with warming, but this is not the case in all HABs (Fu et al. 2012 and references therein). The combination of elevated pCO$_2$ together with nutrient limitation and altered nutrient ratios appears to be an especially potent combination in terms of toxicity of some HABs.

2.3 Trophic interactions: HABs as prey and as predators

High-biomass algal blooms often result in reduced transfer of energy to higher trophic levels, as many HAB species are not efficiently grazed, resulting in a decreased transfer of carbon and other nutrients to fish stocks when HAB species replace more readily consumed algal species Irigoien et al. 2005; Mitra and Flynn 2006.

One of the important advancements in our understanding of HABs and eutrophication over the past decade or more has been the evolving recognition of the importance of mixotrophy in the nutritional ecology of many HABs, especially those that are prevalent in nutrient rich environments Burkholder et al. 2008. Therefore, many HABs are important predators as well as prey. For decades it was thought that mixotrophy was either relatively rare, or when present was more common in those cells that thrived under nutrient impoverished conditions. Essential elements, such as N, P and C are typically rich in microbial prey and thus mixotrophy has been thought to provide a supplement when there is an elemental imbalance in the dissolved nutrient substrates Granéli et al. 1999; Vadstein 2000; Stibor and Sommer 2003; Stoecker et al. 2006. In eutrophic environments, although nutrients may be proportionately more available than in oligotrophic environments, it is not uncommon for such nutrients to be out of stoichiometric balance, leading to nutrient imbalance even in a nutrient rich habitat Burkholder et al. 2008; Glibert and Burford 2017.

A diverse array of HAB species are mixotrophic, along either osmotrophic or phagotrophic pathways, or both Glibert and Legrand 2006; Burkholder et al. 2008;
Jeong et al. 2010. There is an equally diverse array of prey that may be consumed by such HAB species. The extent to which species may be mixotrophic and the type of prey they may ingest affect the ability to remotely detect such blooms. At the extreme are those species that, while considered to be HABs, are not algae at all but rather heterotrophs and any pigment signature they may have would be of their ingested prey or of kleptochloroplasts. The latter is exemplified by *Noctiluca scintillans*, a heterotrophic dinoflagellate that forms spectacular “red tide” blooms Harrison et al. 2011. This species is purely heterotrophic and is of two forms, red and green, the latter a result of an endosymbiont Harrison et al. 2011. *Noctiluca* is now recognized to be increasing in global distribution in relation to eutrophication, but its blooms are often displaced from the origin of the nutrient load as it is hypothesized that nutrients first fuel another type of bloom, either diatom or dinoflagellate, which is then grazed in succession leading to *Noctiluca* as the offshore manifestation of eutrophication Harrison et al. 2011.

Other mixotrophic dinoflagellates that form spectacular blooms are *Karenia* spp. and *Karlodinium* spp. (previously grouped together in genus *Gymnodinium*, now separated into separate genera). Members of these genera have been shown to graze the cyanobacterium *Synechococcus* sp., as well as cryptophytes Jeong et al. 2005; Adolf et al. 2008; Glibert et al. 2009. In laboratory experiments, Jeong et al. (2005) estimated that 5 cells h$^{-1}$ of *Synechococcus* could be grazed by the mixotroph *Karenia brevis* while Glibert et al. (2009) found that from $\sim 1 – 80$ cells of *Synechococcus* h$^{-1}$ could be grazed by *K. brevis* with the rate varying with the predator:prey ratio. In the field, the predator (the mixotroph *Karenia*) and its prey (*Synechococcus*) are easily distinguished by their respective pigment signatures: *Karenia* sp. has the pigment gyroxanthin-diester, while *Synechococcus* sp. has the cyanobacterial pigment zeaxanthin Kana et al. 1988; Johnsen et al. 2011. Interestingly, on the western coast of Florida, USA, during one bloom of *K. brevis* in 2005, the unique pigment signatures for *Karenia* were located in a region where *Synechococcus* was distinctly absent, suggesting either that these species thrive under very different ecological conditions, or, that *Karenia* had grazed the *Synechococcus* (Heil et al. 2007; Glibert et al. 2009, Figure 2.2).

In summary, changes in nutrients and climate have complex effects on HABs, altering water column structure, environmental conditions for growth, potential for toxicity, and overall changing niche space on a range of scales. Competition between and among HAB and non-HAB species will also change (e.g. Flynn et al. 2015). Those species with adaptive strategies to thrive in these altered conditions, through changes in growth rates, toxicity, or mixotrophic capabilities, will thrive. To understand these various strategies and their relationships, a number of conceptual models have been proposed linking different algal functional groups or HAB classes to their physical environment in terms of turbulence, nutrients and light. These conceptual models are briefly summarized below.
2.4 Conceptual models of the influence of nutrients and the physical environment on species selection

While there are many relationships that have been established with respect to nutrient loads, nutrient forms, various aspects of climate change and phytoplankton composition, the fundamental question is: do systems self-organise in fundamentally similar ways when physical parameters, including nutrient loads, are altered?

Ecological theory states that elemental stoichiometry is a fundamental constraint of food webs, and alternate stable states will develop under different nutrient regimes due to self-stabilizing feedback mechanisms. Margalef (1978) captured this fundamental principle in the now-classic “mandala” (Figure 2.3), as described by Smayda and Reynolds (2001):

“Margalef’s elegant model combines the interactive effects of habitat mixing and nutrient conditions on selection of phylogenetic morphotypes and their seasonal succession, which he suggests occurs along a template of r versus K growth strategies. Margalef’s use of these two variables as the main habitat axes in his model accommodates our view that the pelagic habitat is basically hostile to phytoplankton growth, given its nutritionally-dilute nature and the various dissipative effects of turbulent mixing.”
As a descriptive, rather than mechanistic model, this approach has been useful in generally conceptualizing species succession, seasonal progression, and the gradients that may develop spatially with vertical structure and stratification.

![Diagram](image)

Figure 2.3 Classic depiction of the Margalef phytoplankton mandala illustrating the relationship and sequence of diatoms and dinoflagellates in relation to nutrients and turbulence. Redrawn from Margalef (1978) and reproduced from Glibert (2016) with permission of *Harmful Algae*.

While very useful conceptually, as with any simplified model there are exceptions, difficulties in application and reasons to believe that the simple parameters chosen may not be the important factors for species composition determination. Our evolving understanding of the complex roles of different nutrients (treated as a single entity in the original mandala) in the development of HABs now also includes a greater appreciation for the role of nutrient ratios and their effects on food quality and on system biogeochemistry, whether nutrients are limiting or not Sterner and Elser 2002; Glibert et al. 2011; Glibert et al. 2013. A stoichiometric perspective thus brings into question the long-held view that nutrients are only regulating when they
are limiting (e.g. Reynolds 1999). Systems in which stoichiometric changes have occurred or are occurring may be uniquely poised for changes in dominant organisms. These changes occur not only along a Margalef nutrient-light continuum, but along a stoichiometric continuum as well, and such changes may be physiologically important even when nutrients are not at limiting levels Glibert et al. 2011; Glibert et al. 2013.

Physiological regulation of cells at saturating or super-saturating levels of nutrients can be as important in regulating food web structure as nutrients at the low end of the scale Glibert et al. 2011. Among the many phytoplankton species, many HABs have adaptive strategies for coping with nutrient excess. Among these “strategies” are use of alternate nutritional mechanisms (such as mixotrophy), use of an alternate form of the same element (substituting organic for inorganic forms), releasing the nutrient in excess, and the use of metabolism to create a favorable micro-environment Glibert and Burkholder 2011.

Based on emerging trends in nutrients loads, and the fact that all nutrients are not necessarily trending similarly, a new mandala has been proposed that incorporates much greater understanding of algal nutritional physiology (Glibert 2016, Figure 2.4).

Figure 2.4 Conceptual mandala of the relationships between nutrients and various other phytoplankton traits and environmental characteristics. Reproduced from Glibert (2016) under the Creative Commons license, and permission of *Harmful Algae*.

Similar to the Margalef mandala, the importance of differences in turbulence
and nutrients are captured, and diatoms and dinoflagellates again separate along the different axes. However, in contrast to Margalef, the nutrient axes here are differentiated in two ways, by N:P and by N form. In Margalef’s diagram, the nutrient axis reflects a total nutrient load to the system and makes no distinction between nutrient forms (N or P) or forms of specific nutrients (e.g. NH$_4^+$ vs NO$_3^-$, organic vs. inorganic). The Margalef conceptualization was drawn primarily with systems such as upwelling in mind, where consistent injections of nutrients from deeper waters to surface were thought to be the primary nutrient source fuelling blooms, with N mainly being in the oxidized form (NO$_3^-$). The new mandala therefore makes the distinction between N forms and N:P ratios, and this distinction is made for two important reasons. First, as noted above, N loads are generally increasing globally at a rate faster than those of P, as a consequence of our ever-expanding use of N-based fertilizers and their leakage to the environment, and the greater emphasis on P control (e.g. Galloway et al. 2002; Elser et al. 2009; Glibert et al. 2013; Glibert et al. 2014a). Together these trends are leading, as described above, to increasing N:P ratios in many aquatic environments, both marine and freshwater. The effects of N vs. P loads have decidedly different effects on phytoplankton community assembly (e.g. Schindler et al. 2008; Paerl 2009; Hillebrand et al. 2013). Second, it is now well established that not all N forms are taken up and metabolized similarly by all phytoplankton (e.g. Glibert et al. 2016). The revised mandala also incorporates a scale that recognizes the importance of mixotrophy. Key among the notions captured here are the relationships between and among traits. While the mandala serves to highlight the differences and trade-offs between traits, it can also be seen that, in general, some traits or associated environmental conditions tend to track each other Glibert 2016.

2.5 The Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) Programme

Acknowledging that the HAB problem is global, but recognizing that there is still much to be understood with regard to the biological, chemical, and physical factors that regulate HAB dynamics and impacts, the SCOR/IOC Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) programme (c.f., GEOHAB 2001) was formed with a mission to: Foster international co-operative research on HABs in ecosystem types sharing common features, comparing the key species involved and the oceanographic processes that influence their population dynamics. Ultimately the goal of GEOHAB was to: Improve prediction of HABs by determining the ecological and oceanographic mechanisms underlying their population dynamics, integrating biological, chemical and physical studies supported by enhanced observation and modeling systems.

GEOHAB was not intended as a research programme per se, but rather as an
international forum to advance the understanding of the ecology and oceanography of HABs, and to improve the prediction of HABs through advanced approaches. The work of the GEOHAB Program was multifaceted, from advancing understanding of the adaptive strategies of HABs, to improved linkages between the expansion of HABs and other global changes such as eutrophication and climate change, and to improved characterization of HABs in regions, especially Asia, where HABs and their effects are particularly pervasive GEOHAB 2010.

GEOHAB is currently undergoing a transition to a new mission, inclusive of issues related to both freshwater and to toxin effects, and so GEOHAB is transitioning to its new identity, GlobalHAB Berdalet et al. 2017. In the decade since the launch of GEOHAB, the dynamics of a changing world have become increasingly apparent. From climate to ocean acidification to changing anthropogenic nutrient loads and species transport around the world, the potential trajectory of change for HABs is ever more important to understand.

Through the work supported by GEOHAB as well as other studies, we have gained a better understanding of the relationships between many HAB species, particularly dinoflagellate HABs, and their environment. The biogeographical ranges of HAB organisms and how they have changed over time is of fundamental importance in resolving how species may have been introduced to new areas, and what areas may be susceptible to new introductions in the future. Certain species have a rather circumscribed distribution within fairly narrow environmental constraints. For example, species such as *Pyrodinium bahamense* are generally restricted to tropical and subtropical regions in the Pacific Ocean and the Caribbean Sea (e.g. Hallegraeff and Maclean 1989), while other species, such as *Alexandrium catenella*, are only found in temperate waters at mid- to high latitudes. Other species, such as *Prorocentrum minimum* have a more cosmopolitan distribution, from temperate to tropical waters Glibert et al. 2008, 2012. An understanding of the environmental constraints on species distribution aids in understanding how species biogeography may change in both the short and long term as climate and other environmental conditions may change. Ocean colour approaches have helped advance our understanding of expanding species ranges.

For HAB management, the question of the extent to which shifts in biodiversity are the result of changing environmental conditions, anthropogenic introductions, or a combination of both, is important in devising strategies to ultimately limit their distribution or impact. Changes in species biogeography are becoming increasingly documented. For example, blooms of *Chrysochromulina* (now *Prymnesium*) *polylepis* and *C. leadbeateri* were rare in Scandinavian waters prior to their massive blooms in 1988–1991 Moestrup 1994, but they have been commonly observed in the plankton since that time. The diatom *Pseudo-nitzschia australis*, while present in the plankton off the coast of California prior to the mid-1990s, has now become an annual bloom-former of increasing geographic distribution. In contrast, some blooms occur for a period of years and then appear to be of lesser intensity. Such was the case with
brown tide, *Aureococcus anophagefferens*, that bloomed off the coast of Long Island, New York, in the late 1980s–1990s, and that has bloomed episodically in other coastal lagoons of the US mid-Atlantic. The intensity of such blooms appears to be related to long-term patterns in environmental and weather conditions, being more common during dry years than wet years (e.g. LaRoche et al. 1997; Glibert et al. 2014b).

The role of remote sensing (particularly satellite observations) is central to HAB monitoring and management systems. Vulnerable regions can be geographically extensive and/or inaccessible, and the dynamic nature of aquatic environments requires measurements at appropriate time resolutions. *In situ* measurements are extremely valuable, but are expensive and time consuming to undertake, and when contextualised and supported by appropriate satellite data the value of this investment can be fully realised. Even though there are some constraints in the use of ocean colour for HAB observations, the outlook from a sensor perspective is extremely positive. New sensors and satellites will continue to open new scales of HAB observations for both inland and coastal waters. The overarching needs for HAB detection and ultimately prediction are to have tools available that are affordable, responsive in real time, and reliable. The most powerful approaches in interpretation of blooms and their associated environmental conditions come from the synergy of methodologies applied. Observational tools and technologies are one piece of the puzzle. Linking improved understanding of antecedent conditions, with understanding of cell behavior and physical processes will require continued measurements, conceptual and technological advances and refinement of algorithms and models.
Observation of Harmful Algal Blooms with Ocean Colour Radiometry
3.1 Introduction: HAB observation by satellite

As mentioned in Chapter 2, due to the frequent presence of elevated biomass and strongly pigmented organisms in HABs, satellite radiometry is a valuable - if not essential - tool in HAB monitoring and management systems. In the first instance, gross changes in phytoplankton biomass from standard or regionally optimised biomass algorithms are very valuable. These algorithms need to be sensitive to the particular environment and dynamics of individual ecosystems, properly addressing potential optical ambiguities such as elevated scatter from suspended sediment and bottom effects. Satellites provide systematic, repeatable and synoptic spatial coverage simply not achievable by in situ measurements, and can image remote or otherwise inaccessible areas. Using satellite ocean colour data in combination with other satellite and/or in situ measurements (e.g. Sea Surface Temperature, winds, nutrients, microscopy) supports a comprehensive portrait of a HAB environment. But in this specialised application of ocean colour, there are many challenges to exploiting these data optimally. The most beneficial effort in improving the value of ocean colour is likely to come from addressing optical ambiguity towards achieving better biomass estimates for the relevant ecosystems.

The close relationship between algal growth and nutrient variability (as discussed in Chapter 2) means that coastal and inland waters are particularly vulnerable to HABs. Anthropogenic nutrients from fertilisers and wastewater impact inland waters via terrestrial runoff. Small and slow-moving inland water bodies provide ideal opportunities for algal overgrowth but this is not a requirement for HAB development, as evidenced by many physically dynamic coastal regions and estuaries displaying frequent blooms e.g. the Benguela system and the St. Lawrence Estuary (REFS TO OTHER CHAPTERS). Anthropogenic runoff reaches the coast via rivers and pipelines, and coastal upwelling systems bring nutrient-rich central water to the surface where it is exposed to photosynthetically available radiation (i.e. sunlight).

Coastal and inland areas of interest present a suite of well-known difficulties
Observation of Harmful Algal Blooms with Ocean Colour Radiometry

with satellite ocean colour: physically small targets of often just a few pixels, the adjacency effect (proximity to highly reflective land masses), and complexities in the atmospheric correction process. The need for observations at elevated scales of spatial and temporal variability is an additional challenge for HAB monitoring with ocean colour radiometry. Ocean colour algorithms for HAB monitoring must be able to quantify biomass in highly productive, optically complex waters – and the turbid, highly scattering Case 2 water types frequently associated with HABs render even this basic requirement difficult.

The detection of high biomass (particularly in waters where the optics are driven by sediment scattering) is by far the most well known application of ocean colour for HAB detection; however, some phytoplankton may be toxic even at low cell concentrations (e.g. Alexandrium fundyense in the Gulf of Maine)(REF TO OTHER CHAPTER). In this sense HAB detection systems have among the most sophisticated requirements of any ocean colour remote sensing systems: detailed spectral information for identifying pigments is needed, as well as reliable biomass estimates over a broad range of phytoplankton concentrations and types. It should be noted that ocean colour presents the best opportunities for HAB investigation when the optical water-leaving signal is driven by phytoplankton rather than additional in-water constituents. This is detailed further in section 5.

3.2 Understanding the OC signal

3.2.1 The bulk water-leaving signal

The bulk ocean colour signal as observed by satellite sensors is the result of myriad intricate optical interactions between incoming solar radiation (sunlight), the atmosphere (including clouds and aerosols), the in-water constituents and the water itself (including surface roughness), as well as any observable bottom effects. The atmosphere impacts the optical signal by both absorption and scattering processes to such an extent that the water-leaving optical signal forms just 10

HABs, by definition, display elevated biomass and as in-water environments approach eutrophication there is an associated spectral shift in the water-leaving signal from the blue (prominent in oceanic conditions where phytoplankton absorption dominates the in-water optics) towards longer wavelengths (Robertson Lain et al 2014, Figure xx). This shift in signal occurs with Chl a concentrations from about 10 mg.m$^{-3}$ and presents an opportunity for specialised atmospheric corrections for very high biomass waters, in some cases enabling PFT observation in the absence of a full correction, notably for cyanobacteria (Matthews et al., 2012).

Given a reasonable atmospheric correction and correction for adjacency, the bulk water-leaving optical signal can be considered. Fig 1 is a diagrammatic representation of the varying optical constituents of a water body, leading to the Case 1/Case 2 distinction. It should be noted that the Case 1/Case 2 descriptors are of a continuum.
Ocean Colour and Detecting Phytoplankton Biomass and Community Dynamics

of in-water constituents and are not defined by individual component thresholds. So this distinction is most useful in relatively extreme cases where the water-leaving signal is known to be phytoplankton-dominated (Case 1), or dominated by sediment (Case 2). Many HAB-sensitive water bodies are located dynamically on this diagram in response to seasonal, physical or ecological changes.

Satellite products for Case 1 and Case 2 waters, broadly representing oceanic and coastal environments respectively, are traditionally handled separately, requiring prior knowledge of the optically dominant in-water constituents in order to select an appropriate product. Very productive regions such as the Benguela can be classified as (extreme) Case 1 as their optical signature is overwhelmingly dominated by phytoplankton; however, the high concentration of particles also results in increased spectral scattering which is often associated with Case 2 waters – due in this case to elevated biomass and not sediment. So a Case 1 algorithm based on empirical relationships between phytoplankton concentration and absorption may not adequately handle very strong phytoplankton absorption in the blue (Dierssen 2010, Smith et al., 2018), while a Case 2 algorithm may interpret phytoplankton scatter as that of non-algal particles.

3.2.2 Constituent Optical Properties

The phytoplankton-driven optical signal – the main quantity of interest for HAB applications – is just one contributor to the water-leaving signal. The total optical water-leaving signal represents the complex interaction of each in-water constituent’s absorption and scattering (and fluorescent) properties, together with those of the medium itself.

The optical role of the medium itself (whether salt- or freshwater) is fortunately fairly predictable and well characterised, but the effects of bottom reflectance and non-algal in-water optical constituents vary significantly both spatially and temporally. Natural waters are also subject to non-algal (frequently referred to as Coloured Dissolved Organic Matter - CDOM, or gelbstoff) absorption, as well as non-algal scatter, which can include scatter by phytoplankton detrital matter, sediment, bacteria, and/or bubbles. These quantities absorb and scatter incident light quite distinctly from phytoplankton, and their subsequent optical interactions and resulting effect on the bulk signal are highly complex. Generally CDOM augments absorption in the blue, whereas detrital matter and suspended mineral particles primarily augment the scattering signal (Dall’Olmo et al., 2009), although there may be an additional relatively minor effect on absorption. In oceanic conditions a covariance of phytoplankton biomass and CDOM (as a phytoplankton waste product) can generally be assumed, but these relationships are not generally appropriate where tannin-rich riverine input is present in coastal or inland waters.

Scattering effects are not well characterised (Stramski et al 2004), and likely comprise two components - that portion which may vary approximately predictably.
with biomass (e.g. phytoplankton detritus), and the portion which likely does not e.g. the ubiquitous but uncharacterised contribution of bubbles, sediment and/or aeolian particles (Stramski et al., 2004). An approximate covariance of phytoplankton with phytoplankton detritus can be assumed in oceanic waters, whereas non-algal scatter in coastal waters is frequently driven by mineral particles of terrestrial origin.

Signal fluctuations resulting from the variable contributions of, and interactions between, the various in-water constituents are best understood through the use of constituent IOP models. Models allow the isolation of the phytoplankton-related signal towards identifying HAB-related information, as well as the systematic examination of this signal in the context of ecosystem-dependent non-algal optical variability (Lain 2018). With a good empirical understanding of regional and local optical conditions, models can address the requirement for specific regional optical constituents.

3.3 Optical Properties of Phytoplankton

It has been established that identifying the relative constituent contributions to the bulk water-leaving signal is challenging in optically complex waters. To add further complexity, differentiating the sources of optical signal from within the phytoplankton component itself is not straightforward when dealing with elevated biomass. There is a bulk effect on the water-leaving signal that is attributable simply to biomass, for which Chlorophyll a (Chl a) is used as a proxy, and which for the most part dominates the phytoplankton-related signal in Case 1 waters (Morel and Prieur, 1977).

The combined effects of assemblage Deff and biomass, together with non-algal optical contributors, are not easily interpreted from the water-leaving signal as these quantities have ambiguous effects on the bulk optics (Evers-King et al., 2014). Following a general allometric abundance approximation of increasing effective diameter with biomass (Ciotti et al., 2002), elevated scattering associated with the increased number of cells brightens the Rrs, but the associated increase in Deff acts to reduce Rrs. So a dense, small celled population would have a large reflectance signal, with elevated scatter due to both cell numbers and cell size - hence species such as Aureococcus anophagefferens are detectable in bloom (Quirantes and Bernard, 2006; Probyn et al., 2010) (FIGURE 2). Other particularly highly scattering species such as coccolithophores (although not a HAB species) are also easily detectable due to their massive impact on water-leaving reflectance, which is due in this case to their ultrastructure - their calcium carbonate liths are highly reflective particularly when detached (Vance et al., 1998).

It is well known that phytoplankton communities vary widely in their composition and associated impacts on in-water optics. The main phytoplankton optical influences are pigment type and density, organism size and morphology, ultrastructure, cellular
material and inelastic effects (fluorescence) (FIGURE 3). It should be noted that phytoplankton IOPs result from the interaction of all of the various cellular properties (size, Chl a density, surface area etc.) and the numerical abundance of the cells. The total Chl a concentration of a sample is approximately proportional to the biovolume, but not necessarily to the cell abundance. This is illustrated well by the bloom examples in FIGURE 2 - the A. Catenella bloom reached a Chl a concentration of 309 mg.m$^{-3}$ at a cell count of 9.8×10^6 per litre, while the Aureococcus sp. bloom had a count of 6×10^8 cells per litre - two orders of magnitude higher - but only reached a Chl a concentration of 13 mg.m$^{-3}$.

Modelling Rrs as a function of the combined constituent IOPs allows the exploration of the relationship between phytoplankton biomass and the effective diameter i.e. the mean particle size of the phytoplankton community. Figure 4 shows ranges of modelled Rrs for Deff between X and X, with small (top) and large (bottom) contributions to absorption and scatter by non-algal constituents. The usefulness of green wavelengths (500 - 600 nm) in distinguishing changes in Deff is clear as Chl a concentration increases past 1 mg.m$^{-3}$. The loss of size-related signal in highly
Observation of Harmful Algal Blooms with Ocean Colour Radiometry

scattering waters (bottom panel) is also clearly shown.

An optical signal of this sort needs to be robust in the context of satellite radiometry, where uncertainty in both measurements and derived products is still relatively high. Variability in Rrs at any nominal wavelength above a threshold magnitude of about 1 x 10^{-3} per steradian can reasonably be observed with confidence by satellite. There is growing evidence showing that a useable signal relating to substantial changes in Deff and pigment only appear with Chl a concentrations > 2 to 5 mg.m^{-3} (Evers King 2014, Dierssen ???), depending somewhat on the range of Deff change and the non-algal contributions (Lain 2018).

The appearance of vacuolate species easily attains this threshold of detection by satellite, and FIGURE 5 shows that vacuoles have a substantial effect on the water-leaving signal even at relatively low biomass. Optically, a vacuole is essentially an intracellular “bubble” and contributes significantly to a cell’s scattering properties, hence the bright water spectra resulting from an increase in reflectance across the wavelength spectrum.

3.3.1 Determining PFT: assemblage characteristics

Increased interest in satellite-derived PFTs across the ocean colour community has led to the development of a number of techniques aiming to derive phytoplankton functional type (PFT) information from the phytoplankton component of the bulk optical signal. See IOCCG Report 15.

PFT characteristics generally result in second-order optical effects: accessory pigments dominate assemblage absorption characteristics (Hoepfner and Sathyendranath, 1991), and particle size is usually the primary determinant of scattering characteristics (Olson et al., 1989). Mixotrophic species add to assemblage complexity as they are able to ‘adopt’ the chloroplasts of distinctively pigmented prey species, (Gustafson Jr et al., 2000). Observable optical variability may also be associated with, but not determined by, certain phytoplankton groups (Brown et al., 2008), such as populations of highly scattering bacteria attendant to diatoms (Moutier et al., 2017). FIGURE 6 shows apparent ocean colour as a function of biomass (Chl a concentration) and different phytoplankton taxa (represented by their mean absorption and backscattering properties), and a representation of those colours in the CIE color coordinate space.

