

The status of the ESA MERIS mission on Envisat and the GMES Sentinels

10th IOCCG Committee Meeting

Isla de Margarita, Venezuela, 19-21 January 2005

MERIS Aging

Degradation is < 3% after more than 2 years in space

Diffuser Degradation is <0.5 % after 100 min of Solar exposition

The MERS Quality Working Group

To evaluate data quality and agree on the changes for reprocessing

Level 2 :

- Overall quality of all Level 2 products including WV over all surfaces looks very good.
- The atmospheric correction over case II waters has significantly improved. The flags seem to be correctly used in most cases.
- Foreseen evolution is the implementation of a "white Water" (Coccolithophore) flag for which the results are promising.
- The Sun Glint correction is still an issue for the next reprocessing.

Level 1:

- The spectral characterization of spring 2004 will be used for the reprocessing
- A validation report should be initiated in 2005
- A paper on MERIS calibration is under preparation
- The new and hopefully final processor could be ready by Mid-February.

MERIS

New, the MERIS white-scatterer (Coccolithophores) flag

Based on Rayleigh corrected reflectance using α to detect (white) scatterers within water. First test: bloom off Brittany, 15/06/2003.

MERIS Re-processing and distribution status

The MERIS Prototype Processor is being upgraded and currently undergoes verification. The operational chain will be aligned with this Prototype Processor and should be operational by the end of the summer 2005. The start of the re-processing of MERIS data from all three years would be carried out before the 2nd quarter of 2005, leading to a consistent archive.

3 systems have been created to enhance data distribution:

- Two NRT rolling archives (over one week of data) of L1b RR and L2 RR data one at Kiruna (downlinked data) and one at ESRIN (via ARTEMIS). The data would be available as standard PDS products for dedicated users.
- An other internet system, the web file selector enabled child extraction on the rolling archive.
- Broadcast over Europe in NRT of the data could now be done via DDS (Data Dissemination System) at low cost. All users could have MERIS data broadcasted directly at their facility for a limited cost.

MERIS status L3 products

Monthly and annual maps of Chla, AOT, Angstrom exponent, WV and MGVI available at : http://www.enviport.org/meris/

MERIS status L3 products ctd.

ENVISAT - MERIS

Monthly and annual maps of Chla, AOT, Angstrom exponent, WV and MGVI available at http://www.enviport.org/meris/

MERIS/(A)ATSR User Workshop ESA ESRIN 26th to 30th September 2005

First announcement and call for papers

Following the 1st MERIS user workshop in November 2003, ESA is organising a joint MERIS / (A)ATSR workshop, for up-to-date results from on-going research activities including discussions on scientific applications, data quality, development of new algorithms, data products, and user issues.

Of specific interest will be the synergistic use of the data from MERIS and AATSR for operational applications, primarily in the marine environment and the coastal zones, but also for applications over land and the atmosphere.

The workshop will be held at ESRIN, Frascati, Italy from 26-30 September 2005.

Version 3.1 available since with new features (improvements on map projection, geo-location, mosaic processor and user interface)

Next version will be available in February 2005

Link: www.envisat.esa.int

Envisat User Tools V2 Delivered in Source code for (A)SAR, MERIS, (A)ATSR, Atmospheric Instruments data

- •Adapters for importing Envisat/ERS products into COTS
- Capabilities for viewing, analysing, converting products
- •Scientific modules for generating new products
- •Portable tools accessible from standard platforms
- •Fully documented with clear interface specifications

\T 3.1 - [C:\Documents and Settings\Warc Bouvet\Wy Documents\WERIS_SDe\wart\inter-comparison\Longyearbyen\LongyearByen_2003_05_03\... 属 🔲 🔀

Los Angeles

California Forest fires 25 October 2003

Z

esa____

including Envisat_{10th} IOCC

DMSP/OLS Night Map

1.1.20

the same states of

esa_____ MERIS status Rolling archive

All MERIS L1b/L2 RR&FR within 7 days are now available for download from Kiruna and ESRIN. Access through: eohelp@esa.int

