Ocean colour remote sensing at high latitudes

Marcel Babin Takuvik Joint International Laboratory Laval University (Canada) & CNRS (France)

www.takuvik.ulaval.ca

Why a lecture on this specific topic?

- Increasing attention is paid to what's going on there
- The use of ocean color remote sensing faces specific challenges at high latitudes
 - Low Sun elevation
 - High cloudiness
 - Sea ice
 - Peculiar optical properties
 - Peculiar phytoplankton properties
 - Vertical distribution
 - Optical properties
 - Physiology

Outline

1. Ocean colour remote sensing in polar seas

- 1.1. Ocean and sea ice in Arctic and Antarctic: relevant features
- 1.2. Seawater optical properties
- 1.3. Retrieval of ocean properties from ocean colour
 - 1.3.1. Atmospheric corrections
 - 1.3.2. Contamination of the signal by sea ice
 - 1.3.3. Retrieval of IOPs and AOPs, and biogeochemically relevant variables
- 1.4. Availability of data as favoured by polar orbits and limited by elevated cloudiness

2. Primary production estimates from OC in polar seas

- 2.1. PP model and validation: an example
- 2.2. Results from PP models

1. Ocean colour remote sensing in polar seas

1.1. Ocean and sea ice in Arctic and Antarctic: relevant features

Geography

Geography

Geography

Arctic vs. Antarctic

http://www.cnes.fr

http://www.ngdc.noaa.gov/mgg/bathymetry/apb/

Bathymetry

Shelves occupy more than 50% of the Arctic Ocean area

Bathymetry

http://www.noc.soton.ac.uk

Circulation

Water masses

Freshwater discharges

Arctic Ocean = 1% of Global Ocean

Arctic Ocean receives 10% of global freshwater discharge

AMAP

Sea ice

Antarctic Maximum (September 4, 2008)

Antarctic Minimum (February 20, 2009)

http://earthobservatory.nasa.gov

Sea ice

Sea ice thickness: then

Summer ice thickness from 1958-1976

Thick ice everywhere ... even in summer

http://psc.apl.washington.edu/zhang/Global_seaice

Light cycle

Diurnal variation of downward irradiance of PAR just below the surface water if that day was cloud-free at 0E on the summer solstice day of 2009 at different latitudes

http://www.powerfromthesun.net

Light under sea ice

Back then: Assume a simple slab

Snow covered, thick, multiyear ice

Back then: Assume a simple slab

Let the snow melt

Back then: Assume a simple slab

Let the snow melt and add a pond

What contribution for riverine nitrate on PP?

During the peak of river discharge (May-June), riverine <u>nitrate is limiting</u> relative to riverine phosphate in 70% of the cases

Lefouest et al.

What contribution for riverine nitrate on PP?

Assuming :

A total Arctic Ocean PP of ~350 TgC/yr All nitrate are converted into biogenic carbon

then:

Bering Strait inputs would account for <u>4-8% of the PP</u> <u>Riverine</u> inputs would account for <u>0.14% of the PP</u>

Lefouest et al.

Courtesy of Mathieu Ardyna

Stramski et al. (1999)

Arctic and Antarctic Standardized Anomalies and Trends Jan 1979 - Dec 2007

Year

Sea ice thickness: then and now

- Changes in summer thickness Comparing 1958-1976 to the 1990's and 2000's
- 4.0 - 1976 958 993 - 1997 3.5 2003 - 2007 3.0 2.5 2.0 1.5 1.0 0.5 0.0 А В С D Е F G
- Analysis of submarine and satellite data
- Rothrock et al. show thinning everywhere!
- Average decrease was 40%
- From 3 m to under 2 m

Sea ice is thinning ... everywhere

Today: Assume a simple thin slab

Snow covered, thin, first year ice

Today: Assume a simple thin slab

Let the snow melt

Today: Assume a simple thin slab

Let the snow melt and add a pond

Spectral transmittance

Pond transmittance order of magnitude higher than bare ice Courtesy of Don Perovich

Spatial variability in light field

The sea ice light field has tremendous spatial variability

• Permafrost thawing

+

- Permafrost thawing
- Increase in river runoff (+7% from 1936 to 1999)
- UV increase (+15% since 1979)

• Temperature has risen twice faster in the Arctic than in other regions; air temperature is expected to increase by up to 7°C during the next century.