Understanding the interaction between cells’ biophysical characteristics and the light field in the presence of all of the various in-water constituents is central to determining which parts of the optical signal are useable for PFT diagnostics, and likewise, where signal ambiguity is prohibitive. In the first instance there is the simple consideration of the relative proportional contribution of phytoplankton to the water-leaving signal: if there is not enough phytoplankton-related signal in the context of the bulk optics, opportunities to derive PFT-related information about the assemblage are limited even if an accurate biomass estimate is achieved. Further, the
causality of the signal within the phytoplankton component is a key question towards understanding when and how PFT information might be derived. In low biomass it is the strong absorption by phytoplankton which dominates the phytoplankton contribution to the ocean colour signature, and has therefore been identified as a promising signal in terms of PFT identification e.g. (Alvain et al., 2005; Devred et al., 2006) and others. Brewin et al. (2017) acknowledges that as algal particle concentrations (and therefore scatter by phytoplankton) increase, absorption-based PFT identification methods are no longer appropriate as phytoplankton scatter increasingly overwhelms fine spectral absorption characteristics and dominates the in-water optics. The detailed handling of phytoplankton spectral backscatter has been shown to be a vital aspect of successfully modelling intermediate to high biomass waters (Robertson Lain 2014, Lain 2018) and it follows that for HAB studies the scattering contribution should be examined further in the context of the causal phytoplankton signal. Many PFT approaches are statistically derived and applicable on global scales and over broad trophic states. Few PFT methods are explicit with regard to causality of signal. HAB events are anomalous by definition, from a global perspective, and only some of these techniques may be applied appropriately (e.g. size based Ciotti & Bricaud 2006, Kostadinov 2009, 2016 etc.) to avoid inherent assumptions about phytoplankton ecology which may not hold for bloom conditions.

3.3.2 Optical Constraints

Resolving the gross biomass signal is the primary aim of HAB algorithm development, but there is also a need to understand the assemblage-related signal. HABs present a unique opportunity for the application of Phytoplankton Functional Type (PFT) approaches, which need to be specifically designed to address significant signal ambiguity in highly scattering waters. The combined optical impacts of variable biomass, PFT (assemblage characteristics) and frequently substantial non-algal contributions form a complex radiometric signal which is not easily resolved into its components. At low oceanic biomass these respective contributions display more predictable spectral effects, but as biomass rises and backscatter by both algal and non-algal particles increases, so does causal ambiguity in the water-leaving optical signal. It should be noted that the Case 1/Case 2 categorisation is not distinct: water types occur on a spectrum of optical contributions by their respective in-water constituents. Modelling the contribution of phytoplankton to the total absorption, backscatter and attenuation of a water body is a useful way to understand how the optical water-leaving signal changes as biomass and non-algal constituents vary proportionally. Fig. 7 shows that under the stipulated nominal detrital and CDOM conditions, phytoplankton generally dominate the water-leaving signal (Rrs) when a biomass of about 10 mg.m$^{-3}$ is reached. This corresponds to a contribution to the constituent IOPs of around 40% (refs Lain et al 2014, 2018), and this is observable in different spectral regions depending on the interplay of the proportional
phytoplankton contribution to absorption and backscatter. It is important to note that while for oceanic applications there is heavy emphasis on blue wavelengths as the region of the largest radiometric signal, as biomass increases beyond levels typically observed in Case 1 waters, features in the green and red wavelengths become prominent. This emphasises the need for algorithms specifically designed for high biomass waters. As biomass increases upwards of 10 mg.m\(^{-3}\), confidence in gross estimates of biomass grows, as so much of the water-leaving signal is driven by algae. But as the contribution of additional suspended particles to the IOPs increases (not shown here), more and more phytoplankton is required to reach the threshold of about 40% of the IOP budget, and thus give confidence to the retrieval of assemblage-related information. In other words, it follows readily that the best opportunities to derive phytoplankton-related information from ocean colour occur where phytoplankton dominate the optics, i.e. Case 1 waters – generally considered to be low biomass oceanic waters. But when biomass is sufficiently high, the water-leaving signal may again be dominated by phytoplankton despite significant IOP contributions by both CDOM and suspended minerals. These waters can in theory be categorised as both optically complex and Case 1, and it is in this category that there are opportunities to identify PFTs in HAB waters using satellite ocean colour.

Any water-leaving signal resulting from changes in phytoplankton assemblage characteristics needs to be robust enough to be detectable against changes in biomass and in the context of significant uncertainties inherent in satellite measurements. So to summarise, the elevated biomass of HABs generally implies a higher proportion of the water-leaving signal being due to phytoplankton, and so confidence in retrieving phytoplankton-related information is increased. The detection of changes in phytoplankton assemblage from ocean colour data requires a resulting signal sufficiently large to appear in the satellite radiometry, and this needs to be disambiguated from changes in biomass. Spectral regions where changes in both biomass and Deff are observable are not useful without reasonable estimates of biomass. Further, at elevated biomass it is the scattering properties of phytoplankton which dominate the optics in spectral regions which are sufficiently causally unambiguous in the context of the other in-water constituents. It follows that isolating the scattering properties of phytoplankton is complicated by the presence of non-algal scatterers, and that the best opportunities for PFT identification in HABs are in Case 1 waters.

3.3.3 HAB detection techniques

The detection of HABs from satellite sensors requires techniques capable of discriminating harmful blooms from a background of harmless phytoplankton and other optically active constituents. Biomass concentration-based approaches are appropriate for situations where a HAB dominates the algal biomass and optical signal, and the visualization of satellite images is the primary technique used to identify their presence, particularly when phytoplankton blooms occur as a regular
event in a specific ocean region (e.g., Srokosz and Quartly, 2013) or in regions where they are not usually expected, such as oligotrophic gyres (e.g. Wilson et al., 2008, Wilson and Qiu, 2008).

In these cases Chl-a thresholds or anomalies (e.g. Stumpf et al 2003) can provide a means of identifying potentially harmful increased biomass against its seasonal ‘background’. Traditionally algorithms for the detection of phytoplankton biomass from satellites are based upon empirical relationships between blue-green band ratios and chlorophyll a concentration (e.g. O’Reilly et al 1998). However, these algorithms are known to produce inaccurate results in highly productive waters and/or when non-algal material or bottom reflectance influence the water-leaving reflectance signal; under these conditions algorithms utilising band ratios (e.g. Gurlin et al 2011) or spectral features in the red-NIR, such as the fluorescence line height (FLH, Gower et al 1999), may produce more reliable results.

While biomass-related approaches provide an indication of bloom intensity they do not provide information on the phytoplankton type and therefore the inherent risk associated with a bloom. Spectrally-based classification approaches (e.g. Ahn et al 2006, Gokul et al 2019, Miller et al 2006, Kurekin et al 2014) take advantage of the

Figure 3.2 The importance of the IOP budget: % contributions to the absorption and backscattering signals, and Kd, with given nominal (constant) adg and bbs contributions.
unique spectral features associated with different pigment assemblages, packaging and backscattering properties inherent to monospecific blooms. Several studies have demonstrated the effectiveness of the integration of novel derived products such as false colour composites (e.g. Hu et al 2005, Zhao et al 2015), derived IOPs (e.g. Cannizzaro et al., 2008, Kurekin et al 2014), and various algal indices (e.g. Amin et al 2009, Shanmugam 2011, Tao et al 2015, Zhao et al 2016) to further assist in characterising specific HABs.

HAB regions prone to cyanobacterial blooms lend themselves to bright water detection algorithms such as MPH (Matthews et al 2012), where the elevated scatter of vacuoles dominates the water-leaving reflectance to such an extent that it can be detected without a full atmospheric correction. This is advantageous for small water bodies and in regions where atmospheric corrections are known to fail.

Given the individualised nature of HAB occurrences, there is no one size fits all method for HAB detection. Regional knowledge is required to ensure that detection techniques are appropriate for local environmental conditions and optimised for the relevant phytoplankton species.

In light of the optical and pragmatic constraints outlined above, a number of regional algorithms have been developed to address specific constraints. High biomass and biomass anomaly detection techniques are the foundation of HAB observation across most regions.

Approaches to high biomass detection include red/red-edge algorithms, using the strong spectral features in the red and NIR characteristic of high biomass waters (Maximum Chlorophyll Index, Ryan et al 2014). Biomass anomaly techniques such as used in the Gulf of Mexico, (Thomas 2000 and Stumpf 2001 in Stumpf et al 2003) provide a means of identifying potentially harmful increased biomass against its seasonal ‘background’. Empirical approaches based on observed PFT abundance can be useful with regional knowledge of seasonal and phytoplankton assemblage trends.

Coccolithophores, while not considered a HAB species, are easily detected in bloom conditions as their ultrastructural calcium carbonate laths scatter brightly.

The goal of detecting harmful species in relatively low biomass is a particularly challenging one due to the fact that the phytoplankton-driven signal is of comparable magnitude to that of the non-algal optical constituents. Unique pigment markers may allow spectral discrimination techniques to be employed (Kirkpatrick et al 2000) in regions sensitive to particular HAB organisms, provided the signal is strong enough to be detectable i.e. provided that biomass is high enough. Other spectral analysis techniques are empirical, such as Principal Component Analysis (PCA) and Empirical Orthogonal Function (EOF) methods (Hardman-Mountford et al., 2008, Eslinger et al 1989, Garver et al., 1994, Iida et al., 2007), spectral matching (Mobley et al 2005, Craig et al 2006, Dekker et al 2011) or use spectral information explicitly e.g. FLI and fuzzy logic (spectral classification). Statistical approaches using reflectance anomalies and change detection over time series (Alvain 2005,
Brown 2008) are also used.

The techniques above may fulfil some HAB identification needs, but arguably for research purposes semi-analytical bio-optical models are required that can inform coherently on the relationship between phytoplankton biophysical properties of interest and the resulting optics. These models describe relationships between particle size and specific assemblage identifiers (refractive indices, absorption by pigments, scattering characteristics) as the primary determinants of phytoplankton IOPs, and their effects on the resulting bulk optics (Stramski 2001, 2004, Ciotti 2001, Kostadinov 2009, 2010, Mouw & Yoder 2010, Bernard 2009, Lain 2014, 2018, Mishra 2017). When coupled with radiative transfer models, these techniques make a valuable contribution towards more accurate inversion of the bulk signal and retrieval of constituent IOPs.

![Image](image_url)

Figure 3.3 The properties of phytoplankton that can affect ocean colour

3.3.4 Observational and Pragmatic Constraints

In theory, regular repeat times and good spatial coverage are core advantages of satellite imagery but in practice there are many barriers to fully exploiting these
facilities.

Unavailability of satellite data due to cloud is a pragmatic constraint of all space-based radiometric observing systems and this is no less an impediment to HAB observation, particularly considering that many coastal systems experience frequent cloud. Spatio-temporal data averaging techniques used in the open ocean to overcome this problem are not applicable in HAB study areas due to high spatial and temporal variability. Cloud interference occurs at physical scales similar to the event scale, greatly reducing the utility of ocean colour data under these conditions. Data losses of this kind can be compounded by the regular appearance of sun-glint at certain observational angles.

Subsurface HABS present a different kind of observational difficulty, but are equally important from an operational monitoring perspective. In fact, given that satellite measurements provide only surface information on the combined optical contributions of a water body’s vertical profile, the inability to observe below a potentially thin layer of optically dense water is a significant constraint (e.g. Dore et al., 2008, Villareal et al., 2011).

Highly toxic phytoplankton can occur in concentrations significant enough to pose an environmental threat yet do not form enough biomass to be observable from space, especially at the surface. Toxic species may also occur as just a fraction of the assemblage composition. Identifying troublesome phytoplankton at low concentrations is difficult simply due to insufficient optical signal regardless of whether it a partial or dominant component of the assemblage. Alexandrium fundyense blooms (causing PSP) in the Gulf of Maine are such an example: they are characterised by cell abundance at subsurface depths (Townsend et al 2005). The presence of Dinophysis spp. (causing DSP) can lead to lengthy harvesting closures at aquaculture operations off the northwestern Iberian coast (Ruiz-Villareal, 2016) and in the Benguela system. Dilute, visually inconspicuous concentrations of cells are noticed only because of the harm caused by their potent toxins (Pitcher and Calder 2000). Low cell densities of Dinophysis spp., comprising just a small portion of the microphytoplankton and most abundant at subsurface depths, are not readily detectable by satellite ocean colour data – or in fact, by any sampling means – but can cause gastrointestinal disease in humans induced by shellfish toxicity, and hence present a tangible environmental threat despite being a comparatively low biomass bloom.

Arid regions such as the Red Sea, Arabian Gulf and Sea of Oman are influenced by dust storms, aerosols, high evaporation rates, and seasonal haze and clouds (e.g. during monsoon months) which makes atmospheric correction, and subsequently detection of HABs, challenging (Gokul et al 2019). Highly reflective non-phytoplankton features (such as corals or shallow bathymetry) can also interfere with such spectral detection of algal features.

Access to satellite data and products is also a consideration. Processing satellite images requires expertise and can be time-consuming. Satellite-derived products
are complex, and to meet non-specialist operational requirements they need to be carefully developed and selected to be relevant and fit for purpose.

3.4 Research vs Operational OC Requirements

There is a heightened focus on HABs in inland and coastal areas as these areas are increasingly vulnerable to the effects of human activities as populations grow, and have a direct impact on aquaculture, water quality, recreation, and human and animal health. HABs represent probably the largest direct economic value for ocean colour satellite constellations. The potential for realising the full economic returns of OC satellites forms the basis of an economic justification of investment into the development of better atmospheric correction algorithms for use in coastal and inland water regions.

With a variety of sensors with different characteristics and capabilities available, the challenge is to match the suitability of sensors with each HAB application. HAB products are differentiated from those of more generalised operational oceanography by the requirement for stability in challenging near-coastal and inland areas. This requires a specialised approach to product and algorithm development. Operational products for HAB management need to be robust as well as easily digestible by a wide range of stakeholders from aquaculture farmers to policymakers and recreational users.

Operational systems require near-real time information with good spatial resolution, but may not present the stringent demand for precision in terms of spectral sensitivity, optical products, biomass and functional type required for research. The individual requirements of the users also inform the best detection techniques to use; while some applications may require the identification of specific HAB species, others might be satisfied with a gross biomass estimate. There is great scope for experimental new research products in HAB identification and monitoring as new bands become available on OLCI and future hyperspectral satellite sensors.

In order to increase the value of ocean colour data, improved methods of estimating gross biomass are needed. There is a great need for improved PFT retrieval algorithms, and these rely heavily on improved Chl a retrievals. In high biomass bloom scenarios, broad-scale changes in phytoplankton biomass from standard or regionally optimised biomass algorithms are very valuable. The most valuable effort in improving the value of ocean colour measurements is likely to come from better biomass estimates for the relevant ecosystem, and reducing ambiguity e.g. from sediment etc. The ability to detect Phytoplankton Functional Type from the optical water-leaving signal (whether by particle size, or unique pigment identifiers) is a main goal of current research in optically complex waters. Discrimination of PFTs between commonly observed bloom species (e.g. large diatoms vs dinoflagellates) facilitates improved management response to HABs – a toxic dinoflagellate bloom
may require a different management approach than a massive diatom bloom tending towards anoxia and crustacean walkouts.

These are Low bio cases. Also florida.

Reference Petersen book in dropbox. A lot. Also more refs to the other chapters.

References to add:

Figure 3.4 CIE Colour space chart - surface biomass concentration. Permission required.
Figure 3.5 AOPs phyto blooms, Chl vs cell size
Chapter 4

Dinoflagellates associated with Paralytic Shellfish Poisoning

Suzanne Roy, Grant C. Pitcher, Raphael M. Kudela, Marié E. Smith, Stewart Bernard

4.1 General description of causative organisms and their environment

Species that produce Paralytic Shellfish Poisoning (PSP) toxins include a few freshwater cyanobacteria and the following marine dinoflagellates: *Alexandrium acatenella*, *A. affine*, *A. andersonii*, *A. angustitabulatum*, *A. catenella*, *A. cohorticula*, *A. fundyense*, *A. fraterculus*, *A. leei*, *A. minutum*, *A. ostenfeldii*, *A. tamarense*, *A. tamiyavanichii*, *A. taylori*, *Gymnodinium catenatum* and *Pyrodinium bahamense* var. *compressum* (Hallegraeff et al. 1995; Anderson et al. 2011). Except for the unarmoured *G. catenatum*, all these dinoflagellates are armoured species that fit in the microplankton size category (roughly between 20 and 50 µm). Several of these species are involved in toxic blooms of harmful algae around the world. The composition of PSP toxins in the genus *Alexandrium* typically includes various combinations of carbamoyl toxins (saxitoxins, neosaxitoxins and the gonyautoxins GTX1-GTX4) and N-21 sulfocarbamoyl analogues (GTX5, GTX6, C1, C2). The PSP toxin profile is relatively stable for a given clonal isolate, but it varies widely within and among *Alexandrium* species. Cellular toxin content varies more than the toxin profile and is thus not reliable as a species-, ribotype- or population-characteristic (Anderson et al. 2011). Several factors can affect cellular toxin content, including waterborne cues of the presence of copepods, which can provoke an increase in cell toxins (Selander et al. 2006). Although generally present, toxicity can be absent from some populations, such as Group III clades of *A. tamarense* in Scotland and Northern Ireland (Lilly et al. 2007). Toxic species cause harm to the environment by intoxicating shellfish and fish with potent neurotoxins, leading to alterations of trophic food webs, the death of marine mammals, fish and seabirds, loss of cultured seafood resources, impairment of tourism and recreational activities and human intoxications leading to death in some cases.

These dinoflagellate species are able to colonize multiple habitats (estuaries,
Observation of Harmful Algal Blooms with Ocean Colour Radiometry

 fjords, upwellings zones, shallow embayments and deeper open coastal regions) and persist over large regions through time (notably through the production of benthic cysts), emphasizing their adaptability and resilience (Anderson et al. 2011). Blooms last several days to weeks and they seem restricted in time by the transition to a dormant benthic cyst phase, generally following sexual reproduction. This transition is likely controlled by a reduction in cell nutrient quota, although temperature and bacteria may also be involved (Figuerão et al. 2005). Recurrent toxic blooms occur in many regions of the world, including Argentina, Australia, California, Canada (Bay of Fundy, St. Lawrence Estuary), Chile, Faroe Islands (Norway), Japan, Mexico, New England, Spain, Thailand, Venezuela, to name just a few. The PSP toxin-producing species mentioned above are photosynthetic, although they are also suspected of being mixotrophs (e.g. Jacobson and Anderson 1996) and of using allelochemicals to provoke the lysis of target food cells (Ma et al. 2009). Mixotrophy contributes to a general opportunistic behaviour relative to nutrition: several of these dinoflagellates are able to grow in nutrient-rich environments (Spatharis et al. 2007), in relatively pristine waters (Anderson et al. 2002), and in oligotrophic coastal regions (Thau lagoon, Collos et al. 2009). They are able to use several forms of nitrogen (nitrate, ammonium, and urea) and their growth rate characteristically increases with the addition of humic substances, such as found in soil leaching. Iron and selenium are also candidates for growth stimulation in *Alexandrium* – their levels may vary with freshwater runoff, particularly in heavily forested watersheds (Wells et al. 1991).

 All of the above species produce resting cysts as part of their normal life cycle. Cysts play an important role for bloom inoculation (through benthic repository and seeding of the water column) and termination (through sexual reproduction followed by the production of cysts). Cysts and motile blooms may be tightly coupled in shallow embayments, leading in some cases to predictions of upcoming blooms using cyst concentration in surface sediments (McGillicuddy et al. 2011). In large estuaries or open coastal waters, this linkage may be less obvious, and blooms can be more strongly controlled by physical factors (circulation, fronts) and their coupling with biological behaviour such as swimming (chain formation), vertical migration, or resuspension of cysts from bottom sediments to favour their germination and access to surface waters. With such a large number of species linked to PSP toxic events, it is difficult to generalize about the environmental control of bloom dynamics, but most blooms are heavily dependent on local hydrographic conditions and physical/biological coupling. Eutrophication is not considered a major factor in promoting blooms of *Alexandrium* species, since these blooms often occur in remote and relatively pristine waters e.g. Alaska, southern Argentina (Anderson et al. 2011).

 The colour of these cells varies according to their pigmentation. Five pigment types are currently recognized in dinoflagellates. The typical one contains peridinin as a characteristic carotenoid. The other four types result from endosymbiosis with various eukaryotic algae, resulting in pigmentation typical of haptophytes,
Dinoflagellates associated with Paralytic Shellfish Poisoning

Diatoms, cryptophytes or prasinophytes (e.g. Jeffrey et al. 2011). It is interesting to note that detailed information on cell pigmentation is lacking for several species responsible for harmful algal blooms (Egeland 2011). Peridinin is the dominant carotenoid pigment in *A. catenella*, *A. minutum*, *A. tamarense*, *A. tamiyavanichii* and *G. catenatum*. All these species also contain various types and concentrations of mycosporine-like amino acids (MAAs), a group of photoprotective compounds (some are also antioxidants) particularly useful in blocking harmful ultra-violet radiation (Carreto et al. 2001; Carreto and Carignan 2011). Their presence in cells affects phytoplankton spectra in the UV wavelength region and may eventually be useful to track blooms of toxic dinoflagellates as ocean colour detection moves towards hyperspectral instruments (current sensors generally do not include wavebands below 400 nm).

4.2 Morphological, bio-optical and ecophysiological characteristics of two important *Alexandrium* species

4.2.1 Morphology

Alexandrium catenella and Alexandrium tamarense are very similar morphologically, with numerous yellow-green to orange-brown chloroplasts. *A. catenella* has a large U-shaped nucleus (Whedon and Kofoid 1936) while *A. tamarense* has a ventrally located lunar-shaped nucleus (Larsen and Moestrup 1989) (see Figure 4.1).

![Figure 4.1](image)

Figure 4.1 a) *Alexandrium catenella* (Whedon & Kofoid) Balech and b) *Alexandrium tamarense* (Lebour) Balech. Please obtain copyright permission??

Alexandrium catenella (Whedon & Kofoid) Balech typically occurs in characteristic short chains of up to 16 cells. Single cells are round, slightly wider than long, and are anterio-posteriorly compressed. Cells range in size between 20-48 µm in
length and 18-32 µm in width (Steidinger and Tangen 1997). Previous names for this species include *Gonyaulax catenella*, *Gessnerium catenellum* and *Protogonyaulax catenella* (Anderson et al. 2011). It is part of the *Alexandrium tamarense* complex and is present in phylogenetic Groups I and IV described by Lilly et al. (2007).

Cells of *Alexandrium tamarense* (Lebour) Balech are commonly found singly or in pairs, and less commonly in fours. The size and shape of this species is highly variable: cells range in size between 22-51 µm in length and 17-44 µm in trans-diameter width (Steidinger and Tangen 1997). Previous names for this species include *A. excavatum*, *Gonyaulax tamarensis*, *G. tamarensis* var. *excavata*, *G. excavata*, *Gessnerium tamarensis*, *Protogonyaulax tamarensis*, and *P. excavata* (Anderson et al. 2011). Current molecular evidence suggests that *A. tamarense*, *A. fundyense* and *A. catenella* are all part of the same species complex which harbours five phylogenetic groups (Lilly et al. 2007). *Alexandrium tamarense* from various regions around the world is present in all five groups, sub-divided in a North-American clade (Group I), a Mediterranean clade (Group II), a Western-European clade (Group III), a temperate Asian clade (Group IV) and a Tasmanian clade (Group V).

4.2.2 Pigments

A. catenella and *A. tamarense* contain chlorophyll *a*, chlorophyll *c2*, Mg-DVP, peridinin and diadinoxanthin as major pigments, and diatoxanthin, dinoxanthin, peridininol and β-carotene as minor pigments. Typical wt:wt ratios to chlorophyll *a* for the marker pigment peridinin range from 0.2 to 1.6, with a mean of 0.8 (from field data: Higgins et al. 2011). These ratios are useful when reconstructing algal populations from pigment data, as with CHEMTAX. Several *Alexandrium* species also contain high and variable amounts of mycosporine-like amino acids (MAAs), typical of high light-adapted bloom forming species (Carreto et al. 2001; Carignan et al. 2002). Ratios of UV absorbance to that of chlorophyll *a* at 665 nm vary from 2 to 12 (Carreto and Carignan 2011).

4.2.3 Ecological and Trophic Characteristics

Alexandrium is an opportunistic genus relative to nutrition. Mixotrophy and phagotrophy are widespread among these species. These dinoflagellates can take up organic compounds and humic substances (used as growth promoters and often associated with high CDOM waters, which complicates the use of optical tools) and they have been observed to feed on heterotrophic bacteria and cyanobacteria (*A. catenella*) and on other prey such as haptophytes, cryptophytes, diatoms, raphidophytes and even other dinoflagellates (*A. tamarense*; Jeong et al. 2010). Blooms of these PSP species are not clearly linked to pollution or nutrient enrichment; however, they are heavily dependent on local hydrographical conditions and interactions with cell behaviour (cyst germination, vertical migration). Therefore climate-induced
changes in temperature or salinity in surface waters are likely to affect blooms of PSP species and contribute to the expansion of their biogeographic range.

4.3 Specific Case Studies

4.3.1 St. Lawrence Estuary, Canada

4.3.1.1 Regional occurrence

The dinoflagellate *Alexandrium tamarense* has long been present in the Estuary and Gulf of St. Lawrence (Eastern Canada), where it blooms annually almost every summer. These blooms generally start off near coasts (often in the region of the plume of two major rivers on the north shore of the St. Lawrence Estuary) but they can be entrained offshore by the local circulation, move to the south shore and be entrained out of the Estuary by a coastal current. The toxicity of its cells is one of the highest in the world. Large toxic blooms (PSP) impact local fisheries, seabirds, marine mammals and the associated tourist industry. Fish larvae seem to be particularly susceptible to exposure to these toxic cells (Gosselin et al. 1989; Robineau et al. 1991). The severity of these blooms varies from minor, almost undetectable, in some years to really major events in others (a major one in August 2008 had maximum PSP toxicity in mussels of 10.6 mg STX eq 100 g \(^{-1}\) tissue). Mapping of the resting cysts was done in 1988 and 2009, with a high degree of similarity among those two years and showing two regions of major cyst accumulations, one near Baie-Comeau on the north shore of the Estuary, where the outflow from two major rivers likely favors the growth of cells, notably through the influence of humic substances, (Gagnon et al. 2005), and one on the south shore, near Matane. The first one is thought to be a permanent seedbed - with cyst concentrations around 500 cysts cm\(^{-3}\) (Gracia et al. 2013) - feeding blooms for the whole region, while the second one may result from blooms 'ending their lives' and encysting in this region, but local coastal currents will likely advect seaward any cells that germinate from these cysts.

