Experimental Methods in the Physical Sciences

Volume 47

Optical Radiometry for Ocean Climate Measurements

Edited by

Giuseppe Zibordi
Institute for Environment and Sustainability
Joint Research Centre
Ispra, Italy

Craig J. Donlon
European Space Agency/ESTEC
Noordwijk
The Netherlands

Albert C. Parr
Space Dynamics Laboratory, Utah State University, Logan, UT, USA
Contents

List of Contributors xv
Volumes in Series xvii
Foreword xxi
Preface xxiii

1. Introduction to Optical Radiometry and Ocean Climate Measurements from Space
 James A. Yoder and B. Carol Johnson

1.1. Ocean Climate and Satellite Optical Radiometry
 James A. Yoder, Kenneth S. Casey and Mark D. Dowell

1. Introduction 3
 1.1 Characteristics of a Climate-Observing System 4

2. Global Climate Observing System Requirements for ECVs and CDRs 6
 2.1 Ocean Color Radiometry 7
 2.2 Sea Surface Temperature 8

3. From Essential Climate Variables to Climate Data Records 10

4. Conclusion 11

References 12

1.2. Principles of Optical Radiometry and Measurement Uncertainty
 B. Carol Johnson, Howard Yoon, Joseph P. Rice and Albert C. Parr

1. Basics of Radiometry 14
 1.1 Introduction 14
 1.2 Radiance 17
 1.3 Irradiance 21
 1.4 Reflectance 23
 1.5 Distance and Aperture Areas in Radiometry 28

2. Radiometric Standards and Scale Realizations 30
 2.1 Sources 30
 2.2 Radiometers 38
2.2. On Orbit Calibration of Ocean Color Reflective Solar Bands

Robert E. Eplee, Jr and Sean W. Bailey

1. Introduction 121
2. Solar Calibration 124
 2.1 SD Degradation 125
 2.2 SD Radiometric Response Trends 126
 2.3 SNR on Orbit 128
 2.4 Uncertainties in the Solar Calibration Data 128
3. Lunar Calibrations 128
 3.1 ROLO Photometric Model of the Moon 129
 3.2 Lunar Radiometric Response Trending 130
 3.3 Uncertainties in Lunar Calibration 131
 3.4 Lunar Calibration Intercomparisons 133
4. Spectral Calibration of Grating Instruments 135
5. Vicarious Calibration 137
 5.1 NIR/SWIR Band Calibration 139
 5.2 Visible Band Calibration 140
 5.3 Alternative Approaches 142
6. On-orbit Calibration Uncertainties 142
 6.1 Accuracy 143
 6.2 Long-term Stability of the TOA Radiances 143
 6.3 Precision of the TOA Radiances 144
 6.4 Combined Uncertainty Assessment 144
7. Comparison of Uncertainties Across Instruments 145
8. Summary of On-orbit Calibration 149
References 150

2.3. Thermal Infrared Satellite Radiometers: Design and Prelaunch Characterization

David L. Smith

1. Introduction 154
2. Radiometer Design Principles 155
 2.1 Performance Model 159
 2.2 Signal to Noise 160
3. Remote Sensing Systems 161
 3.1 Along Track Scanning Radiometers (ATSR) 161
 3.2 Sea and Land Surface Temperature Radiometer (SLSTR) 164
 3.3 Advanced Very High Resolution Radiometer (AVHRR) 165
 3.4 MOderate Resolution Imaging Spectroradiometer (MODIS) 166
 3.5 Visible Infrared Imaging Suite (VIIRS) 167
 3.6 Spinning Enhanced Visible and Infrared Imager (SEVIRI) 171
2.4. Postlaunch Calibration and Stability: Thermal Infrared Satellite Radiometers

