

Atmospheric correction of ocean color images

Cédric Jamet Laboratoire of Oceanology and Geosciences Wednesday, 27 July 2016

About me

- PhD « Atmospheric correction of SeaWiFS images »: jan. 2004
- Associate professor since sept.
 2006 at the Université du Littoral-Côte d'Opale and the Laboratory of Oceanology and Geosciences
- Chairman of an IOCCG WG on Evaluation of atmospheric correction algorithms over optically-complex waters
- Evaluation and improvements of atmospheric correction over optically-complex waters
- Retrieval of ocean color parameters using optimization and neural networks algorithms
- Lidar for ocean color

How to interpret ocean color images?

The surface ocean color is regulated by the optical properties of the pure water and of those of the different particulate and dissolved matters that are in the surface layer

 \rightarrow The most clearest seawaters absorb the red light and transmit and scatter the light at the shortest wavelengths (blue waters)

 \rightarrow Phytoplancton contains pigments such as chlorophyll (and other accessories pigments) that absorb at other wavelengths and that contribute to the green color of the oceans

 \rightarrow In the coastal waters, the inorganic suspended matter backscatters the light contributing to the green, yellow and brown of the ocean color

As a consequence, the color (pure water included), can be measured on the basis of the visible spectrum emitted by the ocean surface

The "clear" ocean (A) has a max in blue and values close to zero in yellow and red

More phytoplankton is present in the water, more the contribution toward the green is important (B).

In the coastal waters, with high concentrations of organic detritus and inorganic particles, the maximum shifts to the red (C).

The surface reflectance, $Rrs(\Lambda)$, (called Remote-Sensing reflectance) is a function of the back-scattering and absorption coefficients of the different optically active components of seawater:

 $\mathsf{R}(\lambda) = G \cdot \mathsf{b}(\lambda) / \mathfrak{a}(\lambda)$

with G, a parameter that depends of the incident illumination

\rightarrow The remote-sensing reflectance is not the final product but the accuracy of its estimation impacts the quality of the ocean color products

 \rightarrow Need for developing inversion models of \mathbf{R}_{rs} for obtaining parameters of interest

Ocean sensor remote sensors

The remote sensors on-board satellite called "ocean color" are the only tools that measure these parameters over several years and synoptically

History of atmospheric correction

- Color photographs obtained by spacecraft
- Clarke et al. (1970): measurements of radiance spectra from aircraft → Detection of chl-a + atmos. effects
- Gordon (1978; 1980): singlescattering AC for CZCS
- Gordon and Wang (1994): mutiple-scattering AC for SeaWiFS
- Coastal waters + absorbing aerosols

THE COLOR OF THE ATMOSPHERE WITH THE OCEAN BELOW

A HISTORY OF NASA'S OCEAN COLOR MISSIONS

JAMES ACKER

Ocean color remote sensors

Ocean color remote sensors

- <u>First sensor:</u>
 CZCS (1978-1986)
- <u>Successors:</u> *PolDER 1* (1996-1997)
 PolDER 2 (2003)
 SeaWiFS (1997-2010)
- Followers: MODIS (2002-) MERIS (2002-2012)
- <u>New generation</u> *GOCI (2010-) VIIRS (2011-) OLCI (2016-)*

http://ioccg.org/sensors_ioccg.html

Ocean Color Radiometry (OCR)

Goal: To provide quantitative data of bio-optical properties of the global ocean (IOPs, Chl, POC, CDM, species, ...)

How: Remote sensing of the water leaving radiance, L_w , in the visible part of the spectrum

Main issue: Atmospheric correction

http://oceancolor.gsfc.nasa.gov/

$\rho_t(\lambda)$ = top of atmosphere reflectance

 $\rho_{\rm w}(\lambda)$ = water-leaving reflectance (ocean color)

http://kalicotier.gis-cooc.org/

http://oceancolor.gsfc.nasa.gov/

 $\rho_t(\lambda)$ = top of atmosphere reflectance

 $\rho_w(\lambda)$ = water-leaving reflectance (ocean color)

Biogeochemical parameters

http://kalicotier.gis-cooc.org/

 $\rho_{w}(\lambda)$ = water-leaving reflectance (ocean color)

http://oceancolor.gsfc.nasa.gov/

 $\rho_{+}(\lambda)$ = top of atmosphere reflectance

http://kalicotier.gis-cooc.org/

 $\rho_{w}(\lambda)$ = water-leaving reflectance (ocean color)

()) - top of atmosphere vollect

http://kalicotier.gis-cooc.org/

ttp://kalicotier.gis-cooc.org/

Basics of radiometry for remote sensing

The studied target can either emitt a radiation (radiance or emittance) or be illuminated by a source (irradiance)

Radiance (Wm⁻²sr⁻¹): $\mathcal{L}(\theta, \theta_0, \Delta \phi, \lambda)$

Emittance (Wm⁻²): $M(\lambda)$ $M = \int_{half snace} L \cos\theta d\Omega$ Downwelling Irradiance (Wm⁻²): $E_d(\lambda)$ $E_d(\theta_0,\lambda) = \int_{\Xi^d} L(\theta_0,\theta,\Delta\phi) \cos\theta d\Omega$ Remote sensing reflectance (sr^{-1}) : $R_{rs} = L_{\mu}/E_{d}$ (RLw) **Radiance-to-reflectance:** $\rho = \frac{\pi . L}{F_{0}. \mu_{0}}$

Normalized $\rho_w = \pi$. Rrs

Radiative Transfer Equation (RTE)

Analysis of ocean color images (1)

- Estimation of the chlorophyll-a concentration
- → estimation of the quantity of light that leaving the seawater $\rho_w(L_w, R_{rs}, nL_w n\rho_w)$

When the chlorophyll-a concentration increases, there is less light in the blue and more in the green wavelenghts

• Estimation of the quantity of light that leaving the seawater \rightarrow Estimation of the contribution of impact of aérosols ρ_A

It's the step called « Atmospheric Correction »

Analysis of ocean color images(2)

Use of several spectral bands for the

determination of each component of the TOA signal

$$L_{t} = L_{r} + L_{a} + L_{ra} + L_{g}^{TOA} + L_{sky}^{TOA} + L_{wc}^{TOA} + L_{w}^{TOA}$$
$$L_{t} = L_{r} + L_{a} + L_{ra} + T.L_{g} + t.L_{wc} + t.L_{w}$$

$$L_t - L_r + L_a + L_{ra} + I \cdot L_g + \iota \cdot L_{wc} + \iota$$

All these parameters are function of the viewing conditions:

- Sun angles θ_s
- Satellite viewing angles θ_{v}
- Azimuthal angles Φ

Propagagation of the light through the atmosphere

Absorption spectrum of the atmosphere.

$$L_{t} = L_{r} + L_{a} + L_{ra} + L_{g}^{TOA} + L_{sky}^{TOA} + L_{wc}^{TOA} + L_{w}^{TOA}$$

$$L_{t} = L_{r} + L_{a} + L_{ra} + T.L_{g} + t.L_{wc} + t.L_{w}$$

Effect of the atmosphere

$$L_{t} = (L_{r} + L_{a} + L_{ra} + T.L_{g} + t.L_{wc} + t.L_{w}).t_{gv}.t_{gs}.f_{p}$$

