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Why this lecture?

Coastal colour remote sensing is a difficult task,
it can lead to failures and large uncertainties.

Conditions for failures have to be identified.

Uncertainties have to be quantified on a pixel by pixel bases.

Methods have to be developed to reduce uncertainties

Required error level depends on the application of RS data
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Program for July 9 and 10

 Lectures
— Sources of uncertainties
— How to determine uncertainties
— How to reduce uncertainties
 EXercises
— Information content of ocean colour reflectance spectra
— Regression statistics as the basis for algorithms and validation
— Ambiguities and saturation effects
— Sensitivity analysis
— How to determine uncertainties when fitting data to a model
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What determines the radiance spectrum at TOA
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Colour Remote Sensing of complex water is not possible!

 Too many variables in water determine the system:

Different types of particles with variable size distribution, complex shapes of
particles with different absorption/scattering properties

Different phytplankton types with different pigment composition, size distribution,
scattering properties, phase functions

,<dissolved” material with different optical properties

For each component variable vertical distribution

In shallow water reflection of a bottom with variable optical properties
Rough sea surface with foam, partly floating material

Due to high absorption a very low reflectance in blue spectral range

e Atmosphere

High path radiance compared to water reflectance
Different and varying aerosols

Thin cirrus clouds and contrails, sunglint

Varying vertical distribution

Adjacency effect by land and clouds

Varying solar and observation angles

e Measured Variables

Only a limited number of spectral bands
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Colour Remote Sensing of complex water is possible!

But:

Restrict to a small number of components with similar optical properties
Detection of special cases such as red tides, cyanobacteria

— Exclude or develop special algorithms
General knowledge about vertical distribution at different seasons
Bathymetry to estimate possible bottom effects
Determine penetration depth / z90 depth
Determine scope of algorithm
Develop algorithm to determine / flag out of scope conditions
Determine uncertainties for each product

Atmospheric correction most challenging issue

Develop special procedures for atmospheric correction over complex waters
Problems: adjacency effects, floating material
Determine conditions when AC leads to too large uncertainties
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Basic principles of Water Color RS
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Reliability
Accuracy
Precision
Stability
Reproducibility
RMS error
Bias

Linearity

Terms and Definitions
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Accuracy and Precision
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Uncertainties

Calibration of a space sensor

Variability of atmosphere and specular reflectance

Factors influencing the TOA radiance spectra

The variability of water reflectance

Uncertainty due to the bio-optical model

Sensitivity, ambiguities and co-variances

Strategies to determine out of scope conditions and uncertainties
Conclusions
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Calibration of the Space Sensor

e Qverview

On board calibration
Vicarious calibration
Radiometric calibration
Spectral calibration
Dark signal

Linearity

stability
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Calibration procedure

Measurements of Diffuser
1 (blue diamonds) and
diffuser 2 (red circles) are
shown as Sun Azimuth
angle vs. orbit number.
Orbit scale can be
converted into time with
the approximate ratio of
5000 orbits per year.

Diffuser plate 1 BRDF at 410 nm for four T
illumination conditions corresponding to Red indicates

different times throughout the year use of models
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Long term gain development of MERIS

Camera 4
Camera l
Camera 5
Camera 2
Camera 3

mean per camera optics degradation for all bands.
Cameras 1 to 5 from top to bottom.
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Spectral calibration and smile effect MERIS

Delwart, Huot, Bourg & Brockmann ) _
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Sensor intercomparison

560 nm 665 nm 865 nm
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P. Goryl, ESA
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Vicarious calibration or adjustment

Using well characterized and calibrated ground target
Clear atmosphere

Not only the sensor but the system sensor / atmospheric correction is
calibrated

Pros?

Cons?
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P. Goryl
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Vicarious calibration

The top of the atmosphere (TOA) radiances
for each band measured by MODIS or
SeaWiFS are compared with MOBY
(Marine Optical Buoy) insitu match-up
radiance values that have been propagated
to the TOA using the current atmospheric
correction parameters.

It is assumed that the values at MOBY
have only small uncertainties and predict
what the values measured at the satellite
should be. Therefore the difference
between the satellite values and the MOBY
values gives us the calibration gains.

Every time a change is made to the data
processing methodology, the vicarious
gains have to be updated. Once calculated,
the gains are then utilized in the data
processing stream.

