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A B S T R A C T

The Multi-scale Ultra-high Resolution (MUR) sea surface temperature (SST) analysis presents daily SST estimates
on a global 0.01°×0.01° grid. The current version (Version 4.1, http://dx.doi.org/10.5067/GHGMR-4FJ04)
features the 1-km resolution MODIS retrievals, which are fused with AVHRR GAC, microwave, and in-situ SST
data by applying internal correction for relative biases among the data sets. Only the night-time (dusk to dawn
locally) satellite SST retrievals are used to estimate the foundation SST. The MUR SST values agree with the
GHRSST Multi-Product Ensemble (GMPE) SST field to 0.36°C on average, except in summer-time Arctic region
where the existing SST analysis products are known to disagree with each other. The feature resolution of the
MUR SST analysis is an order of magnitude higher than most existing analysis products.

The Multi-Resolution Variational Analysis (MRVA) method allows the MUR analysis to use multiple synoptic
time scales, including a 5-day data window used for reconstruction of mesoscale features and data windows of
only few hours for the smaller scale features. Reconstruction of fast evolving small scale features and
interpolation over persistent large data voids can be achieved simultaneously by the use of multiple synoptic
windows in the multi-scale setting. The MRVA method is also a “mesh-less” interpolation procedure that avoids
truncation of the geolocation data during gridding and binning of satellite samples. Future improvements of the
MUR SST analysis will include ingestion of day-time MODIS retrievals as well as more recent high-resolution SST
retrievals from VIIRS.

1. Introduction

Retrievals from satellite infra-red sensors can sample global sea
surface temperature (SST) at a spatial resolution of 1 km or finer.
Examples are the Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard Terra and Aqua satellites, the Advanced Along Track
Scanning Radiometer (AATSR) aboard Envisat, the Visible Infrared
Imaging Radiometer Suite (VIIRS) on Suomi NPP satellite, and the
Advanced Very High Resolution Radiometer (AVHRR) on various space
platforms.

Until recently, high-resolution information from these sensors is
rarely used in gridded multi-sensor SST analysis. In existing daily global
SST analysis products, typical grid resolution ranges from 0.05°×0.05°
to 0.25°×0.25°, or approximately from 5 to 25 km (e.g., Reynolds and
Smith, 1994; Brasnett, 2008; Donlon et al., 2012). Due to spatial and
temporal averaging applied for interpolation, actual resolution of the
physical features can be substantially coarser than the grid resolutions
(Reynolds and Chelton, 2010; Reynolds et al., 2013), often just enough
to resolve ocean mesoscale features. Some of the SST analysis fields may

be intentionally smoothed to satisfy operational requirements, such as
dynamical compatibility with a numerical weather prediction model
that uses the SST analysis as a boundary condition.

The space-time sampling rate sets a fundamental limit on the phy-
sical resolution of the analyzed SST field. In particular, small scale
features can evolve substantially in the course of a day, but the sensor
sampling at present is not dense enough for a sub-daily global analysis
at a high spatial resolution. Nevertheless, oceanographically useful sub-
mesoscale features are available in retrieval data sets, especially those
from wide-swath sensors such as MODIS and VIIRS. To capture these
small scale features in a gridded analysis, Reynolds et al. (2013) suggest
that “the best way forward may be the development of an improved
analysis [that] would have high resolution of small-scale features in
regions of good coverage and lower resolution in regions of poor cov-
erage.”

The Multi-scale Ultra-high Resolution (MUR) SST analysis is a
global daily analysis gridded at a 0.01°×0.01° horizontal resolution.
The MUR analysis ingests the MODIS retrievals (with future plans to
include other high-resolution data like the VIIRS retrievals) and seeks to
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capture small scale SST structures wherever available. The MODIS data
are combined with lower resolution SST data from satellite infra-red
and microwave sensors as well as in-situ measurements. The foundation
SST, or bulk near-surface temperature free of diurnal variations due to
solar heating (Donlon et al., 2007), is estimated by using only the night-
time (dusk to dawn locally) samples from the satellite retrievals. The
current version (Version 4.1) of MUR SST analysis has a temporal
coverage from 1 June 2002 to the present, approximately coinciding
with the microwave SST retrieval era. Its high resolution SST features
have found scientific applications in: coastal air-sea interactions and
phenomena (Nidzieko and Largier, 2013; Turrent and Zaitsev, 2014;
Wiafe and Nyadjro, 2015; Chen et al., 2015; Gentemann et al., 2017),
atmosphere-ocean coupled model (Iwasaki et al., 2014), tidal mixing
(Ray and Susanto, 2016), identification/tracking of surface structures
(Bashmachnikov et al., 2013; Vazquez et al., 2013; Liu et al., 2015; Mill
et al., 2015), and determination of physical indicators for bio-pro-
ductivity (Goela et al., 2014; Baylis et al., 2015; Scales et al., 2015).

The MUR analysis (hereafter “MUR” for brevity) must combine SST
data sets whose inherent spatial scales differ by several orders of
magnitudes, ranging from the MODIS samples with 1-km resolution to
the buoys spaced by several 100 km. Retrievals from orbiting sensors
are collected over a certain period of time to form a synoptic analysis.
While a period of several days has been shown appropriate to capture
and reconstruct the mesoscale SST features (Reynolds and Smith, 1994;
Brasnett, 2008; Donlon et al., 2012), a much shorter time window (e.g.,
shorter than a day) would be desirable to match the evolution speed of
smaller scale features observable in the MODIS data. MUR thus employs
a multi-scale data fusion and interpolation technique, called the Multi-
Resolution Variational Analysis (MRVA) method, that expands the
analysis into additive components based on the scale. This technique
allows multiple “synoptic” time-windows to be applied to a single re-
trieval data set. In particular, a multi-day window can be used to form
the mesoscale analysis components, while a sub-day window length can
be used for the finer-scale analysis components. Contribution by each
data set to the overall analysis can be controlled depending on the in-
herent resolution of the data set. For example, the buoy data set will not
participate in the analysis of the sub-mesoscale components because of
its relatively low spatial resolution.

This paper describes the MUR analysis and MRVA method. The
MRVA method was first developed to fuse wind vector data sets (Chin
et al., 1998). The version of MRVA described here introduces the use of
scale-dependent time-windows. Another attribute of MRVA is that it is a
mesh-less interpolation method which can avoid the use of spatial
binning that distorts the geolocation of the retrieval samples and hence
the shape of the analyzed SST (Chin et al., 2014). Section 2 of the paper
describes the data sets ingested by the MUR SST analysis and the pre-
processing procedures applied to them. Section 3 presents the MRVA
method and the analysis procedures. Section 4 then examines the

analyzed SST field and its multi-scale aspects by comparison to other
SST data sets. Section 5 concludes the paper with a summary and a list
of potential topics of further developments.

2. Data sets

MUR combines three types of satellite SST retrieval data sets: infra-
red SST retrievals at high resolutions of around 1 km, AVHRR (infra-
red) SST retrievals at medium resolution of 4 to 8.8 km, and microwave
SST retrievals with a nominal sampling interval of 25 km. The 1-km
high-resolution data are the main source of the small-scale SST features
observable in MUR and are currently provided by the MODIS sensors.
The medium-resolution AVHRR Global Area Coverage (GAC) data are
ingested for their relative spatial stability (Table 3, Section 4) within
the daily synoptic window. The microwave data are less prone to cloud
and water vapor contamination than infra-red SST retrievals and are
used to reduce the data voids in the infra-red retrievals. In addition to
these three types of satellite data, MUR ingests two types of non-sa-
tellite SST data sets: in-situ SST measurements to improve estimation of
the foundation temperature, and SST values derived from ice con-
centration data sets in the polar regions. Table 1 lists these five data
types and the data sets ingested by MUR. At least one data set re-
presents each of the five data types at any given time in the MUR SST
analysis (Fig. 1).

The Group for High Resolution Sea Surface Temperature (GHRSST;
Donlon et al., 2007) has defined a standard for the contents and formats
for the satellite SST data sets. For satellite retrieval products, the
standard contents under the GHRSST convention include the

Table 1
The SST data sources for the MUR analysis and the data-specific analysis parameters. The sample size (N) is a nominal value after quality screening and selection of night-time samples in
the multi-day window. The upper value in the “scale range” column indicates the highest possible analysis resolution L for the given data type.

Data type Input data Analysis parameters

Data set Resolution Size (N) Window Scale range
High-resolution infra-red MODIS Terra 1 km 1 ⋅ 108 5 days 0 ≤ ℓ<10

MODIS Aqua 1 km 1 ⋅ 108

AVHRR infra-red Pathfinder Night 5 km 5 ⋅ 106 5 days 0 ≤ ℓ<7
Pathfinder Day 5 km 5 ⋅ 106

NOAA-18 GAC 9 km 5 ⋅ 106

NOAA-19 GAC 9 km 5 ⋅ 106

MetOp-A GAC 9 km 5 ⋅ 106

Microwave AMSR-E 25 km 2 ⋅ 107 5 days 0 ≤ ℓ<6
WindSat 25 km 2 ⋅ 106

AMSR2 25 km 4 ⋅ 106

In-situ iQuam point-wise 2 ⋅ 105 7 days 0 ≤ ℓ<4
Ice fraction OSI-409/401 10 km Seasonal 1 day 0 ≤ ℓ<7

2003 2005 2007 2009 2011 2013 2015

MODIS Terra (OBPG)

MODIS Aqua (OBPG)

MODIS Terra (JPL)

MODIS Aqua (JPL)

AVHRR Pathfinder Night

AVHRR Pathfinder Day

AVHRR GAC NOAA-18

AVHRR GAC NOAA-19

AVHRR GAC MetOp-A

microwave, AMSR-E

microwave, WindSat

microwave, AMSR2

in-situ, iQuam

ice fraction, OSI-409

ice fraction, OSI-401

Fig. 1. Input data sets used by Version 4.1 of the MUR SST analysis and the period of
usage for each data set (horizontal bars). The vertical lines denote the starts of the in-
dicated calendar years.
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geolocation, time, uncertainty estimates (bias and precision), and
quality flags, along with the SST value for each sample. All satellite SST
data used by MUR are GHRSST data, except for the early MODIS and
AVHRR data as detailed below.