With t_{gv} : transmittance by atmospheric gases in the viewing direction t_{gs} : transmittance by atmospheric gases in the Sun's direction f_p : instrument polarization-correction factor

$$L_{t}(\lambda) = L_{r}(\lambda) + (L_{a}(\lambda) + \rho_{ra}(\lambda)) + tL_{wc}(\lambda) + TL_{g}(\lambda) + tL_{w}(\lambda)$$

wind speed and atmospheric pressure (e.g., Wang, 2002 and 2005;

Ahmad and Frazer, 1982)

~ wind, sun and viewing

angle

(e.g., Cox and Munk, 1954; Frouin et al., 1997; Wang and Bailey, 2001; Moore et al., 2000)

Desired quantity in ocean color remote sensing

Rayleigh-corrected reflectance:

$$\mathbf{L}_{rc}(\boldsymbol{\lambda}) = \mathbf{L}_{t}(\boldsymbol{\lambda}) - \mathbf{L}_{r}(\boldsymbol{\lambda}) - t\mathbf{L}_{wc}(\boldsymbol{\lambda}) - T\mathbf{L}_{g}(\boldsymbol{\lambda}) = (\mathbf{L}_{a}(\boldsymbol{\lambda}) + \mathbf{L}_{ra}(\boldsymbol{\lambda})) + t\mathbf{L}_{w}(\boldsymbol{\lambda})$$

IOCCG, 2010

Goal: 5% for absolute radiances and 2% for relative reflectances

Specular reflection "Sun Glint"

Specular reflector

How to take into account Sun glint?

 \rightarrow Determination of the contaminated areas based on geometrical criteria

Calculation of the radiance associated to glint based on:

Probability function of the waves orientation as a function of wind + Fresnel law

Cox, C., W. Munk: Statistics of the sea surface derived from sun glitter. *J. Mar. Res.*, 13, 198-208, 1954.

redrawn from Wang, M., S. Bailey: Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products. *Appl. Opt.*, 4790-4798, 2001.

 $L_{\sigma}(\lambda) = F_0(\lambda)T_0(\lambda)L_{GN}$

 L_{GN} is glint radiance normalized to no atmosphere & $F_0 = 1$

Need for ancillary data: surface wind speed and geometries of Sun & sensor

In practical:

- -Most of sensors tilted
- If not, regions should be masked based on a threshold on L_{GN}

Cox and Munk model still among the best (Zhang and Wang, 2010)

Fig. 1. Normalized sun glint radiance L_{GN} as a function of the sensor-viewing angle (solar zenith angle, 40°) and for (a) various relative azimuthal angles with surface wind speed of 5 m/s and (b) various surface wind speeds with a relative azimuthal angle of 20°.

SeaWiFS aerosol optical thickness (S1998317034114)

Wang and Bailey, 2001

Goal: 5% for absolute radiances and 2% for relative reflectances

Foam "White Caps"

Stramska & Petelski, "Observations of oceanic whitecaps in the north polar waters of the Atlantic." *J. Geophys. Res.*, 108, 3086, 10.1029/2002JC001321, 2003.

Average wind speed

Fig. 1. $[\rho_{wc}]_N = r_{wc}f$ as a function of wind speed and atmospheric stability. For the Monahan and O'Muircheartaigh¹⁷ relationship (dashed curves), the lower the value of $[\rho_{wc}]_N$, the greater the stability of the atmosphere. The solid curve is from Ref. 21, and the circles are from Ref. 11.

Gordon & Wang, Appl. Opt., 33, 7754-7763, 1994.

Whitecaps appears when the wind speed is higher than 3 m.s⁻¹ (2-3% of the oceanic surface) Their optical signature is linked to wind speed as a function of $W^{3.52}$.

The whitecaps reflectance is estimated using empirical relationships that allow to obtain reasonable estimates for wind speeds < 10-12 m.s⁻¹.

Whitecap reflectance is spectrally dependent (Frouin et al., 1996; Moore et al., 1998) ³⁸

Goal: 5% for absolute radiances and 2% for relative reflectances

Rayleigh contribution

- Due to gas molecules in the atmosphere
- Dependent of size of the molecular scatterer to the incident wavelength (<
 ٨)

Reason why the sky is blue

Rayleigh contribution

• Lr can be 50-90% of Lt !!!!

IOCCG, 2010

Rayleigh contribution

- Lr can be 50-90% of Lt !!!!
- Rayleigh optical thickness at 1 atmosphere of pressure:

 $\tau_{r0} = 0.0021520 \Biggl(\frac{1.0455996 - 341.29061\lambda^{-2} - 0.90230850\lambda^2}{1.0 + 0.0027059889\lambda^{-2} - 85.968563\lambda^2} \Biggr)$

with λ in micrometers

• <u>Pressure effects:</u>

$$\tau_r(P,\lambda) = \frac{P}{P_0} \tau_{r0}(P_0,\lambda)$$

Fig. 1. Examples of the TOA Rayleigh-scattering radiances $(F_{d}(\lambda) = 1)$ for a case with solarzenith angle of 60°, sensor-zenith angle of 20°, and relative-azimuth angle of 90° for (a) Rayleigh radiance as a function of the wavelength, (b) Rayleigh Stokes components as a function of the wavelength, (c) Rayleigh Stokes components as a function of Rayleigh optical thickness, and (d) the degree of linear polarization (%) as a function of the wavelength.

Rayleigh contribution

<u>Rayleigh radiance:</u>

$$L_r(P) = L_r(P_0) \frac{1 - \exp\left[-C.\tau_r / \cos\theta_v\right]}{1 - \exp\left[-C.\tau_{r0} / \cos\theta_v\right]}$$

with C a function of $\tau_{\rm r}$

- Rayleigh scattering radiance can be computed accurately
- Need for wind speed (surface roughness) and atmospheric pressure

\rightarrow Ancillary data

 \rightarrow Atmospheric pressure: NCEP

 \rightarrow Wind speed: NCEP

Goal: 5% for absolute radiances and 2% for relative reflectances

no one uses the "black pixel assumption" anymore

Analysis of ocean color images(2)

Use of several spectral bands for the

determination of each component of the TOA signal

Atmospheric correction

"Standard approach" (Gordon 1997)

L_{toa}, 412 nm

Extrapolation of aerosol

Models to the visible

SeaWiFS, Level-1, 10 Sep. 1998, N. Adriatic

'true-color'

There are other possibilities !!!

The classical approach:

- The black pixel assumption: $\rho_w=0$ in the NIR (due the high Pure sea water absorption) (gordon et al., 1997).
- ρ_a is then estimated at two NIR wavelengths which allows to retrieve the type of aerosols, and the concentration using look-up tables established from radiative transfer computations.
- This information is extrapolated towards the visible domain to retrieve $\rho_w(\lambda)$ in the visible.

