Three dimensional light environment: Coral reefs and seagrasses

- 1) Three-dimensional radiative transfer modelling
- 2) Relevance to remote sensing
- 3) Photobiology in submerged canopies

What is the bottom reflectance ?

Linear mixing

- sum individual type reflectances in proportion to their areal cover
- treat them as essentially flat patches

- → Works well for flat materials (Mobley & Sundman, *L*&O, 48, 329-336)
- \rightarrow Misses vertical structure, shadows, etc.
- \rightarrow No information about light environment within the canopy, photobiology.

Modelling and the 3-dimensional light environment

Monte-Carlo Modelling

- slow for complex structures
- high variance in shaded areas

Discretise spatially as well as directionally

- \rightarrow surfaces are composed of patches
- \rightarrow volumes are composed of cubes (voxels)
- * Every element potentially receives light from every other element
- * Iterative solution

Material Properties

Water Surface

Water surface patches reflect and transmit directionally according to Fresnel equations

Periodic horizontal boundaries

Directional discretization - tabulating directional radiance

HydroLight standard

Cubic 8-partition

For surfaces the orientation is dependent on surface patch orientation

Hemicube method

Hemicube method

Plane-parallel configuration: Comparison to HydroLight

- Optical depth = 1.0
- Single scattering albedo 0 to 1 in steps 0.1
- Flat water surface
- Substrate reflectance 70%
- Petzold's phase function
- 10 layers

Convergence for iterations - radiance incident on substrate at 60°, i.e. $L_b(60^\circ)$

How many iterations required?

In clear waters single scattering albedo can be >0.9 in some wavelengths, but not 1.0.

But here bottom is very reflective (70%) - light multiply scatters for longer

Dome Structures

Branching Structures

Benthic Ecology - light interaction with the canopy

Corals and seagrasses are photosynthetic organisms:

- they need light to survive
- light levels govern their distribution (e.g. by depth)
- changes in light levels impact these ecosystems
- too much light can also be bad

Corals contain symbiotic dinoflagellates

Important point:

Tend to think in terms of light incident on canopy - e.g. E_d (downwelling irradiance at the bottom of the water column)

BUT: canopies are complex structures - their interaction with light is not straightforward.

Coral stress and bleaching

- Temperature and light stress
- Importance of reflection from surrounding substrates ? (Ortiz et al. 2009, Coral Reefs)
- What does the surface of the coral "see" ?

Veal *et al.* CT Scanning of coral skeletons (Univ. Queensland)

sand surround

dead coral / turf surround

Sand or Rubble Surround

Sand or Rubble Surround

Sand or Rubble Surround

Seagrass canopies

- Found on every continent except Antarctica
- Major importance with respect to 'blue carbon'
- Indicator of environmental change
- Connected to other ecosystems e.g. coral reefs

Thalassia testudinum

Short et al. 2007, JEMBE, 350, 3-20

Leaf Area Index (LAI)

important descriptor, LAI = area of leaf ÷ substrate area

factors affecting canopy light interaction Leaf level reflectance Canopy structure Canopy position Substrate (sand) reflectance Epiphytes Dead parts (senescence) Trapped sediment Water column....

Thalassia, Puerto Morelos reef lagoon, Mexico.

Available data:

- 1) Shoot density (no. per m²)
- 2) Leaf length distribution
- 3) Canopy height
- 4) Optical properties along leaf length
- 5) Photosynthesis-irradiance curves
- 6) Underground biomass
 - LAI range: 0.5 4.7

Depth: 0.5 m to 4 m

Enriquez & Pantoja-Reyes 2005, *Oecologia* **145**: 235-243.

Low LAI

High LAI

Radiative transfer model

Coupled models:

- 3D Thalassia canopy model
- Water column model
- Atmospheric model

[Hedley & Enriquez 2010, L&O, 55, 1537-1550]

Top of atmosphere

Leaf optical properties

Available data:

Spectral absorptance

Spectral reflectance

Non-photosynthetically active portion properties (dead part of leaves)

Epiphytes - generally not present

 x_1

Leaves transmit light!

Idealised Thalassia leaf

Canopy structure

- flexible strips in a simple wave motion model

Canopy structure

- flexible strips in a simple wave motion model

Model outputs for two sites (17 bands reduced to RGB)

LAI 4.5, depth 0.5 m

LAI 1.0, depth 1.5 m

Model outputs for two sites (17 bands reduced to RGB)

LAI 4.5, depth 0.5 m

LAI 1.0, depth 1.5 m

Energy conservation test

Empirical test: within-canopy diffuse attenuation, k_{d}

height above sand (cm)

SO4 (3 m depth)

PAR K_d (within-canopy diffuse attenuation)

(Hedley & Enríquez, 2010, Limnology & Oceanography)

Bi-directional reflectance distribution function

PAR Absorption Breakdown

(Hedley & Enríquez, 2010, Limnology & Oceanography)

Energy absorption breakdown

PAR absorption as a function of LAI

(Hedley & Enríquez, 2010, Limnology & Oceanography)

Idealised Thalassia leaf

P vs. E curve

(oxygen production per unit area)

* Important: non-linear

* And in Thalassia does not vary much

Photosynthetic saturation state of leaves

LAI 4.5, depth 0.5 m

LAI 1.0, depth 1.5 m

under-saturated

over-saturated

Photosynthetic saturation state of leaves

LAI 4.5, depth 0.5 m

LAI 1.0, depth 1.5 m

under-saturated

over-saturated

LAI vs. shading trade-off : equivalent leaf level irradiances

- For example shading of canopies (dredging events for example)
- Canopies thin out: LAI \downarrow but leaf level light \uparrow

- LAI of 4 is equivalent to LAI of 2 with 30% shading
- Canopy thinning out under reduced light may be acclimatory response

[Hedley, McMahon, Fearns, 2014, PloS ONE 9(10): e111454]

Summary points

- Method to approach full 3D radiance distribution $L(x, y, z, \theta, \phi, \lambda)$
- Canopy structure effects are relevant at remote sensing scales
- Benthic photobiology requires consideration of canopy structure
- Canopy thinning should be interpreted in the context of light environment