2.1. High-resolution infra-red retrievals

The MODIS radiometers are on board the Terra and Aqua satellites
launched respectively in 1999 and 2002 by NASA to study global dy-
namics of the Earth's atmosphere, land, and oceans. For SST, the 4, 11,
and 12 μm infra-red bands are used with a multi-channel cloud detec-
tion scheme (Frey et al., 2008). The observation has a 2300 km-wide
swath which allows a nearly full global coverage in one day.

The MODIS SST samples are grouped into the “day time” and “night
time” data files depending on whether the measurements are made
along the ascending or descending satellite tracks, respectively. MUR
uses both types of data and makes its own classification of night-time
data based on the sample time and local sunrise/sunset times
(Section 2.6.2). Only such night-time samples are ingested by the cur-
rent version of MUR.

The production of the MODIS SST retrieval data is a collaboration
among University of Miami Rosenstiel School of Marine and
Atmospheric Science (RSMAS), NASA Ocean Biology Processing Group
(OBPG), and NASA Jet Propulsion Laboratory (JPL). At the time of
production, the MODIS data in the GHRSST format were available only
for the recent years. For the earlier dates going back to year 2002,
OBPG provided non-GHRSST data (in HDF format) which included
quality flags but not the uncertainty estimates (see Section 2.6.3). In the
current version of MUR, the MODIS data dated on and before 25 Oc-
tober 2008 are the non-GHRSST version from OBPG.

Pre-2008 MODIS data complete with GHRSST-standard uncertainty
estimates are now available from OBPG and are to be ingested by a
future version of MUR, which also plans to ingest VIIRS data (available
since 2013). The VIIRS retrievals could also provide high resolution SST
samples in a 3000 km-wide swath and at a sub-km resolution near nadir.
The MODIS and VIIRS sensors uniquely captures the 1 km-scale SST
features by their wide swaths and global coverages.

2.2. AVHRR GAC infra-red retrievals

2.2.1. AVHRR GAC sensor data sets
The AVHRR sensors are on the National Oceanic and Atmospheric

Administration (NOAA) Polar Orbiting Environmental Satellites (POES)
with an operational legacy that traces back to the Television Infrared
Observation Satellite-N (TIROS-N) launched in 1978. The MetOp-A/B
satellite launched by the European Space Agency (ESA) and the
European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) also carries an AVHRR sensor identical to those on
NOAA's POES. The SST values are typically derived using the 11 and
12 μm channels, sometimes in combination with the 3.7 μm channel
(e.g., Petrenko et al., 2014). The highest ground resolution that can be
obtained from the current AVHRR instruments is 1.1 km at nadir.

The AVHRR data are acquired in three formats: High Resolution
Picture Transmission (HRPT), Local Area Coverage (LAC), and Global
Area Coverage (GAC). The HRPT data are full resolution data trans-
mitted to a ground station as they are collected. The LAC data are also
full resolution data, but the acquisition is recorded with an on-board
tape recorder for subsequent transmission during a station overpass.
The GAC data are derived from an on-board sample averaging, where
four out of every five samples along the scan line are used to compute
an average value, and the data from only every third scan line are
processed, yielding an effective 4 km resolution at nadir. Further bin-
ning and averaging of these pixels result in the final GAC dataset re-
solution of 8.8 km.

The AVHRR retrievals used by MUR are all GAC data sets. They are
produced by the US Naval Oceanographic Office (NAVO) based on the

measurements from NOAA-18, NOAA-19, and MetOp-A satellites. The
NOAA-18 data used are dated from 25 January 2006 to 29 December
2014, while both the NOAA-19 and MetOp-A data used are dated from
15 September 2011 to the present (Fig. 1). The high-resolution AVHRR
data (LAC and HRPT) are not ingested by MUR at present because of
their sub-global (regional) scopes.

2.2.2. Pathfinder gridded multi-sensor data sets
At production time, no GHRSST-format AVHRR GAC data set was

available for the early dates of MUR. In place of the AVHRR GAC data
from individual sensors for these dates, MUR uses the Pathfinder data
set derived from multi-sensor AVHRR GAC retrievals. The Pathfinder
data set is used from 1 June 2002 to 9 February 2006. The Pathfinder
product ingested by MUR includes quality flags but not the two un-
certainty estimates (Section 2.6.3) required by the GHRSST format.
Thus a non-GHRSST version of the Pathfinder product was used by the
current version of MUR.

The AVHRR Pathfinder SST data set is a reanalysis of historical
AVHRR data aimed to improve long-term cross-platform consistency by
re-calibration of retrieval parameters and is developed jointly by NOAA
National Center for Environmental Information (NCEI) and RSMAS
(Kilpatrick et al., 2001; Casey et al., 2010). The Pathfinder SST product
uses the AVHRR GAC data derived from an on-board sample averaging,
yielding an effective 4 km resolution at nadir as described previously.
Instead of performing further binning and averaging, the SST data are
projected onto a 4-km (0.042°×0.042°) resolution grid. The GAC data
from the NOAA-7, -9, -11, -14, -16, -17, and -18 satellites are used to
produce the Pathfinder Version 5.2 data set used by MUR. Pathfinder
also provides separate daily gridding for the “daytime” (ascending
tracks) and “nighttime” (descending tracks) data, both of which are
used by MUR.

The version of Pathfinder data set has some known bias issues
(O’Carroll et al., 2012). Future versions of MUR will replace the Path-
finder data with single-sensor AVHRR GAC data as the latter become
available (Ignatov et al., 2016). Such single-sensor data sets potentially
contain more authentic geolocation information since they are not
gridded.

2.3. Microwave retrievals

The SST data from infra-red sensors including MODIS and AVHRR
have systematic data voids due to cloud contamination which can be
geographically and seasonally persistent. Microwave sensors are less
prone to such cloud interference and are hence able to provide more
stable spatio-temporal coverage. Despite near-shore voids due to land
interference (no useful SST sample within 100 km from the coast due to
side-lobe contamination) and relatively low 25-km resolution, micro-
wave-based SST data can thus make contributions complementary to
those of infra-red SST retrievals.

The microwave SST data sets used by MUR are retrieved from the
following three sensors: the Advanced Microwave Scanning Radiometer
(AMSR-E) developed by the National Space Development Agency of
Japan (NASDA, now JAXA) aboard NASA Aqua satellite launched in
May 2002, the WindSat Polarimetric Radiometer developed by the
Naval Research Laboratory (NRL) and launched on 6 January 2003
aboard the Department of Defense Coriolis satellite, and the Advanced
Microwave Scanning Radiometer 2 (AMSR2) launched on 18 May 2012
aboard the Global Change Observation Mission Water (GCOM-W) sa-
tellite developed by the Japan Aerospace Exploration Agency (JAXA).

MUR uses the AMSR-E SST data from the beginning of the analysis
to 4 October 2011 when the sensor is lost, the WindSat SST data from 1
October 2011 to 31 December 2015, and the AMSR2 SST data from 1
January 2016 to the present. The Remote Sensing Systems (REMSS)
produces these SST data for the GHRSST project. REMSS releases the
microwave SST data products in two stages: a “near-real-time” product
which is typically made available within 3 h of measurement reception
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and a “final” product typically released within 2 days and containing
more accurate retrievals based on atmospheric analysis data including
the wind direction from the National Center for Environmental
Prediction (NCEP) Final Operational Global Analysis. MUR ingests the
“final” version based on availability (see Section 3.5).

2.4. In situ SST data

The in-situ SST data provide direct measurements of the bulk SST
which approximates the foundation SST in current practice. All in-situ
SST data ingested by MUR are obtained from the iQuam data set (Xu
and Ignatov, 2010) produced at the Center for Satellite Applications
and Research (STAR) in National Environmental Satellite Data and In-
formation Service (NESDIS). The iQuam production system obtains the
in-situ SST data from the NCEP Global Telecommunications System
(GTS) every 12 h, to perform near-real-time quality-control of SST
measurements from ships, drifters, and moorings. The data set is con-
tinued to be updated within several days of the measurements. MUR
downloads the updated iQuam files daily for the two most recent days.
MUR ingests a 7-day composite of iQuam data.

The in-situ SST data originate collectively in highly heterogeneous
measurement and transmission conditions. The iQuam system performs
quality control based on the following five general procedures (Xu and
Ignatov, 2010): “prescreening” to remove duplicate samples and un-
recognizable records; “plausibility check” to see if the stated geoloca-
tions are consistent as continuous ship/drifter tracks, etc.; “internal
consistency check” to detect outliers in SST time series; “mutual con-
sistency check” to examine consistency among near-coincident SST
values from different platforms; “external consistency check” to ex-
amine consistency against an independent SST field. An additional
check on cross-platform consistency is also performed.

2.5. Ice concentration data

The ice concentration data from satellite microwave sensors are
used to locate icy sea surfaces and infer bulk temperature on such high-
latitude surfaces where SST retrievals are generally scarce or absent due
in part to persistent atmospheric conditions.

MUR uses a daily sea ice concentration data products provided by
the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI
SAF). Ice concentration products are derived from passive microwave
satellite measurements by regression of brightness temperature values
from multiple frequency and polarization channels (Andersen et al.,
2006). For the OSI SAF sea ice algorithms (Breivik et al., 2001), the
regression coefficients are obtained empirically from a defined set of
brightness temperature observations, referred to as algorithm tie points,
over areas of known sea ice conditions. A Bayesian approach is then
used to optimally combine sensor specific data products onto a 10 km
polar stereographic projection grid for each 24 h period. The resulting
sea ice fields are available daily by around 0600 UTC each day. The sea
ice products are delivered separately for the Northern and Southern
Hemispheres with confidence flags.

MUR uses two different ice concentration products, Operational
Global Sea Ice Concentration (OSI-401) and Global Sea Ice
Concentration Reprocessing Data (OSI-409), in order to cover the
duration from mid-2002 to the present. The OSI-401 product is op-
erational since March 2005. The OSI-409 product is available from
1987 through 2009 (recently extended to April 2015). MUR uses OSI-
401 from the present back to 1 October 2006 and uses OSI-409 prior to
that date. The OSI-401 and OSI-409 products differ in the way that the
open-water and closed-ice tie-points are determined. OSI-409 uses a
dynamical 30-day moving window tie-points, while OSI-401 has static
monthly tie-points. Also, different quality controls is applied in the two
products. As a result, OSI-409 could locate icy water surfaces where
OSI-401 shows no ice, especially in the Northern hemisphere in boreal
summers.

