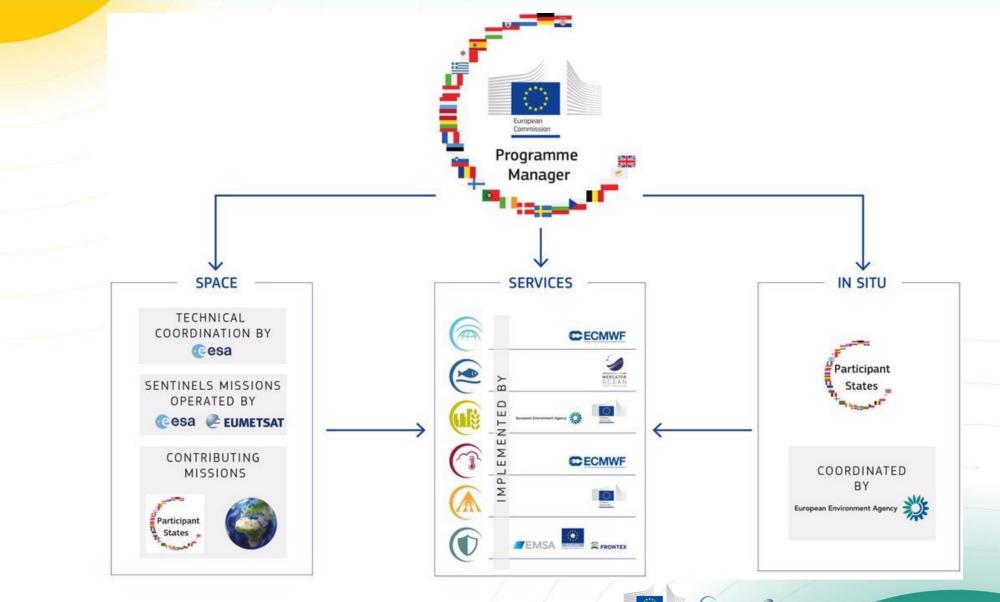


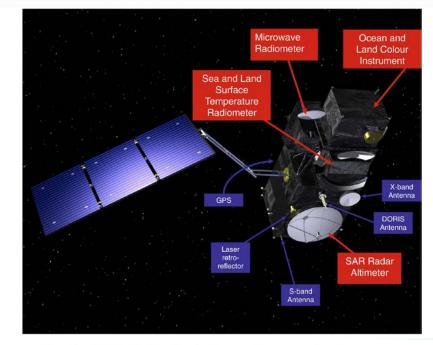
TIN STATE

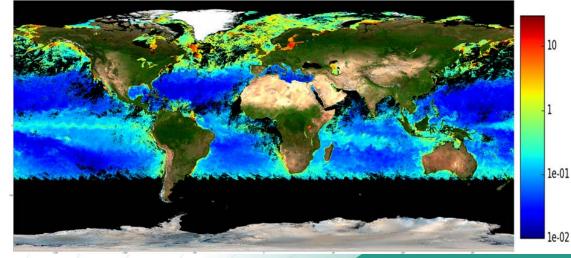
@HayleyEversKing , hek@pml.ac.uk



Overview

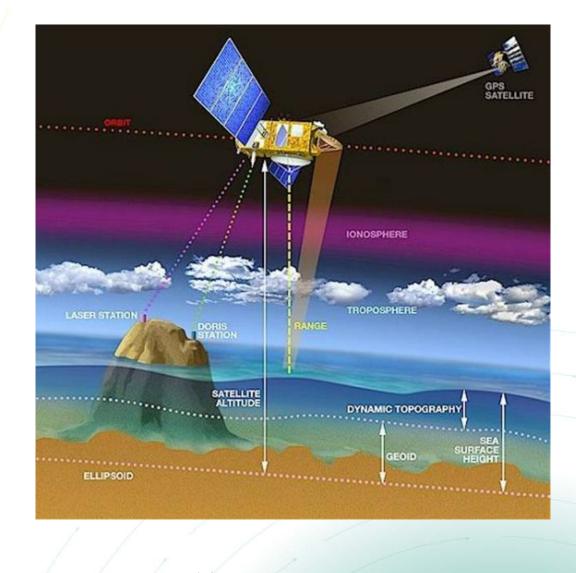
- Copernicus programme structure
 Sentinel 3:
 - Altimetry (SRAL)
 - SST (SLSTR)
 - Ocean Colour (OLCI)
- Data levels and selecting the right data for your work
- Practical


Copernicus Programme: free and open data!