This diagram demonstrates how SeaWiFS
(or MODIS) and MOBY data are used to
compute the vicarious gains from ratios of
TOA radiances.

http://oceancolor.gsfc.nasa.gov/VALIDATION/gains.html
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Operational Vicarious Gain Coefficients

RIS 3 88 3 678 748 869
Aqua |412nm a4 4 >31 251 667 nm
nm nm nm nm nm nm nm
N=39
Gain 0.9710 0.9848 | 0.9795 | 0.9870 | 0.9850 | 0.9797 0.9776 | 0.9855 | 1.00
Stdev 0.0086 0.0079 | 0.0071 | 0.0066 | 0.0057 | 0.0039 0.0042 | 0.0122 | 0.00
SeaWiFS 412 nm | 443 nm | 490 nm 510 nm 555 nm 670 nm 765 nm 865 nm
N=147
Gain 1.0368 1.0132 | 0.9918 0.9982 0.9993 0.9729 0.9716 1.00
Stdev 0.0084 0.0084 | 0.008 0.0082 0.0079 0.0061 0.0086 0.000

http://oceancolor.gsfc.nasa.gov/VALIDATION/operational_gains.html
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Conclusion calibration of sensor

Requirement for radiometric calibration very high (~ 1% accuracy)
Long term performance and stability has to be monitored

Gains have to be adjusted

Remaining issues (MERIS): non linearity dark signal, straylight

To get water reflectances of high accuracy atmospheric correction has to be
included (vicarious adjustment or calibration)

Issues of vicarious calibration:
— Angular problems, different sun zenith angles
— Different aerosols
— Accuracy of reference ground measurements
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Atmosphere and water surface

Large variety of aerosols
— Use of selected aerosol types (models)
Thin clouds (cirrus, contrails)
Sub-pixel clouds
Cloud shadows
Absorption by atmospheric gases: water vapour, oxygen, ozone, NO2
Foam and white caps
Waves
Sky and sun glint
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Radiances at Top of Atmosphere (TOA)
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The composition of the Radiance Spectrum at Top of Atmosphere

relative contribution

Contribution of Lwat, Laer and Lray to Ltoa
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Spectral Variability top of atmosphere
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Radiance (Wm-2 sr-1 um-1)
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The dominant signal:
Path radiance reflectance over coastal water

Contralls
Clouds

haze
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Instruments used for validation
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Aerosol Extincion in Model Atmosphere
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Aeronet sites considered
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Helgoland Island- 2000-2003

Annual variation of the Aerosol optical depth 500nm
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aerosol optical depth 500nm
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ACT HMODIS,

ALT HMODIS,

AOT comparisons between MODIS-Aqua/SeaWiFS and AERONET CIMEL
measurements
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Bands for atmospheric correction

Ltoa over water with high SPM and gelbstoff concentration
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Aerosol models

3 comjt L350
HiFks \
F b urhEN\wx
% Volg:
5 k\\\\\\\
[ TN
mar§ Q\\%\\
e
1 ————
0.9 | P¥Smm |
0.8
400 500 600 700 S00 900

A (nm)

Figure 3.5 : the ratio c¢(A)/c(863) as a function of wavelength (linear-log scale), and for several aerosol
models selected for the present study
(“mar’ is the maritime model for various relative humidities, “urb” is the urban model, etc..).

Antoine & Morel, MERIS ATBD
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MERIS FR 20030416
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00000

00000

-0.005

Main Problems

Atmospheric correction
often not sufficient for all 9
bands

Partly bands 1-2 negativ, or
bands 7,8,9 noisy (in case 1
water)

Result:
— Noise in data
— Wrong ys or chl data
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MERIS RR 20030422 pix 864Uline 253 lat 54.477386 lon 7.5852623
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MERIS RR 20030422 pix 864Uline 253 lat 54.477386 lon 7.5852623
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Sun glint mask for medium and high glint
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Sunglint MERIS RR 2.8.2002 band 8
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Sun glint radiance reflectance
MERIS band 1 (412 nm), wind 3 m/s, sun zenith 20 deg
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RLglint [sr1]

Sun glint radiance reflectance, principle plane
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sun glint radiance reflectance [srl]

Sun glint radiance reflectance, cross plane
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Simulated Rayleigh path radiance reflectance and sun glint radiance
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[sr-1]
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No glint and high glint TOA reflectance spectra

MERIS spectra for no sun glint with RL_toa band 865 < 0.004
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Sun glint distribution

e Sun glint may appear in more than half of the image

* In many cases it is not homogeneously distributed with angles

» Lokal wind, surface material, wind shields etc.determine distribution
e Sunglint distriubtion may rapidly change due to wind variations

» Slick patches may be persistent for hours

Consequence:

« Sun glint distribution cannot be predicted (and not corrected) from wind
speed (as included in MERIS product) and angles
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Water