These toxic blooms have been studied for over 20 years. The association with freshwater discharge and the plume produced by large rivers on the north shore (Manicouagan and aux-Outardes) has been clearly established (Therriault et al. 1985; Therriault and Levasseur 1985). Environmental preferences of this algal species include temperatures between 10 and 16 °C, relatively low salinity values (20 to 28 psu) and a need for humic substances (Weise et al. 2002). Blooms generally occur under conditions of locally high surface water temperatures, low winds and turbulence, weak vertical mixing and high stratification. Cells can swim up to 2 m h\(^{-1}\) (Fauchot et al. 2005) and they often perform vertical migrations (ibid). The *in situ* growth rate of cells reached 0.5 d\(^{-1}\) during a bloom event in 1998, with high values even at the peak of the bloom (indicating this was not solely the result of physical aggregation) (Fauchot et al. 2005). Blooms are generally important and
prolonged when there are events of strong rainfall followed by weak winds over a few weeks, which is what happened in August 2008 when a major toxic bloom event occurred (Starr et al. 2017). Fauchot et al. (2005) determined that wind speed over 20 km h\(^{-1}\) dissipated blooms and that growth rate was high only when salinity was less than 24.5 psu. A biological model, taking into account the source of cells (cysts) and their growth rate according to the environmental conditions, was coupled to a 3D circulation model to produce the first local biological-physical model for this species (Fauchot et al. 2008). This showed the major role of wind speed and direction on bloom development, with possible retention or advection depending on precise wind conditions. Nutrient-wise, these cells show a high affinity for phosphate, which seems to control the rate of growth while nitrate seems to control the total number of divisions achieved (Fauchot et al. 2005).

4.3.1.2 Specific event description

During the summer of 2008, a bloom with unprecedented intensity developed in the St. Lawrence Estuary. Meteorological conditions (heavy precipitation and warm temperatures) at the end of July and early August 2008, and calm surface waters favoured the blooming of the toxic *A. tamarense* near the mouth of the Saguenay River where there is a marine park which specializes in whale watching. This large bloom (cell density up to \(80 \times 10^3\) cells l\(^{-1}\)) drifted towards the south shore, moved eastward with the Gaspé current and dissipated due to strong winds in the western Gulf of St. Lawrence during the last fortnight of August 2008. For approximately two weeks this extensive bloom covered 600 km\(^2\), from Tadoussac to the Gulf of St. Lawrence and caused the mortality of ten beluga whales, hundreds of seals and thousands of fishes, invertebrates and sea birds in the St. Lawrence Estuary (Measures and Lair 2009; Starr et al. 2017). Figure 4.2 shows the position of the bloom and the optical products obtained with various algorithms.

4.3.1.3 Major ocean colour considerations

Bio-optically, these estuarine waters are typically Case II, with a strong influence of CDOM and suspended particulates. Under these optically challenging conditions, standard atmospheric correction and chlorophyll \(a\) algorithms often fail (e.g. Figure 4.3 a and b), resulting in the loss of valuable satellite data. Techniques that were specifically developed for optically complex waters, such as the Alternative Atmospheric Correction Procedure for Case II waters (Doerffer 2011), can increase data coverage as shown in Figure 4.3 c and d. Regional ocean colour algorithms (Laliberté et al. 2018) have also been shown to improve the accuracy of chlorophyll \(a\) retrievals in the St. Lawrence Estuary and Gulf.
Figure 4.2 MERIS RR images from 6 and 22 August 2008, during the final stages of the *A. tamarense* bloom, highlighting the inconsistencies of standard algorithms due to poor atmospheric correction. Panel (a) shows failure of the atmospheric correction and Case 1 water algorithm, Algal1, with much resultant data loss. Panel (b) shows reflectance spectra extracted from the locations indicated by the two dots in panel (a), and demonstrate successful application of BPAC (blue) and failed aerosol correction (red). Better performance is seen with the products from the Case 2 neural network algorithm, Algal2, showing bloom distribution consistent with measured toxicity and cyst distributions in panels (c) and (d).
4.3.2 California

4.3.2.1 Regional occurrence

The first link between shellfish poisoning and marine phytoplankton was discovered in the late 1920s after a PSP event caused over 100 human poisonings along the coast from San Francisco to Monterey Bay, (Sommer, Meyer, et al. 1937), now attributed to the dinoflagellate *Alexandrium catenella*. Within the California Current, PSP is generally associated with *A. catenella*, transitioning to *Gymnodinium* and *Pyrodinium* in Mexico (Lewitus et al. 2012a; Ochoa et al. 1997). Human deaths were documented as early as 1793, when members of Captain George Vancouver’s crew died in Poison Cove, British Columbia. Outbreaks of PSP toxicity occur regularly, but increased surveillance of shellfish has greatly reduced human-related illnesses in recent decades (Lewitus et al. 2012a).

Although primarily a northern California phenomenon, PSP outbreaks were first reported in 1918 from San Diego County (Price et al. 1991), and STX is routinely detected throughout California. In general, *Alexandrium* is a minor component of the phytoplankton assemblage along the California coast, but PSP toxins have been detected annually from shellfish tested by the California Department of Public Health (CDPH). CDPH maintains an active volunteer monitoring program, first established in 1993. Based on microscopy, *Alexandrium* accounts for less than 10% of the assemblage in >90% of samples, and less than 1% of the assemblage in >50% of samples (CDPH, as reported by Lewitus et al. 2012a. As a result, visual observation of *Alexandrium* is rare, with only one “red tide” observed in 1991 in northern California (Langlois 2001).

A. catenella is a strong swimmer, in part due to the formation of long chains of cells (Fraga et al. 1989), and PSP outbreaks typically initiate on the open coast, and only then move into bays and estuaries (Langlois 2001). A consistent pattern of PSP events during relaxation of upwelling is apparent; the general pattern is a rapid increase of *A. catenella*, followed by onshore transport during relaxation-favorable winds, with subsequent toxicity of shellfish (Price et al. 1991; Langlois and Smith 2001). Thus, PSP events appear to be correlated to large-scale oceanographic events, in particular the upwelling-relaxation cycle associated with upwelling, and the onshore transport of toxic cells (Kudela et al. 2005).

4.3.2.2 Specific event description

Jester et al. (2009) documented cell abundance and toxicity over 3 years, 2003–2005, at the Santa Cruz Municipal Wharf and the M1 mooring location (nearshore and mid-bay respectively) within Monterey Bay, California. Seasonal increases in *Alexandrium* occur ~annually in Monterey Bay, California at mid-summer (June–July). Maximum cell concentrations in June–July 2004 ranged from 1150 to >15 000 cells l$^{-1}$, with corresponding toxicity of 962 ng STX eq l$^{-1}$ offshore and 511 ng
STX eq l\(^{-1}\) inshore. As is typical for central California, cloud cover obscured the region for much of the summer. Imagery from 24 June 2004 provided reasonable coverage, with cell counts from the Santa Cruz Municipal Wharf bracketing that date (14 June and 28 June) of 1150 and 2040 cells l\(^{-1}\) (Jester et al. 2009). During this time, relative abundance of *Alexandrium* was <10\% of the assemblage, within a mixed community of diatoms (*Chaetoceros, Ditylum*) and dinoflagellates (*Ceratium, Protoperidinium, Dinophysis, Polykrikos*).

4.3.2.3 Major ocean colour considerations

Bio-optically, Monterey Bay is generally Case 1 despite proximity to shore, with low CDOM values and minimal suspended sediments. Cloud cover and coastal fog are persistent issues, particularly during the summer months (Frolov et al. 2013). Data available from MODIS Aqua for 24 June 2004 provided clear-sky conditions, with excellent coverage. High biomass (>30 mg.m\(^{-3}\) chlorophyll \(a\) was observed, with a distinct peak in FLH within the northern part of the Bay. This region is characterized as a “red tide incubator” driven by prolonged retention times, stratification, and subsurface injection of nutrients (Ryan et al. 2009). The MODIS imagery exhibits characteristic issues with retrieval of ocean colour in high-biomass waters, comparable to the MERIS imagery for the St. Lawrence. Data dropouts caused by atmospheric correction and algorithm failure are apparent when using both the “standard” NASA atmospheric correction scheme and the Wang et al. (2009) correction which utilizes both NIR and SWIR bands (Figure 4.3). FLH provides full coverage, since the red bands are less sensitive to poor atmospheric correction; the combination of FLH and chlorophyll \(a\) highlights the most intense bloom patches, although care must be taken when examining the FLH because of the red-shift associated with increasing biomass (Ryan et al. 2014), which strongly influences the FLH signal when comparing, for example, MODIS Aqua and MERIS fluorescence products.
Failure of atmospheric correction algorithm in high-biomass waters, using the standard (left) and Wang 2009 (right) models.

Fluorescence Line Height (FLH) improves data recovery and highlights high-biomass blooms.

Figure 4.3 MODIS Aqua images of Monterey Bay for the 24th of June 2004 which shows the chlorophyll a and nFLH products produced with the standard (left) and the Wang et al. (2009) (right) atmospheric correction models.
4.3.3 Benguela

4.3.3.1 Regional occurrence

The first accounts of PSP in the Benguela probably date back to the 1880s (Gilchrist 1914), but PSP was only confirmed in 1948 at which time it was attributed to the dinoflagellate *Gonyaulax catenella* (now *Alexandrium catenella*) (Sapeika et al. 1948). PSP is confined to the west coast of South Africa and the last record of PSP occurred during the 1996-97 upwelling season when toxin concentrations in shellfish exceeded 2.5 mg STX eq 100 g$^{-1}$ shellfish. Twenty-two cases of PSP were recorded at that time in people having eaten mussels, two of whom died and one became apnoeic, but survived after being intubated and ventilated for 26 hours (Pitcher and Calder 2000). PSP toxins have for many years posed a significant risk to the mussel and oyster sectors of the South African aquaculture industry by enforcing harvesting closures, and in 1999 the first detection of PSP toxins in abalone threatened the future of abalone culture facilities on the west coast (Pitcher et al. 2001). Apart from the risk to human health *A. catenella* has also been responsible for large shellfish, fish and seabird mortalities (Gilchrist 1914; Horstman 1981; Pitcher and Calder 2000).

Blooms of *A. catenella* typically occur annually and cell densities can reach several million cells l$^{-1}$ (Pitcher and Weeks 2006). The highest incidences of blooms occur in the St. Helena Bay region where stratified conditions favour dinoflagellate growth, and retentive circulation patterns facilitate the build-up of dense blooms during the latter half of the upwelling season. In March 2007, Seeyave et al. (2009) measured high nitrogen uptake (ρNO$_3$; maximum 0.61 µmol N l$^{-1}$ h$^{-1}$) and f-ratios up to 0.87 in a bloom of *A. catenella* indicating that it was a velocity strategist, better adapted to utilising high NO$_3$ concentrations during upwelling pulses. Cysts of *A. catenella* are confined to the sediments of the St. Helena Bay region with a maximum recorded abundance of 238 cysts ml$^{-1}$ wet sediment (Joyce and Pitcher 2006). Experimental results indicate a short dormancy period of 15–18 days and cyst germination does not show a clear seasonal pattern, suggesting that the cyst population does not necessarily serve as an overwintering strategy, but may rather permit rapid cycling between benthic and planktonic stages.

The toxin composition and content of *A. catenella* in the southern Benguela has shown notable variability. While initial investigations of toxin profiles showed high proportions of the less toxic N-sulfocarbamoyl derivatives: 60% B1 and C1,2 (Pitcher et al. 2001; Sebastián et al. 2005), later investigations showed a far higher proportion of the more toxic carbamoyl toxins: 66% NEO and STX (Hubbart et al. 2012). Consistent in the comparison of the results of these studies was the general absence of decarbamoyl toxins, which are not typically produced by dinoflagellates, and the lack of sulfocarbamoyl analogs C3, C4, as is expected for *Alexandrium* species. The mean cell toxin quota for *A. catenella* in the southern Benguela has also been shown to vary from the estimates of 1.75 pg STX eq cell$^{-1}$ of Pitcher et al. (2001) to the
estimates of 39.4 pg STX eq cell\(^{-1}\) of Hubbart et al. (2012). The regular occurrence of high biomass \textit{A. catenella} blooms causes toxin concentrations in shellfish to often exceed 1 mg STX eq 100 g\(^{-1}\) (Horstman 1981; Pitcher et al. 2001), as determined by the standard AOAC (1990) mouse bioassay. Although \textit{A. catenella} remains the most likely cause of PSP on the South African coast, \textit{Alexandrium minutum} was recorded for the first time in 2003–04 posing an additional threat of PSP in the region (Pitcher et al. 2007).

4.3.3.2 Specific event description

A phytoplankton bloom dominated by \textit{A. catenella} was sampled off Lambert’s Bay in the southern Benguela during October 2002. \textit{In situ} sampling of the bloom showed a chlorophyll \textit{a} concentration and effective diameter of 309 mg.m\(^{-3}\) and 25.1 \textmu m respectively. Co-incident radiometric data were collected during the MERIS overpass on the 25th of October and satellite match-ups were extracted within 1 km of the sampling station (Figure 4.4). \textit{In situ} radiometric data collected within the bloom area showed low reflectance in the blue and green spectral regions with a reflectance peak at 709 nm characteristic of high biomass waters, seen in Figure 4.4 (f).

4.3.3.3 Major ocean colour considerations

Several ocean colour products were derived from MERIS RR data on the 25th of October 2002. Although the bio-optical conditions of the southern Benguela region are generally Case 1, the standard MERIS Case 1 algorithm (and resultant chlorophyll \textit{a} product, Algal 1) may not always be appropriate for the entire region due to the frequent occurrence of moderate to high phytoplankton biomass (>20 mg.m\(^{-3}\)); this is demonstrated in Figure 4.4 (a) where most of the high biomass areas are flagged due to algorithm failure. Similarly, the FLH algorithm retrieved negative Chl \textit{a} values over most of the moderate to high biomass areas. Empirical algorithms that operate on the red edge e.g. Moses et al. (2009), are often preferred in high biomass waters, although these algorithms may have larger measurement uncertainties in waters with chlorophyll \textit{a} below approximately 10 mg.m\(^{-3}\) (Dall’Olmo and Gitelson 2006; Moses et al. 2009); this is demonstrated in Figure 4.4 (c) where the bloom and moderate to high biomass areas are clearly mapped, whilst the algorithm returns negative chlorophyll \textit{a} values (flagged out in the image) over the low biomass areas. Other approaches utilized within the region include analytical inversion techniques such as the equivalent algal population (EAP) algorithm (a variant of Evers-King et al. (2014), which can provide chlorophyll \textit{a} concentration (Figure 4.4(d)) and phytoplankton effective diameter (Figure 4.4 (e)), among other variables. Both the satellite derived EAP chlorophyll \textit{a} (\(~201\) mg.m\(^{-3}\)) and effective diameter (\(~25\) \textmu m) match-ups corresponded well to \textit{in situ} values. The extracted match-up spectrum shows broad spectral shape and reflectance features similar to the \textit{in situ} spectra
(Figure 4.4 (f)), which would suggest that the MERIS bright pixel atmospheric correction (Moore and Lavender 2011), that is ubiquitously applied over the image, is largely appropriate for the region.
Figure 4.4 MERIS RR images from 25 October 2002, showing a massive bloom of *Alexandrium catenella* in the southern Benguela. Images show the failure of the Algal 1 algorithm; the negative returns of the FLH algorithm at very high biomass; the better performance the Gitelson 2 band algorithm; and ability to provide cell size through the EAP algorithm.
Chapter 5

Application of Ocean Colour to Toxic *Pseudo-nitzschia* Diatom Blooms

Raphael M. Kudela, Marié E. Smith, Grant C. Pitcher, Stewart Bernard

5.1 Background

Species that produce amnesic shellfish poisoning (ASP) are almost exclusively limited to the diatom genus *Pseudo-nitzschia*. Most of the toxigenic species are considered to be cosmopolitan Hasle 2002, and include at least 14 species: *P. australis*, *P. brasiliana*, *P. calliantha*, *P. cuspidata*, *P. delicatissima*, *P. fraudulenta*, *P. galaxiae*, *P. granii*, *P. multseries*, *P. multistriata*, *P. pseudodelicatissima*, *P. pungens*, *P. seriata*, and *P. turgidula*. Cells and toxin have been associated with both thin layers and high-biomass events occurring in bays, coastal areas, and the open ocean. Harmful impacts are caused by the production of domoic acid, a potent neurotoxin that interacts with glutamate receptors. Ingestion results in amnesic shellfish poisoning in humans and domoic acid poisoning (DAP) in other vertebrates (Bates et al. 2008; Lelong et al. 2012; Trainer et al. 2012. Known analogs for domoic acid also exist e.g. isodomoic acid, epidomoic acid Lelong et al. 2012 but are generally considered of secondary importance. Cellular toxin varies widely from non-detectable to \geq pg/cell concentrations and frequently varies in response to environmental conditions regulating growth rate e.g. nutrients Bates et al. 1998. Toxigenic species cause harm to the environment by intoxicating shellfish and fish, leading to alterations of trophic food webs, the death of marine mammals, fish and seabirds, loss of cultured seafood resources, impairment of tourism and recreational activities and human intoxications leading to death in some cases.

Despite the cosmopolitan nature of the genus nearly all of the documented impacts to ecosystems or human health have occurred in eastern boundary current systems Trainer et al. 2012, although *Pseudo-nitzschia* is also commonly documented in open ocean fertilization experiments De Baar et al. 2005; Marchetti et al. 2008; Trick et al. 2010. It is often present at low (“background”) concentrations, but can occur at very high densities in both restricted subsurface thin layers Rines et al. 2002; McManus et al. 2008; Timmerman et al. 2014 and as high-biomass events
covering hundreds of kilometers of coastline Trainer et al. 2000, 2009; McCabe et al. 2016. The large number of toxigenic species and ecosystems results in a similarly wide range of ecological conditions promoting HAB outbreaks, from open-ocean fertilization experiments Trick et al. 2010 to known coastal “hotspots” such as Monterey Bay, CA, the Juan de Fuca Eddy in the Pacific Northwest, the Gulf of Mexico, and the Gulf of Maine Trainer et al. 2012. In some cases progress has been made linking bloom/toxin events to environmental conditions including river runoff, upwelling, and nutrients Lane et al. 2009; Anderson et al. 2009; Anderson et al. 2011. While there is a correlative relationship between ASP and eutrophication, there are few specific studies that document a direct link Anderson et al. 2008; Lewitus et al. 2012b.

Formation of a resting stage for this genus has been proposed, but is not well described in the literature (summarized in Lelong et al. (2012)). Heterotrophic growth has also been hypothesized e.g. Mengelt and Prézelin (2002), but this is also poorly documented. *Pseudo-nitzschia* grow readily on multiple sources of nitrogen, and may produce more toxin when growing on urea as a N-source (Howard et al. (2007), but see also Thessen et al. (2009). For those species that have been well characterized, N-preference is variable but all forms of nitrogen appear to support growth at some level Trainer et al. 2012.

Pseudo-nitzschia pigmentation and colour is similar to other diatoms. Major pigments include chlorophylls *a* and *c*, with fucoxanthin serving as the primary carotenoid. The colour of healthy cells is typically a golden brown, although considerable variability exists in pigment per cell and the protoplast is often restricted within the frustule, resulting in partial pigmentation of the cell. Pigments are not typically used as a diagnostic indicator for presence of *Pseudo-nitzschia* except in those cases where it dominates the biomass, making non-specific markers such as fucoxanthin useful Garcia-Mendoza et al. 2009. The defining characteristic, i.e. the presence of domoic acid, does not provide a useful optical signature. While domoic acid absorbs strongly in the UV, peak absorption is well below the range of any airborne or satellite sensor (~320 nm). Identification to species can be difficult using optical microscopy; confirmation of species identity often requires either molecular methods or scanning or transmission electron microscopy Kudela et al. 2010; as a result, *Pseudo-nitzschia* are often classified based on overall size and morphology into two crude groups based on cell width: the “seriata” group includes wide (>3 µm) cells, and the “delicatissima” group includes narrow (<3 µm) cells Hasle and Syvertsen 1997.

5.1.1 Characteristics of *Pseudo-nitzschia* genus

Morphology: Members of the *Pseudo-nitzschia* genus are characterized as chain-forming (except *P. americana*), pennate diatoms with longitudinal symmetry. As diatoms they have a cell wall comprised of silicic acid. Lobed, undulate, or sickle-
shaped cells are relatively common, often associated with older cultures. Cell and chain length vary widely as a function of environmental conditions and number of generations since sexual reproduction. Precise identification to species typically requires genetic information or detailed analysis (scanning or transmission electron microscopy) of the silica frustule.

Table 5.1: General characteristics of two representative species from the *Pseudo-nitzschia* genus.

<table>
<thead>
<tr>
<th>Species</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-nitzschia multiseries</td>
<td>- Single cells are pennate with longitudinal symmetry. - Cell length varies widely depending on time since sexual reproduction. - Cell toxin quotas also vary widely depending on species, strain, and environmental condition. - The seriata group is generally recognized as being more toxic, with cell quotas exceeding 120 pg/cell Schnetzer et al. 2007.</td>
</tr>
<tr>
<td>Pseudo-nitzschia delicatissima</td>
<td>- Single cells are pennate with longitudinal symmetry. - Cell length varies widely depending on time since sexual reproduction. - Cell toxin quotas also vary widely depending on species, strain, and environmental condition. However, the delicatissima group is generally recognized as being less toxic, with cell quotas typically less than 5 pg/cell.</td>
</tr>
</tbody>
</table>

Pigments: *Pseudo-nitzschia* contain chlorophyll *a* and fucoxanthin as major pigments, chlorophyll *c*₂, diadinoxanthin, and β,β-carotene as minor pigments, and Mg-DVP and diadinochrome as trace pigments. Typical wt:wt ratios to chlorophyll *a* for the marker pigment fucoxanthin range from 0.49 to 1.83 for laboratory cultures e.g. Kudela, unpublished data; Quijano-Scheggia et al. (2008), and field data Wright et al. 2009, but are not well reported in the literature. These ratios are useful when reconstructing algal populations from pigment data, as with CHEMTAX. *Pseudo-nitzschia* is generally categorized as part of the “Diatom II” group which is
characterized as having minor amounts of chlorophyll c_2 and c_3, and no chlorophyll c_1; however, $P. fraudulenta$ has been reported to have trace amounts of chlorophyll c_1 Quijano-Scheggia et al. 2008.

Ecological & Trophic Characteristics: Toxigenic $Pseudo-nitzschia$ are cosmopolitan Hasle 2002 but nearly all reported negative impacts have been associated with eastern boundary current systems Trainer et al. 2012. Toxicity has been reported for both coastal and oceanic species, but the highest toxicity is generally associated with coastal ecosystems Trainer et al. 2012. Toxic blooms of $Pseudo-nitzschia$ have been associated with a range of environmental conditions including upwelling/relaxation (MISSING REFS Kudela et al. 2004; Fawcett et al. 2006), thin layers Rines et al. 2002; Timmerman et al. 2014, and open-ocean nutrient enrichment Trick et al. 2010; Silver et al. 2010. Direct links to anthropogenic nutrient loading have been equivocal Schnetzer et al. 2007; Howard et al. 2007; Anderson et al. 2008; Lewitus et al. 2012b and blooms/toxicity appear to be heavily dependent on local hydrographic and environmental conditions Lane et al. 2010. Climate-induced changes in pH, temperature and salinity have been linked to potential increases in toxicity Sun et al. 2011b; Tatters et al. 2012.

5.2 California Case Study

5.2.1 Regional occurrence

The genus $Pseudo-nitzschia$ (reported before 1990 as $Nitzschia seriata$ P.T. Cleve) has been present on the west coast since at least the 1920s Fryxell et al. 1997. Of the species known to produce domoic acid, 10 have been reported from west coast waters Horner et al. 1997; Anderson et al. 2008. Two species, $P. australis$ Frenguelli and $P. multiseries$ (Hasle) Hasle, are most commonly associated with toxic events throughout this region, with $P. pseudodelicatissima$ (Hasle) Hasle, and $P. cuspidata$ (Hasle) Hasle also implicated in toxic events in Washington waters Adams et al. 2000; Trainer et al. 2009. Amnesic shellfish poisoning (ASP) results in gastrointestinal and neurological disorders within 24–48 h of consumption of toxic shellfish by humans, and can be life threatening Perl et al. 1990; Teitelbaum et al. 1990; Jeffery et al. 2004; Goldstein et al. 2008; Lefebvre and Robertson 2010. The disease can lead to short-term memory loss that may become permanent. While ASP was first documented in humans in 1987 Bates et al. 1989, there have been no confirmed human poisonings that have been definitively confirmed for the US west coast. Domoic acid has been detected in seafood species along the California coast (bivalve shellfish, sardines, anchovies) almost every year since the first recorded episode in 1991 Lewitus et al. 2012b.

Despite the lack of direct human impacts, domoic acid poisoning is a severe threat to wildlife and economic interests along the entire US west coast. The first documented outbreak occurred in 1991, causing the deaths of dozens of brown
pelicans (Pelecanus occidentalis Linnaeus) and Brandt’s cormorants (Phalacrocorax penicillatus Brandt) in Monterey Bay, California Fritz et al. 1992; Work et al. 1993 and contaminating razor clams and Dungeness crabs in Washington State, Oregon, and northern California Wekell et al. 1994. In southwest Washington State alone, crab fishing losses were estimated at $7 million Lewitus et al. 2012b. Since its discovery, outbreaks of domoic acid poisoning have become an annual event, with evidence for an abrupt shift towards greater frequency and higher magnitude toxic blooms beginning in 2000 Sekula-Wood et al. 2011. Recent evidence also implicates chronic exposure to domoic acid as a severe impact to California sea lion populations Montie et al. 2012, consistent with evidence for both acute and chronic impacts to mammals. The massive event in 2015 resulted in significant economic and ecological damage, and has been reported as the largest and most toxic event globally McCabe et al. 2016.

While domoic acid outbreaks are most common in the sheltered waters in the Southern California Bight (including the Santa Barbara Channel) and Monterey Bay, they also occur along the open coast of central California (south of Monterey Bay), but prior to 2015 were not regularly found in the sheltered waters north of Monterey Bay, or along the open north coast. Given the retentive and stratified nature of Monterey Bay and the Santa Barbara Channel, these regions may act as source regions or “hot spots”, similar to the retentive (and often toxic) regions associated with the Juan de Fuca Eddy and Heceta Bank in Washington and Oregon. The marked shift to domoic acid events in recent years in southern California may be related to changes in the oceanographic climate. For example, there was a significant change in ocean climate in the eastern Pacific in 1999 as both the Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO) reversed sign in a manner that would enhance upwelling effects off central and southern California. Changes in the PDO and NPGO may correspond with higher domoic acid off warmer southern California Sekula-Wood et al. 2011 and are linked to toxin events in the northern California Current McCabe et al. 2016.

Superimposed on these mesoscale or basin-scale changes are local factors that regulate Pseudo-nitzschia blooms and domoic acid production. A link between ASP events and land runoff has been suggested e.g. by Scholin et al. (2000), but the evidence remains circumstantial and the relationship between ASP and coastal runoff and/or eutrophication remains unclear Lewitus et al. 2012b. Laboratory and field data suggest that Pseudo-nitzschia may increase toxicity when growing on urea as a nitrogen source Howard et al. 2007; Kudela et al. 2008; McCabe et al. 2016, a source of N without a concomitant source of Si. Urea is primarily from anthropogenic sources and thus cultural eutrophication may have the unanticipated consequence of both selecting for Pseudo-nitzschia spp. and promoting toxin production in this organism. Domoic acid production has also been linked to iron (Fe) and copper (Cu) stress. Iron limitation directly modulates Si:N ratios in diatoms, and domoic acid may serve as an Fe-acquisition mechanism either directly Rue and Bruland 2001;
Maldonado et al. 2002 or through the stimulation of a Cu-mediated high affinity transport system Wells et al. 2005. Anthropogenic changes in runoff amounts and timing, and Fe or Cu loading e.g. MISSING REF Johnson et al., 2001, Ladizinsky (2003) thus may have amplified effects on coastal waters by triggering or suppressing domoic acid outbreaks.