Copernicus – Sentinel 3 marine data

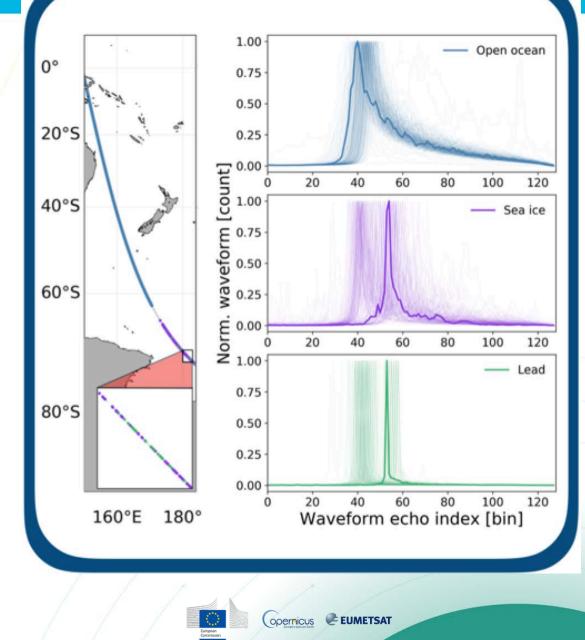
Sentinel 3

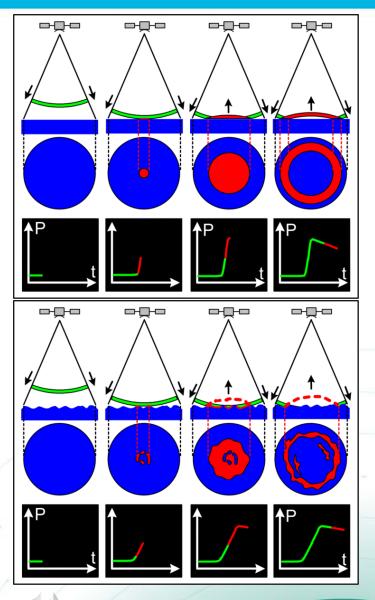
- SRAL (Altimetry)
- OLCI (Ocean Colour)
- SLSTR (SST)
- Builds on heritage but with improved resolution and sensors.
- 3a (since Feb 2016),
 3b (launched 25th April)
 - Currently in ESA managed tandem phase
- Operated and marine data processed by EUMETSAT
- Many applications for ocean research and commercial operations.



Sentinel-3A OLCI algal pigment concentration 14-27 June 2017, 14-day composite, OC4ME clear water algorithm

Theory - altimetry

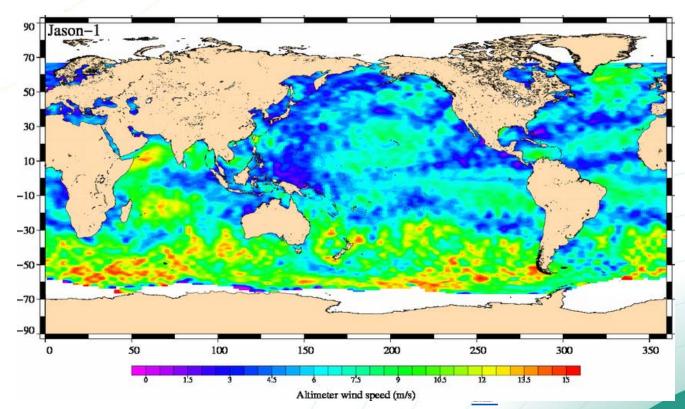

- Altimeters measure sea surface height
- Time it takes for a radar pulse emitted from sensor to travel to surface, reflect, and be received by satellite.
- Low Resolution Mode (LRM) or delayed doppler (SAR) mode.
- Corrections for wet troposphere, dry troposhere, and ionosphere.
- Errors due to retracking, tides (esp on shelf) and fallible geoid characterisation


Altimetry products

- Products derived from the altimetry waveform:
 - Sea-surface height is the difference in distance between the range (R) and the satellite altitude (S), relative to a terrestrial reference frame.
 - Need satellite location with precision, plus reference ellipsoid.
 - Retracking to get accurate R based on multiple waveforms. Tracking varies for ocean, coast, sea ice.