* Nature of water
— Pure water optical properties only partly known with required accuracy
— Temperature and salinity effects
— Many different water constituents with different and varying inherent
optical properties
— Vertical distribution not homogenous
— Sub pixel patchiness
* Model of water
— Definition of a bio-optical model
— Optical components and their similarity and variability
— Methods to separate different components
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Temberatiire and ahsorntion of nure water
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Uncertainties of temperature effect

The temperature coefficient of pure water absorption,YT (m-1 °C-1), as a function of
wavelength. The original data are shown in red. In addition, for specific spectral ranges
the spectral features were enlarged by multiplying the values with different factor as
indicated in the legend. The errors are shown as 2s contour lines (dashed lines).
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Salinity and absorption
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The salinity coefficient of pure water absorption,YS (m-1 PSU-1), as a function of
wavelength. The errors are shown as 2s contour lines (dashed lines).
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Refractive index

n,refractive index (real part)
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Uncertainties of refractive index

Index of Refraction

1000 2000 3000 4000
wavelength (nm)

The real part of the index of refraction of pure water and seawater. Combined
spectrum at 27 °C using formulation of Quan & Fry 1995 and data of Max & Chapados
2009, the error is indicated as contour lines (£2s, dashed lines).
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Salinity and temperature effect on scattering of pure water
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Impact of salinity on reflectance spectrum

t15_s00,35_nr_p0010_y001_s0001

0.009
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25 FPEU

0.008
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0.006

0.005

RSR [5r-1]

0.004
0.003
0.002

0.001

0.000 ——m —————————————
400 200 600 700 aoa Q0o 1000 1100
wavelength [nm]

Water leaving radiance reflectance of oligotrophic water for temperature 15
deg C, salinity 0 and 35, chl 0.1 mg m-3, ys(440 nm) 0.01, SPM 0.01 g m-3.
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Riw [5r-1]
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Riw [sr-1]

RIw with uncertainty range of pure water IOPs, case_nao 2, T36,50 Effect Of pu re water [OPs
0.0030 uncertainties: warm water
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RIw [sr-1]
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Effect of pure water IOPs uncertainties: turbid water
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S=0, T=0, apig=0.1, adet=0.15,
ays=0.15, bpart=10.0, bwit=0.01
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Effect of Raman scattering

The dependence of the water-leaving radiance on the chlorophyll concentration, for sea
water with a temperature of 15°C and a salinity of 35 PSU. Results for six roughly
equidistant OLCI channels were plotted representatively. The solar zenith angle is 41°.

J v. Bismarck, water radiance project
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Phytoplankton

Photos by Marion Rademaker
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Suspended Matter and Phytoplankton in Coastal Water

IOCCG Summer Lecture Series, Villefranche 2-14 July 2012



Uncertainties due to the bio-optical model

Optically relevant
variables in the water

Optical components Proxy concentration
with IOPs and variability variable

Scattering
material < — —
Scattering by Dry weight of suspended
all particles matter [ g m-3]
Absorbing -
material ] - -
Absorption by Concentration of
organic material DOC / POC [mg m-3]
Phyto-
plankton > T —
pigments _
Absorption by Concentration of
phyto pigments chlorophyll a [mg m-3]

IOCCG Summer Lecture Series, Villefranche 2-14 July 2012



Water sample
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a (m‘l)) norm

Uncertainties due to variability of optical properties
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Normalized absorption spectra of
North Sea phytoplankton
Summer period

, Heinckel87 a443 pigment n=95
10 —_— ‘ ‘

10' |

chlorophyll a [mg/1]

10° 10" 10°

a(443) (m1)

Variability in the relationship between a_pig
and chlorophyll concentration

Conversions:

Chl.a[mgm-3]=21 *a _pig 442"°1.04
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Bio-optical model: relationship between a_pig and chl_a (443 nm)

nomad all zases apig data band: 3 lam: 443
-0.5 ¥

-1.0

-1.5

lag10 apig [m-1]
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2.5

-3.0 T T T T T T
-1.5 -1.0 045 0.0 0.5 1.0 1.5

lag10 chl_a [mg m-3]

.
o

443 nm, log10 scale
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Bio-optical model: relationship between a_pig and chl _f

nomad all cases apig data band: 3 lam: 443

0.5

log10 apig [m-1]

30 T T T T T T T
20 -1.8 -1.0 0.5 oo 0.5 1.0 1.5 2.0

lag1d chl_f [mg m-3]

443 nm, log10 scale, 920-956 samples for chl_f
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Bio-optical model: relationship between a pig and chl_a (665 nm)

nomad all cases apig data band: 18 lam: G55
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-2.0
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665 nm, log10 scale
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bbp [m-1]

-2.0

-2

Relationship chl_f and backscattering coefficient

nomad data backscattering band: 3 lam: 443
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-1.0 -0.5 oo 0.4 1.0 15
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443 nm, 249 samples, log10 scale
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Signal depth at different spectral bands

Multiband algorithms: the information for each band may come from a
different water layer

turbid coastel

10 coastal:
c TSM=5 mg/l
o - elb=a..,.=1m-
L 5 Signal depth z90 | 380
o open ocean:
S -0 Chlor.=1pg/!

