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Session Outline 
4 Sections 

1. Historical foundations and development of 
Ocean Colour Algorithms 

2. Basis for implementing semi-analytical 
algorithms 

3. Alternative inversion methods and 
comparisons 

4. Algorithm implementation issues, regional 
and class based algorithms 



Disclaimers! 
• I do not have an algorithm of my own 

that I will be pushing (but I do have 
opinions) 

• The lectures can not be exhaustive 
(i.e. cover all algorithm types) – focus 
on common truths/lessons 

• There may be some material which is 
already known by some – but hopefully 
there will be something useful for all 



Overarching Issues 
(e.g.) • The evolution of ocean colour algorithms has resulted from 

improvements on our knowledge on bio-optics but importantly also 
on the availability of relevant data 

• Beware of claims of a purely analytical algorithm, there is some 
degree of empiricism in all algorithms & we shouldn’t be ashamed 
of this 

• Use of the data is important – i.e. clear separation between 
“parameterisation” datasets and validation datasets 

• Understanding (ideally performing) in-situ measurements will help 
you to understand the caveats and applicability of algorithms you 
may develop 

• Beware of “assumptions” made by algorithms e.g. nLw products 
that have been constrained to an in water model during 
atmospheric correction 

• The scientific state-of-the-art is not always compatible with routine 
implementation in SA processing schemes – don’t get frustrated 

 



Broad topics not 
covered in detail 

• Data Merging 

• Uncertainties – Doerffer lectures 

• IOP variability – Lee lectures 



Section 1 
Historical foundations and development of Ocean 

Colour Algorithms 



Olga Koblentz-Mishke 1970 



Coastal Zone Color Scanner (CZCS) Global Climatology (Nov. 
1978-Jun. 1986) 



R(1,3) = Lw(B1=443)/Lw(B3=550) vs Chl 

Suggests the band-ratio model:  log10(Chl) = C1 + C2log10 [Lw(443)/Lw(550)] 
C1 and C2 are the model parameters whose values are determined by the data 

Note:  only 33 
data points 
were initially 

available! 



Basic Ocean Colour 
“paradigm” 





Ocean colour algorithms 
•Two kinds: 
1.Empirical: often (but not 
always) chlorophyll only 
2.Semi-analytic: chlorophyll, 
CDOM, particulates (but also 
more PSD, PFTs) 
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SeaWiFS OC4 for Chl: 
X = log10{max[Rrs(443)/Rrs(555), Rrs(490)/Rrs(555), Rrs(510)/Rrs(555)]} 

Chl = 10^(0.366 - 3.067X + 1.930X2 + 0.649X3 - 1.532X4) 
 

MODIS for Kd(490): 
X = Lw(488)/Lw(551) 

Kd(490) = 0.016 + 0.156445X^(-1.5401) 
 

MODIS for aCDOM(400) and aphy(675): 
r15 = log10[Rrs(412)/Rrs(551)] 
r25 = log10[Rrs(443)/Rrs(551)] 
r35 = log10[Rrs(488)/Rrs(551)] 

aCDOM(400) = 1.5*10^(-1.147 + 1.963r15 - 1.01r15
2 - 0.856r25 + 1.02r25

2) 
aphy(675) = 0.328 [ 10^(-0.919 + 1.037r25 - 0.407r25

2 -  
3.531r35 + 1.702r35

2 - 0.008)] 
 

and so on, for dozens more…. 

Examples of Band-Ratio Algorithms 



SeaWiFS empirical OC4 algorithm for 
Chl-a; Called a maximum-band ratio alg. 







