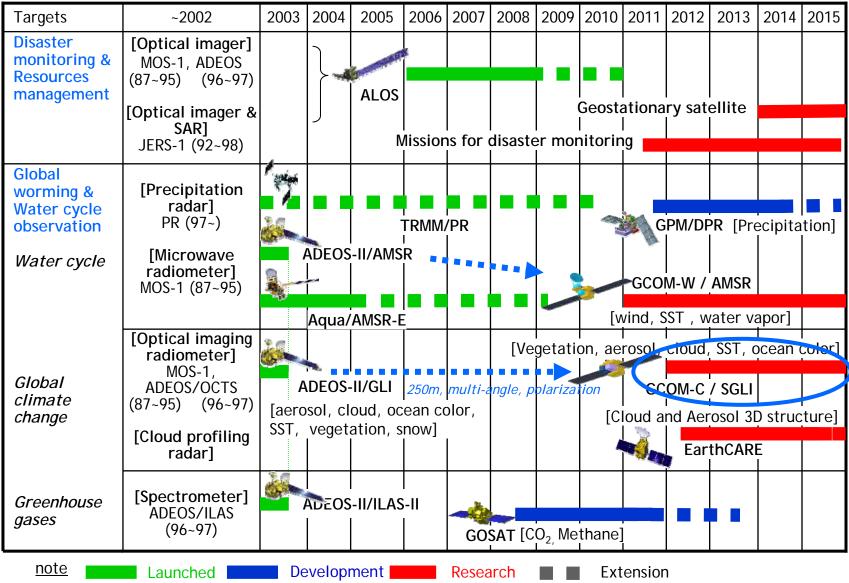
Status of GCOM-C/SGLI

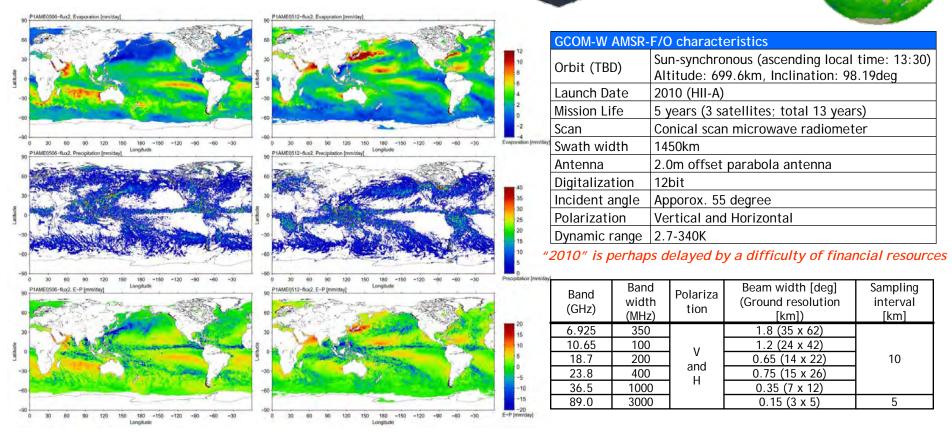
Hiroshi Murakami Japan Aerospace Exploration Agency (JAXA) Earth Observation Research Center (EORC),

1. Introduction of GCOM and SGLI 1.1 History and targets of GCOM


- JAXA and science groups (Global Climate Observation Mission (GCOM) and SGLI application committees)
 have discussed about the Second generation Global Imager (SGLI), which is a radiometer of visibleinfrared, middle-resolution, and global and frequent observation, for more than five years.
- After the trouble of ADEOS-2, we are setting 2011 as the launch date of the first GCOM-C satellite which will carry SGLI. The SGLI have to be mature sensor with low risk, long life (consists of series of three satellites; total 13 years), and wide applicability. *"2011" is perhaps delayed by a difficulty of financial resources*
- Targets of GCOM (consists of GCOM-W and GCOM-C satellite series) are followings.
 - Build an <u>long-term observation system</u> which can observe effective physical parameters continuously (10~15 years) for <u>solving the global climate change and water-cycle mechanism</u>, and establish its usability
 - Process the satellite data aiming at <u>integrative use</u> into other observation systems, model data, etc., and provide users
 - <u>Contribute to improvement in the predictive accuracy</u> of a long-term climate change, which connects with national policy decision, through the improvement of the process research about a climate-change mechanism and a numerical climate model with cooperation to the user organizations.
 - <u>Contribute to the operational fields</u>, such as prediction of intense weather which brings about disaster, through data distribution to the operational organizations which perform a weather forecast, fishery information service, sea route information control, etc.
 - <u>Develop new products</u> effective in the elucidation of a climate change and a water cycle mechanism which are difficult to make with the present analysis technology.