The main problems:

- Presence of absorbing aerosols (Antoine et al., 2006)
- Bottom albedo in clear shallow waters
- Presence of sediment in coastal areas ($\rho_w \neq 0$ in NIR)
- $\rho_w \neq 0$ in NIR for eutrophic waters (Siegel et al., 2001)

<u>Solutions</u>

Solving simultaneously the atmospheric and oceanic radiative system (Iterative procedures (Siegel et al., 2001), neuronal network approaches (Jamet et al., 2005), NIR similarity spectrum (Ruddick et al., 2000))

$\begin{array}{ll} & \mbox{Standard processing (1/2)} \\ & \mbox{In the infra-red,} & \rho_t(\lambda) \text{-} \rho_r(\lambda) \text{=} \rho_A(\lambda) \end{array}$

Hypothesis: ocean totally absorbing $\rho_w(\lambda)$ negligeable

Estimation of aerosol optical properties and model:

Estimation of ρ_{A} and t

τ, α

• Small particles (solid or liquid) in suspension in the atmosphere larger than gas molecules

From M. Choel, 2005

From www.chile.ird.fr/

Desert dust in the Mediterranean Sea

Desert dust in the eastern part of the Atlantic Ocean (26 February 2000

Haze aerosol in the North Atlantic (4 May 2001)

- Small particles (solid or liquid) in suspension in the atmosphere larger than gas molecules
- Defined by three parameters:
 - Optical thickness τ : proxy of aerosol concentration in

the air column
$$\tau_a(\lambda) = \int_z^\infty \sigma_{ext}(\lambda) dz$$

with $\sigma_{ext}(\lambda)$ the extinction coefficient:

$$dL(\lambda) = -L(\lambda).\sigma_{ext}(\lambda)dz$$

- Small particles (solid or liquid) in suspension in the atmosphere larger than gas molecules
- Defined by three parameters:
 - Optical thickness τ : proxy of aerosol concentration in the air column
 - Angström coefficient α : proxy of aerosol size

$$\frac{\tau_a(\lambda_0)}{\tau_a(\lambda)} = \left(\frac{\lambda_0}{\lambda}\right)^{-\alpha}$$

- Small particles (solid or liquid) in suspension in the atmosphere larger than gas molecules
- Defined by three parameters:
 - Optical thickness τ : proxy of aerosol concentration in the air column
 - Angström coefficient α : proxy of aerosol size
 - Single-scattering albedo ω: proxy of absorption
 properties (ratio of scattering coefficient to the
 extinction coefficient)

- Small particles (solid or liquid) in suspension in the atmosphere larger than gas molecules
- <u>Defined by three parameters</u>:
 - Optical thickness τ : proxy of aerosol concentration in the air column
 - Angström coefficient α : proxy of aerosol size
 - Single-scattering albedo ω : proxy of absorption properties (ratio of scattering coefficient to the extinction coefficient)
 - Refractive index m_r -i. m_i : m_i related to particle absorption

 Small particles (solid or liquid) in suspension in the atmosphere larger than gas molecules

30

330

Ũ

Other important parameters:

Aerosol Size Distributions

Log-normal distributions

NASA Aerosol models

- Shettle and Fenn (1979)
 - Lognormal distribution of tropospheric and maritime aerosols

$$n(D) = \sum_{i=1}^{2} n_i(D)$$

$$n_i(D) = \frac{dN_i(D)}{dD}$$

= $\frac{N_i}{D.\log_e(10).\sqrt{2\pi\sigma_i}} \exp\left[-\frac{1}{2}\left(\frac{\log_{10}(D/D_i)}{\sigma_i}\right)^2\right]$

NASA Aerosol models

Shettle and Fenn (1979)

- Lognormal distribution of tropospheric and maritime aerosols
- Representative of tropospheric, coastal, maritime and oceanic aerosols

Aerosol model	Relative humidity (%)	Symbol
Oceanic	99	099
Maritime	50, 70, 90, 99	M50-M99
Coastal	50, 70,,90, 99	C50-C99
Tropospheric	50, 90, 99	Т50-Т99

New NASA Aerosol models

• <u>Ahmad et al. (2010):</u>

- Based on AERONET models
- Bimodal lognormal distributions (narrower than previous models)

$$\frac{dV(r)}{d\ln r} = \sum_{i=1}^{2} \frac{V_{oi}}{\sqrt{2\pi\sigma_i}} \exp\left[-\left(\frac{\ln r - \ln r_{voi}}{\sqrt{2\sigma_i}}\right)^2\right]$$

with Voi: volume of particles r_{voi} : volume geometric mean radius σ_i : geometric standard deviation

New NASA Aerosol models

- <u>Ahmad et al. (2010):</u>
 - Based on AERONET models
 - Bimodal lognormal distributions (narrower than previous models)

New NASA Aerosol models

• <u>Ahmad et al. (2010):</u>

- Based on AERONET models
- Bimodal lognormal distributions (narrower than previous models)
- Modal radii and refractive indices as a function of relative humidity
- Eight relative humidity values: 30, 50, 70, 75, 80, 85, 90 and 95%
- For each RH: 10 distributions
- \rightarrow 80 aerosol models

atmospheric correction & the "black pixel" assumption

Courtesy of J. Werdell

Black pixel assumption (Gordon and Wang, 1994)

Based on hypothesis:

Ocean is totally absorbant in NIR

MERIS/OLCI AC based on same principle (Antoine and Morel, 1999):

> SF aerosol models + Dust model

Standard processing (2/2) In the visible, $(\rho_t(\lambda) - \rho_r(\lambda) - \rho_A(\lambda))/t(\lambda) = \rho_w(\lambda)$

Bio-optical algorithm chl-a =
$$f(\rho_w(\lambda))$$

Hypothesis: 1. Open Ocean

2. Non or weakly absorbing aerosols atmosphere and ocean not coupled

- ρ_{t} : total (measured)
- ρ_r : Rayleigh (known)
- ρ_a : aerosols (unknown)
- ρ_{ra} : Rayleigh-aerosols (unkown)
- ρ_{wc} : foam (modelled/wind)

 ρ_w : water (unknown, 10% of r_t)

 $\boldsymbol{\rho}_g$: glitter (masked or modelled)

Goal: 5% for absolute radiances and 2% for relative reflectances

Direct and diffuse transmittance

• <u>Direct transmittance</u>:

$$T(\theta_{v}, \lambda) = exp[-(T_{r}(\lambda) + T_{oz}(\lambda)T_{a}(\lambda))/cos(\theta_{v})]$$

• <u>Diffuse transmittance:</u>

$$t(\theta_{v},\phi_{v}) = \frac{\rho_{w}(\theta_{v},\phi_{v})_{TOA}}{\rho_{w}(\theta_{v},\phi_{v})}$$

Direct and diffuse transmittance

<u>Diffuse transmittance:</u>

$$t(\theta_{v},\phi_{v},\lambda) = \exp\left[-\left(\frac{\tau_{r}(\lambda)}{2} + \tau_{oz}(\lambda)\right)\left(\frac{1}{\mu_{v}}\right)\right]t_{a}(\theta_{v},\lambda)$$

with

$$t_{a}(\theta_{v},\lambda) = \exp\left[-\frac{\left[1-\omega_{a}(\lambda)F_{a}(\mu_{v},\lambda)\right]\tau_{a}(\lambda)}{\mu_{v}}\right]$$

where

 $F_a(\mu_{_V},\lambda)$ is related to the scattering phase function of the aerosol
Chlorophyll-a concentration: Historical product of remote sensing of ocean color

Source :http://oceancolor.gsfc.nasa.gov/

Monthly variability of the chlorophyll-a concentration in the Mediterranean Sea for 1999

Spring

Summer

Fall

Winter

Seasonal mean of the chlorophyll-a concentraiton between 1997 and 2006 from SeaWiFS