SeaWiFS composite image (1997-2000) 



Section 2 
Basis for implementing semi-analytical 

algorithms 

 



Inherent 
Optical 

Properties 
 

Absorption 
Scattering 

Apparent 
Optical 

Properties 
 

Radiance 
Reflectance 

In-Water 
Constituents 

 
Pigments (Chl), 

Sediment, CDOM 

Empirical 
algorithms 

Analytical 
algorithms 















Wavelength (nm) 

to
ta

l a
bs

or
pt

io
n 

co
ef

fic
ie

nt
 - 

a t
ot
 (m

-1
) 

Baltic German Bight 

Open ocean N. Adriatic 

CDOM Detritus Phytoplankton  Water 



Inherent 
Optical 

Properties 
 

Absorption 
Scattering 

Apparent 
Optical 

Properties 
 

Radiance 
Reflectance 

In-Water 
Constituents 

 
Pigments (Chl), 

Sediment, CDOM 

Empirical 
algorithms 

Semi-analytical 
algorithms 



Inherent 
Optical 

Properties 
 

Absorption 
Scattering 

Apparent 
Optical 

Properties 
 

Radiance 
Reflectance 

Semi-analytical 
algorithms 



R(1,3) = Lw(B1=443)/Lw(B3=550) vs Chl 

Suggests the band-ratio model:  log10(Chl) = C1 + C2log10 [Lw(443)/Lw(550)] 
C1 and C2 are the model parameters whose values are determined by the data 

Note:  only 33 
data points 
were initially 

available! 
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Local parameterization for coastal & inland waters 



a( ) = aw( ) + Ac( )[Chl]Bc( ) + [acdm(440)] exp(-S( -440)); 

bb( ) = bbw( ) +[bbp(555)] [555/ ]Y 



frequency distributions of IOP products in NOMAD 

 



Two step process 

• Distinction of different optically active 
constituents 

• Quantification of individual optically 
active constituents 



Section 3 
Alternative inversion methods and 

comparisons 
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Inversion methods 
• Direct inversion/Non linear optimization NLO 

• Principal Component Inversion PCI 

• Neural Network NN 

• Semi-Analytical solution 

• Local empirical 

• Genetic Algorithms 



Availability of 
methods 

• Numerical Recipes 

• MATLAB, MATHEMATICA, IDL 

• Specific programs: SNNS, NNFit 

 

• All routines can be found as off the shelf 
routines 



Synthetic versus in-situ datasets for 

algorithm training  
• Synthetic 

• allow to generate very large datasets for 
training/parameterisation 

• allow to quantifiably add noise & uncertainty 
• In-situ 

• include actual information on the variance and 
covariance of IOPs and AOPs 

• No assumptions made on bulk IOP AOP 
relationships (e.g. bi-directonal effects) 

• Independent of specific spectral 
parameterisation of individual IOP 
subcomponent 



Sensor adopting semi-analytical 
algorithms 

• NLO – SeaWiFS (NASA) trial product 

• PCI – MOS (DLR) 

• NN – MERIS (ESA), GLI (NASDA) 

• Semi-analytical solution MODIS 
(NASA), planned product for NPP and 
NPOESS 



Critical issues 
• An inversion algorithm is only as good as 

the reflectance (forward) model you use 
in describing the optical variability of the 
system/region modelled 

• Methods requiring simulated datasets are 
also highly dependent on the permutation 
table used i.e. distribution functions of 
OACs  and their covariance 



Distribution functions for in-water 
constituents 
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OAC covariance - COASTlOOC 

Babin et. al. (2002) 



• Basic idea is to minimize the difference between the 
modelled and measured reflectance until a 
predefined converge threshold is met 

 

 

• Requires a first guess 

• Alternative methods: Levenberg Marquardt, Gauss-
Newton, Simplex, differ mainly in the search criteria 
they use 

• Convergence may sometimes be a problem 

Non-Linear 
Optimization 
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a( ) = aw( ) + Ac( )[Chl]Bc( ) + [acdm(440)] exp(-S( -440)); 

bb( ) = bbw( ) +[bbp(555)] [555/ ]Y 



Example NLO application 

Siegel et. al. 2005 



NLO PCI NN 

Advantages 
•Direct 

•Independent of 
simulated dataset 

•Non-linear 

Disadvantages 
•Convergence 

•CPU intensive 
•Initial guess 



Principal Component 
Inversion 

• Principal Component Analysis allows you to 
extract the most significant information from 
large multivariate datasets 

• Determines a linear transformations of the 
data to a smaller number of parameters 
essentially reproducing all of the information 
of the original data. 