2.6. Screening and pre-processing of input data

The samples from the satellite, in-situ, and ice concentration data
sets are trimmed based on the following criteria before ingestion into
MUR. In addition, the ice concentration values are used to infer SST
values near ice edges.

2.6.1. Quality screening
For the satellite SST retrieval data sets adopting the GHRSST con-

vention, every SST sample is associated with a quality flag whose value
ranges from 0 to 5 in the order of ascending quality. The GHRSST
quality flag generally assesses the level of environmental conditions,
such as cloud coverage, known to interfere with satellite SST retrievals.
MUR uses only the samples flagged as the highest quality in each data
set. The quality flag contained in the non-GHRSST data sets of OBPG
MODIS and Pathfinder is essentially equivalent to the GHRSST quality
flag, and MUR uses the highest quality samples from these data sets
also. MUR performs quality screening for the iQuam in-situ data set
based on its 16-bit quality flags. MUR uses only the samples flagged to
be “high-accuracy”, indicated by the two lowest bits being set to zeros.

The SST samples are compared against a reference SST field, gen-
erated during the interpolation procedure (Section 3.3.3), and those
with differences larger than three times the stated or assumed error
standard deviation values (Section 2.6.3) are considered to be outliers
and removed from the input data set.

The OSI SAF sea ice concentration data set also contains a quality
index (“confidence level”) that ranges from 0 to 5 in ascending order of
quality. Again, MUR uses only the samples flagged as the highest
quality. In addition, the precision of passive microwave sea ice con-
centration data has been determined to be on the order of 0.1 in
comparison to weekly ice charts, with higher uncertainty for lower
concentration values and general difficulty estimating values below 0.1
(Andersen et al., 2006). MUR thus discards the ice concentration sam-
ples valued below 0.1, effectively regarding the locations with ice
concentration values below 0.1 to be “ice free”.

2.6.2. Night time samples
Satellite SST retrieval data sets report the skin or sub-skin tem-

peratures (Donlon et al., 2007) that can vary more than 5°C due to
diurnal solar heating. MUR seeks to estimate SST free of such diurnal
variation. To reduce the effects of the solar heating, MUR ingests only
the SST samples measured between sunset and sunrise in local time.
The night-time filter is applied only to the satellite retrieval data sets
and not to the in-situ or ice concentration data sets. The combined ef-
fect of using only the highest quality samples measured only at night is
that roughly 80% of samples in each retrieval data set is discarded
before ingestion by MUR on average.

Since moderate to high wind could cause turbulent mixing that di-
minishes the solar warming at the water surface, future versions of
MUR may make use of day-time samples coincident with large enough
wind speed (e.g., Donlon et al., 2012). Since the bulk temperature (at
depth) can also display diurnal variation of 0.2 to 0.5°C due to solar
heating (Kawai and Wada, 2007), ingestion of day time samples could
still introduce small level of warm bias in a daily SST analysis. The in-
situ data can reflect such diurnal variations (up to 0.2°C in drifting buoy
data; Morak-Bozzo et al., 2016). The current version of MUR defers
such day-time warming issues by using only the night-time satellite
data.

2.6.3. Sensor bias and uncertainty estimates
The GHRSST convention for SST retrieval data requires each SST

sample to be accompanied by single sensor error statistics (SSES) con-
sisting of the SSES bias and SSES standard deviation. The SSES bias is a
statistically inferred difference between the retrieved and in-situ SST
values. In principle, since the SST retrieval reports a temperature value
at or near the air-sea interface (“skin”), subtraction of the SSES bias
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value from the retrieved SST value should yield, on average, a better
estimate of the bulk temperature targeted by MUR. For the GHRSST
input data sets, MUR subtracts the SSES bias from each SST sample
value before ingestion.

In the non-GHRSST data sets of OBPG MODIS and Pathfinder,
equivalents of SSES bias and SSES standard deviation are absent. The
bias for each of these data sets (night-time samples) is assumed to be a
constant: −0.17°C for OBPG MODIS to represent the global average
difference between skin and bulk temperature (Donlon et al., 2002),
and 0°C for Pathfinder whose SST values are more closely tuned to bulk
temperature (Kilpatrick et al., 2001, see also Table 3). In addition, MUR
performs inter-sensor bias correction for every data set (Section 3.3.2)
to address large-scale bias potentially remaining in the satellite re-
trievals (Merchant et al., 2009).

The SSES standard deviation σ yields a formal measure of un-
certainty in each SST retrieval value in the GHRSST data sets. For the
OBPG MODIS data sets which lack such uncertainty estimates, a con-
stant value of σ= 0.35K is assumed for all samples, noting that only the
samples flagged as “highest quality” are used by MUR. Similarly, a
value of σ = 0.50K is assumed for all samples in the Pathfinder data
sets. For the iQuam in-situ data set which also lacks uncertainty esti-
mates, a constant value of σ = 0.20K is assumed.

2.6.4. SST near ice edges
In SST analysis products, the SST values near sea ice are commonly

estimated using empirical relationships between SST and ice con-
centration. Various regression formulas have been used to relate SST
with ice concentration, including a constant (Reynolds and Smith,
1994), linear regression (Reynolds et al., 2007; Donlon et al., 2012),
and fits to quadratic (Reynolds et al., 2002; Rayner et al., 2003) and
cubic (Hurrell et al., 2008) polynomials. Typically, the SST value is set
to a minimum constant temperature (−1.8°C for the sea, 0.0°C for large
lakes) when the ice concentration is above a certain threshold value.
When the ice concentration is less than the threshold value, the re-
gression formula is then used to estimate a higher SST value since
summer-time SST near sea ice can be several degrees higher than
freezing when there is high insolation and light winds. The regression
formulas, however, tend to be dependent on the season and region as
well as the geographical location within an ocean basin (Rayner et al.,
2003).

MUR uses a constant minimum temperature to estimate the ice-edge
SST value Tice when the ice concentration F is above 0.3 in area fraction.
In addition, MUR assumes Tice = −1.8°C for |ϕ|> 88° where ϕ is the
latitude, regardless of ice concentration observations. Such a fixed “ice
cap” is intended to compensate for relative lack of data near the North
Pole.

The uncertainty standard deviation σice associated with each Tice is
determined from a scaled version of the cubic polynomial by Hurrell
et al. (2008) that approximates the spread of measured SST values as a
function of F. Specifically, Hurrell's polynomial is translated and scaled
as σice = 0.5 + 2.057 × (0.729 − F3) in Celsius for F ≤ 0.9 and
σice = 0.5°C for F>0.9. By design, this formula tends to a relatively
large uncertainty σice = 2.0°C as the ice disappears F = 0. The aim is to
reduce the importance of the assumed ice-edge SST value where actual
measurements of SST do exist.

2.7. Use of background SST field

A “background” or “first-guess” field is commonly used in data
analysis for a couple of purposes: It could be an integral part of the
interpolation procedure, especially as the prior estimate in a Bayesian
scheme like the objective interpolation (OI). It could also serve as the
reference field with which the outliers in the measurement data sets are
determined. Typical sources of the background fields are the most re-
cent analysis (e.g., previous day's analysis in a daily SST analysis pro-
duct) and a climatological data set. If the background field is a part of

the interpolation procedure, it could be the primary determinant of the
analyzed SST values in regions such as polar or cloudy coastal areas
where other data are systematically absent for extended periods, and it
should hence be considered as an input data set.

The MUR SST analysis uses no background field. The satellite and
in-situ SST measurement samples, along with the GHRSST SST bias
estimates (Section 2.6.3) and high-latitude SST values inferred from ice
concentration (Section 2.6.4), are the only sources of SST values in-
gested by MUR.

The MRVA interpolation method used by MUR does not require a
prior estimate. For outlier detection, a low-resolution preliminary
analysis is created from the same collection of data sets to form a re-
ference SST field (Section 3.3.3). Having such a self-reliant field as the
reference is a potential source of bias in the outlier detection procedure.
A use of external data such as a climatological data set for the outlier
detection procedure is thus under consideration for future versions of
MUR. Use of a climatological reference could introduce some risk of
rejecting a real, large-magnitude anomalous event (e.g., the Arctic
warming of 2007 summer; Steele et al., 2010). Still, an objective ap-
proach independent from any external data set, such as a bootstrapping
or cross-validation method, would be computationally impractical due
to sheer volume of the input.

3. Data fusion and interpolation method

Measurement samples are collected over an analysis window of
5 days for each satellite SST data set, while 7-day and 1-day analysis
windows are used respectively for the in-situ and ice concentration data
sets (Table 1). These windows are centered about the analysis date.
Each input data set is expected to supply the temperature T, the mea-
surement uncertainty standard deviation σ, the geolocation coordinates
(x,y), and the sampling time Δt relative to the analysis time which is
09:00 UTC of the analysis date. An input data set is denoted as

= …T σ x y t n N( , , , , Δ ), 1, ,n n n n n (1)

where N is the number of samples from a particular sensor and n is the
sample index. Several such data sets (Fig. 1 and Table 1) are combined
using MRVA, a meshless multi-scale interpolation method, to form the
daily MUR SST analysis.

The interpolation method needs to be adaptable to the highly
variable size of data voids, due to irregular spatial coverages by the
satellite orbits and drifter tracks, land interference affecting microwave
retrievals near shores, and cloud covers from various weather systems
that block infra-red retrievals. The interpolation method must also be
able to distinguish the inherent resolution in each data set, from the 1-
km scale features resolvable in MODIS retrievals to in-situ SST samples
that could be several 100-km apart from each other.