Altimetry products

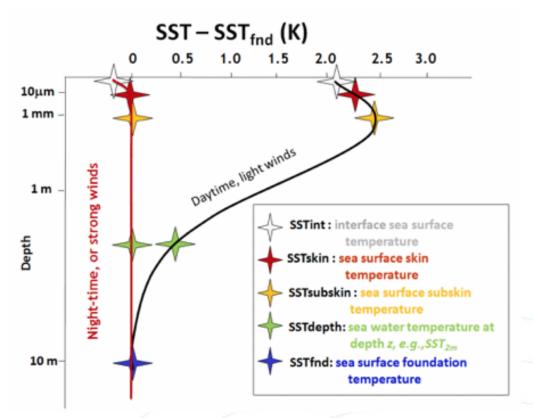
- Products derived from the altimetry waveform:
 - Significant wave height: derived from the slope of the leading edge of the altimetry waveform
 - SWH = mean value of highest third of waves



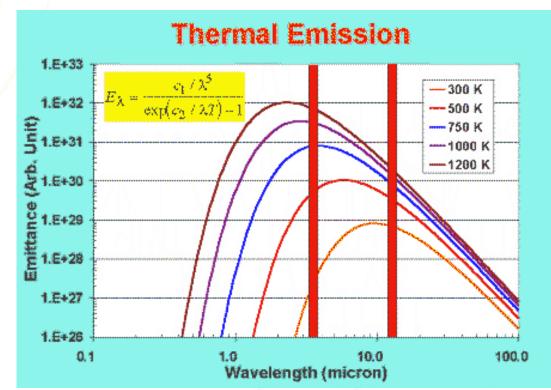
Altimetry products

Products derived from the altimetry waveform:

 Wind speed (not direction) – wind affects the roughness which affects the backscatter of the radar pulse and the amplitude of the waveform.


Sentinel 3 instruments: SRAL

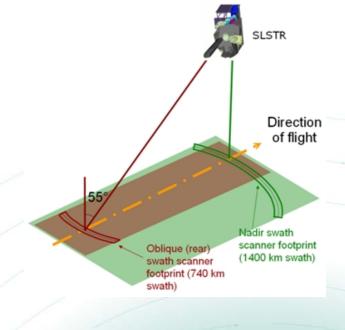
- Synthetic aperture Radar ALtimeter (SRAL) on
 - Operates in SAR mode following Cryosat 2 legacy.
 - Improved resolution.
- Relies on highly accurate positioning (GNSS laser reflectors and DORIS)
- Improved retracking for coastal applications.
- More appropriate for ice measurements.


Theory - SST

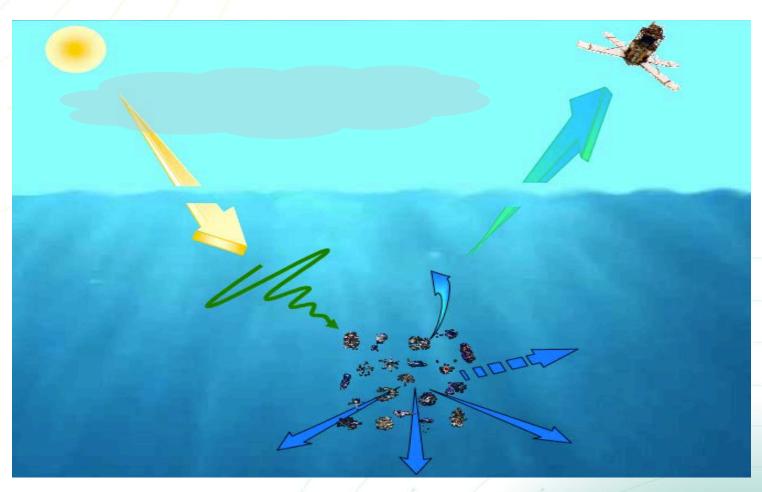
- Measured by radiometers, as with ocean colour, but using infrared or microwave part of the spectrum.
- SST is a little tricky to define, and measured differently by different satellite and in situ sensors.
 - IR and microwave measure different SST.
- GHRSST for best community resources on SST: www.ghrsst.org

