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Preface

Initially, remote sensing of ocean colour focused primarily on the retrieval of
the concentration of chlorophyll-a in the global oceans. Subsequent studies,
however, have also emphasized the importance of understanding and retrieving,
via remote sensing of ocean colour, inherent optical properties (IOPs), namely,
the scattering and absorption characteristics of water and its constituents (the
dissolved and suspended material). Variations in IOPs are clear indications of
changes in water mass or water constituents.

In the past decade, significant progress has been achieved on remote sens-
ing algorithms for IOPs and applications of IOPs in oceanographic studies. This
report summarizes the progress to date, thus serving to emphasize the impor-
tance of IOPs in ocean optics and in ocean-colour remote sensing. It outlines
the fundamental relationships between water-leaving radiance and IOPs (Chap-
ter 1), establishes a data base for algorithm testing and evaluation (Chapter 2),
and provides a discussion of sources of uncertainty (Chapter 3).

The bulk of the report (Chapters 4 to 12) reviews the characteristics of a vari-
ety of algorithms commonly used in remote sensing practices and assesses their
performance when applied to synthetic and in situ data sets. Sufficient details are
included to allow for easy comparison between the various algorithms and util-
isation of the algorithms by interested researchers. Although the ocean-colour
community has accomplished a great deal by developing many algorithms for
ocean-colour remote sensing, very few broad-range tests, validations, or inter-
comparisons have been available hitherto. This report provides initial results in
this regard, but it should be pointed out that algorithm development is an on-
going process, and we have by no means attempted to include all the algorithms
developed, or under development, by the ocean colour community. The report
ends with examples of IOP applications in oceanographic studies (Chapter 13)
and a summary and conclusions chapter (Chapter 14).

On a more general level, the material discussed in the report illustrates the
rich and quantitative information latent in data on visible spectral radiometry
(VSR) of the ocean. The information retrieved from ocean-colour remote sensing
can contribute to our understanding of the planetary carbon cycle and climate
research, as well as other biological and biogeochemical processes in the oceans,
and has many other applications including management of marine resources.

This report may not have become a reality without the support of the IOCCG
Committee, and the diligent work of the "Algorithm Working Group". In partic-
ular, Z.P.L. wishes to extend his appreciation to Dr. Trevor Platt for his guidance
throughout the duration of this project, and to the series editor, Dr. Venetia
Stuart, for her encouragement and assistance in completing this monograph.
The printing of this report was sponsored and carried out by the GKSS Research
Centre (Geesthacht, Germany), which is gratefully acknowledged.



Chapter 1

Why are Inherent Optical Properties Needed in
Ocean-Colour Remote Sensing?

Ronald Zaneveld, Andrew Barnard and ZhongPing Lee

1.1 Introduction

In this volume we are interested in the determination of useful oceanographic
parameters from the radiance measured by a satellite-based sensor. The mea-
sured radiance originates from sunlight that passes through the atmosphere, is
reflected, absorbed, and scattered by constituents in the ocean, and is transmit-
ted back through the atmosphere to the satellite-based sensor. Solar photons
that reach the sea surface are redistributed from those that reached the top of
the atmosphere. Absorption of the aerosols and gases changes the intensity of
the radiance, while scattering changes the intensity as well as the directionality,
resulting in diffuse light that is a function of wavelength. The directional slope
spectrum of the waves at the sea surface, together with the radiance distribu-
tion, determine the reflected radiance. White caps, bubbles and surface slicks
also affect the redistribution of light entering the ocean, in addition to the waves.

The processes of scattering and absorption by dissolved and suspended ma-
terials in the ocean affect the spectrum and radiance distribution (light field) of
the light emerging from the ocean – the so called water-leaving radiance. The
scattering and absorption characteristics of ocean water and its constituents are
described by the inherent optical properties (IOPs) (Preisendorfer, 1976). Note
that the IOPs do not depend on the radiance distribution. If we can remove
the atmosphere and surface effects successfully, the best we can hope for from
inversions of the water-leaving radiance are the scattering and absorption char-
acteristics of the dissolved and suspended materials.

While the spectral quality and quantity of the water-leaving radiance is largely
determined by the inherent optical properties, conventionally the modification
of the radiance has been used to determine oceanic constituents directly. Typi-
cally the desired parameter has been the chlorophyll-a concentration, C. Usually
algorithm development searches for a combination of radiance signals at several
wavelengths to find some ratio, or other combination, that relates empirically to
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4 • Remote Sensing of Inherent Optical Properties

the desired parameter. The coefficients contained in these algorithms are gen-
erally derived by pooling data collected at various spatial and temporal scales.
This globally and seasonally inclusive approach, which removes “noise” associ-
ated with the data sets, diminishes important spatial and temporal features of
the global oceans. This approach assumes that the ocean is a black box, and
that little is to be gained by examining how the black box works, presumably
because the black box is too difficult to be understood. With such a perception,
most algorithm development (even today) uses the black box approach (see Fig-
ure 1.1). However, a great deal is known about the inherent optical properties
and their influence on the water-leaving radiance, as is detailed below.

 radiance 
distribution 
and spectrum 

Chlorophyll, 
production, 
particle concentration 

Figure 1.1 Diagram of inverse radiative transfer elements using the “black
box” approach.

In the past (CZCS), present (e.g., SeaWiFS, MODIS), and future (VIIRS-NPOESS)
missions the emphasis of ocean-colour remote sensing has been on the deriva-
tion of the concentration of chlorophyll-a (Hooker et al., 1992; Yoder et al., 2001).
This is partly because values of chlorophyll-a play a central role in conventional
algorithms for primary production or light attenuation coefficients. Also, it is
because in the earlier days of ocean optics studies, chlorophyll-a concentration
(as an index to describe a water body) could be routinely measured at sea. Only in
the recent decade with the advancement of instrumentation (such as the trans-
missometer and ac-9), have we been able to look further at the fundamentals
and to envisage different inversion schemes. In essence, water colour is deter-
mined by inherent optical properties, and chlorophyll is just one of the active
components that determine the IOPs. Therefore C can be determined only with
a larger uncertainty from ocean-colour remote sensing than the inherent optical
properties themselves.

Since no amount of study will modify nature, and the global link between
IOPs and C cannot be improved substantially, no real progress has been made
in the accuracy of the determination of C from space in the last two decades.
On the other hand, it is now assumed, as in VIIRS, that ocean colour can be
operational. This should not be interpreted to mean that no further progress
can be made in deriving useful information from remotely sensed radiance. By
starting at the product end (the need to determine C, production, etc.) the real
inversion signal, IOP, is ignored. Fundamentally, a better approach would be to
ask: “What can water-leaving radiance really give us, and with what accuracy?”
Such an approach, based on physics, would examine how water colour is related
to the IOPs and then, secondarily, how the IOPs are related to the biogeochemical
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parameters of the suspended and dissolved constituents, and finally what these
parameters can tell us about processes. Such an approach, as shown below in
more detail, would enhance our understanding about the remotely sensed signal,
optimize its utilization, and eventually provide improved and reliable products
related to the biogeochemistry of the oceans.

1.2 The Forward Problem of Ocean Optics

The process of forward radiative transfer can be summarized by Figure 1.2. In
ocean-colour remote sensing, the forward radiative transfer problem is to pre-
dict the spectral distribution of water-leaving radiance based on a quantitative
description of all the absorption and scattering characteristics of the optical
components in the ocean. A recent review of radiative transfer can be found
in Zaneveld et al. (2005b). The inverse problem is the determination of useful
oceanic particulate and dissolved parameters when the spectral characteristics
of the water-leaving radiance are known.

 particle size, index of refraction, 
distributions, and properties of 
dissolved materials  

 
IOP 

radiance 
distribution 
and spectrum 

Figure 1.2 Diagram of forward radiative transfer elements.

The forward problem is governed by the Equation of Radiative Transfer (ERT).
Without internal sources such as fluorescence or Raman scattering, the ERT is
given by:

∇.L (~x, λ, θ,φ) = −c (~x, λ) L (~x, λ, θ,φ)+
4π∫
0

β
(
~x, λ, θ,φ,θ′,φ′

)
L
(
~x, λ, θ′,φ′

)
dω′.

(1.1)

The radiance is L, units are W m−2sr−1, ~x is the position vector (x,y, z), θ
is the zenith angle, φ is the azimuth angle, c is the beam attenuation coefficient
(in units of m−1). β(~x, θ,φ, θ′,φ′) is the volume scattering function (VSF), with
units of m−1sr−1. Many books have been written regarding solutions to the ERT
(e.g., Chandrasekhar, 1960; Preisendorfer, 1976).

The most common approach in oceanography is to assume that horizontal
gradients in radiance and IOPs are much smaller than vertical ones, so that hor-
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izontal structure is ignored. This leads to:

cos(θ)dL(z, λ, θ,φ)/dz = −c(z)L(z, λ, θ,φ)

+
4π∫
0

β(z, λ, θ,φ,θ′,φ′)L(z, λ, θ′,φ′)dω′.
(1.2)

This is the ERT for the so-called plane parallel assumption without internal
sources and is widely applied. Numerical solutions to this equation can be found
in Mobley (1995) (Hydrolight) and Thomas and Stamnes (1999).

There is a large literature on radiative transfer in the ocean and atmosphere.
This body of work is based on deriving radiance distributions when the IOPs are
known. Typically, for oceanographic applications, the IOPs used are based on
knowledge or speculation of the relationship between particulate and dissolved
materials and the IOPs. Again there is a large and developing literature relating
particulate properties such as particle concentration, size distributions, index
of refraction distributions, and shape to IOP (for a recent review see Twardowski
et al., 2005). The forward problem is thus logically broken into two parts: the
relationship between biogeochemical parameters and IOPs, and the relationship
between the IOPs and the radiance distribution.

1.3 Inherent Optical Properties

Much has been written on inherent optical properties and their wavelength de-
pendencies, examples of which can be found in the books by Shifrin (1988), Kirk
(1994), and Mobley (1994). We will briefly summarize here.

The beam attenuation coefficient (c) is a sum of the coefficients of absorption
(a) and scattering (b),

c = a+ b. (1.3)

The total scattering coefficient can be divided into forward, bf , and backward,
bb, components:

b = bb + bf, (1.4)

and

bf = 2π
π/2∫
0

β(θ) sin(θ)dθ and bb = 2π
π∫

π/2

β(θ) sin(θ)dθ. (1.5)

The theoretical aspects of light scattering are treated extensively in van de
Hulst (1981). For the various semi-analytical and analytical remote sensing al-
gorithms, we now have defined the two key IOPs relevant to the remote sensing
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reflectance, a and bb. These IOPs are often separated into operationally defined
components such as the dissolved and particulate fractions, and water:

a = aw + aph + ad + ag, (1.6)

and

bb = bbw + bbp, (1.7)

bf = bfw + bfp, (1.8)

which applies to Equation 1.3 as:

c = a+ bf + bb. (1.9)

The subscripts "g", "p", and "w" represent dissolved (historically called gelb-
stoff or gilvin), particulate matter, and water, respectively. Subscripts "ph" and
"d" represent the algal and non-algal components of the particles, respectively.
Operationally, the dissolved fraction typically comprises all substances that pass
through a 0.2 µm filter. The non-algal component is comprised of non-living
particulate organic material, living particles such as bacteria, inorganic miner-
als, and bubbles. The relative contributions of these different particle groups to
particulate backscattering are poorly known, but recent progress has been made
(Stramski et al., 2001).

Substituting all of the above into the ERT (Equation 1.2) gives:

cos(θ)dL(z, λ, θ,φ)/dz = −[aw + ag + aph + ad + bw + bp](z, λ)L(z, λ, θ,φ)

+
4π∫
0

[βw(z, λ, θ,φ,θ′,φ′)+ βp(z, λ, θ,φ,θ′,φ′)]L(z, λ, θ′,φ′)dω′.

(1.10)

Of the IOP parameters in the ERT, only aph relates more or less directly to
the concentration of chlorophyll-a, C (depending on the presence of ancillary
pigments and their proportionality to chlorophyll-a). The other parameters only
relate very indirectly and weakly to C. In so-called Case 1 waters (Morel, 1988),
it is assumed that all non-water components vary closely with C. This has been
shown to be questionable (Mobley et al., 2004; Lee and Hu, 2006), especially in
coastal waters. It is thus clear, that in nature, deriving the radiance based on
knowledge of C only, will often lead to incorrect results.

When solving a forward radiative transfer problem, one determines the in-
herent optical properties in some manner. This can be done by measurement or
modelling. Modelling often involves electromagnetic theory, as this allows one
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to derive IOPs based on the particle size distribution, index of refraction distri-
bution and shape distribution. Clearly, requiring all of the particulate properties
above to be closely related to C, is unreasonable, though in practice has quite
frequently been done (e.g., Morel, 1988; Haltrin, 1999). For the purposes of the
direct inversion of remote sensing to obtain the concentration of chlorophyll-a,
these relations were, of course, a necessity. This encourages inattentive people
to believe that all IOPs are in fact a function of chlorophyll only, when this is far
from the truth.

1.4 The Inverse Problem of Ocean Optics

The inversion problem is to determine the biogeochemical parameters from the
upwelling radiance spectrum, i.e. the normalized water-leaving radiance. Zan-
eveld (1973) has shown that the radiance distribution and its derivative can, in
theory, be inverted to obtain the volume scattering function and beam attenua-
tion coefficient, i.e. the inherent optical properties. This has not been done in
practice. An important point is, however, that the entire radiance distribution
and its depth derivative must be known to obtain the IOPs. In remote sensing we
only know the radiance at the surface in a few directions. We therefore cannot
expect to be able to accurately invert for all of the IOPs. A corollary is that we are
unable to invert accurately for the complete suite of biogeochemical parameters
which determine the IOPs.

Inversion for either IOPs or biogeochemical parameters is thus inexact and
must, perforce, depend on approximations. Based on the discussion above, it
is clear that inversion is also a two-step process, explicitly or implicitly: the
derivation of IOPs from the radiance, and then biogeochemical parameters from
the IOPs. Both of these are inexact procedures, especially for the separation of
particulate and dissolved materials. Due to the extremely complex nature of
these materials, their full details cannot be expected to be inverted from the
IOPs. Nonetheless, one would logically expect inversion of the water leaving
radiance spectrum to follow an inverse approach to that of Figure 1.2.

Historically, starting with the CZCS, remote sensing inversions have been
focused on the direct derivation of the chlorophyll concentration from water-
leaving radiance (e.g. Figure 1.1). This was based on the early recognition that
chlorophyll-laden waters are “greener” than chlorophyll poor waters. While this
was a reasonable starting point, it is also unfortunate in that this is still the
oceanographic parameter chosen for performance criteria of future satellite sen-
sors such as NPOESS–VIIRS. This is unfortunate not because chlorophyll is of no
interest to scientists and managers, but because chlorophyll is only indirectly,
or not at all, related to many of the IOPs that determine radiance, as shown in the
IOP section and Figure 1.3. Using chlorophyll as the primary product therefore
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Figure 1.3 Diagram of inverse radiative transfer elements. Many further
parameters are derived from these constituents, such as DOC, POC and
productivity.

minimizes the information that can be gained from optical remote sensing. Even
the chlorophyll concentration itself could be determined with greater accuracy
if there was a full understanding of all the optical processes that connect the
remotely sensed radiance to the IOPs, and the IOPs to chlorophyll.

It is of course possible to find empirical relationships between radiance ra-
tios and C, for example, but the uncertainties in such relationships cannot be
predicted and analyzed. Furthermore such relationships cannot be justified or
derived a priori using radiative transfer. Because of this, most of the information
contained in remotely sensed radiance is ignored or overlooked. This approach
thus limits the use and applicability of optical remote sensing.

How can one obtain the maximum information from remote sensing? This
requires going back to the approach in Figure 1.3. We must recognize that the
radiance spectrum depends physically on the IOPs and solar input. Thus, if we
focus on the derivation of the IOPs to the maximum allowed by the geometric re-
strictions of radiative transfer, we have not diminished the information given to
us. Once the IOPs are in hand we can ask the second question: “What particulate
and dissolved properties can be derived from the remotely determined IOPs?”
Such an IOP-based inversion maximizes the information gained from remote
sensing, whereas the black box approach minimizes it. Recently, good progress
has been made in the inversion of IOPs from the upwelled radiance spectrum
(Roesler and Perry, 1995; Hoge and Lyon, 1996; Lee et al., 1996b; Garver and
Siegel, 1997; Carder et al., 1999; Maritorena et al., 2002; Lee et al., 2002; Roesler
and Boss 2003).

Semi-analytical approaches to remote sensing inversion (Gordon et al., 1988;
Morel, 1988) use an IOP approach in that they use the relationship between the
oceanic constituents and the IOPs upon which to base the inversion. Such semi-
analytical approaches are based on simple approximations of the remote sensing
reflectance such as Equation 1.11. To complete this discussion we present below
the fundamental relationship that links remote-sensing reflectance (or water-
leaving radiance) and the IOPs.
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1.5 The Dependence of the Remote Sensing Reflectance on
the IOPs

Most remote sensing inversions are based on this simple relationship:

rrs = Lu(0−)/Ed(0−) = g
bb

a
, (1.11)

where Lu(0−) and Ed(0−) are the upwelling radiance and downwelling irradi-
ance just below the sea surface, respectively. A similar relationship developed
for subsurface irradiance reflectance was first derived by Gordon et al. (1975)
and Morel and Prieur (1977) based on modeling the results from radiative trans-
fer calculations. They found that the water reflectance is proportional to the
backscattering coefficient and inversely proportional to the absorption coeffi-
cient. The proportionality factor g (also called f/Q in the literature, in units of
sr−1), which generally varies over the range 0.084 − 0.15 sr−1 for nadir-viewed
radiance (Morel and Gentili, 1993; Lee et al., 2004), depends on how the backscat-
tered light relates to the backscattering coefficient, and therefore to the details
of the volume scattering function in the backward direction and the radiance
distribution. Most of the directional effects of radiative transfer are thus con-
tained in the factor g, and this factor has been studied in detail (for example
Gordon et al., 1988; Morel and Gentili, 1993; Lee et al., 2004). Equation 1.11
is the starting point for many inversion algorithms, which remains inaccurate
if the dependence of g on the shape of the volume scattering function and the
radiance distribution is ignored.

Based on the derivations of Zaneveld (1982; 1995), a theoretical relationship
of the dependence of the remote sensing reflectance on the IOPs can be obtained
from the ERT (in the form of Equation 1.11) for the nadir radiance, Lu, for which
cos(θ) = −1, and for which we can define a vertical attenuation coefficient ku:

rrs(z) = Lu(z)/Ed(z) =
1

µ̄d(z)

fb(z)
2π bb(z)

ku(z)+ c(z)− fLbf(z)
, (1.12)

where

µ̄d(z) =
Ed(z)
Eod(z)

, (1.13)

fb(z) =
(

2π∫
0

π/2∫
0
β(z,π,0, θ′,ϕ′)L(z, θ′,ϕ′) sin(θ′)dθ′dϕ′

)/(
bb(z)

2π Eod(z)
)
,

(1.14a)

fL(z) =
(

2π∫
0

π∫
π/2

β(z,π,0, θ′,ϕ′)L(z, θ′,ϕ′) sin(θ′)dθ′dϕ′
)/

(bf(z)Lu(z)) .

(1.14b)
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Equation 1.12 is an exact expression, as it is only a rewrite of the ERT. All of
the details of the radiative transfer process are compressed into the parameters
µ̄d(z), fb(z), fL(z), and ku(z).

The simple relationship in Equation 1.11 is thus clearly an approximation.
Based on Equation 1.12, Zaneveld (1995) has derived the following (also approx-
imate) dependence of g:

g ≈ fb

2πµ̄d(0−)(1+ 1/µ̄∞)
, (1.15)

where µ̄∞ is the asymptotic average cosine, which in turn can be described as a
function of b/c (Zaneveld, 1989; Berwald et al., 1995).

We thus find that the remote sensing reflectance can be expressed directly
in terms of IOPs. This is logical, in that reflectance is a measure of water-leaving
radiance, while radiance is determined by the ERT. The difficulty is that all of
the directional effects of radiative transfer are involved. The entire shape of the
volume scattering function thus matters. Therefore any time we use inversion
formulas such as equations 1.11 and 1.15 approximations, uncertainties are
introduced.

A further problem in the interpretation of remotely-derived properties is
the vertical structure of the IOPs. Recently Zaneveld et al. (2005a) derived the
dependence of the reflectance at the surface on the vertical structure of optical
parameters from first principles. It was shown that the depth dependence is
a function of the derivative of the round trip attenuation of the downwelling
and backscattered light. With some approximation it can be shown that the
backscattering to absorption ratio follows the same vertical integration rule. For
backscattering and absorption separately, and for chlorophyll, it can be shown
that there is no general formula that allows one to integrate the vertical structure
and arrive at the remotely sensed parameter. Only in the special case of “optical
homogeneity” where the ratio of the backscattering and absorption coefficients
does not vary with depth, can the vertical structure be ignored.

What we learn from the above discussion is that in remote sensing inversion,
the directional and vertical details are initially buried in various model param-
eters. Later, when higher accuracies of inversion are required, this necessitates
the reinsertion of information such as the directional effects, as evidenced by
Morel and Gentili (1993; 1996) on the bi-directional reflectance. What has not
been done, is to start with an expression such as Equation 1.12, which contains
the full ERT, and use this as a basis for the derivation of IOPs, and hence par-
ticulate and dissolved properties. This is an approach to the question: “What
information about the oceanic environment can optical remote sensing provide
us?” The multiple connections in Figure 1.3 can then be explored, and such an
approach would allow the maximum information content of the remotely-sensed
data to be obtained.



Chapter 2

Synthetic and In Situ Data Sets for Algorithm
Testing

Stephane Maritorena, ZhongPing Lee, KePing Du, Hubert Loisel, Roland
Doerffer, Collin Roesler, Paul Lyon, Akihiko Tanaka, Marcel Babin and
Oleg V. Kopelevich

In algorithm testing and evaluation, we are frequently limited by the availability
of adequate data sets. In many studies, individual groups have measured data
from limited areas. Those data sets, which are important for the initial devel-
opment of algorithms, usually lack the dynamic range, and therefore make it
difficult to evaluate an algorithm’s performance in broader scales. To fill this
gap and to have a common ground for algorithm testing, two independent data
sets were compiled and adopted by the “Algorithm Working Group”. One of the
data sets was compiled from global field measurements, where uncertainties
among measured properties are common (see Chapter 3). The other data set
was simulated using the widely accepted numerical code, Hydrolight (Mobley,
1995), with input IOPs generated based on extensive measurements made in the
field. This synthetic data set can perhaps be viewed as results from controlled
experiments, where errors from measurement procedures are minimal. This
chapter summarizes the characteristics of both the synthetic and in situ data
sets.

2.1 In situ Data Set

The in situ data set is an extraction from NASA’s SeaWiFS Bio-optical Archive
and Storage System (SeaBASS) (Hooker et al., 1994; http://seabass.gsfc.nasa.

gov/) and contains chlorophyll-a concentration, above-surface remote sensing
reflectance (Rrs, which is the ratio of water-leaving radiance, Lw, to downwelling
irradiance just above the surface, Ed(0+)) at the first five SeaWiFS bands (412,
443, 490, 510 and 555 nm), along with the detrital (ad), gelbstoff (ag), and phy-
toplankton (aph) absorption coefficients. Detrital (ad) and gelbstoff (ag) absorp-
tion coefficients were summed to form a single term (Carder et al., 1991) as
adg (acdm in Maritorena et al., 2002) and total absorption (a) was calculated by
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adding pure water values (aw) (Pope and Fry, 1997) to aph and adg at each wave-
length. The chlorophyll-a, remote sensing reflectance, and absorption data were
considered a match (i.e. coming from a unique station) when all measurements
were made within a 12-hour window and within 0.05 degrees in both latitude
and longitude. Absorption data come from hyperspectral spectrophotometric
measurements but only the SeaWiFS bands were used, for consistency, with the
remote sensing reflectance data.