The MRVA method performs a weighted least-squares optimization
similar to the objective interpolation (OI) used commonly in SST ana-
lysis products, except that MRVA first transforms the input data into
additive components based on the spatial scale before data-fusion is
performed independently for each of these scale components. Multiple
characteristic length scales can be specified in MRVA for interpolation.
The longest of these can be selected arbitrarily to smoothly interpolate
over the largest of the data voids. The MUR SST analysis uses a scale of
approximately 1250 km for the lowest-resolution baseline analysis
(Table 2). To address the diversity in the inherent sensor resolution,
MRVA controls the highest resolution that each input data set can
participate into the scale-dependent component analysis. For example,
while the 1-km resolution MODIS data sets are ingested by every ana-
lysis component, the 25-km resolution microwave data sets are ex-
cluded from analysis components with length-scales finer than ap-
proximately 30 km (Tables 1 and 2).

Furthermore, the analysis window for each scale component is
varied so that the time window becomes shorter with the resolution of
the analysis. This is intended to address the faster evolution speeds
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often displayed by smaller SST features and is achieved by introducing
time-dependence to the weight assigned to each data sample. The data
weight is typically proportional to the inverse of the uncertainty var-
iance σn

2. In MRVA, the weight is further discounted by a decaying
function of the sample latency time |Δtn|. The function decays faster for
the smaller analysis scales to achieve the desired effects on the synoptic
time scale. For example, the highest-resolution analysis-component
uses a rapidly decaying weight resulting in a tight data window of
several hours, while the lowest-resolution analysis-component uses a
much longer 5-day synoptic window.

Finally, being a “meshless” interpolation technique, MRVA can in-
gest the geolocation data (xn,yn) directly without approximating them
to the locations of the nearest grid points, reducing distortion of the
observed features (Chin et al., 2014). A nearest-neighbor approxima-
tion is commonly practiced to translate the samples onto the target grid
but would truncate the sub-grid coordinates of the geolocation data.
MRVA avoids such truncation of geolocation coordinates.

3.1. The MRVA interpolation method

The theoretical foundation of MRVA is the multiresolution analysis
(MRA) which is a signal transformation procedure based on the “scale”
(Mallat, 1989; Daubechies, 1992), analogous to the Fourier transform
which expands a signal based on the frequency. The notion of “scale” in
MRA is similar to the wavelength in Fourier transform; however, the
wavelet scales have local extents, which allow the wavelet coefficients
to be specific to both the scale and location of signal features, while the
Fourier coefficients cannot specify a location unambiguously. Because
the scale and location can be adapted separately to the spatial feature,
the MRA-based algorithms are intrinsically insensitive to spectral dis-
tortion (Alparone et al., 2015). While the sinusoidal functions are the

basis for the Fourier transform, MRA uses orthonormal wavelet func-
tions as the basis for its transform. As in the discrete Fourier transform,
the MRA transform is energy conserving and is reversible; the original
signal can be reconstructed exactly from the wavelet coefficients.

Standard Fourier transform procedures such as the Fast Fourier
Transform algorithm assume that the signal is sampled regularly. For
irregularly sampled data, Fourier coefficients can be computed by fit-
ting the sinusoidal functions (Press and Rybicki, 1989). Likewise, the
standard MRA algorithm is built on a regularly sampled signal. In order
to apply MRA to the irregularly sampled data sets, a variational for-
mulation is used to compute the wavelet coefficients by fitting the
wavelet basis to the data. The resulting algorithm is the MRVA method.

Mathematical background and computational details of the MRVA
method have been presented by Chin et al. (1998). A review of the
MRVA method is presented here, followed by description of additional
developments (Section 3.2) introduced for the MUR SST analysis.

3.1.1. Multi-resolution analysis
The resolving power of the wavelet basis is determined by the

length scale. The length scale in MRA is normally defined as

= −Δ 2 Δℓ
ℓ

0 (2)

for a given scale index ℓ and baseline scale length Δ0. In the MUR SST
analysis, we set the baseline length Δ0 = 360°/25 = 11.25° in order to:
divide the globe evenly along the longitude, facilitate interpolation of
the coarsest data set, and set the scale for inter-sensor bias correction.

Consider a two-dimensional function T(x,y) representing the SST
and approximating it using a smooth function T x y( , )ℓ , where the su-
perscript ℓ is the scale index indicating the characteristic length scale Δℓ

that controls the smoothness. As ℓ increases, the resolution of the
analysis T x y( , )ℓ increases. The MRA transformation expands the signal
into a single low-resolution baseline mean field T x y( , )0 plus a hier-
archy of variability fields T ̇ ℓ, each defined by the one-step finer length
scale Δℓ+1, that capture increasingly high-resolution details. We use

̂T x y( , )L
0 to denote the expansion as

̂ ∑= +
=

−

T x y T x y T x y( , ) ( , ) ̇ ( , )L
L

0
0

ℓ 0

1
ℓ

(3)

where the subscript 0 indicates the resolution of the baseline analysis
and the superscript L indicates the number of the variability fields as
well as the scale ΔL of the highest resolvable features in the analysis

̂T x y( , )L
0 . In principle, the number L of the variability fields needs to be

infinite to represent a continuous signal exactly or ̂= ∞T x y T x y( , ) ( , )0 ;
however, in practice the signal will be bandlimited by the numerical
grid that represents it, and hence L is a finite number. In particular, a
value of L = 10 would be sufficient for a 0.01°×0.01° grid (Table 2).

When applied to an interpolation problem, the approximation
function T ℓ would not be well defined over a data void several times
larger than the characteristic length scale Δℓ. On the other hand, the
variability function T ̇ ℓ could reasonably be assumed to be zero (or to
have zero mean, Chin et al., 1998) in the middle of the same data void.
It is thus possible to have ≠ −+T T Ṫ ,ℓ ℓ 1 ℓ and hence ̂ ≠T TL L

0 , when
the multi-scale decomposition (3) is applied to interpolation. A key
advantage of the multi-scale analysis ̂T L

0 is that the scale of the baseline
analysis can be chosen arbitrarily long to interpolate over the largest
data voids without compromising the highest resolvable features and
without introducing large spurious features over the data voids. Either
of these can be achieved using a single-scale analysis T ℓ, but not both.
Fig. 2 demonstrates such distinctions. In particular, when a large en-
ough data void is present (center rectangle, top-left panel, Fig. 2), a
single-scale high-resolution interpolation could introduce significant
artifacts in the area of the void (bottom-left panel), while a multi-scale
interpolation can suppress such artifacts by design (top-right panel)
which fills the void with a low-resolution version (bottom-right panel).

Table 2
Scale length and grid dimensions for each scale ℓ used in the MRVA method for the MUR
SST analysis. The scale length in km denotes an approximate equatorial distance.

Scale index
(ℓ)

Scale length (Δℓ) Wavelet grid
dimensions

Synoptic window
(τℓ)

Degrees km
0 11.25 1250 32 × 16 48 h
1 5.625 625 64 × 32 48 h
2 2.812 312 128 × 64 48 h
3 1.406 156 256 × 128 48 h
4 0.703 78.2 512 × 256 48 h
5 0.352 39.1 1024 × 512 42 h
6 0.176 19.5 2048 × 1024 36 h
7 0.088 9.77 4096 × 2048 30 h
8 0.044 4.89 8192 × 4096 24 h
9 0.022 2.44 16384 × 8192 18 h
10 0.011 1.22 32768 × 16384 12 h

Table 3
Residual statistics for the input data sets of MUR SST analysis: the mean (“bias”), standard
deviation (“scatter”), and root-mean-squares (“RMS”) over the global surface. The unit is
Celsius. Time-average from years 2002 through 2013 are shown, with the standard de-
viations (the values after “± ”) representing variability over time.

Data set Bias Scatter RMS

MODIS Terra (OBPG) −0.027± 0.070 0.474± 0.082 0.519± 0.075
MODIS Aqua (OBPG) −0.011± 0.059 0.477± 0.089 0.515± 0.084
MODIS Terra (JPL) −0.037± 0.051 0.398± 0.032 0.403± 0.035
MODIS Aqua (JPL) 0.029± 0.051 0.404± 0.034 0.408± 0.034
Pathfinder Night −0.030± 0.104 0.607± 0.097 0.648± 0.090
Pathfinder Day −0.109± 0.076 0.562± 0.120 0.634± 0.108
AVHRR NOAA-18 GAC 0.035± 0.042 0.318± 0.029 0.322± 0.034
AVHRR NOAA-19 GAC 0.021± 0.037 0.310± 0.022 0.313± 0.025
AVHRR MetOp-A GAC 0.056± 0.040 0.261± 0.012 0.269± 0.018
Microwave AMSR-E 0.019± 0.043 0.452± 0.025 0.455± 0.026
Microwave WindSat −0.065± 0.093 0.568± 0.031 0.579± 0.034
In-situ iQuam −0.003± 0.020 0.489± 0.046 0.489± 0.047
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3.1.2. Wavelet basis functions
Each of the additive components in the expansion (3) is itself an

expansion with the wavelet basis functions. In MRA, the basis ϕ for the
mean fields T ℓ is called the scaling function (or father wavelet), and the
basis ψ for the variability fields T ̇ ℓ is called the wavelet function (or
mother wavelet). MRA is a loss-less and reversible transform since the
wavelet functions (ϕ,ψ) form a mutually orthonormal basis over the
space (x,y) and across the scale ℓ (Daubechies, 1992).

Unlike the Fourier transform, MRA has more than a single choice for
its basis function. Fig. 3a shows the third-order (cubic) Battle-Lemarié
wavelet basis (Battle, 1987; Lemarié, 1988) used in the MRVA method
and MUR analysis. Both basis functions effectively have local extents, in

contrast to the global extent of the sine and cosine functions that form
the basis for the Fourier transform. The Battle-Lemarié wavelet basis is
a “spline wavelet” (Chui and Wang, 1991; Unser, 1997) which possesses
desirable properties including differentiability, symmetry, optimal
space-wavenumber localization, and fastest rates of decay in approx-
imation error among the known wavelet transforms (Unser, 1997).