-50

pure water
-60 : : - : - ;
v4 045 05 055 06 065 0.7 0.75
wavelength pm
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RLw [sr'l]

Sensitivity at different concentration ranges and spectral bands
RLw for MERIS bands 1 (412 nm), 6 (560 nm), 10 (708 nm)

0.03 ‘ !
—— band 1 = 412 nm
—— band 5 = 560 nm
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0.025 | Sensitivity of the
— reflectance at a
0.0zl / | spectral band
/ - depends on the
e concentration
0.015 - // e i
To cover a large
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0.005 | | 1 range are necessary
) a_gelb_440: 0.2, a_part_440: SPM/25, pig: 2 mg m™3
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Summary of uncertainty causes

Sensor: calibration and stability
— Must be monitored, remaining uncertainties should be < 1%

— Vicarious adjustment or calibration necessary to improve accuracy of
water reflectances

Atmosphere is the dominant contributor to toa radiances

— Any error in describing the atmosphere (atmospheric correction)
produces a 10fold or even larger error in water reflectances

— Improvements are still necessary
— Small and thin clouds and cloud shadows still a problem
— Adjacency effect

Water surface contribute to reflectance by foam (white caps) and specularly
reflected sky and sun light

— T and S effect on refractive index for sun glint correction
Pure water optics is variable and partly not sufficiently known
— T, S and Raman scattering effects cause uncertainties in 5-10% range
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Summary of uncertainty causes Il

Water constituents and their optical properties are variable
Problem to define useful bio-optical component model

Problem to separate different components and measure their IOPs
indepently

Variable relationship between concentrations and IOPs (50% range)
Variable vertical distribution and sub-pixel patchiness: 50% range
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Next: Relationship between TOA reflectance spectra and water properties

e Algorithms

« Validation

o Detection of failures

« Determination of uncertainties on a pixel-by-pixel bases
 How to reduce uncertainties
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Exercises

 Use Scilab (similar to Matlab, but free): www.scilab.org
 Basic code of exercises will be distributed
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Radiance (Wm-2 sr-1 um-1)

Riw / Rltoa (%)
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Exercise |: information content

TOA Radiance Spectra
North Sea 20050726

Atgadd
DTIIID

400 500 600 700 800 900 1000
wavelength (nm)

Riw / Rltoa %
MERIS North Sea 20060726

400 500 600 700 800 900

wavelength (nm)

<& Pin 1 Riw/Ritoa
=*=pin 2 RIw/Rltoa
V'Pin 3 Riw/Rltoa
" Pin 4 Rw/Rltoa
»=pin 5 Rw/Rltoa
<'Pin 6 RIw/Rltoa

TOA radiance spectra along
transect

Water reflectance spectra
along transect

Determine correlation matrix of
spectral bands

Perform principle component
analysis

How many independent
variables can be derived?

Repeat for different sections of
the transect
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Working transect MERIS 20080422 North Sea
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log10 apig [m-1]

-2.04
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nomad all cases apig data band: 18 lam: 865
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-1.0 -0.5 oo 05 1.0
lag10 chl_a [mg m-3]

Exercise 2

» Determine relationship between
chlorophyll concentration and
pigment absorption

» Use also bootstrapping method

e Determine uncertainty from
standard deviation

« Try for different concentration
ranges
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Exercise 3: Saturation and masking effects

0.03 : :
—— band 1 =412 nm
—— band 5 = 560 nm
0.025L —— band 9 = 708 nm
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 Determine change in
reflectance per concentration
change

* Repeat for different ranges
and mixtures

 Determine uncertainty of
pigment retrieval in clear and
turbid water
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RIw / Ritoa (%)

Exercise 4: retrieval error

Riw / Rltoa %
MERIS North Sea 20060726

400 500 600 700 800 900

wavelength (nm)

& Ppin 1 Riw/Rltoa
==Pin 2 Riw/RItoa
V'Pin 3 Riw/Rltoa
=i Pin 4 RIw/Rltoa
== Pin 5 RIw/Rltoa
<Pin 6 RIw/RItoa

Simulate reflectance spectra

Try to retrieve IOPs or concentrations
from simulated using inverse
modelling

Try different mixtures
Determine spectrum fit
Determine retrieval error
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dl

Result exercise 1.1

MERIS transect 20080422 Green_blue ratio water reflectance
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