Methods to measure Rrs, ad, ag and aph are summarized in NASA’s technical
memorandum (Mueller and Austin, 1992). Generally, phytoplankton absorption
coefficients were obtained by spectrophotometric measurements after filtration
of a water sample through a GF/F filter. Detrital absorption coefficients were
obtained after a methanol extraction of the pigments on the GF/F filter. For
all measurements related to filter pad, there is a need to correct for pathlength
amplification (“beta-factor” correction) (Mitchell and Kiefer, 1988; Bricaud and
Stramski, 1990). Errors will be introduced when an incorrect “beta-factor” is
used (Cleveland and Weidemann, 1993; Allali et al., 1995).

Gelbstoff absorption coefficients were obtained by measuring the absorbance
of the filtrate with a spectrophotometric cell (usually ∼ 10 cm in length). Re-
mote sensing reflectance data were obtained by either in-water or above-surface
radiometric measurements (Mueller et al., 2002). Backscattering measurements
were too rare to be included here. As always, errors (sometimes quite large) are
associated with each of the measured components.

Data were filtered by applying quality control procedures to the remote-
sensing reflectance and absorption data. For Rrs, these procedures consisted
of comparisons with the SeaBAM data set (O’Reilly et al., 1998) and the syn-
thetic data set described in Section 2.2. For a given chlorophyll range, data with
Rrs(λ) values either 10% higher than the maximum or 10% lower than the min-
imum value found in the SeaBAM or synthetic data sets were eliminated. While
this procedure removed extra noise in the data set, it may have also removed
some extreme cases such as CDOM or sediment dominated waters. Of the 1,235
original data points, 177 points were eliminated during this step.

For the absorption components, the following controlling factors were ap-
plied:

1.0 < adg(412)/adg(443) < 2.0,

1.0 < adg(443)/adg(490) < 3.0,

0.5 < aph(412)/aph(443) < 1.1,

0.1 < aph(490)/aph(443) < 1.0,

and another 402 points were removed during this step. The final in situ data
set contains only 656 stations with a complete set of chlorophyll concentration,
Rrs, and component absorption data. Most of the data come from locations that
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Figure 2.1 Data location of the in situ data set. The origin of the data and
the number of stations (in parentheses) by experiment are also indicated.

are relatively close to the coast and some of the data are from high latitudes.
Figure 2.1 presents a summary of the origin and location of the in situ data set.

2.2 Synthetic Data Set

This data set (a total of 500 points) contains both inherent (IOP) and apparent
(AOP) optical properties. IOPs, required as inputs for Hydrolight (Mobley, 1995),
are simulated with optical and bio-optical parameters and models. Detailed
descriptions regarding the simulation of IOPs and AOPs can be found at:
http://www.ioccg.org/groups/OCAG_data.html.

The absorption coefficient of the bulk water was simulated using a four-term
model (Prieur and Sathyendranath, 1981; Roesler et al., 1989; Carder et al., 1991;
Bukata et al., 1995; Fischer and Fell, 1999; Doerffer et al., 2002), with contribu-
tions from water molecules, phytoplankton, detritus, and gelbstoff. Values of
aw(λ) were taken from Pope and Fry (1997). Values of aph(λ) were modelled
as aph(440) multiplying the spectral shape of phytoplankton absorption coeffi-
cient (a+ph(λ) ≡ aph(λ)/aph(440)), with aph(440) expressed as a function of the
chlorophyll concentration (the specific absorption coefficients at 440 nm were
taken from Bricaud et al., 1995; 1998). Oligotrophic and eutrophic waters ex-
hibit different spectral shapes of phytoplankton absorption spectra (Hoepffner
and Sathyendranath, 1992; Stuart et al., 1998). To represent this natural varia-
tion, at least to the first order, an a+ph(λ) data bank (600 spectra) was composed
from the extensive measurements of Bricaud et al. (1995; 1998) and Carder et al.
(1999). This a+ph(λ) data bank is divided into nine groups separated by the mea-
sured aph(440) values. Figure 2.2 presents examples of a+ph(λ) from the nine
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Figure 2.2 Examples of aph spectral shape for the nine aph groups (sepa-
rated by values of aph(440) [m−1]). Numbers in parenthesis are the range
of C [mg m−3] for those groups.

groups. In the simulation of aph(λ) spectra, a+ph(λ) is selected randomly within
the group in which the aph(440) value falls. Using this process, the variability of
aph spectral shapes is retained in the modelled aph(λ) spectra, and at the same
time the a+ph(λ) of eutrophic waters will not be used to generate aph(λ) of blue
oceanic waters, or vice versa.

Absorption spectra of both detritus and gelbstoff were described as expo-
nentially decreasing functions with wavelength (Bricaud et al., 1981; Roesler et
al., 1989). The spectral slopes were treated as random variables but constrained
by ranges commonly observed in the field. The absorption coefficients at 440
nm also varied randomly, but this randomness was constrained such that the
ranges were wider for higher C values and narrower for lower C values.

The total scattering coefficient was simulated by a three-term model (Bukata
et al., 1995), with contributions from water molecules, phytoplankton, and inor-
ganic particles. Two different particle phase functions were used to represent
the scattering distribution of phytoplankton and inorganic particles. For both
particulates, the scattering coefficients at 550 nm and the spectral exponents
were varied randomly (but within commonly observed ranges).

With the above modelled absorption and scattering (backscattering) coef-
ficients, Hydrolight was used for the calculation of radiance distribution and
then the AOPs, which include the nadir-viewed above-surface remote-sensing
reflectance (Rrs), nadir-viewed subsurface remote-sensing reflectance (rrs), and
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Figure 2.3 Comparison between in situ and synthetic data sets. (a) Ranges
and variations of Rrs(440) and a(440). (b) Ranges and variations of
Rrs(410)/Rrs(440) and Rrs(490)/Rrs(555).

subsurface irradiance reflectance (R). In the Hydrolight runs, solar input was
simulated with the Gregg and Carder (1990) model with marine aerosols, and
the sky was assumed to be cloud free. A wind speed of 5 m s−1 was applied,
and the water body was assumed to be homogeneous. Spectral bands were set
from 400 to 800 nm, with a spacing of 10 nm. Inelastic scattering (i.e. Raman
scattering, chlorophyll-a fluorescence) was excluded.

For consistency, the synthetic data set was compared with the in situ data
set. For the two data sets Figure 2.3a shows the range and variation of
Rrs(440) versus a(440), and Figure 2.3b shows the range and variation of
Rrs(410)/Rrs(440) versus Rrs(490)/Rrs(555). We used Rrs(412)/Rrs(443) in-
stead of Rrs(410)/Rrs(440) for the in situ data set, although the effects of these
small wavelength differences are considered negligible. For both data sets,
a(440) is in the range of ∼ 0.02 − 3.1 m−1, while Rrs(490)/Rrs(555) is in the
range of ∼ 0.3 − 5.2 m−1. Clearly, the two data sets agree with one another
in variation and coverage, although for Rrs(490)/Rrs(555) ratios around ∼ 1.0,
some in situ data points have higher Rrs(410)/Rrs(440) ratios.

Although this synthetic IOP-AOP data set may not cover all possible varia-
tions that occur in natural waters, it nevertheless covers a wide range of vari-
ations encountered in the field, since the models and parameters used in the
simulation process are based on extensive field measurements. In the following
chapters (Chapter 4 – Chapter 12), a series of algorithms currently used for the
retrieval of IOPs from Rrs(λ) are applied to both the synthetic and the in situ
data sets, and the retrieved absorption and/or backscattering coefficients are
compared with known (synthetic) or measured (in situ) values, respectively. To
evaluate the performance of each algorithm, regression results (Type II, Laws,
1997) and Root-Mean-Square-Error (RMSE) are calculated and tabulated for each
property, in log space. RMSE is defined as:
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RMSE =
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)]2

N − 2


1/2

, (2.1)

where IOPmodel
i stands for the ith property derived from Rrs(λ), IOPtrue

i for the ith

property known either from simulation or from in situ measurements, and N is
the number of valid retrievals. It is necessary to point out that a slightly different
set of IOPs may be derived from the same Rrs(λ) due to architecture differences.
Also, for the same IOP product, not all algorithms may derive valid retrievals for
a given Rrs(λ) spectrum, due to the different settings of the algorithms. Such
non-valid retrievals are then excluded in the performance analysis, and result in
a smaller data set, and likely better statistical results.



Chapter 3

Uncertainties in the Products of Ocean-Colour
Remote Sensing

Emmanuel Boss and Stephane Maritorena

Data products retrieved from the inversion of in situ or remotely sensed ocean-
colour data are generally distributed or reported without estimates of their un-
certainties. The accuracy of inversion products such as chlorophyll-a or IOPs
is frequently evaluated by comparison with in situ measurements, but these
analyses are not always sufficient to determine the level of uncertainty of an
ocean-colour product. This is particularly true for remote sensing data where
match-up analyses (McClain et al., 2000; http://seabass.gsfc.nasa.gov/matchup_
results.html) can only be performed for an infinitesimal fraction of a sensor’s
records. Although very useful, these analyses cannot provide reliable estimates
of how ocean-colour uncertainties vary with time and/or space. Moreover, be-
cause the uncertainties of the input data (for example the normalized water-
leaving radiance, LwN) vary in space and time, the uncertainties of the output
products cannot be reported simply as a single global value unless it is intended
to provide general bounds. Some ocean-colour products are also used as input to
other models (for example, to calculate primary production or to assimilate phy-
toplankton carbon into ecosystem models) for which uncertainty budgets cannot
be properly established without knowledge of the uncertainties associated with
the input data. It is thus important that the variations of the uncertainty in
LwN and in the products derived from them are documented in time and space.
This section discusses the various types of uncertainties present in ocean-colour
data or products and emphasizes recent approaches that allow uncertainties of
satellite ocean-colour products to be estimated on a pixel-by-pixel basis.
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3.1 Sources of Uncertainty

3.1.1 Uncertainties in in situ measurements (LwN, Rrs, C , IOP)

In situ data are used for algorithm development and for validation of algorithms
and data products. While in situ measurements are frequently considered as “the
reference” to which other data (e.g. satellite data) are compared, they contain
significant levels of uncertainties caused by various experimental and environ-
mental factors. Calibration, dark signal, data processing, deployment strategy,
sea and sky states all introduce uncertainties in the radiometric measurements
(Siegel et al., 1995; Hooker and Maritorena, 2000; Hooker et al., 2001). Close
compliancy to establish measurement protocols (e.g. Mueller and Austin, 1995
and follow up) along with regular and rigorous calibrations and good character-
ization of instruments are key to the minimization of uncertainties in the in situ
measurements. Measurements of biogeochemical variables have their own set
of difficulties and resulting uncertainties (Mitchell et al., 2000; Van Heukelem et
al., 2002; Claustre et al., 2004). Most of the data sets that are publicly available
(e.g., SeaBASS) do not contain information regarding the estimated uncertain-
ties of the various variables they contain (e.g., the differences between the tripli-
cate chlorophyll measurements and the uncertainties in the radiometer reading,
based on its variability through the sampling period and its calibration history).
It is frequently assumed that the uncertainties of in situ data are small and
in any case much smaller than the uncertainties arising from the natural spa-
tial/temporal variability of a given variable.

Another uncertainty arises from the fact that the match-up field data usually
characterize an area of around 1–10 m while the satellite spatial scale is often
100–1,000 m. This environmental mismatch in scales introduces an uncertainty
that is often hard to quantify. Also, satellite measurements represent a water-
column weighted average (Gordon and Clark, 1980; Sathyendranath and Platt,
1989; Zaneveld et al., 2005a), while in situ measurements usually come from
discrete depths. Therefore, for vertically inhomogeneous waters, uncertainties
arise when the two are compared with each other. Some sampling platforms
such as on-line sampling from steaming vessels, undulating vehicles, gliders,
and autonomous underwater vehicles (AUVs) are likely to be fruitful approaches
in quantifying these uncertainties.

3.1.2 Uncertainties in satellite measurements (LwN)

Various sources of random and systematic error contribute to disagreements be-
tween measured normalized water-leaving radiances and their actual values. Un-
certainties in LwN are introduced through a variety of factors such as pre-launch
characterization of the sensor, atmospheric and bi-directional corrections, and
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uncertainties in the monitoring of the changes in the sensor’s performance. Er-
rors in geo-location, contamination with light emanating from adjacent pixels
or other factors like white caps can also add to this uncertainty. The calibra-
tion/validation activities of each ocean-colour mission are designed to assess
and minimize the magnitude of this uncertainty (and remove any bias). Pre-
launch and on-orbit characterization of the sensors (e.g., measurements of re-
flected Sun and/or Moon light) along with vicarious calibrations (e.g., the MOBY
buoy) and match-up analyses are the major procedures used to quantify uncer-
tainties of normalized water-leaving radiances.

The calibration/validation activities and the reduction of the uncertainties
in the derived LwN should be one of the primary tasks of space agencies pro-
viding the ocean-colour data and much effort must be invested in minimizing
it for various missions. In the remainder of this chapter we will therefore as-
sume the uncertainty in the LwN is known and documented, although at present
uncertainties in atmosphere correction still dominates errors in LwN of coastal
waters.

3.1.3 Uncertainties and assumptions in the functional relationship
that links LwN and IOP and in the inversion procedure used to
derive the products

Uncertainties in the products derived from the inversion of LwN, however, do
not benefit from the same level of effort. In what follows we will address these
uncertainties with reference to the type of algorithm designed to produce them,
distinguishing between empirical and semi-analytical inversion algorithms. The
approaches used in some recent works to provide ocean-colour product uncer-
tainties are also described.

3.1.3.1 Obtaining uncertainties in products based on empirical algorithms

Empirical algorithms are developed from data sets where in situ radiometry and a
to-be-derived product (e.g., chlorophyll-a, POC) have been collected at the same
spot of the ocean and within a narrow period of time. A regression is most
often performed to obtain the ‘best-fit’ function between the two variables and
to define the formulation that relates the two quantities. The type of regression
used to relate two variables is relevant to the uncertainty discussion because
regression methods work under different assumptions about uncertainties in
the data involved. Type-I regressions (Laws, 1997) are the most frequently used
and are based on the assumption that only the dependent variable (i.e. y, the
product) has an uncertainty, while the independent variable (i.e. x, the input
data) is error free. In Type-I regressions, the individual uncertainties in the input
data are not taken into account and it is generally assumed that the relative error
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in the variable is constant. Conversely, Type-II regressions (Press et al., 1992;
Laws, 1997) assume that both variables have uncertainties and are thus better
adapted for ocean colour where substantial uncertainties frequently exist in the
variables involved (e.g., reflectance ratio, chlorophyll).

An empirical algorithm is as good as the data it is based on, and on how
representative the data are of the environment or bio-optical provinces where
the algorithm is to be applied. In situ data sets are often geographically and
seasonally biased due to constraints in the timing and location of oceanic cruises
(Claustre and Maritorena, 2003).

In general, it is crucial that data sets used in the development (or validation)
of an ocean-colour algorithm have complete information about the location and
time at which the data were collected and about their quality (i.e. associated
uncertainties). The geographical and temporal extent of a data set determines
the water types where the algorithm can be applied, whereas uncertainties in
products require information on uncertainties in the input data.

For empirical algorithms, the dispersion of the y-axis data (i.e. the product)
around the “mean” relationship of the resulting algorithm provides, to some
degree, information about the uncertainties that can be expected at any given
x-axis value (i.e. the input data). However, this only represents the uncertainties
associated with the data set used in the regression and cannot be generalized
unless the data set fully encompasses all the natural variability that exists for
the water types included. Ideally, to evaluate the uncertainties of an empirical
algorithm one needs a different data set than that with which the algorithm was
developed; the statistics of the differences between the inverted products and
the measured products in this independent data set can then be used to evaluate
the uncertainties in the product. Additionally, an uncertainty propagation anal-
ysis to evaluate the effect of the uncertainties in the LwN on the output has to
be carried out to establish whether or not this uncertainty is a significant source
for uncertainty in the product (e.g., to what extent a 5% relative uncertainty in
LwN at 440 and 555 nm affects the IOPs retrieved).

In the case of neural network (NN) based algorithms, uncertainties should be
determined from a rigorous statistical approach. Aires et al. (2004) provided an
example of such an approach to products derived from remote sensing (other
than ocean colour). They use a Bayesian technique to evaluate the uncertainties
in the NN parameters which are then used to compute the uncertainties in the
outputs.

Another way to determine whether the measured reflectance spectrum is
within the domain of the bio-optical models used to simulate reflectance spec-
tra, which in turn were used to train a neural network, has been developed for the
Medium Resolution Imaging Spectrometer (MERIS) (Doerffer and Schiller, 2000;
Krasnopolsky and Schiller, 2003). For this purpose one network is trained to de-
termine concentrations from the eight MERIS bands together with the solar and
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viewing zenith angles and the azimuth difference between viewing and sun di-
rection (see Chapter 6). A second, forward, network is trained with the same data
set, which takes the derived concentrations as input and produces reflectances.
The deviation, calculated as the Chi2 (Sokal and Rohlf, 1981), over all eight bands
between the measured and the computed spectrum, is then used as an indicator
to see if the measured spectrum is within the training range, and thus within the
scope of the algorithm. In the case of the MERIS ground segment, a flag is raised
whenever the Chi2 deviation exceeds a certain threshold. However, the Chi2

value can also be used as an uncertainty measure. Furthermore, a technique has
been developed (Schiller and Doerffer, 2005), which combines the neural net-
works with an optimization procedure, to estimate the uncertainty of a product
on a pixel-by-pixel basis.

3.1.3.2 Obtaining uncertainties in products based on semi-analytical models

Semi-analytical models or algorithms are based on the premise of a known rela-
tionship (derived from the radiative-transfer theory) between LwN (or a function
of it) and IOPs (generally the absorption, a, and the backscattering, bb, coef-
ficients). These models contain some level of empiricism in the way IOPs are
parameterized (i.e. how their variations and spectral shapes are formulated)
and they also use simplified assumptions for some of their components (see
Chapter 1). The inversion of semi-analytical models generally allows the simul-
taneous retrieval of several variables contained in the IOP terms. Like empirical
algorithms, semi-analytical models are affected by uncertainties in LwN but they
are also influenced by uncertainties associated with the chosen relationship be-
tween LwN and IOPs, and uncertainties resulting from the assumptions used in
their formulation.

Sensitivity analyses are frequently used to assess how assumptions used to
describe the component terms of a model affect retrievals (Roesler and Perry,
1995; Hoge and Lyon, 1996; Garver and Siegel, 1997). Although very useful,
this approach does not allow the determination of a product’s uncertainty on a
case-by-case (or pixel-by-pixel) basis, but rather provides a general uncertainty
estimate. To our knowledge, only two methods have recently been used with
ocean-colour data that can estimate the uncertainties of products retrieved by
the inversion of a semi-analytical model on a case-by-case basis. The first one
(Maritorena and Siegel, 2005) is a non-linear adaptation of the calculation of
confidence intervals in linear regressions. Essentially, this method is based on
the projection of the residuals between the observed and reconstructed (from
the inverted variables) LwN in the solution (i.e. retrieved variables) (Bates and
Watts, 1988).

A recent study (Wang et al., 2005) suggests another approach to compute
uncertainties of the retrieved variables. In this approach, each of the variables
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to be retrieved has a predefined set of spectral shapes and the model is inverted
for each of the possible combinations of these spectral shapes resulting in an ex-
tensive set of possible solutions. These results are then filtered to keep only the
“realistic” (e.g., positive) solutions that can closely reproduce the input LwN spec-
trum (within a pre-described difference from the LwN based on the uncertainties
in LwN and the uncertainties in the theoretical relationship between LwN and
IOP). The final value for each inversion product and its associated uncertainty
is then obtained from the statistics (median and percentiles) on the acceptable
solution subset. The key steps in this approach are the choice of the acceptance
criteria for the solutions (e.g., what is the acceptable difference between ob-
served LwN and that reconstructed from retrieved IOP) and the choice of range
in possible shapes for the spectrum of each individual IOP. The two methods
described above do not produce the same kind of uncertainties, and thus they
are not directly comparable. Both approaches have benefits and limitations. For
example, the Maritorena and Siegel (2005) approach always returns a value for
the confidence interval of the retrieved product because the calculations do not
depend on spectral criteria but on the sum of the residuals (weighted by the
spectral uncertainties of the input data, if they are known). On the other end,
this approach does not take into account the uncertainties caused by the model
assumptions. In the Wang et al. (2005) approach, uncertainties in the model and
data are included in the spectral agreement criteria but the inversion may fail to
find any solution that satisfies this criteria. Although it uses an efficient linear
matrix inversion technique (Hoge and Lyon, 1996), the Wang et al. (2005) method
is also more computationally demanding (computational demands increase with
numbers of possible combinations of different shapes of IOPs).

3.2 Summary

While some preliminary uncertainty estimates for ocean-colour products are
available through match-up analyses, uncertainties are generally not provided
on a per data point basis. This has caused many users to use ocean-colour prod-
ucts as a qualitative descriptor of patterns rather than a quantitative variable.
Others use these products in biogeochemical models (e.g., computing primary
productivity) without being able to propagate uncertainties.

For some ocean-colour missions, such as for MERIS, a sophisticated flagging
system has been developed. It computes, on a pixel-by-pixel basis, indicators for
the reliability of a product by regarding different possible error sources includ-
ing sun glint, failure in the atmospheric correction, high turbidity in the water,
etc. A flag for each possible problem is raised if the uncertainty value exceeds a
certain threshold. By this method, the user gets a warning and has to decide if
he can accept this pixel for further computations.
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We have reviewed briefly some of the uncertainties present in ocean-colour
data, and have presented different approaches to establish uncertainties in prod-
ucts of ocean-colour remote sensing for either empirical or semi-analytical al-
gorithms. The procedures described above are not complicated and their full
application benefits from the knowledge of uncertainties in the input data. Use
of such approaches will help the ocean-colour community establish quantitative
confidence in the remote-sensing products.



Chapter 4

Simple Algorithms for Absorption Coefficients

ZhongPing Lee, Stephane Maritorena, Andrew Barnard

4.1 One-Step Spectral Ratio Algorithm

4.1.1 General description

In a similar fashion to the empirical approach of deriving chlorophyll-a concen-
tration from ocean-colour data, the simplest way to derive absorption coeffi-
cients from Rrs(λ) is by empirical relationships. This kind of approach does
not require knowledge of the fundamental relationships between Rrs and IOPs,
but requires an adequate data set to develop the empirical coefficients. For the
derivation of the total absorption coefficient at 440 nm, based on limited mea-
surements (63 data points), Lee et al. (1998b) developed an empirical spectral-
ratio algorithm from the spectral ratios of Rrs(λ). To obtain a better fit between
measured and algorithm-derived values, the algorithm uses quadratic polyno-
mials with two spectral ratios:

log (a(440)) = A0 +A1ρ25 +A2ρ2
25 + B1ρ35 + B2ρ2

35, (4.1)

where ρ25 and ρ35 are

ρ25 = log
(
Rrs(440)
Rrs(555)

)
, ρ35 = log

(
Rrs(490)
Rrs(555)

)
. (4.2)

Values of A0,1,2 and B1,2 in Equation 4.1, derived by least-square fitting, are
-0.674, -0.531, -0.745, -1.469, and 2.375, respectively (Lee et al., 1998b).