Peter J. Minnett and David L. Smith

1. Introduction
2. On-Board Calibration
 2.1 (A)ATSR Radiometric Calibration
 2.2 AVHRR Calibration
 2.3 MODIS and VIIRS Radiometric Calibration
 2.4 MODIS Spectroradiometric Calibration Assembly for On-Orbit Stability
 2.5 MODIS Mirror Response versus Scan Angle
3. Comparisons with Reference Satellite Sensors
 3.1 Spatial Comparisons
 3.2 Temporal Comparisons
 3.3 Simultaneous Nadir Overpasses
 3.4 Instruments on the Same Satellite
4. Validating Geophysical Retrievals
 4.1 Cloud Screening
 4.2 Atmospheric Correction Algorithm
 4.3 Geophysical Validation
 4.4 Ship-Board Radiometers
5. Discussion
6. Conclusions
References
3.5 An Environmental System to Protect and Thermally Stabilize the Radiometer 351
3.6 Instrument Control and Data Acquisition 353
3.7 A Calibration System 354
3.8 Summary 361
3.9 Additional Comments 363

4. Examples of FRM Ship-Borne TIR Radiometer Design and Deployments 363
4.1 The DAR-011 Filter Radiometer 363
4.2 The SISTeR Filter Radiometer 364
4.3 NASA JPL NNR 368
4.4 The Calibrated Infrared In situ Measurement System 371
4.5 ISAR—Quasi Operational Ocean Field Radiometers 375
4.6 Use of Unmanned Airborne Vehicles BESST Radiometer 380
4.7 Spectroradiometers 382
4.8 Derivation of Air Temperature Using a Spectroradiometer 387
4.9 TIR Cameras 389

5. Future Directions 393

6. Conclusions 395

Acknowledgments 395
References 395

4. Theoretical Investigations

Barbara Bulgarelli, Menghua Wang and Christopher J. Merchant

4.1. Simulation of In Situ Visible Radiometric Measurements

Barbara Bulgarelli and Davide D’Alimonte

1. Overview 407
2. The RTE and Its Solution Methods 408
2.1 The Radiative Transfer Equation 408
2.2 Deterministic Solutions of the RTE 410
2.3 Monte Carlo Solutions of the RTE 410
3. Simulations of In Situ Radiometric Measurement Perturbations 413
3.1 Overstructure Perturbations 414
3.2 Perturbations Induced by Sea-Surface Waves 429
4. Summary and Remarks 441

References 442

4.2. Simulation of Satellite Visible, Near-Infrared, and Shortwave-Infrared Measurements

Menghua Wang

1. Introduction 452
2. Ocean—Atmospheric System 455
3. Simulations 457
Contents

3.1 Ocean Radiance Contributions .. 457
3.2 The TOA Atmospheric Path Radiance Contributions 464
3.3 Atmospheric Diffuse Transmittance 470
3.4 Simulated and Satellite-Measured TOA Radiances 471

4. Summary .. 478
 Disclaimer .. 479
 References .. 479

4.3. Simulation and Inversion of Satellite Thermal Measurements

Christopher J. Merchant and Owen Embury

1. Introduction .. 489
2. Radiative Transfer Simulation for Thermal Remote Sensing 490
4. Simulation of Interaction with Aerosol and Cloud 500
5. Simulation of Surface Emission and Reflection 502
6. Use of Simulations in Thermal Image Classification
 (Cloud Detection) .. 504
7. Use of Simulations in Geophysical Inversion (Retrieval) 509
8. Use of Simulations in Uncertainty Estimation 516
9. Conclusion .. 521
 References .. 523

5. In Situ Measurement Strategies

Giuseppe Zibordi and Craig J. Donlon

5.1. Requirements and Strategies for In situ Radiometry in
 Support of Satellite Ocean Color

Giuseppe Zibordi and Kenneth J. Voss

1. Introduction .. 532
2. Overview of Past and Current Field-Related Radiometric
 Activities ... 533
 2.1 Field Measurements ... 533
 2.2 Intercomparisons .. 538
 2.3 Data Repositories .. 542
3. Requirements and Strategies for Future Satellite Ocean-Color
 Missions .. 543
 3.1 Field Measurements for System Vicarious Calibration 544
 3.2 Field Measurements for the Validation of Satellite Data
 Products ... 546
 3.3 Field Measurements for Bio-Optical Modeling 547
 3.4 Protocols Revision and Consolidation 547
 3.5 Calibration and Characterization of Field Radiometers 547
 3.6 Data Reduction, Quality Control, and (re)Processing 548
5.2. Strategies for the Laboratory and Field Deployment of Ship-Borne Fiducial Reference Thermal Infrared Radiometers in Support of Satellite-Derived Sea Surface Temperature Climate Data Records