While it is generally difficult to assign any one particular environmental trigger to domoic acid production in California, several groups have developed statistical habitat models that exhibit skill in predicting bloom and toxin occurrence Lane et al. 2010; Anderson et al. 2006, 2009; Anderson et al. 2011. MISSING REF Anderson et al 2016. These models generally identify time of year, temperature, runoff, and macronutrients as significant predictors. One caveat is that these analyses focus on surface blooms. There is increasing evidence that many Pseudo-nitzschia blooms may initiate or occur as subsurface layers Rines et al. 2002; McManus et al. 2008; Timmerman et al. 2014. The environmental characteristics of these blooms have been less well studied, and do not necessarily correspond to the relationships identified for surface blooms.

5.2.2 Specific event description

Blooms of Pseudo-nitzschia commonly occur in eastern boundary current upwelling systems, typically in response to moderate upwelling conditions. While the 2015 bloom event along the west coast of North America provides a particularly dramatic example McCabe et al. 2016, Monterey Bay, California experiences annual bloom events. In contrast the Benguela upwelling system less frequently experiences Pseudo-nitzschia blooms; several Pseudo-nitzschia spp. responsible for ASP are found in the Benguela, but ASP was not identified in the region prior to 2006 Pitcher and Calder 2000 when a highly toxic bloom co-dominated by the diatom genera Chaetoceros and Pseudo-nitzschia bloomed for several weeks Fawcett et al. 2007.

Within Monterey Bay, California, Pseudo-nitzschia blooms were dominant in spring/summer 2013, 2014, and 2015, but comprised of different species. 2013 was characterized by high abundances and low toxicity due to the presence of the smaller “delicatissima” group, while 2014 and 2015 were dominated by P. multiseries and P. australis. Pseudo-nitzschia does not exhibit unusual optical characteristics and standard ocean colour imagery such as chlorophyll a or fluorescence line height is used in combination with in situ observations to identify and track toxic events. In both the Benguela and Monterey Bay examples, domoic acid generally tracked abundance of “seriata” class cells, with corresponding increases in biomass observed from ocean colour (Figure 5.X - is Figure below the correct one??).

5.2.3 Major ocean colour considerations

Eastern boundary current systems such as the California and Benguela are typically classified as Case 1 waters, with low to moderate contribution from CDOM and
suspended sediments along the open coast, and optical properties strongly dominated by phytoplankton. Major issues with processing ocean color imagery typically fall into atmospheric correction failure, and algorithm failure during high-biomass events. Diatom blooms are not typically associated with unusual optical properties, and are amenable to application of algorithms such as Equivalent Algal Population (EAP) to derive cell size. The near-dominance of blooms by the genus *Pseudo-nitzschia* in these systems was used as an opportunity to explore whether an optical signature for toxic blooms could be detected. MODIS Aqua data were analyzed for Monterey Bay, collocated with a weekly time-series of cell abundance and domoic acid toxicity. Spectra were deconvolved using functional principal component analysis (fPCA) into characteristic spectral shapes, and compared to the time-series. From this analysis a diagnostic spectral signature for toxic *Pseudo-nitzschia* was identified; with the increased presence of toxic cells, R_{rs} decreased (i.e. increasing biomass resulting in decreasing reflectance) while blue reflectance (R_{rs} 443 for MODIS) increased. This blue feature was not prominent in blooms of low/no toxicity *Pseudo-nitzschia*, suggesting that there is a change in optical characteristics of toxin-producing cells, perhaps related to shifts in pigmentation.

High-resolution R_{rs} data from *in situ* measurements obtained during the 2006 Benguela bloom also identified a characteristic increase in the blue region of the spectrum (~ 460 nm). Within the Benguela data, it was also noted that the fluorescence peak did not shift towards the red, as typically happens in high-biomass events Ryan et al. 2014. While these data are preliminary, there is a suggestion of a unique optical signature, detectable from remote-sensing data, for ASP events. This is partially corroborated by the inclusion of R_{rs} in a semi-operational statistical model Anderson et al. 2011 (MISSING REF Anderson et al 2016), which shows considerable skill at predicting toxin production and less skill at predicting presence of the *Pseudo-nitzschia* genus, again suggesting that toxin production leads to a unique optical signature.

![Figure 5.1](image.png)

Figure 5.1 Demonstration of good use of both MODIS and MERIS Case 1 algorithms in the Benguela region...........please amend??
Figure 5.2 Chl vals are 57 and 43 mg.m3, dates 20060312 and 20060314
Figure 5.3 Mean of surface and 5 m depth: (a) Dinophysis spp. cell counts and okadaic acid (OA) concentrations for 15 March to 6 April 2005; (b) Prorocentrum reticulatum cell counts and yessotoxin (YTX) concentrations for 15 March to 6 April 2005; and (c) Pseudo-nitzschia spp. cell counts and domoic acid (DA) concentrations for 7 to 23 March 2006 Fawcett et al. 2007. Reprinted with permission.
Observation of Harmful Algal Blooms with Ocean Colour Radiometry
Chapter 6

Case Study: Blooms of the Neurotoxic Dinoflagellate
Karenia brevis on the West Florida Shelf

Inia M. Soto, Jennifer Cannizzaro, Jennifer Wolny, Frank E. Muller-Karger

6.1 Background

6.1.1 Organism description, impact, and distribution

Karenia brevis, previously known as *Gymnodinium breve* (Davis 1948) and *Ptychodiscus brevis* (Steidinger 1979), is a toxin-producing unarmored dinoflagellate that causes massive harmful algal blooms (HABs). It is commonly referred to as “Florida red tide” in the Gulf of Mexico (GoM). *Karenia brevis* blooms are one of the most well–studied HABs with regards to ocean color remote sensing. These blooms have unique optical properties, cover large geographic areas, and there is a comprehensive, long-term database of field observations collected by the State of Florida that is available for validation. This chapter provides a brief literature review of nutrient requirements and the ecological niche of *K. brevis*, and reviews basic principles for detection of *K. brevis* blooms from space using ocean color sensors. A case study from 2006–2007 illustrates one of the ocean color detection techniques used to monitor the evolution and advection of *K. brevis* HABs.

K. brevis is a eukaryotic, 18–45 µm wide, single-celled organism, with two flagella for motility and propulsion, a distinctive apical carina, a straight apical groove, and a nucleus positioned in the lower left quadrant of the cell (Table 6.1, Figure 6.1a; Steidinger et al. 2008).

K. brevis produces brevetoxins, which are responsible for massive fish kills, marine animal mortalities, neurotoxic shellfish poisoning (NSP), and respiratory illness in humans and marine mammals. NSP can cause severe illness in humans, which can necessitate emergency room visits and intensive care for the first few hours after intoxication; however, no fatalities have been reported (Watkins et al. 2008; Landsberg et al. 2009; Fleming et al. 2011; Fauquier et al. 2013). Reports of NSP after consumption of contaminated shellfish are rare, but the possibility of misdiagnosis is high (Watkins et al. 2008). *K. brevis* cells can break open easily with the wave action and release brevetoxins into marine aerosols. Contaminated aerosols
Table 6.1 Description of *Karenia brevis*.

<table>
<thead>
<tr>
<th>Eco-physiological characterization of Karenia brevis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Features</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Salinity</td>
</tr>
<tr>
<td>Pigments</td>
</tr>
<tr>
<td>Nutrient preferences</td>
</tr>
<tr>
<td>Motility</td>
</tr>
<tr>
<td>Ultrastructure</td>
</tr>
<tr>
<td>Inherent Optical Properties</td>
</tr>
<tr>
<td>Apparent Optical Properties</td>
</tr>
</tbody>
</table>

have been measured up to six kilometers away from the coast (Kirkpatrick et al. 2010). These aerosols can cause respiratory irritation, bronchial constriction, coughing, burning sensation and itching (Kirkpatrick et al. 2004, 2011). These respiratory symptoms can be exacerbated in asthmatic patients or those with other chronic respiratory ailments (Singer 1998; Fleming et al. 2005, 2007, 2009; Kirkpatrick et al. 2011). In an analysis of 2000–2015 cell count and tax revenue data Rainey (2017) found that increased concentrations of *K. brevis* significantly correlated with decreased tourism revenues along the central Gulf coast of Florida.

Brevetoxins can kill fish even at low concentrations (Baden and Mende 1982). Hence, fish kills are often an early warning sign of Florida red tides. During intense blooms, fish kills of up to 100 tons per day have been reported (Alcock 2007). Brevetoxins can bioaccumulate in fish and seagrass, which then serve as vectors for toxins in the food chain (Flewelling et al. 2005; Landsberg et al. 2009). Mass mortality of dolphins and manatees have been attributed to brevetoxin exposure either by consumption and/or inhalation (Geraci 1989; O’Shea et al. 1991; Bossart et al. 1998; Steidinger et al. 1998; Van Dolah et al. 2003; Flewelling et al. 2005;
Case Study: Blooms of the Neurotoxic Dinoflagellate *Karenia brevis* on the West Florida Shelf

Figure 6.1 (a) *K. brevis* cell magnified 400× with light microscopy, (b – d) *K. brevis* blooms on the West Florida Shelf. Photos are courtesy of Florida Fish and Wildlife Conservation Commission.

Fleming et al. 2011). The effects of *K. brevis* blooms also extend into the economy of the region. Tourists avoid beaches, water activities (e.g. diving, boating, and fishing), and businesses within close proximity to impacted beaches. Hoagland and Scatasta (2006) estimated average annual economic loss in the United States due to HABs at $82 million, while the St. Petersburg/Clearwater Visitor and Area Convention Bureau documented a loss of $240 million for the Tampa Bay region during the 2005 red tide event alone (Moore 2006; Alcock 2007).

Karenia species are globally distributed and have been reported in the Gulf of Mexico (Davis 1948), English Channel (Kurekin et al. 2014), North Sea (Kurekin et al. 2014), New Zealand (Chang 1999; Faust and Gullledge 2002; Chang and Ryan 2004; Haywood et al. 2004; Rhodes et al. 2004; Davidson et al. 2009), Kuwait, (Heil et al. 2001; Glibert et al. 2002), Hong Kong (Yang et al. 2001; Yeung et al. 2005; Chai et al. 2017), East China Sea (Okaichi 2004), North Atlantic (Davidson et al. 2009; O’Boyle et al. 2016), South Africa (Botes et al. 2003), western Mediterranean (Feki et al. 2013; Reñé et al. 2015), Seto-Island Sea and Imari Bay, Japan (Siswanto et al. 2013; Aoki et al. 2017), and Tasmania and Australia (de Salas et al. 2004). A
more complete distribution table of *Karenia* species can be found in Brand et al. (2012). *Karenia* species are commonly found at background concentrations (<1,000 cells l\(^{-1}\)) in the GoM and have also been reported in Jamaica (Steidinger 2009) and Trinidad (Lackey 1956). Blooms of *Karenia* species have been reported in coastal waters along Florida and Texas (see references in Magaña et al. 2003 and Steidinger 2009), Alabama, Louisiana and Mississippi (Dickey et al. 1999; Maier Brown et al. 2006; Soto et al. 2018); and in the following Mexican Gulf states: Tamaulipas (Cortés-Altamirano et al. 1995), Veracruz (Aké–Castillo et al. 2012), Tabasco (Mier et al. 2006), Campeche (Soto et al. 2012; Soto 2013), and Yucatan (Merino-Virgilio et al. 2012). Also, *Karenia* blooms have been observed in the South and Mid Atlantic Bights, as it is transported out of the GoM by means of the Gulf Stream (Tester et al. 1991; Walsh et al. 2009; Wolny et al. 2015).

6.1.2 Ecological niche, nutrient and environmental preferences, and bloom mechanism

K. brevis is considered to be neritic and typically occurs in continental shelf and coastal waters (Finucane 1964). Several studies indicate that *K. brevis* is well-adapted to low-nutrient environments such as the oligotrophic waters of the West Florida Shelf (WFS). This is attributed to low half-saturation constants \((K_s)\) for nitrate and ammonia (0.06–1.07 \(\mu\)M) and phosphorus (0.18\(\mu\)M) (Vargo and Howard-Shamblott 1990; Steidinger et al. 1998; Bronk et al. 2004; Vargo 2009). *K. brevis* can utilize a variety of nutrient sources (both organic and inorganic), even simultaneously (Vargo and Shanley 1985; Richardson and Corcoran 2015). Phosphorus is not a limiting nutrient for *K. brevis* (Dragovich and Kelly 1966; Wilson n.d.; Wilson et al. 1975). Instead, nitrogen typically limits growth with estimated concentrations necessary to maintain a bloom of \(10^6\) cells l\(^{-1}\) ranging from 3–8.6 \(\mu\)m (Odum et al. 1955; Shanley and Vargo 1993). *K. brevis* can utilize organic nitrogen from amino acids (Baden and Mende 1979) and urea (Shimizu and Wrensford 1993; Shimizu et al. 1995; Bronk et al. 2004; Sinclair et al. 2009). On the WFS, blooms of *K. brevis* are often preceded by blooms of the nitrogen-fixing cyanobacteria *Trichodesmium*. It has been suggested that *K. brevis* can utilize *Trichodesmium*-generated dissolved nitrogen (Mulholland et al. 2004, 2006) in addition to humic substances (Ingle and Martin 1971; Martin et al. 1971; Vargo 2009), and may take advantage of bacteria-mediated DOP following the decay of *Trichodesmium* blooms (Richardson and Corcoran 2015).

Inorganic sources of nitrogen in the form of nitrate-nitrite and ammonium are also used; however, cell yields for certain inorganic sources have yet to be quantified (Steidinger 2009; Vargo 2009). Richardson et al. (2006) found that growth rates were indifferent of the nitrogen source. Similar to other harmful algal species, *K. brevis* is mixotrophic, which means that it can alternate between autotrophy and heterotrophy (Burkholder et al. 2008). Studies by Jeong et al. (2005) and Glibert et al. (2009) have shown that ingestion (i.e. phagotrophy) of the cyanobacteria *Synechococcus* can
increase the growth rate of \(K. \ brevis \). Meyer et al. (2014) demonstrated bacterial grazing by \(K. \ brevis \) during three stages of a bloom.

Blooms of \(K. \ brevis \) have been identified since 1946 (Davis 1948), however reports of dead fish and changes in water colour date back to the 1600s (Maga–a et al. 2003). On the WFS, blooms of \(K. \ brevis \) occur almost every year during late-summer and fall, but some blooms have lasted more than a year, such as in 1946—47 and 2005–06 (Steidinger 2009). It has been suggested that blooms initiate in nutrient-poor waters of the WFS between 18–74 km offshore (Steidinger 1975; Steidinger and Haddad 1981). Winds and currents transport blooms inshore, where they are supported by additional nutrient sources (Steidinger et al. 1998; Soto et al. 2016; Weisberg et al. 2016). Several hypotheses have been suggested to explain the source of nutrients necessary for triggering blooms. These include upwelling of nutrient-rich waters along the continental shelf and oceanic fronts (e.g. Steidinger and Haddad (1981) and Weisberg et al. (2016)), iron-rich Saharan dust that may promote blooms of the nitrogen-fixing cyanobacteria \textit{Trichodesmium} (Lenes et al. 2001; Walsh and Steidinger 2001), intrusions of the Mississippi River plume (Stumpf et al. 2008), and submarine groundwater discharge (Hu et al. 2006). Walsh et al. (2006), Vargo et al. (2008), and Heil et al. (2014) suggested that estuarine flux from Tampa Bay, Charlotte Harbor, and the Caloosahatchee River can supply nitrogen and phosphorus to meet the requirements for populations \(<10^5 \text{ cells l}^{-1}\), but that additional nutrient sources (e.g. remineralization of dead fish and zooplankton excretion) are necessary to sustain large and prolonged \(K. \ brevis \) blooms.

6.2 Remote Sensing/Satellite Detection Principles

\(K. \ brevis \) blooms often modify the colour of the water, commonly appearing various shades of brown to red (see examples of blooms from different years in Figure 6.1b–d). Such changes are partially attributed to the specific absorption and backscattering properties associated with the \(K. \ brevis \) cells (Cannizzaro et al. 2004, 2008). Water colour can also vary, though, depending on the spectral quantity and quality of incoming light, observation angle, depth of the bloom, and concentrations/types of non-algal particulate and dissolved coloured materials (e.g. suspended sediments and coloured dissolved organic matter, CDOM) that accompany blooms (Dierssen et al. 2006).

Natural populations of \(K. \ brevis \) contain approximately 8.5 pg of chlorophyll \(a \) per cell (Evens et al. 2001), which amounts to \(\sim 0.5–1.0 \text{ mg m}^{-3} \) of chlorophyll \(a \) for a moderate bloom (\(5\times10^4 \) to \(10^5 \text{ cells l}^{-1} \)). Based on field observations, this was determined to be the minimum level for detecting blooms from space using satellite ocean colour data (Tester et al. 1998). Bloom detection on the WFS, based on satellite-derived chlorophyll \(a \) concentrations (CHL), is possible because \(K. \ brevis \) blooms in this region are generally mono-specific, highly concentrated (\(10^4 \) to \(10^7 \) cells l\(^{-1} \)).
cells l$^{-1}$), cover large areas, usually concentrate near the surface, and often last for weeks or months at time.

High concentrations of chlorophyll, though, are not unique to *K. brevis*, but can also be found in blooms of other phytoplankton types (e.g. diatoms) that occur in GoM waters. Differentiating *K. brevis* blooms from other blooms requires unique optical characteristics of either absorption or backscattering spectra of *K. brevis*. A derivative analysis of the absorption spectra has been shown to differentiate *K. brevis* blooms through a similarity index when compared with known *K. brevis* absorption spectra (Millie et al. 1997; Kirkpatrick et al. 2000; Hails et al. 2009). Application of this approach to satellite ocean colour data, though, requires hyperspectral reflectance data which is currently unavailable for the majority of current and planned ocean colour missions (Craig et al. 2006). *K. brevis* blooms also exhibit low backscattering per unit chlorophyll (Cannizzaro et al. 2004; Schofield et al. 2006; Cannizzaro et al. 2008, 2009), which may also be used to differentiate different bloom types. Therefore, in principle, *K. brevis* blooms can be detected in two steps: the first is to identify a bloom from ocean colour imagery based on high pigment concentrations, followed by analyzing spectral characteristics to differentiate bloom types. When *a priori* knowledge of the bloom type is available (e.g. from either field measurements or regional oceanography), step 1 alone is sufficient for detecting *K. brevis* blooms.

The use of satellite ocean colour imagery for *K. brevis* bloom detection has a long history. In 1978, a major *K. brevis* bloom was first detected as a high chlorophyll feature using imagery obtained from the Coastal Zone Color Scanner (1978–1986) aboard the Nimbus-7 spacecraft (Steidinger and Haddad 1981). Since then, several *K. brevis* detection methods have been developed utilizing data obtained from more modern satellite ocean colour sensors, including SeaWiFS (1997–2011), MODIS (Terra: 1999–present, Aqua: 2002–present), MERIS (2002–2012), and VIIRS (2011–present) (Tester and Stumpf 1998; Stumpf et al. 2003; Cannizzaro et al. 2004; Tomlinson et al. 2004; Hu et al. 2005; Cannizzaro et al. 2008, 2009; Amin et al. 2009c; Amin et al. 2009a; Tomlinson et al. 2009; Carvalho et al. 2010; Hu et al. 2011, 2015; Soto et al. 2015; Wynne et al. 2005; El-habashi et al. 2016; Soto et al. 2016, 2018; Qi et al. 2015; Carvalho et al. 2011). Stumpf et al. (2003) and Tomlinson et al. (2004) demonstrated that a chlorophyll-anomaly approach effectively reduced the impact of optically significant, non-algal materials (e.g. resuspended sediments, CDOM), which often lead to overestimations in chlorophyll a concentrations in coastal waters (Cannizzaro et al. 2013). Alternative data products, including normalized fluorescence line height (nFLH; Hu et al. 2005, 2015) and Red Band Difference (RBD; Amin et al. 2009b, 2015), help overcome this problem by utilizing red and near-infrared bands that quantify solar-stimulated chlorophyll fluorescence. Soto et al. (2015) found that the use of nFLH (or similar products such as RBD) improved the performance of all *K. brevis* detection techniques. These wavebands are less sensitive to perturbations by non-algal materials. The chlorophyll-anomaly method is used operationally by the U.S. NOAA for monitoring *K. brevis* blooms, with results.
distributed weekly in the form of HAB bulletins. Alternatively, the nFLH imagery has been used routinely by the Florida Fish and Wildlife Conservation Commission’s Fish and Wildlife Research Institute (FWC-FWRI) for HAB assessments. However, neither of these methods is capable of differentiating between *K. brevis* blooms and blooms of non-harmful algae.

Several attempts have been made to optically distinguish *K. brevis* blooms from non-harmful blooms. Because *K. brevis* blooms tend to exhibit lower backscattering efficiencies, the slope between chlorophyll and particulate backscattering coefficients at 551 nm ($b_{bp}(551)$) can be compared to a reference slope established by Morel (1988) in order to differentiate bloom types (Cannizzaro et al. 2004, 2008, 2009). Inspection of the green band against satellite-derived chlorophyll and the use of the spectral curvature in the blue-green bands have also been proposed to separate bloom types (Tomlinson et al. 2009; Carvalho et al. 2010). Most recently, neural network techniques have been used for *K. brevis* retrievals using VIIRS (El-habashi et al. 2016). Soto et al. (2015) provided a thorough review and evaluation of these various techniques and found similar performance in terms of both bloom and non-bloom detection, however the best results were obtained by techniques that used nFLH or RBD, and took into consideration the low backscattering properties of *K. brevis*.

In European waters and coastal waters off New Zealand, *Karenia mikimotoi* has been identified to form HABs (Faust and Gulledge 2002; Haywood et al. 2004; Rhodes et al. 2004; Davidson et al. 2009). Similar to *K. brevis* blooms, *K. mikimotoi* blooms can also cause fish and other animal mortality through the production of hemolytic cytotoxins (Satake et al. 2005; O’Boyle et al. 2016). Also similar to *K. brevis*, there are two distinct approaches to remotely detect *K. mikimotoi* blooms, based on either biomass (chlorophyll) or spectral reflectance. Miller et al. (2006) used multivariate classification of SeaWiFS data to discriminate between harmful (*K. mikimotoi* and cyanobacteria) and non-harmful algae. This approach was also applied to MERIS data (Shutter et al. 2005) and to a large *K. mikimotoi* bloom in Scottish waters in 2006 (Davidson et al. 2009). Kurekin et al. (2014) further developed the approach to study *K. mikimotoi* and the flagellate *Phaeocystis globosa* using both MERIS and MODIS data. The approach correctly identified 89% of *Phaeocystis globosa* HABs in the southern North Sea and 88% of *K. mikimotoi* blooms in the western English Channel.

For the case study presented here, we chose to combine several of these techniques, namely satellite-derived CHL, nFLH, and backscattering (Cannizzaro et al. 2008, 2009; Hu et al. 2011), to demonstrate how MODIS data was used to detect and track a *K. brevis* bloom on the WFS in 2006–2007. This approach was chosen amongst the various published techniques because of the wide availability of MODIS nFLH imagery and the operational use of these data products by FWC-FWRI (Hu et al. 2015).
6.3 Data and Methods

For the case study, we limited our region to the central and southern WFS (25.5–28.2°N, 81.5–83.5°W) and data for the years 2006–2007. MODIS-Aqua Level-2 data were downloaded directly from the U.S. NASA Goddard Space Flight Center (GSFC; http://oceancolor.gsfc.nasa.gov/). Specifically, the following products were used: Chlorophyll a concentration estimates or CHL (mg m$^{-3}$; using the OC3; O'Reilly et al. 2000), spectral remote sensing reflectance ($R_{rs}$$\lambda$ (sr$^{-1}$)) at 10 wavelengths, and nFLH (mW cm$^{-2}$ µm$^{-1}$ sr$^{-1}$; Letelier and Abbott 1996). Images were mapped to a cylindrical equidistant projection using the SeaWiFS Data Analysis System (SeaDAS, version 6.1). Level-2 flags (atmospheric correction failure, land, very high or saturated radiance, high sensor view zenith angle, stray-light contamination, clouds, high solar zenith angle, band navigation failure, and CHL warning) were applied to discard low-quality data.

To implement the K. brevis detection technique suggested in Hu et al. (2011), satellite CHL, nFLH, $b_{bp}(551)$, enhanced-RGB (ERGB) composite imagery, and the b_{bp} ratio were required. These data products or imagery were calculated or generated as follows:

1. CHL (mg m$^{-3}$) was estimated from $R_{rs}$$\lambda$ using the maximum band ratio algorithm (OC3; O’Reilly et al. 2000).
2. nFLH (mW cm$^{-2}$ µm$^{-1}$ sr$^{-1}$) was derived using $nL_w$$\lambda$ as the height at 678 nm above a linear baseline formed between 667 and 748 nm (Letelier and Abbott 1996).
3. b_{bp}, QAA (551) was derived from $R_{rs}$$\lambda$ using the Quasi-Analytical Algorithm (QAA, Lee et al. 2002).
4. ERGB imagery is very similar to a true colour imagery, except that instead of using a red-green-blue band composite, a green-blue-blue composite was generated using $nL_w$$\lambda$ at 551, 488, and 443 nm. The step-by-step process of calculating ERGB images is explained in detail in Hu et al. (2011).
5. The b_{bp} ratio was determined based on the findings of Cannizzaro et al. (2004, 2008), in which the $b_{bp}(551)$ of K. brevis blooms is lower than that determined using the Morel (1988) relationship for Case 1 waters. First, we derived $b_{bp}(551)$ using the Morel (1988) algorithm:

$$b_{bp,MOREL} = 0.3 \times CHL^{0.62} \times (0.002 + 0.02 \times (0.5 - 0.25 \times \log_{10} CHL)).$$

The b_{bp} ratio was then calculated as $b_{bp, QAA/b_{bp, MOREL}}$.

K. brevis blooms were classified based on the following criteria: CHL > 1.5 mg m$^{-3}$, nFLH > 0.01 mW cm$^{-2}$ µm$^{-1}$ sr$^{-1}$ and b_{bp} ratio <1. Areas flagged positive as blooms were confirmed using \textit{in situ} K. brevis cell count data collected by FWC-FWRI prior to patches being delineated manually using the Region of Interest tool in the image analysis software ENVI®.
6.4 Ocean Colour Case Demonstration

The 2006–2007 *K. brevis* bloom was selected for our study case because of the availability of cloud free images and large spatial coverage. It was first observed in early July in coastal waters near the Charlotte Harbor region. It peaked in October with expanded spatial coverage and then moved back southward, eventually entering the Florida Current with transport towards the Mid-Atlantic Bight in February 2007. Twenty NSP cases were reported in Florida between March and December 2006, with some patients requiring hospitalization (Watkins et al. 2008). Mass mortality of dolphins was also reported in both 2005 and 2006 (Landsberg et al. 2009).