4.1.2 Results and discussion when applied to the IOCCG data sets

With Rrs values at 440, 490 and 555 nm (or nearby wavelengths) as inputs, val-
ues of a(440) were calculated from Equations 4.1 and 4.2. Figure 4.1 compares
the derived and known a(440) values for the synthetic and the in situ data sets,
respectively. For the synthetic data set, this empirical algorithm systematically
overestimated a(440) for most of the data, though good correlation of determi-
nation (R2 = 0.976) was achieved between the algorithm derived, and known
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Figure 4.1 Comparison between algorithm-derived and known IOP, using
algorithm results from the empirical approach of Lee et al. (1998b). Results
of a(440) from the synthetic data set (left) and a(443) from the in situ data
set (right).

a(440) values (see Table 4.1). These results suggest that the empirical coeffi-
cients, derived by forcing Equation 4.1 derived a(440) to match a limited number
of a(440) from field measurements, were biased by data from those measure-
ments. It is likely that when more high-quality data are available, the coefficients
in Equation 4.1 could be fine tuned and the estimation of a(440) from Rrs(λ) by
simple ratios could be improved.

Table 4.1 RMSE and regression (Type II) results for the synthetic data set
(θ0 = 30◦). N is the number of data tested, while n is the number of valid
retrievals by the relevant algorithm.

N n intercept slope R2 RMSE bias

a(440), L98a 500 500 0.050 0.939 0.976 0.140 0.091

a(440), B99b 500 500 -0.466 0.538 0.932 0.356 -0.151

a(490), B99 500 500 -0.488 0.574 0.948 0.281 -0.119

a(410), MM01c 500 500 -0.368 0.747 0.976 0.295 -0.221

a(440), MM01 500 500 -0.299 0.792 0.976 0.224 -0.156

a(490), MM01 500 500 -0.256 0.815 0.965 0.169 -0.096
aLee et al. (1998b) bBarnard et al. (1999) cMorel and Maritorena (2001)

For the in situ data set, the R2 value is 0.817 and the RMSE is 0.202 (see Table
4.2), indicating that algorithm-derived a(443) are quite consistent with a(443)
values from water samples. The larger differences are likely due to uncertainties
associated with both Rrs(λ) and a(443) in the in situ measurements (see also
Chapter 3 for discussions regarding uncertainties).
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Table 4.2 RMSE and regression (Type II) results for the in situ data set. N
is the number of data tested, while n is the number of valid retrievals by
the relevant algorithm.

N n intercept slope R2 RMSE bias

a(443), L98 656 656 0.140 1.081 0.817 0.202 0.061

a(443), B99 656 642 0.085 1.039 0.643 0.272 0.047

a(490), B99 656 642 0.152 1.080 0.626 0.255 0.062

a(412), MM01 656 656 -0.228 0.911 0.817 0.237 -0.147

a(443), MM01 656 656 -0.158 0.954 0.821 0.210 -0.113

a(490), MM01 656 656 -0.117 0.949 0.808 0.171 -0.059

4.2 Spectral Curvature Algorithm

4.2.1 General description

A simplistic 3-wavelength ratio method to test in situ measurements of remote
sensing reflectance and the absorption coefficient for closure was developed by
Barnard et al. (1999). The purpose of the method was to minimize the influence
of parameters of the radiative transfer equation that are difficult to determine in
situ, e.g., backscattering. This method uses two ratios with three different wave-
lengths (λ1 = 440, λ2 = 490, and λ3 = 555 nm) of Rrs to minimize the spectral
dependence of the backscattering coefficient, as well as the angular dependence
of the underwater light field. Based on the semi-analytical relationship between
Rrs and bb/a (Morel and Gentili, 1993) one can derive the following relationship
using ratios of three different wavelengths:

Rrs3(λ1, λ2, λ3) =
Rrs(λ1)
Rrs(λ2)

/
Rrs(λ2)
Rrs(λ3)

' g(λ1)g(λ3)
[g(λ2)]2

bb(λ1)bb(λ3)
[bb(λ2)]2

[a(λ2)]2

a(λ1)a(λ3)
.

(4.3)

As the spectral behaviour of the g parameter is nearly linear over these wave-
lengths, only a small error is induced by assuming that the triple ratio of g is
equal to 1.0. The triple wavelength ratio of the backscattering coefficient in
Equation 4.3, evaluated over typical oceanic conditions where the backscatter-
ing ranges from particle dominated to water dominated, and where the spectral
dependency of particle backscattering ranges from 0 to 2, varies from 0.93 to
1.02. Thus by choosing a constant value equal to 0.975 for the bb ratio term in
Equation 4.3, a maximum error of 4.5% is made for most oceanic conditions.

Substitution of the assumed constant values of g triple ratio (= 1.0) and the
backscattering triple ratio (= 0.975) into Equation 4.3 results in a model that can
be used to compare directly in situ (and modelled) measurements of Rrs(λ) and
a(λ).
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Rrs3(λ1, λ2, λ3) ' 0.975
[a(λ2)]2

a(λ1)a(λ3)
. (4.4)

If functional relationships exist between the absorption coefficients at the se-
lected three wavelengths, such that the absorption at λ1 and λ3 can be defined
solely in terms of the absorption at λ2, the above formulation can be used to
invert the remotely-sensed reflectance to determine the spectral absorption at
the selected three wavelengths.

While any functional form for the spectral absorption coefficient can be uti-
lized, Barnard et al. (1999) has shown that the absorption at 440 (originally it
was 443 nm) and 555 nm is significantly, linearly correlated to the absorption
at 490 nm, such that;

a(440) = f1[a(490)] = γ1[a(490)]+ γ2,

a(555) = f2[a(490)] = γ3[a(490)]+ γ4,
(4.5)

where values of γ1−4 are 1.561, -0.012, 0.319, and 0.067, respectively.

Substitution of these functional forms into Equation 4.4 thus allows for the
absorption coefficient at 490 nm (and then at 440 and 555 nm) to be derived
solely from Rrs(λ),

a(490) =
−(γ1γ4 + γ2γ3)−

[
(γ1γ4 + γ2γ3)2 − 4

(
γ1γ3 − 0.975

Rrs3

)
(γ2γ4)

]0.5

2
(
γ1γ3 − 0.975

Rrs3

)
(4.6)

4.2.2 Results and discussion when applied to the IOCCG data sets

With Rrs(λ) values at 440, 490 and 555 nm, a(490) and a(440) are calculated
from Rrs3 based on Equations 4.5 and 4.6. Figure 4.2 (also see Tables 4.1 and
4.2) compares model-derived a(440) versus known a(440) values. For the syn-
thetic data, the model-derived values are systematically higher in the lower end
(a(440) < 0.05 m−1) and systematically lower in the higher end (a(440) > 0.3
m−1), indicating a mismatch between data used for algorithm development and
data used for test. However, when the algorithm was applied to the in situ data
set, no such systematic bias was found, although there were 14 points for which
no valid results were obtained.
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Figure 4.2 Model-derived versus known a(440) (or a(443)) values using
results from the spectral-curvature algorithm (Barnard et al., 1999). Results
for the synthetic data set (left) and the in situ data set (right).

4.3 Spectral-Ratio Algorithm with Chlorophyll Concentra-
tion as an Intermediate Link

4.3.1 General description

Using chlorophyll-a concentration (C) derived from the spectral-ratio of Rrs(λ),
and a relationship between Kd and C , along with an analytical function that
expresses a as a function of Kd and R, the value of a can be derived from the
spectral ratios of Rrs (Morel and Maritorena, 2001). Specifically, values of C
are first derived from the current operational chlorophyll algorithm for SeaWiFS
(OC4v4) (SeaWiFS, 2000),

C = 10(a0+a1ρ+a2ρ2+a3ρ3+a4ρ4), (4.7)

where ρ = log[max(Rrs(440,490,510))/Rrs(555)], and values of a0−4 are 0.366,
-3.067, 1.93, 0.649, and -1.532, respectively.

Kd(λ) can be calculated from Equation 4.7 derived C , (Morel, 1988; Morel
and Maritorena, 2001):

Kd(λ) = Kw(λ)+ χ(λ)Ce(λ), (4.8)

with the values of Kw(λ), χ(λ) and e(λ) known from statistical analysis of field
measurements (see Table 2 of Morel and Maritorena, 2001).

Semi-analytically, there is (Morel, 1988; Morel and Maritorena, 2001)

a(λ) = 0.9Kd(λ)[1− R(λ)]
1+ 2.25R(λ)

, (4.9)

and

R(λ) ≈ n
2
w

t2
QRrs(λ). (4.10)
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Figure 4.3 Comparison between algorithm-derived and known IOP, using
results from the spectral-ratio algorithm with C as an intermediate link
(Morel and Maritorena, 2001). Results of a(440) from the synthetic data
set (left) and a(443) from the in situ data set (right).

Here t is the sea-air transmittance, nw is the index of refraction of the water, and
Q (sr) accounts the conversion of irradiance to radiance. The quantity Qn2

w/t2

represents the conversion between radiance reflectance to irradiance reflectance
and the air-sea interface effect, and approximates 6.8 for the remote sensing
domain (Morel and Gentili, 1993). Since the value of R is generally less than 0.1
and only plays a secondary role in Equation 4.9, the variation in Qn2

w/t2 does
not greatly affect the value of a(λ) derived by Equation 4.9. Therefore, for a
given Rrs(λ), absorption coefficients can be calculated following Equations 4.7
to 4.10.

4.3.2 Results and discussion when applied to the IOCCG data sets

With Rrs(λ) values at 440, 490, 510 and 555 nm, values of a(410), a(440) and
a(490) were calculated from Equations 4.7 to 4.10. The comparison of these
derived values versus known (or measured) values is presented in Tables 4.1
and 4.2. Figure 4.3 shows model-derived a(440) with known a(440). Appar-
ently, this empirical procedure performed very well, especially for the synthetic
data set with a(440) less than 0.2 m−1. However, this empirical procedure (with
the present coefficients) underestimates absorption when the value of a(440)
is greater than 0.2 m−1, which may be attributed to the data range used to de-
rive the parameters in Equation 4.7 and Equation 4.8. The difference between
model-derived a(443) and known a(443) is larger when applied to the in situ
data set, as was found for the other two algorithms. In addition, a(443) appears
to be underestimated. Even so, an R2 value of 0.821 and an RMSE of 0.210 were
achieved.
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4.4 Conclusions

Empirical and semi-empirical algorithms are easy to use and straightforward for
data processing. However, since the coefficients used in empirical algorithms are
derived from data sets that do not necessarily represent all natural variations,
the performance of such algorithms is always subject to compatibility between
the waters under study and the waters from which data were obtained for algo-
rithm development. It is critical to examine this compatibility if robust results
are desired, and if this kind of algorithm is to be applied to an extensive area.



Chapter 5

Inversion of IOP based on Rrs and Remotely
Retrieved Kd

Hubert Loisel and Antoine Poteau

5.1 Background

Based on Monte Carlo and Hydrolight simulations we developed an inverse algo-
rithm to retrieve the total absorption, scattering, and backscattering coefficients
from the irradiance reflectance just beneath the surface (R(0−)), and the mean
vertical diffuse attenuation coefficient over the first optical depth, <Kd>1 (Loisel
and Stramski, 2000). Note that while the particulate backscattering coefficient,
bbp, is directly obtained from bb by removing the effect of pure water, our al-
gorithm does not intend to decompose a into its different components such as
the absorption by phytoplankton or by coloured dissolved organic matter. This
task can be done in a second step (e.g., Chapter 10), by assuming some spec-
tral models for pigments and gelbstoff absorption coefficients, such as those
already available in the literature (Kopelevich and Burenkov, 1977; Kirk, 1994;
Bricaud et al., 1995), and using least-square fitting methods or equivalent. The
major motivation for the development of our algorithm was the assessment of
total IOP from basic radiometric measurements by means of a simple and fast
approach that does not require any assumption about the spectral shapes of a,
b, and bb. A detailed review of the methods used for solving the hydrologic-
optics inverse problem was recently performed by Gordon (2002). One of the
differences among these methods concerns the input parameters they use. The
choice of R(0−) and <Kd>1 for our algorithm was motivated by the fact that they
can both be estimated from satellite measurements of ocean colour. Whereas
R(0−) is linked to the above surface remote sensing reflectance (Rrs) in a fairly
straight forward manner (Mobley, 1994), the retrieval of <Kd>1 from space is
based on empirical relationships (Mueller, 2000; Loisel et al., 2001b). Therefore,
our algorithm does not require any spectral assumptions about IOPs, but does
require spectral relationships between <Kd>1 and Rrs, in the frame of remote
sensing application. However, while <Kd>1 is still empirically determined from
Rrs, one can imagine a more sophisticated method to retrieve <Kd>1 from space

35
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(such as an iterative scheme based on analytical relationships between <Kd>1

and space retrieved IOP).

Here we test an improved version of our algorithm (Loisel et al., in prep) with
the IOCCG data sets (synthetic and in situ). After a brief overview of the model,
we examine closure between data from both synthetic and in situ IOPs, and the
retrieval of these IOPs using our model. Finally, these results are discussed, and
compared to previous validation studies performed with the Loisel and Stramski
(2000) algorithm in various oceanic waters.

5.2 Output and Input Parameters

Output parameters of the model are a, b and bb averaged over the first atten-
uation layer. Because the retrieval of b is highly sensitive to the variations in
the particle phase function, only a and bb can be retrieved reasonably well from
Rrs. For this reason, we will specifically focus on the retrieval of a and bb at
410, 440, 490, and 550 nm. These wavelengths are common to almost all ocean-
colour sensors (with some slight spectral shifts depending on the sensor).

Input parameters of the model are R(0−, λ), < Kd(λ)>1, and the sun zenith
angle (θ0). Within the context of ocean colour remote-sensing applications, only
Rrs(λ) is available; both R(0−, λ) and <Kd(λ)>1 have to be determined. The ex-
act procedure to assess R(0−, λ) from Rrs(λ) is given in Loisel and Morel (2001).
This step accounts for the process of reflection and refraction of light at the
air-water interface, and of the bi-directional effect as described in Morel and
Gentili (1993). To estimate <Kd(λ)>1 from Rrs(λ), we originally used an empir-
ical relationship between <Kd(490)>1 and Rrs(490)/Rrs(555), such as the one
developed by Mueller (2000). <Kd(λ)>1 was then estimated empirically from
<Kd(490)>1. To estimate a(410), a(440), a(490), bb(440), bb(490), and bb(550),
we therefore need Rrs(410), Rrs(440), Rrs(490), and Rrs(550). Moreover, be-
cause of the strong influence of the incident light field at the air-sea interface
on the Rrs-IOP relationships, our model also accounts for the change of θ0.

5.3 Assumptions and Description

The radiative transfer simulations used for the development of our model were
run for an infinitely deep ocean (no bottom reflected light) with an optically
homogenous water column, a nearly flat sea surface with no wind, and the ab-
sence of inelastic scattering processes. The phase function was derived from
a weighted sum of the molecular scattering and the particle scattering phase
functions proposed by Mobley et al. (1993). An iterative scheme was also de-
veloped for removing the Raman contribution, which is always present in the
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natural environment, from R(0−). This correction will not be applied here for
consistency with the other models presented in this report.

Our model is based on the following set of equations between a(λ), bb(λ)
and <Kd(λ)>1, R(0−, λ) which can be applied to any wavelength:

a = µw < Kd >1[
1+ (2.54− 6.5µw + 19.89µ2

w) R(0−)
1−R(0−)

]0.5 , (5.1)

bb =< Kd >1 10α[R(0−)]δ. (5.2)

The α and δ functions were given by:

α = (−0.83+ 5.34η− 12.26η2)+ µw(1.013− 4.124η+ 8.088η2), (5.3)

δ = (0.871+ 0.4η− 1.83η2). (5.4)

Where η is the ratio of the molecular scattering to the total scattering (= bw/b),
and µw is the cosine of the refracted solar beam angle just beneath the surface.

Some modifications of the original version of the model are performed for
a better retrieval of a and bb in the context of ocean-colour remote sensing
applications (Loisel et al., in prep). These modifications are listed briefly below:

i) The model accounts directly for Rrs instead of R(0−).
ii) We developed a new way to account for the effect of η on the derivation

of a and bb from remote sensing (new parameterisations coupled with an
iterative procedure). Note that the dependence of η on the assessment of
a was not taken into account in the previous version of our model.

iii) We performed some slight modifications within the a parameterisation to
account for some more realistic η− b/a combinations at any given wave-
length used by ocean-colour sensors.

iv) We used new formulations and parameterisations to determine <Kd(λ)>1

from ratios of remote sensing reflectance:

q = Rrs(440)/Rrs(550). (5.5)

< Kd(λ) >1= 10(ν1(λ) log(q)+ν2(λ))/(ν3(λ)+log(q)). (5.6)

ν1−3 are empirical parameters and are provided in Table 5.1 for the SeaWiFS
bands.

5.4 Results

Using Rrs(λ) values at 410, 440, 490 and 550 nm, IOPs retrieved from the above
steps were compared with known (synthetic) or measured (in situ) values.
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Table 5.1 Parameters for deriving <Kd(λ)>1 from spectral ratio of remote
sensing reflectance (Equation 5.6).

v1 v2 v3

410 -4.7636 -2.1269 3.1752

440 -4.6216 -2.3587 3.1235

490 -3.6636 -2.3116 2.5648

550 -2.0152 -1.5296 1.7751

5.4.1 Comparison with synthetic data

Figure 5.1 as well as Table 5.2 present the performance of our model usingRrs(λ)
and the sun angle as inputs to the calculation of the IOPs. In this case, the sun
angle is at 30◦. For the absorption coefficient at 410, 440, and 490 nm, the slope
of the linear regression is very close to 1.0, and the coefficient of determination
is very high (R2 ≥ 0.94). The RMSE values are 0.12, 0.119, 0.136, and 0.138 for
a(410), a(440), a(490), and a(550), respectively. Note that the performance of
the model is slightly degraded at 550 nm compared to other wavelengths.

Table 5.2 RMSE and regression (Type II) results between the derived and
the known values of IOP for synthetic data (for θ0 = 30◦). Rrs(λ) at 410,
440, 490 and 550 nm are used as inputs for the derivation of IOP. N is the
number of data tested, while n is the number of valid retrievals.

N n intercept slope R2 RMSE bias

a(410) 500 500 0.029 0.977 0.973 0.120 0.043

a(440) 500 500 -0.007 0.990 0.966 0.119 -0.001

a(490) 500 500 -0.017 0.980 0.939 0.136 0.000

a(550) 500 500 -0.067 0.927 0.818 0.138 -0.002

bb(440) 500 500 -0.173 0.902 0.924 0.123 0.003

bb(490) 500 500 -0.114 0.935 0.917 0.140 0.007

bb(550) 500 500 -0.028 0.973 0.934 0.138 0.023

The retrieval of the absorption coefficient at 550 nm is challenging, as it is
strongly dominated by absorption by pure sea water, and because variations
of Rrs are mostly due to the backscattering coefficient in this spectral domain.
The RMSE values for bb(λ) at 440, 490, and 550 nm are very similar to those
of a(λ), but the slopes differ slightly from 1.0 (0.902, 0.935 and 0.973 at 440,
490, and 550 nm, respectively). Note that the RMSE values for bb are almost
similar for every wavelength. Also, the total absorption and backscattering co-
efficients are retrieved with the same precision when the sun angle is fixed at
60◦ (not shown here). Most of the a(λ) and bb(λ) errors appear at the high end
of the data range, where the retrieval of <Kd(λ)>1 from Rrs(λ) is generally much
more doubtful. For instance, by restricting the data set to the a(440) values
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Figure 5.1 Comparison of the derived absorption and backscattering co-
efficients using the synthetic data set, for a sun zenith angle at 30◦, and
at different wavelengths. Rrs(λ) at 410, 440, 490 and 550 nm are used as
inputs for the derivation of a and bb.

lower than 0.3 m−1, which includes most oceanic waters, the RMSE drops by a
factor of 2 (from 0.119 to 0.058). The same remark holds at other wavelengths.
When measured <Kd(λ)>1 is explicitly taken into account as an input parameter,
the performance of the model is greatly enhanced. For example, the RMSE for
a(410), a(440), a(490), a(550), and bb(490) are 0.0445, 0.0102, 0.0131, 0.0101,
and 0.0324, respectively (not shown here).

5.4.2 Comparison with in situ data

Figure 5.2 and Table 5.3 show that there is a reasonably good agreement between
the modelled and the measured values of the absorption coefficients, with the
RMSE always being lower than 0.2. In the blue-green spectral domain, the mean
RMSE value is 0.166. Compared to the synthetic data set, the RMSE increases by
a factor of 1.6, 1.6, and 1.24 at 412, 443, and 490 nm, respectively. Note that
RMSE drops from 0.169 to 0.142 by restricting the data set to the a(490) values
lower than 0.3 m−1. Interestingly, the RMSE at 550 nm is slightly better with the
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Figure 5.2 Comparison of the derived and the measured total absorption
coefficients at different wavelengths, using the in situ data set. Rrs(λ) at
412, 443, 490 and 555 nm are used as inputs for the derivation.

in situ data set than with the synthetic data set.

Table 5.3 RMSE and regression (Type II) results between the derived and
the known values of IOP for in situ data. Rrs(λ) at 412, 443, 490 and 555
nm are used as inputs for the derivation of IOP. N is the number of data
tested, while n is the number of valid retrievals.

N n intercept slope R2 RMSE bias

a(412) 656 656 -0.052 1.013 0.847 0.186 -0.064

a(443) 656 656 -0.108 0.997 0.842 0.198 -0.105

a(490) 656 656 -0.122 0.953 0.823 0.169 -0.069

a(555) 656 656 -0.126 0.897 0.670 0.111 -0.017

5.5 Conclusions

The retrieval of both a(λ) and bb(λ) is achieved with excellent accuracy in the
blue green spectral region when both R(0−) and <Kd>1 are measured (the mean
RMSE value in this spectral domain is 0.0195 for the absorption coefficient).
When only Rrs is available as an input parameter, the results are obviously de-
graded, but are still very satisfactory: for the synthetic data set, the mean RMSE
value over the blue-green part of the spectrum for a and bb is 0.128 and 0.134,
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respectively. When comparing with in situ data, we should emphasise that our
model is able to predict a with a mean RMSE value of 0.166 over the spectral
domain of interest for ocean-colour related studies. The performance of our
model is governed, to a certain extent, by the accuracy of the <Kd>1 assessment
from space. Different approaches have been tested to improve the retrieval of
<Kd(λ)>1 from Rrs(λ) (Loisel et al., in prep). Preliminary results for the retrieval
of both a and bb are very promising.

The results presented here are consistent with previous comparisons per-
formed in oceanic and coastal waters (Loisel et al., 2001b; Melin et al., 2002;
Dupouy et al., 2003). For example, based on field data collected in waters off
southern California, and in waters surrounding Europe, Loisel et al. (2001b)
showed that the average value and the standard deviation of the relative dif-
ference between the measured and the retrieved absorption coefficients from
412 to 555 nm are 26% and 16%, respectively. The new version of the model
significantly improves the retrieval of a and bb, especially in the green part of
the spectrum and at the extreme values (Loisel et al., in prep).