Secondary products: Aerosol optical properties

POLDER Data : CNES/JAXA Processing : LOA / LSCE

POLDER Data : CNES/JAXA Processing : LOA / LSCE

Seasonal variability of aerosols in the Mediterranean Sea in 2000

χ

July

remote sensing of turbid, coastal waters is difficult

temporal & spatial variability

satellite sensor resolution satellite repeat frequency validity of ancillary data (SST, wind) resolution requirements & binning options

straylight contamination (adjacency effects)

non-maritime aerosols (dust, pollution) region-specific models required? absorbing aerosols

suspended sediments & CDOM

complicates estimation of $R_{rs}(NIR)$ complicates BRDF (f/Q) corrections saturation of observed radiances

anthropogenic emissions (NO₂ absorption)

no one uses the "black pixel assumption" anymore

approaches to account for $R_{rs}(NIR) > 0 sr^{-1}$ overlap many approaches exist, here are a few examples: • assign aerosols (ϵ) and/or water contributions (Rrs(NIR)) e.g., Hu et al. 2000, Ruddick et al. 2000 use shortwave infrared bands e.g., Wang & Shi 2007 correct/model the non-negligible R_{rs}(NIR) Aiken et al. 1999 MERIS/OLCI Bailey et al. 2010 NASA Jiang and Wang 2014 MODIS Shanmugam, 2012 any sensor Wang et al. 2012 GOCI

use a coupled ocean-atmosphere optimization

e.g., Moore et al., 1999; Chomko & Gordon 2001, Stamnes et al. 2003, Jamet et al., 2005, Brajard et al., 2006a, b, 2008, 2012; Ahn and Shanmugam, 2007; Kuchinke et al. 2009; Steinmetz et al., 2010;

Other

e.g., Chen et al., 2014; Doerrfer et al., 2007; He et al., 2013; Mao et al., 2013, 2014; Schroeder et al., 2007; Singh and Shanmugam, 2014

approaches to account for $R_{rs}(NIR) > 0 sr^{-1}$ overlap

many approaches exist, here are a few examples:

• assign aerosols (ϵ) and/or water contributions (Rrs(NIR))

e.g., Hu et al. 2000, Ruddick et al. 2000

use shortwave infrared bands

e.g., Wang & Shi 2007 (similar than GW94 but using SWIR bands to determine aerosols)

• correct/model the non-negligible $R_{rs}(NIR)$

Aiken et al. 1999MERIS/OLCIBailey et al. 2010NASAJiang and Wang 2014 MODISShanmugam, 2012any sensorWang et al. 2012GOCI

use a coupled ocean-atmosphere optimization

e.g., Moore et al., 1999; Chomko & Gordon 2001, Stamnes et al. 2003, Jamet et al., 2005, Brajard et al., 2006a, b, 2008, 2012; Ahn and Shanmugam, 2007; Kuchinke et al. 2009; Steinmetz et al., 2010;

• Other

e.a. Chen et al. 2014: Doerrfer et al. 2007: He et al. 2013: Mao et

NASA algorithm (GW94; Bailey et al., 2010)

Based on hypothesis:

- Iterative process
- NIR bio-optical model
- non-zero Lw(NIR) can be reconstructed from Lw(Λ) in the red bands (667 nm) assuming a power-law function \rightarrow Spectral dependence of $b_{bp}(\Lambda)$
- Use GW94 as first guess

MUMM algorithm (Ruddick et al., 2000; 2006

Based on hypothesis:

Spatial homogeneity of aerosol and water-leaving reflectances ratio in the NIR

\rightarrow Definition of two parameters

 \rightarrow a (ocean): constant (sensor dependent) \rightarrow ε (aerosol): constant over region of interest → needs to be calculated for each image

Three steps AC

Polymer algorithm (Steinmetz et al., 2011)

- 1. Correction for gaseous absorption and Rayleigh scattering
- 2. Spectral matching using a model for atmosphere and glint + ocean reflectance:

$$\rho_{\text{TOA}}^{\prime}(\lambda) = \underbrace{T(\lambda)c_0 + c_1\lambda^{-1} + c_2\lambda^{-4}}_{\text{Atmosphere}} + \underbrace{t(\lambda)\rho_{w,\text{mod}}^+(\lambda,\text{chl}, b_{bs})}_{\text{Ocean water}}$$

- Simultaneous optimization of 5 parameters
- Using the whole sensor spectrum (from 412 to 865 nm)
- 3. Iterative optimization using Nelder-Mead simplex method

Example of sun glint correction Comparison of 2 scenes taken one day apart

With sun glint

RGB composite

May 14, 2007

Without sun glint

RGB composite May 15, 2007

Polymer algorithm

Adaptation of the optimization technique used in the POLYMER algorithm (Steinmetz et al., 2010) for coastal regions (ANR GlobCoast)

Fig. 1. MERIS 3-day composite chlorophyll retrieval (March 20th to 22nd 2003) processed with POLYMER (top) and with the standard MEGS processor (bottom). The coverage for POLYMER is doubled (73% compared to 355%) mainly due to retrieval under sun glint conditions.

Müller et al. (2014)

Spectral matching/optimization algorithm

- Chomko et al. (1998); Kuchinke et al. (2009)
- Jamet et al. (2004); Brajard et al. (2010)
- Li et al. (2003); Stamnes et al. (2005)

- Ocean and atmosphere are coupled
- Use of LUT or NN or ... for simulating (La+Lra, t, Lw)
- Allow to deal with absorbing aerosols/coastal waters

Which coverage?

	Average percentage cover of the ocean (standard deviation)					
	SeaWiFS	MODIS-AQUA	MERIS	MERGED		
Daily	14.58 (1.03)	11.81 (1.03)	7.77 (1.05)	25.22 (1.88)		
4-Day	41.62 (4.67)	33.91 (2.97)	25.18 (4.97)	56.98 (6.24)		
8-Day	59.06 (6.72)	51.31 (4.52)	40.23 (6.90)	72.50 (7.59)		
Monthly	82.95 (9.79)	79.43 (4.75)	73.34 (9.47)	87.69 (8.87)		

Validation of atmospheric correction (1/10)

- <u>Match-ups definition</u>:
 - Co-location of in-situ dataset and satellite images
 - Time difference criteria: open of coastal waters? +/- 1h or +/- 3h?
 - Extraction of satellite data over a box of several pixels: 3x3 or 5x5 or ...?
 - Calculation of satellite mean values only for valid pixels:

Different types of satellite data

Level O

Level O data are unprocessed instrument/payload data at full resolution. Any artifacts of the communication (e.g. synchronization frames, communication headers) of these data from the spacecraft to the ground station have been removed. These data are the most raw format available, and are only provided for a few of the missions that we support.

Level 1A

Level 1A data are reconstructed, unprocessed instrument data at full resolution, time-referenced and annotated with ancillary information including radiometric and geometric calibration coefficients and georeferencing parameters (e.g. platform ephemeris data) computed and appended but *not* applied to the Level 0 data. It is this last point that makes Level 1A the preferred archival data level. If the sensor calibration changes, the data *do not need to be reacquired* — no mean feat where large data sets are concerned. The same is not true for Level 1B data (described below) which must be replaced every time the sensor calibration changes.

Level 1B

Level 1B data are Level 1A data that have had instrument/radiometric calibrations applied.

Level 2

Level 2 data consist of derived geophysical variables at the same resolution as the source Level 1 data. These variables are grouped into a few product suites

Level 3

Level 3 data are derived geophysical variables that have been aggregated/projected onto a well-defined spatial grid over a well-defined time period.

Different types of satellite data

Level O

Level O data are unprocessed instrument/payload data at full resolution. Any artifacts of the communication (e.g. synchronization frames, communication headers) of these data from the spacecraft to the ground station have been removed. These data are the most raw format available, and are only provided for a few of the missions that we support.