. Introduction of GCOM and SGLI

1.2 JAXA's earth observation scenario



. Introduction of GCOM and SGLI

1.3 Outline of GCOM-W/AMSR2

Targets of GCOM-W are water-energy cycle. GCOM-W1 will carry AMSR-follow on, AMSR-2.

AMSR 2

- AMSR-2 will continue AMSR-E observations (water vapor, cloud liquid water, precipitation, SST, wind speed, sea ice concentration etc.).
- Above images show evaporation (top), precipitation (middle), and their difference (bottom) in Jun (left) and December (right) 2005 estimated using AMSR-E L3 products.

. Introduction of GCOM and SGLI

1.4 Outline of GCOM-C/SGLI

Targets of GCOM-C are carbon cycle and radiation budget.

SGLI will continue almost of the GLI observations (sea surface temperature, ocean colour, aerosols, cloud, vegetation, snow/ ice, and so on). The new SGLI features (250m (VN) and 500m (T) channels and two polarization/ multi-direction channels (P)) will enable improvement of land and coastal monitoring and retrieval of land aerosols.

Narrow $\Delta\lambda$ and relatively high SNR for ocean products ς

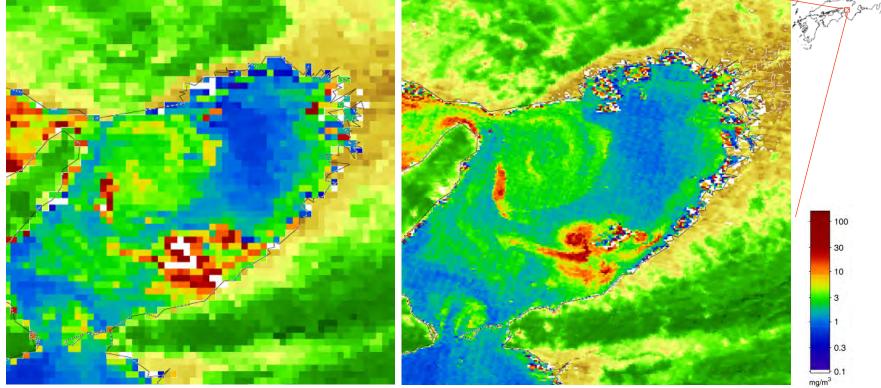
New features of SGLI from ADEOS-2/GLI

GCOM-C SGLI ch	naracteristics
Orbit (TBD)	Sun-synchronous (descending local time: 10:30) Altitude: 798km, Inclination: 98deg
Launch Date	2011 (HII-A)
Mission Life	5 years (3 satellites; total 13 years)
Scan	Push-broom electric scan (VN & P) Wisk-broom mechanical scan (SW & T)
Scan width	1150km cross track (VN & P) 1400km cross track (SW & T)
Digitalization	12bit
Polarization	3 polarization angles for P
Along track direction	+45 deg and -45 deg for P Nadir for VN, SW and T

"2011" is perhaps delayed by a difficulty of financial resources

Shortwave (SW) & thermal infrared (T) scanning radiometer

Polarization muti-angle radiometer (P)


