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•
 

Coastal
 

colour
 

remote
 

sensing
 

is
 

a difficult
 

task,
 it

 
can

 
lead

 
to failures

 
and large uncertainties.

•
 

Conditions
 

for
 

failures
 

have
 

to be
 

identified.

•
 

Uncertainties
 

have
 

to be
 

quantified
 

on a pixel
 

by
 

pixel
 

bases.

•
 

Methods
 

have
 

to be
 

developed
 

to reduce
 

uncertainties

•
 

Required
 

error
 

level
 

depends
 

on the
 

application
 

of RS data

Why this lecture?
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Program for July 9 and 10

•
 

Lectures
–

 
Sources

 
of uncertainties

–
 

How
 

to determine
 

uncertainties
–

 
How

 
to reduce

 
uncertainties

•
 

Exercises
–

 
Information content

 
of ocean

 
colour

 
reflectance

 
spectra

–
 

Regression statistics
 

as the
 

basis
 

for
 

algorithms
 

and validation
–

 
Ambiguities

 
and saturation

 
effects

–
 

Sensitivity
 

analysis
–

 
How

 
to determine

 
uncertainties

 
when

 
fitting

 
data

 
to a model
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What determines the radiance spectrum at TOA
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Colour Remote Sensing of complex water is not possible!

•

 

Too many variables in water determine the system:
–

 

Different types of particles with variable size distribution, complex shapes of 
particles with different absorption/scattering properties

–

 

Different phytplankton

 

types with different pigment composition, size distribution, 
scattering properties, phase functions

–

 

„dissolved“

 

material with different optical properties
–

 

For each component variable vertical distribution
–

 

In shallow water reflection of a bottom with variable optical properties
–

 

Rough sea surface with foam, partly floating material
–

 

Due to high absorption a very low reflectance in blue spectral range
•

 

Atmosphere
–

 

High path radiance compared to water reflectance
–

 

Different and varying aerosols
–

 

Thin cirrus clouds and contrails, sunglint
–

 

Varying vertical distribution
–

 

Adjacency effect by land and clouds
–

 

Varying solar and observation angles
•

 

Measured Variables
–

 

Only a limited number of spectral bands
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Colour Remote Sensing of complex water is possible!

But:
•

 
Restrict to a small number of components with similar optical properties

•
 

Detection of special cases such as red tides, cyanobacteria
–

 
Exclude or develop special algorithms

•
 

General knowledge about vertical distribution at different seasons
•

 
Bathymetry to estimate possible bottom effects

•
 

Determine penetration depth / z90 depth
•

 
Determine scope of algorithm

•
 

Develop algorithm to determine / flag out of scope conditions
•

 
Determine uncertainties for each product

Atmospheric correction most challenging issue
•

 
Develop special procedures for atmospheric correction over complex waters

•
 

Problems: adjacency effects, floating material
•

 
Determine conditions when AC leads to too large uncertainties
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Basic principles of Water Color RS

-
 

bottom
 

reflection

-
 

scattering
 

and absorption
 

by
water

 
and its

 
constituents

-
 

reflection
 

and refraction

-
 

atmospheric
 

scattering
and absorption

sunsensor

suspended

 

particles
phytoplankton

 

pigment
gelbstoff

air molecules
aerosols
gases
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Terms and Definitions

•
 

Reliability
•

 
Accuracy

•
 

Precision
•

 
Stability

•
 

Reproducibility
•

 
RMS error

•
 

Bias
•

 
Linearity
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Accuracy and Precision

bias

Scatter
Standard deviation
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Uncertainties

•
 

Calibration of a space sensor
•

 
Variability of atmosphere and specular

 
reflectance

•
 

Factors influencing the TOA radiance spectra
•

 
The variability of water reflectance

•
 

Uncertainty due to the bio-optical model
•

 
Sensitivity, ambiguities and co-variances

•
 

Strategies to determine out of scope conditions and uncertainties
•

 
Conclusions
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Calibration of the Space Sensor

•
 

Overview
–

 
On board

 
calibration

–
 

Vicarious calibration
–

 
Radiometric

 
calibration

–
 

Spectral
 

calibration
–

 
Dark

 
signal

–
 

Linearity
–

 
stability
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Calibration of MERIS
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Calibration procedure

Bourg

 

& Delwart, 2006

Red indicates
use

 
of models

Measurements of Diffuser 
1 (blue diamonds) and 
diffuser 2 (red circles) are 
shown as Sun Azimuth 
angle vs. orbit number. 
Orbit scale can be 
converted into time with 
the approximate ratio of 
5000 orbits per year.

Diffuser plate 1 BRDF at 410 nm for four 
illumination conditions corresponding to 
different times throughout the year
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Long term Calibration
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Long term gain development of MERIS

mean per camera optics degradation for all bands. 
Cameras 1 to 5 from top to bottom.