European Commission

European Space Agency

European and national user agencies

European and national space organisations

GLOBAL MONITORING FOR ENVIRONMENT AND SECURITY

Industry

R&D institutions

and other partners

GMES

Global Monitoring for Environment and Security

An Intelligence System to provide timely and adequate information delivery

The Goal is to develop operational information services, relying on space infrastructure, in support of public policies, e.g.:

- Environmental Governance (global and local)
- Civil Security
- Resources Management
- Food and Health Security

It will rely on:

- A space-based permanent global monitoring system
- Additional in-situ observations
- Operational modeling and forecasting centers
- A network of users/ customers

- Satellite Ocean Monitoring forms one of the key elements of Global Monitoring for Environment and Security (GMES)
 - Satellite systems are a unique, globally available data source and facilitate local, regional and global applications and related services.
 - GMES will establish operational capabilities providing information to the user community as specified in the EC Action Plan[1] (2004-2008).
- The economic and environmental importance of the oceans dictate that ocean and marine GMES applications are initially focused on:
 - fisheries and vessel monitoring
 - maritime traffic and security
 - coastal zones and open ocean environment monitoring
 - sea ice/oil spill monitoring.
- The general objective of the GMES programme is to realise the benefits of EO data for markets and society.

COM(2004)65 final GMES: Outline EC GMES Action Plan (dated 3 Feb'04) 10th IOCCG Committee Meeting, Isla de Margarita, 19-21.1.2005

Establishing GMES Services

- The primary actors in GMES ocean-related projects need to have existing access to the "tools" needed to establish operational services.
- Since these tools must (in most cases) include operational ocean forecasting capability, these groups are logically also participants in MERSEA and the Global Ocean Data Assimilation Experiment (GODAE). Four key ocean modelling efforts are: FOAM, MERCATOR, MFS, and TOPAZ.
- There is an important overlap, in terms of capacity building, between GMES and GODAE, and thus ESA recognises the need to serve the primary data needs of these established users (both operational and scientific).

European EO Heritage

Series of **OPERATIONAL** and **R&D** satellite sensors for oceanography has been and will be <u>functioning more than ten years</u> till the end of GODAE demonstration phase

- Altimeter
- Scatterometer
- SST sensor
- Ice sensor
- Ocean Color sensor

Requirements Definition -Steps

	1.	User Service Needs
URD		 User Requirements Documents for GSE studies
		• Must agree on the relevant needs of NWP, FP5/6, and others
	2.	Operational Product/Parameter Needs
		• e.g. Chla to n% accuracy, SST accurate to 0.3K abs. & 0.1K/decade
	3.	Observational Requirements
		Measurement Requirements
		parameters/timeliness/frequency/etc
MRD		bands, swath width, resolution sampling requirements/orbits
		etc.)
		Basic sensor requirements
		e.g. Alt, MERIS follow-on, AATSR follow-on
	4.	Ground Segment Requirements
		timeliness/data latency
		• NRT (<3 h) data flow to the product service providers
	5.	System Requirements
		instrument specifications (e.g. PRF/accuracy/sensitivity)
SRD		Mass/Power launch constraints; Downlink rates etc

Mission Requirements

• Broad requirements exist for ocean (blue water and coastal), ice and coastal waters observation. Considering expectations from existing/planned missions, the needs & potential implementation options include:

- An Altimeter (ALT), with supporting instruments, (e.g. Microwave Radiometer, DORIS, and/or GNSS receiver – as needed).
- Wide-swath coarse resolution (0.25 1km) sensor (VIRI) operating in the visible to infrared, to continue the (A)ATSR MERIS VGT missions. This component shall also be suitable for global land / vegetation monitoring.
- Implementation plan requires results of studies identifying robust operational instrument concepts, platform compatibility issues, etc.

