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Detection and attribution

Our strategy for detecting the impact of global warming
on ocean biogeochemistry is to combine modeling and
observations in the framework of detection and
attribution

Detection and attribution is a set of statistical methods
that have been developed to study climate change
[Hasselmann, 1979, 1997; Hegerl and North, 1997], and
and have been extensively applied to studies of
atmospheric variability and, to a lesser extent, oceanic
variability [e.g., Santer et al., 1995; Barnett et al., 2001]




Detection

» “Detection has been defined as the process of
demonstrating that an observed change is significantly
different (in a statistical sense) from natural internal
climate variability, by which we mean the chaotic
variation of the climate system that occurs in the
absence of anomalous external natural or anthropogenic
forcing (Mitchell et al. 2001).” (Hegerl et al., 2006)

Detection problem

Purpose: to determine the origin of an observed change in a climate
variable of interest (e.g. temperature, precipitation). The following
model can be fitted:

Yx,n) =Y (x,0)+o\¥Y (x,1)

‘P(X,t) represents the available measurements at station (or grid cell) x
and time t

By (x,1) represents the natural climate variability at station (or grid cell) x
" and time t (diurnal, seasonal, and interannual)

¥ (X l‘) represents the climate change signal or “fingerprint” at station
S > . .
(or grid cell) x and time t

o, is the magnitude of the change and, which is estimated by
fitting the regression model above. If it is significantly different
from zero, the hypothesis of no detectable climate change is
rejected.
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Detection elements

In order to undertake a detection study, three main
elements are required:

(i) An observational data base,

(ii) a firm estimate of natural processes in order to
establish the patterns and magnitude of background
variability, and

(iii) an estimate of the signatures associated with climate
change.

The first element is purely based on observations, the
second element is usually determined by a combination of
modeling and observations, while the third element
ultimately requires a fully coupled earth system model.

Attribution

» “Afttribution of anthropogenic climate change is generally
understood to require a demonstration that the detected
change is consistent with simulated change driven by a
combination of external forcings, including anthropogenic
changes in the composition of the atmosphere and
internal variability, and not consistent with alternative
explanations of recent climate change that exclude
important forcings [see Houghton et al. (2001) for a more
thorough discussion]. This implies that all important
forcing mechanisms, natural (e.g., changes in solar
radiation and volcanism) and anthropogenic, should be
considered in a full attribution study.” (Hegerl et al.,
2006)




. Detection studies
using ocean color

A first step towards detection:
linear regression
Model expressing a linear trend (ordinary least squares or
OLS):
y,=U+twr+g,

y, is the variable of interest (e.g. chl concentration),
ML is the intercept,

@ is the magnitude of the trend,

t is the time (e.g. months),

£, is the random errors assumed independent and

identically distributed i.i.d N(0,04?2).

Other functional forms (e.g., exponential) were tried by
Henson et al. (2010), but fit did not improve significantly.

Trends in ocean chlorophyll SeaWiFs data
From 1998-2003
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Linear trends in SeaWiFs chlorophyll concentrations (P < 0.05) and regions defined by
coherent distribution of 25-km grid points. White means not significant. Use annual
mean data

Figure from Gregg et al. (2005)

Trends in ocean chlorophyll SeaWiFs data
From 1997-2007

-0.01

-250 -200 -150 -100 -50 0 50

Linear trends in SeaWiFs chlorophyll concentrations (P < 0.05). White means not
significant.
Figure from Henson et al. (2010)




Trends in ocean chlorophyll SeaWiFs data
From 1997-2007

Autocorrelation (red noise)
problem

» Autocorrelation is the correlation of a process
with itself and indicates the strength of the
‘memory’ of the process.

* In the presence of autocorrelation the
assumption that the errors are independent is
not respected. Thus, we need to take
autocorrelation into account to figure out
whether there are statistically significant trends.

Linear trends in SeaWiFs chlorophyll concentrations (P < 0.05). White means not
significant. Use monthly data.
Figure from Vantrepotte and Mélin (2009)

Trend detection in presence of

: . Trend detection with
autocorrelation (red noise)

autocorrelation

* The parameters can be estimated using

Model expressing a linear trend and first-order autocorrelation:

Y =H+ot+N, generalized least squares (GLS) regression as
Y, is the variable of interest (e.g. chl concentration), opposed to the usual ordinary least squares
U is the intercept, .
@ is the magnitude of the trend, (OLS) regression.
[ s the time (e.g. months).

Nt :¢1Nt—1+8z

N, is the noise,
g is the first-order autocorrelation,
¢ is the random errors i.i.d. N(0,0,?).