Chapter 6

The MERIS Neural Network Algorithm

Roland Doerffer and Helmut Schiller

6.1 Introduction

In this chapter we present the results of the MERIS Case 2 water algorithm for
the IOCCG algorithm inter-comparison. This algorithm is an artificial neural
network (aNN) inversion procedure (Doerffer et al., 2002; Doerffer and Schiller,
2000; Schiller and Doerffer, 2005; Doerffer and Schiller, 2006), which is used in
the ground segment processor of MERIS. This instrument is operated on board
the Earth observation satellite ENVISAT of the European Space Agency (ESA),
which was launched on 1 March 2002. The aNN algorithm was selected because
of its capability to invert directional water-leaving radiance reflectance directly
into absorption and scattering coefficients or concentrations of different con-
stituents present in coastal waters, with high efficiency for mass production.
Due to the fixed architecture of the aNN, only the simulated IOCCG data set
could be processed for inter-comparison.

6.2 Description of the MERIS Case 2 Water Algorithm

The MERIS Case 2 water algorithm is a neural network, which takes the log of
the above-surface remote-sensing reflectance (Rrs, which is the directional wa-
ter leaving radiance divided by the downwelling irradiance) of eight of the fif-
teen MERIS bands (i.e. after atmospheric correction, Bands 1-7 and Band 9) as
well as three angles (solar zenith, viewing zenith, azimuth difference) as input
and provides the log of the following three optical coefficients as output: pig-
ment absorption (aph(442)), absorption of gelbstoff and bleached suspended
matter (adg(442)), and scattering coefficient of all particles (bp(442)), all at 442
nm (MERIS Band 2). The optical coefficients are then used to compute the concen-
trations of chlorophyll-a and total suspended matter dry weight. Together with
the gelbstoff absorption, these are the three Case 2 water products of MERIS.
However, by using the inverse of the conversion factors it is also easy to go back
one step and compute the three IOPs from the concentrations again, as well as
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the total absorption and scattering.

The neural network is trained with simulated Rrs spectra. About 30,000 spec-
tra are used to cover a large range from Case 1 and Case 2 waters as well as
different observation and solar angles (see Table 6.1). The simulation of Rrs(λ)
is performed using Hydrolight radiative transfer model. The model is set up in
the following way:

❖ No bottom reflection
❖ Homogenous vertical distribution of water constituents
❖ No inelastic scattering
❖ Waves according to a wind speed of 3 m s−1

Standard clear atmosphere with oceanic aerosol and different solar zenith angles
(0 - 80◦ from zenith) was used to simulate incoming solar light. The detector
captures the directional, water-leaving radiance and downwelling irradiance just
above the surface, for computing the directional Rrs. For the comparison here,
only the nadir Rrs was used. The part controlling the success of the simulation
and training of the aNN is the bio-optical model. For the MERIS aNN algorithm, it
is based on measurements of the IOPs, i.e. absorption and scattering. These data
are mainly from European waters, dominated by measurements in the North Sea.

Table 6.1 Variability and range of the optical properties used for the sim-
ulation of water-leaving radiance reflectance spectra that were used to train
the aNN.

Component/Property Value Range

Gelbstoff absorption wavelength exponent [nm−1] 0.014 ± 0.002

Bleached particle absorption wavelength exponent [nm−1] 0.008 ± 0.005

Particle scattering wavelength exponent 0.4 ± 0.2

White particle scattering wavelength exponent 0.0

Phytoplankton pigment absorption spectra random selection from > 200
absorption spectra, normal-
ized at 442 nm (MERIS Band 2)

Gelbstoff absorption (ag) at 442 nm [m−1] 0.005 - 5.0

Particle scattering (bp) at 442 nm [m−1] 0.005 - 30.0

White particle scattering (bpw) at 442 nm [m−1] 0.005 - 30.0

Phytoplankton pigment absorption (aph) at 442 nm [m−1] 0.001 - 2.0

Minimum particle scattering at 442 nm [m−1] 0.25 aph(442)

Bleached particle absorption 0.1 bp(442) + δ† 0.03 bp(442)

Sun zenith angle [degree] 0 - 80

Viewing zenith angle [degree] 0 - 50

Difference between sun and viewing azimuth angle [degree] 0 - 180

†– δ is a random value in the range of 0-1

The bio-optical models used here represent mean conditions and variabilities
(see Table 6.1). For each case of the simulations, the optical properties are varied
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randomly according to the standard deviations of the measured absorption and
scattering spectra. For the absorption of gelbstoff (ag) and bleached particles
(ad) as well as for the total particle scattering (bp), the wavelength exponent
is varied according to the measured standard deviations. For the absorption
spectra of phytoplankton pigments (aph(λ)), one out of 223 different measured
spectra is selected randomly for each simulation. The absorption and scattering
coefficients at 442 nm are randomly selected from the range using the log scale
(see Table 6.1), while the viewing and sun angles are selected randomly using the
linear scale. The simulated spectra are furthermore randomly degraded using
an estimated error of the instrument and the atmospheric correction. Any Rrs

spectrum that is out of the training range is detected using a forward neural
network. This network takes the optical coefficients from the first backward
network as input to compute a Rrs spectrum. This spectrum is then compared
with the measured one. If the Chi2 deviations of all eight bands are above a
certain level (Doerffer and Schiller, 2000), the spectrum is classified as out of
the training range. However, this test was not used for the IOCCG data sets.

Uncertainties in atmospheric correction over water with low water-leaving
radiance sometimes result in negative reflectance. These incorrect values can
easily be excluded from the neural network by introducing a cut-off. In the
MERIS aNN algorithm, this cut-off was set to a Rrs value of 0.000955 sr−1. All
reflectance values below this threshold are clipped to this value. The neural
network is trained in the same way.

6.3 aNN Results with the IOCCG Data Sets

The aNN algorithm we have tested here has five hidden layers with 45, 16, 12,
8 and 5 neurons respectively. It is the algorithm which is presently used for
reprocessing all the MERIS data (Doerffer and Schiller, 2006). aph(442), adg(442)
and bbp(442) (which is assumed to be 1.5% of bp(442)) were retrieved by applying
this algorithm to the IOCCG data sets. Note that, due to wavelength mismatch,
the aNN algorithm (designed specifically for MERIS) was not applied to the in
situ part of the IOCCG data sets. Before applying the aNN algorithm, the re-
flectance spectra for the MERIS bands were linearly interpolated from the data
set, which has a 10 nm spacing. Also the optical properties of the test data set
were interpolated for 442 nm. It should be pointed out that although the IOCCG
synthetic data set was also simulated with Hydrolight radiative transfer code, it
was nevertheless computed totally independently from the data used for train-
ing the aNN. The two data sets are completely independent and are based on
independent bio-optical models, which explains at least part of the deviations.

Figure 6.1 compares the derived properties (for data of 30◦ solar zenith angle)
with their corresponding known values, while Table 6.2 summarizes results from
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Figure 6.1 Comparison between aNN derived IOPs and the known IOPs,
for the IOCCG synthetic data set (the Sun at 30◦ from zenith). aNN used
Rrs values at 412, 442, 490, 510, 560, 617, 665 and 708 nm to retrieve the
IOPs.

statistical analyses. For the entire range of total absorption and backscattering
coefficients the RMSE values are 0.052 and 0.082 (see Table 6.2), respectively,
with slope values nearly 1.0. Similar results were also obtained for the synthetic
data set with the Sun at 60◦ from zenith (not shown here).

Table 6.2 RMSE and regression (Type II) results for the synthetic data set
(30o solar zenith angle). IOPs were retrieved with Rrs values at 412, 442,
490, 510, 560, 617, 665 and 708 nm. N is the number of data tested, while
n is the number of valid retrievals.

N n Intercept slope R2 RMSE bias

adg(442) 500 500 -0.210 0.959 0.959 0.230 -0.174

aph(442) 500 500 0.407 1.163 0.943 0.271 0.202

a(442) 500 500 -0.009 1.006 0.994 0.052 -0.013

bbp(442) 500 500 -0.038 0.993 0.980 0.082 -0.024

These results indicate that the aNN algorithm accurately retrieved those op-
tical properties that determine the remote sensing reflectance. When the total
absorption is decomposed into the components of water, gelbstoff and phyto-
plankton pigments, the scatter is much larger (RMSE values are 0.230 and 0.271
for adg(442) and aph(442), respectively) and the relationships deviate from lin-
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earity in the middle concentration range. The scatter is obviously due to the
fact that the bio-optical models used for the IOCCG synthetic data set are differ-
ent from those used for training the aNN. This is presumably also true for the
maximum difference in the middle of the data range. Since this is also normally
the case in nature, it indicates that total absorption and total backscattering
are more robust variables, which should be derived from reflectance spectra in
addition to other IOPs or concentrations of different water constituents.



Chapter 7

The Linear Matrix Inversion Algorithm

Paul Lyon and Frank Hoge

7.1 Background

The Linear Matrix Inversion (LMI) algorithm was developed by Hoge and Lyon
(1996). This algorithm uses remote-sensing reflectance at three wavelengths to
simultaneously derive three major unknowns algebraically. Due to its linear ma-
trix nature, it is efficient in processing satellite images. In the past decade, this
algorithm has been applied to data taken from many regions around the world
(Hoge and Lyon, 1996; Hoge and Lyon, 1999; Hoge et al., 2001). Nevertheless,
since some of the parameters used in the algorithm were developed based on
measurements made mainly from the Mid Atlantic Bight and off the East Coast
of the United States, further refinement and improvement is expected in the
coming years.

7.2 Inputs of LMI

The algorithm uses remotely sensed reflectance, Rrs, propagated through the
air/ water interface, into semi-analytic reflectance model developed by Gordon
et al. (1988). The present version of the algorithm that is optimized for use
with satellite data uses only three inputs, Rrs(412), Rrs(490) and Rrs(555). The
algorithm also has four empirical parameters, described below, that determine
the spectral shapes of the individual IOP spectrum.

7.3 Basic Assumptions of LMI

There are three assumptions that are fundamental to this inversion technique.
First, it is assumed that the semi-analytic equation, shown in Equation 7.1, is a
good description of the relationship between the IOPs and the reflectance over
a wide range of environments. Second, it is assumed that globally, the opti-
cally significant varying IOPs are absorption coefficients of phytoplankton and
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CDOM (including detritus), and backscattering coefficient of all particles (scat-
tering constituents other than water). Thus, an algorithm based on properly for-
mulated spectral models of these three principal IOPs may be applied to many
different water masses. And, third, it is assumed that, using a proper combi-
nation of wavelengths, the three major IOPs can be resolved if the following
conditions are met. The wavelengths used should maximize the mathematical
differences between the spectral shapes of the three IOPs. And, within each
IOP, a stable spectral dependence must be maintained or the modulations of
the IOP spectral shapes need to be empirically adjusted to reflect their natural
variability.

7.4 Approach

7.4.1 Algorithm mathematical description

As stated above, the algorithm is based on the reflectance model developed by
Gordon et al. (1988),

rrs = g1

(
bb

bb + a

)
+ g2

(
bb

bb + a

)2

. (7.1)

Here rrs is the subsurface remote-sensing reflectance, which can be easily cal-
culated from the remote-sensing reflectance (Rrs) provided by any sensor. g1 =
0.0949 and g2 = 0.0794 are model parameters for rrs (Gordon et al., 1988). bb

and a are the total backscattering coefficients and total absorption coefficient,
respectively. Defining u as

u ≡ bb

bb + a
, (7.2)

we get a quadratic equation with u as the variable,

g2u2 + g1u− rrs = 0, (7.3)

which can easily be solved foru using the quadratic formula. Since bb is a sum of
bbw and bbp, a is a sum of aw, aph, and adg, and aw and bbw are known constants,
a linear system with aph, adg and bbp as variables can then be constructed by
re-arranging u (Hoge and Lyon, 1996):

aph(λ)+ adg(λ)+ bbp(λ)ν(λ) = −aw(λ)− bbw(λ)ν(λ), (7.4)

with

ν ≡ 1− 1
u
. (7.5)

For an exact solution, three different wavelengths are used to form a system
of three equations with three unknowns. After spectrally modeling the three
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IOP variables with values at a reference wavelength (λr = 410 nm) the equation
becomes,

a�ph(λ)aph(λr )+ a�dg(λ)adg(λr )+ b�bp(λ)bbp(λr )ν(λ) = −aw(λ)− bbw(λ)ν(λ).
(7.6)

Here a�ph(λ), a
�
dg(λ) and b�bp(λ) represent the normalized optical properties at

λr (see section 7.4.2). Equation 7.6 can now be used to construct the linear
matrix that could be inverted to derive the IOPs consistent with the input Rrs

and the spectral models,
1 1 ν(λr )

a�ph(λ2) a�dg(λ2) b�bp(λ2)ν(λ2)

a�ph(λ3) a�dg(λ3) b�bp(λ3)ν(λ3)



aph(λr )

adg(λr )

bbp(λr )

 = −

aw(λr )+ bbw(λr )ν(λr )

aw(λ2)+ bbw(λ2)ν(λ2)

aw(λ3)+ bbw(λ3)ν(λ3)

 .
(7.7)

Note that the inverse matrix must be computed for each data point since input
data, Rrs(λ), is on both sides of the equation (contained in ν(λ)). Any stan-
dard method of solving this system of equations can be used. The Hoge/Lyon
inversion algorithm uses lower/upper deconvolution (Hoge and Lyon, 1999).

7.4.2 IOP spectral models

To mathematically solve Equation 7.7, spectral models are required for the three
IOP variables. It is important to select wavelengths where each IOP tends to
co-vary among wavelengths (Hoge and Lyon, 1996). Based on many different
published phytoplankton absorption spectra, phytoplankton absorption coeffi-
cients at 412, 490 and 555 nm are found to co-vary well. A Gaussian function
centered at 443 nm, with a full-width at half max (FWHM) of 70 nm (σ in Equa-
tion 7.8 below) is used to model aph(λ). No improvement in the retrieved IOPs
was found when the FWHM parameter σ was empirically varied.

aph(λ) = aph(λr )e

[
λ2
r+886(λ−λr )−λ2

2σ2

]
. (7.8)

The combined absorption coefficient of detritus and gelbstoff, adg(λ), is
modelled with an exponential decay function (Bricaud et al., 1981; Roesler et
al., 1989; Carder et al., 1991):

adg(λ) = adg(λr )e−S(λ−λr ). (7.9)

S is the spectral slope and is set to 0.018 (nm−1) for all inversions discussed
within this chapter.

The total particulate backscattering coefficient, bbp(λ) is modelled as a
power-law function of wavelength,

bbp(λ) = bbp(λr )
(
λr
λ

)Y
, (7.10)
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with exponent Y empirically estimated as follows,

Y =m1
Rrs(490)
Rrs(555)

+m2. (7.11)

Sensitivity studies have found that the magnitude of parameter Y affects
the bbp and the adg retrievals more than the aph retrievals (Hoge and Lyon,
1996). The empirical parameters, m1(0.8) and m2(0.2) have been optimized
for use with global satellite data, such that errors in the derived IOPs caused by
this equation are minimized in a global sense. These parameters can also have
regional values to achieve better regional results.

7.5 Results

7.5.1 Synthetic data set

Figure 7.1 shows the agreement between known and derived IOPs. There is a
logarithmic offset in the aph(410) retrievals and several outliers, yet the agree-
ment is evident as shown in Table 7.1 by the correlation of determination (R2)
of 0.877 (n = 484) and the slope close to 1.0, and an RMSE of 0.222. Note that
the statistics presented in Table 7.1 are affected by the outliers that lie below
the one-to-one line, so that the larger population above the line could still be
corrected by using an offset in log space. This infers, of course, that regional
or specific tuning of this and any algorithm may improve its performance for
similar settings.

Table 7.1 RMSE and regression (Type II) results of the synthetic data set
(θ0 = 30◦). IOPs were retrieved with Rrs values at 410, 490 and 550 nm
as inputs. N is the number of data tested, while n is the number of valid
retrievals.

N n intercept slope R2 RMSE bias

aph(410) 500 484 0.053 0.989 0.877 0.222 0.068

aph(490) 500 484 0.114 0.997 0.891 0.23 0.118

adg(410) 500 484 0.069 1.052 0.958 0.161 0.03

adg(490) 500 484 -0.032 1.051 0.921 0.236 -0.095

a(410) 500 484 0.067 1.036 0.964 0.14 0.045

a(490) 500 484 0.012 1.007 0.942 0.133 0.005

bbp(410) 500 484 0.043 1.019 0.922 0.15 0.007

bbp(490) 500 484 0.008 1.018 0.936 0.149 -0.027

The agreement between input and output adg(410) is better than that of
aph(410), with an R2 of 0.958 and slope about 1.1, and RMSE of 0.16 (Table 7.1).
Much better results are achieved for the total absorption and particle backscat-
tering coefficients, with both R2 and slope values close to 1.0 and RMSE of 0.14
and 0.15, respectively.
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Figure 7.1 Comparison between retrieved and simulated IOPs for a sun
zenith angle of 30◦. IOPs were retrieved using Rrs values at 410, 490 and
550 nm.

The smaller number (n) in the statistics analysis (Table 7.1 and Table 7.2)
represents all the data points that the inversion successfully processed (all IOPs
with values greater than zero, or where the output a(410) < 10.0 m−1). Data
points with negative IOP retrievals were excluded from the statistics and the fig-
ures, as they are physically unrealistic values that are filtered out automatically.
In normal operation of the linear matrix inversion, retrievals where adg(410) >
1.0 m −1 or aph(410) > 1.0 m −1 are considered suspect. To allow readers to
compare the results of this algorithm with those of other techniques discussed
in this report, however, inversions with a(410) with values up to 10.0 m−1 are
included in the figures and tables.

7.5.2 In situ data set

For the in situ data set, the regression statistics are provided in Table 7.2. Re-
trieved aph(412), adg(412), a(412) and a(490) are compared with their measured
values respectively in Figure 7.2. There were no in situ bbp data for comparison.

Apparently the retrievals of aph and adg scattered much more than that of
the simulated data set. This might be due to the measurement uncertainties
that are common in field-measured data. Also, large portions of the data were
taken in coastal waters, and real in situ properties may not follow the limited
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Table 7.2 RMSE and regression (Type II) results of the in situ data set.
IOPs were retrieved with Rrs values at 412, 490 and 555 nm as inputs. N is
the number of data tested, while n is the number of valid retrievals.

N n intercept slope R2 RMSE bias

aph(412) 656 642 0.336 1.208 0.654 0.332 0.02

aph(490) 656 642 0.454 1.231 0.686 0.325 0.078

adg(412) 656 642 -0.142 1.007 0.653 0.325 -0.149

adg(490) 656 642 -0.315 0.98 0.599 0.427 -0.284

a(412) 656 642 -0.082 0.96 0.872 0.163 -0.045

a(490) 656 642 -0.035 0.994 0.804 0.168 -0.028

combinations of spectral shapes used in the simulated data set.
Again, better results are obtained for the total absorption coefficients. This

suggests that it is easier to retrieve the total absorption using this technique
than it is to resolve the separate components of the total absorption.

7.6 Discussion

7.6.1 Overall results of the linear matrix inversion algorithm

As described above, the retrievals of the total absorption are quite good for both
in situ and simulated data sets. The separation of the absorption into contribu-
tions from phytoplankton and dissolved organic matter are less accurate, but
still retrieved well. The spectral model parameters used in the linear inversion
of both simulated and in situ data sets preformed well in spite of the fact that
the true spectral shapes at the wavelengths used in the inversions varied over
dramatic ranges, as shown in Figure 7.1. These results demonstrate that an ex-
act solution derived from a 3-by-3 inversion, can be optimized to retrieve IOPs
at a reference wavelength. The linear inversion method has both weaknesses
and strengths associated with its use, which are briefly described below.

7.6.2 Algorithm weaknesses

One set of weakness in this algorithm is related to the parameterisation of the
IOP spectral shapes. For example, the empirically adjusted bbp spectral model
and the fixed spectral models for aph and adg will not properly represent all
combinations of water constituents, especially when contributions from opti-
cally significant constituents not well described by the three IOP basis vectors
are present. The fixed spectral shape of aph limits the accuracy of IOP retrievals
since true phytoplankton absorption spectra vary dramatically (e.g., Hoepffner
and Sathyendranath, 1991), however, the selection of covarying wavelengths re-
duces the impact of the high variability of other wavelengths. Also, the adg
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Figure 7.2 Comparison between retrieved and in situ IOPs. IOPs were
retrieved using Rrs values at 410, 490 and 555 nm.

spectral slope coefficient, S, should be varied with type of water mass, but at
this point, no parameterization of S with an a priori data value has improved
the retrievals of adg.

As shown in Figures 7.1 and 7.2, the algorithm has been optimized to re-
trieve values at 412nm. The IOPs derived at 412 nm can be translated to any
other wavelength through the IOP spectral models but the accuracy of the values
derived at the other wavelengths will be driven by how well the spectral models
reflect the true characteristics of the in-water constituents, which is true of any
spectral model-based algorithm. Methods developed by Wang et al. (2005) could
be implemented to help describe the range of equally valid retrievals of IOPs.

The need for the 412 nm band to separate the CDOM absorption from the
phytoplankton absorption exposes the algorithm to potentially large errors in
input Rrs(412), caused by the fact that in coastal regions accurate atmospheric
correction at the shorter wavelengths is very difficult to achieve. This is a funda-
mental problem for all semi-analytical algorithms that attempt to use Rrs(412)
to separate phytoplankton and CDOM absorption coefficients.

7.6.3 Algorithm strengths

There are also several advantages gained by using the exact linear inversion
approach. The most important feature is that the algorithm limits errors in IOP
spectral models by using wavelengths where each IOP tends to co-vary. This
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approach is selected to optimize the algorithm for application to global data
sets. Hyper-spectral data was tested and it was found that the best agreement
between the retrieved IOPs and truth data was achieved by using the fewest
number of co-varying wavelengths possible. Therefore, the SeaWiFS bands, 412,
490 and 555 nm, or the closest to those bands on other sensors, are used in this
algorithm. By using this simplified approach, we sacrifice deriving information
about more constituents in the water but minimize the errors caused by poor
spectral models to describe highly variable portions of the IOP spectra, and great
variability of water mass types on a global scale.

The inversion is computationally fast and no iteration is needed. Large data
set processing is limited more by the rate of data to be read and written to a
disk, than by the computation of the IOP outputs.

Inputs from several different satellites that are contemporaneous and geo-
graphically coincident can be used in the inversion to produce a multi-satellite
blended product. In this case, the same three wavelengths (or similar wave-
bands) are used from each satellite to realize the benefit of averaging out the
asymmetrical errors in Rrs in an over determined linear inversion, while still
maintaining the inter-wavelength co-variance for each IOP.

With fewer spectral model parameters to adjust, the algorithm is easy to tune
given known or expected values. This allows for tuning of the algorithm to spe-
cific regions where characteristics of constituents in the water are constrained
temporally and spatially, so regionally optimized versions of the algorithm can
be developed, without changing the core mathematical implementation.



Chapter 8

Over Constrained Linear Matrix Inversion with
Statistical Selection

Emmanuel Boss and Collin Roesler

8.1 General Description

Semi-analytic inversions of remotely-sensed reflectance have been available
since 1995 (Roesler and Perry, 1995). However, a procedure that provides an
uncertainty of the inverted parameter for each individual spectrum based on
uncertainties in the remote-sensing data and the model has only recently been
devised (Wang et al., 2005).