Theory - SST

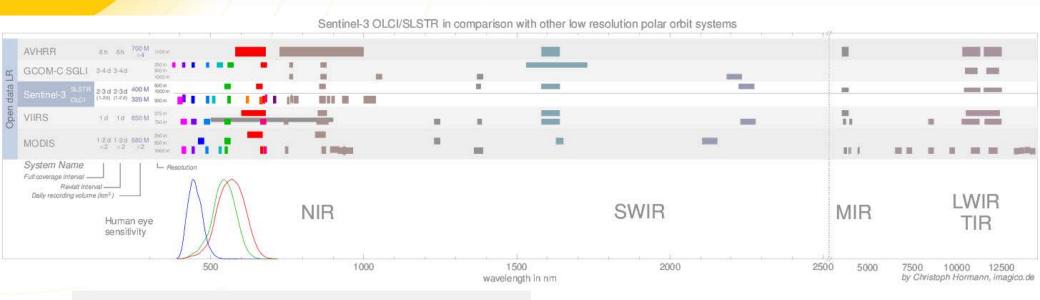
- Microwave can see through cloud but lower resolution (convergence of black body curves).
- Signal at sensor (once calibrated) = top of atmosphere brightness temperature.
- Must correct for atmosphere: newest approaches (e.g. SLSTR) use dual view.


SST products

- Excellent intercomparison of two types of SST here: http://www2.hawaii.edu/~jmaurer/sst/
- Merged SST products also exist. E.g.
 - GHRSST-PP
 - NASA MUR
 - Seek to get benefit of coverage/resolution/accuracy from combining both TIR and microwave

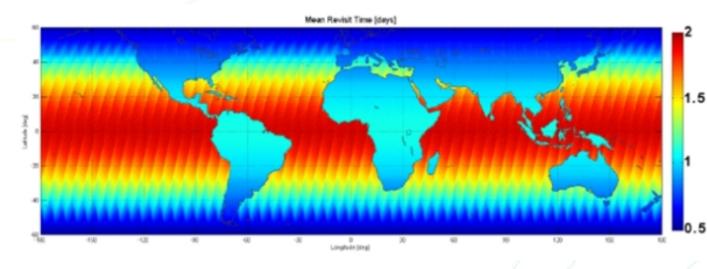

Sentinel-3 instruments: SLSTR

- Sea and Land Surface Temperature Radiometer
 - Dual view (better atmospheric correction)
 - 1km resolution
 - Two on board black bodies for calibration.
 - Accurate for each measurement
 - Highly stable cooled detectors
 - Use as a reference sensor for climate studies

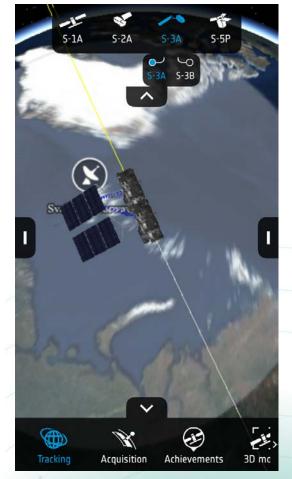

Theory – Ocean Colour

Covered earlier this week!

Sentinel-3 instruments: OLCI



OLCI global FR at 300m
21 spectral bands



Sentinel 3a and 3b

- Double the data better revisit time.
- Redundancy
- Opportunities for intercalibration
 - Currently in tandem phase
 - Test data available through S3VT

Copernicus Sentinel app

Processing Levels

Processing Level	Description
Level O	Reconstructed, unprocessed instrument and payload data at full resolution, with communications artefacts removed.
<i>Level 1* (a not always available)</i>	Reconstructed, unprocessed instrument data at full resolution, time- referenced, and annotated with ancillary information.
Level 2	Derived geophysical variables at the same resolution and location as Level 1 source data.
Level 3	Variables mapped on uniform space-time grid scales, usually with some completeness and consistency.
Level 4	Model output or results from analyses of lower-level data (e.g., variables derived from multiple measurements/gap filled).

General notes on formats/timeliness

SAFE format

- Folder containing NetCDF files.
- Also manifest file (.xml)
- Can download individual files or all
- Timeliness:
 - NRT Near Real Time
 - STC Short Time Critical
 - NTC Non Time Critical

Which data are best for me?