![ERGB CHL FLH b ratio](https://www.flickr.com/photos/myfwc/sets/72157635398013168/)

Figure 6.2 (a–d) MODIS-Aqua images on 21 September 2006 showing a *K. brevis* bloom on the central West Florida Shelf between Tampa Bay (A, 27.75°N, 82.50°W) and Charlotte Harbor (B, 26.75°N, 82.1°W). (e) FWC-FWRI *in situ* *K. brevis* cell concentrations (cells l⁻¹) (https://www.flickr.com/photos/myfwc/set/72157635398013168/).

Figure 6.2 shows MODIS-Aqua data for 21 September 2006 and *in situ* data collected by FWC-FWRI during the week of 18–22 September 2006. In the ERGB image (Figure 6.2a), a dark reddish patch of water extending from Tarpon Springs southward to Naples was highly visible. Darkness in ERGB composite imagery denotes areas with low reflectance caused by various combinations of high CDOM and chlorophyll absorption and low backscattering. Based on the ERGB image
alone, this dark patch could not be confirmed as a phytoplankton bloom. However, this type of imagery did help identify areas where blooms were unlikely to be found, including bright regions where the signal received by the satellite was at, or near, saturation due to high reflectance caused by either high sediment loads or bottom reflectance for shallow waters.

The CHL image (Figure 6.2b) indicates elevated chlorophyll along the entire west coast of Florida, while the nFLH image (Figure 6.2c) shows a distinctive pattern of high nFLH consistent with the dark patch observed in the ERGB image. Satellite CHL can be overestimated due to high CDOM absorption or sediments, and in shallow areas with high bottom contributions (Cannizzaro et al. 2013). While nFLH provides a more accurate indicator of algal biomass than CHL in waters with elevated CDOM (Hu et al. 2005), biomass is often overestimated according to nFLH in sediment-rich areas or shallow waters with high bottom reflectance. Pairing the nFLH and ERGB image, though, allows these latter areas (e.g. shallow waters off Naples (in the south) in Figure 6.2a,c denoted by a white box) to be identified as non-bloom waters.

While areas with high nFLH that appear dark in the ERGB indicated the presence of a bloom, the specific type of bloom (*K. brevis* or other) could not be determined with this information alone. Based on the location and timing of this bloom, the likelihood that it was caused by *K. brevis* was strong, and so the *bp* ratio algorithm was applied. The *bp* ratio algorithm detected a large bloom region consistent with the dark water and high nFLH values. The *in situ* data collected by FWC confirmed that the area detected as a bloom by the *bp* ratio algorithm was indeed a *K. brevis* bloom and also that *K. brevis* was absent in the area to the south of Charlotte Harbor (white box, Figure 6.2).

The *bp* ratio algorithm was applied to daily MODIS-Aqua data collected from May 2006 to March 2007. This allowed the bloom to be tracked from the moment it reached surface concentrations detectable by the satellite to the moment it either dissipated or was transported out of the study region. In addition to the *bp* ratio algorithm, the nFLH, ERGB and *in situ* data were also used to validate the algorithm output. Regions flagged positive for red tide were delineated using ENVI®. Figure 6.3 shows a sequence of MODIS-Aqua *bp* ratio images from July 2006 to February 2007, demonstrating the northerly movement followed by southerly transport of the bloom throughout its existence.

Figure 6.4 documents the development, movement and dissipation of the 2006–2007 *K. brevis* bloom in even greater detail. Again, the bloom was first observed using satellite imagery in mid-July 2006 off the coast of Charlotte Harbor, which was consistent with *in situ* cell count data. It then expanded northward towards Tarpon Springs covering an area ~2,000–3,000 km² in size in August and early September. In early October, the bloom extended up to 100 kilometers offshore between Tarpon Springs and Naples with maximal areal coverage >11,000 km². By late 2006 and early 2007, the bloom had receded to the south and according to reports by Walsh
Case Study: Blooms of the Neurotoxic Dinoflagellate *Karenia brevis* on the West Florida Shelf

Figure 6.3 MODIS-Aqua images with the b_{bp} ratio showing the development and movement of the *K. brevis* bloom along the West Florida Shelf in 2006.

et al. (2009) and Wolny et al. (2015), was eventually transported through the Florida Strait by the Florida Current and deposited on Florida’s east coast.
Figure 6.4 Sequence of delineations over a map of Florida demonstrate the initiation, maintenance and dissipation of the 2006 *K. brevis* bloom.
6.5 Discussion and Summary

Various *K. brevis* remote sensing detection techniques have been proposed and used in the past two decades (Tester et al. 1998; Stumpf et al. 2003; Cannizzaro et al. 2004; Tomlinson et al. 2004; Hu et al. 2005; Cannizzaro et al. 2008, 2009; Amin et al. 2009b; Tomlinson et al. 2009; Carvalho et al. 2010; Hu et al. 2011, 2015; Soto et al. 2015; Wynne et al. 2005; Qi et al. 2015; El-habashi et al. 2016; Soto et al. 2016, 2018; Carvalho et al. 2011). In this case study, several of these techniques were combined and used to demonstrate how satellite ocean colour data can be used to detect and trace a *K. brevis* bloom on the WFS. *K. brevis* blooms are not visible in satellite imagery until they reach near-surface concentrations of $\geq 5 \times 10^4$ cells l$^{-1}$ (Tester et al. 1998). This means that bloom initiation cannot be detected. Instead, only blooms that have formed surface expressions and intensified may be detected. Most remote sensing *K. brevis* detection techniques have been reported to have a success rate around 70–80% (Soto et al. 2015). However, it is recommended to visually inspect algorithm results and validate with *in situ* data to compensate for issues such as cloud cover or other environmental factors that can cause the algorithms to fail.

Differentiating and quantifying various phytoplankton functional types (PFTs) through ocean colour remote sensing is still an active research area (IOCCG 2014). *Karenia* species represent one type of HAB and other types of HABs exist in different regions of the world. The case study here demonstrates the usefulness of multi-band ocean colour data in detecting and tracking such HABs. With more spectral bands available on future ocean colour satellite sensors, such abilities can only be enhanced.
Observation of Harmful Algal Blooms with Ocean Colour Radiometry
Case Studies: Remote Sensing of Cyanobacteria Blooms

Stefan Simis, Mariano Bresciani, Hongtao Duan, Claudia Giardino, Chuanmin Hu, Tiit Kutser, Ronghua Ma, Erica Matta and Mark Matthews

7.1 Introduction

Cyanobacteria blooms are a familiar sight in freshwater and brackish water bodies near centres of human activity, posing health and economic threats. A trend of increasing dominance of cyanobacteria in response to climate change can be shown in lakes (Elliott 2011). Consequently, water management authorities need targeted monitoring and mitigation efforts, for which traditional methods to quantify biomass in cell numbers provide insufficient frequency and spatial coverage. Remote sensing and in situ automated optical monitoring methods therefore increasingly receive attention. Case studies in this chapter illustrate the feasibility of current remote sensing techniques to map and distinguish cyanobacteria blooms, covering a wide geographical range and various trophic states in freshwater and coastal environments.

7.1.1 Terminology, taxonomy, and functional diversity

Cyanobacteria are a diverse group of photosynthetic prokaryotes. They occupy a more primitive branch in the tree of life than the eukaryotic algae, a fact recognized in the 1970s when the term ‘blue-green algae’ was abandoned (see Sapp 2005; Govindjee and Shevela 2011). As a compromise in the otherwise confusing and unpractical naming conventions, the term phytoplankton is now widely accepted as the collective functional group of photosynthetic algae and cyanobacteria. Nevertheless, the term (harmful) algal bloom is still freely used in the remote sensing community to describe proliferations of phytoplankton dominated by either algae or cyanobacteria, possibly because the dominant phytoplankton group is rarely determined from remote platforms. It is nevertheless good to bear in mind that deeply rooted evolutionary and ecophysiological differences between cyanobacteria and algae warrant consideration when formulating phytoplankton optical models or interpreting remotely sensed signals.

Cyanobacteria are the most common bloom-forming phytoplankton group in
freshwater bodies, and blooms may additionally form in rivers, estuaries, and coastal seas (Anderson et al. 2002). The most common bloom-forming (planktonic) cyanobacteria are globally represented by relatively few species from the genera *Aphanizomenon*, *Cylindrospermopsis*, *Dolichospermum* (including planktonic former *Anabaena*), *Microcystis*, *Nodularia*, and *Planktothrix*. The role of (pico)cyanobacteria in primary production in the world oceans is not to be underestimated, but reports of bloom-forming cyanobacteria in the oceans are limited to filamentous *Trichodesmium*, not covered in this chapter.

The success of cyanobacteria in disturbed environments can be explained by a set of mechanisms often represented in the most notorious bloom-formers. These mechanisms are: regulation of buoyancy and pigmentation (discussed below), acclimation of pigment production (Tandeau de Marsac and Houmard 1988) and rapid acclimation of light utilization (Papageorgiou et al. 2007; Govindjee and Shevela 2011; Kafia et al. 2012), elemental nitrogen fixation, colony formation either to aid light harvesting (Tamulonis et al. 2011) or to reduce grazing (Lampert 1987; Chan et al. 2004), poor food quality for higher trophic levels (Lampert 1987) and finally, though subject to debate, allelopathic effects of secondary metabolites including those toxic to animals (Babica et al. 2006).

Toxicity is the foremost reason to call for early warning of cyanobacteria blooms and dedicated monitoring, assessment, and remediation strategies in water bodies world-wide. Effects of cyanobacterial toxins on humans range from skin and respiratory irritation to liver and kidney damage; excessive exposure has resulted in death (WHO 1999). Public awareness of the risks of exposure is probably the most efficient preventive strategy for humans, although recently even living near water bodies where toxin-producing cyanobacteria proliferate was suggested as a risk factor for degenerative disease such as amyotrophic lateral sclerosis (Torbick et al. 2014). Meanwhile, livestock, (planktivorous) waterfowl, and pets are particularly vulnerable to toxins accumulated in surface scums, benthic mats, or in filter feeders (Codd et al. 1999, 2005).

High-biomass cyanobacterial blooms that can be linked to severe eutrophication are considered harmful for diverse reasons. New toxins and links to disease are still being regularly identified (WHO 1999), while blooms that are not toxic can still cause malodour or skin irritation, reducing the recreational and economic value of affected water bodies. Further, as with most algal blooms, cascading ecosystem-destabilizing effects can result from bacteria-mediated oxidation of collapsing blooms, in the worst case leading to mortality of fish and benthic fauna.

Two aspects of cyanobacterial growth and bloom formation influence our ability to detect and quantify cyanobacterial biomass using remote sensing, more than any other of the adaptive mechanisms found in cyanobacteria. These are the relatively unique optical signatures of cyanobacteria, which allow deterministic detection, and biomass accumulation through buoyancy regulation. These properties are discussed in more detail, below.
7.1.2 Pigmentation

The most important deterministic optical characteristic of cyanobacteria is the important role of phycobilipigments in their photochemistry. Phycobilipigments (main forms phycoerythrin, phycocyanin, and allophycocyanin) are consistently produced in all cyanobacteria except prochlorophytes. These pigments are the dominant source of photosynthetic light harvesting in cyanobacteria. Rhodophytes and cryptophytes (including endosymbionts) may also carry phycobilipigments so the presence of the pigment is not the sole indicator of cyanobacteria.

Phycobilipigment light absorption peaks in the yellow-green part of the visible light spectrum (Figure 7.1) where chlorophyll, xanthophyll, and carotenoid pigments have weaker absorption. The distinct absorption of phycocyanin is visible from remote sensors and has been studied since the 1990s from airborne imagery (Dekker et al. 1991; Jupp et al. 1994; Dekker 1993), and in bio-optical experiments (Gons et al. 1992; Hunter et al. 2008). In recent years, a number of empirical and semi-analytical algorithm development studies have emerged, ranging from the use of two (Schalles and Yacobi 2000; Hunter et al. 2009) to three or more wavebands (Simis et al. 2005; Simis et al. 2007; Hunter et al. 2010; Le et al. 2011; Sun et al. 2013; Mishra et al. 2013; Liu et al. 2017) and hyperspectral data (Kutser 2004). Kutser et al. 2006 demonstrate, through bio-optical modelling, that very few current satellite sensors can distinguish the diagnostic absorption profile of cyanobacteria. Nevertheless, cyanobacteria blooms may still be mapped and even quantified using purely empirical relationships between the limited band sets of Landsat TM (Vincent et al. 2004; Sun et al. 2015) or the Ocean Color Monitor on Oceansat-1 (Dash et al. 2011). Sensor requirements are discussed in more detail by Kutser (2009), but it is worth noting here that when the Medium Resolution Imaging Spectrometer (MERIS) on ENVISAT (2002-2012) became the first spaceborne sensor with global coverage to provide a channel tuned to phycocyanin, this prompted a marked increase in efforts to make cyanobacterial bloom monitoring from space possible. Several independent algorithm validation efforts have since demonstrated good retrieval results when cyanobacteria are sufficiently abundant, although accurate quantification in mixed phytoplankton assemblages often remains challenging (Ruiz-Verdú et al. 2008; Randolph et al. 2008; Li et al. 2010; Wheeler et al. 2012). The majority of algorithm development work for cyanobacteria detection from space still concerns the MERIS sensor. We may expect that the extended optical band configuration of OLCI on Sentinel-3 platforms will lead to further improvement of these techniques, once algorithms for atmospheric correction and in situ data sets coincident with these sensors, become available.

Phycobilipigments are soluble in water, unlike other plant pigments. Chemo-taxonomic methods for pigments extracted in organic solvents are therefore not useful to quantify phycobilipigments. Alternative extraction methods (e.g., Sarada et al. 1999) have proven laborious and difficult to standardize. Consequently, the quantification of phycobilipigments is often based on in vivo optical properties such
as fluorescence rather than on the analysis of extracted pigments. Today, a lack of concurrent observations of the optical properties and extracted phycobilipigment in bloom situations still hampers pigment-based algorithm development for remote sensing of cyanobacteria blooms.

The production of the accessory pigments depends both on species and environment (light intensity, light quality, and nutrient availability). This natural variability should be kept in mind when using remote sensing algorithms that target accessory pigments to quantify cyanobacterial biomass. The fraction of cyanobacteria in the phytoplankton assemblage will also determine the validity of algorithms based on accessory pigments, due to the overlap in absorption spectra of these diagnostic pigments with other (algal) pigments in the community (Figure 7.1).

7.1.3 Buoyancy

Risk of harmful or nuisance cell concentrations increases dramatically when cells accumulate near the water surface. Mechanisms of buoyancy regulation include formation and collapse of gas vesicles and changes in cell density. Even neutrally-buoyant species may show a circadian migration if nutrient and light conditions are inversely stratified and wind-mixing is weak (Walsby 1994; Visser et al. 2005). Vertical mixing velocity and depth of the mixed layer play a crucial role in whether buoyancy-regulating species accumulate at the water surface (Wynne et al. 2010).

Near-surface accumulation increases areal light absorption and scattering by particles. With increasing near-surface light scattering, near infra-red (NIR) reflectance increases as the intensity of back-scattered light becomes larger than the strong light absorption by water itself, up to the point where it resembles the spectral
albedo of land vegetation. This effect is simulated in Figure 7.2 for a fixed biomass of *Microcystis* cells mixed over different depths from the surface, a problem previously also addressed for various depth distributions by Kutser et al. (2008). The strong NIR reflectance of surfacing blooms is relatively easy to identify from satellite imagery using red and NIR bands (Hu et al. 2010), even without fully correcting for atmospheric effects on the remotely sensed signal (Matthews et al. 2012). It is therefore possible to use remote sensing techniques to map the risk of accumulated cyanobacterial toxins by focusing exclusively on (near) surface blooms.

Atmospheric correction of the water leaving radiance is strongly affected by increased reflectance in the NIR region. Misclassification of water pixels as land can be observed (Matthews et al. 2010), and a general reduction of the accuracy of atmospherically-corrected reflectance is common (see Baltic Sea case study, Section 7.5). This problem is evident even when buoyant blooms are only present at sub-pixel scales. Additional sources of information such as weather-based mixing models, may be used to predict the possibility of surfacing blooms of buoyant cells. Increased near-surface heat trapping in dense (near) surface layers can also reveal blooms in maps of sea surface temperature (Kahru et al. 1993).

The effects of near-surface accumulation on cell physiology are commonly ignored in remote sensing studies. Species of cyanobacteria have been shown to rapidly acclimatize to fluctuating light intensities by redistributing antenna pigments between photosystems (‘state changes’), effectively reducing their photosynthetic absorption-cross section (e.g., Papageorgiou et al. 2007; Govindjee and Shevela 2011; Kaña et al. 2012). Under prevailing intense light exposure, cells will favour production of

Figure 7.2 Simulated remote-sensing reflectance of a bloom with the optical properties of *Microcystis* with a fixed areal biomass (200 mg m$^{-2}$) mixed in a layer up to 0.5 to 20 m depth. Near-surface backscattering increases with shallower mixing depth, which is particularly visible in the near infra-red. The spectra were simulated using Hydrolight using fixed inherent optical properties for non-phytoplankton components (1.8 g m$^{-3}$ tripton, absorption at 440 nm = 0.05 m$^{-1}$; coloured dissolved organic matter absorption at 440 nm = 1 m$^{-1}$, default water absorption), and sun at zenith with the default atmospheric parameters. Credit: M. Matthews and L. Robertson (University of Cape Town, SA).
photoprotective rather than photosynthetic pigment. *In situ* observations of changes in the optical properties of cyanobacteria are lacking, probably due to the difficulties in sampling surface blooms without disturbing them. We may, however, expect that surface accumulations observed during calm days require different absorption terms for cyanobacteria compared to well-mixed conditions.

![Microscope images of common bloom-forming cyanobacteria.](image)

Figure 7.3 Microscope images of common bloom-forming cyanobacteria. (a) *Aphanizomenon flos-aquae* (scale bar 30 µm), (b) *Nodularia spumigena* (scale bar 30 µm), (c) *Dolichospermum lemmermannii* (scale bar 50 µm), (d) *Microcystis* sp. (scale bar 100 µm), (e) *Cylindrospermopsis raciborskii* (scale bar 10 µm), (f) *Planktothrix agardhii* (scale bar 10 µm). Photo credits: (a-c) Seija Hällfors, (d) Mark Matthews, (e-f) Martina Austoni.

Table 7.1 Characteristics of the cyanobacterial taxa dominant in the case studies.

<table>
<thead>
<tr>
<th>Genus/species</th>
<th>Cases</th>
<th>Toxins†</th>
<th>Buoyancy</th>
<th>Nitrogen fixing</th>
<th>Morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylindrospermopsis raciborskii</td>
<td>Trasimeno</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>Colonial trichomes</td>
</tr>
<tr>
<td>Planktothrix agardhii</td>
<td>Trasimeno</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>Single filaments</td>
</tr>
<tr>
<td>Microcystis aeruginosa</td>
<td>Taihu, Hartbeespoort</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Colonies, cells</td>
</tr>
<tr>
<td>Dolichospermum spp.</td>
<td>Baltic (minor)</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>Colonial trichomes</td>
</tr>
<tr>
<td>Aphanizomenon flos-aquae</td>
<td>Baltic</td>
<td>‡</td>
<td>+</td>
<td>+</td>
<td>Colonial trichomes</td>
</tr>
<tr>
<td>Nodularia spumigena</td>
<td>Baltic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Colonial filaments</td>
</tr>
</tbody>
</table>

†Double markers indicate multiple toxins on record.
‡Toxicity in *A. flos-aquae* is common in lakes but not in the Baltic Sea for which a case study is included.

The case studies presented in this chapter include studies on lakes and the brackish Baltic Sea. The densest blooms occur in eutrophic lakes where the optical signatures of cyanobacteria can dominate the water-leaving radiance. The use of
state-of-the-art sensors, long time series from remote sensors, and optical proxies of biomass in oligotrophic to hyper-eutrophic waters are demonstrated. Cyanobacteria blooms in the marine sphere are used to further demonstrate the effects of spatial and temporal resolution on the retrieval of patchy blooms and time series, and to highlight the advantages of assimilated in situ and remotely sensed data to monitor blooms in the sea environment. Figure 7.3 and Table 7.1 give an overview of the cyanobacteria taxa which dominated the bloom events presented in the case studies.

7.2 Case 1: Bloom Distribution in Lake Trasimeno, Italy using Multi-Sensor Data*

7.2.1 Objective

This case study demonstrates how tuned optical models can be applied to data acquired by different spaceborne sensors to reveal the spatial distribution of cyanobacteria blooms in lakes. We compare images of Lake Trasimeno (Italy) taken on the same day with MERIS (pixel size 300 m) and CHRIS-PROBA (pixel size 18 m). MERIS was operational on ESA’s Envisat satellite for more than 10 years and is still used for retrospective analysis and algorithm development, whereas the OLCI sensor on Sentinel-3, with similar spectral and radiometric characteristics, has been operational operational since 2016. CHRIS, on the PROBA platform, is a hyperspectral instrument and provides a limited number of daily scenes.

7.2.2 Study area

Lake Trasimeno, the fourth largest (124 km²) lake in central Italy (43°06’N; 12°07’E), is a closed, unstratified, and shallow lake (average depth 4.5 m, maximum depth 6 m), and was declared a protected area for its exceptional natural value (Directive CEE 1979). Tourism, agriculture and livestock breeding are the most important activities in the Trasimeno area. The annual load of organic carbon (500t), nitrogen (550t) and phosphorus (30t), negatively affects water quality (Cingolani et al. 2005): cyanobacteria blooms are present, sediments negatively impacted, the fish community altered and common reeds are in recession (Natali 1993; Cecchetti and Lazzerini 2007; Cingolani et al. 2007).

Cylindrospermopsis raciborskii and *Planktothrix agardhii* dominate the phytoplankton in late summer with cell densities reaching 2·3·10⁷ and 2·5·10⁶ l⁻¹, respectively (Cingolani et al. 2007; Lucentini and Ottaviani 2011). *Mycrocystis aeruginosa* is also common. Blooms occur in the water column and at the surface, but scum is rarely observed. Field data of August 2011 confirm elevated cyanobacteria biomass, mainly in the lake centre, with chlorophyll concentration values around

*Authors: Claudia Giardino, Mariano Bresciani and Erica Matta (CNR-IREA, Italy)
86 • Observation of Harmful Algal Blooms with Ocean Colour Radiometry

40 mg m$^{-3}$. During the bloom, on 19 August 2011, MERIS and CHRIS-PROBA data were acquired near-simultaneously.

![Figure 7.4 MERIS FR and CHRIS-PROBA comparison of remote-sensing reflectance (R_{rs}) averaged over the central area of Lake Trasimeno on 19 August 2011. Dotted lines show minimum and maximum values. Reflectance depressions caused by cyanobacteria pigments are visible in the orange-red range.](image)

7.2.3 Image processing

MERIS full resolution (FR) and CHRIS-PROBA images acquired on 19 August 2011 were processed using BEAM tools (Fomferra and Brockmann 2006) to normalise radiometric noise at satellite level (smile correction for MERIS and noise reduction for CHRIS-PROBA). The top-of-atmosphere radiance was corrected for atmospheric effects using the 6S code (Vermote et al. 1997; Kotchenova et al. 2006). The 6S-derived reflectances obtained from MERIS and CHRIS-PROBA were comparable both in magnitude and shape (Figure 7.4), confirming the accuracy of the absolute radiometric properties of both sensors over the central area of the lake. The spectral shapes of the reflectance, with reflectance minima near pigment absorption peaks in the blue and red regions, and the peak at 709 nm indicates a strong influence by phytoplankton on the signal. The depression of the reflectance signal in the 620 nm band suggests the presence of cyanobacteria-specific pigments. Water reflectances were then transformed into chlorophyll a concentrations with the optimization technique BOMBER (Giardino et al. 2012). BOMBER hosts a three-component bio-optical model that was parameterised with optical coefficients suitable for Lake Trasimeno.
Figure 7.5 Lake Trasimeno images acquired on 19 August 2011. (a) Pseudo true colour MERIS image of Lake Trasimeno (north) and Lake Bolsena (south). The image clearly shows the different appearance of these lakes. (b) MERIS (R:G:B = 620:560:442 nm) and (c) CHRIS-PROBA (R:G:B = 620:560:441 nm) images of Lake Trasimeno at the same scale; both images show the green hue of Lake Trasimeno waters affected by phytoplankton bloom. chlorophyll a concentration from (d) MERIS, and (e) CHRIS-PROBA images (colour scale 0-50 mg m$^{-3}$ from blue to red).

7.2.4 Results

The intense green appearance of Lake Trasimeno observed in pseudo-true colour images (Figure 7.5, visible in the north) contrasts sharply with the clear waters of Lake Bolsena (south-west), a deep oligotrophic volcanic crater lake. Both MERIS (Figure 7.5b) and CHRIS (Figure 7.5c) coverage of Lake Trasimeno also highlight a contrast within the lake: cyanobacterial blooms cause the intense green hues, while submerged macrophyte beds in the southeast corner regulate water transparency, resulting in clear waters. Wind resuspension of sediments on 19 August 2011, with average wind speed 8 m s$^{-1}$ and peak wind of 15 m s$^{-1}$, resulted in variable patterns of brightly scattering waters along the eastern lake shore. Maps of chlorophyll a concentration obtained with BOMBER (Figure 7.5d-e) show generally good correspondence, although the higher resolution of the CHRIS-PROBA image reveals
many finer structures. The two images do not correspond well along the northern shore and in particular in the southeast corner of the lake. This is probably due to the adjacency effects that can alter the signal originated from the water column due to the multiple-reflection of radiation from the surrounding lands (Guanter et al. 2010). The adjacency effect also depends on pixel size and hence it causes different patterns in the two images.

7.2.5 Discussion

This study shows that different satellite sensors can be used to map chlorophyll a concentration in lakes where well-calibrated and validated physics-based approaches are available for the study area. The approach used in this study was based on 6S and BOMBER: the first code was used to convert MERIS and CHRIS-PROBA radiances into water reflectance. BOMBER, in turn, was parameterised with the optical properties of Lake Trasimeno, and used to derive chlorophyll a concentration, which, for this study area, can be assumed to delineate cyanobacteria biomass. The results show that current sensors can be used to produce realistic and reproducible reflectance spectra. The chlorophyll a concentration patterns assessed from space reveal that even in medium sized lakes the horizontal variability warrants the use of remote sensing to complement point sampling.