We use the same model philosophy as in Wang et al. (2005) with a slight
modification (we use a single phytoplankton absorption spectrum). We assume
a known relationship between rrs and the absorption and backscattering coeffi-
cients (Gordon et al., 1988):

rrs(λ) =
Lu(λ,0−)
Ed(λ,0−)

= 0.0949
bb(λ)

a(λ)+ bb(λ)
+ 0.0794

(
bb(λ)

a(λ)+ bb(λ)

)2

. (8.1)

The quadratic form is important for high rrs(λ) values (Garver and Siegel, 1997).
Gordon et al. (1988) estimated that the model errors in Equation 8.1 are less than
10%.

The total absorption coefficient is partitioned as follows:

a(λ) = aw(λ)+ aph(λ)+ adg(λ), (8.2)

where the subscripts “w”, “ph”, and “dg” designate sea water, phytoplankton,
and the combined contribution of CDOM and detrital material. The spectral
absorption coefficient for sea water, aw(λ), is computed for given salinity and
temperature based on Pope and Fry (1997) and Pegau et al. (1997).

The spectral absorption coefficient of phytoplankton is assumed to be:

aph(λ) = aph(λ0)a+ph(λ), (8.3)

where a+ph(λ) is an average of normalized phytoplankton absorption spectra
(Roesler and Perry, 1995) and λ0 is commonly set as 440 nm.
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The spectral absorption coefficient of the combined absorption by CDOM and
detritus is:

adg(λ) = adg(λ0) exp(−S(λ− λ0)), (8.4)

where S is the spectral slope of the combined absorption coefficient. This func-
tion has been found to be an adequate representation of measured CDOM and
detritus absorption coefficient with S ranging between 0.008 to 0.023 nm−1 (e.g.,
Roesler et al., 1989).

The total backscattering coefficient, bb(λ), is approximated by

bb(λ) = bbw(λ)+ bbp(λ). (8.5)

The spectral backscattering coefficients of sea water (bbw(λ)) are computed for
a given salinity based on the interpolation of the data of Morel (1974) as in Boss
and Pegau (2001).

The spectral particle backscattering coefficient is assumed to obey:

bbp(λ) = bbp(λ0)(λ/λ0)−Y . (8.6)

This formulation is consistent with many previous studies, though without in-
water validation.

To account for variability in space and time of the spectral shapes of the
IOPs we perform the rrs inversion allowing the shape parameters (spectral slope
S and spectral slope Y ) to vary within most of their observed range of variability
(0.01 ≤ S ≤ 0.02, 0 ≤ Y ≤ 2). For each parameter we use 11 different values with
equal intervals between their maximum and minimum, resulting in 112 = 121
different inversion computations for each rrs.

It can be shown that with known spectral shapes, Equation 8.1 can be solved
to obtain bbp(λ0), adg(λ0), andaph(λ0) using a linear matrix inversion technique
(Hoge and Lyon, 1996). When the number of wavelengths exceeds the number
of unknowns (3 in our case), this solution is the best solution in a least-square
sense (Press, 1992).

From all the solutions to Equation 8.1 we select the solution for which
adg(440) and aph(440) > −0.005 m−1 and bbp(440) > −0.0001 m−1 (slightly
negative values are accepted to compensate for finite uncertainties in measure-
ments and calibrations). We further restrict ourselves to the solutions whose
reconstructed rrs (calculated by substituting the solutions into Equation 8.1)
obeys:

|rrs,reconstucted(λ)− rrs,known(λ)|/rrs,known(λ) < 0.1 or 0.2 for every λ.

These criteria can result in cases where no solution could be found for a given
rrs. The choice of the criteria should be driven by knowledge of uncertainties
in observed rrs as well as the assumed spectral shapes (in particular that of
phytoplankton).
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We thus present the results from the two different solution selection criteria
in the tables, but only the criteria of 0.1 in the plots. We provide uncertainties
for the solutions on the plots based on the distance between the 84th and 16th

percentile of the obtained solutions (∼ ± one standard deviation for a normal
distribution).

Given the application to remote sensing we used only the Rrs values at 410,
440, 490, 510 and 550 nm (or nearby for the in situ data set).

Figure 8.1 Comparison of inverted and the simulated data set (Sun at
30o from zenith) for aph(440), adg(440), a(440), and bbp(440) for the 10%
criteria (statistics in Table 8.1). Vertical lines denote the 90% confidence
intervals in the solutions. Rrs values at 410, 440, 490, 510 and 550 nm
were used as inputs for IOP retrieval.

8.2 Results and Discussion with IOCCG Data Sets

8.2.1 Simulated data set

Over the large dynamic range of the data set the inversion fares rather well for
both 10 and 20% criteria (Figure 8.1, Tables 8.1 and 8.2). Not surprisingly the
stringent criteria provide less but better solutions (in terms of RMSE error and
bias). The agreement between derived and known IOPs can be further improved
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Table 8.1 RMSE and regression (Type II) results for the synthesized data
set. Statistics of comparison of the median of all possible inversion so-
lutions with a 10% agreement criterion. Rrs values at 410, 440, 490, 510
and 550 nm were used as inputs for IOP retrieval. N is the number of data
tested, while n is the number of valid retrieval.

N n intercept slope R2 RMSE bias

a(440) 500 408 -0.001 0.995 0.966 0.106 0.003

bbp(440) 500 408 -0.055 0.972 0.935 0.125 0.003

adg(440) 500 408 -0.021 0.982 0.956 0.141 -0.001

aph(440) 500 408 0.160 1.113 0.927 0.159 -0.002

Table 8.2 RMSE and regression (Type II) results for the synthesized data
set. Statistics of comparison of the median of all possible inversion so-
lutions with a 20% agreement criterion. Rrs values at 410, 440, 490, 510
and 550 nm were used as inputs for IOP retrieval. N is the number of data
tested, while n is the number of valid retrieval.

N n intercept slope R2 RMSE bias

a(440) 500 438 -0.074 0.938 0.946 0.145 -0.025

aph(440) 500 438 -0.025 1.014 0.878 0.201 -0.044

adg(440) 500 438 -0.082 0.942 0.944 0.169 -0.023

bbp(440) 500 438 -0.186 0.925 0.898 0.168 -0.034

by choosing other wavelengths (e.g. 410 nm for adg and 550 nm for bbp) and
by adding more wavelengths (e.g. Wang et al. (2005) added a 670 nm channel
and the successful retrieval increased from 408 to 472 with the 10% criteria).
It is encouraging that the uncertainty estimates for both adg(440) and bbp(440)
intersect the 1:1 line suggesting the constraint criteria is working well.

8.2.2 In situ data set

Large uncertainties in inverted parameters (in particular aph) suggest that some
of these data have many possible solutions and thus large uncertainties for a
given Rrs(λ). Some data points are way off the line, possibly due to large sun
angles and/or poor measurements (Figure 8.2 and Tables 8.3 and 8.4).

In Wang et al. (2005) we used a more complicated phytoplankton absorption
formulation which increased the computation by a factor larger than 10. We
found that this complexity did not improve the match ups significantly and thus
decided here to use a single phytoplankton absorption function. It can easily be
demonstrated that a different choice of wavelengths for inversions or a different
choice of wavelength for the parameter can significantly improve/degrade the
retrieval. Thus, if we are after adg, inverting a near UV wavelength provides the
best inversion; while for bb, it is in the NIR that the inversion does best; as long
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Figure 8.2 Comparison of inverted and the in situ data set (Sun at 30o

from zenith) foraph(440), adg(440), a(440), andbbp(440) for the 10% criteria
(statistics in Table 8.3). Vertical lines denote the 90% confidence intervals
in the solutions. Rrs values at 410, 440, 490, 510 and 555 nm were used as
inputs for IOP retrieval.

as adequate Rrs at those wavelengths could be available.

8.3 Summary

The inversion method presented here was designed to provide uncertainty esti-
mates of inversion products and is dependent on the reality of the assumptions
of the model. For example, it is well known that Equation 8.6 is likely not a good
representation of particulate spectral backscattering, yet it is the only simple
model currently available. Much work is still needed to understand spectral
IOPs, and such work will, without a doubt, improve our ability to retrieve in-
water parameters from remote sensing.
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Table 8.3 RMSE and regression (Type II) results for the in situ data set.
Statistics of comparison of the median of all possible inversion solutions
with a 10% agreement criterion. Rrs values at 412, 443, 490, 510 and 555
nm were used as inputs for IOP retrieval. N is the number of data tested,
while n is the number of valid retrievals.

N n intercept slope R2 RMSE bias

a(412) 656 504 -0.022 0.942 0.872 0.146 0.029

a(443) 656 504 -0.029 0.969 0.849 0.150 0.001

adg(443) 656 504 -0.018 1.043 0.705 0.259 -0.072

aph(443) 656 504 0.068 1.031 0.613 0.285 0.024

Table 8.4 RMSE and regression (Type II) results for the in situ data set.
Statistics of comparison of the median of all possible inversion solutions
with a 20% agreement criterion. Rrs values at 412, 443, 490, 510 and 555
nm were used as inputs for IOP retrieval. N is the number of data tested,
while n is the number of valid retrievals.

N n intercept slope R2 RMSE bias

a(412) 656 629 -0.036 0.939 0.867 0.157 0.019

a(443) 656 629 -0.039 0.977 0.842 0.165 -0.017

adg(443) 656 629 0.086 1.069 0.63 0.298 -0.013

aph(443) 656 629 -0.057 1.014 0.714 0.266 -0.075



Chapter 9

MODIS Semi-Analytic Algorithm for IOP

Kendall Carder, Jennifer Cannizzaro, Robert Chen and ZhongPing Lee

9.1 Introduction

The Moderate-Resolution Imaging Spectrometer (MODIS) semi-analytic algo-
rithm (Carder−MODIS here after) (Carder et al., 1999; Carder et al., 2004) derives
chlorophyll-a concentrations and inherent optical properties (aph(λ), adg(λ) and
bbp(λ)) from remote-sensing reflectance spectrum (Rrs(λ)). This algorithm is
composed with an algebraic portion and an empirical portion. The algebraic
portion is for waters with low absorption (mostly oceanic waters) while the
empirical portion is for waters with high absorption (mostly coastal waters).
One of the main characteristics of this algorithm is that it responds to the
large global variability observed in both chlorophyll-specific absorption coef-
ficients (a∗ph(λ)), as well as gelbstoff-to-phytoplankton absorption ratios. This
algorithm utilizes differences between measured sea-surface temperatures and
known nitrate-depletion temperatures (NDT) ( Kamykowski and Zentara, 1986;
Kamykowski, 1987) to select the most appropriate a∗ph(λ) for a given bio-optical
domain. The algorithm was first developed and evaluated using high-light, trop-
ical/subtropical and summer temperate field data (Carder et al., 1999) and later
expanded to include parameters appropriate for low-light, polar data (Carder et
al., 2004).

9.2 Algorithm Description

9.2.1 Remote-sensing reflectance model

By making several approximations, the Rrs(λ) used in Carder−MODIS algorithm
is simplified to (Carder et al., 1999)

Rrs(λ) ≈ constant
bb(λ)
a(λ)

, (9.1)

where the “constant" is unchanging with respect to wavelength and solar zenith
angle. The value of the constant is not relevant to the algorithm since, as will
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be shown later, the algorithm (for absorption and chlorophyll-a concentration)
uses spectral ratios of Rrs(λ) and the constant term factors out.

Further, both bb(λ) and a(λ) are partitioned into several separate terms.
Each term is described empirically and is written in a general fashion as a func-
tion of variables and empirically derived parameters. Since sea-surface temper-
atures were not provided in the IOCCG data sets, the unpackaged parameters
regarding a∗ph(λ) derived from high-light, tropical/subtropical and summer tem-
perate waters were employed (Carder et al., 1999) (see Table 9.1). While a∗ph(λ)
is extremely important for deriving chlorophyll-a concentrations accurately, re-
trievals of aph(λ) and adg(λ) are less sensitive to differences in a∗ph(λ).

Table 9.1 Parameters for the MODIS semi-analytical algorithm for regions
without packaged pigments

λ a0 a1 a2 a3 X0 X1 Y0 Y1 S (nm−1)

412 2.20 0.75

443 3.59 0.80 0.5 0.0112 -0.00182 2.058 -1.13 2.57 0.0225

488 2.27 0.59

551 0.42 -0.22

9.2.2 Backscattering coefficients

The total backscattering coefficient, bb(λ), can be expanded as

bb(λ) = bbw(λ)+ bbp(λ), (9.2)

with bbp(λ) modelled as (Carder et al., 1999)

bbp(λ) = X
(

551
λ

)Y
. (9.3)

bbw(λ) is constant (Morel, 1974). X is the particulate backscattering at 551
nm, and Y describes the spectral shape of the particle backscattering spectrum.
Values for X and Y were determined empirically by model inversion (Carder et
al., 1999) and are described as

X = X0 +X1Rrs(551), (9.4)

Y = Y0 + Y1
Rrs(443)
Rrs(488)

, (9.5)

where X0,1 and Y0,1 are empirically derived constants (Carder et al., 1999) and
are provided in Table 9.1.

When absorption due to water molecules does not dominate the total ab-
sorption coefficient at 551 nm, algorithms that utilize wavelengths longer than
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551 nm, that take advantage of the larger inflection in the pure water absorption
spectra between 570-610 nm (Pope and Fry, 1997), are required. Using measure-
ments of Rrs(λ) and bbp(λ) collected from the West Florida Shelf, the equation

bbp(551) = 10(0.933−0.134 log(Rrs(551))+1.029 log(Rrs(667))) − 0.000966, (9.6)

(n=154, r2 = 0.96, RMSE = 0.160) was derived for MODIS-like wavelengths. This
function was used when the Carder−MODIS algorithm was applied to the IOCCG
synthetic data set. Since remote-sensing data with wavelengths longer than 555
nm were not available for the IOCCG in situ data set, however, bbp(551) values
were then estimated using Equation 9.4.

9.2.3 Absorption coefficients

The total absorption coefficient, a(λ), can be expanded as

a(λ) = aw(λ)+ aph(λ)+ adg(λ), (9.7)

with values of aw(λ) taken from Pope and Fry (1997).
The shape of the aph(λ) spectrum for a given water mass changes due to the

pigment-package effect and changes in pigment composition. For the MODIS
wavebands centered at 412, 443, 488, and 551 nm, a hyperbolic tangent func-
tion was chosen to empirically model the ratio of aph(λ)/aph(675) in order to
ensure that this ratio approaches an asymptote at very high or very low values
of aph(675) (Carder et al., 1999),

aph(λ) = a0(λ) exp
(
a1(λ) tanh

(
a2(λ)ln

(
aph(675)/a3(λ)

)))
aph(675), (9.8)

with values of a0−3(λ) provided in Table 9.1.
The cumulative effects of detritus and gelbstoff absorption, adg(λ), are ex-

pressed as

adg(λ) = adg(400) exp(−S(λ− 400)), (9.9)

where S is the spectral slope, and a value of 0.0225 nm−1 provided optimal
retrieval results for the Carder−MODIS algorithm to calculate chlorophyll-a con-
centrations (Carder et al., 1999). It is larger than the mean ocean value of about
0.015 nm−1, likely compensating in part for uncertainties in other parts of the
model.

9.2.4 Model inversion

Via Equations 9.1 – 9.9, Rrs(λ) is reduced to a function of three unknowns (“con-
stant" term, aph(675), and adg(400)) along with model constants for X0,1, Y0,1,
a0−3(λ), and S (Table 9.1). To algebraically solve for the values of the two desired
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unknowns (aph(675) and adg(400)), spectral ratios of 412/443 and 443/551 for
Rrs(λ) as shown

Rrs(412)
Rrs(443) = bb(412)

bb(443)
a(443)
a(412) ,

Rrs(443)
Rrs(551) = bb(443)

bb(551)
a(551)
a(443) ,

(9.10)

provided the best separation of the two absorption contributions. Details on the
computational method of solving these equations are discussed in Carder et al.
(1999).

9.2.5 Empirical portion of Carder−MODIS

For waters with high concentrations of gelbstoff and chlorophyll, Rrs(412) and
Rrs(443) values are small, and therefore the above semi-analytical approach can-
not perform properly due to low signal-to-noise ratios. Thus the semi-analytic
approach is designed to return values only when modelled aph(675) values are
less than 0.025 m−1, which is equivalent to a chlorophyll-a concentration of
about 1.5 mg m−3. Otherwise, the following empirical algorithms derived from
the West Florida Shelf (1999-2001) and Bayboro Harbor (St. Petersburg, Florida)
field data (n = 319) are used.

For aph(443), there is

aph(443)emp = 10(−1.164−1.2095ρ35−1.566ρ2
35−1.708ρ45+19.502ρ2

45), (9.11)

where ρij is the log-transformed ratio of Rrs(λi) to Rrs(λj) and the subscripts i
and j are wavebands #1-6 that represent MODIS wavebands 412, 443, 488, 531,
551, and 667 nm, respectively. Since this equation requires the MODIS Rrs(531)
waveband and the SeaWiFS waveband Rrs(510) was provided instead with the
IOCCG in situ data, a modified SeaWiFS algorithm was also developed

aph(443)emp = 10(−1.189−1.33ρ35−2.151ρ2
35−0.775ρ45S+7.592ρ2

45S), (9.12)

and applied to the IOCCG in situ data set. Here ρ45S is equal to
log(Rrs(510)/Rrs(555)).

The empirical algorithm for adg(443) is

adg(443)emp = 10(−1.144−0.738ρ15−1.386ρ2
15−0.644ρ25+2.451ρ2

25), (9.13)

and was applied to the IOCCG in situ data set. Since adding a ρ65 term reduced
the RMSE error by 40% for calculating adg(443) for the West Florida Shelf and
Bayboro Harbor data, the derived equation

adg(443)emp = 10(0.043−0.185ρ25−1.081ρ35+1.234ρ65), (9.14)
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was applied to the synthetic data set where Rrs(670) data (considered equal to
Rrs(667)) were available.

Empirical retrievals of a(λ) at 412, 443, and 488 nm also improved for the
West Florida Shelf and Bayboro Harbor data set when a red reflectance waveband
was included. Thus, the empirical expression derived from field data and applied
to the synthetic data set takes the form

a(λ)emp = 10(c0(λ)+c1(λ) log(Rrs(443))+c2(λ) log(Rrs(488))+c3(λ) log(Rrs(667))), (9.15)

where c0−3(λ) are empirically derived parameters (Table 9.2a). Note that while
reflectance ratios are used to calculateaph(443)emp andadg(443)emp, reflectance
values are used to calculate a(λ)emp in Equation 9.15. For the IOCCG in situ
data set that does not have a red reflectance waveband, an empirical expression
similar to that of Lee et al. (1998b)

a(λ)emp = 10(t0(λ)+t1(λ)ρ25+t2(λ)ρ2
25+t3(λ)ρ35+t4(λ)ρ2

35), (9.16)

was developed with t0−4(λ) (Table 9.2b) also derived from the West Florida Shelf
and Bayboro Harbor data.

Table 9.2a Wavelength-dependent parameters for the high-absorption
empirical a(λ) algorithm (Equation 9.15) that requires Rrs(670).

c0(λ) c1(λ) c2(λ) c3(λ)
a(412) -0.349 -1.041 0.171 0.754

a(443) -0.166 0.068 -1.284 1.077

a(488) -0.167 0.478 -1.639 1.075

Table 9.2b Wavelength-dependent parameters for the high-absorption
empirical a(λ) algorithm (Equation 9.16) that does not require Rrs(670).

t0(λ) t1(λ) t2(λ) t3(λ) t4(λ)
a(412) -0.640 -0.718 -0.650 -1.365 2.369

a(443) -0.837 -0.860 -0.791 -1.162 2.855

a(488) -0.947 -0.343 -0.721 -1.633 2.741

9.2.6 Blending semi-analytic and empirical IOP values

In order to provide a smooth transition in modelled IOP values when the algo-
rithm switches from the semi-analytical to the empirical method, a weighted
average of the modelled values returned by both algorithms is used near the
transition border (Carder et al., 1999). When the semi-analytical portion returns
an aph(675) value between 0.015 and 0.025 m−1, IOP values are calculated as

IOP = w(IOP)sa + (1−w)(IOP)emp, (9.17)
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where (IOP)sa is the semi-analytically-derived value, (IOP)emp is the empirically
derived value, and w is the weighting factor equal to (0.025−aph(675))/0.010.
Semi-analytical and empirical IOP values are used when modelled aph(675) val-
ues are less than 0.015 m−1 and greater than 0.025 m−1, respectively. Note that
this transition range can vary with pigment packaging (e.g., see Carder et al.,
2004).

9.3 Algorithm Performance with the IOCCG Data Sets

The Carder−MODIS algorithm requires Rrs(λ) data at a minimum of five wave-
bands: 412, 443, 488, 531 and 551 nm. Further inclusion of the Rrs(667) im-
proves retrievals of adg(443)emp (Equation 9.14) and a(λ)emp (Equation 9.15)
values. Since the synthetic Rrs(λ) data was generated in 10 nm increments from
400–800 nm, reflectance values at 410, 440, 490, 530, 550 and 670 nm were
considered similar enough to the MODIS wavebands and were input into the al-
gorithm. For the IOCCG in situ data set only Rrs(λ) data at 412, 443, 490, 510,
and 555 nm were input into the equations.

9.3.1 Synthetic data set

Using the Carder−MODIS algorithm, the inherent optical properties a(410),
a(440), a(490), aph(440), adg(440) and bbp(550) were derived from the syn-
thetic Rrs(λ) data (Figure 9.1). Statistical analyses were performed on log-
transformed data and include the slope, intercept, correlation of determination
(R2) and the root-mean-square error (RMSE) (Table 9.3).

Table 9.3 RMSE and regression (Type II) results of the synthetic data set
(θ0 = 30◦). Rrs(λ) values at 410, 440, 490, 530, 550 and 670 nm were used
as inputs. N is the number of data tested, while n is the number of valid
retrievals.

N n intercept slope R2 RMSE bias

a(410) 500 500 0.015 0.990 0.990 0.071 0.020

a(440) 500 500 0.030 1.030 0.993 0.059 0.010

a(490) 500 500 0.079 1.082 0.993 0.065 0.008

bbp(550) 500 500 -0.012 0.998 0.995 0.042 -0.008

aph(440) 500 500 -0.046 0.908 0.963 0.141 0.071

adg(440) 500 500 0.084 1.098 0.978 0.135 -0.004

Particulate backscattering coefficients at 550 nm retrieved using Equation
9.6 from Rrs(550) and Rrs(670) are very accurate (RMSE = 0.042). Total ab-
sorption coefficients at 410, 440 and 490 nm were also retrieved accurately for
the synthetic data set with RMSE errors equal to 0.071, 0.059 and 0.065, re-
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Figure 9.1 Relationships between known and retrieved IOPs using the
Carder−MODIS algorithm (synthetic data set with Sun at 30◦ from zenith),
with Rrs(λ) at 410, 440, 490, 530, 550 and 670 nm used as inputs. Symbols:
semi-analytic (o) and empirical (∆).
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spectively. RMSE values for aph(440) (0.141) and adg(440) (0.135) are slightly
more than double the error calculated for a(440) since phytoplankton and detri-
tus/gelbstoff exhibit overlapping absorption spectra making it difficult to sepa-
rate them.