Camera 1

Camera 2

Camera 3

Camera 4

Camera 5
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Spectral calibration and smile effect MERIS

Delwart, Huot, Bourg

 

& Brockmann
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Sensor intercomparison

560 nm 665 nm 865 nm
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P. Goryl, ESA
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Vicarious calibration or adjustment

•
 

Using
 

well characterized
 

and calibrated
 

ground
 

target
•

 
Clear

 
atmosphere

•
 

Not only
 

the
 

sensor
 

but
 

the
 

system
 

sensor / atmospheric correction is
 calibrated

•
 

Pros?

•
 

Cons?
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P. Goryl
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Vicarious calibration
•

 

The top of the atmosphere (TOA) radiances 
for each band measured by MODIS or 
SeaWiFS

 

are compared with MOBY 
(Marine Optical Buoy) insitu

 

match-up 
radiance values that have been propagated 
to the TOA using the current atmospheric 
correction parameters.

•

 

It is assumed that the values at MOBY 
have only small uncertainties and predict 
what the values measured at the satellite 
should be. Therefore the difference 
between the satellite values and the MOBY 
values gives us the calibration gains.

•

 

Every time a change is made to the data 
processing methodology, the vicarious 
gains have to be updated. Once calculated, 
the gains are then utilized in the data 
processing stream.

•

 

This diagram demonstrates how SeaWiFS

 
(or MODIS) and MOBY data are used to 
compute the vicarious gains from ratios of 
TOA radiances. 

http://oceancolor.gsfc.nasa.gov/VALIDATION/gains.html
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Operational Vicarious Gain Coefficients

MODIS
Aqua
N=39

412 nm 443 
nm

488 
nm

531 
nm

551 
nm 667 nm 678 

nm
748 
nm

869 
nm

Gain 0.9710 0.9848 0.9795 0.9870 0.9850 0.9797 0.9776 0.9855 1.00

Stdev 0.0086 0.0079 0.0071 0.0066 0.0057 0.0039 0.0042 0.0122 0.00

SeaWiFS
N=147 412 nm 443 nm 490 nm 510 nm 555 nm 670 nm 765 nm 865 nm

Gain 1.0368 1.0132 0.9918 0.9982 0.9993 0.9729 0.9716 1.00

Stdev 0.0084 0.0084 0.008 0.0082 0.0079 0.0061 0.0086 0.000

http://oceancolor.gsfc.nasa.gov/VALIDATION/operational_gains.html
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Conclusion calibration of sensor

•
 

Requirement
 

for
 

radiometric
 

calibration
 

very
 

high (~ 1% accuracy)
•

 
Long term

 
performance

 
and stability

 
has to be

 
monitored

•
 

Gains
 

have
 

to be
 

adjusted
•

 
Remaining

 
issues

 
(MERIS): non linearity

 
dark

 
signal, straylight

•
 

To get
 

water
 

reflectances
 

of high accuracy
 

atmospheric
 

correction
 

has to be
 included

 
(vicarious

 
adjustment

 
or

 
calibration)

•
 

Issues
 

of vicarious
 

calibration:
–

 
Angular

 
problems, different sun

 
zenith

 
angles

–
 

Different aerosols
–

 
Accuracy

 
of reference

 
ground

 
measurements
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Atmosphere and water surface

•
 

Large variety
 

of aerosols
–

 
Use

 
of selected

 
aerosol

 
types

 
(models)

•
 

Thin
 

clouds
 

(cirrus, contrails)
•

 
Sub-pixel

 
clouds

•
 

Cloud shadows
•

 
Absorption by

 
atmospheric

 
gases: water

 
vapour, oxygen, ozone, NO2

•
 

Foam
 

and white
 

caps
•

 
Waves

•
 

Sky and sun
 

glint
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Radiances at Top of Atmosphere (TOA)
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The composition of the Radiance Spectrum at Top of Atmosphere
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Spectral Variability top of atmosphere
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The Information: radiance spectra at top of atmosphere
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data:
•

 
Sun zenith

 
angle

•
 

Sun azimuth
•

 
View

 
zenith

•
 

View
 

azimuth
•

 
Surface

 
pressure

•
 

Ozone
•

 
Wind

•
 

Expected
 

ranges
•

 
Knowledge

 
about

 optical
 

properties
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The dominant signal: 
Path radiance reflectance over coastal water

Contrails

Clouds

haze
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Instruments used for validation
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Aerosol Extincion in Model Atmosphere
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Annual variation of the Aerosol optical depth 500nm
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Frequency of occurrences for Angstrom parameter 
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AOT comparisons between MODIS-Aqua/SeaWiFS and AERONET CIMEL 
measurements

