Status of KOMPSAT-1 OSMI

Yu-Hwan Ahn Satellite Ocean Research Laboratory Korea Ocean Research and Development Institute

A brief overview of OSMI

 \rightarrow

 \rightarrow

- The Korean Multi Purpose Satellite, KOMPSAT-1 has been operating successfully since its launch on December 21, 1999.
- The satellite has two earth observing sensors: EOC, a high-resolution panchromatic sensor mainly for land observation, and OSMI (Ocean Scanning Multispectral Imager), an ocean color sensor.
- → The OSMI mission on the KOMPSAT-1 satellite aims to collect data globally. It has six bands.
 - The cross-calibration efforts in collaboration with the NASA SIMBIOS team are successful and expected to bring more outcomes related to the ocean color research.
- → KARI undertakes OSMI data dissemination to government agencies, governmentsupported research institutes and universities for public use.
- → OSMI data are used for marine, meteorological and disaster applications, but the use of this data is limited due to stripping patterns.

A brief overview of OSMI

KOMPSAT-1 OSMI

Agency		KARI (Korea)				
Satellite		KOMPSAT-1				
Launch I	Date	20/12/99		\setminus \setminus		
Swath (K	(m)	800				
Resolutio	on (m)	850				
No. of Ba	ands	6			OSMI chara	icteri
Spectral	Range	400-900				
	SeeW#ES	Dand	OS	MI	Band Centre	Band
OSMI nm	SeaWiFS nm	Band Width	Bar	nds	(nm)	(nm)
412	412	20	B 1		443	20
443	443	20				
490	490	20	B2		490	20
	510	20				
555	555	20		+ -		
	670	20	B 3		510	20
765	765	40				
865	865	40	B4		555	20
			D4		393	20
			B5		765	20

OSMI characteristics and applications

 OSMI Bands	Band Centre (nm)	Band width (nm)	-Applications
B1	443	20	Chlorophyll absorption maximum
B2	490	20	Chlorophyll and other pigments
B3	510	20	Turbidity and Chlorophyll
B4	555	20	Turbidity
B5	765	20	Atmospheric correction
B6	865	40	Atmospheric correction

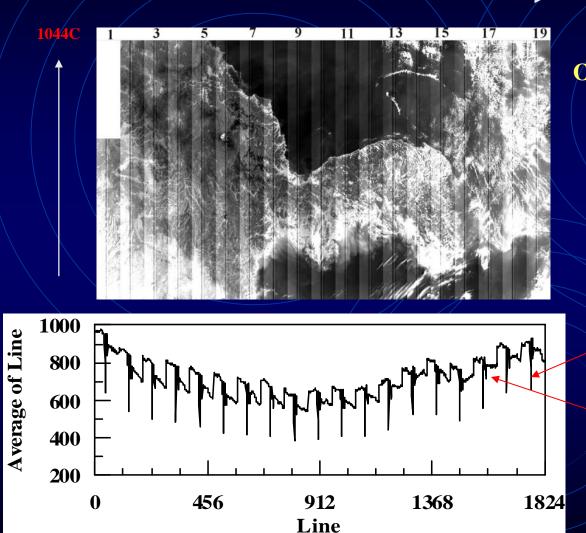
Status of OSMI data acquisition

Status of OSMI data acquisition

OSMI receiving status (2004/12/31)				
Year	Pass no.	Scene total	Korean peninsula	
2000	522	3298	21	
2001	724	6108	90	
2002	676	5242	157	
2003	654	4728	129	
2004	644	4512	146	
total	3220	23888	543	

The OSMI data acquisition is dependent on main EOC sensor schedule. When EOC sensor is off from scanning, OSMI starts scanning

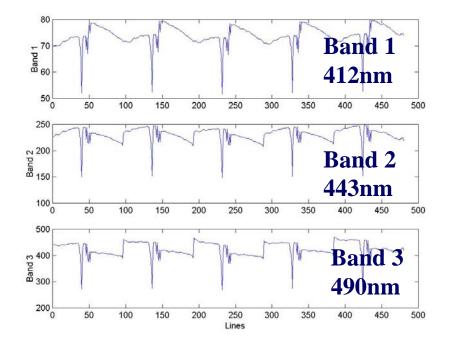
Stripping problems and De-stripping of OSMI data