9.3.2 In situ data set

The results of the Carder−MODIS algorithm when applied to the IOCCG in situ
data set were not as good as the results observed for the synthetic data set
because errors in field Rrs and IOP data, not present in the synthetic data, are
significant in the in situ data.

Total absorption coefficients at 412, 443, and 488 nm derived from the in
situ Rrs(λ) yielded RMSE errors of 0.197, 0.205 and 0.206, respectively (Figure
9.2, Table 9.4). Errors for aph(443) and adg(443) were only slightly higher than
a(443) and were 0.195 and 0.279, respectively. While the semi-analyticaph(443)
values derived from synthetic Rrs(λ) data were overestimated, values derived
from the in situ Rrs(λ) data were more centered about the one-to-one line. This
may indicate that perhaps the underlying aph(λ) functions used to generate
the synthetic data for oligotrophic waters are not quite representative of the
distribution of the naturally occurring aph(λ) data, or at least Equation 9.8 is
more consistent with the aph(λ) functionality of the in situ data set than with
that of the synthetic data set.

Table 9.4 RMSE and regression (Type II) results of the in situ data set.
Rrs(λ) values at 412, 443, 490, 510 and 555 were used as inputs. N is the
number of data tested, while n is the number of valid retrievals.

N n intercept slope R2 RMSE bias

a(412) 656 656 0.098 1.066 0.826 0.197 0.039

a(443) 656 656 0.030 1.111 0.831 0.205 -0.078

a(488) 656 656 0.131 1.173 0.789 0.206 -0.063

aph(443) 656 656 -0.052 0.986 0.827 0.195 -0.032

adg(443) 656 656 -0.041 1.082 0.771 0.279 -0.144

Large errors that occur in empirically derived a(412), a(443), and aph(443)
values and that appear as linear horizontal rows of data in Figure 9.2 at ∼0.23,
0.15, and 0.07 m−1, respectively, can be traced to a single investigator for a
large multi-year, coastal data set. Removal of these points would improve the
performance of the empirical portion of our algorithm. Furthermore, empirical
retrievals of a(λ) and adg(440) may also be improved for this data set if Rrs(λ)
data were available for wavelengths longer than 555 nm.
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Figure 9.2 Relationships between measured and retrieved IOPs using the
Carder−MODIS algorithm (in situ data set), with Rrs(λ) at 412, 443, 490, 510
and 555 nm used as inputs. Symbols: semi-analytic (o) and empirical (∆).

9.4 Conclusions

The Carder−MODIS algorithm (Carder et al., 1999) calculated bbp(550) and
a(λ) values very accurately for the synthetic data set. Values for aph(443)
and adg(443) were calculated less accurately because phytoplankton and detri-
tus/gelbstoff exhibit overlapping absorption making it more difficult to separate
them using Rrs(λ). Retrieval errors tripled for a(λ) and doubled for adg(443)
when the algorithm was applied to the in situ data set as compared to the syn-
thetic data set. The fact that the partitioned values fell within the same error
range as the total-absorption values suggests that much of the error imputed to
the algorithms for the in situ data set may be attributable to errors or inconsis-
tencies among the measured data sets, whereas the synthetic data set had no
measurement noise.

IOP retrieval errors calculated for the in situ data set may improve if Rrs(667)
data were available. Significant error reductions were observed for empirically
derived backscattering and total absorption coefficients when red reflectance
data were used for our high-absorption Florida data set and for the synthetic
data set. Note, however, that while Rrs(667) can be used for “perfect" synthetic
data, accurate measurements of Rrs(667) from space are much more subject to
error due to smaller signal-to-noise ratios. A waveband near 610–620 nm would
perhaps be a better compromise than the use of 667 nm for satellites. The
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Medium Resolution Imaging Spectrometer (MERIS) has such a waveband around
620 nm.

Finally, the expansion of available global data sets in the past 10 years and
the broad range of data synthesized in the numerical data set have provided
examples of how various older algorithms may be improved, and we are grateful
for being included in this challenging algorithm inter-comparison.



Chapter 10

The Quasi-Analytical Algorithm

ZhongPing Lee, Kendall Carder and Robert Arnone

10.1 General Description

The Quasi-Analytical Algorithm (QAA) was developed by Lee et al. (2002) to de-
rive inherent optical properties of optically deep waters. QAA separates the in-
version process into two consecutive sections. The first section is the derivation
of coefficients of total absorption and backscattering. In this section, there is
no involvement of spectral models for the absorption coefficient of phytoplank-
ton pigments and gelbstoff. The second section, which utilizes the derived total
absorption coefficient from the first section, decomposes the total absorption
coefficient into its major components.

10.2 Derive Total Absorption and Backscattering Coeffi-
cients

In this part, QAA follows the generally accepted relationship between remote-
sensing reflectance and bb/(a + bb), and the fact that water absorption coeffi-
cients dominate most of the longer wavelengths. Here bb is the total backscat-
tering coefficient and a is the total absorption coefficient. QAA starts with the
calculation of a at a reference wavelength (λ0, 555 or 640 nm), with the assump-
tion that remote-sensing reflectance at this wavelength is well measured from a
remote-sensing platform.

The total absorption coefficient at λ0 is expressed as

a(λ0) = aw(λ0)+∆a(λ0), (10.1)

where aw(λ0) is the contribution from water molecules (Pope and Fry, 1997), and
∆a(λ0) represents the contribution from dissolved and suspended constituents.
For this a(λ0), errors in its estimation are limited as long as aw(λ0) makes up a
big portion (at least one third of the total).

Lee et al. (2002) proposed two λ0 for dealing with IOP inversion: 555 nm for
oceanic and most coastal waters and 640 nm for waters with high absorption

73
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coefficients (a(440) >∼ 0.5 m−1). For each λ0, there could be many ways to
estimate a(λ0). In the exercise reported here, when 555 nm is selected as λ0,
a(555) is estimated using the Morel-Maritorena approach (Morel and Maritorena,
2001) as described in Chapter 4. That is, Kd(555) is estimated first with ρ =
log(max(Rrs(440,490,510))/Rrs(555)),

Kd(555) = 0.0605+ 10−1.163−1.969ρ+1.239ρ2+0.417ρ3−0.984ρ4
, (10.2)

and then

a(555) = 0.9Kd(555)(1− 6.8Rrs(555))
1+ 15.3Rrs(555)

. (10.3)

For sensors such as MODIS where no 510 nm band exists, a slight adjustment
regarding Equation 10.2 is sufficient for the implementation of QAA.

When 640 nm is selected as λ0, a(640) is estimated as in Lee et al. (2002),
i.e.,

a(640) = 0.31+ 0.07
(
rrs(640)
rrs(440)

)1.1
, (10.4)

where rrs is the subsurface remote-sensing reflectance corresponding to the Rrs

measured above the surface.
To estimate a(640) requires measurements of remote-sensing reflectance at

640 nm, a band which does not exist in many satellite sensors (such as SeaWiFS).
To overcome this limitation, Rrs(640) is simulated with measurements made at
490, 555 and 670 nm, as described in Lee et al. (2005b),

Rrs(640) = 0.01Rrs(555)+ 1.4Rrs(670)− 0.0005Rrs(670)/Rrs(490). (10.5)

Note that in Lee et al. (2005b) it is Rrs(667) for SeaWiFS spectral bands. This em-
pirical formula was aimed to more or less correct the chlorophyll-a fluorescence
contained in Rrs(670).

rrs(λ) is calculated from Rrs(λ) through

rrs(λ) = Rrs(λ)/(0.52+ 1.7Rrs(λ)), (10.6)

where 0.52 and 1.7 are empirical values derived from data simulated by Hydro-
light (Lee et al., 1999). Because rrs(λ) can be modelled as a polynomial function
of bb/(a + bb) (Gordon et al., 1988; Lee et al., 1998a), bb/(a + bb) (represented
as symbol u) at λ can be calculated algebraically from rrs(λ) (Hoge and Lyon,
1996; Lee et al., 2002),

u(λ) ≡ bb(λ)
a(λ)+ bb(λ)

= −0.0895+
√

0.008+ 0.499rrs(λ)
0.249

. (10.7)

The spectral bb(λ) is modelled with the widely used expression (Smith and
Baker, 1981; Gordon and Morel, 1983),

bb(λ) = bbw(λ)+ bbp(λ0)
(
λ0

λ

)Y
, (10.8)
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where bbw and bbp are the backscattering coefficients of pure seawater and sus-
pended particles, respectively. Values of bbw(λ) are provided in Morel (1974).

When a(λ0), u(λ0), and bbw(λ0) are known, bbp(λ0) in Equation 10.8 can be
easily derived. The values of bb(λ) at other wavelengths are then calculated when
the wavelength exponent (Y ) is estimated from Lee et al. (2002)

Y = 2.2
(

1− 1.2 exp
(
−0.9

rrs(440)
rrs(555)

))
. (10.9)

Finally, applying bb(λ) back to u(λ) (derived from rrs(λ), Equation 10.7), the
total absorption coefficient at wavelength λ, a(λ), is calculated algebraically,

a(λ) = (1−u(λ))bb(λ)
u(λ)

. (10.10)

To obtain smooth satellite IOP products where both 555 nm and 640 nm could
be used as reference wavelengths, the final a(λ) product is a combination of the
absorption coefficients derived using 555 nm as reference wavelength (a(λ)[555])
and 640 nm as reference wavelength (a(λ)[640]), as follows:

a(λ) = a(λ)[555], for a(440)[555] < 0.3,

a(λ) =
(

1− a(440)[555]−0.3
0.2

)
a(λ)[555]+(

a(440)[555]−0.3
0.2

)
a(λ)[640], for 0.3 ≤ a(440)[555] ≤ 0.5,

a(λ) = a(λ)[640], for a(440)[555] > 0.5.
(10.11)

Further, final bbp(λ) is recalculated using u(λ) and a(λ) based on Equations
10.7 and 10.8.

10.3 Decomposition of the Total Absorption Coefficient

Decomposition of a(λ) used the a(410) and a(440) values derived from the
above steps. In the process, two more parameters are estimated first. One is the
spectral ratio of aph(410)/aph(440) (represented by symbol ζ), while the other
is the spectral ratio of adg(410)/adg(440) (represented by symbol ξ). The value
of ζ is estimated using the spectral ratio of rrs(440)/rrs(555) based on the field
data (Lee et al., 1998b):

ζ = aph(410)/aph(440) = 0.71+ 0.06
0.8+ rrs(440)/rrs(555)

. (10.12)

The value of ξ is calculated after the spectral slope S (used to describe the
spectral shape of adg(λ)) is selected (0.015 nm−1 is used in this exercise):

ξ = adg(410)/adg(440) = exp(S(440− 410)). (10.13)



76 • Remote Sensing of Inherent Optical Properties

When the values ofa(410), a(440), ζ and ξ are known, aph(440) andadg(440)
are calculated algebraically, adg(440) = (a(410)−ζa(440))

ξ−ζ − (aw(410)−ζaw(440))
ξ−ζ ,

aph(440) = a(440)− adg(440)− aw(440).
(10.14)

10.4 Results and Discussion

The above steps to retrieve IOPs from Rrs(λ) are applied to the IOCCG data
sets. For the synthetic data set, Rrs values at 410, 440, 490, 510, 555, and
670 nm were used as indicated (Rrs(555) is a simple average of Rrs(550) and
Rrs(560)). For the in situ data set, however, only Rrs values at the first five
wavelengths were used as Rrs(670) is not available. The retrieved IOPs include
a(λ), bbp(λ), aph(λ), and adg(λ) of those wavelengths. To provide a general
idea of the algorithm performance, some retrieved properties were compared
with known values. Analysis results are presented in Tables 10.1 and 10.2 and
the figures that follow. Performance (not presented) for the synthetic data with
the Sun at 60◦ from zenith is similar to that with the Sun at 30◦.

Table 10.1 RMSE and regression (Type II) results of the synthetic data set
(θ0 = 30◦). IOPs were retrieved with Rrs values at 410, 440, 490, 510, 555
and 670 nm. N is the number of data tested, while n is the number of valid
retrievals.

N n intercept slope R2 RMSE bias

a(410) 500 500 -0.001 0.971 0.993 0.061 0.016

a(440) 500 500 -0.004 0.971 0.992 0.060 0.016

a(490) 500 500 -0.041 0.959 0.989 0.062 -0.005

bbp(440) 500 500 -0.099 0.945 0.981 0.081 0.008

bbp(555) 500 500 -0.063 0.983 0.986 0.079 -0.029

adg(410) 500 476 -0.010 0.961 0.991 0.076 0.019

adg(440) 500 476 -0.032 0.960 0.985 0.093 0.006

aph(440) 500 476 0.044 1.008 0.930 0.160 0.033

aph(490) 500 476 0.013 1.010 0.825 0.257 -0.002

For the synthetic data set, total absorption and backscattering coefficients are
accurately retrieved over the entire data range using the QAA algorithm (slope
and R2 values are near 1.0 and RMSE values are 0.06 - 0.08). The performance
of the QAA for the in situ data set is not as good as that of the synthetic data
set (see Figure 10.2 and Table 10.2), which is not surprising considering the
unavoidable errors and uncertainties (see Chapter 3) in the measurement of
both Rrs(λ) and IOPs. The natural water environment is also far more complex
than that simulated with computer code. Nevertheless, for such an inclusive
data set, the RMSE values for a(λ) are ∼0.17.
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Table 10.2 RMSE and regression (Type II) results of the in situ data set.
IOPs were retrieved with Rrs values at 412, 443, 490, 510 and 555 nm. N is
the number of data tested, while n is the number of valid retrievals.

N n intercept slope R2 RMSE bias

a(412) 656 656 -0.089 0.963 0.868 0.168 -0.055

a(443) 656 656 -0.081 0.969 0.840 0.175 -0.051

a(490) 656 656 0.001 1.020 0.792 0.174 -0.021

adg(412) 656 630 -0.092 0.986 0.820 0.209 -0.077

adg(443) 656 630 -0.087 0.989 0.794 0.221 -0.072

aph(443) 656 630 0.033 1.067 0.593 0.321 -0.062

aph(490) 656 630 0.498 1.310 0.686 0.334 -0.007

For both synthetic and in situ data sets, the retrieval of adg(λ) is only slightly
worse than the retrieval of total absorption coefficients, but more errors are
found in the derived aph(λ) (see Tables 10.1 and 10.2 and Figures 10.1 and
10.2). This is, in part, because gelbstoff (including detritus) likely contributes
more to the total absorption coefficient at 410 and/or 440 nm.
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Figure 10.1 Comparison between QAA-derived IOPs and known IOPs, for
the synthetic data set (sun at 30◦ from zenith). IOPs were derived with
Rrs values at 410, 440, 490, 510, 555 and 670 nm as inputs (see text for
details).

Also, in the explicit decomposition of total a(λ) to aph(λ) and adg(λ), values
of ζ and ξ are not known precisely, but have to be estimated. Errors in these
estimations will be propagated to the derived values of adg(440) and aph(440).
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Figure 10.2 Comparison between QAA-derived IOPs and known IOPs, for
the in situ data set. IOPs were retrieved with Rrs values at 412, 443, 490,
510 and 555 nm as inputs.

Note that the value of ξ (directly related to the spectral slope of adg(λ)), as
observed in the field and represented in the synthetic data set, varies widely
based on the nature of waters under study (e.g. humic versus fulvic acids, Carder
et al., 1989), abundance of detritus (Roesler et al., 1989), but the present version
of QAA uses a fixed spectral slope for all cases. Also, QAA currently uses only
one spectral constraint regarding aph(λ) (ratio of aph(410)/aph(440)) in the
process of decomposing a(λ). Due to errors in Rrs(λ) measurements as well
as errors in the selection of parameter S, negative aph(440) or aph(490) values
appeared (4.8% in synthetic data and 4.0% in the in situ data). Such retrievals
were then flagged and removed in the statistical analyses. This kind of obvious
error can be remedied by replacing with empirical estimates (Lee et al., 1998b),
or by adding more spectral constraints in the derivation of aph(λ) (e.g., the full
spectral models of aph(λ) used in other algorithms), although this will introduce
model uncertainties.

When Rrs(640) was not used in the derivation process (i.e. 555 nm alone as
reference wavelength), the performance of QAA with the synthetic data set was
slightly degraded. For instance, the slope and R2 values for a(440) changed
from 0.971 and 0.992 to 0.907 and 0.978, respectively, and RMSE changed from
0.06 to 0.109. The slope and R2 values for adg(440) (and aph(440)) became
0.905 and 0.969 (0.927 and 0.925, n = 477), respectively. As pointed out in
Lee et al. (2002), the degradation happened to waters with large a(440) (and
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then a(555)) values (mostly turbid coastal waters) where aw(555) makes up
less than 1/3 of the total absorption coefficient. For such cases, there will be
greater errors in the estimated a(555) and subsequently in other IOPs. If it is
limited to waters with a(440) < 0.5 m−1 (where aw(555)makes up at least ∼ 1/3
of a(555)), however, the performance of QAA with 555 nm as λ0 is significantly
better. The slope and R2 values are close to unity (n = 334) and RMSE values
are ∼ 0.05 for both total absorption and backscattering coefficients; and the
RMSE are 0.09 and 0.15 for adg(440) and aph(440), respectively. These results
demonstrate the importance of having a red band in the vicinity of 620–640 nm
for remote sensing of coastal waters and the applicability of QAA to satellite
data, especially for oceanic waters.

10.5 Conclusions

The QAA is an algorithm based on the fundamental relationships of ocean optics,
and generally follows the inversion concept described in Chapter 1. When apply-
ing QAA to the IOCCG data sets (both synthetic and in situ), the retrieved IOPs
matched known or measured IOPs very well (in particular, absorption coefficient
of CDOM and the total, and particle backscattering coefficient). As is the case
for many other inversion algorithms, QAA is mathematically simple and physi-
cally transparent. These characteristics make the algorithm easily adaptable to
various multi-spectral or hyperspectral sensors, and it is also computationally
efficient for processing satellite imagery.



Chapter 11

The GSM Semi-Analytical Bio-Optical Model

Stéphane Maritorena and Dave Siegel

11.1 General Description

The GSM (for Garver-Siegel-Maritorena) semi-analytical ocean colour model was
initially developed by Garver and Siegel (1997) and later updated by Maritorena
et al. (2002). The GSM model is based on the quadratic relationship between
the remote-sensing reflectance (Rrs) and the absorption and backscattering co-
efficients from Gordon et al. (1988),

Rrs(λ) =
t2

n2
w

2∑
i=1

gi
(

bb(λ)
bb(λ)+ a(λ)

)i
, (11.1)

where g1(= 0.0949) and g2(= 0.0794) are geometrical factors. The absorption
coefficient (a(λ)) is decomposed into seawater absorption, aw(λ), phytoplank-
ton absorption, aph(λ), and the combined absorption of coloured detrital and
dissolved material (CDM), adg(λ) (considered together as a single term because
of their similar spectral shapes (Carder et al., 1991; Nelson et al., 1998; Nel-
son and Siegel, 2002). The backscattering coefficient (bb(λ)) is partitioned into
terms due to seawater, bbw(λ), and suspended particulates, bbp(λ). The non-
water absorption and scattering terms are parameterized as a known shape with
an unknown magnitude,

aph(λ) = Ca∗ph(λ), (11.2)

adg(λ) = adg(λ) exp(−S(λ− λ0)), (11.3)

bbp(λ) = bbp(λ0)
(
λ0

λ

)Y
, (11.4)

where a∗ph(λ) is the chlorophyll-a specific absorption coefficient, S is the spec-
tral decay constant for CDM absorption (Bricaud et al., 1981), Y is the power
law exponent for particulate backscattering coefficient, and λ0 is a scaling wave-
length (443 nm). For aph(λ), adg(λ), and bbp(λ), the unknown magnitudes are
the chlorophyll-a concentration (C), the detritus/gelbstoff absorption coefficient
(adg(443)), and the particulate backscatter coefficient (bbp(443), respectively. In
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application of Equations 11.1–11.4, aw(λ), bbw(λ), nw, t, and gi are taken from
the literature whereas the values of Y , S, anda∗ph(λ)were determined by “tuning"
the model against a large in situ data set (Maritorena et al., 2002) (provided in
Table 11.1). The unknowns in Equations. 11.1–11.4, C , bbp(443), and adg(443),
are retrieved by applying a nonlinear least-square technique to fit Equation 11.1
Rrs(λ) data (or normalized water-leaving radiance) collected at four or more
wavelengths. Confidence intervals for the retrieved variables are also generated
during the inversion (See Maritorena and Siegel (2005) and Chapter 3).

Table 11.1 Parameters for GSM Rrs(λ) inversion.

a∗ph(λ) [m2 mg−1] S[nm−1] Y
412 0.00665 0.0206 1.0337

443 0.05582

490 0.02055

510 0.01910

555 0.01015

The results presented below were obtained using the set of model parameters
described in Maritorena et al. (2002). In this version, model parameters were op-
timized using an in situ data set that consisted mostly of offshore oceanic Case
1 waters with very few stations from eutrophic waters. In order to streamline
the tuning process and to limit the number of unknowns to retrieve, the param-
eterisation of the original GSM model includes some simplifying assumptions.
In particular, several parameters are held constant in the model while they actu-
ally vary in nature. For example, a∗ph(λ) is expressed as a constant mean spec-
trum while a more sophisticated function could account for photoadaptation
or community structure shifts (e.g., Bricaud et al., 1998). Similarly, particulate
backscattering is modelled using a simple function with a fixed spectral depen-
dence (through exponent Y in Equation 11.4) while such wavelength dependence
tends to disappear in turbid waters. The slope of the spectral decrease in adg

absorption, S, is also held constant in the model whereas it actually depends
on a complex system involving land/sea interactions, the productivity and state
of the phytoplankton communities, the microbial loop and photochemistry (see
also discussion in Maritorena et al., 2002). Since these parameters were opti-
mized from a large global Case 1 in situ data set they are generally well suited for
such conditions and for the original GSM retrievals (C , bbp(443), and adg(443)).
However, in waters where optical characteristics differ strongly from those used
to tune the model, coastal Case 2 or phytoplankton rich waters in particular,
the model performance can be significantly degraded. Although not presented
here, other tuned versions of the model have been developed that are more ap-
propriate for specific situations (e.g., Santa Barbara channel coastal waters).

The GSM model was initially designed for use with SeaWiFS data, and
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chlorophyll-a concentration is one of its three originally retrieved variables (Mar-
itorena et al., 2002). For consistency with some of the other models presented
here, additional calculations were implemented in order to generate total and
phytoplankton absorption coefficients at 440 nm as well (considered negligible
difference from that at 443 nm). The total absorption coefficient was calculated
by solving Equation 11.1 for a(440) using the input Rrs(440) values and the
retrieved bbp(440). The phytoplankton absorption coefficient was then calcu-
lated by subtracting aw(440) and the retrieved adg(440) value from a(440).
The original GSM retrieved variables have to satisfy the following criteria to be
considered valid:

0 < C < 100.0 mg m−3,

0 < adg(443) < 2.0 m−1,

and, 0.0001 < bbp(443) < 0.1 m−1.

11.2 Results

Taking the Rrs values at 410, 440, 490, 510, and 555 nm, the variables obtained
by inversion of the model were compared to the known or in situ data using
simple regression analyses. Type II regressions on log-transformed data were
performed for each of the retrieved variables. The statistical parameters pre-
sented in Table 11.2 include: the slope and intercept of the regression, R2, RMSE
error, bias and the number of valid retrievals.