Operational processing and aerosol models

MODIS SeaWiFS

http://oceancolor.gsfc.nasa.gov/staff/ewa/aerosol.html
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Bands for atmospheric correction
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Aerosol models

Antoine & Morel, MERIS ATBD
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Strange Spectra producing negative reflectances
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Main Problems

•
 

Atmospheric
 

correction
 often

 
not

 
sufficient

 
for

 
all 9 

bands
•

 
Partly

 
bands

 
1-2 negativ, or

 bands
 

7,8,9 noisy
 

(in case
 

1 
water)

•
 

Result: 
–

 
Noise

 
in data

–
 

Wrong
 

ys
 

or
 

chl
 

data
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Sunglint
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Hawai 20030705
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Sun glint mask for medium and high glint
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Sunglint MERIS RR 2.8.2002 band 8
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Sun glint radiance reflectance
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Sun glint radiance reflectance, principle plane
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Sun glint radiance reflectance, cross plane
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Simulated Rayleigh path radiance reflectance and sun glint radiance 
reflectance
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No glint and high glint TOA reflectance spectra
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Sunglint
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Sun glint distribution

•
 

Sun glint may appear in more than half of the image

•
 

In many cases it is not homogeneously distributed with angles

•
 

Lokal
 

wind, surface material, wind shields etc.determine
 

distribution

•
 

Sunglint
 

distriubtion
 

may rapidly change due to wind variations

•
 

Slick patches may be persistent for hours

Consequence:

•
 

Sun glint distribution cannot be predicted (and not corrected) from wind 
speed (as included in MERIS product) and angles
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Water

•
 

Nature of water
–

 
Pure water optical properties only partly known with required accuracy

–
 

Temperature and salinity effects
–

 
Many different water constituents with different and varying inherent 
optical properties

–
 

Vertical distribution not homogenous
–

 
Sub pixel patchiness

•
 

Model of water
–

 
Definition of a bio-optical model

–
 

Optical components and their similarity and variability
–

 
Methods to separate different components
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Pure Water Absorption
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Pure water absorption II
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Temperature and absorption of pure water
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Uncertainties of temperature effect

The temperature coefficient of pure water absorption,YT

 

(m-1 °C-1), as a function of 
wavelength. The original data are shown in red. In addition, for

 

specific spectral ranges 
the spectral features were enlarged by multiplying the values with different factor as 
indicated in the legend. The errors are shown as 2s contour lines (dashed lines). 



IOCCG Summer Lecture Series, Villefranche 2-14 July 2012 

Salinity and absorption
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The salinity coefficient of pure water absorption,YS

 

(m-1 PSU-1), as a function of 
wavelength. The errors are shown as 2s contour lines (dashed lines). 
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Refractive index
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Uncertainties of refractive index

The real part of the index of refraction of pure water and seawater.  Combined 
spectrum at 27 °C using formulation of Quan

 

& Fry 1995 and data of Max & Chapados

 2009, the error is indicated as contour lines (±2s, dashed lines). 
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Salinity and temperature effect on scattering of pure water
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Impact of salinity on reflectance spectrum

Water leaving radiance reflectance of oligotrophic

 

water for  temperature 15 
deg C, salinity 0 and 35, chl

 

0.1 mg m-3, ys(440 nm) 0.01, SPM 0.01 g m-3.
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Effect of pure water IOPs 
uncertainties

Relative deviations of Rlw

 

due to 
lower and upper bounds of 
uncertainties of pure water 
absorption and scattering for S=35, 
T=15, apig=0.01, adet=0.01, 
ays=0.01, bpart=0.01, bwit=0.01
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Effect of pure water IOPs 
uncertainties: warm water

Relative deviations of Rlw

 

due to lower and 
upper bounds of uncertainties of pure water 
absorption and scattering for S=0, T=36, 
apig=0.01, adet=0.01, ays=0.01, bpart=0.01, 
bwit=0.01
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Effect of pure water IOPs uncertainties: turbid water

Relative deviations of Rlw

 

due to lower 
and upper bounds of uncertainties of 
pure water absorption and scattering for 
S=0, T=0, apig=0.1, adet=0.15, 
ays=0.15, bpart=10.0, bwit=0.01
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Effect of Raman scattering

J v. Bismarck, water

 

radiance

 

project

The dependence of the water-leaving radiance on the chlorophyll concentration, for sea 
water with a temperature of 15°C and a salinity of 35 PSU. Results for six roughly 
equidistant OLCI channels were plotted representatively. The solar zenith angle is 41°.
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Phytoplankton

Photos by Marion Rademaker
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Suspended
 

Matter and Phytoplankton
 

in Coastal
 

Water
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Uncertainties due to the bio-optical model

Optically
 

relevant
 variables in the

 
water

Optical
 

components
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and variability
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Absorption by
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of suspended
matter [ g m-3]