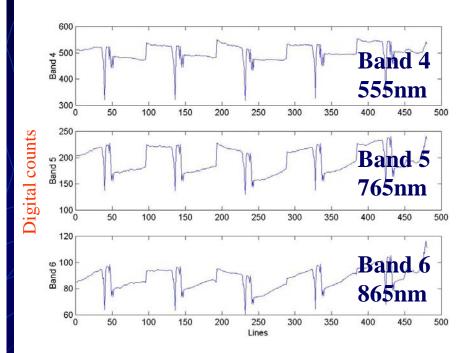

Characteristics of OSMI

KOMPSAT-1 OSMI

- Whisk broom scanner
 - Cross-track 96 lines in 1-D CCD array
- Altitude 685 km scanning rotation angle 30°
- Spatial resolution
 - nadir : 850 x 850 m
 - Left and right edge: 1000 x 1,000 m
- Observation time: 11:00 AM ascending mode around Korean peninsula

OSMI data Level-0 problem

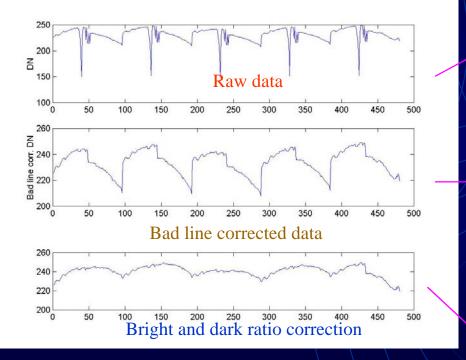

1824



OSMI scene: 26 Sept. 2000 1044 Column ×1824 Line 1 scanning = 96 lines (1824/96=19 strips)

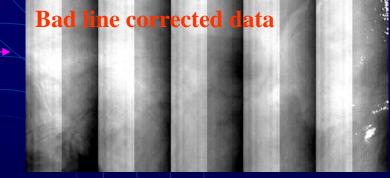
Bad lines Bright(1-48 /CCD) Dark part (49 – 96 /CCD) Every strip has stepping-like pattern

Stripping pattern in OSMI bands



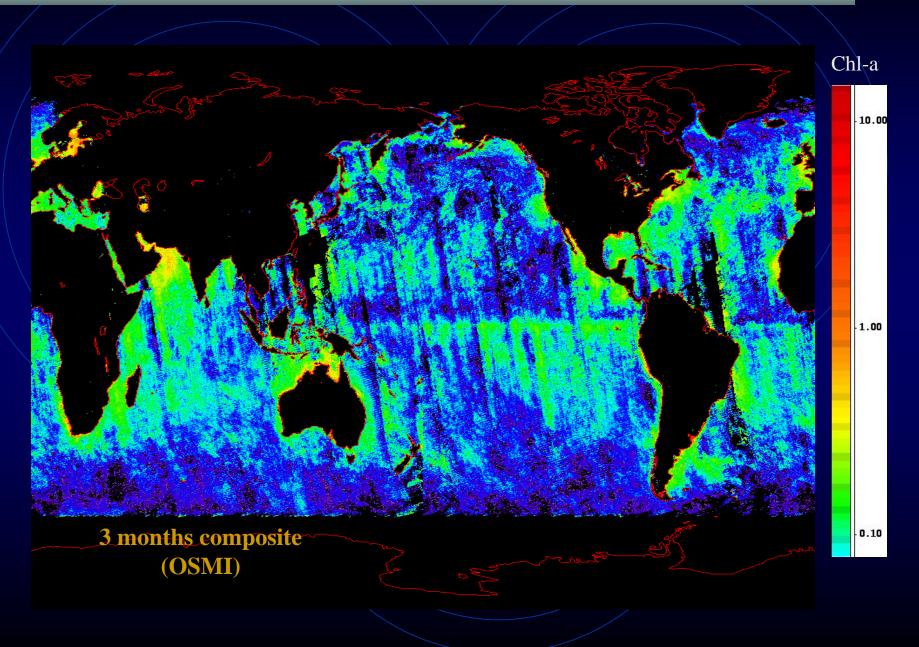
- \rightarrow All bad line positions are same
- → Bright/Dark part
 - Band 1 : 1-48 pixel \Rightarrow dark
 - Band 2-6 : 1-48 \Rightarrow bright
- → There exists slopes in Bright/Dark parts
- → Every strip has different shape/slope with respect to target area and time

