From Inherent Optical Properties to Biogeochemical Properties

Emmanuel Boss, U. of Maine

- Forward and inverse problems.
- The basis for the relationship (theoretical, empirical, hybrid).
- Concept of a 'proxy'.
- <u>Bulk</u> vs. single particle property (FCM).
- Supportive lab studies (controlled compared to ocean).
- Extensive vs. intensive properties.
- Some intensive proxies involve ratio of proxies.
- Uncertainties...

Remember: this is the major reason the field of Oceanography cares about optics!!! IOP's: absorption, scattering, attenuation and fluorescence.

Why use optics?

Provides ability to observe oceans with high spatial and temporal resolution.

a. From space: global view of the ocean surface on a ~daily time scale.

b. In situ: sub-meter and sub-second.

Challenge: need to qualify the relationship between optical properties and the parameter of interest (including uncertainties).

Laundry list of optical proxies from IOPs:

Nitrate, Sulphides - UV absorption.

<u>DOM</u>, Hydrocarbons – fluorescence (UV-ex, VIS-em), absorption.

<u>PM, POC, C_{phyto}</u> - attenuation, scattering.

<u>Phytoplankton pigments</u> - fluorescence, absorption.

<u>Particulate size tendencies or distribution</u> - spectrum of attenuation and backscattering, near forward scattering, spikes.

<u>Particulate composition</u> (index of refraction) - back-scattering to scattering ratio, degree of polarization.

<u>Particulate packing</u> - attenuation + near-forward scattering.

<u>Bubbles</u>- angular scattering.

What is a proxy?

What are the hallmark of a good proxy?

- What should YOU do before you decide to use a proxy?
- How do you estimate the uncertainties associated with a proxy?

Be careful about 'extrapolating' proxies in space and time.

Direct and inverse approaches in optics:

What kind of approach is the use of an optical proxy?

Dissolved materials

- Scattering in weak -> attenuation ~ absorption.
- Operational definition -> smaller than a specific pore size.

Dissolved absorption depends on:

- Dissolved organic materials (e.g. Tea, Urea).
- Ions (Br⁻, HS⁻, NO₃⁻, NO₂⁻).

Dissolved materials (largest C pool!)

- Colored (chromophoric) dissolved organic material (CDOM, gelbstoff, gilvin, yellow substances)
- Most often organic in origin (NB: dissolved iron oxides has a similar visible spectrum).

Depth (m)

Relation to DOC varies:

Dissolved materials - composition

- Most often absorption spectrum is approximated by an exponential (other models apply, e.g. Twardowski et al., 2004). Exponent depends on [λ] and fitting method.
- Theoretical explanation continuum of carbon (π)-bonds of different lengths (Shifrin, 1988). The larger (more atoms) the molecules the flatter the absorption spectrum.

Dissolved materials - Fluorescence

- FDOM quantified by fluorescence. Does not require filtration.
- Excitation-emission matrices are used to characterize the FDOM - signature of processes and pools.

Га	bl	e	1.	
_				

Coble, 2009:	peak name ⁴³	Ex/Em	peak number ^{25,49}	source ^{25,49}	peak ^{47,48}
tyrosine-like, protein-like	В	275/305	8	autochthonous	γ
tryptophan-like, protein-like	Т	275/340	7	autochthonous	δ
unknown	N	280/370			
UVC humic-like	А	260/400-460	4	fulvic acid, autochthonous, terrestrial	α
UVC humic-like	Α	260/400-460	1	humic, terrestrial, allochthonous	α
UVC humic-like	А	260/400-460	3	humic, terrestrial, allochthonous	α
UVA marine humic-like	Μ	290-310/370-410	6	anthropogenic from wastewater and agriculture	β
UVA humic-like	C	320-360/420-460	5	terrestrial, anthropogenic, agriculture	α
pigment-like	Р	398/660			
UVA humic-like		250 (385)/504	2	fulvic acid, terrestrial, autochthonous	

Dissolved materials - Fluorescence

- FDOM and CDOM are predictors of DOC in coastal environments.
- In coastal environment both are linked to salinity through a dilution curve (which varies).

An aside: how do we fit? How do we determine goodness of fit?

Lets assume that we have a model

$$y = y(\lambda; \boldsymbol{a})$$

Try to minimize a merit function, e.g.:

$$\widetilde{\chi} = \sum_{i=1}^{N} \left| \frac{y(\lambda_i) - y(\lambda_i; a)}{\sigma_i} \right|$$

Regressions of type I and type Uncertainties in y only: II

y(x) = ax + b $\chi^{2} = \sum_{i=1:N} \left(\frac{y_{i} - a - bx_{i}}{\sigma_{i}} \right)^{2}$

Minimize χ^2 by taking the derivative of χ^2 wrt a and b and equal it to zero.

What if we have errors in both x and y?

$$y(x) = ax + b$$

$$\chi^{2} = \sum_{i=1:N} \frac{(y_{i} - ax_{i} - b)^{2}}{\sigma^{2}_{yi} + a^{2}\sigma^{2}_{xi}}$$

$$Var(y_{i} - ax_{i} - b) = \sigma^{2}_{yi} + a^{2}\sigma^{2}_{xi}$$

Minimize χ^2 by taking the derivative of χ^2 wrt a and b and equal it to zero.