7.3 Case 2: Lake Taihu, China Time Series Reveals Trends and Causes of Blooms†

7.3.1 Objective

Long-term studies of phytoplankton blooms in lakes and estuaries are extremely rare in remote sensing literature, due to the inherent problems in atmospheric correction and bio-optical inversion in waters where sediments and other non-living constituents can play dominant optical roles. This case study demonstrates that satellite sensors, even those not optimized for lake water quality remote sensing, can be used to derive meaningful descriptions and long-term patterns of extreme cyanobacterial blooms.

The work presented in this case study was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-QN308 and KZCX2-YW-QN311), the National Natural Science Foundation of China (41171271 and 41171273), and the U.S. NASA Ocean Biology and Biogeochemistry program and Water and Energy Cycle program.

†Authors: Chuanmin Hu1, Hongtao Duan2, Ronghua Ma2 (1University of South Florida, USA; 2Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences)
7.3.2 Study area

Lake Taihu, the third largest freshwater lake in China with a surface area of 2,338 km2 and average water depth of 1.9 m, is one of the most severely polluted freshwater reservoirs in China (Figure 7.6). In May 2007, a massive bloom of *Microcystis aeruginosa* disrupted water supply to Wuxi city leaving over 1 million people without drinking water for a week. The extreme bloom event placed Lake Taihu in the spotlight (Guo 2007; Yang et al. 2008; Qin et al. 2010) and inspired increased focus on studies and management of the eutrophication problems that affect water quality in the lake.

![Figure 7.6](image_url) Location of Lake Taihu in China. The cities of Wuxi and Suzhou are located to the Northeast and East of the lake, respectively. The lake is divided into segments based on morphology and hydrodynamics. Figure adapted from Duan et al. (2009).

7.3.3 Image processing

MODIS 250-m resolution and Landsat TM/ETM 30-m resolution images are used. MODIS Level-0 (raw digital counts) data from both Terra and Aqua satellites were obtained from the U.S. NASA Goddard Flight Space Center (GSFC). Landsat data include nearly all cloud-free images over Lake Taihu since 1987, and were provided by the United States Geological Survey (USGS) and China Remote-Sensing Satellite Ground Station (Duan et al. 2009; Hu et al. 2010). Due to the 16-day revisit time, Landsat images were used to identify when blooms initially occurred up until the year 2000. From the year 2001 onwards, MODIS Level-0 data were converted to calibrated radiance data using the software package SeaDAS (version 5.1). Gaseous absorption and Rayleigh scattering were corrected using software provided by the MODIS Rapid Response Team, based on the radiative transfer calculations from 6S (Vermote et al. 1997). The resulting Rayleigh-corrected reflectance data, $R_{rc}(\lambda)$ where λ is the central wavelength of the bands, were geo-referenced to a cylindrical
equidistance (rectangular) projection (errors less than 0.5 pixel). Landsat data were processed in a similar fashion to the MODIS scenes.

When the water surface is calm under low wind, buoyant cyanobacteria cells form floating mats (scums) at the surface. Under these circumstances the Floating Algae Index (FAI, Hu 2009) is sensitive to the presence of buoyant cyanobacteria in the lake. FAI is defined as (Hu 2009; Hu et al. 2010):

\[
FAI = \frac{R_{rc}(\lambda_1) - R'_{rc}(\lambda_1)}{R'_{rc}(\lambda_1) = R_{rc}(\lambda_2) + (R_{rc}(\lambda_3) - R_{rc}(\lambda_2)) \times (\lambda_1 - \lambda_2)/(\lambda_3 - \lambda_2)} \tag{7.1}
\]

For MODIS, the wavebands used to generate the FAI were \(\lambda_1 = 859\) (841–876) nm, \(\lambda_2 = 645\) (620–670) nm, and \(\lambda_3 = 1240\) (1230–1250) nm. With Landsat, the used bands were \(\lambda_1 = 825\) (750–900) nm, \(\lambda_2 = 660\) (630–690) nm, and \(\lambda_3 = 1650\) (1550–1750) nm. The FAI detects the red-edge of reflectance of surface vegetation (in this case, cyanobacteria bloom mats). Basically, FAI quantifies the surface reflectance in the NIR normalized against a baseline formed linearly between the red and short-wave infrared (SWIR) wavebands. FAI values > -0.004 were empirically established to delineate blooms (Hu et al. 2010).

![Figure 7.7](image)

Figure 7.7 Initial outburst date for lake Taihu blooms through the time-period 1987–2011. Regression lines for specific periods: 1987–1997: \(y = 5.35x - 10473\) \((R^2 = 0.56)\); 1997–2007: \(y = -9.84x + 19844\) \((R^2 = 0.57)\); 2007–2011: \(y = 11.8x - 23596\) \((R^2 = 0.96)\). Figure adapted from Duan et al. (2014).

7.3.4 Image analysis

Several lake segments (Gong Bay and East Lake, see Figure 7.6) have seasonal water plants (Ma et al. 2008) which may appear as blooms but should be interpreted as mixed plants and phytoplankton. The seasonal cycle of East Bay is almost purely from water plants. Results labelled to represent the whole lake should be interpreted as Lake Taihu excluding East Bay.
Temporal dynamics of the bloom are described using two indicators: the initial blooming date and bloom duration. The initial blooming date is the first date of each year when blooms could be discerned by visual inspection of the Landsat and MODIS FAI and Red-Green-Blue imagery. Blooms occurred every year in the observed period, although the years 1988 and 1999 had to be excluded due to lack of sufficient imagery. Three distinct trends in the initial bloom date were observed (Figure 7.7); from 1987 to 1997, the blooms appeared with an increasing delay of 5.35 days per year. From 1997 to 2007, blooms started increasingly earlier by 9.83 days per year. Since 2007, blooms have again started to appear later with a delay of 11.8 days per year.

Figure 7.8 Duration of cyanobacteria blooms, defined as the period between the first and last day with FAI > -0.004 in MODIS imagery. White areas showed no bloom during the entire year. Figure adapted from Hu et al. (2010).

Bloom duration is defined as the period between first and last appearance in MODIS FAI imagery. More than one bloom may occur in any period. The bloom duration is mapped for the years 2000–2011 in Figure 7.8. The period 2006–2011
showed longer bloom duration in most of the lake compared to the years prior, despite later starts to the bloom (Figure 7.7). The trend actually began in 2005, with 2007 the worst bloom year. More than half the lake surface had blooms lasting for > 7 months during 2007. Earlier and longer blooms in the period 2007–2011 are apparent for NW Lake, SW Lake, Central Lake, and the whole lake. Bloom coverage never exceeded 25% of the lake area between 2000 and 2003, and exceeded 25% of the lake area only twice during 2004 when the entire lake was considered. This suggests that the lake was relatively healthy between 2000 and 2004.

7.3.4.1 Spatial patterns

Besides time-series analysis, the archive of bloom imagery can also be used for spatial analyses, such as where blooms initiate and how they expand. Blooms were first observed in Meiliang Bay and Gonghu Bay in June, 1987. Throughout the past two decades, the initial bloom location was Meiliang Bay (14 times) and Zhushan Bay (9 times) — on four of these occasions, blooms occurred simultaneously in both locations. Since 2000, blooms have also started to spread from western and southern bays, which may indicate changes in the hydrodynamic regime or nutrient delivery to the lake. The blooms show a sprawling trend, covering an increasing area from year to year. The bloom area has increased from 4.8 km2 in July 1991 to 216.4 km2 in 2000, and the extreme situation in 2007 when blooms covered >1,000 km2.

For most lake areas (NW Lake, SW Lake, Central Lake) as well as when considering the entire lake, 2005 marks a transition year from relatively rare bloom occurrence to highly frequent blooms (high FAI in >25% of the area), particularly during summer months.

The 2007 bloom event in Lake Taihu, and particularly Meiliang Bay, was reported to start in late April (Yang et al. 2008) and by 25 April extensive blooms were found in Meiliang Bay (Kong et al. 2007). The MODIS FAI image series of 2007 (Figure 7.9) reveals that an extensive bloom was already established on 4 April 2007 in NW Lake and SW Lake, three weeks earlier than reported as the onset of the bloom. By 18 April the bloom was already extensive in Meiliang Bay, again a week earlier than reported. Between 20 April and 30 August, the bloom covered almost the entire Meiliang Bay. On 11 July and 21 November, more than half of the entire lake was covered by the intense bloom, which remained until at least 5 January 2008, making it the longest bloom event since MODIS data became available (2000) and possibly the longest bloom event in history. In June 2007, at least 6000 tons of organic material was harvested from the bloom in an attempt to reduce the bloom (Guo 2007). The remotely sensed imagery suggests, however, that the impact of this effort on bloom size was limited.

7.3.5 Factors forcing blooms

- Temperature: Cell recruitment in Lake Taihu has been shown to be tightly coupled
Figure 7.9 Initiation and evolution of the 2007 cyanobacteria bloom in Lake Taihu. Figure adapted from Hu et al. (2010).

to temperature both in the laboratory and in the field (Cao et al. 2008). The initial blooming date calculated from MODIS imagery was significantly correlated to the minimum water temperature during the preceding winter (November–January, \(p = 0.048 \)). The winter of 2007 was one of the warmest winters in the last 25 years particularly in the period January–March (0.36, 2.78, and 1.98°C above average in January, February, and March, respectively). The elevated water temperatures may have supported the extreme bloom of that year. If minimum winter temperature is indeed a driving force behind recruitment and bloom formation, current trends of increasing minimum temperature (at a rate of 0.0539°C yr\(^{-1}\)) suggest further bloom expansion in years to come.

Nutrients: Nutrient loading resulting from human activities contributes to the blooms in Lake Taihu. During the period 1991–1996, the annual average total nitrogen (TN) increased from 1.18 mg l\(^{-1}\) to 3.62 mg l\(^{-1}\), total phosphorus (TP) increased from 0.10 mg l\(^{-1}\) to 0.18 mg l\(^{-1}\). By 2006, TN and TP were 200% and 150% higher than in 1996 (Kong et al. 2007). Nutrient analysis at Taihu field station showed that inputs of TN and TP from the catchment area increased by 3 and 5%, respectively, between 2002 and 2003 (Kong et al. 2007). The spatial patterns displayed by the blooms support the hypothesis that nutrient availability drives the blooming. The southward expansion of the blooms reflects the higher nutrient loading northwest of Lake Taihu. For example, TP loading from the northwest catchments accounted for 53–55% of the entire area in the period
2002–2003, and TN loading from this area accounted for 65–72% in 2002–2003. The southward delivery of nutrients explains the frequent occurrences of blooms in the north, and increasing detection of blooms in the center and south.

- **Wind:** Despite the shallow average depth of Lake Taihu, wind mixing can have a large effect on the appearance of floating cyanobacteria mats. During days with consecutive MODIS imagery in September 2005 and November 2007, bloom size was observed to be as large as >770 km² for wind speed < 2 m s⁻¹ but reduced to <140 km² for wind speed > 3 m s⁻¹. It is unlikely that an extensive bloom could disappear in one day and a new bloom initiate immediately thereafter. Therefore, the observed oscillation in bloom size over consecutive days must be due to changes in physical conditions (primarily wind forcing), and not due to changes in the total biomass.

- **Economic prosperity:** The combined pressures of land use (sewage, livestock, drainage, soil nutrients and loss of fertilizers from agricultural lands (see Lai et al. 2006) on the lake ecosystem can be associated with human population and economic development. Human population and the gross domestic product (GDP) per capita are used here to explore the correlation of anthropogenic activities with phytoplankton blooms. Including these factors, as well as winter temperature, in a multivariate regression shows that GDP and GDP per capita are the best predictors of bloom occurrence: GDP was the dominant factor for initial blooming date ($R^2 = 0.988$), while GDP per capita has the strongest relation with bloom duration ($R^2 = 0.747$). These findings imply that economic activities outweigh the environmental effect of the preceding winter temperature despite the fact that temperature does explain the variability of the bloom initiation dates. GDP in the Taihu Basin increased from 847.66 to 2,662.23 Billion Yuan (RMB) from 1998 to 2007. GDP per capita increased from 2.06 × 10⁴ to 6.16 × 10⁴ Yuan (RMB). Correspondingly, the number of months of detected algal blooms increased from two in 1998 to ten in 2007; the initial blooming date advanced more than 100 days. Significant correlations were found between the annual duration, initial blooming date and total GDP and GDP per capita in the adjacent area for the time period of 1998–2007. Human activity is projected to further grow in this area in the next decades.

7.3.6 Discussion

The Taihu case shows that a reflectance band index such as FAI can delineate cyanobacterial bloom mats at the water surface due to the associated dominant NIR optical feature. This approach is valid even without the use of rigorous atmospheric correction and bio-optical inversion algorithms. Unlike algorithms which target the absorption feature of phycocyanin around 620 nm in mixed conditions, and available from a limited number of satellite sensors, FAI uses a NIR band to quantify surface
mats of buoyant cyanobacteria. The surface mats show spectral characteristics similar to surface vegetation. At the time of writing, both MODIS-Terra (2000 to present) and MODIS-Aqua (2002 to present) are functional, and the recently launched Landsat 8 (February 2013 to present) is expected to continue the Landsat series to provide Earth science data. Thus, the time-series analysis can be continued to assess bloom conditions in the coming years. Even if both MODIS instruments stop functioning (both were designed to have a 5-year mission life), the Visible Infrared Imager Radiometer Suite (VIIRS) instrument on Suomi NPP (National Polar-orbiting Partnership) satellite (October 2011 to present) is expected to provide continuity of the bloom observations. VIIRS is equipped with several imaging and ocean colour bands in the red, NIR, and SWIR that are suitable to derive the FAI, as with MODIS. Alternatively, the recent Landsat-8 OLI sensor with 30-m spatial resolution has suitable red, NIR, and SWIR bands and improved signal-to-noise ratios compared to its predecessors (Hu et al. 2012; Pahlevan et al. 2014). The uninterrupted observations from these environmental satellites will provide seamless data records to assure data continuity to assess the long-term bloom status in Lake Taihu and similar water bodies under heavy pressure.

The results obtained from satellite-based observations are not only useful in understanding the potential causes of the blooms and their long-term trends, but also useful to aid decision-making. For example, the statistics of the spatial and temporal bloom patterns can help management agencies in implementing nutrient release and reduction plans. The timely information from the near real-time satellite images can help local groups to determine where to harvest scums to improve water quality. Currently, at the Nanjing Institute of Geography and Limnology (China), the MODIS and Landsat-based observations are being integrated with other information (wind, field observations, temperature) to establish a bloom monitoring system, with the ultimate goal of predicting bloom occurrence and helping water quality management. Continuous satellite observations will play an essential role in such a system.

7.4 Case 3: Detecting Trophic Status, Cyanobacteria Dominance, and Surface Scums in Lakes

7.4.1 Introduction

This case study illustrates retrieval of quantitative bloom biomass over a wide trophic range. Issues with image quality over severe blooms and near land masses are tackled by using bottom-of-atmosphere radiance rather than signals corrected for the full atmosphere. Biomass can be quantified using a series of empirical algorithms that use the shape of the red to near infra-red radiance spectrum. The choice of algorithm

‡Author: Mark Matthews (CyanoLakes (Pty) Ltd, South Africa)
is based on a decision tree that separates clear and turbid waters from those where surface blooms or vegetation are present.

Trophic status remains a crucial variable in water management, and its detection from satellite provides a unique opportunity, especially in the developing world where information on water quality is often difficult to obtain. The identification of high biomass cyanobacterial blooms and their changes in space and time is another major priority for water and public health management. Despite the high impact and great opportunity presented by Earth observation from space, there has been an absence of simple, reliable information products for trophic status and cyanobacteria detection in inland and eutrophic waters. The development of algorithms targeted at filling this information gap has now become a priority for scientists and space agencies. This case study demonstrates how the Maximum Peak Height (MPH) algorithm (Matthews et al. 2012) can be used to provide trophic status, surface scum and floating vegetation (macrophyte) detection in a variety of South African and global inland waters. It also demonstrates a pixel flagging process aimed at identifying high-biomass (chlorophyll $a > 20 \text{ mg m}^{-3}$) cyanobacterial blooms using the Full Resolution (FR) data archived from Envisat MERIS.

7.4.2 The MPH algorithm

Detection of chlorophyll a concentration and other water constituents commonly follows interpretation of water-leaving reflectances, which are obtained after atmospheric correction of top-of-atmosphere (TOA) radiances. However, atmospheric correction is challenging and error-prone over optically-complex water types which contain high and uncoupled concentrations of various constituents (Guanter et al. 2010). While atmospheric effects caused by aerosols (dust, particles, and smoke) are highly variable and stochastic, Rayleigh or molecular scattering can be corrected for relatively easily. The Bottom-of-Rayleigh (BRR) processor in the Envisat BEAM software was used to produce the Rayleigh-corrected TOA imagery used with the MPH algorithm. The band ratio type algorithm used by MPH subsequently normalises remaining aerosol effects.

The MPH algorithm utilises the signal derived from phytoplankton pigments, fluorescence, and backscattering in the red/NIR bands of MERIS (for a full description see Matthews et al. 2012). These features may be detected using the Rayleigh corrected TOA signal (e.g., Giardino et al. 2005). The algorithm uses a baseline-subtraction procedure (see Gower et al. 1999) to derive the height of the peak of the MERIS bands between 664 and 885 nm. The three peaks are centred on phytoplankton chlorophyll a fluorescence (681 nm), the particulate scattering and water absorption induced peak (709 nm), and the red edge vegetation band (754 nm). Three cases are targeted by this technique (see Figure 7.10):

1. mixed oligo-mesotrophic waters with eukaryotic phytoplankton (algae),
2. high biomass eutrophic/hypertrophic waters with either algae or cyanobacteria,
3. extremely high biomass blooms of algae or cyanobacteria with surface scum or floating vegetation.

![Figure 7.10 BRR spectra showing reflectance features applicable to each trophic class/water type: (1) mixed oligo-mesotrophic waters with eukaryotic phytoplankton possessing a chlorophyll a fluorescence signal at 681 nm (arrow 1) (2) high biomass eutrophic/hypertrophic waters with (2A) algae and (2B) cyanobacteria, and cyanobacteria with surface scum (3A), extremely high biomass blooms of algae (3B), and floating vegetation (3C). The arrows 2 and 3 indicate the reflectance features used to identify waters as cyanobacteria dominant (only present in spectra 2B and 3A).](image)

In each trophic case, MPH exploits a different signal source. In the first case, the chlorophyll a fluorescence signal at 681 nm is correlated to biomass and provides information on trophic state at low-medium biomass with chlorophyll $a < 20 \text{ mg m}^{-3}$ (e.g., Giardino et al. 2005). This signal becomes masked by particulate absorption and scattering as biomass increases. The second case utilises the backscattering/absorption induced peak around 709 nm, which is highly correlated with algae and cyanobacterial biomass at higher trophic states (chlorophyll $a > 20 \text{ mg m}^{-3}$) (e.g., Gitelson 1992). The final case utilise the vegetation red-edge which becomes apparent in surface scum conditions (chlorophyll $a > \text{ approx. } 300 \text{ mg m}^{-3}$) and is characteristic of floating vegetation with minimal water absorption (Figure 7.2, Kutser 2009). The MPH variable is designed to seamlessly shift between these cases which occur in inland waters, providing an operational algorithm for effective trophic status determination through estimates of chlorophyll a concentration.

The detection of waters dominated by high biomass blooms of cyanobacteria uses reflectance features produced by their unique pigmentation. These are an apparent absence of chlorophyll a fluorescence causing a trough near 681 nm, and a small peak at 664 nm caused by sparse pigment absorption (potentially enhanced by phycobilipigment fluorescence) and the absorption of phycocyanin at 620 nm. These reflectance features are used together to flag pixels as cyanobacteria dominant water
7.4.3 Detection of eukaryote and cyanobacteria dominated waters

The MPH variable (the height of the peak in the red/NIR) is proportional to backscattering from phytoplankton as long as phytoplankton is the dominant optically-active constituent. The concentration of chlorophyll a is strongly linearly correlated to phytoplankton backscattering on a species-specific basis (Whitmire et al. 2010). If the backscattering to biomass ratio between species or bloom types is sufficiently large, distinct relationships between the MPH variable and chlorophyll a concentration can be defined and used for diagnostic bloom detection. The MPH algorithm was calibrated to two data sets: one from eutrophic eukaryote dinoflatellate/diatom dominated waters, and one from hypertrophic waters dominated by *Microcystis* (Figure 7.11). MPH in the *Microcystis*-dominated waters was almost an order of magnitude higher than the eukaryotic blooms, likely owing to small size and the presence of gas vacuoles (Matthews and Bernard 2013). This result supports the use of MPH to identify high-backscattering cyanobacteria species such as *Microcystis*.

Application of the MPH algorithm in Hartbeespoort Lake shows the detection over time of trophic status, cyanobacteria, and surface scum accumulations (Figure 7.12). The lake is dominated by spring outbreaks of *Microcystis* which persist well into autumn and only occasionally disappear in winter as the water cools. The mean chlorophyll a concentration regularly reaches 500 mg m$^{-3}$ in summer and spring, and may be as high as 1,000 mg m$^{-3}$ (the limit assigned to the algorithm). The bloom phenology (initiation and persistence) is strongly seasonal. Cyanobacteria are
dominant over the majority of the lake surface area for most of the year, with only a temporary respite during winter months, with the exception of a prolonged clear phase observed during the winter and spring of 2005 and 2011. This clear phase may be a result of mitigation measures to reduce eutrophication in the reservoir, or from interannual variations in weather. Surface scum (defined by chlorophyll $a > 500 \text{ mg m}^{-3}$) are frequent during spring and summer months and cover large areas of the lake.

7.5 Case 4: Summer Blooms in the Baltic Sea

Authors: Stefan Simis1,2, Tiit Kutser3, Claudia Giardino4, Mariano Bresciani4 (1Plymouth Marine Laboratory, UK; 2Finnish Environment Institute SYKE, Finland; 3 University of Tartu, Estonia; 4CNR-IREA, Italy)
7.5.1 Objective

This case study demonstrates the use of remote sensors to follow the seasonal development of the typical summer bloom of filamentous cyanobacteria in the Baltic Sea. Bloom biomass is in the order of 4–10 mg chlorophyll $a \, m^{-3}$ under well-mixed conditions. Diagnostic pigment absorption features are therefore not quantifiable from remotely sensed imagery. Under calm weather, however, buoyant species can accumulate near the water surface. This phenomenon enhances the distinct optical signatures of cyanobacterial pigment absorption, but simultaneously degrades the performance of atmospheric correction procedures. A highly patchy distribution of the bloom introduces significant sub-pixel variation, increasing the uncertainty in the quality of quantitative remote sensing products. These uncertainties stress the need for careful interpretation of image quality and illustrate the added value of data assimilation with in situ observations.

7.5.2 Study area

The Baltic Sea is a eutrophic coastal sea with limited water exchange with the North Sea, high nutrient input, and summer stratification supporting cyanobacteria-dominated phytoplankton populations when temperatures increase and inorganic nitrogen-phosphorous ratios decrease. Summer blooms commonly include the filamentous Aphanizomenon flos-aqua, Nodularia spumigena, and Dolichospermum spp. and occur naturally (Niemi 1973; Leppänen et al. 1995; Bianchi et al. 2000).

The peak period of cyanobacteria growth is around mid-July, although A. flos-aqua is found in low densities in all seasons. The rate of bloom development depends on nutrients available after the spring bloom (up to 50 mg chlorophyll $a \, m^{-3}$) and on water temperature. Summer cyanobacterial bloom biomass is typically in the range 4–10 mg chlorophyll $a \, m^{-3}$. Under calm conditions, the filamentous species rise to the surface and locally accumulate higher biomass. Water samples taken from ships tend to disturb near-surface stratified layers, so measured concentration ranges do not typically represent such situations.

7.5.3 Image analysis: Delineating blooms

Phytoplankton are the dominant source of light scattering in the open Baltic Sea during bloom periods and away from river plumes and shallow areas. Deriving maps of phytoplankton biomass in the open sea can therefore be as straightforward as extracting the dominant optical signal from satellite imagery. The absorption of light by phytoplankton is, in contrast, strongly masked by coloured dissolved organic matter. Traditional algorithms to retrieve chlorophyll a biomass therefore show poor performance in this sea and require at least region-specific tuning.

To illustrate how the summer blooms can be delineated using a range of sensors and methods, several techniques are compared for the same bloom event in July.
2010 around the Bornholm island in the southern Baltic (Figure 7.13). The included products are pseudo-true colour from MERIS FR, chlorophyll a concentration produced from the same image using the WeW-FUB processor in the BEAM toolbox, sea surface temperature (SST) from MODIS on the same date, and a LANDSAT RGB image from the same week. The MERIS RGB scene (Figure 7.13a,b) outlines the extent of the bloom, with a patchy distribution which suggests the influence of currents and mixing on its horizontal distribution. The chlorophyll a product (Figure 7.13c) reveals an additional near-coast bloom in the southwest corner of the selected sub-scene, which is also visible as warmer water in the SST image. Phytoplankton blooms contribute to heat, trapping in the surface layer, and regions where SST exceeds that of the surrounding area (Figure 7.13d) may indicate layers of phytoplankton that are less easily recognized from a targeted chlorophyll product (Figure 7.13c). This behaviour can be explained by the production of photoprotective rather than chlorophyll a pigment in light saturated environments (near the water surface), or by elevated light scattering of less pigmented material. Weak correspondence between visible light products and SST can be explained by physiological differences between bloom populations, but differences in the vertical distribution between bloom sites cannot be ruled out either, without the use of mixing models or in situ measurements. It is nevertheless evident that each of the demonstrated products
has value in delineating the presence of bloom phenomena.

Figure 7.14 Chlorophyll a (colour scale in mg m$^{-3}$, ‘dry’ indicates surface scum) in a cyanobacteria bloom in the Gulf of Finland, Baltic Sea on 14 July 2002. The map is produced from a Hyperion image with 30 m spatial resolution (Kutser 2004). Disturbed near-surface accumulations in the wake of ships are visible as low concentrations in four east-west oriented bands across the top half of the scene.

7.5.4 Spatial resolution

Spatial and temporal undersampling of phytoplankton biomass is problematic in environmental baseline monitoring, particularly in a system like the Baltic Sea where short-lived and patchy blooms occur frequently (Rantajärvi et al. 1998; Kutser 2004). A 30-m resolution Hyperion image from 14 July 2002, processed to depict chlorophyll a concentration (Figure 7.14, after Kutser 2004) illustrates the heterogeneous distribution of such blooms. High biomass estimates over a large part of the scene suggest that surface accumulations are present, enhancing the optical signature of the cyanobacteria rather than being representative of mixed column concentration, as explained in Figure 7.2. The image also illustrates how such surface blooms are disturbed in the wake of ships: estimated pigment concentrations are several orders of magnitude lower than in the areas surrounding the ship wake.