• Linear assumption 

• Separates signal from noise 



Step 1: Forward Model 

Step 2: Principal Component 
Analysis 

Step 3: Intrinsic Dimensionality 

Step 4: Calculation of  
factor scores 

Step 5: Determination of local 
fit coefficients 



Example PCI application 



NLO PCI 

Advantages 
•Direct 

•Independent of 
simulated dataset 

•Non-linear 

•Computationally 
cheap 

•Always convergence 
•Separates signal from 

noise 

Disadvantages 
•Convergence 
•CPU intensive 

•Initial guess 

•Dependent of 
simulated dataset 

•Linear assumption 



Neural Network 
Inversion • Requires simulated dataset - ~10000 

spectra 
• Simulated dataset split 2/3 training 1/3 

testing 
• Training results in “weights file” 
• Capable of describing highly non-linear 

system 
• CPU time – high for training v. low for 

running 



Pre-processing 

• Log10 transform 

• Z-score 
normalisation 





Things to Note 
 

NN use the training data to determine a set 
of weights so that the given input produced 
the desired output.  After training, we hope 
(in more complex networks) that new inputs 
(not in the training data set) will also produce 

correct outputs. 
 

The “knowledge” or “memory” of a neural 
network is contained in the weights. 

 
In a more complicated situation, you must 
balance having enough neurons to capture 

the science, but not so many that the 
network learns the noise in the training data. 



Chlorophyll 
Emp. algorithm 

Chlorophyll 
Neural Network 

Sediment 
Neural Network 

Dissolved Organics 
Neural Network 

Tugela River 
Samples 

22 May 2005 



NLO PCI NN 

Advantages 
•Direct 

•Independent of 
simulated dataset 

•Non-linear 

•Computationally 
cheap 

•Always convergence 
•Separates signal 

from noise 

•Computationally 
cheap 

•Always converges 
•Non-linear 

Disadvantages 
•Convergence 
•CPU intensive 

•Initial guess 

•Dependent of 
simulated dataset 

•Linear assumption 

•Dependent of 
simulated dataset 

•Slow Training 
•Choice of 

architecture 



Which is the best? 
• Depends on your application, water type  

• My suggestion:  

• spend time defining a good reflectance 
model 

• Characterize distribution functions and 
covariance of OACs 

• You can always try different inversion 
method to see which suits your application 



Implementing Algorithms – an 
OCR Agency Perspective 

(B. Franz, NASA –pers. com.)  • Require that the algorithm has been validated (at some level) 
using satellite inputs and field measurement (ideally published) 

• Require that the algorithm or product is something of interest to 
the broader community (requests, forum etc) 

• Implement in the NASA processing code:  this is more likely to 
happen if the algorithm has already been implemented in l2gen 
by the developer… At this stage we also need to be sure that 
quality screening is adequate (warning and failure conditions 
trapped). 

• Distribute in SeaDAS: this provides an opportunity for the 
community to test a new algorithm or product, and to see the 
details of implementation.  We may receive feedback through the 
ocean color forum. 



Implementing Algorithms (2) 
• Produce global test products: this is a primary function we 

perform for algorithm development, to take something that has 
only been done on small scales and show how it performs on the 
global scale.  We may also do global match-up analyses if this is 
a product for which we have many field measurements. There 
may be some iteration with the algorithm developer…At this 
stage, the algorithm may fail when confronted with the full range 
of radiant path geometries and water properties, or it may be 
impractical for global application due to resource requirements, 
and thus we stop. 