OSMI de-stripping analysis - Results

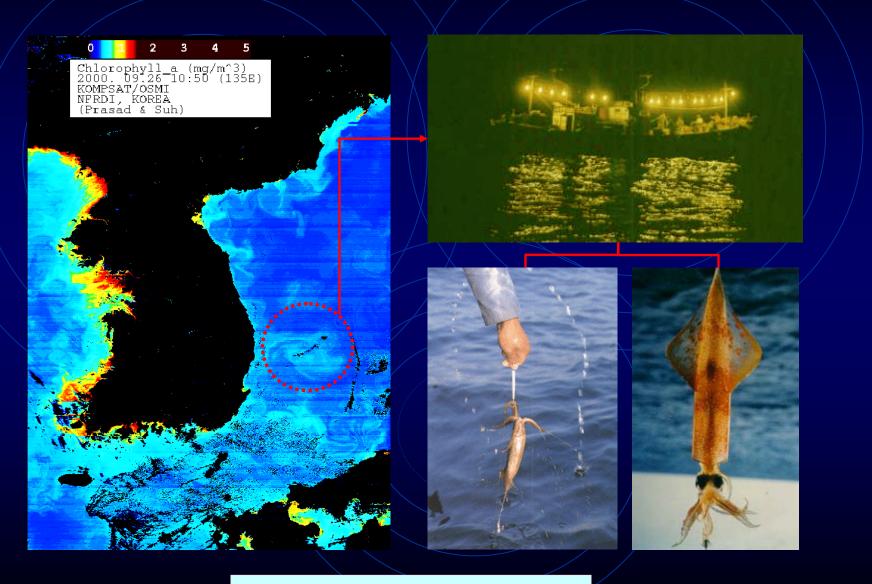

Example

Band 2

The bad line corrected image having no stripping effects is reliable for ocean environmental analysis


B/D corrected data

OSMI Applications


(SW : PC version ; OSMI-DAS / KORDI)

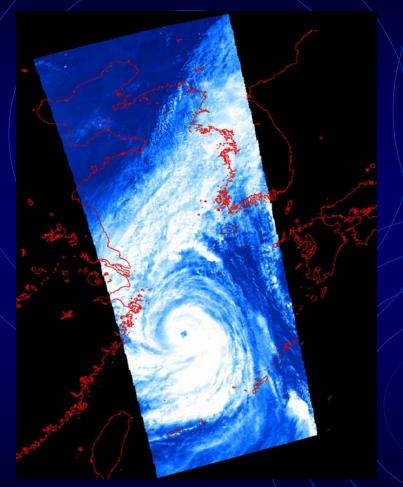
Marine applications
 Disaster applications
 Meteorological applications
 Land applications