Because of the uncertainty in concentration estimates associated with stratified blooms, hydrodynamic modelling, multiple-sensor approaches (combining SST, surface roughness, and optical remote sensing), as well as data assimilation with in situ platforms, are necessary to assess the severity of buoyant cyanobacteria blooms.
Figure 7.15 Cyanobacteria bloom development in the Baltic Sea in the summer of 2005. MERIS RR imagery are shown as the band product $[(5/7) - 12]$, used to highlight particulate backscatter with associated chlorophyll a absorption. Suspected surface accumulations are masked purple based on the condition [band 13 $>$ band 4], which indicates water absorption in the NIR is masked by light scattering near the surface. Atmospheric correction failed for these pixels (Figure 7.16). The route of ship-of-opportunity M/S Finnpartner during the 24-h period around the overpass is overlaid in red.

7.5.5 Time series and matching *in situ* observations

The last bloom example from the Baltic Sea concerns an extensive surface bloom which occurred in July 2005. The year was generally warm and July was calm and clear, offering a large number of satellite images and excellent conditions for development and occasional surfacing of cyanobacteria blooms. Research cruises in the Gulf of Finland (between longitudes 21–27°E) in the period 4–29 July recorded
an average (± standard deviation) Secchi disk depth of 3.8 ± 0.5 m, and surface (1–3 m depth samples) chlorophyll a concentrations of 5.7 ± 1.4 mg m$^{-3}$. Wind speeds rarely exceeded 10 m s$^{-1}$. Water temperatures at 5 m depth measured along the ferry transect Helsinki – Travemunde (Finland – Germany) ranged from 18–25°C in July. The filamentous $A. flos-aquae$, $N. spumigena$, and $Dolichospermum$ spp. (formerly planktonic $Anabaena$ spp.) were abundant in water samples taken along the ferry route (Seppälä et al. 2007).

Time series of reduced-resolution (1200 m) MERIS imagery from July 2005 presented in Figure 7.15 show the development of the bloom. The band ratio product of MERIS bands 5 and 7, offset by band 12 (center wavelengths at 560, 665, and 779 nm, respectively) mainly targets turbidity and pigmented particles, and offers a high dynamic range in this water type. Bands 13 and 4 (865 and 510 nm) are compared to detect strong reflectance in the near infra-red spectrum, which indicates that absorption by water molecules is masked by strong particle scattering near the water surface, e.g., by buoyant filaments. The default MERIS L2B image processing (MEGS 8.0) did not result in valid reflectance spectra in these areas, masked purple in the processed scenes.

Figure 7.16 Reflectance spectra extracted from two sites in the MERIS RR scene on 8 July 2005 with suspected (a) mixed bloom and (b) surface bloom.

To illustrate that default atmospheric correction typically fails over surface bloom areas, reflectance spectra are extracted from two sites recorded on 8 July 2005 (marked with boxes in the corresponding scene in Figure 7.15, numbered 20050708). Both sites contain adjacent areas of suspected surface accumulations and deeper mixing. A random selection of 50 reflectance spectra from the mixed and surface bloom areas is shown for each site in Figure 7.16. Spectra corresponding to well-mixed water (Figure 7.16a) are of variable magnitude but consistent shape. In contrast, the suspected surface bloom site (Figure 7.16b) shows the characteristic shape of surfacing blooms with high NIR reflectance, similar to the simulated spectra.
in Figure 7.2. Negative values result from a limitation of the standard atmospheric correction method to yield high NIR reflectance, causing the whole spectrum to be shifted to lower values while the shape of the spectrum remains realistic. Algorithms that are not sensitive to absolute reflectance values (such as baseline subtraction algorithms) will therefore not be strongly affected.

In situ observations from ferries equipped with thermosalinograph, chlorophyll and phycocyanin fluorometers, and turbidimeter were available for a large number of scenes included in the time series of Figure 7.15. A markedly good correspondence is observed between the along-transect pixel values shown in Figure 7.15 and the turbidity measurements (Figure 7.17). For this comparison, both products were normalized to their geometric mean and standard deviation. This normalizes the variable correspondence throughout the study period between turbidity measured at 5 m by the ferrybox and the reflectance product which is more sensitive to near-surface accumulations. Whenever the ferry traversed a suspected surface bloom, the area is marked in green on the horizontal axes of Figure 7.17 panels. As may be expected from the poor quality of reflectance spectra for surface blooms, correspondence of the *in situ* and remotely sensed data sources is poorest in these areas.

7.5.6 Discussion

The Baltic Sea case illustrates that blooms of cyanobacteria in coastal water pose several additional challenges to remote sensing. Vertical mixing cannot be assumed and individual remote sensing scenes should then be interpreted with caution. Time series, particularly when overlapping with sporadic *in situ* observations, are more straightforward to interpret. Uncertainty in the vertical distribution of the cyanobacteria biomass may also lead to different bloom products derived with algorithms targeting different band sets, or using sea surface temperature. The coherence between these different approaches may well be the best indicator of the mixing and physiological state of the bloom biomass. Mixing models, *in situ* observations, and remote sensing techniques should be brought together to provide synoptic phytoplankton monitoring in heterogeneous systems with limited optical sensing possibilities, such as the Baltic Sea.
Figure 7.17 Turbidity measured in the flow-through system of M/S Finnpartner (red) and matching pixel profiles (black) along the ferry transects, corresponding to the time series in the previous figure. Both signal sources were standardized before plotting. Sections of transects where surface accumulations were evident are marked green along the horizontal axis, and invalid reflectance in one or more bands used in the band ratio product resulted in most cases (but not, for example, on 8 July 2005). Fronts and finer structures are generally in agreement between the platforms, suggesting that *in situ* data can be extrapolated with the aid of remote sensors at least on a scene-by-scene basis. Sections of transects where the correlation between *in situ* and imagery data correlate poorly may be caused by stratification of the surface waters or strong currents displacing the bloom.
Chapter 8

Application of Ocean Colour to Fish-Killing
Cochlodinium Blooms

Patricia M. Glibert and Raphael M. Kudela

8.1 Organism description, impact, and distribution

Cochlodinium polykrikoides is an unarmoured dinoflagellate found most commonly in warm temperate or tropical waters (Steidinger and Tangen 1997). It is typically from 20–40 µm in length, with chains of up to ~8 cells very common (Figure 8.1). As an unarmoured planktonic dinoflagellate, it is morphologically similar to *Gymnodinium catenatum* and *Gyrodinium impudicum* (Hallegraeff and Fraga 1998; Cho et al. 2001).

![Figure 8.1](image.png)

Figure 8.1 Magnified cells of the bloom-forming dinoflagellate *Cochlodinium polykrikoides* Margalef. Credit: Photo courtesy of Khazumi Matsuoka, Nagasaki University, Japan.

Blooms of this species have increasingly been reported from throughout the world. Comparisons of reported occurrences prior to 1990 and post 2010 show a massive global expansion (Figure 8.2). While first reported from the southern coast of Puerto Rico (Margalef 1961), the expansion is particularly pronounced along the west coast of North America, Asia, the Arabian Gulf and southern European waters, as well as waters off the coasts of Japan and Korea (Fukuyo et al. 1990; Kim 1998; Jeong and Kang 2013; Yuki 1989). Although the direct cause of this global
expansion as well as that of other HAB species may be a topic of debate, there is no question that in the past decade, this species has bloomed in several new areas. For example, it has formed dense blooms in the Peconic Estuary and Shinnecock Bay of Long Island, New York since 2004 (Gobler et al. 2008); it has bloomed extensively in the southern part of Chesapeake Bay (Mulholland et al. 2009; Morse et al. 2011), and it appeared for the first time in massive and sustained blooms in the Arabian Gulf for the first time in 2008, where it was sustained for as much as 10 months (Richlen et al. 2010; Hamzei et al. 2012; Fatemi et al. 2012; Al-Azri et al. 2014). Such blooms have resulted in hundreds of millions of dollars of fish loss e.g. Kim (1998), Kim et al. (1999), and Whyte et al. (2001).

Cochlodinium spp. is of concern because it is ichthyotoxic. It produces copious quantities of mucus that may contribute to the suffocation of fish. However, the direct causes of fish mortality are still far from understood, as are the specific factors that may promote blooms or help to sustain them once they do occur. Toxicity is increased by direct exposure of the animals to live dinoflagellate cells; toxicity may also involve reactive oxygen species (Tang and Gobler 2010). Recent bioassay experiments, among other exposure trials have demonstrated that *C. polykrikoides* may kill multiple fish species, and that impairment may lie at the level of gill function e.g., respiration, nitrogen excretion, ion balance (Gobler et al. 2008). Moreover,
juvenile scallops and American oysters also appear to be affected by \textit{C. polykrikoides}, with significantly reduced growth rates as well as elevated mortality following exposure Ho and Zubkoff 1979; Tang and Gobler 2010.

The success of \textit{C. polykrikoides} appears not to be a function of its growth rate; in fact it is a rather slow growing species. Rather, it appears to be a highly effective competitor among other algae. It has been shown to cause co-occurring species to lose flagella and motility or to decrease their growth rates, through allelochemical interactions (Yamasaki et al. 2007; Tang and Gobler 2010; Jeong et al. 2015). It is also a strong swimmer, able to outcompete diatoms and some other dinoflagellates, descending deeper into the nutricline to obtain its requisite nutrients (Jeong et al. 2015). It also feeds on diatoms and cryptophytes, and in doing so is able to obtain a growth advantage. When growing as a phototroph, it has a growth rate of 0.17 div d$^{-1}$, yet as a mixotroph it can nearly double this rate (Jeong et al. 2004).

As with many other HAB species, eutrophication is thought to be a major factor contributing to the expansion of this species/genera to new regions (Anderson et al. 2002; Glibert et al. 2005; Heisler et al. 2008b). The association of \textit{C. polykrikoides} with intensive fish farming, as in the case of the Korean coast, raises the question of whether nutrients released from these facilities may alter not only the total nutrient load, but also the composition of those nutrients, leading to nutrients (both dissolved and particulate) that may be more favorable for growth of these species. It has been suggested, also, that blooms occur in many regions following heavy rainfall. This has been documented for some coastal regions of Korea (Lee 2006), as well as for the Chesapeake Bay (Mulholland et al. 2009; Morse et al. 2011) and the eastern shoreline of the Gulf of California (Gárate–Lizárraga et al. 2004). With heavy rainfall comes nutrient-laden inflows, which, combined with conducive physical and other chemical factors, may stimulate blooms. Blooms of \textit{Cochlodinium} can reach very high biomass levels (Fig. 8.3), for example, >50 μg l$^{-1}$ Chlorophyll \textit{a} in the Gulf of California event of 2000 (Gárate–Lizárraga et al. 2004) and >70 μg l$^{-1}$ Chlorophyll \textit{a} in the coastal water of Oman during 2008 (Al-Azri et al. 2014). Moreover, many blooms reach near mono-specific proportions in terms of phytoplankton composition (Mulholland et al. 2009; Al-Azri et al. 2014).

8.2 Optical properties of \textit{Cochlodinium}

There have been recent efforts to optically discriminate \textit{Cochlodinium polykrikoides} from other dinoflagellates, primarily targeted at Korean waters (Kim et al. 2016). Compared with other dinoflagellates in the study, \textit{C. polykrikoides} was shown to absorb more light in the blue wavelengths (Fig. 8.4a). Moreover, in a comparison of natural communities of both \textit{C. polykrikoides} blooms and non-bloom conditions, the spectral signatures of the bloom regions were clearly distinguishable (Fig. 8.4b). The remote sensing reflectance $R_{rs}(\lambda)$ of blooms of \textit{C. polykrikoides} was compared with
Figure 8.3 Massive bloom of *Cochlodinium polykrikoides* in the lower Chesapeake Bay in August and September 2007, which led to fish kills and low dissolved oxygen. *In situ* chlorophyll *a* concentrations reached $> 350 \mu g \ l^{-1}$. Photo courtesy of S. Earley.

those of other species (bio-optical data provided by IOCCG) and similarity indices based on second derivatives of $R_{rs}(\lambda)$ were calculated in the wavelength range of 400-690 nm Kim et al. 2016. These results showed that it was possible to isolate a distinctive signal of *C. polykrikoides* compared to unidentified phytoplankton (UPA), and the ability to differentiate this signal increased as the concentration of chlorophyll *a* increased (Fig. 8.4c). A distinctive signal could also be seen in several wavelength bands based on MODIS wavebands (Fig. 8.4d). In that comparison, while similarity indices between *C. polykrikoides* and the other HAB species showed high values of 0.83-0.97 near the 443, 488, 531, and 555 nm wavelengths, in the 443 and 488 bands the similarity indices of *C. polykrikoides* and unidentified phytoplankton were much lower, 0.70 and 0.62 respectively, illustrating that this species can be resolved from other co-occurring species.
Figure 8.4 Mean spectra of in vivo chlorophyll \(a\)-specific absorption (\(a_{ph}^*\)) of \(C.\ polykrikoides\) (\(n = 9\)), \(Akashiwo\ sanguinea\) (\(n = 10\)), \(Alexandrium\ tamarense\) (\(n = 10\)), and \(Scrippsiella.\ trochoidea\) (\(n = 11\)). (b) Comparison between the \(a_{ph}^*(\lambda)\) normalized to 440 nm (\(a_{ph}^*(\lambda) \div a_{ph}^*(440)\)) of \(C.\ polykrikoides\) bloom (black) and non-bloom (grey) regions. (c) Similarity indices of the second-derivatives of \(R_{rs}(\lambda)\) between \(C.\ polykrikoides\) and other species with varying chlorophyll \(a\) concentrations in the wavelength range 400-690 nm. (d) Similarity indices of the second-derivatives of \(R_{rs}(\lambda)\) between \(C.\ polykrikoides\) and other species at several MODIS wavebands (443, 488, 531, and 555 nm) with a chlorophyll \(a\) concentration of 30 \(\mu\)g l\(^{-1}\). Reproduced from Kim et al. (2016) under a Creative Commons license.
8.3 Case Study in the Gulf of Oman

Arabian Gulf 2008–2009

The geographic expansion of *C. polykrikoides* in the Sea of Oman, Arabian Gulf, has been well documented to have been broad and to have caused massive fish kills especially in fish cages, to have impacted desalination plants and refineries, and to have had significant economic consequences (Pankratz 2008; Richlen et al. 2010; Al Gheihani et al. 2012). In the most recent massive bloom of this species, from late 2008-2009, the bloom is estimated to have lasted 8 - 10 months at the northern Strait of Hormuz (Hamzei et al. 2012; Fatemi et al. 2012). Richlen et al. (2010), who confirmed the species identification off the United Arab Emirates, found cell counts as high as $1.1 - 2.1 \times 10^7$ cell L$^{-1}$ in October 2008. In the Strait of Hormuz during the same month, cell counts of this species were 2.6×10^7 cells L$^{-1}$ and Chlorophyll a reached values of 32 μg L$^{-1}$, where normally in the same month of a non-bloom year, concentrations are less than 1 μg L$^{-1}$ (Fatemi et al. 2012). These coastal observations confirm that the same species was occurring on multiple shores of the Gulf of Oman and Arabian Gulf during the same period of several months.

As reported by Al-Azri et al. (2014), and as seen from merged SeaWiFS and MODIS Aqua images (Figures 8.5, see do Rosario Gomes et al. (2008) for details on imagery and its calibration) large chlorophyll a accumulations were evident in the Strait of Hormuz and along the coast of the United Arab Emirates and northern Oman by mid October to early November 2008 (Figure 8.5 A,B). As blooms intensified, they were carried in an anticyclonic direction back to the Iranian shore following wind reversal in late October/November (Fig. 8.5 C,D). These blooms affected the coast of Iran for several months into 2009 (Hamzei et al. 2012; Fatemi et al. 2012). Export of Chlorophyll a to the Arabian Sea occurred by January 2009 (Fig. 8.5 E-G).

These images not only document the progression of the bloom, but also convey a complex pattern of the spatial distribution of chlorophyll a affected by mesoscale eddies (shown in the figure as blue and green gaps) caused by basin scale circulation. Preceding the bloom period, in late July 2008, there was a period of unusually cool temperatures, with as much as a -3 $^\circ$C temperature anomaly, as reported by direct temperature observations from NOAA for a site just north of Muscat, using satellite nighttime sea surface temperatures (Al-Azri et al. 2014). Such a pattern would be suggestive of strong upwelling in the late summer months, the period of the southwest monsoon (SWM). In contrast, the late 2008 time period had unusually long sea surface height (SSH) anomalies that lasted from October until approximately March 2009, indicative of monsoon reversal to a northeast monsoon (NEM) period. This SSH anomaly exceeded that of the previous 2 years in its duration by as much as 2–2.5 times. Such an anomaly is suggestive of a period of unusually warm water temperatures. It is therefore likely that these unusual physical conditions, including
warmer than normal waters, allowed *C. polykrikoides* to grow and with the right nutrients, bloom strength was magnified. Anticyclonic eddies may have been the physical mechanism that moved the bloom aggregation closer to both the west and east sides of the Sea of Oman.

While mesoscale features likely contributed to the initiation and spatial extent of the bloom, the pulsed nature of outbreaks at different times, and the size of the bloom in the different localized regions, are highly suggestive that local environmental conditions also contributed to the bloom development and persistence. It is highly likely that in local regions, the bloom was sustained by nutrient enrichment supplemented by its mixotrophic capabilities. The Arabian Gulf, like many regions worldwide, will likely continue to have outbreaks of this species, and will experience impacts on fish and other resources as this toxic species becomes further established.
Observation of Harmful Algal Blooms with Ocean Colour Radiometry
Chapter 9

Application of Ocean Colour to Harmful High Biomass Algal Blooms

Grant C. Pitcher, Raphael M. Kudela, Marié E. Smith

9.1 Phytoplankton associated with harmful high biomass blooms

Ecosystem damage by high biomass blooms may include, for instance, disruption of food webs, fish killing by gill damage, or the development of low oxygen “dead zones” after bloom degradation (Kudela et al. 2017).

Mass mortalities are rather caused by episodic anoxia following the nearshore accumulation and decay of red tides (Pitcher and Probyn 2011). These events of low DO may also coincide with corrosive, low pH conditions [Pitcher and Probyn, 2012], and in some cases the production of H$_2$S [Matthews and Pitcher, 1996], which are equally harmful to marine life.

Concerns relating to high biomass HABs referred to as red tides, and their association with events of episodic anoxia within upwelling systems, continue to grow (Pitcher et al. 2017). Mass mortalities attributed to these events typically occur following the nearshore accumulation and decay of red tides (e.g., Kahru et al., 2008; (Pitcher and Probyn 2011). Consequent oxygen depletion may also coincide with corrosive low-pH conditions, and in some cases, the production of H$_2$S, that are equally harmful to marine life. Specifically in the southern Benguela, events of episodic anoxia have had major impacts on living marine resources. During the late 1980s and 1990s, the contribution of the West Coast rock lobster resource to total lobster landings on the South African coast declined from about 60% to <10%. This decline was linked to an increase in the number and severity of lobster mortalities attributed to increasing anoxia events associated with an increase in the frequency of red tides (Pitcher et al., 2014). Such anoxia events continue to regularly impact the St Helena Bay region of the southern Benguela, with a major lobster mortality as recently as 2015 attributed for the first time to blooms of the dinoflagellate *Prorocentrum triestinum* (Figure 3).

In the California Current, red tides produced by the dinoflagellate *Akashiwo sanguinea* have emerged as a new type of HAB. While the organism itself is not known
to produce toxins, and has not been associated with anoxic events in California, it has been linked to massive bird mortalities (Jessup et al., 2009) caused by the production of a surfactant foam. This foam interferes with the natural waterproofing properties of bird feathers, likely causing impacted birds to succumb to hypothermia. First identified in Monterey Bay in 2007, a second, larger event in 2009 resulted in the mortality of hundreds of birds (Phillips et al., 2011).

Extensive blooms of *Gonyaulax polygramma* in the same on the South African coast in 2011, which coincided with nearshore aggregations and beaching of the sardine *Sardinops sagax* (van der Lingen et al., 2016). Sardines within the bloom area were shown to be in poor physical condition, suggesting that these blooms could pose a significant risk to sardines and the associated fishery in this region (Figure 2). In 2011, the South African coast was subject to a massive bloom of *Gonyaulax polygramma* with a spatial extent that coincided with near-shore aggregations and wash-ups in some localities of sardine *Sardinops sagax* (B). Sardines in the bloom areas were also in poor condition compared to those elsewhere as is evident from the scatter plot of their wet body mass against caudal length (different symbols represent fish from different localities either washed up on beaches or concentrated in the nearshore) in relation to the long-term length-mass regression. The retention of these dinoflagellates on sardine gill rakers is considered to have “irritated” the fish in some way such that they ceased feeding and lost condition. Given the substantial economic and ecological importance of sardines in the Benguela Current ecosystem, these observations are a serious concern.

Raphe to provide material from recent publication showing detailed radiative transfer modelling and ability to resolve subsurface bloom signal – needs very sophisticated approach. Will also showcase depth related aspects of OC signal
Figure 9.1 California depth/modelling example to show subsurface blooms and/or optical depth considerations from Akashiwo bloom
Figure 9.2 same *Akashiwo* bloom with foam and L8 imagery for foam detection – small text inclusion here on scum/foam formers.
9.3 Hypoxia in the southern Benguela: *Ceratium balechii*, 2009

An exceptional bloom of the dinoflagellate *Ceratium balechii* and an anoxia-induced mass mortality.

Episodic anoxia may occur throughout the water column of shallow inshore regions following the decay of red tides accumulated within these environments under conditions of persistent downwelling. Anoxia within these shallow non-stratified nearshore regions is dependent on exceptional organic loading of the water column as afforded by the decay of red tide and to the absence of wind-induced mixing or wave action.

Species of *Ceratium*, such as *Ceratium furca*, are very common components of the dinoflagellate assemblage within this region. However, *C. balechii* has been observed less frequently having been reported for the first time in the Benguela in 1998, at which time it was identified as *C. dens* (Pitcher and Weeks 2006).

A maximum concentration of 7.3×10^6 cells l$^{-1}$ was recorded on the 25 March 2009.

Chl a concentrations in parts of the bay exceeded 2000 mg.m$^{-3}$. The appearance of red tide in the nearshore environment of the northern shoreline of St Helena Bay and its association with increasingly stratified conditions is known to be driven by alongshore flow from the north following wind relaxation and reversal of surface currents.

Although marine mortalities have been reported within the greater St Helena Bay region for many years these events remain poorly described. The documented events of a large fish-kill in 1994 in the region of the Berg River mouth (Matthews and Pitcher, 1996), of a massive rock lobster mortality in Elands Bay in 1997 (Cockcroft et al., 2000), and of a mortality off Dwarskersbos in 1998 (Pitcher and Probyn, in press) provide a useful comparison to the event described here. All incidents were associated with blooms of *Ceratium*. The 1994 mortality followed the decay of a red tide dominated by the dinoflagellates *C. furca* and *Prorocentrum micans*, the 1997 mortality was linked to a bloom dominated only by *C. furca*, while the 1998 mortality was attributed to the decay of a bloom of *Ceratium lineatum* and *C. balechii*. Although conditions of anoxia were common to all events, elevated hydrogen sulfide concentrations measured during the 1994 mortality (Matthews and Pitcher, 1996) and low pH levels recorded during the 1998 mortality (Pitcher and Probyn, in press) will also serve as important stressors to marine life.

The development and transport of the red tides in early 2009 and 2012 was effectively tracked by ocean colour data from the MERIS sensor (Figure 4). In 2009 the bloom was dominated by the dinoflagellate *Ceratium balechii* (Pitcher and Probyn 2011). Initial build-up of the bloom was observed in February in the northern reaches of the bay. By March blooms were shown to extend in a narrow
Observation of Harmful Algal Blooms with Ocean Colour Radiometry

band over a distance of >100 km. Diminished upwelling and the development of nearshore counter currents in late summer and early autumn are considered to result in the southward progression of these blooms and their entrainment into the bay [Fawcett et al., 2008]. In 2009 the bloom was shown to accumulate in the shallow, southern reaches of the bay between Dwarskersbos and the Berg River mouth. Here large fish and lobster mortalities resulted from bloom decay and consequent anoxia in early May (Pitcher and Probyn 2011).

As in past events of mass mortality in this region the blooms were dominated by species of Ceratium [Cockcroft et al., 2000; Matthews and Pitcher, 1996; (Pitcher and Probyn 2011). Bloom decay is considered to be driven by the inaccessibility of nutrients, including subthermocline nutrients, during periods of extended downwelling, or following the transport of blooms into the shallow southern reaches of the bay (Pitcher and Probyn 2011).

The bio-optical conditions of the St Helena Bay region are largely classified as Case 1, with very little influence from inorganic particulate matter or dissolved organic substances. However, the frequent occurrence of high phytoplankton biomass (> 20 mg.m$^{-3}$ chlorophyll a) can produce bio-optical conditions that fall outside the scope of standard Case 1 satellite algorithms, prompting the need for sensors and algorithms that can operate on the red-edge. An example is the maximum peak-height (MPH) algorithm (Matthews et al. 2012) which uses Rayleigh-corrected reflectance from wavebands situated in the red-NIR to determine Chla, effectively circumventing potential atmospheric correction problems associated with turbid waters and the correction of aerosol absorption. The Chl-a from the MPH algorithm, as derived from reduced resolution (\pm1 km) data from the MERIS sensor, was able to capture the very high in situ concentrations in addition to the development and transport of the 2009 Ceratium balechii bloom in St Helena Bay (Figure 2). MERIS imagery of this region are often affected by sun glint during spring and summer, which can cause erroneously high reflectance values with resultant data loss due to quality flagging procedures employed in standard satellite Chla products. The spectral setup of the MPH algorithm makes it less susceptible to the effects of sunglint, leading to a higher frequency of usable images for the southern Benguela region compared to other standard MERIS products.
Figure 9.3 MPH derived Chl-a (mg m-3) from MERIS FR imagery showing the development and transport of the *Ceratium balechii* bloom in St Helena Bay between the 10th of February 2009 and 10th of May 2009.
9.4 Hypoxia in Paracas Bay, Peru: *Gymnodinium sanguineum*, March 2004

Paracas Bay is located off the central coast of Peru and is often subjected to harmful algal blooms in the form of red tides. In 2004 a bloom dominated by the dinoflagellate *Gymnodinium sanguineum* severely disrupted fishing, fish meal manufacturing, and fish and shellfish farming within the region (Kahru et al. 2004). These are the most important economic activities in the bay, and the closure of the port and of fishing operations for 22 days meant the loss of 220 000 tons of anchovy and 50 000 tons of fish meal valued at about $27.5 million. The local aquaculture sector was also devastated by the bloom, reporting losses estimated at $1 million. Medium-resolution bands on NASA’s Moderate-Resolution Imaging Spectroradiometer (MODIS) were shown by Kahru et al. (2004) to be a valuable and cost-effective way to monitor these blooms and other turbid water plumes that cause disruption to the fishery and aquaculture operations of the region.