~
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a)

GLS trend in global

Effect of autocorrelation

Simulation on 1000 synthetic time series with a first-order
autocorrelation of 0.5. N, =0.5N, , +¢€,

If the usual 5% critical level (95% confidence level) is used, the

risk of false detection using OLS is increased by 20%.
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GLS trends in SeaWiFs chlorophyll concentration
(white indicates non-significant)

Beaulieu et al., 2012, in prep.
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Biomes based on clustering of
SeaWiFS chl and carbon

= T

K-means clustering on st.dev. of carbon and mean chl

Trends in satellite data averaged by biomes

Global 0.00049 (0.11) 0.52(3.2)

High latitude North Atlantic -0.00555 (-1.31)™ 0.16 (1.4)
Equatorial Atlantic -0.00052 (-0.18) 0.61(4.1)
Oligotrophic North Atlantic -0.00127 (-0.95) 0.59 (3.9)
Southern Ocean Atlantic 0.00078 (0.26) 0.39(2.3)
Oligotrophic South Atlantic -0.00028 (-0.29) 0.52(3.2)
High latitude North Pacific -0.00138 (-0.34) 0.37(2.2)
Equatorial Pacific 0.00054 (0.30) 0.87 (14.4)
Oligotrophic North Pacific -0.00030(-0.34) 0.84 (11.5)
Southern Ocean Pacific 0.00108 (0.65)" 0.47 (2.8)
Oligotrophic South Pacific 0.00020 (0.23) 0.80 (9.0)
Arabian Sea 0.00257 (1.45) 0.73 (6.4)

Bay of Bengal -0.00076(-0.50) 0.59(3.9)
Southern Ocean Indian -0.00044 (-0.21) 0.59 (3.9)
Oligotrophic Indian -0.00029 (-0.32) 0.80 (9.0)

*95% CL, ** 99% CL

Ill. Detection time
studies using climate
model simulations
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How can we estimate how long it will take before
detecting trends?

The number of years necessary to detect a trend depends on the magnitude of the
trend and the variability in the data. If we fix a confidence level of 95% and a
probability of detection of 0.9, the number of years necessary can be estimated by
(Tiao et al., 1990; Weatherhead et al., 1998):

2/3
o 330, /1+(;)1
‘wo‘ 1_¢|
is the number of years necessary to detect a trend
@ is the magnitude of the trend

Oy is the standard deviation
¢1 is the first-order autocorrelation

Trends having a small magnitude take more time to detect.
Trends having a large standard deviation and autocorrelation also take longer to
detect.

By using magnitude predicted by ocean biogeochemical models and the variability in
satellite data, we can estimate how long we may need in order to detect trends.

GFDL CHL

Trends predicted by three
ocean biogeochemical
models

Linear trends in chlorophyll
concentration projections from 3
ocean biogeochemical models for
the period 2001-2100 under IPCC
A2 global warming scenario (95%

0
mg m3/year x 10°

confidence level).

Henson et al., 2010

How long will it take?

Number of years necessary to
detect trends predicted for
2001-2100 under IPCC A2
global warming scenario (95%
confidence level, 90%
probability of detection)
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Henson et al., 2010
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Trend detection in presence of autocorrelation
and an intervention

Model expressing a linear trend with an intervention:
0, <7,

=(T,-1)/T
1, 12T, =T -1/

Y, =p+ort+6I,+N, II:{
Y, is the variable of interest (e.g. chlorophyll concentration),
M is the intercept,

is the magnitude of the trend,
is the time (e.g. months),

is the intervention effect,

is the time of the intervention,

is the fraction of data before the intervention.

2 QNS N

,=ON,  +¢&,

N, is the noise,
is the first-order autocorrelation,
E s the random errors i.i.d N(0,0,2).

Chl anomalies (mg m=3 year_1)

Trends predicted by three ocean biogeochemical models

Linear trends in chlorophyll concentration Chlorophyll

GFDL CHL

projections from 3 ocean biogeochemical
models for the period 2001-2100 under IPCC A2
global warming scenario (95% confidence level).
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How long it will take without instrument overlap?
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Concluding remarks

We are not yet able to detect trends in ocean
chlorophyll satellite data except in the high latitude
North Atlantic.

It will take a few more decades of observations to
have very high probabilities to detect trends.

A change of instrument without overlap would highly
affect our ability to detect trends.

Currently, our measurement records are too short to

detect trends, so our best guess for when we can
detect trends comes from models.




The End