 Visible & near infrared (VN) push-broom radiometer

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				SGLI cha	nnels		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		λ	Δλ	L _{std}	L _{max}	SNR at Lstd	IFOV
VN2 412 10 75 250 400 250 VN3 443 10 64 400 300 250 VN4 490 10 53 120 400 250 VN5 530 20 41 350 250 250 VN6 565 20 33 90 400 250 VN6 565 20 33 90 400 250 VN7 670 10 23 62 400 250 VN8 670 20 25 210 250 250 VN9 763 8 40 350 400 1000 VN10 865 20 8 30 400 250 VN11 865 20 30 300 200 250 P1 670 20 25 250 250 1000 SW1 1050 20	СН			VN W/m ²	/sr/µm		m
VN3 443 10 64 400 300 250 VN4 490 10 53 120 400 250 VN5 530 20 41 350 250 250 VN6 565 20 33 90 400 250 VN7 670 10 23 62 400 250 VN8 670 20 25 210 250 250 VN9 763 8 40 350 400 1000 VN10 865 20 8 30 400 250 VN11 865 20 30 300 200 250 VN11 865 20 30 300 250 1000 P1 670 20 25 250 250 1000 SW1 1050 20 57 248 500 1000 SW2 1380 20 8 </td <td>VN1</td> <td>380</td> <td>10</td> <td>60</td> <td>210</td> <td>250</td> <td>250</td>	VN1	380	10	60	210	250	250
VN4 490 10 53 120 400 250 VN5 530 20 41 350 250 250 VN6 565 20 33 90 400 250 VN7 670 10 23 62 400 250 VN8 670 20 25 210 250 250 VN9 763 8 40 350 400 1000 VN10 865 20 8 30 400 250 VN10 865 20 8 30 400 250 VN11 865 20 30 300 200 250 VN11 865 20 30 300 250 1000 P1 670 20 25 250 250 1000 SW1 1050 20 57 248 500 1000 SW3 1640 200	VN2	412	10	75	250	400	250
VN5 530 20 41 350 250 250 VN6 565 20 33 90 400 250 VN7 670 10 23 62 400 250 VN8 670 20 25 210 250 250 VN8 670 20 25 210 250 250 VN9 763 8 40 350 400 1000 VN10 865 20 8 30 400 250 VN11 865 20 30 300 200 250 VN11 865 20 30 300 200 250 VN11 865 20 30 300 250 1000 P2 865 20 30 300 250 1000 SW1 1050 20 57 248 500 1000 SW3 1640 200	VN3	443	10	64	400	300	250
VN6 565 20 33 90 400 250 VN7 670 10 23 62 400 250 VN8 670 20 25 210 250 250 VN9 763 8 40 350 400 1000 VN10 865 20 8 30 400 250 VN11 865 20 8 30 200 250 VN11 865 20 30 300 200 250 VN11 865 20 30 300 200 250 P1 670 20 25 250 250 1000 P2 865 20 30 300 250 1000 SW1 1050 20 57 248 500 1000 SW2 1380 20 8 103 150 1000 SW3 1640 200	VN4	490	10	53	120	400	250
VN7 670 10 23 62 400 250 VN8 670 20 25 210 250 250 VN9 763 8 40 350 400 1000 VN10 865 20 8 30 400 250 VN11 865 20 30 300 200 250 VN11 865 20 30 300 200 250 P1 670 20 25 250 250 1000 P2 865 20 30 300 250 1000 SW1 1050 20 57 248 500 1000 SW2 1380 20 8 103 150 1000 SW3 1640 200 3 50 57 250 SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7<	VN5	530	20	41	350	250	250
VN8 670 20 25 210 250 250 VN9 763 8 40 350 400 1000 VN10 865 20 8 30 400 250 VN11 865 20 30 300 200 250 VN11 865 20 30 300 200 250 P1 670 20 25 250 250 1000 P2 865 20 30 300 250 1000 SW1 1050 20 57 248 500 1000 SW2 1380 20 8 103 150 1000 SW3 1640 200 3 50 57 250 SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7 300 340 0.2 500	VN6	565	20	33	90	400	250
VN9 763 8 40 350 400 1000 VN10 865 20 8 30 400 250 VN11 865 20 30 300 200 250 P1 670 20 25 250 250 1000 P2 865 20 30 300 250 1000 SW1 1050 20 57 248 500 1000 SW2 1380 20 8 103 150 1000 SW3 1640 200 3 50 57 250 SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7 300 340 0.2 500	VN7	670	10	23	62	400	250
VN10 865 20 8 30 400 250 VN11 865 20 30 300 200 250 P1 670 20 25 250 250 1000 P2 865 20 30 300 250 1000 SW1 1050 20 57 248 500 1000 SW2 1380 20 8 103 150 1000 SW3 1640 200 3 50 57 250 SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7 300 340 0.2 500	VN8	670	20	25	210	250	250
VN11 865 20 30 300 200 250 P1 670 20 25 250 250 1000 P2 865 20 30 300 250 1000 SW1 1050 20 57 248 500 1000 SW2 1380 20 8 103 150 1000 SW3 1640 200 3 50 57 250 SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7 300 340 0.2 500	VN9	763	8	40	350	400	1000
P1 670 20 25 250 250 1000 P2 865 20 30 300 250 1000 SW1 1050 20 57 248 500 1000 SW2 1380 20 8 103 150 1000 SW3 1640 200 3 50 57 250 SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7 300 340 0.2 500	VN10	865	20	8	30	400	250
P2 865 20 30 300 250 1000 SW1 1050 20 57 248 500 1000 SW2 1380 20 8 103 150 1000 SW3 1640 200 3 50 57 250 SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7 300 340 0.2 500	VN11	865	20	30	300	200	250
SW1 1050 20 57 248 500 1000 SW2 1380 20 8 103 150 1000 SW3 1640 200 3 50 57 250 SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7 300 340 0.2 500	P1	670	20	25	250	250	1000
SW2 1380 20 8 103 150 1000 SW3 1640 200 3 50 57 250 SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7 300 340 0.2 500	P2	865	20	30	300	250	1000
SW3 1640 200 3 50 57 250 SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7 300 340 0.2 500	SW1	1050	20	57	248	500	1000
SW4 2210 50 1.9 20 211(TBD) 1000 T1 10.8 0.7 300 340 0.2 500	SW2	1380	20	8	103	150	1000
T1 10.8 0.7 300 340 0.2 500	SW3	1640	200	3	50	57	250
	SW4	2210	50	1.9	20	211(TBD)	1000
T2 12.0 0.7 300 340 0.2 500	T1	10.8	0.7	300	340	0.2	500
	T2	12.0	0.7	300	340	0.2	500