Concentration
 

of
chlorophyll

 
a [mg m-3]

Concentration
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DOC / POC [mg m-3]
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Scheme
 

of a bio-optical
 

model: optical
 

components
 

for
 

MERIS
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Uncertainties due to variability of optical properties
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TSM scattering, H187

Conversions:
TSM   [   g m-3] = 1.72 * b_tsm_442
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Bio-optical model: relationship between a_pig and chl_a (443 nm)

443 nm, log10 scale
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Bio-optical model: relationship between a_pig and chl_f

443 nm, log10 scale, 920-956 samples
 

for
 

chl_f
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Bio-optical model: relationship between a_pig and chl_a (665 nm)

665 nm, log10 scale
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Relationship chl_f and backscattering coefficient

443 nm, 249 samples, log10 scale
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Sensitivity at different concentration ranges and spectral bands
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on the
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a large 
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Summary of uncertainty causes

•
 

Sensor: calibration
 

and stability
–

 
Must

 
be

 
monitored, remaining

 
uncertainties

 
should

 
be

 
< 1%

–
 

Vicarious adjustment
 

or
 

calibration
 

necessary
 

to improve
 

accuracy
 

of 
water

 
reflectances

•
 

Atmosphere
 

is
 

the
 

dominant contributor
 

to toa
 

radiances
–

 
Any

 
error

 
in describing

 
the

 
atmosphere

 
(atmospheric

 
correction) 

produces
 

a 10fold or
 

even
 

larger error
 

in water
 

reflectances
–

 
Improvements

 
are

 
still necessary

–
 

Small and thin
 

clouds
 

and cloud
 

shadows
 

still a problem
–

 
Adjacency

 
effect

•
 

Water surface
 

contribute
 

to reflectance
 

by
 

foam
 

(white
 

caps) and specularly
 reflected

 
sky

 
and sun

 
light

–
 

T and S effect
 

on refractive
 

index
 

for
 

sun
 

glint
 

correction
•

 
Pure water

 
optics

 
is

 
variable and partly

 
not

 
sufficiently

 
known

–
 

T, S and Raman
 

scattering
 

effects
 

cause uncertainties
 

in 5-10% range



IOCCG Summer Lecture Series, Villefranche 2-14 July 2012 

Summary of uncertainty causes II

•
 

Water constituents
 

and their
 

optical
 

properties
 

are
 

variable
•

 
Problem to define

 
useful

 
bio-optical

 
component

 
model

•
 

Problem to separate different components
 

and measure
 

their
 

IOPs
 indepently

•
 

Variable relationship
 

between
 

concentrations
 

and IOPs
 

(50% range)
•

 
Variable vertical

 
distribution

 
and sub-pixel

 
patchiness: 50% range
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Next: Relationship between TOA reflectance spectra and water properties

•
 

Algorithms
•

 
Validation

•
 

Detection
 

of failures
•

 
Determination of uncertainties

 
on a pixel-by-pixel

 
bases

•
 

How
 

to reduce
 

uncertainties
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Exercises

•
 

Use
 

Scilab
 

(similar
 

to Matlab, but
 

free): www.scilab.org
•

 
Basic code

 
of exercises

 
will be

 
distributed
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Exercise I: information content

•
 

TOA radiance
 

spectra
 

along
 transect

•
 

Water reflectance
 

spectra
 along

 
transect

•
 

Determine
 

correlation
 

matrix
 

of 
spectral

 
bands

•
 

Perform
 

principle
 

component
 analysis

•
 

How
 

many
 

independent 
variables can

 
be

 
derived?

•
 

Repeat
 

for
 

different sections
 

of 
the

 
transect
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Working transect MERIS 20080422 North Sea
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Exercise 2

•
 

Determine
 

relationship
 

between
 chlorophyll

 
concentration

 
and 

pigment
 

absorption
•

 
Use

 
also bootstrapping

 
method

•
 

Determine
 

uncertainty
 

from
 standard

 
deviation

•
 

Try
 

for
 

different concentration
 ranges
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Exercise 3: Saturation and masking effects

•
 

Determine
 

change
 

in 
reflectance

 
per concentration

 change
•

 
Repeat

 
for

 
different ranges

 and mixtures
•

 
Determine

 
uncertainty

 
of 

pigment
 

retrieval
 

in clear
 

and 
turbid

 
water
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Exercise 4: retrieval error

•
 

Simulate
 

reflectance
 

spectra
•

 
Try

 
to retrieve

 
IOPs

 
or

 
concentrations

 from
 

simulated
 

using
 

inverse
 modelling

•
 

Try
 

different mixtures
•

 
Determine

 
spectrum

 
fit

•
 

Determine
 

retrieval
 

error
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