Water quality monitoring Service Provider: ACRI

RV "GAUSS" Cruise 405 / 28.07. - 13.08.2003

Transparency maps User: BSH : Ship time reduced by 40%

Turbid water index *10th IOCCG Committee Meeting, Isla de Margarita, 19-21.1.2005* User: EEA: European state and outlook report 2005

Service examples (1)

Hydrodynamic Service Service Providers:ARGOSS/HRW Users:UK Channel Coastal Observatory, Delft Hydraulics; ScotRail

Subject: Coastwatch II wave forecas	t demo					
		COAS				
		COA	ST WATCH			
INSHORE WAV	F FOR FCAST	SANDOV	VN IOW			
		0, 11001				
Demonstration service pro						
Location: Sandown IOW Issue	at: 2004-10-14 10:30 usino	ARGOSS				
Contact: <u>Nigel Tozer</u> at <u>Coastv</u>	(atch	ARGOSS	;			
WARNINGS: Events forecast w		UK Met Office				
		No Warning	gs for this forecast perio	d		
2 Hourly wave records						
5 Hourry wave records		Measured CCO			Forecast ARGOSS	
Date Time (GMT)	Significant Wave Height	Mean wave period	Mean Wave Direction	Significant Wave Height	Mean wave period	Mean Wave Direction
2004 10 12 00:00	(m)	(5)	(degN)	(m)	(5)	(degN)
2004-10-13 00:00	0.5	3.0	1/3	0.9	4.2	184
2004-10-13 05:00	0.5	2.8	176	0.7	4.1	182
2004-10-13 09:00	0.9	3.3	169	0.9	4.0	177
2004-10-13 12:00	1.9	4.7	174	1.1	4.1	172
2004-10-13 15:00	1.4	5.0	172	1.3	4.4	174
2004-10-13 18:00	0.9	4.7	176	1.0	4.5	181
2004-10-13 21:00	0.5	4.2	146	0.8	4.5	185
2004-10-14 00:00	0.9	3.6	184	1.1	4.4	178
2004-10-14 03:00	1.5	4.4	181	1.7	4.7	175
£004-10-14 06:00	1.5	5.0	104	1.0	5.4	100
2004-10-14 09:00	No Data	No Data	No Data	15	6.0	184
1	1	i i	l.			
- i	1					<u>.</u>
		1	11		1	
		. /		湖	, A	∦ s
1 for a tille		: di		TNA		il i
I IN AN AN ANN						11 F
1 1 1 1 1 1 1 1 1 1 1			1 14 33		M/A 1	111
	J. J. J. J.	L 1 AL L BA	17 M P 1, 1 Y	1 54 112 5	- SU 14	
++ <u>+</u> / +++ /+++++++++++++++++++++++++++	UNU L FRAAM	ii III YA A;	(K N/)			
V 1 V W	in North	War War W	N V V	' W #	Mad Li	will V
	(VWF			~1		19

ICZM Indicator Service Service Provider: ETC/TE Users: EEA; Generalitat de

Catalonia V of built up - cta Res of development NOD, NUTSSAREE I of the other o

Coastal Indicators:

- Land take by built-up
- Built-up in distance to the coast
- Dominant landscape type
- Compact and diffuse sprawl
- Rate of development
- Percentage of coast protected by NATURA
- Potential conflict urban development/ Natura protection
- Erosion patterns
- Loss of natural & semi-natural areas

Service examples (2)

Coastal land mapping service Service Provider: GIM (B) User: EEA, Coordination Center for ICZM, Institute for Nature Conservation

Land use map Belgian Coast

Supply chain structure (cont.)

esa____

Water quality service

- Positive aspects
 - •Uniformity and standardization of the products
 - •European scale coverage
 - •NRT availability of the geophysical parameters
- Negative aspects
 - •In some areas accuracy of Case2 water products not yet adequate
 - •Regionally tuned algorithms not yet available; need to be developed
 - •Geophysical parameters not linked to hydrodynamic models
 - •Operational availability of MERIS full resolution data not yet adequate

ICZM Indicator service

- Positive aspects
 - •Indicators available for the whole European coastline
 - •Harmonised data sets enabling similar analysis and comparison between different locations
 - •Important input for the future DG ENV reports regarding coastal areas
- Negative aspects:
 - Validation of the indicators is essential; more rigorous quality checks required
 Indicators for regional aspects to coarse in spatial resolution; regional scale products need to be developed with same methodology but higher resolution
 - •Better integration of socio-economic, biological and environmental data needed

Benefits

Cost savings: more information at lower cost

Reduce survey and monitoring cost or water quality:

from "purely ship observation" to "EO data & ship observation"

