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My Background:  
• Doctoral Thesis: “Ocean Colour Remote Sensing of the Great 

Barrier Reef Waters” started 2004 (Australian Institute of Marine 
Science) 
– In-situ above water reflectance (developed the DALEC 3 channel 

radiometer) 
– Coincident IOP (QFT, Hydroscat, benchtop CDOM)  
– Relationships between IOP -> F:Chl-a, TSM, DOC 
– Mie scattering theory (phase functions) 
– Hydrolight simulations Rrs -> bb/(a+bb) 
– MODIS ocean colour algorithm development and matchups  

• Company “In-situ Marine Optics” (Australia) started 2007 
– Consultancy for Mining / Oil and Gas Port Expansion industry 

• MODIS TSM algorithm development and image provision 
• In-situ KdPAR vs TSM vs NTU 
• LISST Particle Size distribution 
• Data anlaysis 

– Optical Oceanographic Instrument development  
• www.insitumarineoptics.com 

• WETLabs East (Mike Twardowski) started 2008  
– IOPs  
– Volume Scattering Function from the LISST 
– Mie-based PSD inversion kernel 

• Curtin Uni. (D. Antoine)  
– lab and in-situ radiometric sensor intercomparisons. 
– operating autonomous moored profiler (WETLabs Thetis) for radiometry and 

IOPs  



Personal 
• Long walks on the beach 
• Swimming 
• Gardening (edibles) 

• Beekeeping 
• Cooking 
• Bass Guitar / Drums 
• Camping 
• Taking things apart (breaking stuff) 
• Trying to fix stuff 
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Radiometry 

• The measurement of electromagnetic radiation 
• Photons – quantised wave packets. q=hc/λ  
• In ocean optics… 

– UV, VIS, NIR wavelengths (200-1000nm) 

Quantity Symbol SI units Abbreviation Notes

Radiant 
Energy Q joule J energy 

Radiant Flux Φ watt W radiant energy per unit time, so 
called radiant power

Radiance L watts per square metre per 
steradian W/m^2/sr power per unit solid angle per unit 

projected source area

Irradiance E watts per square metre W/m^2 power incident on a surface



Radiometry 
Quantity Symbol SI units Abbreviation Notes

Radiant 
Energy Q joule J energy 

Radiant Flux Φ watt W radiant energy per unit time, so 
called radiant power
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C. Mobley http://www.oceanopticsbook.info 
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Why Radiometry? 
• Spectral radiometric measurements can contain 

information about the medium and substances within – 
“hyrosols” 

• Non-contact* and Non-destructive** (for the most part) 
• Remote Sensing platforms exist that observe oceanic / 

coastal phenomena over unique time and space scales 
– Satellite imagers (CZCS, SeaWiFS, MODIS etc.) 
– LIDAR 
– AUVs 
– Moored profilers 

• Direct quantification of the light field is needed for certain 
applications 
– productivity studies may need to know Photosynthetically 

Available Radiation (PAR) at depth 
– Energy budgets (heating etc) 

• Fairly easy to measure *** 
 



Radiant Flux 

dt
dQ

=ΦRadiant Flux = joules (energy) 

time (Power) 

Quantity Symbol SI units Abbreviation Notes

Radiant 
Energy Q joule J energy 

Radiant Flux Φ watt W radiant energy per unit time, so 
called radiant power

Radiance L watts per square metre per 
steradian W/m^2/sr power per unit solid angle per unit 

projected source area

Irradiance E watts per square metre W/m^2 power incident on a surface

Measured by Quantum (photon) Detectors 



Radiant Flux Conversion 

Φ
Voltage to 

Digital Counts 

(Analog to 
Digital 

Converter) 

Light to 
photocurrent 

(detector) 

Photocurrent 
to Voltage 
(amplifier) 

Φ V 

C 

Optical Window, 
Filter and / or 

grating 



Light Detectors: PMT 
– Photomultiplier tube (PMT) 

• photoelectric effect - electron dislodged from the metal cathode 
amplified by successive dynodes to produce electron ‘cascade’ 