Marine Applications - Global distribution of chlorophyll-a

Fisheries applications

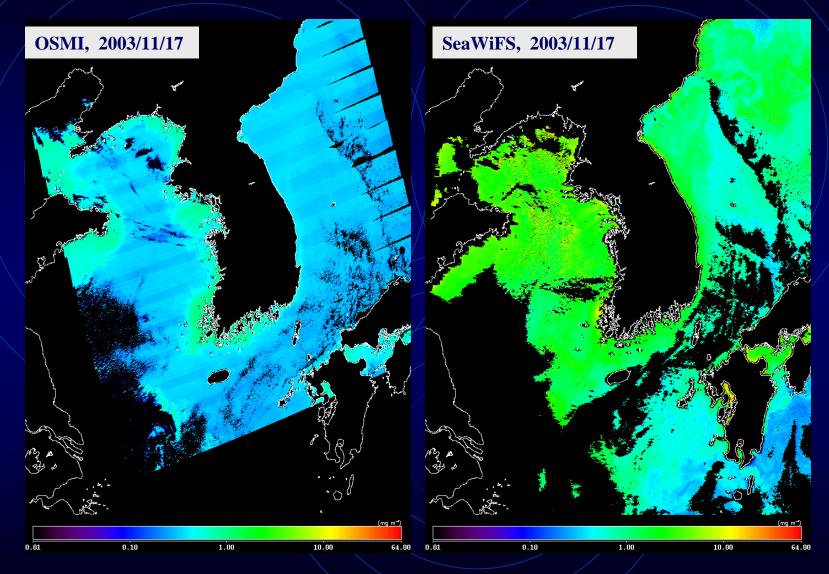
Monitoring of Fisheries

Disaster monitoring


April 13, 2000

March 13, 2002

Forest Fires in Korea

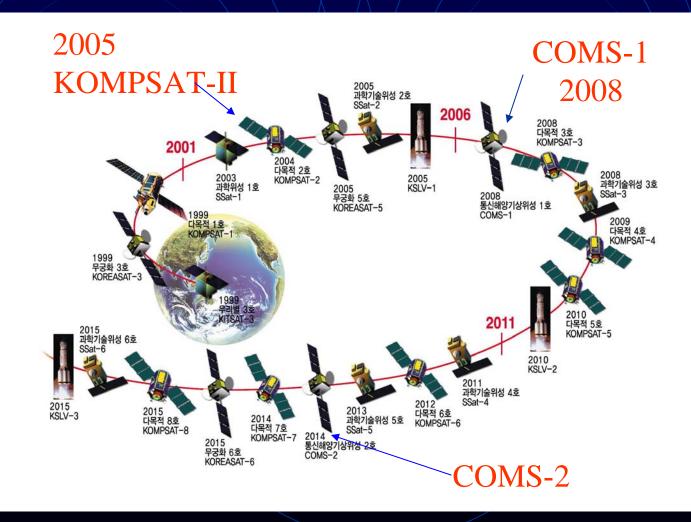

Meteorological applications

Typhoon Saomai Sept. 14, 2000

Yellow Dust March 22, 2002

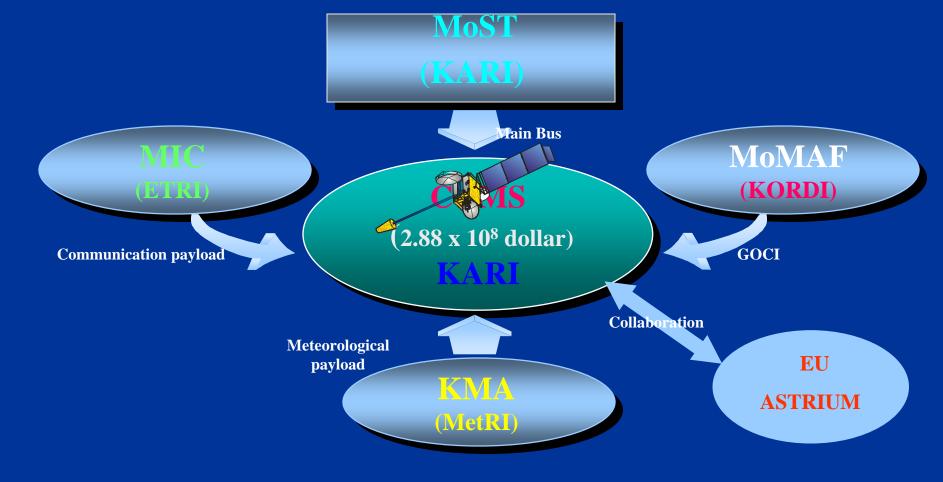
Comparison of OSMI/OSMDAS and SeaWiFS/SeaDAS

Chlorophyll image


Future Mission

cons-korea

Geostationary Ocean color Imager (GOCI) on COMS


Background of GOCI

According to national space development project, we will launch COMS-1 satellite in 2008 and COMS-2 in 2013.