- Temperature has risen twice faster in the Arctic than in other regions; air temperature is expected to increase by up to 7°C during the next century.
- Permafrost, which represents 25% of the continental surface of the northern hemisphere, has been observed to have undergone a temperature increase since the 1960s and, in many places, to gradually thaw. The permafrost contains up to 50% of all soil organic carbon.
- From 1936 to 1999, an increase of 7% was observed for river discharge to the Arctic Ocean. It may impact on circulation, including deep-water formation.

- Temperature has risen twice faster in the Arctic than in others regions; air temperature is expected to increase by up to 7°C during the next century.
- Permafrost, which represents 25% of the continental surface of the northern hemisphere, has been observed to have undergone a temperature increase since the 1960s and, in many places, a gradual thaw. The permafrost contains up to 50% of all soil organic carbon.
- From 1936 to 1999, an increase of 7% was observed for river discharge to the Arctic Ocean. It may impact on circulation, including deep-water formation.
- The summer ice cover over the Arctic Ocean decreased by more than 30% since 1979; it is predicted that it will disappear almost completely by the end of the century.

- Temperature has risen twice faster in the Arctic than in others regions; air temperature is expected to increase by up to 7°C during the next century.
- Permafrost, which represents 25% of the continental surface of the northern hemisphere, has been observed to have undergone a temperature increase since the 1960s and, in many places, a gradual thaw. The permafrost contain up to 50% of all soil organic carbon.
- From 1936 to 1999, an increase of 7% was observed for river discharge to the Arctic Ocean. It may impact on circulation, including deep-water formation.
- The summer ice cover over the Arctic Ocean decreased by 20% over the last 26 years; it is predicted that it will disappear almost completely by the end of the century.
- The amount of atmospheric ozone above the Arctic during the spring, has decreased by 10 to 15 % since 1979.

One may expect that...

- 1. An increasing fraction of the organic carbon sequestered into the permafrost will be transported toward the Arctic Ocean together with inorganic nutrients
- 2. The Arctic Ocean surface layer will increasingly be exposed to light, including UV
- 3. The organic matter of terrestrial origin will be oxidized to CO₂ both through photo-oxidation, and bacterial activity amplified by light
- 4. Photosynthesis will be increasingly stimulated by light and inorganic nutrients, and will lead to more carbon sequestration

And wonder whether...

The Arctic Ocean will become a new net source of CO_2 originating from organic carbon that was sequestered in the permafrost (analogous to the combustion of fossil fuel), or a stronger biological sink of CO_2 leading to more sequestration of carbon in the sediments

What's the possible impact on PP?

And on P_{DIC}?

1. Ocean colour remote sensing in polar seas

1.2. Seawater optical properties

What's special?

Arctic waters are optically dominated by CDOM

Matsuoka et al. (2007)

- Atlantic
- Adriatic
- + Baltic
- Eng. Channel
- Mediterranean
- North Sea

Beaufort Sea

Matsuoka et al. (2011)

Matsuoka et al. (2012)

Matsuoka et al. (2012)

Matsuoka et al. (2012)

Chl-specific absorption is significantly smaller

Mitchel and Holm-Hensen (1991)

Mitchell (1990)

Matsuoka et al. (2007)

Matsuoka et al. (2011)

$\alpha(\lambda)$	$\beta(\lambda)$	r ²
0.8865	1.022	0.917
0.9035	1.011	0.945
0.9318	1.008	0.961
0.9422	1.002	0.974
0.9475	0.999	0.980
0.9575	0.998	0.986
0.9614	0.992	0.989
0.9975	0.997	0.997
1.0000	1.000	1.000
0.8995	0.990	0.993
0.8550	0.989	0.993
0.8322	0.991	0.991
0.8104	0.988	0.991
0.8011	0.991	0.990
0.7434	0.979	0.989
	$lpha(\lambda)$ 0.8865 0.9035 0.9318 0.9422 0.9475 0.9575 0.9614 0.9975 1.0000 0.8995 0.8550 0.8322 0.8104 0.8011 0.7434	$\alpha(\lambda)$ $\beta(\lambda)$ 0.88651.0220.90351.0110.93181.0080.94221.0020.94750.9990.95750.9980.96140.9920.99750.9971.00001.0000.89950.9900.85500.9890.83220.9910.81040.9880.80110.979

Table 1. Coefficients for the Nonlinear Regression Expressed as $a_{\varphi}(\lambda) = \alpha \ (\lambda)[a_{\varphi}(440)]^{\beta(\lambda)}$, Where λ is the Wavelength^a

Matsuoka et al. (2011)

Wang and Cota (2005)

Wang and Cota (2005)

Wang and Cota (2005)

Optical properties, in brief

- 1. CDOM is relatively high
- 2. Chl-specific phytoplankton absorption is low
- 3. Turbid waters at the coast and in river plumes
- 4. But most of the time: blue clear water!