Visual observations of a brownish-red discoloration of the water in the bay were made from the 26–29 March 2004 and the Peruvian Marine Research Institute (IMARPE) registered a red tide in the Paracas area on 2 April 2004 (Kahru et al. 2004). Concentrations of *G. sanguineum* of up to 3.2×10^6 cells l$^{-1}$ were reported just before the death of the bloom between 9 and 11 April 2004. The subsequent sinking and decay of the bloom resulted in a severe depletion of oxygen and anoxic conditions were reported on the 12 April 2004 along with major fish-kills. A water turbidity index calculated from the 250 m MODIS data was inversely correlated with oxygen concentration measured in situ in the water column.

The Paracas Bay region is prone to periodic increases in turbidity resulting from sediment resuspension caused by wind-induced currents (Velarde et al. 2015). Offshore winds also transport dust from the adjacent desert over the coastal ocean (Velarde et al. 2015), which not only contributes particulate inorganic material to the water column but can interfere with standard atmospheric correction procedures. Atmospheric correction techniques and algorithm applications within this area would benefit from being Case 2 appropriate. The April 2004 *Gymnodinium sanguineum* bloom in Paracas Bay has been mapped using empirical algorithms applied to medium-resolution MODIS bands (Kahru et al. 2004); however, these methods were only semi-quantitative. Although sensor coverage during the bloom period was limited, the spatial and spectral resolution of MERIS full resolution (± 300 m) data and next-generation OLCI sensor on board Sentinel 3 are good candidates for quantitative remote sensing applications within this area. Figure XX shows an example of the CoastColour (version 2) Chl-a merged product shortly after the recorded harmful bloom dates (as noted in Kahru et al. (2004). The Chl-a output from two different algorithms (a neural network and the standard OC4 algorithm) are applied and blended depending on the concentration of TSM in
the waters. The image shows moderate Chla values within the bay, with high phytoplankton biomass (> 50 mg.m\(^{-3}\)) north of the bay extending offshore from the coast. Unlike standard atmospheric correction algorithms the CoastColour correction neural network prevents negative reflectance, however atmospheric correction failure may produce unrealistic reflectance shapes as seen in Figure XX.
Figure 9.5 On the left: CoastColour merged Chl-a (mg.m$^{-3}$) for Paracas Bay, Peru on the 30th of April 2004. On the right: examples of the reflectance spectra from the CoastColour atmospheric correction neural network. Note: the colours of the spectra correspond to the coloured rectangles on the map.
9.5 Hypoxia in the southern Benguela: *Mesodinium rubrum*, March 2004

The photosynthetic ciliate *Mesodinium rubrum* is one of the most common red tide forming species on the west coast of South Africa (Horstman 1981). Although seldom associated with harmful impacts, extensive faunal mortalities, including large numbers of rock lobster, sea urchins and fish, were attributed to the decay of a *M. rubrum* bloom in St Helena Bay in April 1978 (Horstman 1981). Inshore bloom decay evident by a change in water colour from dark maroon to brown was followed by a decline in oxygen concentration.

The *in situ* reflectance spectra of cryptophyte blooms such as *Myrionecta rubra* generally show spectral features associated with phycorethyrin absorption between 500 and 620 nm (Figure 4a); however the spectral resolution of most multispectral satellites may not be able to sufficiently resolve these peaks. Under significant levels of *M. rubra* biomass, a reflectance ratio between red and green wavebands may be applied to multispectral satellite data (Figure 4b and 4c) to identify the cryptophyte bloom and distinguish it from background diatom and dinoflagellate assemblages e.g. Bernard et al. (2014) and Guzmán et al. (2016), although this technique is mostly qualitative at present. Dierssen et al. (2015) developed a band depth algorithm using reflectance features between 564.4 and 587.3 nm to identify and quantify *M. rubra* in hyperspectral satellite images.
Observation of Harmful Algal Blooms with Ocean Colour Radiometry
Chapter 10

Application of Ocean Colour to Ecologically Disruptive Algal Blooms (EDABS)

Patricia M. Glibert, Marié E. Smith, Suzanne Roy

10.1 Background

In recent years a new group of harmful algal bloom species have been recognized and given the term “ecosystem disruptive algal blooms” (EDABs). This term refers to those species that disrupt trophic dynamics, but such disruptions are not necessarily a result of toxicity or other chemical cues. Many of these species are very small in size. EDAB species may be unable to be grazed by consumers due to their small size, or they may adversely affect grazers and algal competitors through allelopathy or toxin production e.g. Fistarol et al. (2003). The EDAB species, *Aureococcus anophagefferens* and *Aureoumbra lagunensis* are responsible for the “brown tide” blooms that have occurred in coastal lagoons along both the east coast and the Texas coast of the US. Neither species is efficiently grazed by zooplankton. Another EDAB species is *Synechococcus elongatus*, the common bloom-forming species in the subtropical coastal lagoons of Florida and Mexico. Such blooms can form very high biomass blooms, often in near mono-specific proportions. The cells of these species are generally < 3 µm in size, so they are poorly grazed by zooplankton.

These EDAB species are also typically supported by forms of nitrogen that are reduced in their chemical nature, i.e. ammonium or dissolved organic nitrogen. The genus *Aureoumbra*, for example, has been shown not to use nitrate at all, whereas concentrations of NO$_3^-$ in many riverine systems can exceed many tens of µM, e.g. Chesapeake Bay (Glibert et al. 1995; Kemp et al. 2005); Neuse River Estuary, (Christian et al. 1991; Burkholder et al. 2006), lagoonal systems typically have higher relative concentrations of the N form NH$_4^+$ than NO$_3^-$ (Burkholder et al. 2006). In fact, some lagoons can accumulate very significant levels of NH$_4^+$, > 30 µM (Boyer et al. 1999; Burkholder et al. 2006; Glibert et al. 2007) CANT FIND Sturgis 2007. In addition, organic forms of N and P tend to dominate the nutrient pool in lagoons compared to their respective inorganic nutrient forms (Boyer et al. 1999, 2006; Glibert et al. 2007). Other systems that may support EDAB species may have very low levels of these forms of nitrogen, and in such cases, the dominant
species may be those that can very efficiently use these low levels when they become available (Sunda??).

As noted by WHICH REF IS THIS? Glibert and Burkholder (2010), picoplankton such as *Synechococcus* are especially well adapted to low inorganic nutrient conditions because their small size reduces diffusion limitations in nutrient uptake. However, unlike diatoms which have large internal nutrient storage pools e.g. (Dortch et al. 1984; Lomas and Glibert 1999), picoplankton, because of their small size, are limited in their ability to store nutrients. Laboratory experiments on various clones of *Synechococcus* have shown that these cells may either arrest cell division immediately upon N starvation, or may divide slowly, but only for ~1 division when they become N-limited (Glibert et al. 1986; Glibert and Ray 1990). In order for blooms of either species, *Synechococcus* or *A. anophagefferens* to be sustained, nutrients must be supplied or regenerated on a continual basis. That such blooms often occur in coastal lagoons suggests a tight coupling between plankton and benthic nutrient cycling pathways. The shallow, retentive nature of lagoons and the high degree of coupling between the benthos and the pelagic environment in terms of fluxes of nutrients, are conditions that can lead to prolonged blooms of these picoplankton with significant ecosystem consequences. Sunda and Shertzer (2012) have suggested that positive feedback between efficient nutrient uptake capability, low grazing rates, and low grazer-mediated nutrient recycling may lead to the maintenance of an EDAB species once it becomes established.

10.2 Specific Case Studies

10.2.1 *Synechococcus elongates* bloom — Florida Bay 2005–2006

In September 2005 an unprecedented phytoplankton bloom appeared in the historically clear waters of northeastern Florida Bay (Rudnick et al. 2006; Glibert et al. 2009). This eastern bay phytoplankton bloom was first observed as a regional phenomenon, extending from Duck Key in eastern Florida Bay to Card Sound in southern Biscayne Bay (Rudnick et al. 2006). The bloom persisted for 3 years, 2005–2008, although it varied in intensity and in specific location. The initiation of this bloom was roughly coincident with two major system perturbations. First, in 2005, Florida Bay was impacted by the passage of a series of intensive hurricanes, Katrina (August), Rita (September) and Wilma (October), which resulted in significant increases in flows of freshwater and nutrients to the eastern part of the bay. Also, in April of 2005, construction began on the expansion of an 18–mile causeway connecting the mainland and the Florida Keys, resulting in clear-cutting and mulching of acres of adjacent mangroves, and extensive mangrove soil excavation and tilling. These factors, individually or synergistically, appear to have contributed to nutrient and/or organic matter availability and potentially initiated this bloom (Glibert et al. 2009).
Interestingly, as the algal bloom became prolonged, its composition changed from being almost exclusively composed of *Synechococcus* to one of a mixed community with proportionately more flagellates, some of which were heterotrophic. The common microbial grazers of *Synechococcus* are heterotrophic protozoa and ciliates (e.g. Campbell and Carpenter (1986), Caron et al. (1991), and Strom (1991), but some dinoflagellates may also consume *Synechococcus* (Legrand et al. 1998; Jeong et al. 2005; Glibert et al. 2009). Seemingly unrelated, in summer of 2007, another geographically distinct phytoplankton bloom, also dominated by *Synechococcus* spp., was observed in southern Florida Bay, centered between Twin Key Basin and Islamorada (Rudnick et al. 2008). From Chlorophyll-a distributions in satellite observations it seems likely that this bloom was initiated *de novo* and is not the result of transport and seeding from the eastern bay bloom. This southern bay bloom also was accompanied by a large scale sponge mortality event (CANT FIND Butler and Behringer 2008).

Although the unusual and prolonged bloom event did eventually subside, indicating a degree of ecosystem resilience, Florida Bay appears to be an ecosystem that is particularly sensitive to multiple stressors that result in large, long-lasting changes in the state of the ecosystem.

10.2.2 *Aureococcus anophagefferns* bloom in the Bohai Sea, China

Aureococcus anophagefferns formed a massive brown tide in the Bohai Sea, China, off the coast of Hebei Province beginning in June 2009 and, like many such blooms, has been sustained for considerable period of time. By July 2010, the bloom reached 3,350 km2 (CANT FIND THESE 2: Yu et al. 2012, Zhou et al. 2012 — see Figure). It reached high densities, up to 109 cells l$^{-1}$ again in May 2011, extending to the coast of Shagdong Province. Indeed, when present at these very high cell densities, this species constituted more than 99% of overall phytoplankton cells (Kong et al. 2012). This coastal area in China is one of the major aquaculture regions, and thus has been put at high risk due to the proliferation of this species. It is estimated that more than $32 million worth of aquaculture product was lost directly due to this prolonged event (Zhang et al. 2012a), Yu et al. (2012).

In China, as in many regions, taxonomic identification of the causative species is difficult. For picoplankton this is especially true, as morphological features are either hard to resolve or indistinguishable from many other species. In the case of this bloom off the coast of China, the presence of the distinguishing pigment 19'-butanoyloxyfucoxanthin (but-fuco) was used initially for identification (CAN’T FIND Trice et al. 2005), (Kong et al. 2012). Later, 18S ribosomal RNA was used; 17 clones from the bloom area and additional clones from non-bloom nearby regions were found to be 99.7 - 100% similar to *A. anophagefferns* from the US east coast (Zhang et al. 2012b).
Figure 10.1 *Aureococcus anophagefferns* bloom in the Bohai Sea, China on 23 June, 2010 captured by ESA’s Envisat MERIS sensor.
Developing operational Harmful Algal Bloom information services: the research to operational transition

11.1 Introduction

HABs & eutrophication significant global impact on ecosystem services with multibillion dollar annual losses. Currently highly evolved OC sensor landscape with many sensors/agencies including two operational constellations in S3 & VIIRS – making the investment in operational HAB services economically viable. Many advances in science & algorithms in last decades with maturing regional science capabilities with demonstrated HAB utility using variety of approaches. Blue economy policies providing impetus & mandate for engagement with user communities & economic valuation of information as service provision, and validation of R&D. Availability of big data IT platforms for routine EO processing, and useable geospatial server technology, e.g. Google Earth, gives ability to serve variety of user tailored end products etc.

Much of the capability lies in the research community and need to analyse best ways to manage the research to operational transition – a complex issue that in many ways research community has little experience of, but has very large potential impact, economic value and means to realise greatly increased value & sustainability of science & ongoing sensor/mission development & implementation. Elucidation of evolving R2O systems from around the world and the development mechanisms used of value to agencies, scientific, end user community and policy makers.

Five components typically identified as critical, above free & routine provision of suitable ocean colour base data:

1. mature regional science as give by ecosystem-appropriate algorithms & products, and sufficient quantitative understanding of oceanography/limnology and bloom ecology/impact
2. appropriate available IT capabilities, both for large volume EO processing and geospatial serving of simple, intuitive, highly synthesised, robust end products
Observation of Harmful Algal Blooms with Ocean Colour Radiometry

3. quantitative user engagement & development mechanisms providing the ability to synthesise & design complex operational systems from multiple view and architecture considerations
4. appropriate policy frameworks to stimulate & resource system development, typically falling under blue economy initiatives
5. economic value assessment tools, both to understand the value of the relevant economic resources and services, the pathways to impact & value realisation, and estimates of the realised value of developing operational HAB monitoring/observation services

In addition, appropriate development models are needed to ensure that the research & operational components work most effectively together – the ongoing iterative contribution of the science to the operational systems is of particular importance.

This chapter will examine several examples of emerging systems from around the world (South Africa/CSIR, USA/NOAA & EPA, Europe/PML) paying particular attention to the science & user development components. Hopes that this will provide useful framework for further development of operational HAB systems, and useful example for EO based R2) in more general sense.

11.2 Components & Development Models

Expand around components below
- mature regional science as give by ecosystem-appropriate algorithms & products, and sufficient quantitative understanding of oceanography/limnology and bloom ecology/impact
- appropriate available IT capabilities, both for large volume EO processing and geospatial serving of simple, intuitive, highly synthesised, robust end products
- quantitative user engagement & development mechanisms providing the ability to synthesise & design complex operational systems from multiple view and architecture considerations
- appropriate policy frameworks to stimulate & resource system development, typically falling under blue economy initiatives
- economic value assessment tools, both to understand the value of the relevant economic resources and services, the pathways to impact & value realisation, and estimates of the realised value of developing operational HAB monitoring/observation services
- e.g. mature scientific capability & regionally optimised products for type of blooms under consideration - examples. Sufficient validation, ideally multi-sensor. Multi water type application important.
- e.g. IT capability, Processing capability, Front end & dissemination – analytics, GUI, alerting – easy to to use, rewarding, low overhead, intuitive intercation
with simple, high value products

Figure 11.1 Shift from linear transition models to spiral development models, using analagous mechanisms to software engineering

Short discussion of development & viewpoint models

11.3 Global Examples (e.g. 2 page summaries)

11.3.1 South Africa (CSIR)

The South African west and south coasts suffer from the frequent occurrence of Harmful Algal Blooms (HABs). These blooms can have considerable negative impacts on commercial marine concerns such as rock lobster and aquaculture operations, in addition to local marine ecosystems and communities. Examples of typical rock lobster loss for large events range from 200 to 2000 tonnes, with an estimated direct economic loss of ± US$8 to 80M per event, in addition to the indirect ecosystem and sustainability impacts. HAB impacts come about through either the toxicity
Observation of Harmful Algal Blooms with Ocean Colour Radiometry

(to humans and animals) of some bloom species (e.g. red tides), or collapse of high biomass blooms through nutrient exhaustion, leading in extreme cases to hypoxia and dramatic mortalities of marine organisms, of which crayfish strandings on the West Coast are the most well known. HABS are expected to become more common as the oceans warm as the climate changes, with earlier onset and longer durations of HAB “seasons”.

The HAB DeST provides a capability for monitoring and assessing risk of HAB events for the South African coastal area to approximately 50km offshore. Risk assessment and monitoring is based on quantified understanding of algal bloom dynamics, hypoxic impacts, and earth observation monitoring capabilities. Maps of various ocean colour-derived phytoplankton biomass proxies, sea surface temperature, and ocean state (wind, current, sea state) are used to provide information on the presence and movement of blooms, and extracted time series of these data provide a "virtual buoy" capability giving a multi-parameter risk index.

This science is translated and digested into a simplified decision support tool via a set of computational processing chains and data management systems that present an interactive map based dashboard to end users. In addition, a HAB bulletin is occasionally issued by CSIR when noteworthy HAB-related events occur. This bulletin is distributed to members of government departments (Dept. Environmental Affairs and Dept. Agriculture Forestry and Fisheries), Provincial Disaster Management Centres and various mariculture companies.

The HAB DeST was developed using the Reference Model for Open Distributed Processing (RM-ODP), providing for set of viewpoints for partitioning the design of a distributed system e.g. enterprise, information, computational, engineering and technology. An example of the computational viewpoint is shown in Figure 2, and examples of user archetypes under the Enterprise viewpoint are shown below:

- Situational awareness operators (query DeST and receive notifications from DeST about possible HAB occurrences; communicate findings with infield and line managers)
- Infield conservation managers (activate hypoxia event response in reaction to information from situational awareness operator).
- Infield municipal managers, e.g. beach manager (activate toxic bloom event response e.g. notify consumers of possibly contaminated seafood, beachgoers of unsafe beachgoing conditions, in reaction to information from situational awareness operator).
- Environmental managers and planners (Monitor infield activities, monitor HAB history, draw reports)
- Infield Fisheries aquaculture managers (inform fisheryaquaculture operators about possibility of HAB in their area)
- National Oceans and Coastal Information Management System
- System providersmaintainers ensure the operational continuity of the DeST
Figure 11.2 The computational viewpoint to the OCIMS HAB Dest, providing an example of how different user archetypes are associated with appropriately constructed quantitative HAB information products.

11.3.2 NOAA
11.3.3 EPA
11.3.4 PML

11.4 Conclusions
Figure 11.3 Example of the Harmful Algal Bloom Decision Support Tool for the South African Ocean & Coastal Information Management System (OCIMS)
12.1 Draft Recommendations

12.1.1 Preamble

Differences between research & operational needs e.g. absolute high confidence radiometric & geophysical products vs ROBUST, routine, ecosystem & regionally fit-for-purpose operational. Differences between inland/near coastal & bay/shelf scale needs. User requirements critical, differ greatly between scientists/research & non specialist users e.g. gov/industry etc.

12.1.2 Sensors

1. Spectral bands, multispectral resolutions & positions: Much of the useful signal for assemblage or high biomass is in green to NIR. Red/NIR (e.g. 709 nm plus water vapour correction bands) critical for high biomass, Phycoerythrin bands at ±590 nm and green bands 520 — 570 nm driven by phyto scattering also very useful.

2. Hyper – hyperspectral sensors, will improve the capability to detect HABs, i.e. provide the ability to make broad taxonomic distinctions at somewhat lower phytoplankton biomass than with multispectral sensors, but will not overcome the inherent signal related constraints outlined above. Hyper will also provide new opportunities with spectrally dense methods e.g. detecting peak wavelength shifts. The atmospheric correction issues will remain, particularlly if the whole visible spectrum is to be used in signal analysis.

3. SNR - NIR SNR important -trying to resolve small change in red/NIR signal important, Moses SNR paper, and Sentinel 2 SNRresolution comments
4. Spatial Resolution and Revisit – high spatial resolution as per Sentinel 3 FR and Sentinel 2 at 60 m and below extremely useful for near coastal and inland, allowing sensing of many new smaller water bodies and phenomena. For operational purposes high revisit e.g. daily or better is extremely important, also increasing the ability to overcome cloud issues

5. Latency: low latency extremely important important for operational NRT e.g. < 6 hours.

12.1.3 Atmospheric Correction and In-Water Algorithms

1. Atmospheric correction currently the major constraint - very hard outside dedicated research environments for any current sensor to consistently provide high confidence water leaving signal/products in optically complex waters. This is evidenced by the number of examples shown here using red/NIR algorithms for high biomass applications i.e. using part of spectrum least affected by poor aerosol correction.

2. Algorithms - standard products very useful if constraints very clearly communicated (biomass & ambiguity), regional optimisation very important particularly for improved higher biomass estimates, ecosystem knowledge very important for regional optimisation, ability to apply water type optimised algorithms very important e.g. switching or spectral classification through Optical Water Types, sophisticated assemblage algorithms only likely to work in optimal ecosystems such as upwelling & unlikely to be regionally transferable. Better global suites of high biomass algorithms, providing single products across wide ranges of water types, are seen as more valuable & greater impact than highly regionally/water type dependent PFT algorithms.

12.1.4 Science Validation

1. New community ability is needed to routinely measure & characterise phytoplankton assemblage, much to be learnt from global HAB community e.g. GlobalHAB. New sensor technology such as submersible imaging cytometers and holographic microscopes have important role to play, as do new methods for quantitative biophysical assemblage characterisation.

2. Coastal/inland optically complex waters bring requirements for new measurements & processing capability e.g. NIR radiometry, improved backscattering processing techniques from angular scattering sensors.

3. High biomass & high turbidity waters require validation protocols very different to ocean – these must be further developed.

4. Important to continue synthesising coastal/inland validation data sets e.g. CoastColour, GloboLakes

5. HAB research & validation offers significant scope to develop & test PFT methods/causality in high biomass/signal waters
12.1.5 User Driven Products

1. Critically important in the research-to-operational transition is good quantitative understanding of user needs, iterative spiral development, quantitative user archetypes, and use cases on transactional basis
2. Robust, easily understood, routinely available products have much greater uptake and impact potential than more sophisticated & sensitive R&D focused products.
3. NRT users need very low latency, robust products above all else
4. Some consideration should be given to user interface design, which should provide intuitive, rewarding interaction with HAB products
5. User ability to easily interact with historical data from event phenology, e.g. when was the last time a bloom of this type occurred and what happened? Historical product synthesis also provides long term risk management perspective, important for aquaculture and fisheries, water quality applications such as desalination, etc
6. Non specialist user training extremely important, both regionally and potentially globally, e.g. through MOOCs

12.1.6 Policy & Economics

(check with IOCCG, probably step too far)
1. policy drivers for blue economy, economic assessment of value, HAB system good
Observation of Harmful Algal Blooms with Ocean Colour Radiometry
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP</td>
<td>Amnesic Shellfish Poisoning</td>
</tr>
<tr>
<td>BRR</td>
<td>Bottom-of-Rayleigh</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>CDOM</td>
<td>Coloured Dissolved Organic Matter</td>
</tr>
<tr>
<td>CHL</td>
<td>Chlorophyll a concentration</td>
</tr>
<tr>
<td>CHRIS</td>
<td>Compact High Resolution Imaging Spectrometer (ESA)</td>
</tr>
<tr>
<td>DIN</td>
<td>Dissolved Inorganic Nitrogen</td>
</tr>
<tr>
<td>DIP</td>
<td>Dissolved Inorganic Phosphorus</td>
</tr>
<tr>
<td>EAP</td>
<td>Equivalent Algal Population</td>
</tr>
<tr>
<td>ERGB</td>
<td>Enhanced-RGB</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>FAI</td>
<td>Floating Algae Index</td>
</tr>
<tr>
<td>fPCA</td>
<td>Functional Principal Component Analysis</td>
</tr>
<tr>
<td>FR</td>
<td>Full Resolution</td>
</tr>
<tr>
<td>FWC-FWRI</td>
<td>Florida Fish and Wildlife Conservation Commission’s Fish and Wildlife Research Institute</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GoM</td>
<td>Gulf of Mexico</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>HAB</td>
<td>Harmful Algal Bloom</td>
</tr>
<tr>
<td>JGOFS</td>
<td>Joint Global Ocean Flux Study</td>
</tr>
<tr>
<td>MPH</td>
<td>Maximum Peak Height</td>
</tr>
<tr>
<td>MERIS</td>
<td>Medium Resolution Imaging Spectrometer (ESA)</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>nFLH</td>
<td>Normalized Fluorescence Line Height</td>
</tr>
<tr>
<td>NIR</td>
<td>Near Infra-red</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NPGO</td>
<td>North Pacific Gyre Oscillation</td>
</tr>
<tr>
<td>NPP</td>
<td>National Polar-orbiting Partnership</td>
</tr>
<tr>
<td>NSP</td>
<td>Neurotoxic Shellfish Poisoning</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>PDO</td>
<td>Pacific Decadal Oscillation</td>
</tr>
<tr>
<td>PFT</td>
<td>Phytoplankton Functional Types</td>
</tr>
<tr>
<td>QAA</td>
<td>Quasi-Analytical Algorithm</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>RBD</td>
<td>Red Band Difference</td>
</tr>
<tr>
<td>RCA</td>
<td>Red tide Chlorophyll Algorithm</td>
</tr>
<tr>
<td>RGB</td>
<td>Red, Green, Blue</td>
</tr>
<tr>
<td>RMB</td>
<td>Renminbi (Chinese Currency)</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>SeaDAS</td>
<td>SeaWiFS Data Analysis System</td>
</tr>
<tr>
<td>SeaWiFS</td>
<td>Sea-viewing Wide Field-of-view Sensor</td>
</tr>
<tr>
<td>Si</td>
<td>Silica</td>
</tr>
<tr>
<td>SST</td>
<td>Sea Surface Temperature</td>
</tr>
<tr>
<td>SWIR</td>
<td>Short Wave Infra-red</td>
</tr>
<tr>
<td>TN</td>
<td>Total Nitrogen</td>
</tr>
<tr>
<td>TOA</td>
<td>Top-of-Atmosphere</td>
</tr>
<tr>
<td>TP</td>
<td>Total Phosphorus</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>VIIRS</td>
<td>Visible Infrared Imager Radiometer Suite</td>
</tr>
<tr>
<td>WFS</td>
<td>West Florida Shelf</td>
</tr>
</tbody>
</table>
Bibliography

Observation of Harmful Algal Blooms with Ocean Colour Radiometry

Acronyms and Abbreviations

• Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO, 80–82.

Acronyms and Abbreviations

Glibert, P., J. Burkholder, and T. Kana (2012). Recent advances in understanding of relationships between nutrient availability, forms and stoichiometry and the biogeochemical distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum spp. Harmful Algae 14: 231–259.

Hallegraeff, G. and S. Fraga (1998). Bloom dynamics of the toxic dinoflagellate Gymnodinium catenatum, with emphasis on Tasmanian and Spanish coastal waters.

Observation of Harmful Algal Blooms with Ocean Colour Radiometry

Acronyms and Abbreviations

Observation of Harmful Algal Blooms with Ocean Colour Radiometry

Observation of Harmful Algal Blooms with Ocean Colour Radiometry

Soto, I. et al. (2012). Binational collaboration to study Gulf of Mexico’s harmful algae. EOS Trans AGU 93:5, 1–2.

Sun, J., D. A. Hutchins, Y. Feng, E. L. Seubert, D. A. Caron, and F.-X. Fu (2011b). Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the

Acronyms and Abbreviations

Wilson, W. *The suitability of sea-water for the survival and growth of Gymnodinium breve Davis and some effects of phosphorus and nitrogen on its growth*. Salt Water Fisheries Division, Florida Board of Conservation.