Communication Ocean & Meteorological Satellite (COMS) (2003-2008)

GOCI /COMS

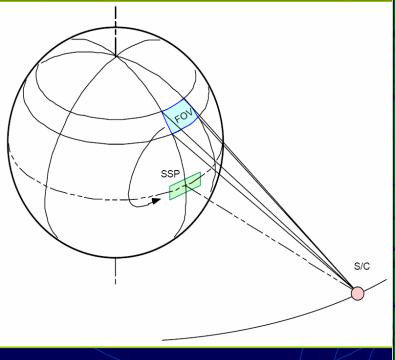
• What's GOCI?

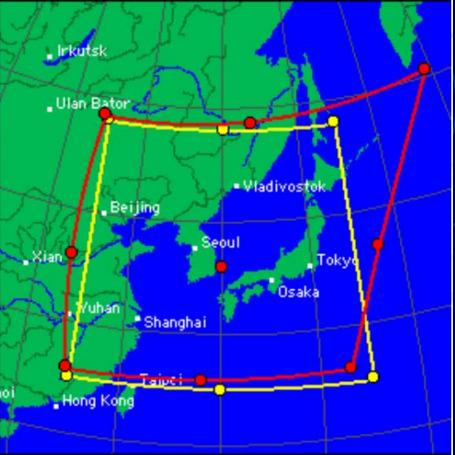
- Geostationary satellite (location :116E or not 127E/ Equatorial)
- Earth observation satellite
- Ocean color satellite.(6bands /visible, 2 bands/NIR)
- Environmental monitoring satellite
- The difference between polar orbit satellite
 - P.O.S : Observing period ; 1~2 time/day 1 time /week
 - GOCI : Possible all moment observation Wide area observation Strong by cloud mask Short /Long term monitoring

Budget for GOCI

- GOCI payload : $2.0 \sim 2.5 \times 10^7$ dollar
- Launch portion for GOCI /COMS : 1.0 x 10⁷ dollar
- Main bus system portion for GOCI /COMS : 1.2 x 10⁷ dollar
- GOCI data processing system(SW) : 4.0 x 10⁶ dollar /KORDI
- GOCI Ground System (without building): 6.3 x 10⁶ dollar /KORDI (Ocean Satellite Center)

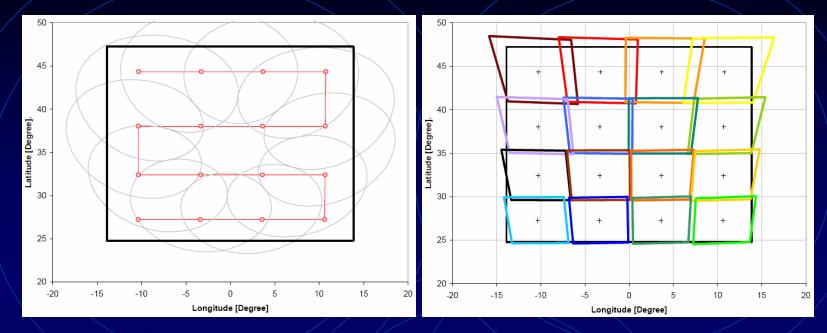
Scope of the Geostationary Ocean Color Imager (GOCI)


The basic scopes of the GOCI mission include


- > Detecting, monitoring and predicting short term physical and biological phenomena
- Studies on biogeochemical variables and cycle
- Detecting, monitoring and predicting noxious or toxic algal blooms of notable extension
- Monitoring health of the marine ecosystem
- Assessing geological and biological response to physical dynamics
- Coastal zone and resource management
- > Producing an improved marine fisheries information to the fisherman communities

GOCI Requirements

No of Channel	8 channels (6-Visible and 2-NIR)
Spatial resolution (IFOV)	500m × 500m
Coverage	2500 × 2500 Km
Spectral coverage	400 – 865nm (for 8 bands)
Digitization	12 bits
Data integration, readout and download rate	< 30 minutes
Image capturing	Staring method (frame capture)
Scheduled for launch	Dec. 2008


Scene Observation Coverage of GOCI

→ The nominal instrument Field of View centered at Korean Seas: 36°N and 130°E
→ This corresponds to an area defined by GOCI location ; 116E(red line), 127E(Yellow line)