1. Ocean colour remote sensing in polar seas

- 1. 1.3. Retrieval of ocean properties from ocean colour
 - 1.3.1. Atmospheric corrections

Figure 5.8. - Concentration de chlorophylle a pour trois heures d'acquisition le 19 juin 1999

Courtesy of Simon Bélanger

1. Ocean colour remote sensing in polar seas

1.3. Retrieval of ocean properties from ocean colour

1.3.2. Contamination of the signal by sea ice

S. Bélanger et al. / Remote Sensing of Environment 111 (2007) 51-68

Bélanger et al. (2007)

SeaWiFS quasi-true color

Bélanger et al. (2007)

How to flag ice pixels?

Wand and Shi (2009)

How to flag pixels contaminated by the adjacency effect?

Wand and Shi (2009)

Outline

1. Ocean colour remote sensing in polar seas

- 1.1. Ocean and sea ice in Arctic and Antarctic: relevant features
- 1.2. Seawater optical properties
- 1.3. Retrieval of ocean properties from ocean colour
 - 1.3.1. Atmospheric corrections
 - 1.3.2. Contamination of the signal by sea ice
 - 1.3.3. Retrieval of IOPs and AOPs, and biogeochemically relevant variables
- 1.4. Availability of data as favoured by polar orbits and limited by elevated cloudiness

2. Primary production estimates from OC in polar seas

- 2.1. PP model and validation: an example
- 2.2. Results from PP models

1. Ocean colour remote sensing in polar seas

1.3. Retrieval of ocean properties from ocean colour

1.3.3. Retrieval of IOPs and AOPs, and biogeochemically relevant variables

Arctic OC4L algorithm Chl (Arc) = $10^{(a_1+b_1R)}$ $R = \log(R_{rs}443 > 490 > 510/R_{rs}555)$

Cota et al. 2004

Wang et al. (2003)

Tuned Lee et al. (2001)

Wang et al. (2003)

GSM validation using Coastlooc data from Babin (2003)

Doron et al. (2007)

Standard ocean color chl products are not reliable in the Arctic Ocean

Standard ocean color chl products are not reliable in the Arctic Ocean

Standard ocean color chl products are not reliable in the Arctic Ocean

1. Ocean colour remote sensing in polar seas

1.4. Availability of data as favoured by polar orbits and limited by elevated cloudiness

Polar orbiting ocean color sensors provide data several several times a day

Cloud cover

High-frequency observations may help

MERIS L3 Chlorophyll-a Concentration (mg m⁻³)

Cloud cover derived using METEOSAT GEMS02 Satellite (15 min resolution)

MERIS L3 Chlorophyll-a Concentration (mg m⁻³)

Cloud cover derived using METEOSAT GEMS02 Satellite (15 min resolution)

Perrette et al. (2011)

2. Primary production estimates from OC in polar seas

2.1. PP model and validation: an example

$$PP(z,t) = ChI P_B^{max} \left(1 - e^{-PUR(z)/E_{\kappa}(PUR)}\right)$$

Photosynthetic parameters

Arrigo and Sullivan (1994)

2. Primary production estimates from OC in polar seas

2.2. Results from this and other PP models

Arctic Primary Production

Arctic Primary Production

Arrigo et al. 2008 In 2007, an abrupt change!

Arctic Primary Production

Results

Primary Production

Latitude criterion	This study	Longhurst et al. (1995)	Behrenfeld & Falkowski (1997)	Antoine et al. (1996)	Pabi et al. (2008)
All Arctic (sensu IHO)	0.62*	-	-	-	-
>60°	0.46	-	-	-	-
>66.5°	0.26	-	-	-	0.42
>70°	0.19	1.4	0.4	0.6	-

* Gt C y⁻¹

Results

Bélanger et al.

Bélanger et al.