- Increase frequency of observations (through EO) and focus on sensitive areas
- Optimize cruise campaigns and in situ measurement networks:
 - less ship time, less personnel, less buys, less maintenance, less laboratory analysis
- Avoid costs of damages and reduce extreme event losses:

erosion - storm - flooding - land slides - pollution - algae blooms

• Cost efficient monitoring of environmental issues through indicators (harmonized): better land planning, identification of environmental hot spots & high risk areas

D Environmental benefits

- Reduced coastal degradation through appropriate coastal protection measures
- Preserve high economic value of coastal zones (aquaculture, tourism): Lower cost for beach cleaning and nourishment operations
- Coastal habitat preservation
- **D** Policy benefits
 - More efficient decision tools for policy regulation and assessment in the EU25 countries committed to the WFD and ICZM implementation
 - Support the implementation of these policies at European, national & regional levels

ESA GMES sevice elements: COASTWATCH & ROSES

COAST

- Coastwatch WFD services:
 - Sea surface temperature,
 - Suspended particulate matters, Water transparency,
 - Chlorophyll-a concentration, Primary production, Photosynthetically available radiation
- Wave exposure monitoring service:
 - near real-time sea state information, mainly significant wave height and wind speed.
 - climatologic statistics of waves: significant wave height, mean period and zero-crossing period and mean direction
- Coastal Indicators for
 - Landscape fragmentation
 - Pressure on biodiversity, Habitat destruction
 - Urbanisation and land use conflicts
- Oil spill monitoring
- Algal Bloom monitoring

MATCH 🗠

Coastwatch & ROSES Products

- Safety and efficiency of marine operations
- Control and mitigate the effects of natural hazards
- Detect and predict the effects of climate change
- Reduce public health risks
- Protect and restore
 healthy ecosystems
- Restore and sustain living marine resources

Requirements: the GOOS perspective

Common variables to be monitored, selected by GOOS

Variable	RS	indirect	remark
Sea level	+		
Water temperature	+		SST
Salinity	0		future
Currents	+		
Surface waves	+		
Oxygen		+	phytoplankton, turbidity, depth
Inorganic nutrients		0	phytoplankton
Attenuation solar radiation	+		
Bathymetry	0		Optical /radar
Shore line position	+		
Sediment size / organic content	0	0	SPM, eulithoral
Benthic biomass	0		Eulithoral, partly
Phytoplankton biomass	+		
Faecal indicators	-		

Success : Algae bloom monitoring

- In 2002 about 200 M€ loss of mussel cultures in the River Scheldt area.
- Predicting of risk based on EO-Chlorophyll and wave data.
- Decision support for closing dams to keep Harmful algae blooms outside the estuary.

10th IOCCG Committee Meeting, Isla d

(user : RIKZ) Mean MERIS © ESA Chlorophyll A – case 1 water

Apr 17, 2004 to Apr 23, 2004 2.00 x 2.00 km

Success : Water transparency monitoring (user : BSH)

- Coastwatch supported the GAUSS campaign for surveillance monitoring for WFD compliance.
- Coastwatch transparency maps (from MERIS) compared well to insitu measurements and gave confidence in EO derived products.
- Ship time reduction of 40% through optimised cruise planning results in cost reduction in the order of 10% of the overall monitoring cost