Advantages

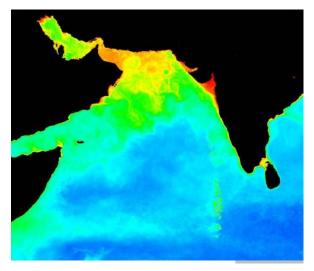
- Gives you the most control over processing (regionalisation)
- Makes visually pleasing 'real' pictures

- Not the 'water leaving' signal
- Need advanced knowledge of satellite processing to get usable data/products
- Processing to level 2 is computationally expensive and requires a fair amount of programming skill (more tools becoming available).

Level 1 OLCI image of the West Coast of India from EUMETSAT CMDS

Advantages

- Atmospheric correction already applied
 - actual ocean signal
- Land pixels removed (for ocean data)
- Still at the same high resolution offered by L1 data
- Geophysical products e.g. Chlorophyll, SST, SSH, SWH, WS.

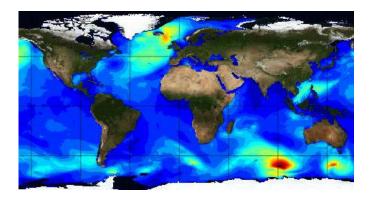

Level 2 OLCI image of the same granule from EUMETSAT CMDS

- Large file sizes
- Non-uniform grid makes visual comparisons difficult
- A.corr etc not always regionally appropriate
- Can remove data you might want!

Advantages

- Mapped onto a predefined spatiotemporal grid
- Easily make comparisons between different points in time
- Some merged products easier to use/more consistent

ESA OC-CCI level 3 monthly chlor-a composite (also in CMEMS)


- Usually lower spatial resolution than L1/L2 data - some detail lost
- Projected maps are inherently inaccurate
- Not everyone uses the same grid
- Products more generic, hard to create your own.

Advantages

- Very few/no gaps in the data
- Useful for some statistical analysis methods that don't cope well with gaps
- Broad definition includes forecasting - safety implications

- Data output from models generally has higher uncertainty
- Gap filled data may look convincing but sometimes tells the wrong story

CMEMS Level 4 wave field forecast data

Some places to access these data

Level 1 and 2

Recent data (last 12 months)

CODA (EUMETSAT): https://coda.eumetsat.int/ (requires registration)

- CODA rep for reprocessing
- Older data
 - EUMETSAT Data Centre: https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETS ATDataCentre/index.html
- Level 3
 - Ocean Colour CCI (ESA): https://oceancolour.org
- Level 3 and 4

Copernicus Marine Ecosystem Monitoring Service: http://marine.copernicus.eu/ (also requires registration)

NOTE: Sentinel 2 data comes from a different hub as the data is processed and distributed by ESA (2)

Advanced ways to get the S3 marine L1/L2 data

CODA batch download

- Currently only supports Linux systems
- Allows automated downloading of multiple files
- Specific instructions can be found in the CODA User Manual (Pg. 35)
 - https://coda.eumetsat.int/manual/CODA-user-manual.pdf

• EUMETCAST Satellite Link

- Secure delivery of data via encrypted satellite link
- Extremely useful in areas with difficulties accessing the internet
- Not as expensive as it sounds
- https://www.eumetsat.int/website/home/Data/DataDelivery/EU METCast/index.html

Where to get help/get involved

Help desk: contact <u>ops@eumetsat.int</u>
Forum:

http://forums.eumetsat.int/forums/forum/copernicus -marine-calval/

- Product handbooks/notices (see links in practical)
- Sentinel 3 validation team: <u>https://earth.esa.int/web/guest/pi-community/apply-for-data/ao-s?IFRAME_SRC=%2Fpi%2Fesa%3Fcmd%3Daodestal%26aoname%3DS3VT%26displayMode%3Dcenter%26targetIFramePage%3D%252Fweb%252Fguest%252Fpi-community%252Fapply-for-data%252Fao-s
 </u>

Opportunities through CMDS@EUMETSAT

- Further training opportunities: https://training.eumetsat.int/
- Funding for collaborative exchanges: <u>https://www.eumetsat.int/website/home/Technic</u> <u>alBulletins/Training/index.html</u>
- Present your use of Copernicus data (support funding attached to conferences).
- Please feel free to reuse/share code etc provided here. We welcome suggestions and contributions to build sets of open source tutorials!

Practical session

• Main aims:

- Look at how to download data from CODA: <u>https://coda.eumetsat.int/</u>
- Work with data in SNAP/Python
- Ask any questions!
- Documentation, code and test data here: <u>http://bit.ly/COPIOCCG</u>