Craig J. Donlon, Peter J. Minnett, Nigel Fox, and Werenfrid Wimmer

1. Introduction
2. Fiducial Reference Measurements for SST CDRs and Uncertainty Budgets
 2.1 FRM TIR Ship-Borne Radiometer Network
 2.2 The Importance of Uncertainty Budgets
3. Laboratory Intercalibration Experiments for FRM Ship-Borne Radiometers
4. Ship-Borne Radiometer Field Intercomparison Exercises
5. Protocols to Maintain the SI Traceability of FRM Ship-Borne TIR Radiometers for Satellite SST Validation
 5.1 Definition of Measurement Methodology
 5.2 Definition of Laboratory Calibration and Verification Methodology and Procedures
 5.3 Predeployment Calibration Verification
 5.4 Postdeployment Calibration Verification
 5.5 Uncertainty Budgets
 5.6 Improving Traceability of Calibration and Verification Measurements
 5.7 Accessibility to Documentation
 5.8 Archiving of Data
 5.9 Periodic Consolidation and Update of Calibration and Verification Procedures
6. Summary and Future Perspectives

Acknowledgments

References

6. Assessment of Satellite Products for Climate Applications

Frédéric Mélin and Gary K. Corlett
6.1. Assessment of Satellite Ocean Colour Radiometry and Derived Geophysical Products
Frederic Melin and Bryan A. Franz

1. Introduction 609

2. Validation of Satellite Products 610
 2.1 Validation Protocol 610
 2.2 Validation Metrics 612
 2.3 Analysis of Validation Results 614
 2.4 Model-Based Approaches to Uncertainty Analysis and Error Propagation 618

3. Comparison of Cross-Mission Data Products 621
 3.1 Band Shift Correction 622
 3.2 Point-by-Point Comparison 624
 3.3 Analysis of Time Series 626
 3.4 Climate Signal Analysis 628

4. Conclusions 631
 Acknowledgments 632
 References 632

6.2. Assessment of Long-Term Satellite Derived Sea Surface Temperature Records
Gary K. Corlett, Christopher J. Merchant, Peter J. Minnett and Craig J. Donlon

1. Introduction 639

2. Background 640
 2.1 Assessment of Top of Atmosphere Brightness Temperatures 641
 2.2 Validation Uncertainty Budget 643
 2.3 Reference Data Sources 647

3. Assessment of Long-Term SST Datasets 649
 3.1 Example 1: Long-Term SST Data Record Assessment 652
 3.2 Example 2: Long-Term Component Assessment 654
 3.3 Quantitative Metrics 657
 3.4 Demonstrating Traceability to SI 659
 3.5 Stability 663
 3.6 Validation of Uncertainties 669