• Reprocess and distribute global, life-of-mission Level-3 products 
for evaluation: for derived products, this is typically done by 
processing Level-3 Rrs to Level-3 products, which we can do 
quickly with little resource and no impact to standard products...  
If they are found to be useful, then we may consider step 7. 

• Incorporate the product or algorithm as part of standard Level-2 
and Level-3 production, at the next full mission reprocessing. 

 

 



Day 2 

 



IOCCG WG 5  

• Working group on Ocean-Colour 
Algorithms (Chaired by ZhongPing 
Lee) 

• Report: IOCCG Report 5 (2006). 
Remote Sensing of Inherent Optical 
Properties: Fundamentals, Tests of 
Algorithms, and Applications.  



Objectives • The objectives of the group were to perform 
algorithm cross comparisons, to make 
recommendations on specific algorithms and to 
report on the progress of algorithm 
development. 

• The group assembled a database from in situ 
measurements and also developed a 
synthesized dataset based on known 
relationships, in order to perform algorithm 
cross-comparisons and evaluations. The 
synthesized datasets, as well as the software 
for the various algorithms, are available on the 
IOCCG webpage 



Terms of Reference 
• Synthesize a database of inherent (IOP) and 

apparent optical properties (AOP), and 
assemble a database of in situ measurements. 

• Perform cross-comparisons and evaluations 
on existing ocean-colour inversion algorithms. 

• Make recommendations on specific algorithms. 

• Report on the progress of algorithm 
development. 



Algorithms 



Simulated vs In-situ 
dataset 



Bulk vs Constituent 
retrievals 



Conclusions (1) • In general,the best properties that can be obtained from ocean-
colour data, regardless of the algorithm used … are the spectral 
absorption and backscattering coefficients of the total water 
volume.  

• Using the synthetic data set as a reference, more reliable results 
are obtained for clearer waters (a(440) < ∼0.3 m−1)… than more 
absorbing waters (a(440) > ∼0.3 m−1).  

• When decomposing the total absorption coefficient into the 
components of phytoplankton and coloured material, less accurate 
results are anticipated due to overlapping of spectral signals and 
because the spectral shapes of the components are not constant.  

• If the chlorophyll-a concentration (C) is desired from ocean colour, 
more uncertainties will be introduced because the chlorophyll-
specific absorption coefficient is not constant at a given 
wavelength… 

 



Conclusions (2) 

• The robust and stable results of the total absorption and 
backscattering coefficients from these various 
algorithms, …these optical properties should be taken as 
standard products for all ocean-colour satellite missions. 
… 

• Space-based sensors should be equipped with at least 
one spectral band in the region of 620-640 nm. Such a 
band is very important for coastal remote sensing ... 

• Algorithms based on the fundamentals of hydrological 
optics are strongly advocated… 



Recommendations • Increased high-quality, co-located 
measurements of remote-sensing reflectance 
and IOPs. 

• Improved methods to select model parameters 
such as the spectral shapes of individual IOPs 

• Better quantification of uncertainties in derived 
products 

• Improved procedure for atmospheric 
correction.  

• And, finally, enhance and broaden applications 
of IOPs for oceanographic studies. 



Inversion method inter-
comparison 

Objectives: 
For the different inversion algorithms and 

optically distinct water classes: 
Estimate errors in the retrieved C 

quantitatively, and  
Quantify the effect of the noise-contained 
ocean color signals on the accuracy in the 

retrieved  C. 

Study undertaken at UNH with OPAL PhD 
student Hui Feng 



Non-Linear Optimization 



Neural Network 



Principal Component Inversion  



Spectral Unmixing - QAA 
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satellite provides Rrs( ) 

a ( ) and bb ( ) are desired products 

construction (& deconstruction) of an SAA … 

Spectral Optimization: 

* define shape functions for 
(e.g.) bbp( ), adg( ), aph( ) 

* solution via L-M, matrix 
inversion, etc. 