Scene Observation Coverage of GOCI

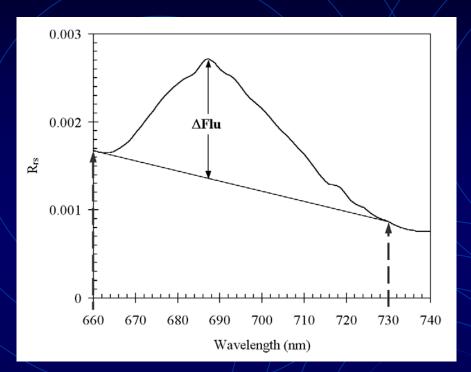
Selection of the scan mechanism positions

Field of View (FOV)/127E

The coverage of the specified FOV is obtained by 16 slots; additional slots can also be added to increase overlapping

Duty cycle and operation of the GOCI

- → Image acquisition during day time: 10.00am 17.00pm
- → Time interval between successive images: 1 hour (8 images/day)

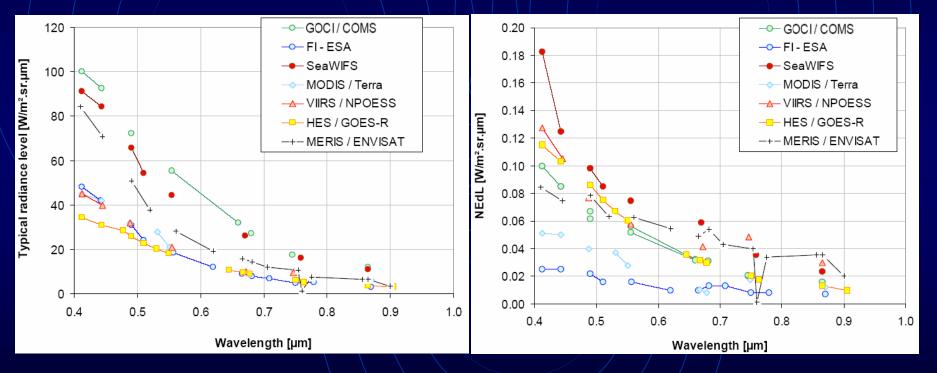

GOCI requirement and characteristics

Highlights of the GOCI		Characteristics and applications of the GOCI					
Paramete	Requirement	Channel	Wavelength (nm)	FWHM (nm)	IFOV (m)	Primary use	
Number of Channel	8 channels	Channel 1	412	20	500	Yellow substance and turbidity	
Spatial resolution (IFOV)	500m × 500m	Channel 2	443	20	500	Chlorophyll absorption maximum	
Coverage (FOV)	2500Km × 2500Km	Channel 3	490	20	500	Chlorophyll and other pigments	
Spectral coverage	400 – 900nm	Channel 4	555	20	500	Turbidity, suspended sediment	
Digitization	12 bits	Channel 5	660	20	500	Fluorescence base1, Chlorophyll, suspended sediment	
Data integration and download rate	< 30 minutes	Channel 6	680	10	500	Fluorescence signal, atmospheric correction	
Image capturing	Staring method 2axis	Channel 7	745	20	500	Atmospheric correction and Fluorescence base2	
Scheduled for launch	2008	Channel 8	865	40	500	Aerosol optical thickness, vegetation, water vapor reference over the ocean	

Difference with SeaWiFS : 510nm not included, 670nm -> 660nm

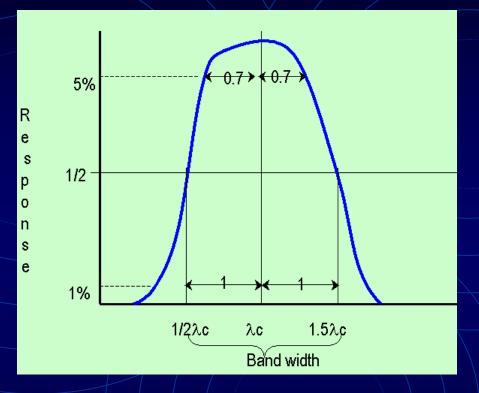
* Chlorophyll estimation => Previous & Flu. techniques