4. Summary and Recommendations 673
 References 674

Index 679
List of Contributors

Sean W. Bailey, Ocean Biology Processing Group, NASA Goddard Space Flight Center, Greenbelt, MD, USA; FutureTech Corporation, Greenbelt, MD, USA
Ian Barton, CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia
Barbara Bulgarelli, European Commission, Joint Research Centre, Ispra, Italy
Kenneth S. Casey, NOAA Oceanographic Data Center, Silver Spring, MD, USA
Gary K. Corlett, Department of Physics and Astronomy, University of Leicester, Leicester, UK
Davide D’Alimonte, Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
Craig J. Donlon, European Space Agency/ESTEC, Noordwijk, The Netherlands
Mark D. Dowell, European Commission, Joint Research Centre, Ispra, Varese, Italy
Owen Embury, Department of Meteorology, University of Reading, Reading, UK
William Emery, Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO, USA
Robert E. Eplee, Jr, Ocean Biology Processing Group, NASA Goddard Space Flight Center, Greenbelt, MD, USA; Science Applications International Corporation, Beltsville, MD, USA
Nigel Fox, National Physical Laboratory (NPL), Teddington, Middlesex, UK
Bryan A. Franz, NASA, Goddard Space Flight Center, Greenbelt, MD, USA
Simon Hook, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Andrew Jessup, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
B. Carol Johnson, Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
Charles R. McClain, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Gerhard Meister, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Frédéric Mélin, European Commission, Joint Research Centre, Ispra, Italy
Christopher J. Merchant, Department of Meteorology, University of Reading, Reading, UK
Peter J. Minnett, Meteorology & Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
Bryan Monosmith, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Timothy J. Nightingale, RAL Space STFC Rutherford Appleton Laboratory, Harwell, Oxford, Didcot, UK
Albert C. Parr, Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA; Space Dynamics Laboratory, Utah State University, Logan, UT, USA
Joseph P. Rice, Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
Kenneth J. Voss, Physics Department, University of Miami, Coral Gables, FL, USA
Menghua Wang, NOAA Center for Satellite Applications and Research, College Park, Maryland, USA
Werenfrid Wimmer, Ocean and Earth Science, University of Southampton, European Way, Southampton, UK
James A. Yoder, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Howard Yoon, Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
Christopher Zappa, Ocean and Climate Physics Division, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
Giuseppe Zibordi, European Commission, Joint Research Centre, Ispra, Italy
Foreword

The view of the Earth from space has become an icon of our time. First seen through the spectacular photographs taken by the Apollo astronauts, it showed us the Earth, which had seemed limitless to our ancestors, to be small and fragile, a vulnerable oasis for life in the vast vacuum of space. If no other benefit had ever come from the space age, those pictures alone would have justified the effort to leave the Earth, for they changed our view of the planet forever.

But those photographs, it turned out, were just the beginning of what can be learned by looking down on the Earth from space. Only from the vantage point in orbit above the planet can we really get the whole picture—seeing far enough to give a truly global view, but also with sufficient detail to get down to the local scale. Since the time of the early satellites, the number and sophistication of remote sensing measurements has grown hugely, so that we now have a nearly continuous view of the Earth from space that is highly resolved in area, time, and wavelength. Terabytes of data now flood down from our satellites, documenting the view of Earth from space in unprecedented detail. If only we can make sense of it all, it offers the chance to understand our home planet as never before, allowing us to see how every locality fits into the whole picture. For the oceans in particular, this is a transformative view, because over large areas they are only rarely visited by people or instruments to make in situ observations. Much of our uncertainty over prediction of seasonal and longer term changes originates in this ignorance of the oceans, which are the main storage for heat in the climate system and the site of half the world’s biological productivity.

This book describes the latest knowledge and techniques in visible and infrared radiometry from satellites. These regions of the electromagnetic spectrum can be used to give important information about several aspects of the oceans: the infrared observations can be used to measure sea surface temperature, which is a fundamental variable needed for climate and weather prediction studies. Visible measurements characterize ocean color, from which we can derive estimates of chlorophyll and other pigments to enable characterization of the plankton community. The plankton are in turn the base of the ocean food chain and play important roles in the Earth’s carbon cycle, both in the rapid changes occurring today as a result of human activities—climate change and ocean acidification—and over the longer term for in maintaining a habitable planet.
As the contributions here illustrate, making sense of the flood of data from satellites is no easy task: it requires meticulous attention to detail. The sensors must be continually calibrated and the data validated, so that long-term records, constructed over time from successive instruments, can be relied on to be free from drift. This is of critical importance for studies of climate change, where any long-term change in temperature must be carefully separated from instrumental effects. To achieve this kind of reliability requires continuous and extended free exchange and cooperation between all those involved—from the designers and engineers who build the sensors, those interpreting the data, and researchers making in situ observations who provide the ground truth. However, there is a rich return on this effort for our civilization as a whole, for from it we can understand our home planet as never before.