• extremely sensitive light detectors 
• degradation of dynodes due to electron bombardment 
• stable, high voltages needed (power consumption) 
• thermal effects 

http://learn.hamamatsu.com/articles/photomultipliers.html 



Light Detectors: Semiconductor 
– Semiconductors (i.e. silicon photodiodes used 

in PAR sensors, OCRs etc. ) 
• photon-induced excitation of electrons to the 

conduction band of the silicon, producing a current 
 

– Diode Arrays (like HOCR, DALEC, Ramses) 
• Linear or 2D area arrays of small photodiode 

‘pixels’ i.e. 256 pixels @ ~10um spacing 
• Allows direct alignment with a diffracted beam 

(spectral resolution) or imaging (2D)  
• Pixels usually need to be ‘read out’ sequentially – 

lower sampling rate 

 



Diode Array (integrator) with ADC 

Photodiode with 
Transimpedance AMP 

Light in 

Light 
in 



Current to Voltage Converters 
• Transimpedance Amp 

– Sensitivity defined by gain resistor 
– Instantaneous voltage output, directly 

proportional to photocurrent 
– Feedback capacitor acts as temporal 

“smoother” filter 
– Common approach used in individual 

photodiode-based sensors i.e. PAR 
and multispectral where signal is strong 

  
• Switched Integrator Amp 

– Sensitivity defined by storage 
capacitance value AND the duration 
that the Reset switch is open 

– Time - discrete voltage ‘readouts’  
– This is where spectrometer “Integration 

Time” comes from 
– Used for diffraction-based devices 

where signal is low (diode array 
spectrometers) 



Analog (V) to Digital Conversion 
• Converts analog (continuous) voltage data into 

discretised “counts” 
 
 
 

• There’s many different (~15) types of ADC architecture. 
• ADC Resolution defined as the number of digital 

numbers used to represent the converted analog photo 
current 
– 2 bit resolution = 22 = 4 Counts (as shown above) 
– 10 bit resolution = 210 = 1024 Counts 
– 16 bit resolution = 216 = 65536 Counts 

• ADC resolution doesn’t necessarily equate to 
measurement resolution, might be digitizing noise. 
 

 
https://commons.wikimedia.org/wiki/File:2-bit_resolution_analog_comparison.png 



 The quest for truth (bullseye) 
High precision, 
Low accuracy,  

High precision, 
High accuracy,  

High accuracy, 
Low precision, 
High uncertainty 

 

Low accuracy, 
Low precision, 
High uncertainty 



Radiometric Calibration 

• Need to compare the sensor’s digital 
counts to a radiant flux standard so we 
can quantify light accurately. 

• See Ocean Optics Protocols 



Radiometric Calibration 

• Need (at minimum)  
– a stable calibrated power supply 
– a NIST-traceable FEL lamp (50h) 
– Lambertian reflector for L (NIST) 

 

Sensor 

Wojciech 

1000W 
Lamp 

 

Lambertian 
Reflectance 

Plaque 

 



Irradiance Calibration 
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Radiance Calibration 
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Calibration Uncertainty 
• Lamp calibration coefficients E50 are within 1% of 

NIST when less than 1 year old, and less than 50 
hours burn time…  

• Scale E50 using distance “r” between plaque and lamp 
surface. 
– Measure it accurately without touching the lamp or the 

lambertian reflector? +/- 1mm hopefully 
• Delta-f. (distance between the filament and lamp 

surface) Which part of the filament? 
• Spectralon Plaque Reflectivity / Cleanliness 
• Power supply accuracy is important (8A) 

– Buy an good (expensive) one 
– Verify voltage over calibrated shunt resistors V=IR 

• Relies on the wavelength calibration of 
detector 
– use line emission source to verify and compensate 

if necessary, they do drift! i.e. 4nm in 15 years 
 



Lamp / Plaque Reproducibility 



Radiometric Calibration 
• The transfer of the NIST radiometric calibration 

standards for multispectral devices is usually 
good to 2-3% (Sirrex) 

• Recent Findings: 
– Temperature effects of hyperspectral instruments 

are considerable, thus a calibration performed at one 
temperature by the “factory” or lab may be less 
applicable to a field observation at a different 
temperature!  

– Ideally, we want to perform calibrations at a 
few different temperatures to assess the 
temperature dependency of the radiometer. 