The frequency-response of the cubic Battle-Lemarié wavelet trans-
form, shown in Fig. 3b, implies that the scale length Δℓ is roughly equal
to the Nyquist sampling interval. The length scale of an analysis can
thus approximate the smallest wavelength featured in the analysis. In
general, the variability fields are effectively bandpass filtered versions
of the signal, while the baseline mean field is a low-pass filtered
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Fig. 2. A demonstration of multi-scale analysis using the MRVA method. Top-left: an SST field from which data are sampled every 0.2° in longitude and latitude except inside the
rectangular box (dashed line) representing a large data void. Top-right: mutli-scale interpolation ̂T0

6
of the sampled data. Bottom-left: a single-scale high-resolution interpolation T 6,

which produces spurious features in the area of the data void. Bottom-right: a single-scale low-resolution interpolation T 0, which is also identical to the baseline analysis contained in the
multi-scale ̂T0
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Fig. 3. Cubic Battle-Lemarié wavelet analysis. [a] The basis
generating functions ϕ (dashed line) and ψ (solid line): Note
that the scaling function ϕ is shaped to determine a local
average when convolved, while the wavelet function ψ is
shaped to sample a local difference. [b] Transfer function of a
stage of MRVA interpolation when the scale parameter is a
unit distance (Δℓ = 1), corresponding to a sampling rate of 1
per unit distance: The vertical line indicates the Nyquist
maximum wavenumber (signal bandwidth) of 1/2 for this
sampling rate. While MRVA is not a perfect low-pass filter, the
cut-off wavenumber approximates the Nyquist bandwidth
well, implying that the wavelet scale (Δℓ) approximates the
Fourier wavelength at the Nyquist limit.
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version. These variability bands cover the wavenumber spectrum
without overlapping with each other because the set of scale lengths is
specified exactly (Wornell, 1993), as in Eq. (2).

3.1.3. Wavelet coefficients
Two-dimensional wavelet basis functions are obtained by a tensor

product of the one-dimensional versions, analogous to the way two-
dimensional Fourier basis is constructed. Using the two-dimensional
basis, the “mean” and “variability” components of the signal are each
expanded in terms of the wavelet coefficients Cij

ℓ, Dij
ℓ, Eij

ℓ, and Fij
ℓ as

∑= ⋅ − ⋅ − ⋅T x y C ϕ x i ϕ y j( , ) ( /Δ ) ( /Δ ) 2
i j

ij
ℓ

( , )

ℓ
ℓ ℓ

ℓ

(4)

∑= ⋅ − ⋅ − ⋅

+ ⋅ − ⋅ − ⋅

+ ⋅ − ⋅ − ⋅

T x y D ψ x i ψ y j

E ψ x i ϕ y j

F ϕ x i ψ y j

̇ ( , ) ( /Δ ) ( /Δ ) 2

( /Δ ) ( /Δ ) 2

( /Δ ) ( /Δ ) 2

i j
ij

ij

ij

ℓ

( , )

ℓ
ℓ ℓ

ℓ

ℓ
ℓ ℓ

ℓ

ℓ
ℓ ℓ

ℓ
(5)

where i and j are location coordinate indices (Chin et al., 1998). The
wavelet basis controls its scale by modulating its spatial extent by the
given characteristic length Δℓ and its location by translating its center
by the location indices (i,j). With the normalization constant 2ℓ all basis
functions are dimensionless, so that the coefficients have the physical
unit of the signal (e.g. temperature).

The dimension of the coefficient grid (i,j) for the global surface
coverage is (360°/Δℓ) × (180°/Δℓ) and is tabulated for each ℓ in Table 2.
By design, the number of grid points increases by fourfold with each
increment in the scale ℓ. Since each grid point is associated with a
wavelet coefficient, the total number of all four types of coefficients
(Cij

ℓ, Dij
ℓ, Eij

ℓ, and Fij
ℓ) in ̂ −Tℓ 1

ℓ
is the same as the number of coefficients in

T ℓ. By induction, therefore, the total number coefficients in the multi-
scale representation ̂T L

0 is identical to the number of coefficients in the
single-scale analysis T L. This efficiency in the multi-scale representa-
tion is a benefit of using the MRA transformation.

3.1.4. Variational formulation
Since the MRA basis functions are mutually orthonormal, the wa-

velet coefficients can be computed using a straightforward inner pro-
duct between the signal and the basis function (e.g., Chin et al., 1998),

∬= ⋅ − −C T x y ϕ x i ϕ y j dx dy1
Δ

( , ) ( /Δ ) ( /Δ ) 2 ,ij
ℓ

0
2 ℓ ℓ

ℓ
G (6)

and an analogous formula for each of Dij
ℓ, Eij

ℓ, and Fij
ℓ, where G is the

spatial domain (global ocean surface). Numerical computation of the
integrals, however, usually requires a fully and uniformly gridded
signal T(x,y) to be practical. The satellite and in-situ SST data at hand
are rarely sampled densely and uniformly enough to approximate the
integrals accurately.

Alternatively, an optimization formula is used to fit the basis
functions to the given data to compute the coefficients. A least-squares
formula has been used to perform Fourier transform for irregularly
sampled signals (Press and Rybicki, 1989), and a similar approach is
taken in MRVA. To fit a two-dimensional function T(x,y) to a given data
set (1), the analysis residual function

∑≡ −
=

T w T x y T( ) [ ( , ) ]
n

N

n n n n
1

2S
(7)

is minimized with respect to the wavelet coefficients. The data weight
wn is usually specified by the measurement uncertainty as −σn

2 but is
further modified according to the analysis scale ℓ and data density as
described in Section 3.2. Because of the highly irregular distribution of
the data over the space G , the minimization problem is regularized
using the standard thin-plate model (Inoue, 1986; Bookstein, 1989)
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The regularization weights ∼w can be specified to represent flow-de-
pendent correlation patterns (Fig. 3 in Chin et al., 2014). For the MUR
SST analysis, however, isotropic correlation structure is used due to the
generally high data density (Section 3.3.3). MRVA minimizes the reg-
ularized data-residual function

̂ ̂∬ +T T dx dymin ( ) ( )L L
0 0R S

G (9)

with respect to the coefficients Cij
0, Dij

ℓ, Eij
ℓ, and Fij

ℓ for ℓ = 0,…,L − 1.
Solution for these coefficients involves inversion of a linear system of
normal equations as detailed by Chin et al. (1998).

3.2. Data weight

The weight wn in the data residual function (7) controls the im-
portance of each data sample Tn to the analysis. The inverse variance

−σn
2 is used commonly as the data weight; however, such a practice

ignores the cross-correlation among the nearby samples with undesir-
able consequences including unrealistically small error estimates
(Kaplan et al., 2003). Additionally, in multi-scale analysis, the im-
portance of samples with large latency time |Δtn| decreases as the
analysis scale ℓ becomes finer. To address these issues, the data weight
in MUR is given as

= ⋅ ⋅ −w γ δ σn n n n
ℓ 2 (10)

where γn and δn
ℓ are dimensionless discount factors that represent the

effects of cross-correlation and data-latency, respectively, as detailed in
this section.

3.2.1. Intra-bin correlation
Uneven spatial distribution of highly concentrated samples, such as

those exhibited by the MODIS data sets, can lead to spurious analysis
features due to unfavorable numerical condition in the inversion pro-
cedure if the data are assumed to be mutually independent, as de-
monstrated by Chin et al. (2014) who also suggest a simple solution
using a “fictitious correlation coefficient” ρ. MUR adopts such a solution
and defines the correlation discount factor as

=
+ −

γ
ρ

1
1 (Λ 1)n

n (11)

where Λn is the number of samples in the wavelet grid-box that contains
(xn,yn). The given correlation coefficient ρ is assumed to be constant
between any two samples from the same data set in the same grid-box.
The formulation (11) has plausible asymptotic properties that γn tends
to −Λn

1 (simple average of the weights) as ρ approaches one, γn tends to
one (no discount) as ρ approaches zero, and γn tends to − −ρΛn

1 1 (an in-
flated average of the weights) as the data density Λn increases (see Chin
et al., 2014).

In multi-scale interpolation of the SST data sets, the spatial dis-
tribution of the samples nominally becomes more uniform as the grid-
box enlarges. MUR thus uses an assumed correlation ρ that decreases
with the length scale Δℓ of the analysis component as ρ = 0.8 ⋅ exp
(−Δℓ/4°) which specifies a negligible correlation (ρ= 0.0) for the
baseline component (ℓ = 0) but increases quickly and saturates to a
value between 0.7 and 0.8 for the higher-resolution analysis compo-
nents (ℓ ≥ 5).

3.2.2. Time-windowing
In the MUR SST analysis, the length of “synoptic” window varies

with the resolution of the multi-scale analysis-component. The MRVA
interpolation method achieves this through the discount factor
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= −δ t τexp [ (Δ / ) ]n n
ℓ

ℓ
2 (12)

where τℓ is the scale-dependent window duration, which ranges from 12
to 48 h in the current version of MUR as given in Table 2. The corre-
sponding discount factors δn

ℓ, shown in Fig. 4 over a 5-day window for
different resolutions ℓ, indicate narrower windows for finer resolutions.

The scale-varying window duration is critical to fidelity of high-
resolution analysis. Fig. 5 demonstrates that, if a constant window
(τℓ = 960 hours for all resolutions ℓ) is used, inclusion of higher-re-
solution components could actually increase the analysis error (dashed
line for 6 ≤ L ≤ 9) because the small scale features evolve significantly
during the window period. The period is too long for a synoptic per-
spective at such small scales, and the higher resolution components are
effectively adding noise (increasing error on average) to the final ana-
lysis. Such an undesirable effect can be mitigated by use of the window
duration τℓ that decreases with the resolution ℓ (Table 2, Fig. 4), in

which case the inclusion of the high resolution components does de-
crease the overall error (solid line, Fig. 5) as desired.

3.3. Data fusion

Because the data weight wn is dependent on the analysis scale ℓ as
well as the individual data set, MRVA needs to accommodate these
dependencies for MUR. MRVA is also used to estimate the inter-sensor
bias fields which are removed while combining samples from all data
sets. Formulations of these procedures are developed based on the ex-
isting MRVA realization.

3.3.1. Scale-dependent analysis residuals
To accommodate the scale-dependent data weight wn, the wavelet

coefficients are evaluated separately for each ℓ, instead of jointly in a
single matrix inversion as implied by Eq. (9). The data weight is also
dependent on the data density and hence is distinct for each data set.
Moreover, all but the MODIS data sets are excluded from the analysis
components for the resolution ℓ higher than the maximum specified for
each data set (Table 2), and such exclusion is realized by setting wn = 0
for the particular data set and ℓ.