Andrew Watson
University of Exeter 27th July 2014
Preface

Climate change science relies on the combined use of models and measurements to advance understanding of climate fluctuations and trends, and ultimately to formulate predictions. Gathering measurements for climate change investigations requires well-characterized observing systems and the implementation of strategies to detect decadal variations that are much smaller than those occurring at daily or interannual scales. This requirement imposes the collection of uninterrupted time series of highly accurate measurements traceable to accepted international standards that collectively constitute the evidence baseline for climate research.

Satellite systems provide a quasi-synoptic global sampling dimension of climate data measured using a variety of instruments operated over the Earth’s surface. Like any observing system devoted to the generation of climate-quality data records, space-based instruments supporting climate change investigations need to deliver continuous highly accurate measurements with defined uncertainties. This imposes lifetime calibration and validation processes for each component of the end-to-end observing system and for the derived data products.

During the last few decades, several space missions have been designed to support ocean climate studies through measurement of physical, biological, and chemical variables. Among the various remote sensing technologies, optical sensors operating in the visible, near-infrared, and thermal infrared spectrum are well suited to measure variables such as sea surface temperature and water leaving radiance at timescales varying from hours to days and geographical-scales from tens of meters to kilometers. While the sea surface temperature has relevance for the heat, gas, and momentum coupling between the atmosphere and ocean, reconstruction of patterns associated with dynamical processes such as surface currents, eddies, and upwelling, the water-leaving radiance in the visible spectral region is fundamental for the quantification of optically significant seawater constituents, including phytoplankton biomass, that play a major role in the Earth’s carbon cycle.

Optical remote sensing technologies used to generate climate-quality data records share the need for thorough prelaunch characterization and absolute calibration of the satellite radiometer. These activities are then followed by the postlaunch monitoring of the radiometer stability over the mission lifetime, the continuous assessment of data product quality, and finally, successive
reanalysis and reprocessing of all data in conjunction with better understanding of error sources. The postlaunch activities largely rely on in situ reference measurements for the development and assessment of the algorithms and methods applied to determine each climate variable, and successively for the continuous validation of derived satellite products. Furthermore, reference measurements are required to homogenize climate data records obtained from multiple or successive satellite instruments. Because of this, advances in remote sensing optical technology demand progress to deliver in situ reference instrumentation, measurement methods, and field strategies. Such progress embraces the design of increasingly precise and stable field optical radiometers, the improvement of laboratory techniques for their characterization and absolute calibration, the assessment of measurement methods and field intercomparison strategies, and finally, advances in the creation and handling of data repositories.

This book, through a number of contributions from various authors, presents the state of the art for optical remote sensing and shows how it can be applied for the generation of marine climate-quality data products. The various chapters are grouped into six thematic parts each introduced by a brief overview. The different parts include: (1) requirements for the generation of climate data records from satellite ocean measurements and the basic radiometry principles addressing terminology, standards, measurement equation, and uncertainties; (2) satellite visible and thermal infrared radiometry embracing instrument design, characterization, and pre- and postlaunch calibration; (3) in situ visible and thermal infrared reference radiometry including overviews on basic principles, technology, and measurement methods required to support satellite missions devoted to climate change investigations; (4) computer model simulations as fundamental tools to support interpretation and analysis of both in situ and satellite radiometric measurements; (5) strategies for in situ reference radiometry to satisfy mission requirements for the generation of climate data records; and finally, (6) methods for the assessment of satellite data products.

The expectation of the editors is that this book will become a working tool, as either a reference text or as background literature for discussions, for students and scientists interested in ocean climate studies and satellite radiometry.

Giuseppe Zibordi
Craig J. Donlon
Albert C. Parr