VIRI Requirements distillation

Eumetsat	at Alcatel			Astrium			Earth Watch GMES Sentinel-3				
Priority	Priority	Centre	Band-	Priority	Centre		Centre wavelength	Band- width	MERIS	IOCCG	SPOT
		wavelength	width		wavelength	Application	(μ m)	(nm)	AVHRR ATSR,	Report 1	Vegetation
		(µm)	(nm)		(μm)				VIIRS	/Report3	band
									compatibility		
		0.38	10			C2					
		0.412	10		0.412	Yellow matter	0.4125	10	M1/VII1	Max	
P5	Minimum	0.443	20	Minimum	0.440	C1, K and Vegetation Atmos	0.4425	10	M2/VII2	Max	0.43 –
						correction					0.47
	Minimum	0.49	10	Minimum	0.490	C1, C2, K	0.490	10	M3/VII3	Min	
	Minimum	0.510	10			C2, S2, Turbidity	0.510	10	M4		
	Minimum	0.560	10-20	Minimum	0.554	C1, S	0.560	10	M5/AV1/AT1/VII	Min	
									4		
		0.570				lurbidity					
					0.620	S2, C1 reference band, Y2	0.620	10	M6		
P1	Minimum	0.665	10-20	Minimum	0.670	C1, S, Y2 Vegetation	0.665	10	M7/AT2/VII5		0.61-0.68
		0.681				Chl Fluorescence peak red	0.68125	7.5	M8		
		0.001				edge					
		0.709		Ok	0.708	C2. Fluorescence baseline	0.70875	10	M9	Max	
	Metop	0.730				Vegetation					
P4	Metop	0.750	10	Minimum	0.750	O2 absorb ref./Atmos	0.75375	7.5	M10/VII6	Min	
						correct/Ocean					
P4	Metop	0.763	0.5			O2 absorpt./Aerosols/	0.76063	3.75	M11		
						Ocean					
						Aerosols/Vegetation	0.77875	15	M12		
P1	Minimum	0.870	20	Open Sea	0.877	Atmos correction.	0.865	20	M13/AV2/AT3/	Min	0.78-0.89
						Vegetation			VII7		
						Water vapour absorption ref.	0.885	10	M14		
							0.900	10	M15		
	Metop	1.03	20			Vegetation					
	Metop	1.245	50			Vegetation water			VII8		
P2			30	Ok	1.375	Cirrus over land, water	1.375	30	VII9		
						vapour					
P1	Minimum	1.620	60	Min	1.610	Cloud phase, water content	1.610	60	AV3a/AT4/VII10		1.58-1.75
						of canopy, snow/ice					
P6	Metop	2.200	80	Ok	2.250	Vegetation water content			VII11		
P1		3.7		MIn	3.700	Cloud temp. / particles/SST	3.7	400	AV3b/AT5/VII12		
P2				Ok	6.700	Water vapour					
P2		8.7		Ok	8.558	Night time cirrus detection			VII14		
P1		10.9		MIn	10.850	Temp/Night cloud mapping	10.85	900	AV4/AT6/VII15		
P1		12.0		Min	12.000	Temp	12.0	1000	AV5/AT7/VII16		
P2				Ok	13.400	Seviri band CO2 absorption					

Baseline

Sa_____ The DUE GlobCOLOUR Project

Technical Officer: Simon Pinnock, ESA/ESRIN, Frascati, Italy (simon.pinnock@esa.int)

Objectives

- 1. to provide a long time-series ocean-colour data set for research on the marine component of the global carbon cycle
- 2. to demonstrate the <u>current</u> state of the art in merging together data streams from different satellite based ocean-colour sensors
- 3. to put in place the capacity to continue production of this time series in the future

User: IOCCG – point of contact is Trevor Platt (letter of commitment signed 1 Dec 04)

Budget: M€ 1.0 - contract to be awarded through an open competitive invitation to tender

Schedule URD delivery by IOCCGQ1 2005ITT issue by ESAQ2 2005Project kick-offQ3 2005

Duration 24-36 months

Which other E.O.based OC activities should GlobCOLOUR be coordinated with 10th IOCCG Committee Meeting, Isla de Margarita, 19-21.1.2005

Helpful ESA Websites to remember

http://eoli.esa.int	Multi-Mission catalogue for ESA supported missions	•Access to ESA EO data catalogues
http://envisat.esa.int	Envisat web site	 General information about the Envisat mission Products handbook / ATBD Tools (BEAM) Sample products News
http://eopi.esa.int	Principal Investigator Web site	Submit a Cat 1 ProposalLatest results from PI projects
http://earth.esa.int/services/esa_doc	Documentation Library	•All documents relevant for ESA EO missions and Instruments
http://pfd-ns-es.esrin.esa.int	Rolling Archive	•Download Last 7 days of date for: ASAR, AATSR, MERIS
http://ewfs.esrin.esa.int	Web File Selector	•Download selected MERIS scenes from 7 days rolling archive
http://www.enviport.org/meris/	Level 3 products	•Download AATSR and MERIS L3 demonstration products

For any question you may have please contact **eohelp@esa.int**