Temperature Dependency in 
Hyperspectral Radiometers 

Also see, 
Zibordi et. 
al. 2017 
jtech 



Integration Time Dependency 

PhD Ed 

6% ish 



Cosine Response 

Morrow et al. 2000 



Cosine Response 

Morrow et al. 2000 

manufacturer’s web page 



Field Cosine Response 



Field Cosine Response 

(In-water version) 



Instrumental uncertainty 
• NOISE 

– Thermal noise from silicon detector / resistive elements 
– RF pickup from photodiode and other circuit traces 
– Amplifier power supply and ADC Voltage reference noise 
– Integrator switch time jitter (digitally sourced signal) 

• Bias /Drift (with temperature) < 0.5% per degree for hyperspectral devices! 
– Transimpendance Resistance (Gain)? 
– Silicon conduction band / sensitivity (in the red) 
– Amplifier ‘DC offset’ voltage 
– Integrator capacitance? 
– Integrator switch rise / fall times?  
– ADC nonlinearity a function of temperature? 

• Other Bias 
– Dark Offsets (offset voltage and rectified AC noise) 

• Characterise your instrument’s ‘dark’ response in the field and subtract these.  
• Process your data yourself or trust manufacturer’s ‘black box’ processing code. 

– Integration time non-linearity 
• We can model / fix this, but it’s typically not done by manufacturers. Fixed int times? 

– Optical filters degrade in time (temperature, light exposure) 
– Optical windows may become fouled or scratched in time 
– Planar Irradiance Cosine Response  

• Consider evaluating this yourself or add larger uncertainties for larger SZA 
– Stray light 

• non-perfect diffraction grating in diode array spectrometers (-1 to 4% errors in Rrs –
Talone et. al. 2016) 

• Out of band filter response in the NIR 
 

Average your 
data (where 
appropriate) 

Characterise and 
correct this. Cal 
at 3 different 
temperatures 



Please don’t be discouraged 

• Manufacturers will improve if we start 
discussing these issues in papers. 

• Radiometric protocol documents to be 
updated to include new sensors? 

• Add sensible error bars and move on!? 
• The bigger the error bars, the easier 

disparate datasets can be said to “agree” 
 



Optically Active Constituents 

Coloured 
Dissolved 
Organic Matter 
(CDOM) 
molecules <0.2um 

Pure Water 
molecules 

~10-10m 

Phytoplankton, Detrius and 
NAP > 0.2um 

* For Visible Light 
~ 400nm - 750nm 

Solar / 
Atmospheric 
irradiance 

Independently varying 
constituents in Case II 



Apparent Optical Properties 

• Derived from radiometric measurements using L 
or E (or both) 
– ratios (reflectance or mean cosines) 
– rates of change (diffuse / radiance attenuation 

coefficients) 
• AOPS are dependent on surrounding light field as 

well as the substance 
– Solar angle 
– How ‘diffuse’ the surrounding is 

• They are related to the IOPS of the substance(s) 
being observed, but AOPS are easier to measure 

 



Practical Examples 

• PAR light at different depths. 
• How spectral irradiance at different depths 

varies with TSM (TSS). 
• Measuring above water Rrs 



Example: PAR Irradiance Profile 



Model fitting to calculate PAR Diffuse 
Attenuation Coefficient (KdPAR) 

z 

E 

zK PARdeEzE −−= )0()(
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Spectral Irradiance 



Spectral Irradiance 
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Modelling Light 

Exponential decay: 

Use the Beer-Lambert 
Law (Gordon, L+O, 1989) 

Spectral Diffuse 
Attenuation 
Coefficient 

Incident 
Light (clouds, 
atmosphere, sun 
angle) 

Light @ 
depth z 

Cloud 



Spectral Kd 



Spectral Kd 

Different 
fitting 
methods 
yield 
different 
Kds 



Bad Profiles 

Detector Counts 

Wave focusing 
Ship Shadow 

? 
Cloud? 