Level 1A

Level 1A data are reconstructed, unprocessed instrument data at full resolution, time-referenced and annotated with ancillary information including radiometric and geometric calibration coefficients and georeferencing parameters (e.g. platform ephemeris data) computed and appended but *not* applied to the Level 0 data. It is this last point that makes Level 1A the preferred archival data level. If the sensor calibration changes, the data *do not need to be reacquired* — no mean feat where large data sets are concerned. The same is not true for Level 1B data (described below) which must be replaced every time the sensor calibration changes.

Level 1B

Level 1B data are Level 1A data that have had instrument/radiometric calibrations applied.

Level 2

Level 2 data consist of derived geophysical variables at the same resolution as the source Level 1 data. These variables are grouped into a few product suites *Level 3*

Level 3 data are derived geophysical variables that have been aggregated/projected onto a well-defined spatial grid over a well-defined time period.

Flags system

Examples of flags when processing SeaWiFS, MODIS and VIIRS data With the NASA SeaDAS software

> In red: Flags for L2/L3 products

- → To assure the radiometric quality of the data
- → To remove the « noisy » pixels

Bit	Name	Description		
01	ATMFAIL	Atmospheric correction failure		
02	LAND	Pixel is over land		
03	BADANC	Reduced quality of ancillary data		
04	HIGLINT	High sun glint		
05	HILT	Observed radiance very high or saturated		
06	HISATZEN	High sensor view zenith angle		
07	COASTZ	Pixel is in shallow water		
08	NEGLW	Negative water-leaving radiance retrieved		
09	STRAYLIGHT	Straylight contamination is likely		
10	CLDICE	Probable cloud or ice contamination		
11	COCCOLITH	Coccolithofores detected		
12	TURBIDW	Turbid water detected		
13	HISOLZEN	High solar zenith		
14	HITAU	High aerosol optical thickness		
15	LOWLW	Very low water-leaving radiance (cloud shadow)		
16	CHLFAIL	Derived product algorithm failure		
17	NAVWARN	Navigation quality is reduced		
18	ABSAER	possible absorbing aerosol (disabled)		
19	TRICHO	Possible trichodesmium contamination		
20	MAXAERITER	Aerosol iterations exceeded max		
21	MODGLINT Moderate sun glint contamination			
22	CHLWARN	Derived product quality is reduced		
23	ATMWARN	Atmospheric correction is suspect		
24	DARKPIXEL	Rayleigh-subtraced radiances is negative		
25	SEAICE	Possible sea ice contamination		
26	NAVFAIL	Bad navigation		
27	FILTER	Pixel rejected by user-defined filter		
28	SSTWARN	SST quality is reduced		
29	SSTFAIL	SST quality is bad		
30	HIPOL	High degree of polarization		
31	spare	spare		
32	OCEAN	not cloud or land		

Flags system

Examples of flags when processing SeaWiFS, MODIS and VIIRS data With the NASA SeaDAS software

> In red: Flags for L3 products

- → To assure the radiometric quality of the data
- → To remove the « noisy » pixels

Bit	Name	Description		
01	ATMFAIL	Atmospheric correction failure		
02	LAND	Pixel is over land		
03	BADANC	Reduced quality of ancillary data		
04	HIGLINT	High sun glint		
05	HILT	Observed radiance very high or saturated		
06	HISATZEN	High sensor view zenith angle		
07	COASTZ	Pixel is in shallow water		
08	NEGLW	Negative water-leaving radiance retrieved		
09	STRAYLIGHT	Straylight contamination is likely		
10	CLDICE	Probable cloud or ice contamination		
11	COCCOLITH	Coccolithofores detected		
12	TURBIDW	Turbid water detected		
13	HISOLZEN	High solar zenith		
14	HITAU	High aerosol optical thickness		
15	LOWLW	Very low water-leaving radiance (cloud shadow)		
16	CHLFAIL	Derived product algorithm failure		
17	NAVWARN	Navigation quality is reduced		
18	ABSAER	possible absorbing aerosol (disabled)		
19	TRICHO	Possible trichodesmium contamination		
20	MAXAERITER	Aerosol iterations exceeded max		
21	MODGLINT	Moderate sun glint contamination		
22	CHLWARN	Derived product quality is reduced		
23	ATMWARN	Atmospheric correction is suspect		
24	DARKPIXEL	Rayleigh-subtraced radiances is negative		
25	SEAICE	Possible sea ice contamination		
26	NAVFAIL	Bad navigation		
27	FILTER	Pixel rejected by user-defined filter		
28	SSTWARN	SST quality is reduced		
29	SSTFAIL	SST quality is bad		
30	HIPOL	High degree of polarization		
31	spare	spare		
32	OCEAN	not cloud or land		

Validation of atmospheric correction (1/10)

Match-ups definition:

- Co-location of in-situ dataset and satellite images
- Time difference criteria: open of coastal waters? +/- 1h or +/- 3h?
- Extraction of satellite data over a box of several pixels: 3x3 or 5x5 or ...?
- Calculation of satellite mean values over the box only for valid pixels: how many pixels? At least 50% or 100% or X%?
- Calculation of variability coefficient o/<x>: only values <0.2 or <...? On which parameters?</p>

AERONET-OC sites:

- Mainly open ocean
- Absorbing oceans

Zbibordi et al. (2009)

Zibordi et al. (2010)

MERIS AC (CCI-OC) round -robin comparison in open ocean

Dataset: Mermaid dataset (http://mermaid.acri.fr/home/home.php)

Four AC:

- NASA standard
- MERIS standard (Antoine and Morel (1999), MEGS)
- C2R (NN, Doerffer et al., 2007)

For each water type

MERIS AC (CCI-OC) round -robin comparison in open ocean

Dataset: Mermaid dataset (http://mermaid.acri.fr/home/home.php)

Four AC:

- NASA standard
- MERIS standard (Antoine and Morel (1999), MEGS)
- C2R (NN, Doerffer et al., 2007)
- POLYMER (Steinmetz et al., 2010)

MERIS AC (CCI-OC) round -robin comparison in open ocean

Atmospheric Correction Algorithms over turbid waters

- Three NIR ocean contribution removing/AC algorithms (Jamet et al., RSE, 2011)
 - Stumpf et al. (2003)/ Bailey et al., (2010) 503:
 - Based on Gordon and Wang atmospheric correction (GW94)
 - SeaWiFS/MODIS standard algorithm
 - Iterative process
 - Bio-optical model used to determine $b_b(670)$
 - Ruddick et al. (2000) R00:
 - Based on Gordon and Wang atmospheric correction (GW94)
 - Spatial homogeneity of the $L_w(NIR)$ and $L_A(NIR)$ ratios over the subscene of interest
 - α: Ratio of L_w(NIR) cst = 1.72
 - ϵ : Ratio of $L_A(NIR)$ determined for each subscene
 - Kuchinke et al. (2009) K09:
 - Spectral optimization algorithm
 - Junge aerosol models
 - GSM bio-optical model (Garver, 2002)
 - Atmosphere and ocean coupled

DATA

- Satellite data:
 - (M)LAC SeaWiFS 1km at nadir → Processed with SeaDAS 6.1 (R2009) (Fu et al., 1998)
 - nLw(412→865), τ(865), α(510,865)

- In situ data: AERONET-OC network (Zibordi et al., 2006, 2009)
 - Three sites
 - -7 A centered at 412, 443, 531, 551, 667, 870 and 1020 nm

Results

- Only turbid waters (Robinson et al., 2003): nLw(670)>0.186
- Comparison of the normalized water-leaving radiances nL_w between 412 and 670 nm and of the aerosol optical properties (the Angström coefficient α (510,865) and the optical thickness τ (865))