To denote dependence on the data set, we will add the data set
index m to the analysis residual function as T( )mS for m= 1,…,M
where M is the number of data sets ingested. The baseline analysis
coefficients Cij

0 can then be determined by minimizing

∬ ∑+
=

T T dx dymin ( ) ( ) .
m

M

m
0

1

0R S
G (13)

The variability coefficients Dij
ℓ, Eij

ℓ, and Fij
ℓ can be determined by sub-

sequent minimizations

∬ ∑+
=
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m
ℓ

1
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(14)

based on the scale-dependent analysis residual function

∑≡ −
=

T w T x y T( ) [ ( , ) Δ ]m
n

N

n n n n
ℓ

1

ℓ ℓ 2S
(15)

where the residual data samples are defined as

̂≡ −T T T x yΔ ( , )n n n n
ℓ

0
ℓ

(16)

iteratively for ℓ = 0,1,…,L − 1. Note that by definition
= −T T T x yΔ ( , )n n n n

0 0 .

3.3.2. Inter-sensor bias estimation
MUR must estimate SSES biases for the non-GHRSST satellite data

sets that do not provide their own (Section 2.6.3). The SSES bias esti-
mation procedure can also vary among the GHRSST data sets, and
analysis artifacts along the edges of satellite swaths can appear due to
systematic biases in the data sets relative to each other. MUR thus es-
timates an additional bias field for every satellite data set.

Inter-sensor bias is assumed to be a smooth field (containing only
low-resolution features) since it is mostly indicative of systematic ten-
dencies of sensor retrieval that vary relatively slowly over time. Also,
the in-situ data set (iQuam) is assumed to have null bias. Inter-sensor
bias correction takes place while simultaneously estimating the baseline
analysis T x y( , )0 . Specifically, the bias bm(x,y) for the data set m is re-
presented by the “mean field”

∑= ⋅ − ⋅ − ⋅b x y B ϕ x i ϕ y j( , ) ( ) ( /Δ ) ( /Δ ) 2m
i j

ij m
ℓ

( , )

ℓ
ℓ ℓ

ℓ

(17)

with the associated wavelet coefficients B( )ij m
ℓ . The length scale of the

bias field is set to be ℓ = 0, and the baseline analysis coefficients Cij
0 and

bias field coefficients B( )ij m
0 are simultaneously determined from the

minimization
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Fig. 4. The synoptic discount factor δn
ℓ as a function of the analysis resolution ℓ. The

width of the synoptic window narrows as the analysis resolution ℓ increases.
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Fig. 5. Analysis error of MRVA as a function of the analysis resolution L, using the sy-
noptic window δn

ℓ, with (solid line) and without (dashed line) a scale-dependent duration
(see text). In both cases, simulated SST from a 1/48°-resolution ECCO2 ocean circulation
model (Menemenlis et al., 2008) is used, where an hourly sequence during December
2011 is sampled at the coincident MODIS Terra, MODIS Aqua, and WindSat sampling
locations to form the input data sets. The analyzed SST fields are compared to the co-
incident ECCO2 SST fields to determine the analysis error as a root-mean-squares global
average.
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where =b 0m
0 if m is the index for the iQuam data set.

3.3.3. The SST analysis
Data fusion in MUR is accomplished by the bias-corrected baseline

field estimation from Eq. (18), followed by the variability field esti-
mations from Eq. (14) iteratively for ℓ = 0,1,…,L − 1 where the ana-
lysis scale L for the current version of MUR is set to be L = 9. An
analysis scale less than the maximum possible scale (L = 10) has been
chosen through post-analysis evaluation of the high-resolution com-
ponents (Sections 4.3 and 4.4). The smoothness of the analysis com-
ponents has also been determined to be = =∼ ∼w w 1.010 01 ,

= =∼ ∼w w 0.220 02 , =∼w 0.411 (Section 3.1.4).
The set of estimated wavelet coefficients determines the final MRVA

estimate ̂T x y( , )L
0 through Eq. (3), which can be sampled anywhere on a

continuous global surface. Sampling of ̂T x y( , )L
0 over a 0.01°×0.01°

grid yields the MUR SST analysis data product.
During each production session for MUR, a separate MRVA estimate

̂T x y( , )0
4

at a lower-resolution is created first for detection of outliers in
the input data sets (Section 2.7). The resolution of L = 4 is the highest
resolution that includes all input data sets (Table 1). After the outliers
are removed from the inputs, the final MRVA field ̂T x y( , )0

9
is then

determined.

3.4. Auxiliary gridded fields

Each MUR product file contains four auxiliary fields besides the
main analysis ̂T x y( , )L

0 , all on the identical 0.01°×0.01° grid. Three of
the auxiliary fields are common in all GHRSST “level 4” gridded pro-
ducts and are the analysis error, land mask, and ice fraction fields. The
fourth auxiliary field, unique to the MUR product, indicates the latency
time to the most recent “1 km data” (MODIS) sample. The latter field,
called high-resolution data latency field, is intended as a quality indicator
for the analyzed high-resolution SST features.

3.4.1. Analysis error field
The standard deviation of the formal estimation error is provided at

each grid point as an estimate of analysis uncertainty. The wavelet
coefficients are determined from a set of least-squares minimizations,
and solution of a least-squares problem involves inversion of a normal
equation. In the standard estimation theories, the inverse of the normal
equation matrix is the formal estimation-error covariance matrix,
whose diagonal elements yield the error variance estimates. Because
the wavelet coefficients under the MRVA method have the unit of the
physical field (i.e., temperature), the posterior error covariances asso-
ciated with the estimated coefficients also have a consistent physical
unit. MUR thus uses the square-root variances directly as the coeffi-
cients for the uncertainty analysis

∑= ⋅ − ⋅ − ⋅σ x y P ϕ x i ϕ y j( , ) ( /Δ ) ( /Δ ) 2
i j

ij
ℓ

( , )

ℓ
ℓ ℓ

ℓ

(19)

analogous to the expansion (4) of the physical field where Pij
ℓ is the

formal posterior error variance associated with the wavelet coefficient
Cij

ℓ.

3.4.2. Land mask and ice fraction fields
The sea ice fraction field indicates the areal fraction of surface ice

coverage in the vicinity of each grid point. MUR simply projects the
input ice concentration data set (Section 2.5) onto the grid to form the
ice fraction field. The quality control procedure described previously
(Section 2.6.1) is applied to the ice data samples before projection onto
the grid.

The land mask field contains flags to indicate whether the grid point

is a part of land, sea, or lake. The Generic Mapping Tools (GMT) soft-
ware (http://gmt.soest.hawaii.edu/projects/gmt) is used to generate
such a field. Lakes and islands with areas less than 10,000 km2 are
flaged as “land” and “sea” respectively to reduce clutter. In addition,
the sea and lake grid-points that coincide with non-zero ice fraction
values are marked as “icy sea” and “icy lake”.

3.4.3. Latency of the most recent MODIS samples
The high-resolution data latency field, labeled as “dt-1km-data” in

the MUR product files since year 2016, simply reports the Δtn values
with the smallest magnitude from either of the MODIS data sets. The
latency field can determine quality of small-scale SST features found
near a particular grid point. The Δtn values, the sample times minus the
analysis time (09:00 UTC each day), from the MODIS data sets are
grouped into 0.01°×0.01° bins around each grid point, and the value
with the smallest magnitude in each bin is reported in the dt-1km-data
field in the unit of hours. If 1-km resolution SST data sets other than the
MODIS data (such as the VIIRS data) are to be ingested by MUR in the
future, the Δtn values from such data sets will be included in the dt-
1km-data field.

3.5. Near real time analysis fields

Since MUR specifies up to seven days of analysis window centered
about the analysis date, a complete set of input data would become
available only after four days of latency relative to the present time. For
the dates less than four days into the past, MUR performs preliminary
analysis using an incomplete input data set. The preliminary analysis
fields are updated every day using additional retrieval and in-situ data
that become available, until the fourth update which would become the
final analysis with the complete input data set.

4. Evaluation of the SST analysis

The MUR SST analysis (http://dx.doi.org/10.5067/GHGMR-4FJ04)
is available as a GHRSST data product from the Long Term Stewardship
and Reanalysis Facility (LTSRF) at NOAA NCEI and the Physical
Oceanography Distributed Active Archive Center (PO.DAAC) at NASA
JPL. Various visualization tools for MUR are also available (e.g., http://
mur.jpl.nasa.gov/images.php).

Analyzed SST values are commonly validated through comparison
to other data sets. The traditional reference for validation of the bulk
SST estimate is derived from the in-situ SST measurements. However,
quality control of in-situ SST data is a dedicated task, and the sampling
is too sparse in space for comparison of the meso-scale and smaller SST
features. In this section, we compare MUR to other gridded SST analysis
products to examine the meso-scale patterns as well as the bulk SST
values in MUR. Higher-resolution SST features in MUR is then eval-
uated through comparison to the VIIRS retrieval data, which provide
independently derived 1-km scale SST patterns at wide enough spatial
coverage but with data voids. Moreover, MUR is compared against its
own inputs for examination of data residuals and their scale dependent
characteristics in order to evaluate performance of the multi-scale
analysis approach used by MUR.

4.1. Data residuals

Contributions of each input data set to the MUR SST fields are ex-
amined through statistics of the residual data. The residuals

̂−T T x y( , )n
L

n n0 are calculated directly from the wavelet coefficients
instead of interpolating the gridded SST values to the sample location
(xn,yn). The data samples Tn are quality-controlled and preprocessed in
the same manner as the analysis inputs (Section 2.6), except that a
single-day window is used here for all data sets. In particular, the SSES
(or assumed) bias is applied for surface-to-bulk conversion of the SST
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values, and the quality flag is used to select only the “highest quality”
samples.

4.1.1. Residuals of the MUR inputs
Table 3 lists global statistics of the input residuals for the data in-

gested by MUR from years 2003 through 2013. The mean residuals
(“bias”) are generally small, with magnitudes less than 0.07°C except
for the large negative bias in one of the Pathfinder data sets which are
known for “cold bias” tendencies (e.g., O’Carroll et al., 2012). The
iQuam data set shows the smallest bias as expected, since it serves as
the reference in the inter-sensor bias correction by MRVA.