Table 11.2a RMSE and regression (Type II) results of the synthetic data
set (θ0 = 30◦). IOPs were retrieved with Rrs values at 410, 440, 490, 510 and
555 nm as inputs. N is the number of data tested, while n is the number
of valid retrievals.

N n intercept slope R2 RMSE bias

a(443) 500 479 0.032 1.068 0.974 0.115 -0.017

adg(443) 500 479 0.036 1.053 0.965 0.145 -0.013

aph(443) 500 479 0.162 1.171 0.957 0.173 -0.060

bbp(443) 500 479 0.198 1.133 0.957 0.152 -0.062

Table 11.2b RMSE and regression (Type II) results of the in situ data set.
IOPs were retrieved with Rrs values at 412, 443, 490, 510 and 555 nm as
inputs. N is the number of data tested, while n is the number of valid
retrievals.

N n intercept slope R2 RMSE bias

a(443) 656 646 -0.034 1.097 0.838 0.223 -0.129

adg(443) 656 646 0.003 1.084 0.798 0.246 -0.103

aph(443) 656 646 0.029 1.175 0.737 0.350 -0.221
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Results of the inversion using the synthetic data set are presented in Figure
11.1. Overall, the retrievals for the four variables presented show good statis-
tical results with small negative biases and high R2 values. Slopes are greater
than 1.0 for all variables and retrievals tend to slightly underestimate synthetic
values at the low end and slightly overestimate at the high end. In general,
dispersion tends to increase when absorption or backscattering reaches high
values because, as explained above, this version of the model is not ideal in
such conditions. Also, no valid retrievals were achieved for a small portion of
both synthetic and in situ data sets.
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Figure 11.1 Comparison of the modelled and known IOPs for the syn-
thetic data set (sun at 30◦ from zenith) using the GSM model with Rrs(λ)
at 410, 440, 490, 510 and 555 nm as inputs.

Figure 11.2 presents the GSM retrievals when applied to the in situ data
set. As expected, the statistical results are slightly degraded. The dispersion
is higher than with the synthetic data and R2 values are lower. This is likely a
consequence of the noise and uncertainties associated with in situ AOP and IOP
measurements. The slopes show the same trends as with the synthetic data but
are slightly higher. In general, the GSM retrievals tend to be slightly lower than
the in situ data.
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Figure 11.2 Comparison of the modelled and in situ IOPs using the GSM
model with Rrs(λ) at 412, 443, 490, 510 and 555 nm as inputs.

11.3 Conclusions

The GSM model is a simple semi-analytical ocean-colour model originally de-
signed for use with SeaWiFS and MODIS-like satellite data over non-coastal wa-
ters. While both the synthetic and in situ data sets used here have a strong
“coastal" component, the model performed well but as expected, its performance
was lower in highly absorbing or backscattering situations. Other versions of the
model exist or are being developed for specific coastal waters or to implement
new features (e.g., band-independent or “Trichodesmium" versions, Westberry
et al., 2005).



Chapter 12

Inversion Based on a Semi-Analytical Reflectance
Model

Emmanuel Devred, Shubha Sathyendranath and Trevor Platt

The algorithm presented here is based on the theoretical reflectance model de-
veloped by Sathyendranath and Platt (1997; 1998). They used the assumption
of quasi-single scattering to express the reflectance in the ocean as a function
of the diffuse attenuation coefficient, Kd, which was in turn expressed as a func-
tion of IOPs. This model has since been implemented for remote sensing ap-
plications in the North West Atlantic (Sathyendranath et al., 2001; Devred et al.,
2005) and coastal waters off Vancouver Island (Sathyendranath et al., 2004). Al-
though the model was designed primarily for application in Case 1 waters, the
mathematical formulation (Sathyendranath and Platt, 1997) accounts for mul-
tiple orders of scattering, and the computer programme used in the analysis
presented here incorporates scattering events up to the fifth order. Thus the
model is easily adapted to more turbid Case 2 waters, such as coastal areas.
Moreover, some assumptions made to develop the model (e.g., value of 1.0 for
the ratio of backscattering to upward-scattering coefficients) may be satisfied
in turbid waters in the presence of multiple scattering. This model has been
widely used for various applications ranging from chlorophyll-a concentration
retrieval to primary production computations. Here it is coupled with a nonlin-
ear, least-square fitting method to retrieve IOPs (absorption and backscattering
coefficients) of marine components (phytoplankton and detrital material, dis-
solved and particulate) from remote-sensing reflectance, Rrs.

12.1 Theoretical Background

Sub-surface irradiance reflectance (R(0−, λ)) is expressed as the ratio of up-
welling irradiance (Eu) to downwelling irradiance (Ed) just below the surface.
Sathyendranath and Platt (1997) showed that R(0−, λ) for a homogeneous water
column can be expressed as:

R(0−, λ) = sbb(λ)
µd(Kd(λ)+ κ(λ))

, (12.1)
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where Kd(λ) and κ(λ) are respectively the diffuse attenuation coefficients (m−1)
for downwelling and upwelling irradiance (note that κ(λ) defines the rate of
attenuation of upwelling light as it travels to the surface, and that this is different
from the attenuation coefficient for upwelling light with increasing depth), µd is
the average cosine for the downwelling irradiance, s is a shape factor defined as
the ratio of upward-scattering coefficient bu (m−1) to backscattering coefficient
bb (m−1). The parameter s takes the value of 1.0 in very oligotrophic waters
where molecular scattering is dominant. The average cosine for downwelling
irradiance (µd) just beneath the sea surface can be written as the sum of a direct
and a diffuse component (Equation 12.2).

The cosine for the direct component is equal to cos(θs ) where θs is the sub-
surface solar zenith angle and mean cosine for the diffuse component is 0.83
(Sathyendranath and Platt, 1988). Thus, the mean cosine for the total down-
welling irradiance at the sea surface is given by:

µd =
Edd cos(θs)

Ed
+ 0.83Eds

Ed
, (12.2)

where Ed, Edd and Eds correspond respectively to the total, direct and diffuse
solar radiation at the sea surface (Gregg and Carder, 1990). Further details re-
garding the assumptions and approximations in the ocean-colour model used
here are available in Sathyendranath and Platt (1997).

Sathyendranath and Platt (1988) have expressed the diffuse attenuation co-
efficient as (wavelength argument is omitted here for clarity),

Kd =
a+ bb

µd
, (12.3)

and similarly,

κ = a+ bb

µu
, (12.4)

where µu corresponds to the mean cosine for the upwelling light, which is ap-
proximated as 0.5.

From Equations 12.1–12.4, the reflectanceR can be expressed as a function of
backscattering and absorption coefficients of the marine components at a given
wavelength. This model has also been extended to deal with stratified waters and
inelastic (Raman) scattering (Sathyendranath and Platt, 1998). However, these
features of the model are not exploited here to facilitate comparison with the
other models in this report. The model has been used to provide a theoretical
underpinning for empirical algorithms for retrieval of chlorophyll-a from ocean-
colour data (Sathyendranath et al., 2001), and to develop improved algorithms
for chlorophyll-a retrieval for Case 1 waters of the North West Atlantic (Devred
et al., 2005). Here, we examine the use of a nonlinear optimization technique to
retrieve optical properties of the IOCCG data sets that include both Case 1 and
Case 2 waters.
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12.2 The Approach

To retrieve the inherent optical properties from remote-sensing reflectance, we
applied a classical nonlinear least-square fitting method to Equation 12.1. At a
given wavelength, the reflectance at the sea surface is a function of five unknown
parameters: R = f(aph, ag, ad, bb,ph, bb,p) where subscripts “ph", “g", “d" and “p"
stand respectively for chlorophyll (phytoplankton), yellow substances (also re-
ferred to as CDOM), detritus and other particulate material, when the absorption
and backscattering coefficients in the model are expressed as the sums of their
components. Note that absorption (aw) and backscattering (bbw) by pure seawa-
ter can be computed at a given wavelength (see respectively Pope and Fry, 1997;
Morel, 1974) and do not appear as unknown parameters in the above equation.
Further, based on historical measurements and bio-optical models (Bricaud et
al., 1981; Ulloa et al., 1994; Bricaud et al., 1995; Loisel and Morel, 1998; Ciotti et
al., 2002; Bricaud et al., 2004; Devred et al., 2006; ), the spectral dependencies
of some components are described as follows:

adg(λ) = adg(440) exp[−S(λ− λ0)], (12.5)

for combined absorption coefficients of yellow substances (ag) and detritus (ad)
at λ, where S, the exponential decrease of absorption with wavelength, is set to
the average value of 0.014 nm−1; and

bbp(λ) = bbp(440)
(
λ

440

)− log(C)
, (12.6)

for particulate backscattering (organic and mineral). Note that the wavelength
dependence is also a function of chlorophyll concentration (C) as in Sathyen-
dranath et al. (2001).

The model of Sathyendranath et al. (2001) was used to describe phytoplank-
ton absorption,

aph(λ) = U(λ)(1− exp(−FC))+ a∗2 (λ)C. (12.7)

Values of U(λ), F and a∗2 (λ) are provided in Table 12.1, whereas details on in-
terpretation of these parameters can be found in Devred et al. (2006). The three
parameters of the model were determined by fitting the model to the database
from the Bedford Institute of Oceanography.

With the above prescriptions on the spectral dependencies of the optical
properties of some of the components, and by combining the absorptions by
detritus and yellow substances into a single component (Equation 12.5), the
number of unknown parameters in Equation 12.1 is reduced to four (namely,
aph(440), adg(440), bbp(440) and C). When remote-sensing reflectance at 410,
440, 490, 510, 555 and 670 nm are available from ocean-colour sensors (for ex-
ample, SeaWiFS, MODIS and MERIS, which are the most commonly-used), we get
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Table 12.1 Parameters for aph(λ) model.

wavelength U(λ) a∗2 (λ) [m2 mg−1] F
412 0.0369 0.0243 1.582

490 0.0338 0.0129

510 0.0180 0.0114

555 0.0036 0.0070

670 0.0089 0.0172

a system of six equations with four unknowns. This facilitates the convergence
on the solution for the four unknowns. Note that parameters bbp(λ) and aph(λ)
are related to C through Equations 12.6–12.7.

To apply our approach to the IOCCG data sets (both synthetic and in situ),
the reflectance R was estimated from remote-sensing reflectance, Rrs, using:

R = n
2
w

t2
QRrs. (12.8)

Here n2
w/t2(≈ 1.89) accounts for the air-sea interface effects, and Q converts

radiance to irradiance. It is known that the factor Q varies with solar zenith an-
gle, sea-surface roughness (wind-induced) and substances present in the water.
Here, the dependence ofQ on solar zenith angle was computed using the model
of Åas and Højerselev (1999) and an empirical function (Devred et al., 2005) was
used to compute the dependence ofQ on chlorophyll content (Morel and Gentili,
1993).

12.3 Results and Discussion

We used remote-sensing reflectance at 410, 440, 490, 510, 555, and 670 nm (note
that Rrs(670) is not available for the in situ data set) of the IOCCG data sets to
derive total, phytoplankton, and detrital (dissolved and particulate) absorption
coefficients, and particulate backscattering coefficient at 440 nm.

12.3.1 Retrieval of IOPs from the simulated data set

The interest in inverting synthesized data lies in the control of all environmental
variables such as the sea surface state, solar zenith angle and optical properties.
It is then possible to assess accurately the performance of the reflectance model
and the fitting method to retrieve inherent optical properties.

Figure 12.1 shows derived versus synthesized total, phytoplankton and de-
tritus absorption coefficients and particulate backscattering at 440 nm for data
with a solar zenith angle of 30◦. The retrieved data are consistent with the sim-
ulated data. For each of the derived IOPs, the optimization method failed to
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Figure 12.1 Comparison between retrieved and simulated IOPs for a solar
zenith angle of 30◦. IOPs were retrieved using Rrs values at 410, 440, 490,
510, 555 and 670 nm.

retrieve the parameters in eight cases for absorption of phytoplankton and yel-
low substances (with detritus). Linear regression (Type II) on log-transformed
data (omitting the cases where convergence was not obtained) gave slopes close
to 1.0 (except for phytoplankton absorption with a slope of 1.16) with a small
negative bias for all variables (Table 12.2). Note that similar results were also
achieved with the synthesized data of 60◦ solar zenith angle (not shown). This
demonstrates that the assumptions made on the spectral dependence of the
IOPs are suitable for ocean-colour inversion.

Matching of phytoplankton absorption coefficients presents the poorest
agreement (although still acceptable) with a slope of 1.156 and a bias of -0.053.
It also exhibits the lowest correlation coefficient with a value of R2 = 0.827. One
observes an increase in discrepancy in the retrieved data (Figure 12.1) asaph(440)
increases. This is probably due to the phytoplankton absorption model used in
our algorithm. It is noteworthy that the retrieved total absorption at 440 nm
shows a better agreement than does the retrieved phytoplankton absorption. At
low backscattering coefficients (bbp(440) < 0.002 m−1) our algorithm showed a
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Table 12.2 RMSE and regression (Type II) results for the synthetic data
set (Sun at 30◦). IOPs were retrieved using Rrs values at 410, 440, 490, 510,
555 and 670 nm. N is the number of data tested, while n is the number of
valid retrievals.

N n intercept slope R2 RMSE bias

a(440) 500 500 -0.122 0.974 0.960 0.166 -0.104

bbp(440) 500 500 -0.093 0.981 0.938 0.160 -0.056

aph(440) 500 492 0.145 1.156 0.827 0.288 -0.053

adg(440) 500 492 -0.119 1.090 0.873 0.348 -0.200

systematic underestimation of the retrieved backscattering. It probably results
from the formulation of the spectral dependence of the backscattering coeffi-
cients as a function of chlorophyll concentration. This approach may not be
appropriate at low chlorophyll concentrations, and therefore for low backscat-
tering coefficients. We will explore this problem further.

12.3.2 Retrieval of IOPs from the in situ data set

Inversion of in situ measurements becomes more challenging not only because
the parameters defined in the previous section (IOPs, sun angle, vertical profile)
show random and/or systematic variability in their natural environment, but
also because external variables (for example, measurement errors) add pertur-
bation to the entire system (defined here as the reflectance/IOP pairs). We can
therefore expect a higher variability when retrieving the IOPs as confirmed in
Figure 12.2. Only results for absorption coefficients are shown in Figure 12.2
because backscattering measurements were not available.

Table 12.3 RMSE and regression (Type II) results for the in situ data set.
IOPs were retrieved using Rrs values at 410, 440, 490, 510 and 555 nm. N
is the number of data tested, while n is the number of valid retrievals.

N n intercept slope R2 RMSE bias

a(443) 656 656 0.011 1.048 0.762 0.218 -0.036

aph(443) 656 656 0.654 1.537 0.648 0.442 -0.110

adg(443) 656 491 0.416 1.312 0.380 0.470 -0.003

The standard deviation has increased for all of the matching pairs (Table
12.3). Retrieved phytoplankton absorption coefficients show the highest dis-
crepancy with the in situ data (slope of 1.537 and bias of -0.110), perhaps be-
cause of the performance of the absorption model. Previous works (Burenkov et
al., 2001; Reynolds et al., 2001; Sathyendranath et al., 2001; Gohin et al., 2002;
Devred et al., 2005) showed that local bio-optical models should be preferred
to global ones. This type of approach would likely decrease the discrepancy



Inversion Based on a Semi-Analytical Reflectance Model • 93

Measured a
ph

(443)  [m
-1

]

0.003 0.03 0.3 30.001 0.01 0.1 1

D
e

ri
v
e

d
 

a
p
h
(4

4
3

) 
 [

m
-1

]

0.003

0.03

0.3

3

0.001

0.01

0.1

1 1:1

N = 656

n = 656

R
2
 = 0.648

RMSE = 0.442

Measured a
dg

(443)  [m
-1

]

0.01 0.1 1 10

D
e

ri
v
e

d
 

a
d
g
(4

4
3

) 
 [
m

-1
]

0.001

0.01

0.1

1

10

1:1

N = 656

n = 491

R
2
 = 0.380

RMSE = 0.470

Measured a(443)  [m
-1

]

0.03 0.3 30.01 0.1 1

D
e

ri
v
e

d
 

a
(4

4
3

) 
 [

m
-1

]

0.03

0.3

3

0.01

0.1

1

1:1

N = 656

n = 656

R
2
 = 0.762

RMSE = 0.218

Figure 12.2 Comparison between retrieved and in situ IOPs. IOPs were
retrieved using Rrs values at 412, 443, 490, 510 and 555 nm.

between the retrieved and in situ data. Comparison between retrieved and in
situ absorption coefficients of yellow substances and detritus is also less con-
sistent (slope of 1.312 and bias of -0.003) than the previous case (synthesized
data set). In Figure 12.2, cases where the fitting procedure for adg(440) failed to
converge are shown as filled triangles. These points were not retained in the sta-
tistical analysis (resulting in a smaller number of samples). The total absorption
coefficients show a good agreement with a slope of 1.048 and a bias of -0.036.
This is not inconsistent as phytoplankton absorption seemed to be slightly over-
estimated while yellow substances are underestimated. These effects cancelled
each other, resulting in a better agreement when comparing the total absorption
coefficients.

12.4 Conclusion

The reflectance model of Sathyendranath and Platt (1997), although based on
the quasi-single scattering assumption, proved to be robust when applied to a
great variety of optical marine environments: cases ranging from low to high
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albedo (scattering to absorption coefficients ratio).
Retrieval of inherent optical properties shows better accuracy when per-

formed on the synthesized data set at low solar zenith angle. A small decrease
in the accuracy was observed as solar zenith angle increased (not presented).
A greater discrepancy occurred when retrieving phytoplankton absorption at
440 nm than for other IOPs. This may be explained by the phytoplankton ab-
sorption model used in our algorithm. However, retrieval of the total absorp-
tion coefficient seems not affected by this feature. Our algorithm underesti-
mated backscattering coefficients at small values, perhaps a limitation of our
bio-optical model adapted from Loisel and Morel (1998).

For the in situ data set, our algorithm yielded consistent results, although
a greater variability around the 1:1 line was observed than that observed when
inverting the synthesized data set. We showed that an underestimation (overes-
timation) of retrieved phytoplankton absorption lead to an overestimation (un-
derestimation) of retrieved yellow substances absorption (not knowing which
one is the cause). This will be further analysed to improve the performance
of our algorithm. However, our algorithm yielded results comparable to other
models reported here.



Chapter 13

Examples of IOP Applications

Robert Arnone, Hubert Loisel, Kendall Carder, Emmanuel Boss,
Stephane Maritorena and ZhongPing Lee

The IOPs retrieved from ocean colour provide innovative tools and opportunities
for oceanographic studies, as their values can be used directly or indirectly to
study biological and biogeochemical processes in the oceans (Gould and Arnone,
1997; Bissett et al., 2001; Coble et al., 2004; Hu et al., 2004, 2005). For instance,
earlier studies (Kirk, 1984; Sathyendranath and Platt, 1988) have shown that
the diffuse attenuation coefficients of the water can be adequately estimated
from water’s inherent optical properties. Recent studies (Stramski et al., 1999;
Loisel et al., 2001a; Balch et al., 2005) have shown that particulate carbon can be
well estimated from particle backscattering coefficient. Further, a new genera-
tion of biological models (Bissett et al., 2005; Penta et al., 2005) now integrate
explicitly two or more species of plankton, as well as dissolved (DOC) and partic-
ulate organic carbon (POC), whereas IOPs play important roles in observing and
monitoring blooms of red tides (Cullen et al., 1997; Cannizzaro et al., 2006). As
confidence in the IOP products continues to grow, our understanding of how IOP
properties are linked to ocean processes expands. This research is moving the
ocean community beyond the traditional applications centered on the oceanic
chlorophyll-a. In this chapter, we present some examples of IOP applications in
this regard.

13.1 Water Composition and Water-Mass Classification

The absorption and backscattering coefficients bring some complementary in-
formation on the water composition, because of their different sensitivity to the
various optically significant materials in water. While the absorption coefficient
is affected by the presence of both suspended and dissolved material in water,
the backscattering coefficient represents the concentration (to first order) of or-
ganic and inorganic suspended particles, and bubbles. The decomposition of the
total absorption coefficient into its different components, as discussed in Chap-
ter 1, allows the monitoring of phytoplankton and of the remaining absorbing

95
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Figure 13.1 Comparison between the SeaWiFS-chlorophyll concentration
and the ratio of the particle backscattering to absorption obtained from an
inverse algorithm (Loisel and Stramski, 2000) over the North Atlantic (south
Island) in June 1998. As seen, C and bbp(555)/(a(490)-aw(490)) represent
different patterns, with the latter clearly showing different particle popula-
tions. These particles have been identified as coccolithophorid, which are
characterized by a high backscattering efficiency.

materials. Therefore, synoptic satellite observations of a and bb give a valuable
picture of composition of surface waters. For example, the bbp/a ratio may be
used to discriminate different families of particles (Figure 13.1).

New applications have also used the IOP characteristics of the water as a
tool to fingerprint a water mass and identify the controlling optical processes
(Traykovski and Sosik, 2003; Arnone and Parsons, 2004). Besides water ab-
sorption, the total absorption is additionally composed of the absorption from
CDOM, detritus and phytoplankton (see Chapter 1). By defining the percent con-
tribution of each of these components, a water mass can be defined by which
component controls the absorption budget. A ternary plot of these three compo-
nents provides a useful method for fingerprinting water mass and the dominant
absorption process (Gould and Arnone, 2003; Arnone et al., 2004). This method
has been applied to satellite absorption properties derived from semi-analytical
algorithms for SeaWiFS and MODIS ocean-colour imagery (Figure 13.2a). This
water-mass classification can be represented by an RGB image representing per-
cent detritus, phytoplankton and CDOM absorption (Figure 13.2b). These im-
ages easily illustrate the controlling biogeochemical processes for monitoring
coastal and offshore water masses. Note that this classification method iden-
tifies the dominance of the absorption processes, and not the absolute values
of the absorption coefficients. This classification method can be used on se-
quential satellite images of the absorption components to identify changes in
absorption processes and to track water masses based on a specific fingerprint
of the absorption components.



Examples of IOP Applications • 97

Figure 13.2 (a) Water-mass classification from the absorption budget.
Ternary plot of the percent absorption attributed to detritus, CDOM and
phytoplankton for each pixel to identify the dominant components. (b)
RGB image of percent absorption of detritus (red), phytoplankton (green)
and CDOM (blue). Absorption products derived from SeaWiFS were used
to determine the absorption budget. Intensity of the colour indicates the
dominant component

13.2 Dissolved and Particulate Organic Carbon

Examination of the temporal variations of absorption and backscattering coeffi-
cients and comparison with that of chlorophyll over the global ocean have also
provided important information about the dynamics of marine particles and dis-
solved organic carbon, because the absorption and backscattering coefficients
are related to different biogeochemical parameters. For instance, the feasibility
of estimating POC (in mg m−3), and the coloured detrital and dissolved materials
(CDM) (in m−1), from the remotely detected bb and a was recently demonstrated
(Stramski et al., 1999; Loisel et al., 2001b; Loisel et al., 2002; Siegel et al., 2002;
Balch et al., 2005) (see Figures 13.3 and 13.4). A phase shift between the annual
cycles of bbp and chlorophyll was evidenced, and was attributed to the presence
of a pool of non-pigmented particles originating from the accumulation of dead
phytoplankton cells, as well as zooplankton detritus, in the summer stratified
surface layer (Loisel et al., 2002). The decrease of the Chl/POC ratio in living
phytoplankton at high irradiance in summer was also used to explain the lag
between the Chl and bbp maxima (Loisel et al., 2002).