	MVCO	AAOT	COVE	TOTAL	nL _w (412) <0
503	20	163	18	201	7
R00	19	129	17	165	6
Kuchinke	13	134	13	160	0

of matchups for each algorithm and each AERONET-OC site

Courtesy of Jeremy Werdell

In-Situ data

1. AERONET-OC data:

= global network of abovewater autonomous radiometers located in coastal regions

- AAOT: 2002-2007
- COVE: 2006-2009
- MVCO: 2004-2005
- Gustav Dalen: 2005-2009
- Helsinki: 2006-2009

2. Cruise data from LOG:

in-water measurements withTriOS - Optical Sensors

- North Sea and English
 Channel 2009/05-2009/09
- French Guiana 2009/10-2009/10

Matchup pairs

Matching satellite images with in-situ data:

- 3 by 3 pixel window around the station
- Median of at least 6 « valid » pixels within the window
- Spatial homogeneity within the window
- Focus on turbid waters only

(in-situ nL_w (667) > 0.183 mW. cm⁻² um⁻¹ sr⁻¹)

Excluded matchups:	STD	SIMIL	NN	SWIR
< 6 pixels	738	740	798	762
non-uniform $(nLw(547))$	139	106	98	286
non-turbid	1000	1000	1000	1000
flagged NN	-	-	769	-
total	313	328	238	284

Reduced to 187 for inter-comparison (matchup has an estimation for each algorithm)

Global Evaluation

- 211 match-ups AERONET-OC & LOG)
- Overall the STD AC method performs the best
- ↑ spatial coverage but ↑ neg.
 L_{wn}(λ) values with the MUMM AC method
- STD, MUMM and NIR-SWIR tend to underestimate $L_{wn}(\lambda)$ (bias between -26 and 3%)
- STD, MUMM and NIR-SWIR perform better in the green (< 20% RE), not as well in the blue & red (> 30% RE)
- NN performs better in the blue (30% RE) and red (22% RE) and not as well in the green (up to 27% RE)

Goyens et al., (2013) [a]

Global evaluation of the algorithms

	R	Intercept	Slope	RE	RMSE	Biais
nLw(412)						
SIMIL	0.785	0.006	0.926	41.398	0.339	-6.182
STD	0.87	0.01	0.921	34.254	0.246	-1.407
SWIR	0.857	0.025	0.925	35.719	0.258	1.904
NN	0.919	0.159	0.74	21.716	0.192	5.421
nLw(443)						
SIMIL	0.873	-0.022	1.007	29.982	0.338	-3.089
STD	0.931	-0.008	1.001	21.506	0.234	0.698
SWIR	0.923	0.006	1.004	22.162	0.251	2.777
NN	0.936	0.182	0.742	18.397	0.245	-0.133
nLw(488)						
SIMIL	0.923	-0.078	1.046	19.993	0.346	-2.878
STD	0.952	-0.061	1.04	13.351	0.266	-0.534
SWIR	0.949	-0.048	1.044	13.664	0.278	0.757
NN	0.938	0.276	0.923	23.145	0.319	17.967
nLw(531)						
SIMIL	0.912	0.011	0.955	14.807	0.332	-3.758
STD	0.933	0	0.966	11.662	0.289	-2.933
SWIR	0.93	0.008	0.97	11.783	0.294	-2.016
NN	0.91	0.3	0.932	20.106	0.376	15.366
nLw(547)						
SIMIL	0.896	0.042	0.93	14.514	0.347	-4.152
STD	0.916	0.015	0.952	12.201	0.312	-3.514
SWIR	0.914	0.023	0.956	12.158	0.315	-2.655
NN	0.889	0.323	0.872	16.755	0.358	10.082
nLw(667)						
SIMIL	0.78	-0.024	0.833	33.263	0.141	-24.808
STD	0.842	-0.06	0.956	30.194	0.127	-24.499
SWIR	0.83	-0.055	0.963	29.729	0.128	-22.249
NN	0.829	0.071	0.637	17.79	0.108	-11.472

Table 4: Statistical comparison of algorithms

Evaluation of the algorithms as a function of the water types

Classification of in-situ Lw spectra in 4 water type classes defined by Vantrepotte et al. (2012)

Evaluation of the algorithms as a function of the water types

Goyens et al., 2013; Vantrepotte et al., 2012

Fig. 6. Comparisons between satellite retrieved and in situ measured normalized water-leavi radiances. (a) Locations of the in situ measurement of normalized water-leaving radiances on April 2003 (marked as stars); (b) comparison at station HD34; (c) comparison at station HD3 (d) comparison at station HD36; (e) comparison at station HD37.

USE OF UV BANDS

$\begin{bmatrix} 3 & 3 & 0 \\ 0 & 0$

Fig. 4. The $L_{n\pi}$ retrieved by Aqua/MODIS on 5 April 2003 using the UV-AC(412nm) algorithm (unit: mW/(cm²·µm·sr)). Arrows in the sub-image of 412nm indicate the Subei Coastal Current (SCC) and the Tai wan Warm Current (TWC).

Fig. 5. The L_{vm} retrieved by Aqua/MODIS on 5 April 2003 using the SeaDAS 6.3 based on the SWIR/NIR-AC algorithm (unit: mW/(cm²·µm·sr)).

He et al., 2012

Validation of aerosol optical properties

	N 6841	(d)		ŵ			(6)			õ		
		443	667	667 869	443	667	869	44.3	667	869	a	a
11		22	36	48	+4	+ 35	+47	0.032	0.031	0.029	0.52	-0.52
All islands	773	39	45	51	+ 28	+ 43	+49	0.041	0.036	0.034	0.27	-0.27
Pacific	233	44	56	58	+39	+ 52	+57	0.041	0.036	0.034	0.32	-0.32
Atlantic .	52	33	37	36	+11	+28	+34	0.032	0.028	0.025	0.33	-0.31
Hemisphere	186	36	38	42	+10	+29	+38	0.048	0.038	0.038	0.28	-0.26
Caribbean	302	37	-47	57	+32	+47	+ 57	0.039	0.037	0.036	0.25	-0.23
Continental	2675	19	44	58	+6	+44	+58	0.028	0.034	0.031	0.60	-0.60
.E. America	419	18	51	61	-2	+ 50	+61	0.026	0.033	0.028	0.72	-0.72
Continental Europe	1524	18	46	58	+ 8	+45	+58	0.030	0.040	0.035	0.59	-0.59
Atlantic Europe	732	20	36	54	+7	+ 35	+54	0.024	0.02.5	0.026	0.57	-0.57
Mediterranean	1578	20	26	40	-5	+24	+40	0.033	0.027	0.028	0.60	-0.60
Desert dust	486	21	22	26	- 3	+13	+ 22	0.037	0.031	0.031	0.33	-0.33
Arabo-Persian Gulf	190	16	18	24	-6	+13	+18	0.037	0.03.0	0.030	0.36	-0.36
N.W. Africa	296	25	26	30	+2	+14	+ 26	0.039	0.034	0.033	0.31	-0.30
Asia	326	24	30	42	-2	+24	+ 41	0.050	0.036	0.038	0.55	-0.54
N.E. Asia	283	24	31	44	0	+ 24	+42	0.050	0.037	0.038	0.55	-0.55
E Asia	31	25	20	41	-16	+19	+41	0.054	0.026	0.038	0.64	-0.57
ndian	12	14	24	16	-11	-1	+15	0.036	0.03.9	0.024	0.51	-0.49
JS Pacific	639	24	42	59	+12	+40	+58	0.022	0.02.4	0.025	0.52	-0.51
Arctic	158	-40	91	73	+38	+ 91	+ 71	0.036	0.03.5	0.022	0.34	-0.30