* ex: RP95, HL96, GSM 

1 

Spectral Deconvolution: 

* partially define shape functions for 
bbp( ), adg( ) 

* piece-wise solution: bbp( ), then a( ), 
then adg( ) + aph( ) 

* ex: QAA, PML, NIWA 

2 

Bulk Inversion: 

* no predefined shapes 

* piece-wise solution: bbp( ), then 
a( ), via (empirical) Kd ( ) via RTE 

* ex: LS00 

3 
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our STARTING point: 

* dynamic bbp retrieval 

* dynamic aph spectral model 

* IOP-based f/Q tables 

* Raman scattering 

* fluorescence 

* T/S dependence on aw & bbw 

* optical water class parameterization 

* uncertainties & propagation of error 
 

metrics defined to evaluate progress 

 

consensus to refine spectral optimization to initiate process … 

Spectral Optimization: 

* define shape functions for 
(e.g.) bbp( ), adg( ), aph( ) 

* optimization via L-M 



generalized IOP model (GIOP) in l2gen  

•  specify sensor wavelengths to fit 
– e.g., 412,443,490,510,555 

  
•  select aph form and set params 

– tabulated:  , aph*( ) 
– gaussian: , 
– dynamic: Bricaud, Ciotti, Lee 

 
•  select adg form and set params 

– exponential: , S 
– dynamic: QAA, OBPG 

 
•  select bbp form and set params 

– power law: , 
– dynamic  HL96, QAA, LS00, 
    Ciotti, Morel

 

•  select rrs[0-] to bb/(a+bb) 
– quadratic  
– f/Q: Morel (tbd: PML, Lee) 

 
•  specify inversion method 

– Levenburg-Marquart 
– Amoeba (downhill simplex) 
– Lower-Upper Decomposition 
– Singular-Value Decomposition 

 
•  specify output products 

– a( ), aph( ), adg( ), bb( ), bbp( )  
= any sensor wavelength(s) 

– Ca (given aph* at ) 

, S (dynamic model params)
– internal flags  

 
 

 
 



Other inversion 
methods 

• Genetic algorithms 

• Other Neural Network methods (e.g. 
radial basis algorithm) 

• Look Up Tables 

• Ambiguity issues 



Carder 

GSM QAA 



Product Link to biogeochemistry Algorithm 

Chlorophyll-a  Phytoplankton biomass; Primary 
Production  GSM semi-analytical model  

acdm( ) Photochemistry; Heterotrophic 
production; Light budget 

GSM &  
QAA algorithms 

aph( ) 
Physiology and type of 

phytoplankton; Primary Production; 
trophic state 

GSM & 
QAA algorithms 

bbp(  Particulate material; POC GSM & QAA 
Loisel et al. (2006) 

S - acdm( ) spectral slope Photochemistry, CDOM origin & 
bleaching history 

GSM semi-analytical model 
QAA algorithm 

 - bbp(  spectral slope Particle size distribution 
Export flux Loisel et al., (2006) 

Kd( UV) Light Budget, Photochemistry Siegel et al. (2007) 
Phytoplankton Functional 

Types 
Primary Production 

Carbon fluxes Alvain et al. (2004, 2006) 

Net Primary Production  Primary Production 
Carbon fluxes VGPM & CbPM  

Merged products 
(chl, acdm(443), bbp(443) 

Phytoplankton biomass, Primary & 
secondary production, Particulates, 

POC, Photochemistry 
Maritorena & Siegel (2005) 

Ocean color products  

(REASoN, MEaSUREs and EOS programs) 



03-04/10/ 2011 – CCI – London, UK. 85 

WP2800: OC Data Merging Techniques  

3 main families of techniques: 
 
- statistical techniques (1D, 2D): 
        averaging (AVG) 
        blending (BA) 
        objective analysis (OA) 
        EOF-based 
        wavelet analysis (WA) 
        machine learning (MLA) 
(Gregg & Conkright, 2001, Kwiatkowska & Fargion, 2003, Pottier et al., 2006, 2008, Saulquin et al., 2011) 
 
