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" Lecture 3: Atmospheric Corregtjarf for Shallow Waters .

73 Why “black pixel” technlques for deep, case 1 water don’ t work A
Empirical Line Fit . e
Radiative Transfer b Zn ;:;4;._‘ ,
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e Maps needed at 1-10 meter3patial scales (not kilometers), and
sometimes within ~1 day of image acquisition f
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Curves separate by Chl value, but still show a significant deper éfr)
on sky conditions and wind speed. Can we find a better AQP?
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Curves separate by Chl value, and show very little deperfdenceﬁenj;é-‘
sky conditions and wind speed: R is a much better AOP than R.
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mixtures of phytoplanktoh

- minerals, dissolved substa‘nces)
and in optically shallpwwaters
(bottom-reflectance effects)

coastal waters (complex “5\



Dierssen et al. (lenol Oceanogr 41(1), 444 455, 2003) developed a band-
ratio algorithm for bottom depth.in clear Bahamas waters: -
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log,, (z,) = -0.1706 x*> + 0.8913 x - 0.2316
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The Dierssen-algorithm did OK over
shallow sand bottoms, but totally
failed over deeper sea grass
bottoms. Why?

Dierssen et al zb model Algol _RGS_5750_wl_UnS
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HydroLight simulations of R..(555)/R. (670) for two sets of IOPs and
two different bottoms (sand and grass), as a function of bottom- -
depth. Nonunigueness for z, > 5 m and-grass bottom.

ratio = 25

10 100

Rrs(566)/Rrs(670)

IOP1, sand
10P4, sand
IOP1, grass
I0P4, grass
Eq. D2



Fhe R spectra for z, =4-and 9 m depth, grass bottom, are"cl_"early
different, but both spectra have R..(555)/R.(670) =25 £ 0.1. The
Dierssen model gives z, =4.8 m. S
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normalized R spectra ‘

Red: infinitely deep water, ChI. =10 mg m-3
Blue: 2 m deep clear water, sea grass bottom




normalized R, spectra "~ calibrated R, spec;rai,“’%;‘ i
A .
Red: infinitely deep water, Chl = 10 mg m-3 g

Blue: 2 m deep clear water, sea grass bottom -
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http://www.oceanopticsbook.info/view/remote_sensing/level_2/thematic_mapping
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- we o ted RrS spectra might work :but we need hlgh waveleng S
resolutlon (5-10 nm) R spectra gver at least 400-750 nm (350-1000 bEtt‘e‘ _—

How do we get these spectra? : ,\
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You oath"’ et meter-ecate hyp?ré’p’ecfral |magery from a polar-orbrtlng satelllte

= - because there just aren’t enough photons reaching the TOA. See

= http//Www. oceanoptlcsbook mfofvrew/remote sensrnq/level 2/count|nq' .photons =

for back-of-the- -envelope estlmates S oo
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View a larger surface area, which both-increases the number of photons Ieavrng
the surface and allows for longer mtegratrontlmes S

- View the surface area for a Ionger time, e.g., from a geostatlonary satelllte that

can stare at the same point for very long times (but a geostationary satellite-has
an altitude of 36,000 km, WhICh makes the solid angte much smaller)

Increase the bandwidth. | - o —

Increase the aperture of the receiving optics. B

Use multiple detector elements to observe the same ground pixel nearly
simultaneously, either on the same;®r Successive scans, and then combine the
photons collected from the différent sensors

Get closer to the surface, e.g. by using an airborne sensor flying at a few
kilometers above the sea surface. This greatly increases the solid angle of the
sensor and allows for longer integration times for a slowly flying aircraft.
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Fly low and slow with an airborne hyperspectral sensor gl


http://www.oceanopticsbook.info/view/remote_sensing/level_2/counting_photons
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o,AVthS Alrborne VlsblellnfraRed Imagmg Spectrometer (NASA 1989). 224 bands .
~380-2500 nm by 10 nm: ‘Mostly terrestrial applications: $7GK/fllght/SC|ent|st Large
-mstrument uses a scannlng mirror (‘ whlskbroom ) 20x20 m or 4x4 m plxels
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Ocean PHILLS" Ocean Portabhe Hyperspectral Imager for Low—nght Spectroscopy
(US Naval Research Lab, 1999). 128 bands 400-1000 nm by 4 6 nm 1 -2-m plxel
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SAMSON: ‘Spectrographic Aerial Mappmg System W|th On board Nawgatlon

(improved son of PHILLS; Florida Environ. If{es Inst: m|d 2000’s; now operated by
' Northrup Grumman) 256 bands at 3 5nm o =
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CASk Qompact Alrborne Spectrographic Imager. (ITRES}228 bands.380-1050
nm. Commercially available and widely used.”

There are some satellite hypersp'éctral systems:

Hyperion: (NASA; 2000) 220 bands 400-2500 nm; 30m x 30m pixels

HICO: Hyperspectral Imager for the Coastal Ocean (NRL; on ISS 2009); 380-960 nm
by 5.7 nm; ~100 m pixel size. Curt Davis next week .

See http://www.geo.unizh.ch/~schaep/research/apexis_list.html for a fist of imaging
spectrometers. There are many more, but most are not for ocean applications.



http://www.geo.unizh.ch/~schaep/research/apex/is_list.html
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http://www.weogeo.com/

see ann-and-curt.smugmug.com