5

250m Ocean colour product simulated using GLI 250m channels

(a) GLI 1km Osaka Bay (1 Oct. 2003, CHL by LCI)

(b) GLI 250m Osaka Bay (1 Oct. 2003, CHL by LCI)

SGLI 250m resolution will enable to detect more fine structure in the coastal area such as river outflow, regional blooms, and small current.

2. Status of GCOM SGLI program

2.1 Time table

ilaial Inagor	Time	Event
JFY 2005	2005 Sep. 2005 Oct.	Review of GCOM-W/C Breadboard Model (BBM) study Start BBM design and trial manufacture ~JFY2007
JFY 2006	2006 Jun 15 2006 Jun ~Jul. 2006 Sep.~Oct. 2006 Dec. 27 2007 Jan 29~31 	GCOM Symposium (Tokyo) GCOM-W1 Evaluation in the Space Activity Commission sub-groups Evaluation by Committee for Scientific and Technological Policy Design review of the SGLI BBM AMSR/E GLI workshop
JFY 2007	2007 Spring 200X 2008 March	GCOM/EarthCARE Symposium in Tokyo (TBD) <u>Pre-evaluation of GCOM-C1 (TBD)</u> • SGLI have to approved by this evaluation to go to the following steps • Now we are trying to undergo the evaluation Review of the SGLI BBM
JFY 2008~	?? ?? JFY2010 (TBD) JFY2011 (TBD)	Develop Engineering Model (not approved) Develop Pre-Fright Model (not approved) GCOM-W1 Launch (TBD) GCOM-C1 Launch (TBD)

" 2010" and "2011" are perhaps delayed by a difficulty of financial resources

SGLI radiance product (L1B)

Category	Product	Ţype*	File unit	Resolution	Threshold for data release	Standard accuracy ^{*1}	Target accuracy ^{*1}
radianc	e Radiometric corrected radiance with geometric information	S	Scene, global (day)	250m (land and coast) 1km (offshore)	TBD	(relative)	VN/SWIR 3% ^{*2} , 0.5% (relative)

SGLI Ocean products

Category	Product	Туре	File Unit	Resolution	Threshold for data release	Standard accuracy ^{*1}	Target accuracy ^{*1}			
	Normalized Water Leaving Radiance	S	scene, global		60% (443~565nm)	50% (<600nm) 0.5W/m²/sr/um (>600nm)	30% (<600nm) 0.25W/m ² /sr/um (>600nm)			
Atmospheric correction Atmo Phot Euph In-water parameters Colo Inhere Temperature Sea S Application Redt Mult	Atmospheric Correction Parameters	S	(day/8 day/month)		80% (τ _a _865)	50% (τ _a _865)	30%			
	Photosynthetically Available Radiation	S			20% (10km/month)	15% (10km/month)	10% (10km/month)			
	Euphotic Zone Depth	R	scene, global (day/8 day/month)	250m (coast) 1km (offshore)	N/A	N/A	30%(TBD)			
	Chlorophyll-a Concentration		scene, global	4~9km (global bin)	-60~+150% (offshore)	-60~+150%	-35~+50% (offshore), -50~+100% (coastal)			
Atmospheric correctionNormali Atmosp Photosy EuphotiIn-water parametersChlorop Suspend Colored InherenTemperatureSea Sur Ocean F PhytopiApplicationRedtide Multi-se	Suspended Solid concentration	S	(day/8 day/month)		-60~+150% (offshore)	-60~+150%	-50~+100%			
	Colored Dissolved Organic Matter	S			-60~+150% (offshore)	-60~+150%	-50~+100%			
	Inherent Optical Properties		scene, global (day/8 day/month)		N/A	N/A	TBD			
Temperature	Sea Surface Temperature	S	scene, global (day/8 day/month)	500m (coast) 1km (offshore) 4~9km (global bin)	0.8K (daytime)	0.8K	0.6K			
	Ocean Primary Productivity	R	scene, global (day/8 day/month)	500m (coast) 1km (offshore) 4~9km (global bin)	N/A	N/A	TBD			
	Phytoplankton Functional Type	R	scene, global	250m (coast)	N/A	N/A	TBD			
Application	Redtide	R	(day/8 day/month)	1km (offshore) 4~9km (global bin)	N/A	N/A	TBD			
	Multi-sensor Ocean Color	R	scene, global (day/8 day/month)	250m (coast) 1km (offshore)	N/A	N/A	TBD			
	Multi-sensor SST	R	scene, global (day/8 day/month)	500m (coast) 1km (offshore)	N/A	N/A	TBD			