An aside: How do we determine goodness of fit?

	Measurement F	requently Used Metrics	Why or Why Not for Ocean Color	Notes
$\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (M_i - O_i)^2}{n}}$	Accuracy	RMSE	 Distribution sensitive (assumes Gaussian) Often misinterpreted to be a simple estimate of average error No consistent relationship with average error magnitudes 	Other Sum of Squares based measures have same problems, such as standard deviation, standard error.
	Goodness of fit	r ²	 Can be misinterpreted if not given in context, because it lacks a response to bias and is sensitive to outliers Can misrepresent error when the range is small Can overstate variable relationships even with apparently random error 	5
Issues: Treatment of oultiers		Slope	 Can be misinterpreted, by reporting a good value for strongly-biased, low-precision models. Leverages (biased errors on either end) produce meaningless slopes Cannot address non-linear error Can allow tuning of a model to fit a particular region 	Common least squares regression gives biased slope when the x variables contain errors [9]
 Sensitivity to dynamic range 		Suggested Metrics	¥	
 Parametric vs. non-parametric 	Bias	Bias	 Quantifies the average difference between this estimator and expected value Estimates systematic error 	Often based on mean, however median error can also be used if a more robust metric is needed
$MAE = \frac{\sum_{i=1}^{n} M_i - O_i }{n}$	Accuracy	MAE	 Does not amplify outliers Accurately reflects error magnitude 	Compared to mean, median absolute estimates are less sensitive to outliers. Similar metrics include mean/ median absolute percent error
	N	ew Approache	5	-
	Point by point accuracy	% wins (Residuals)	Considers model failures Provides consistent head-to-head comparison of algorithms	Pairwise comparison Decision support metric
Seegers et al., 2018, OE	Temporal stability	CV Intra-pixel	 Estimates imagery pixel stability. Estimates algorithm spatial and temporal performance. Does not require satellite-to-<i>in situ</i> match-ups 	

What particles do we have in the ocean?

Phytoplankton

© 1993 Gertrud Cronberg

Variable in shape, size, pigment/cell and pigment composition.

 \rightarrow Variable in scattering and absorption properties

What particles do we have in the ocean?

Non-algal particles: Organic and inorganic.

Sand

clay

Aggregates <- packing

 \rightarrow Variable in scattering and absorption properties

http://www.aad.gov.au/default.asp

Particulate materials - Pigments

- More/less specific to certain life forms.
- Pigment have more/less specific absorption and fluorescence signatures.

Variability between species (good if you want to study 'who is there?'):

BUT, Variability due to growth conditions (light, nutrients):

- In the lab: controlled environment.
- In the field: No control, varied species.
 Which is more relevant?
 Low nutrients?

Pigments - Absorption Pigment in a cell absorb differently than when out of the cell - packaging, complexing, solvent effect.

cell Packaging: *a*/[chl] is function of size and [chl] Duysens (1956)

Richness of peaks \rightarrow spectroscopic techniques.

Derivative analysis \rightarrow

Similarity index used for HAB detection

Hoepffner and Sathyendranath, 1991, 1993.

Decomposition into "size"based irical empspectra → PFTs

		-		
Community	$S_{\langle f \rangle}$	r^2	No. of samples	$\langle a_{ph}^* angle \ (m^2 mg^{-1})$
P-Pro	1.000	nr	7	0.0259
P-Syn	0.663	0.993	9	0.0195
U-flag1	0.598	0.979	20	0.0160
U-flag2	0.369	0.992	4	0.0180
U-flag3	0.558	0.995	14	0.0181
U-unkw	0.491	0.992	9	0.0170
U-Phae	0.664	0.982	12	0.0175
N-din	0.287	0.987	7	0.0111
N-cfd1	0.370	0.981	8	0.0126
N-cfd2	0.266	0.963	5	0.0169
N-cfd3	0.151	0.954	3	0.0138
N-flag	0.442	0.995	11	0.0136
M-cfd1	0.002	0.989	8	0.0067
M-cfd2	0.014	0.993	15	0.0076
M-din1	0.025	0.987	2	0.0059
M-din2	0.000	0.990	2	0.0072

 $\hat{a}_{\langle \mathrm{ph} \rangle}(\lambda) = [S_{\langle \mathrm{f} \rangle} \cdot \bar{a}_{\langle \mathrm{pico} \rangle}(\lambda)] + [(1 - S_{\langle \mathrm{f} \rangle}) \cdot \bar{a}_{\langle \mathrm{micro} \rangle}(\lambda)]$

Ciotti et al., 2002

Pigments - Fluorescence

Once absorbed, some photon are emitted at a different wavelength.

Strength and wavelength of fluorescence depends on species, growth condition and light exposure (NPQ).

Proctor and Roesler, 2010

Pigments - Fluorescence

Falkowski and Raven, 1996

Pigments - Fluorescence

Despite these issues, can be very useful:

From Inherent Optical Properties to Biogeochemical Properties <u>Summary of first lecture</u>

- In this lecture we looked at absorption and fluorescence (CDOM and particles) and the proxy derived by them.
- Utility of a proxy is application dependent (tolerance for uncertainties varies).
- Always test the applicability of a proxy before/while you use it (particularly for those derive with a large degree of empiricism - many of our sensors measure proxies!).
- Tomorrow scattering and attenuation.