Ice trend during the last decade

<u>Trend in</u> Chlorophyll concentration

What about CDOM photooxidation?

CDOM Photooxidation model

Primary Production vs. Photooxidation

Gross PP \rightarrow 0.62 x 10¹⁵ gC y⁻¹ Photooxidation (CO₂) \rightarrow 2.7 x 10¹³ gC y⁻¹

Photooxidation (CO₂) \rightarrow 4.4% of PP Sequestered C ~ 1% of PP (Stein & Mcdonald 2004)

So, potentially

PO of DOM > Sequestered C from PP

Trend in

Photooxidation / Primary Production

Problems & Limitations

• Problems to solve:

- Optical properties of Arctic seawater

PP: GSM VS OC4v4 for year 2007

Region	GSM	OC4v4	%diff
Greenland	51.9	65	25.2%
Norwegian	97.7	98.3	0.6%
Barents	70.9	80	13%
Kara	24.5	39.5	61%
Laptev	15.3	22	44%
East Sib Sea	16.5	22.7	38%
Chukchi	9.6	14	46%
Beaufort	6.7	11.3	69%
Baffin Bay	11.9	18.1	52%
Hudson Bay	18.3	27.3	49%
Arctic Ocean	14.2	22.4	57%
bolar Arctic	293	378	29%

Problems & Limitations

• Problems to solve:

- Optical properties of Arctic seawater

Photosynthetic properties of phytoplankton
$$PP(z,t) = ChI P_B^{max} \left(1 - e^{-PUR(z)/E_{\kappa}(PUR)}\right)$$

Photosynthetic parameters

Barents Sea

Rey (1991)

Photosynthetic parameters

Beaufort Sea in August 2009

Huot et al.

Photosynthetic parameters

Problems & Limitations

- Problems to solve:
 - Optical properties of Arctic seawater
 - Photosynthetic properties of phytoplankton
 - Deep chlorophyll maximum

The DCM in the Arctic Ocean

Morel et al. (1996)

Mundy et al. (2009)

Martin et al. 2010

PABI ET AL.: PRIMARY PRODUCTION IN THE ARCTIC OCEAN

Surface Chl a (mg m-3)

	Jan–Mar	Apr–Jun	Jul-Sep	Oct–Dec	Annual
	(Chlorophyll a Constant in the	e Upper 100 m (Method 2)		
Chukchi	-18.9	-12.0	-6.1	3.0	-7.6
Beaufort	-76.9	8.4	-20	18.3	-10.8
Baffin	3.1	2.2	-3.8	-2.9	-3.7
Greenland	-16.8	0	-5.1	13.7	-3.0
Barents	18.8	0.9	-0.1	7.5	1.9
Kara	ND ^b	8.6	9.1	2.4	8.9
Laptev	ND	ND	ND	ND	ND
Siberian	ND	ND	0.3	ND	0.3
All	10.3	-9.0	-6.6	-5.9	-7.4
	Chlorophyll a Con	stant in Upper 20 m and De	clines Exponentially With D	epth (Method 3)	
Chukchi	-25.9	-15.5	-10.7	-9.1	-12.3
Beaufort	-85.4	2.1	-30.7	-12.8	-20.8
Baffin	-10.8	-5.2	-5.4	-16.4	-6.1
Greenland	-26.6	-8.4	-16.6	-10.9	-13.0
Barents	-10.9	-8.2	-14.6	-23.4	-9.9
Kara	ND	6.3	1.9	-5.9	4.7
Laptev	ND	ND	ND	ND	ND
Siberian	ND	ND	-7.9	ND	-7.9
All	-7.3	-14.7	-12.0	-19.7	-13.2
	Chlorophyll a Con	stant in Upper 40 m and De	clines Exponentially With D	epth (Method 4)	
Chukchi	-19.9	-12.3	-6.5	0.7	-8.0
Beaufort	-81.0	7.8	-22.3	6.6	-12.6
Baffin	0.1	1.3	-3.9	-5.9	-3.8
Greenland	-18.7	-1.2	-7.4	5.9	-4.7
Barents	8.1	-0.5	-3.4	-4.9	-0.3
Kara	ND	8.5	8.3	1.2	8.6
Laptev	ND	ND	ND	ND	ND
Siberian	ND	ND	-0.9	ND	-0.9
All	6.0	-9.6	-7.1	-9.1	-8.1

Table 3. Percent Change in Depth-Integrated Daily Net Primary Production Due to Removal of the Subsurface Chl a Maximum for Different Geographic Sectors and Different Time Periods^a

^aChl *a* was distributed vertically using methods 2–4. ^bND indicates no in situ data were available.