- optically-based techniques (OB): 
        uses full spectral information 
(Maritorena et al., 2005, 2010, Mélin & Zibordi, 2007, Mélin et al., 2009, 2011) 
 
- numerical model-based methods 
        assimilation in BGC models 
(Gregg 2008) 

…. Different approaches can/must be combined 



03-04/10/ 2011 – CCI – London, UK. 86 

WP2800: OB Techniques 

Mélin & Zibordi, AO 2007 
Mélin et al., ASR 2009 

LWN,1(λi1) 
LWN,2(λi2) 
… 

MERGER LWN,m(λ) 

1. model 
inversion 

2. forward 
    mode 

LWN,1(λi1) 
LWN,2(λi2) 
… 

MERGER IOPs, Chla 

Maritorena et al., RSE 2005, 2010 
Choice of  
parameters 

model 
inversion 

Provides only merged IOPs + Chla 

Provides merged RRS,  
 but with implicit IOPs 
 except with multiple solutions 

‘Choice’ of bio-optical model 
imbedded in RRS 
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 ftp:ftp.oceancolor.ucsb.edu/pub/org/oceancolor/REASoN/ 
 OPeNDAP server: http://dap.oceancolor.ucsb.edu/cgi-bin/nph-dods/data/oceancolor/ 



Section 4 
Algorithm implementation issues, regional and 

class based algorithms 



Global vs Regional algorithms 
• Global dataset now consist of multiple 

“products” geophysical variables and IOPs 

• They have the advantage of being routinely 
produced by the space agencies globally  

• They also generally have “mean” uncertainties 
associated with them 

• It may be that one of the available products 
perform well in your region 

• Alternative is to produce your own regional 
algorithm, with local parameterisation 



Data Requirements for Regional 
Algorithms (from “cheap” to expensive”)  

1. Simple validation of standard SA 
products: Fluorometer -> HPLC for Chl a 
2.Spectrophotometric estimate of aph and 
aCDOM some estimate of bbp 
3. Validation of nLw, Rrs (15-25 K$) 
4. Full in-water IOP AOP dataset (80K$ 
equipment) 
5. Full CAL/VAL IOP AOP programme with 
fully traceable persistently calibrated 
instruments > 150K$ /year   



Regional vs. Class-Based 
Regional Class-based 

Advantages  

1.Explicitly linked to locally 
measured in-situ data 
2.May be “simpler” 

3.Accounts for physiological 
differences 

1.Generic, “global”, can 

be generalised 
2.Can be used as a tool 

to identify “black 
holes” 

3.Seamless transitions 
4.Continuous 

improvements through 
additional on in-situ 

data 

Disadvantages 

1.Explicitly link to locally 
measured in-situ data – not 

generalized 
2.May result in regional 

discontinuities 

1.More complicated to 
implement 

2.Computational more 
expensive – not much! 





Rationale 
•There is necessity to describe a considerable 

amount of variability in Inherent Optical Property 
(IOP) subcomponent models. 

•This is particularly true, if inversion algorithms are 
to be applicable at global scale yet remain 
quantitatively accurate in coastal & shelf seas. 

•This is unlikely to be achieved in the foreseeable 
future, with a single representation of IOP 
subcomponents. 
–BEAM – Case2R 

•The proposed approach is an algorithm framework 
more than a specific algorithm. 



In-situ Database 

Rrs( ) 

c 

Cluster analysis 

c 

   Sgd, aph*,……. 

c 
   Station data 
 sorted by class 

c 
    Class based 
    relationships 

8 classes 

      Class 
     Mi, i 

Satellite Measurements c 

Individual class 
derived products 

      Merged 
         Product 

c 

   Calculate 
membership 

Rrs( ) 

Conceptual Framework for Case based algorithms 



8 objectively identified classes in radiance space 



Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 

May 2004 SeaWiFS Composite 
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What to parameterize? 