Waves 
• Influence of waves on radiance distribution 

 
 
 
 
 
 
 

• Average multiple casts 
• Longer casts 
• Build cooler toys  



Ship Shadow 

• NASA OO Protocols recommend measuring 
radiometric profiles a certain distance away 
from the ship… 
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Ship Shadow 



Irradiance Profiler 



Vertical Irradiance Profiler 



Vertical Irradiance Profiler 
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Modelling Light 

Exponential decay: 

Use the Beer-Lambert 
Law (Gordon, L+O, 1989) 

Spectral Diffuse 
Attenuation 
Coefficient 

How does this 
parameter change 
with λ and WQ?  

Incident 
Light (clouds, 
atmosphere, sun 
angle) 

Light @ 
depth z 

Cloud 





Examples 

Ed(λ,0-) Kd(λ) 



Examples 

Ed(λ,0-) Kd(λ) 



Examples 

Ed(λ,0-) Kd(λ) 

TSS up, Kd 
up 



Kd related to TSS/M? 

x error bars ~ sd of triplicates omitted for clarity 



TSS Specific Kd(λ) 

Spectral artifacts. 
Water drives the 
attenuation in the 
NIR 

Spectral shape 
similar to non-algal 
particulate 
absorption 



Residual Attenuation 
Similar to water 
absorption spectral 
shape + residual 



Kd Uncertainty Summary 
• Incident Ed(0+) influenced by clouds 

– Get an above-water Ed(0+), time stamped to the in-water Ed sensor 
– Only sample in clear skies 

• Temporal Variability 
– Wave focusing – repeat casts 
– Sun transit (Kd influenced by pathlength elongation) 

• Cosine collector / package tilt 
– Slow descent / free fall package 

• Spatial variability  
– Repeat casts to assess 

• Ship Shadow  
– Use small ship or slow descent / free fall platform 

• Model fitting technique.  
– Avoid ‘black box’ fitting (i.e. excel) 
– Avoid log transformations 
– Consider weighting model fits to experimental uncertainties 

 
 



Reflectance 

Remote Sensing 
Reflectance Rrs 

Irradiance 
Reflectance R 

Lw(0+)/Ed(0+) LW(0+)/Ed(0+) 
+ sky (Srs) 

Lw(0-)/Ed(0-) 

Lw(0+)/Ed(0+) 



Importance of Reflectance 

• Normalised by Ed, so less dependent on solar 
geometry, more on IOPS. 

• Rrs can be estimated from Space 
– Provided in the form of images 
– Synoptic, Long time series data 

• CZCS ~1979? 
• SeaWiFS since 1997 
• MODIS(Terra) since 1999 
• MODIS(AQUA) since 2002 
• VIIRS, OLCI etc… 

• In-situ Rrs for validation? 
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In-situ Reflectance (Rrs) 

 





Lsky 
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Constituent Measurements to 
approximate Rrs  

(Ed ) 

Lu(0-) 

Lt (40) 

Sun / Sky 

Ocean 

Lsky 
rho ~ 0.022 to 0.04  



Plaque method (10% grey)  



Top View  

see Mobley 1999, Zibordi et. al. 2002, 
Ruddick 2005/6 and Lee et. al. 2010  



Skylight Contamination 

• Sea viewing radiance spectra contains 
flashes of reflected skylight/glint, 
originating from a range of  angles, centred 
around the complementary view angle 

• Range of angles depends on wind speed, 
view angle, SZA, sun relative azimuth 
angle and sensor FOV 

• In terms of reflectance, this contamination 
reduces to a power law with a spectrally 
independent offset 
 

 



DALEC Φrelaz=90 

DALEC Φrelaz=90 

HOCR Φrelaz=110 
RAMSES 
Φrelaz=110 



Corrected 



Uncertainties in Rrs 
• Instrumental 

– Discussed earlier 
– Ratio means temperature errors may cancel  

• Methodological 
– Temporal changes (sequential or 

simultaenous Ed, Lu and Lsky) 
– Integration time 
– Skylight reflection contaminates as a function 

of FOV, wind speed, SZA, integration time. 
– Many different correction approaches 

• Combining a few approaches will help 
– Platform Perturbation 

• Monte Carlo “SimulO” radiative transfer code to 
simulate deployment scenario 

 



The End 

• Thanks for your attention 
• matt@insitumarineoptics.com 

mailto:matt@insitumarineoptics.com
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