Because of the generally small bias for all input data sets, the root-
mean-squares (RMS) residual is dominated by the residual scatter
(standard deviation about the mean bias). The smallest RMS residuals,
of around 0.3°C, are reported by the AVHRR GAC data sets.

The non-GHRSST data sets without the SSES bias, namely the OBPG
MODIS and Pathfinder data sets used in this version of MUR, have re-
latively large RMS residuals. The RMS values of the OBPG MODIS data
sets are more than 0.1°C higher than their JPL counterparts, while the
Pathfinder RMS residuals are more than 0.3°C higher than the RMS
values for the AVHRR GAC data. A possible cause for the larger RMS
residuals is the constant bulk-SST bias (−0.17°C) assumed for the non-
GHRSST data sets, in contrast to the GHRSST data sets which provide
each sample with an individualized SSES bias. The constant bias cannot
account for regional and seasonal variability in the skin-to-bulk SST
difference, and the unaccounted variability could appear as additional
data residual.

A bulk-SST bias individualized for each surface sample would be
desirable for the non-GHRSST retrieval data sets to replace the constant
bias. Such replacements have become possible recently. In particular,
an updated version of the OBPG MODIS SST data sets now include SSES
bias estimates. Also, updated Pathfinder data sets as well as reprocessed
AVHRR GAC data sets (Ignatov et al., 2016) have become partially
available for the period currently covered by the Pathfinder data in
MUR. These new data sets are planned for ingestion by a future version
of MUR.

4.1.2. Dependence on analysis scale
The inherent feature resolution L is a key parameter in the MRVA

method. Contribution by each data set to MUR is scale dependent and is
controlled by the maximum scale assigned to each data type (Eq. (3)
and Table 1). We examine such scale-dependency by computing data
residuals for the analyses with varying feature scales. Specifically, data
residuals are examined for each of the analysis ̂T L

0 , which we call siblings
of MUR, for L = 1,…,9. Note that the setting L = 9 specifies MUR itself.

Fig. 6 shows data residuals as a function of the analysis resolution L.
The RMS residuals for all input data sets except MODIS are found to
increase sharply just beyond the maximum ingestion resolution
(Table 1) for the particular data set: L = 4 for in-situ, L = 6 for mi-
crowave, and L = 7 for AVHRR GAC data types (thin lines with marks).
For example, the RMS residual of the in-situ iQuam data set is as low as
0.32°C for a low-resolution sibling (L = 4) but increases by at least
0.15°C for the higher-resolution siblings (5 ≤ L ≤ 9). Such a jump in
iQuam residual implies that, from the perspective of the in-situ data,
any higher-resolution variability originated from other data types
would appear as “noise”. The relatively large magnitude of the jump
can be attributed to relatively small sample size of the iQuam data set
which could be dominated by other data sets with higher spatial den-
sities.

The RMS residual for the MODIS data (thick solid line, Fig. 6) de-
creases monotonically with the scale, indicating that consistency be-
tween MODIS and MUR siblings increases as the analysis resolution L is
raised. In other words, at least some aspects of the SST features re-
presented by the MODIS data sets are captured by MUR for all scales L
≤ 9, implying successful transfer of high resolution SST features from

the data to analysis. The monotonic decrease in the MODIS residual is
an indication that the multi-scale analysis scheme (MRVA) has per-
formed as expected for the high resolution data sets.

4.2. Comparison to gridded SST products

Existing gridded analysis products are convenient for comprehen-
sive comparison of the spatial patterns since they provide bulk SST
estimates free of systematic voids. Over a dozen daily global SST ana-
lysis products are available in the GHRSST-formated collection alone,
for a variety of operational, scientific, and recreational uses. Several of
these products have established validation history through years of
scientific and operational usages as well as comparison to in-situ
measurements, and they could provide the baseline SST fields to vali-
date a new analysis approach like the MRVA method used to generate
MUR.

Analysis products are hardly independent from each other since
most products ingest common inputs such as the AVHRR and in-situ
data. However, difference among the analyzed SST fields can still be
significant due to differences in quality control and interpolation pro-
cedures (Dash et al., 2010, 2012). When several SST analyses are pro-
jected onto a common grid, ensemble statistics such as the mean,
median, and standard deviation can be determined at each grid point. A
field of median SST values from an ensemble of approximately ten
operational daily SST analysis products is provided by the GHRSST
Multi-product Ensemble (GMPE) project (Martin et al., 2012) which
reports that the GMPE analysis shows better agreements with in-situ
SST measurements than any of the individual products in the GMPE
membership.

The GMPE median SST analysis is compared to MUR as well as three
GMPE member products. The three products are the Optimum
Interpolation SST analysis from NCEI (Reynolds et al., 2007), CMC SST
analysis from the Canadian Meteorological Centre (Brasnett, 2008), and
Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) from
the UK Met Office (Donlon et al., 2012). Fig. 7 shows the RMS differ-
ences between GMPE and each of the four products over a four-year
period. MUR (dark thick line) agrees with GMPE at a similar level as the
three member products (thin lines with marks) even though MUR is not
a member of GMPE.

Fig. 7 also shows the RMS difference between GMPE and a low-
resolution sibling ̂T0

6
of MUR (dashed line). The low-resolution sibling

agrees with GMPE better than MUR itself because it has a similar re-
solution as GMPE which uses a 0.25°×0.25° grid. The RMS difference
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Fig. 6. Root mean squares difference between MUR and its input data sets as a function of
the analysis scale L. A representative from each input data type is selected from Table 3.
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for the low-resolution sibling roughly approximates the ensemble
spread, or the RMS difference averaged over all GMPE member pro-
ducts, which represents the analysis uncertainty in the GMPE SST
product (light wide line). The RMS value for MUR ( ̂T0

9
) is higher than

the value for its low-resolution sibling ( ̂T0
6
) by an average of approxi-

mately 0.05°C. This difference in RMS values is an indication of mean
magnitude in the variability signal + +T T Ṫ ̇ ̇6 7 8, which is missing in
the low-resolution sibling. The high-resolution variability signal is
plausibly perceived as “noise” by the lower-resolution reference ana-
lysis (GMPE) which by design does not resolve all the variability signal
in MUR.

All curves in Fig. 7 show a prominent seasonal pattern. Specifically,
the RMS differences and GMPE spread increase by 0.1 to 0.2°C during
boreal summers, implying that the analysis uncertainty is generally
high during the season for all the SST analysis products considered. To
examine the seasonal behavior further, the RMS differences are com-
puted excluding the Arctic Ocean (latitudes above 65°N in this paper) to
avoid the highly variable patterns of summer-time warming in recent
years (Steele and Dickinson, 2016). The resulting timeseries (Fig. 8)
show much reduced summer-time peaks. Table 4 shows that the tem-
poral maximum of the global RMS difference decreases by around 0.1°C
for each analysis product if the Arctic Ocean is excluded. Outside of the
Arctic, the time-averaged RMS difference for MUR and its low-resolu-
tion sibling ̂T0

6
are respectively 0.36°C and 0.31°C, while the corre-

sponding value for GMPE spread (analysis uncertainty) is 0.34°C. The
improved agreement among the SST analyses outside of the Arctic
Ocean in boreal summer is an indication of general difficulty in per-
forming SST analysis over the Arctic. An extensive comparison of nine
analyses against independent buoy data from the Beaufort Sea (Castro
et al., 2016) has confirmed large differences (sometimes in excess of
2°C) among the analyzed SST values and shown that quantity (and
possibly quality) of Arctic SST retrievals is a common issue among all
global SST analyses including MUR. Persistent cloud cover in the boreal
summer is noted as a leading cause of difficulty in SST analysis over the
Arctic. The Arctic area is also found to be especially vulnerable to data

voids for the particular case of MODIS data and MUR that ingests them
(Liu and Minnett, 2016) potentially due to the spatial and seasonal SST
variability in the region induced in part by heat and freshness fluxes
from river transports and ice melts.

4.3. Feature resolutions

The stated resolution of a satellite retrieval data set typically cor-
relates well with the resolution of the SST features found in the data.
Fig. 9, left-panel, shows power spectral density (PSD) plots for several
retrieval data sets, one data set from each data type ingested by MUR.
Each PSD curve (computed along the satellite track) generally follows a
random-walk power law (log-log slope of −2, thin straight dashed line)
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Fig. 7. Global root mean squares (RMS) difference be-
tween the GMPE analysis and four gridded SST analysis
products: MUR, NCEI, OSTIA, CMC. The thick gray band is
the globally-averaged uncertainty field from the GMPE
product. The dashed line is a low-resolution version ( ̂T0

6
)of

MUR (an intermediate product of the MRVA interpola-
tion) which approximates the resolution of GMPE (with a
0.25° grid) better.
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Fig. 8. The same as Fig. 7, except that the spatial domain
excludes the Arctic Ocean.

Table 4
Statistics of the time-series in Fig. 7 (“Entire Globe”) and in Fig. 8 (“Globe excluding
Arctic”), which present the RMS difference to the GMPE SST analysis in Celsius (Kelvin).
The analysis labeled “MUR-sibling” represents the low-resolution intermediate product ̂T0

6

(the dashed lines in the figures), while “GMPE-Spread” is the RMS difference averaged
over all GMPE members (the wide grey lines in the figures) which is part of the GMPE
product. All GMPE time-series examined here are over the period of 2010 through 2014.
In addition, the bottom three rows of the table are analogous statistics of RMS differences
between MUR and each of NCEI, OSTIA, and CMC products, for time-series over the
indicated periods.

Analysis pair (for RMS
difference)

Entire globe Globe excluding Arctic

Maximum Mean Maximum Mean
NCEI − GMPE 0.57 0.42± 0.05 0.48 0.40± 0.03
OSTIA − GMPE 0.53 0.31± 0.07 0.43 0.29± 0.05
CMC − GMPE 0.43 0.25± 0.06 0.30 0.22± 0.03
MUR − GMPE 0.54 0.37± 0.05 0.41 0.36± 0.02

MUR-sibling ( ̂T0
6
) − GMPE 0.51 0.33± 0.06 0.36 0.31± 0.03

GMPE-Spread (all
members)

0.46 0.34± 0.04 0.41 0.34± 0.03

NCEI − MUR (2002–2014) 0.78 0.55± 0.09 0.66 0.52± 0.06
OSTIA − MUR

(2007–2014)
0.70 0.47± 0.06 0.57 0.49± 0.04

CMC − MUR (2002–2014) 0.65 0.42± 0.09 0.52 0.39± 0.04
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until the drop-off at a wavelength around or slightly longer than the
Nyquist interval which is twice the stated sampling interval: 1 km for
MODIS, 4 km for Pathfinder, 9 km for AVHRR GAC, and 25 km for mi-
crowave.