•Variance and Co-variance of Optically Active 
Constituents 

•Parameterising IOP subcomponent models (or fit 
coefficients – for empirical algorithms) 

•Different OWT different inversions method  

•Avenue to spatial uncertainty estimates 

•Regional value-added products 



Distribution functions for 
in-water constituents 
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a( ) = aw( ) + Ac( )[Chl]Bc( ) + [acdom(440)] e-S( -440) 

bb( ) = bbw( ) +[bbp(555)] [555/ ]Y 



Methods for Class-based 
algorithms 

•Novelty Detection (D’Alimonte 2002) 
•Fuzzy Logic (Moore et. al. 2001) 
•Lubac et. al. 2007 - EOF & PCA 
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Mean class vector 
Unknown measurement vector 

Traditional minimum-distance criteria 
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Fuzzy graded membership 

Water     =   0.05 
Wetland  =  0.65 
Forest     =  0.30 

Fuzzy 

Fuzzy versus Hard classification 



Advantages of fuzzy logic 
defined provinces 

• They allow for dynamics both seasonal and 
inter-annual in the optical properties of a given 

region. 

• They address the issue of transitions at the 
boundaries of provinces (through the fuzzy 
membership function of each class) thus 

resulting finally in the seamless reconstruction 
of a single geophysical product. 



Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 

May 2004 MERIS Global Composite 



MERIS/Seawifs/MODIS 
M

E
R

IS
 

M
O

D
IS

/A
qu

a 
S

ea
W

iF
S
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May 2004 

Channel 1-5 Channel 1,2,3,5 



Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 

High resolution provinces for European Seas  
  Med May 2004 





Relation to current understanding 
turbid water flag 

After Morel and Bélanger 
2006 



Relation to current understanding 
turbid water flag 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 



Class persistence 
36 month Time-series 

Class 5 Class 6 

Class 7 & 8 

0 1 



Class Persistence 
distribution of classes dominant for more than 70% of 

observations 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 





Producing the Uncertainty Map 

Aqua 
OC3 Error 

27 

52 

55 

72 

63 

123 

57 

83 

= Uncertainty image fi  * 
i = 1…8 

For each pixel, 



Aqua GAC - May 2005 
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Bi-variate Distribution Function of 
Optical Constituents 



Class specific steps of QAA 



Class –based GSM Class –based QAA 

Sgd varies based on class 
[0.0175,0.0164,0.0139,0.0147,
0.0153,0.0128,0.0138,0.0121] 

aph*(λ) varies dependent on 
class 

η (i.e. slope of bbp) using 
Carder’s relationship 

Sgd variable based on class 
at(443) versus rrs(443)/rrs(555) 

class based 
at(555) versus at(443) class 

based 
aph(443) versus Chl class 

based aph*(443) 

One could imagine applying a tuning algorithm (e.g. simulated 
annealing) to each class to determine optimal  

class based model coefficients.   





Amoeba  - NLO Spectral Unmixing 
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•Fuzzy logic based dynamic provinces provide a powerful tool for 
describing the optical variability of the world oceans. 

•Effective in identifying bio-optical “end-members” locations for use 
in identifying cal/val sites, as well as identifying “under-sampled” 
optical water types. 

•Can also be used to determine spatial uncertainty estimates 
benefiting from the availability of the membership functions. 

•Statistically rigorous means of parameterizing bio-optical models. 

•Capable of describing the strong non-linearity of optical variability 
across many decades of variability 

Conclusions 



Uncovered, relevant 
topics 

• Inversion in optically shallow waters 

• Effect on inversion of transpectral 
processes (fluorescence and Raman 
scattering) 

• Detail on ATBDs of specific space 
agency algorithms 

• Ambiguity issues 

• Data merging 



Current 
efforts/Emphasis 

• Using red NIR part of spectrum in 
highly turbid waters 

• Systematic validation of IOP inversion 

• Uncertianty estimate 

• Algorithms & Data merging 