Melin et al., 2010

Goyens et al., 2013

Other issues

- Adjacency effects
- Absorbing aerosols

Adjacency effects

- Adjacency effects are associated with the change in digital number of a pixel caused by atmospheric scattering of radiance that originates outside of the sensor element's
- They are important in coastal zone or in the vicinoty of clouds and sea icea or even in the open ocean (e.g., upwelling systems), i.e. when the spatial contrast between the target and its environment is relatively large
- They may affect significantly the retrieval of marine reflectance and chlorophyll-a concentration, all the more as pixel size is small. Scale of influence is larger for moleculare scattering that aerosol scattering and when aerosols are located at a higher latitude
- Adjacency effects are generally ignored in standard atmospheric correction schemes and operational processing of satellite ocean-color imagery

Adjacency effects

Bulgarelli et al., 2014

Kratzer et al., 2010

SIMEC method:

sensor-generic adjacency preprocessing method

Estimation of contribution of the background radiance based on the correspondence with the NIR similarity spectrum

Fig. 8. Comparison between normalized water reflectance measured in situ (black diamonds) and the normalized water reflectance extracted from MERIS FR within a 3 × 3 pixel window around the in situ station derived from the ODESA-C2R processor with (green triangles) and without (red squares) SIMEC pre-processing for North Sea (N) and Scheld river (S) sampling points. The date of acquisition and sample station is given in the title of each plot. Error bars refer to the standard deviation calculated from the retrieved MERIS water reflectance for a 3 × 3 pixel window. Please note that Y-axis are scaled differently in the figures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Knaeps et al., 2014

Absorbing aerosols

- Not detectable with only NIR bands
- Spectral dependency

Dubovik et al., 2002

Chomko and Gordon, 2001

a) July 31, 2004

b) August 9, 2004

c) August 19, 2004

Banzon et al., 2009

Sofwares to process ocean color images

SeaDAS: http://seadas.gsfc.nasa.gov/

Missions Data Documents Analyses People Forum Services Links

General Description

SeaDAS is a comprehensive image analysis package for the processing, display, analysis, and quality control of ocean color data. While originally developed to support the SeaWiFS mission, it now supports most US and international ocean color missions. The primary focus of SeaDAS is ocean color data, but it is applicable to many satellite-based earth science data analyses

The latest version (SeaDAS 7.3.1) is the result of a collaboration with the developers of ESA's BEAM software package. The core visualization package for SeaDAS 7 is based on the BEAM framework, with extensions that provide the functionality provided by previous versions of SeaDAS... Features Requirements License Download

Supported Missions

· MODIS

o CZCS

o VIIRS

· HICO

· Aquarius

• Landsat8/OLI

o SeaWiFS

User Support

Other

- SeaDAS Video Tutorials and Demos
- SeaDAS FAQ
- SeaDAS Help Pages
- Other SeaDAS Tutorial Material
- · Ocean Color Web
- Ocean Color Forum
- · SeaDAS Mailing List

Curator: OceanColor Webmaster Authorized by: gene carl feldman

O MERIS

O OCTS

O OCM

o OCM-2

O OSMI

o MOS

o GOCI

Privacy Policy and Important Notice Updated: 29 June 2016

SeaDAS Visualization Source Code

o SeaDAS version 6.4

• MODISL1DB 1.8

o Processing Binaries and Source Code.

Sofwares to process ocean color images

- SeaDAS: http://seadas.gsfc.nasa.gov/
- BEAM/VISAT: http://www.brockmannconsult.de/cms/web/beam/

Home News Project Forum

BEAM Home

Downloads

- Software
- Sample Data

Community

- Forum
- Wiki
- Issues
- Code Base

Documentation

- Online Metp
- Javadoc
- Tutorials.
- · FAQ

Screenshots

The European Space Agency is making, BEAM available free of charge to the user community

Contact Impressum Terms of Use

Documentation

Maintenance Phase

Please note that BEAM is not further developed. It will remain under maintenance until at least mid of 2016, During this maintenance phase we will continue our user support. We encourage all BEAM users to use SNAP from now on. SNAP is the successor and evolution of BEAM. When installing SNAP along with the Sentime+-3 Toolbox you will have the same great user experience as with BEAM. You can even extend the number of features by installing other toolboxes like those for Sentime1-1 or Sentime1-2.

Downicads

Screenshots

Thanks to all our dear and loyal BEAM users. We hope that you now turn into SNAP users.

5EAM is an open-source toolbox and development platform for viewing, analysing and processing of remote sensing raster data. Originally developed to facilitate the utilisation of image data from Envisat's optical instruments, BEAM now supports a growing number of other raster data formats such as GeoTIFF and NetCDF as well as data formats of other EO sensors such as MODIS, AVHRR, AVNIR, PRISM and CHRIS/Proba. Various data and algorithms are supported by dedicated extension plug-ins.

Software Components

- VISAT An intuitive desktop application to be used for visualization, analyzing and processing of remote sensing raster data. To get an impression of how VISAT looks and feets like, please take a look at the related screenshots page.
- A set of scientific tools running either from the command line or invoked by VISAT, also entirely written in Java.
- A rich Java API for the development of new remote sensing applications and BEAM extension plug-ins.

Supported Instruments

This following table lists the data product formats which are supported by BEAM using the reader modules provided in the standard installation. Information about the access to these products is given on the data sources projet.

Instrument	Platform	Formats
MERIS L1b/L2	Envisat	Envisat N1
MERIS LI	Envisat	NetCDF
AATSR L10/L2	Envisat	Envisat N1
ASAR	Envisat	Envisat N1
ATSR L15/12	ERS	Envisat N1, ERS
SAR	ERS	Envisat N1
OLCI 1)	Sentinel-3	NetCDF/SAFE
SLSTR1)	Sentinel-3	NetCDF/SAFE
MSI ¹⁾	Sentime1-2	JPEG2000/SAFE
CHRIS LI	Proba	HDF4
AVNIR-2 L1/L2	ALOS	CEOS
PRISM L1/L2	ALOS	CEOS
MODIS L2	Aqua, Terra	HDF4
AVHRR/3 L1b	NOAA-KLM	NOAA, METOP
MSS	Landset 1-5	GeoTIFF
TM	Landsat 4	GeoTIFF
TM	Landsat 5	GeoTIFF, FAST
ETM+	Landsat 7	GeoTIFF
OLI, TIRS	Landsat 8	GeoTIFE
SPOT VEGETATION	SPOT	HDF
I) In development - av	ailable in 2014	

ENVI images for the raster data.