Fluorescence technique

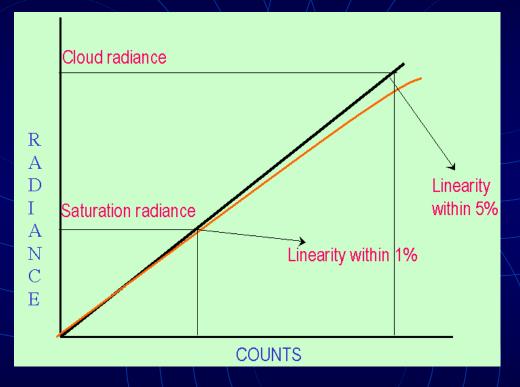


Band triplets for Flu. GOCI: 660-680-745 MODIS: 667-678-748 MERIS: 665-681-705 GLI: 666-680-710

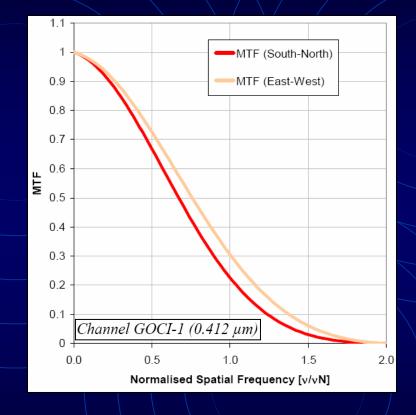
The GOCI will provide band triplets for the measurements of suninduced chlorophyll-a fluorescence signal from the ocean. GOCI fluorescence bands will avoid the oxygen and water vapor absorption features pronounced at 687nm and 730nm


Radiance and noise level requirements for the GOCI

The radiance and noise level requirements for the GOCI as defined in RFP are compared with the available ocean color imagers.


Specified saturation radiance levels for "ocean + atmosphere". Specified noise levels

Band tolerances and band edge specifications


The location of the band edges shall be stable to less than ± 0.5 nm. The edge shall not exceed 50% of the bandwidth in any spectral band. The location of the band center shall be stable to less than ± 0.5 nm. Band edges: $\leq 50\%$ of maximum sensor response at Band Center \pm (Bandwidth $\times 0.5$) nm. L & U band edges: $\leq 5\%$ of maximum sensor response at Band Center \pm (Bandwidth $\times 0.7$) nm. L & U band extended edges: $\leq 1\%$ of maximum sensor response at Band Center \pm (Bandwidth $\times 0.7$) nm. L & U band extended edges: $\leq 1\%$ of maximum sensor response at Band Center \pm (Bandwidth $\times 0.7$) nm. L & U band extended edges: $\leq 1\%$ of maximum sensor response at Band Center \pm (Bandwidth) nm

Dynamic range

The GOCI shall be designed to operate over a dynamic range that can extend from the noise levels (NEdL) in each spectral band to the maximum levels (L_{clouds})

Spatial performance

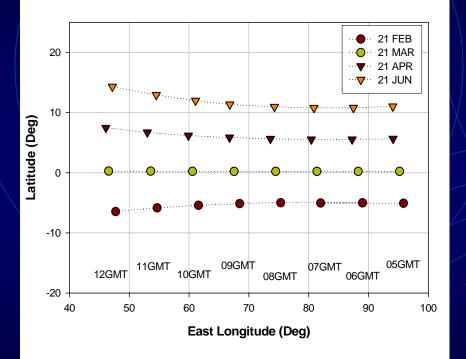
It is the normalized spatial frequency response of this system. In the GOCI, MTF shall be larger than 0.3 @ Nyquist frequency. The MTF specifications shall be satisfied for modulations between dark and L_{ocean} and between dark and L_{max} , for every detector element in each spectral band.

Band-to-band registration

The GOCI specification requires that the IFOVs from all spectral bands shall be co-registered to within 0.5 pixel accuracy.