Figure 13.4 shows global distributions of CDM of two seasons in 1998, de-
rived from SeaWiFS data (Siegel et al., 2002). Clearly, there are significant spatial
and temporal variations in global CDM (a part of DOC). Because POC and CDM
represent different pools of carbon stored in oceans, and since CDM plays an
important role in regulating subsurface blue/ultraviolet radiation (Siegel et al.,
2002), analysis of their spatial/temporal distributions is important for the un-
derstanding of the carbon cycles in oceans.

Behrenfeld et al. (2005), using backscattering and chlorophyll-a derived from
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Figure 13.3 Global chlorophyll (SeaWiFS product) and POC distribution in
January 2000 (adapted from Loisel et al., 2002).

Figure 13.4 Global distribution of CDM (in m−1) derived from SeaWiFS
data by the GSM algorithm (Chapter 11) (adapted from Siegel et al., 2002).

Rrs as inputs, also developed a novel primary production model based on the
physiological link between phytoplankton growth rate and growth conditions
(temperature, nutrients, and light) as reflected in the ratio of chlorophyll to
carbon of phytoplankton. This novel (and debatable) approach is to use the
backscattering coefficient to estimate phytoplankton biomass and assuming a
linear relation between total POC and phytoplankton biomass. The observed
change (Figure 13.5) in the ratio of chlorophyll-a to phytoplankton carbon is
interpreted as reflecting a physiological change, rather than a change in the
particulate composition. Net primary production is then computed from the
estimated growth rate through a simple multiplication by the phytoplankton
carbon and a function that accounts for its vertical distribution with depth.
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Figure 13.5 Phytoplankton growth rates for Boreal summer (June to Au-
gust) and winter (December to February). Adapted from Behrenfeld et al.
(2005).

13.3 Diffuse Attenuation Coefficient of Downwelling Irra-
diance

The availability of absorption (a) and backscattering coefficients (bb) also makes
it straightforward to calculate the diffuse attenuation coefficient of downwelling
irradiance, either at a single wavelength (Kd(λ)) or for the broad band (350 -
700 nm) visible domain (Kvis). Because both Kd and Kvis are apparent optical
properties, they are directly linked to the IOPs (Sathyendranath and Platt, 1988;
Gordon, 1989; Lee et al., 2005a,b). Traditionally, estimation of Kd is based on
the spectral ratios of Lw(λ) or Rrs(λ). Such an approach does not reveal the
fundamental relationship between AOPs and IOPs, and is found to work only
for waters with limited dynamic range (Mueller, 2000). Figure 13.6(a) shows a
comparison between measuredKd(490) andRrs derivedKd(490), for a wide range
of Kd(490) ( 0.04 - 4.0 m−1) measured from different regions and at different
times, using an algorithm based on a and bb whose values were derived first
from Rrs (Lee et al., 2005b). Clearly, excellent agreement is achieved between
the two independent measurements and determinations.

Kvis (wavelength range of 350 - 700 nm) is a parameter needed for models of
oceanic photosynthesis and heat transfer in the upper water column. Kvis varies
significantly from the surface to depth (z), even for vertically homogeneous wa-
ters, which is different from the characteristics of Kd. To represent this vertical
variation, earlier studies used multiple exponential terms to describe the verti-
cal propagation of visible solar radiation, with the coefficients of these multiple
terms expressed as empirical functions of chlorophyll (Morel and Antoine, 1994;
Ohlmann and Siegel, 2000). Again, realizing the intrinsic limitations between an
optical property (e.g., Kvis) and chlorophyll, a model has been developed (Lee et
al., 2005a) that can be used to adequately estimate the vertical variation of Kvis
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Figure 13.6 (a) MeasuredKd(490) vsRrs-derivedKd(490). In the derivation
ofKd fromRrs, values ofa and bb were derived fromRrs first, and thenKd is
calculated based on these a and bb values (from Lee et al., 2005b). (b) mod-
elled Kvis(z) compared with Kvis(z) from Hydrolight simulations (adapted
from Lee et al., 2005a).

when values of a(490) and bb(490) are available. Figure 13.6(b) shows modelled
Kvis compared with Hydrolight-calculated Kvis for different values of a, bb, and
z. The average difference between the two sets of Kvis(z) is 2.2%.

13.4 Oceanic Primary Production

Knowing the values of IOPs can also provide some basic information for the
estimation of oceanic primary production. Currently, this estimation is done
centred on the values of chlorophyll-a concentration (Platt and Sathyendranath,
1988; Behrenfeld and Falkowski, 1997). When chlorophyll is used as an input
parameter representing the function of phytoplankton, a value regarding the
chlorophyll-specific absorption coefficient is also explicitly or implicitly utilized.
Numerous field measurements (Bricaud et al., 1995; Cleveland, 1995; Lutz et al.,
1996; Bricaud et al., 1998) and theoretical studies (Bricaud and Morel, 1986)
have pointed out that this property varies widely from place to place and time
to time, therefore large uncertainties are automatically introduced when this
parameter is involved. Because primary production measures the conversion
of solar energy absorbed by phytoplankton to sustenance in the photosynthetic
process (Morel, 1978; Smith et al., 1989), remotely derived or locally measured
phytoplankton absorption and other IOPs can then be utilized directly in this es-
timation (Zaneveld et al., 1993). One example of taking this approach is demon-
strated in Lee et al. (1996a), with Figure 13.7 showing primary production calcu-
lated from values of Rrs (along with other auxiliary information) compared with
primary production measured from in situ incubation.
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Figure 13.7 Daily primary production calculated from Rrs versus that
from in situ incubation. Adapted from Lee et al. (1996a)

13.5 Chlorophyll Concentration from Remotely Derived
Pigment Absorption Coefficient

When the absorption coefficient of phytoplankton pigment is derived from ocean
colour, it adds the possibility of deriving the concentration of chlorophyll-a
(Carder et al., 1999; Lyon et al., 2004) for different regions of the world, as indi-
cated in Carder et al. (1999). Applying the semi-analytic code (Carder et al., 1999)
to an upwelling site (Smyth et al., 2002) and a river-plume site (Hu et al., 2003),
it provided much more realistic estimations of chlorophyll concentration for
both cases (where the empirical band-ratio approach (OC4) underestimated the
high chlorophyll concentrations of the upwelling site and overestimated chloro-
phyll concentration for gelbstoff-rich river-plume regions). MODIS-Terra chloro-
phyll images from the GES DAAC (Goddard Earth Science Distributed Active
Archive Center) derived by the semi-analytic code (chl_a_3) and empirical-ratio
code (chl_a_2) were composited in 39-km bins for December 2000 and are shown
in Figure 13.8. The subtropical gyre regions appear similar for the two images,
but the chlorophyll values are clearly elevated with the semi-analytic code for
the high-latitude and equatorial upwelling regions which have higher pigment
concentrations.
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Figure 13.8 Global composited maps (December 2000) of chlorophyll-a
concentration (mg m−3) retrieved using empirical (top) and semi-analytic
(bottom) algorithms from MODIS-Terra radiometry (adapted from Carder
et al., 2004).

13.6 Monitoring Coastal Ocean Processes using IOPs and
Numerical Circulation Models

IOPs provide an improved capability to understand how physical processes influ-
ence the bio-optical processes (Bissett et al., 2001; Arnone and Parsons, 2004).
For instance, ocean colour IOP products from MODIS and SeaWiFS are being
integrated with numerical circulation models. The Navy Coastal Ocean Model
(NCOM) is forced by large scale ocean models which currently assimilate sea
surface height from altimetry and sea surface temperature (SST) from AVHRR.
These models are at 32-degree resolution with 41 sigma levels to characterize the
mesoscale features (http://www7320.nrlssc.navy.mil/global_ncom/). Overlaying
the modelled properties (currents, salinity, surface heights) with optical prop-
erties adds continuity to understanding IOP image products. This fusion of
physical models and IOP imagery enables improved understanding of the distri-
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Figure 13.9 The circulation along the California Coast develops coastal
filaments shown in surface currents and MODIS-Aqua IOP products. Dif-
ferences in the locations of backscattering at 551 nm (associated with par-
ticles) and the total absorption at 443 nm (detritus, CDOM and phytoplank-
ton) indicate varying bio-optical processes within these filaments.

bution of bio-optical processes that are linked with mesoscale ocean circulation
features. Different IOP properties, such as backscattering, CDOM and phyto-
plankton absorption respond differently to mesoscale processes. Along the U.S.
West coast, filaments associated with the California Current System are driven
by the physical circulation as shown in Figure 13.9 (Shulman et al., 2004; Penta
et al., 2005). The corresponding IOP distribution within these filaments is used
to define the response of bio-optical processes. For example, the influence of the
strong southerly flow off the Channel Islands is characterized by backscattering
and total absorption products. Within this filament, the elevated particles are
located south of the strong flow (point A) as shown in the bb(551) image (a re-
sult of advection), whereas the strongest currents (point B) located close to land
have elevated total absorption as shown in the a(443) image (a result of coastal
upwelling). Divergent and convergent mesoscale fronts are revealed by the IOP
properties observed in satellite imagery (Figure 13.9). Similar differences in the
distribution of backscattering and absorption have been observed by Otero and
Siegel (1995).

13.7 Conclusions

Our understanding of how the optical properties of water constituents are re-
lated to ocean processes has advanced significantly in the last decade. Use of
IOPs to characterize ocean processes provides improved methods for monitor-
ing and understanding the role of the oceans on a global scale. Because IOPs are
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closely associated with the water leaving radiance measured by satellites and
IOP retrievals are robust and stable as shown in previous chapters, IOP prod-
ucts are critical for monitoring and detecting changes in the ocean’s climatology
and forecasting ocean biogeochemical processes.
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Summary and Conclusions

ZhongPing Lee, Ronald Zaneveld, Stephane Maritorena, Hubert Loisel,
Roland Doerffer, Paul Lyon, Emmanuel Boss, Kendall Carder,
Emmanuel Devred and Robert Arnone

Most algorithms used in ocean colour remote sensing attempt to derive, directly,
the concentrations of water constituents, mainly phytoplankton chlorophyll con-
centration. In this report, however, we present and discuss algorithms which
have been developed to derive inherent optical properties (IOPs) from water-
leaving radiance, in a one-step or multi-step process. The IOPs are then decom-
posed into the contributions by different optical components, such as absorp-
tion by phytoplankton pigments, and finally the IOPs of different components
are converted into concentrations.

IOPs are the fundamental parameters of hydrological optics. The IOPs, in
combination with radiances from the sun and sky, determine water-leaving ra-
diance, which in turn defines water colour (an apparent optical property). At the
same time, IOPs are also environmental properties. Their variations are directly
related to changes in concentration, size distribution and composition of partic-
ulate matter and/or dissolved constituents. IOPs derived from remote sensing
of ocean colour provide innovative opportunities for environmental observation
and oceanographic studies on time and space scales not achievable with in situ
measurements.

To derive, accurately, various IOPs from water colour, as presented here, is
not a simple task. This report presents some frequently encountered methods
for IOP retrieval. These algorithms have different levels of complexity; some are
explicit about all elements and derivation processes, some are implicit; some
have fewer empirical inputs, while others have more empiricism built into them.
Table 14.1 highlights their similarities and major characteristics.

When presenting and comparing models, it is always useful to remember
that models, by their very nature, represent some sort of reduction, or simplifi-
cation. It naturally follows that practically all models will have some limitation
when they attempt to mimic nature. Thus there is often a need to tailor mod-
els for specific applications or for specific regions. If models are applied for
purposes for which they were not designed, there is always a risk of poor per-
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Table 14.1 Algorithm highlights. L98 - Spectral-ratio algorithm (Lee et
al. 1998, Chapter 4); B99 - Spectral curvature algorithm (Barnard et al.
1999, Chapter 4); MM01 - Spectral-ratio algorithm (Morel and Maritorena,
2001, Chapter 4); Loisel - Inversion of IOP (Chapter 5); D&S - MERIS Neu-
ral Network Algorithm (Chapter 6); Lyon - Linear Matrix Inversion (Chapter
7); Boss - Over constrained Linear Matrix Inversion (Chapter 8); Carder -
MODIS semi-analytical algorithm (Chapter 9); QAA - Quasi-Analytical Al-
gorithm (Chapter 10); GSM - Garver, Siegel and Maritorena semi-analytical
model (Chapter 11); SPD - Sathyendranath, Platt and Devred semi-analytical
reflectance model (Chapter 12).

Algorithm Type Key features

L98 Empirical Empirical constants; products at 440 nm only

B99 Relationships between total absorption coefficients

MM01 Semi-empirical Bio-optical models; hyperspectral

Loisel Kd(λ) from Rrs(λ) empirically

D&S Neural Network Neural constants; MERIS only

Lyon Spectral models for aph(λ), adg(λ), and bbp(λ)
Boss Algebraic (Linear

Matrix Inversion)
Varying spectral shapes for aph(λ), adg(λ), and
bbp(λ); statistical selection of solution; generates
output confidence intervals; applicable to multi- and
hyperspectral data

Carder Algebraic for low
absorption waters
(iterative solution);
empirical for other

Spectral models for aph(λ), adg(λ), and bbp(λ); em-
pirical coefficients for different properties

QAA Algebraic Separate derivations for the total and individual
components; spectral models for adg(λ) and bbp(λ);
retrieve multi- or hyperspectral aph spectrum

GSM

Spectral optimiza-
tion

Optimized spectral shapes for aph(λ), adg(λ), and
bbp(λ); applicable to multi- and hyperspectral data;
can use input uncertainties and generates output
confidence intervals

SPD Varying spectral shapes for aph(λ), adg(λ), and
bbp(λ); applicable to multi- and hyperspectral data

formance. Thus a golden rule in application of algorithms (and algorithms are
a type of model) is to test them always for the specific application or region
envisaged, before routine use is made of the algorithm. But knowledge of the
features of the model would often help in making the initial selection of an al-
gorithm for a particular application. For example, it is often useful to know if a
particular algorithm is non-linear or not; if it is purely empirical or if it is based
on theoretical considerations; if it is multi-variable or not; if it is computation-
ally demanding or not. Such relevant features of the algorithms presented in
this report are shown in Table 14.1 and Figures 14.1 - 14.4. But, as is often the
case with summary tables and figures, they do not represent the whole story,
but merely highlight some emergent properties when all models were made as
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Figure 14.1 RMSE values for total absorption coefficient of both synthetic
and in situ data sets, for all algorithms tested (see Table 14.1 for notation
of algorithms). The “Lyon" results are for 410 nm, while all other results
are in the vicinity of 442 nm. Numbers in parenthesis indicate percentage
of valid retrievals for each algorithm. Invalid retrievals are excluded from
the calculation of RMSE and other statistical analyses.

comparable as possible, for the purpose of this report.

The RMSE errors presented in Figures 14.1 - 14.4 not only represent the per-
formance of each algorithm, but show also the deviation of the bio-optical model
behind each algorithm, from that of the bio-optical model used to prepare the
synthetic data set. In addition, the RMSE errors for the in situ data set include
uncertainties associated with field measurements. It should be noted that not
all the algorithms tested used the same number of spectral bands, and some
algorithms used fewer bands than what they can potentially use (especially for
the synthetic data set).

An inversion algorithm works as a mathematical filter analagous to physical
or chemical filters used in the lab or field. In this filtering process, uncertainties
are introduced, explicitly or implicitly, into the desired products. More uncer-
tainties are introduced when fewer parameters are under control. Clearly, the
results of the various algorithms indicate that there remains room for improve-
ment in the derivation of IOPs from ocean colour. As new information becomes
available, it is anticipated that the present algorithms could be revised, or excit-
ing new methods could be developed. It is natural that algorithm development
is always a continuing and evolving process.

Nevertheless, we can safely draw the following conclusions based on the
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Figure 14.2 As Fig. 14.1, but for particle backscattering coefficient (syn-
thetic data set only).

presentations and discussions of the various algorithms:

1. In general, the best properties that can be obtained from ocean-colour data,
regardless of the algorithm used (see Figures 14.1 to 14.4) and as expected
from the inversion of radiative transfer (see Figure 1.3), are the spectral
absorption and backscattering coefficients of the total water volume.

2. Using the synthetic data set as a reference (the in situ data set prevents
the separation of algorithm error from measurement error), more reliable
results are obtained for clearer waters (a(440) < ∼0.3 m−1). Due to limita-
tions of algorithm architecture and availability of reliable remote-sensing
reflectance at specified wavelengths, less accurate results are generally ob-
tained for more absorbing waters (a(440) > ∼0.3 m−1).

3. When decomposing the total absorption coefficient into the components
of phytoplankton and coloured material, less accurate results (see Figures
14.3 and 14.4) are anticipated due to overlapping of spectral signals and
because the spectral shapes of the components are not constant.

4. If the chlorophyll-a concentration (C) is desired from ocean colour, more
uncertainties will be introduced because the chlorophyll-specific absorp-
tion coefficient is not constant at a given wavelength, nor is the relationship
between backscattering and chlorophyll well defined.

5. Because there are more unknown factors that affect the retrieval of C from
ocean colour than there are unknown factors that affect the retrieval of
absorption and backscattering coefficients, we should revisit the issue of
C remaining the primary product of ocean-colour remote sensing, rather
than the IOPs of the bulk water or the optical properties of phytoplankton.
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Figure 14.3 As in Figure 14.1, but for absorption coefficient of detritus
and gelbstoff combined.

6. The robust and stable results of the total absorption and backscattering
coefficients from these various algorithms (again using the synthetic data
set as reference), which were developed independently and are based on
different principles, clearly indicate that these optical properties should be
taken as standard products for all ocean-colour satellite missions. These
optical properties, similar to the sea surface temperature, could serve as
climatology data records to study long-term changes of the global oceans.

7. Space-based sensors should be equipped with at least one spectral band
in the region of 620-640 nm. Such a band is very important for coastal
remote sensing (or for more turbid waters), and algorithm performance
would be improved when such a band is included in the process.

8. Algorithms based on the fundamentals of hydrological optics are strongly
advocated. Simple empirical relationships prevent understanding of the
basics and, therefore, limit advancement in ocean-colour remote sensing.
On the other hand, analytical or semi-analytical algorithms enable oppor-
tunities to trace back the error sources.

Because inherent optical properties provide important indices for our water
environments and open new doors for oceanographic studies, we should spend
a great deal of effort on the following issues to improve IOP products:

❖ Increased high-quality, co-located measurements of remote-sensing re-
flectance and IOPs.

❖ Improved methods to select model parameters such as the spectral shapes
of individual IOPs that include bb(λ), aph(λ) and adg(λ). Separation of the
global ocean into dynamic biogeochemical provinces may provide vital help
in this regard (see IOCCG working group on “Global Ecological Provinces"
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Figure 14.4 As in Figure 14.1, but for the absorption coefficient of phyto-
plankton pigments.

http://www.ioccg.org/groups/dowell.html for more information).
❖ Better quantification of uncertainties in derived products. An in-depth

analysis of error sources and their propagation are highly desirable in this
regard.

❖ Improved procedure for atmospheric correction. All algorithms tested use
remote-sensing reflectance (Rrs) as inputs for the calculation of IOPs. Qual-
ity of Rrs, which is one of the products derived from atmospheric correc-
tion, plays a critical role in the accuracy of retrieved IOPs. Addition of
UV-a bands would assist in the derivation of Rrs from satellite measured
radiance, especially for coastal waters. Also, such bands may increase the
ability to separate phytoplankton absorption from that of dissolved and
non-pigmented particulate materials.

❖ And, finally, enhance and broaden applications of IOPs for oceanographic
studies, which are the ultimate goal of ocean-colour remote sensing.

It should be pointed out that in this exercise, the water column was assumed
to be homogeneous in terms of its optical properties. Passive optical remote
sensing becomes quite a challenge when the optical properties of the upper wa-
ter column are significantly stratified. Furthermore, we did not touch on issues
related to optically shallow environments in this report (for discussions on this
issue see IOCCG Report 3). To resolve these important issues, we need to effec-
tively combine measurements from satellite with those from other observatory
platforms, such as LIDAR, gliders, and the Network of Coastal Observatories.
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Acronyms and Abbreviations

aNN Artificial Neural Network

AOP Apparent Optical Property

AVHRR Advanced Very High Resolution Radiometer

CDM Coloured Detrital and Dissolved Material

CDOM Coloured Dissolved Organic Matter

CZCS Coastal Zone Colour Scanner

DOC Dissolved Organic Carbon

ERT Equation of Radiative Transfer

FWHM Full-Width at Half Max

GSM Garver Siegel Maritorena

IOP Inherent Optical Property

LMI Linear Matrix Inversion

MERIS Medium Resolution Imaging Spectrometer

MOBY Marine Optical Buoy

MODIS Moderate Resolution Imaging Spectroradiometer

NCOM Navy Coastal Ocean Model

NDT Nitrate Depletion Temperature

NN Neural Network

NPOESS National Polar-orbiting Operational Environmental Satellite System

POC Particulate Organic Carbon

QAA Quasi Analytical Algorithm

RGB Red Green Blue

RMSE Root Mean Square Error

SeaBASS SeaWiFS Bio-Optical Archive and Storage System

SeaWiFS Sea-viewing Wide Field-of-view Sensor

SST Sea Surface Temperature

VIIRS Visible Infrared Imager Radiometer Suite

VSF Volume Scattering Function
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Mathematical Notations

Symbol Description Units

a Absorption coefficient m−1

ad Absorption coefficient of non-algal
particles

m−1

ag Absorption coefficient of yellow
substance (gelbstoff)

m−1

adg Sum of absorption coefficients of
non-algal particles plus yellow sub-
stances (gelbstoff)

m−1

aph Absorption coefficient of phyto-
plankton pigments

m−1

a∗ph Specific absorption coefficient of
phytoplankton pigments (normal-
ized to chl concentration)

m2 (mg chl)−1

a+ph Absorption coefficient of phyto-
plankton pigments normalized at
440 nm

aw Absorption coefficient of water
molecules

m−1

b Scattering coefficient m−1

bf Forward scattering coefficient m−1

bb Backscattering coefficient m−1

bbp Backscattering coefficient of parti-
cles

m−1

c Beam attenuation coefficient m−1

C Concentration of chlorophyll-a mg m−3

Ed Downwelling irradiance W m−2

Eod Downwelling scalar irradiance W m−2

Eu Upwelling irradiance W m−2

125



126 • Remote Sensing of Inherent Optical Properties

Kd Diffuse attenuation coefficient for
downwelling irradiance

m−1

ku Diffuse attenuation coefficient for
upwelling radiance

m−1

KVIS Diffuse attenuation coefficient for
downwelling broad band (350–700
nm) irradiance

m−1

L Radiance W m−2 sr−1

Lu Upwelling radiance W m−2 sr−1

Lw Water-leaving radiance W m−2 sr−1

LwN Normalized water-leaving radiance W m−2 sr−1

Q Ratio of upwelling irradiance to up-
welling radiance

sr

rrs Remote sensing reflectance just be-
low the surface

sr−1

R Irradiance reflectance

Rrs Remote sensing reflectance just
above the surface

sr−1

S Slope of absorption coefficient of
yellow substance

nm−1

Y Exponent for particle backscattering
coefficient

β Volume scattering function m−1 sr−1

λ Light wavelength in free space nm

η Ratio of molecular scattering to total
scattering

µd Mean cosine of the downwelling ir-
radiance

µu Mean cosine of the upwelling irradi-
ance