Generic EO Data Formats

BEAM supports the following generic raster formats:

Format	Support	Description
BEAM-DIMAP	read +	The standard BEAM I/O lormat. It
	write	comprises an XML header based on the
		SpotImage/CNES DIMAP schema and

- SNAP 2.0 released

- 17. Nov 2015, 11.28
- BEAM-Python also for Python 2.7 available
 62. M 2014, 15:48
- + BEAM 5.0 released
- 08 May 2014, 08:34
- Reader for Landsat 8 available

92.588 2013.09:05

+ SMOS-Box 2.3

released

more_

Latest Forum Posts

Get your own account and Sign In to post in the forum

Colour Manipulation

Maximum Values By Augusto Nunes Vundo

resample the data By Amber ling

MODIS MODI3A1; MODI3Q1 mosaking problem

By Genadi Archii Tvauri

110/000

Sofwares to process ocean color images

- SeaDAS: http://seadas.gsfc.nasa.gov/
- BEAM/VISAT: http://www.brockmannconsult.de/cms/web/beam/
- SNAP: https://sentinel.esa.int/web/sentinel/toolb oxes/sentinel-3

Missions

User Guides

Technical Guides

Thematic Areas **Data Acces**

You are here Home's Sentinel-3 Toolbox

The Sentinel-3 Toolbox

The Sentinel-3 Toolbox consists of a rich set of visualisation, analysis and processing tools for the exploitation of OLCI and SLSTR data from the upcoming Sentinel-3 mission. As a multi-mission remote sensing toolbox, it also supports the ESA missions Envisal (MERIS & AATSR), ERS (ATSR), SMOS as well as third party data from MODIS (Aqua and Terra), Landsat (TM), ALOS (AVNIR & PRISM) and others. The various tools can be run from an intuitivedesidop application or via a command-line interface. Andh application programming interface allows for development of plugins using Java or Python,

The Sentinel-3 Toolbox is being developed for ESA by Brockmann Consult in partnership with the University of Reading, C-S France, ACRI-ST and Array.

This first release of the Sentinel-3 Toolbox is a stand-alone toolbox intended for exotoitation of medium resolution optical and SMOS data. It provides all tools known from the ESA BEAM and SMOS toolboxes, plus a Sentinel-3 data reader, an uncertainty data visualisation tool and a context search feature. The next release will consist of a common Sentinel Application Platform (SNAP) for Sentinel-1, Sentinel-2 and Sentinel-3 with a single installer and application interface.

Downloads

The Sentinel-3 Toolpox can be downloaded from the Science Tubout English in Flatform (STE

Resources

NEWS: Sample Beta products available (June 2016)

The SENTINEL-3 sample products beta version are released to users.

The Commissioning Phase is still on-going and therefore evolutions and improvements are expected in the short. term before official core data product release.

Users are invited to read the Product Note before using them.

Sample products are available on the Scientific HUB at "sonouncommus and". Auto-registration is required for accessing the server.

Sentinel-3 Test Data (July 2015)

New Sentinel-3 Test Data Sets have been produced using MERIS and AATSR data. These data provide realistic features (and, sea, cloud) but they also contain some limitations due to the input data (AATSR and MERIS swath, missing spectral channels copied or interpolated from existing channels).

Before using them one must read the Optical Test Overal Set destructory, which provides more information and details The limitations with the data

These Test Data Sets provide a good overview of what the future Sentinel-3 optical missions products will be like.

Disclaimer

Access to the Sentinei-3 OLCI/SLSTR Test Data Set (TDS) constitutes acceptance of the following general terms and conditions.

The data are released as preliminary data set on an "as is" basis to be used only with appropriate caution as the Sentinel-3 products format and content are under finalisation. The data have not been subjected to the ESA quality control or quality assurance procedures and do not meet the criteria and standards of official ESA date. ESA reserves the right to revise the data format and content at any time pursuant to further analysis and review. Neither ESA nor any other party involved in creating, producing or delivering the data shall be held liable for any consequences arising from the use of this data.

FTP access to some Test Data Sets are provided below.

- · Sentenu-3 GLOI Test Data Set
- Sentine-1 SLSTR Test Data Set Senara-1 SYNERCY Test Data Set
- FTP access to the Full Test Data Sets

Sentinel 1 Toolbox Sentinel 2 Toolbox Sentinel 3 Toolbox SMOS Toolbox Download. Community Useful Links

SNAP

Home > Download

Download

Here you can download the latest installers for SNAP and the Sentinel Toolboxes.

Data provision is available to all users via the Sentinel Data Hub.

Current Version

The current version is 4.0.0 (08.07.2016 12:40).

For detailed information about changes made for this release please have a look at the release notes of the different projects: SNAP, S1TBX, S2TBX, S3TBX, SMOS Box

We offer three different installers for your convenience. Choose the one from the following table which suits your needs. During the installation process each toploox can be excluded from the installation. Toolboxes which are not initially installed via the installer can be later downloaded and installed using the plugin manager. Please note that SNAP and the individual Sentinel Toolboxes also support numerous sensors other than Sentinel.

	The as least inter south	the Continue 1 Cont	had 7 Continue	7 Tablever ber				
	Download	Download	Download	Download				
SMOS Toolbox	These installer contains only the SMOS Toobox . Download also the <u>Bornet Convention</u> (Earth Explorer to NetCDF) and the <u>User manual</u> .							
Toolboxes	Download	Dewnload	Download	Downlaad				
Sentinel	Windows 64-Bit 1 Windows 32-Bit 1 Mac OS X 1 Unix 64-bit These installers contain the Sentinel-1, Sentinel-2, Sentinel-3 Toolboxes							

If you later decide to install an additional toolbox to your installation you can follow this step-by-step guide.

We are happy to get your feedback on the software installation procedure, functionalities, encountered issues, etc on the Forum. You may also watch the Blog to be informed about SNAP news such as new software releases or interesting events.

Release Notes

SNAP, SITBX, SZTBX, S3'FBX, SMOS

Previous Versions

Former releases can be downloaded from the Previous Versions page.

Sources

All software is published under the GPL-3 license and its sources are available on GitHub.

Sofwares to process ocean color images

- SeaDAS: http://seadas.gsfc.nasa.gov/
- BEAM/VISAT: http://www.brockmannconsult.de/cms/web/beam/
- SNAP: https://sentinel.esa.int/web/sentinel/toolb oxes/sentinel-3
- ODESA: http://earth.eo.esa.int/odesa/

Optical Data processor

European Space Agency

ESA Earthnet Online

Home About ODESA MERIS Online Processing Software Distribution Analysis Tools Validation and Qualification Forum Mailing list Services Site Map FAQ Glossary Credts Terms of use Contact Us

Optical Data processor of the European Space Agency

The ODESA system intends to provide the users a complete level 2 processing environment for the MERIS instrument as well as for the future ESA optical sensors on board Sentinel 3.

ODESA supplies the user community with the MERIS Ground Segment development platform MEGS®, including source code, embedded in an efficient framework for testing and for validation activities.

Validation facilities include match-up processing & analysis, data set selection & analysis, level 3 products generation & analysis and the possibility to perform remote processing, e.g. for testing purpose and for validation activities requiring large amounts of data.

MERIS-on-line processing	Access MERIS data from remote processing facility available to qualified processors.
Software distribution	Download the MERIS level 2 processor (MEGS®) and its operation environment
Analysis tools	Download and install the ODESA analysis tools, including the BEAM toolbox
Validation & qualification	Validate your algorithm and get him qualified to access the MERIS on-line processing
Forum	All you want to discuss about ODESA

22-Jul-2016 Related Links MERIS demonstration level 3 MERIS manne 13 QC MERMAID In-sku database Access to Ocean Colour

data

ework for testing and fo cilities include match-up nalysis, level 3 products perform remote process inities requiring large ar e processing Acc proave tribution Do

> All you want to discuss about ODESA and MERIS

What I didn't talk about

- Shallow waters
- BRDF
- Sensor spectral response
- Vicarious calibration
- Radiative tranfer model/code for generating Look-Up Tables
- Exact nLw
- Single vs mutiple scattering

Thank you