	January-March	April–June	July-September	October-December	Annual
-		Chlorophyll a Constan	t in Upper 100 m (Method 2)		
Chukchi	-10.7	-7.5	-0.4	18.1	-1.9
Beaufort	274.0	15.8	-6.0	121.8	1.6
Baffin	21.5	10.7	-0.9	15.2	0.0
Greenland	-4.5	9.7	9.2	66.1	9.1
Barents	104.0	11.4	20.1	145	16.5
Kara	ND ^b	12.4	17.5	11.9	14.5
Laptev	ND	ND	ND	ND	ND
Siberian	ND	ND	9.7	ND	9.7
All	36.4	-2.4	-0.3	13.4	-0.7
	Chlorophyll a Co	onstant in Upper 20 m an	d Declines Exponentially With	Depth (Method 3)	
Chukchi	-17.4	-10.8	-4.8	6.4	-6.3
Beaufort	156.2	9.9	-16.4	77.6	-8.1
Baffin	7.9	3.8	-2.4	2.0	-2.3
Greenland	-14.0	1.8	-1.8	37.9	-0.5
Barents	65.0	2.8	5.7	93.0	5.2
Kara	ND	10.2	10.7	4.1	10.4
Laptev	ND	ND	ND	ND	ND
Siberian	ND	ND	2.0	ND	2.0
All	18.6	-7.7	-5.3	-0.3	-6.1
	Chlorophyll a Co	onstant in Upper 40 m an	d Declines Exponentially With	Depth (Method 4)	
Chukchi	-11.6	-7.7	-0.8	16.1	-2.3
Beaufort	209.9	15.3	-7.9	108.6	-0.0
Baffin	19.0	9.9	-0.9	12.7	-0.1
Greenland	-6.0	8.7	7.3	58.8	7.6
Barents	92.8	10.2	17.3	128.6	14.7
Kara	ND	12.3	16.8	11.0	14.2
Laptev	ND	ND	ND	ND	ND
Siberian	ND	ND	8.8	ND	8.8
All	32.7	-2.9	-0.8	10.7	-1.2

Table 4. Percent Change in Depth-Integrated Net Primary Production Caused by Increasing in Situ Chl a by the RMSE of Satellite-Derived Chl a for Different Geographic Sectors and Different Time Periods^a

^aChl *a* was distributed vertically using methods 2–4. ^bND indicates no in situ data were available.

The DCM in the Arctic Ocean

Morel & Berthon (1989)

Problems & Limitations

- Problems to solve:
 - Optical properties of Arctic seawater
 - Photosynthetic properties of phytoplankton
 - Deep chlorophyll maximum
 - Ice

Perrette et al. 2011

Bélanger et al. (2007)

Perrette et al. 2011

Problems & Limitations

- Problems to solve:
 - Optical properties of Arctic seawater
 - Photosynthetic properties of phytoplankton
 - Deep chlorophyll maximum
 - Ice
- <u>Limitations:</u>
 - Low Sun elevation

Impact of pixels with no OC data

Region Considered	Relative difference between PP with OC only, and PP for all ice-free areas
All Arctic waters	-6.7%
> 60°	-30%
Arctic Basin	-47%

Problems & Limitations

- Problems to solve:
 - Optical properties of Arctic seawater
 - Photosynthetic properties of phytoplankton
 - Deep chlorophyll maximum
 - Ice
- <u>Limitations:</u>
 - Low Sun elevation
 - Clouds & fog

Tracking regime shifts with OC?

Other examples:

• Northward migration of phytoplankton groups/species

Merico et al. (2006)

Tracking regime shifts with OC?

Other examples:

- Northward migration of phytoplankton groups/species
- Timing of the phytoplankton bloom

Kahru et al. 2010

What's next?

- To better document Arctic Ocean optical properties
- To improve and validate OC algorithms
- To address the DCM problem
- To further document phytoplankton photosynthesis
- ...

The importance of ice-edge blooms

Sea ice

Efflorescences de marge de banquise

Arrigo et al. (2012), Science

How to monitor phytoplankton blooms under the ice pack?

END