In contrast, the grid resolution of an analysis product is a poor in-
dicator of the nominal resolution of the features presented by the
analyzed field. The analyzed SST feature resolution is often much lower
than the grid resolution (Reynolds and Chelton, 2010; Reynolds et al.,
2013) due to procedures that effectively impose smoothing such as
widespread removal of “outlier” samples as well as high-wavenumber
“noise”, interpolation over data voids of various sizes, and time-aver-
aging over the “synoptic” period for the analysis. Indeed, the PSDs of
the NCEI, CMC, and OSTIA analyses are remarkably similar to each
other (right panel, Fig. 9) despite differences in their grid resolutions:
0.25° for NCEI, 0.20° for CMC, and 0.05° for OSTIA. Based on the PSDs,
the feature resolution in these analysis products appears to be around
100 km.

On the other hand, MUR by design has much higher SST spectral
contents (thick solid line, right panel) than the other analysis products.
The MUR PSD drops off from the reference power law (dashed line)
similarly to the 9-km AVHRR GAC retrieval sets. The PSD plots of the
analysis products demonstrate that the grid resolution is only an in-
dication of the maximum representable resolution which tend to be
much higher than the actual feature resolution in all SST analysis
products examined here, with MUR displaying a feature resolution an
order of magnitude higher than the others.

The MRVA interpolation parameters can be adjusted to increase
apparent feature resolution in the analysis. The gray line in Fig. 9, la-
beled “MUR test case”, is the PSD of an analysis produced with the same
input data as MUR. The test case is produced with the same MRVA
parameters as MUR except that all the regularization weights are re-
duced to quarter of the original values and the scale parameter is raised
from L = 9 to L = 10. The figure shows similarity between the PSDs of
the test case and MODIS data. Despite the similarity in PSD, the test
case is found to have substantially larger data residuals. In particular,
the RMS residuals of the MODIS Terra and Aqua for the test case have
increased by twofolds, from 0.36°C to 0.72°C in both data sets, during a
study period 2015–2016. Scale-dependent comparison of input data
residuals between siblings of the test case and those of MUR also reveals
that the disparity in the RMS residuals increases as the resolution L
increases. These indicate that the “test case” analysis is substantially
inferior to MUR in representation of the input SST features, especially
the high resolution features in MODIS. Numerical conditioning of the
inversion steps in MRVA due to an inadequate level of regularization is
a potential cause of the substantially large interpolation residuals in the

test case. These results justify the use of a lower feature resolution
parameter (L = 9) for MUR than what the 0.01°×0.01° grid can ac-
commodate (L = 10).

We note that the grid resolution higher than the feature resolution is
still useful in presenting the location of SST features. The PSD analysis
is only a spatially averaged summary based on Fourier decomposition
insensitive to feature locations. Given a structure with a certain wa-
venumber, the sub-wavelength grid points are necessary to present the
local phase of the structure precisely. The global distribution of high-
wavenumber SST features is also geographically dependent, with pro-
minent sub-mesoscale structures tending to concentrate around the
dynamic zones associated with strong currents, wind, and upwelling
(e.g., SST fronts; Fig. 3 in Obenour, 2013).

4.4. Comparison to VIIRS retrieval data

To examine the high-resolution SST features in MUR, MUR and its
siblings are compared to coincident VIIRS retrieval data. The 3000 km-
wide swath of VIIRS is advantageous for capturing spatial patterns, and
VIIRS data are not ingested by the current version of MUR. The VIIRS
data set used here is produced by the Naval Oceanographic Office
(NAVO) as a GHRSST collection and is quality-controlled and pre-
processed the same way as the MODIS data sets ingested by MUR. The
NAVO VIIRS data are available since mid-2013. Another option for
validation of the high-resolution SST features is comparison to the re-
gional SST retrievals from the latest geostationary satellites including
GOES-R and Himawari-8 offering 2-km resolution SST fields from infra-
red sensors (Kurihara et al., 2016). Such comparison is underway and is
not covered in this paper.

Fig. 10 shows scale-dependent data residuals for the VIIRS and
MODIS data sets from a coincident period (2015–2016). A monotonic
decrease in the RMS data residual as a function of the analysis scale L
would support consistency in SST features between MUR and the data
set at all scales. The MODIS data residuals indeed decrease mono-
tonically (solid lines). The decrease in the VIIRS residual, however,
diminishes once the resolution reaches L = 7 where a relatively shallow
minimum is observed (dotted line). Existence of the residual minimum
for the VIIRS data supports the choice of an analysis scale L smaller than
the maximum offered by the MUR grid (L = 10), although the choice
for the current version of MUR (L = 9) is not at the minimum VIIRS
residual.

Since the ingested MODIS data are solely responsible for the high-
resolution features in MUR, consistency in the SST features between the
MODIS and VIIRS data would directly affect our evaluation based on
VIIRS data. Fig. 10 indicates that, in terms of the RMS residuals, MUR
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agrees with VIIRS better than MODIS at all scales. It is not surprising
that VIIRS shows a smaller data residual than MODIS even though MUR
does not ingest VIIRS, because MUR ingests other non-MODIS data. In
particular, the residuals for the AVHRR GAC data ingested by MUR are

also smaller than the MODIS residuals (Table 3) and are relatively close
the VIIRS residual. For some meso-scales (L = 4,5,6), the VIIRS re-
siduals are more than 0.1°C smaller than MODIS residuals. The differ-
ence in the residuals indicates that VIIRS has different meso-scale fea-
tures from MODIS, and this in turn makes direct comparison of the finer
scale features difficult between VIIRS and MODIS data sets due to the
much smaller magnitudes of the finer scale features (Fig. 9). Fig. 11
displays examples of coincident mesoscale SST patterns from the VIIRS
and MODIS data sets, based on the samples flagged as the highest
quality. Some common patterns of data voids can be seen due to at-
mospheric conditions like cloud cover. Significant differences in sam-
pling patterns (for the highest quality samples) can also be found.
Differences in mesoscale SST patterns can indeed be noted in areas such
as the lower-left corners of the VIIRS and MODIS-Aqua fields where
more specular patterns are found in the VIIRS data.

Validation of the high-resolution features in MUR by direct com-
parison to the VIIRS data appears to be difficult due to the differences in
larger-scale (particularly meso-scale) features between VIIRS and
MODIS data sets. Two other VIIRS retrieval data sets (also as GHRSST
collections) have become available after the NAVO version. One is
based on the Advanced Clear Sky Processor for Oceans (ACSPO) re-
trieval algorithm from NOAA's Office of Satellite and Product
Operations (OSPO), and the other is based on the RSMAS algorithm
implemented at OBPG. The VIIRS data residuals computed using the
OSPO and OBPG versions are found to display similar scale-de-
pendencies as the NAVO version, including closer agreement with MUR
in the mesoscale range than the MODIS data ingested by MUR.
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Fig. 10. The same as Fig. 6, except that a VIIRS retrieval data set is included in the
comparison and that the comparison period is from year 2015 to 2016 instead of 2002 to
2013.
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5. Summary and future prospects

The MUR global SST analysis ingests the 1-km resolution MODIS
SST retrieval data sets and presents an estimate of the foundation SST
estimates on a 0.01°×0.01° grid. MUR improves the analyzed feature
resolution by an order of magnitude over most of the existing SST
analysis products, from approximately 100 km down to 10 km. At me-
soscale resolutions, MUR agrees with the 0.25°×0.25°-gridded GMPE
median SST analysis to 0.36°C on average, except in summer-time
Arctic region (latitudes higher than 65°N) where differences among the
existing SST analyses are known to be relatively large (e.g., Castro
et al., 2016).

MUR simultaneously manages reconstruction of 1 km-scale SST
features and interpolation over larger-scale data voids using the MRVA
interpolation method (Fig. 2). The MRVA method is based on an en-
ergy-preserving and reversible multi-scale transform that allows si-
multaneous use of multiple interpolation length scales. The multi-scale
decomposition allows MUR to use multiple synoptic time periods in-
cluding the 5-day data window for reconstruction of mesoscale features
and data windows of only few hours for the smaller scale features. The
use of scale-dependent data windows is essential for accurate re-
presentation of sub-mesoscale features (Fig. 5) which tend to evolve
faster than larger features. Optimization of the MRVA interpolation
parameters such as the data window lengths is a topic of investigation
in planning.

The MRVA method is also a “mesh-less” interpolation procedure
that avoids truncation of the geolocation information in the input data
and preserves intra-grid features like SST front location relatively well
(Chin et al., 2014). Validation of high-resolution features in the MUR
SST analysis is still an ongoing work. The inter-product comparison
results presented in this paper are associated with only the latest MUR
version 4.1. Comparisons of MUR to independent VIIRS data so far have
been inconclusive in validating the analyzed high-resolution SST pat-
terns because differences in meso-scale patterns between VIIRS and
MODIS are large enough in magnitude to overwhelm feature compar-
ison at smaller-scales. A careful scale-based decomposition of the re-
ference data (in this case VIIRS) might be necessary for proper ex-
amination of the high-resolution patterns in MUR. Comparison to
independent oceanic front data sets is also under consideration.

A future version of MUR plans to ingest VIIRS data to complement
the MODIS data in spatial coverage of high-resolution SST retrievals. It
also looks to update the input data, especially with respect to the skin-
to-bulk bias estimation since the lack of SSES bias in the early MODIS
and Pathfinder data sets is linked to the relatively large analysis re-
siduals for these data. Other considerations for a future version include:
use of day-time MODIS (and VIIRS) retrievals along with their night-
time counterparts to further improve high-resolution coverage, and use
of an external reference SST field (instead of one constructed solely
from the input data) to improve outlier detection. Improvement in the
Arctic analysis is a common issue shared by other existing SST analysis
products.
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