Polarization

The polarization requirement is an important driver of the instrument optical system: the polarization is defined as


 $PF = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$ $I_{\text{max}} - \text{maximum signal of linearly polarized incoming light}$ $I_{\text{min}} - \text{minimum signal of linearly polarized incoming light}$

The polarization factor (PF) shall be less than 2% for the GOCI.

Band-to band stability

The relative amplitude stability between all pairs of spectral bands shall be better than $\pm 0.5\%$ measured at full-scale, and $\pm 1\%$ at half scale.

The effect of sun-glint at Geostationary orbit

We found that there will be no sunglint influence around the target area.

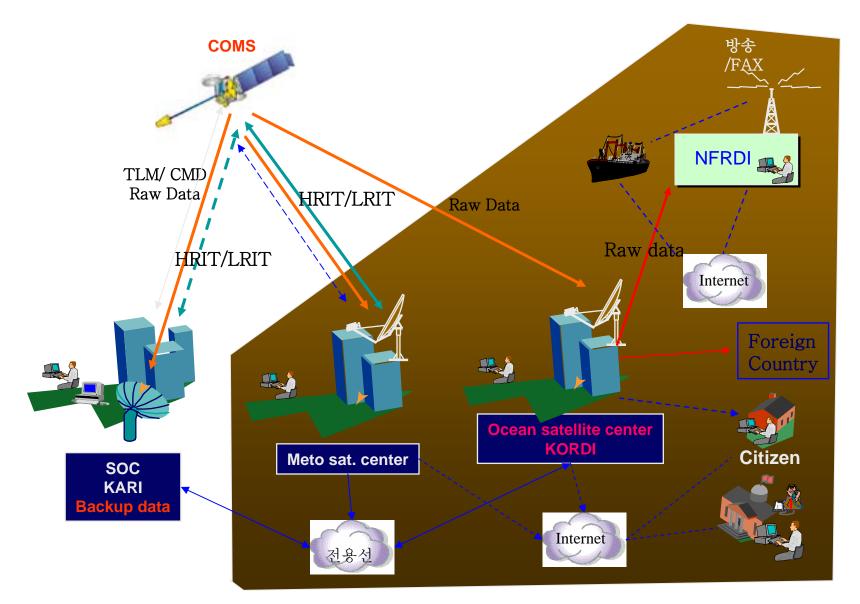
Seasonal(N-S) and diurnal (E-W) excursion of sun-glint regions in this study (83.5E)

Calibration

The accuracy of radiometric measurement of the sensor largely depends on instrument calibration during the orbit-phase.

 \rightarrow Solar Diffusers (transmitted radiance) was proposed for GOCI

Absolute radiometric accuracy shall be less than 4%
Rate of change in degradation of sensitivity estimated to within 2% per year
And less than 10% sensitivity degradation over life time of the mission


Auxiliary data

Minimum set of auxiliary data that support observations must include

- → Calibration coefficients (solar, temperature)
- \rightarrow Gain values
- \rightarrow Date and time (both GMT and local)
- \rightarrow Solar zenith and azimuth angles
- \rightarrow Map projection information
- \rightarrow Image coordinates (Pixel locations easting, northing)
- \rightarrow Spacecraft position for each pixel in the image
- \rightarrow Minimum and maximum detected radiance levels within the

scene for the corresponding bands

Ground stations for COMS

Mission of Korea Ocean Satellite Center

- → Research Supporting /KOSC/MOMAF
- \rightarrow Development of Ocean color techniques
- \rightarrow Future ocean satellite development
- \rightarrow Ocean environmental monitoring and information service
- → International collaboration
- → Ocean satellite data service

KARIS's roll for COMS

- → COMS (GOCI) operation and control
- \rightarrow Data backup
- \rightarrow Sensor calibration

Difference of OSMI & GOCI

	OSMI	GOCI
Proposal	TRW (?)	KORDI
Development Support	MOST	MOMAF
Requirement	TRW(?)	KORDI
Data reception	KARI	KORDI/KARI(Backup)
Data distribution	KARI	KORDI
Satellite control	KARI	KARI/KORDI
Operation/Support	KARI/MOST	KORDI/MOMAF

THANKYOU