S: Standard products, R: Research products

3. SGLI Ocean Science Plan

3.2 SGLI products and channels

СН	λ	Δλ	Let	Lmax	SNR	IFOV ^{*3}	Í					Lan	d					Т			At	tmos	pher	e			T	Ocean											Cryosphere									
-	VN,	, Ρ: nm : μm	W	VN, P: m²/sr/μm ∵ Kelvin	at L _{std} VN, P: - T: NE∆T	m	Precise Geometrically Corrected Image	Atmospherically Corrected Land surface Reflectance	Vegetation Roughness Index including BSI_P and BSI_V	Shadow Index		Fraction of Absorbed	Above-Ground BIUmass	Land Net Primary Production	Plant Water Stress trend Index	Fire Detection Index	Land Surface ALBedo	Cloud Class		ature and He	Water Cloud Opt	Ice Cloud Ontical Thickness	AeRoso		AeRosol by Polarization	LongWave Radiation Flux	Normalized water Leaving Radiance		Ocean Photosynthetically Available Radiation	Euphotic Zone Depth	CUI concentration	absorption coe		Ceall Net Filillary Floquetivity	PHytoplankton Functional Type	Red TiDe	multi sensor Merged Ocean Color parameters	multi sensor Merged Sea Surface Temperature	Snow and Ice Covered Area	OKhotek sea-Ice Distribution	Snow Covered Area in Forest and Mountain			NS	SNC	Snow and Ice ALBedo	CNow Impurity	Ice Sheet Boundary Monitoring
VN1	380	0 10	60	210	250	250	U	U																U		1	ΙT	E				U	U		R	R	U				T		U	1		UN	Λ	T
VN2	412	2 10	75	250	400	250	U	Τl	J	U	U	Τ		U	П	ι	JU	J					U	Ε		1	ΙT	-	U			E	U		R	R	U				Т					RF	2	
VN3	443	3 10	64	400	300	250	U	Τl	J	U	U	Τ		U		l	JU	J					U			1	ΙT	-	U	UE	Ξ	E	U		U	U	U		U	υι	JĽ	JS	; U	U	S	UN	ΛS	υ
VN4	490			120	400	250				П									Γ								T	-		UN	ΛU		U		U	U	U				\top		\top					
VN5	530		41	350	250	250	U	Т		U	U	Ι		U	П	ι	JU	JU	С	С	C	C	C	С	С		T	-	U	UE	Ξ		U	CI	R	R	U	С	U	υι	JĽ	JS	S S	S	S	ΕS	S S	U
VN6	565			90	400	250																					T	-		UN	Λ E	U	U		U	U	U											
VN7	670	0 10	23	62	400	250																	U			Ι	ΙT	M			I E	. T	U		R	R	U											
VN8	670		25	_	250	250	Ε	ΤN	ΛM	U	U	Ι		Ε	Ш	E	E I	U	С	С	С		C	С	С			R	U					CI			R	С	<u> </u>	υl	υU	JS	5 S	S	S	US	S R	U
VN9	763		40	350	400	1000																Ν	Λ			1	1												R									
VN10	865		8	30	400	250																	U			Τ	L	М				1		1			U											
VN11	865	5 20	30	300	200	250	U	Τl	JU	U	U			U		ι	JŪ	JU	С	С	C	C	CC	С	С			R	U					CI			R	С	U	UΙ	JΙ	JS	S M	I S	S	Uι	JR	U
P1	670	0 20	25*	¹ 250 ^{*1}	250 ^{*1}	1000	U	U	U	R		Ι		R		F	R R	R							Ε			R	R											F	R						R	
P2	865	5 20	30*	1 300*1	250 ^{*1}	1000	U	U	U	R		Ι		R		F	R	2							Ε			R												F	R						R	
SW1	105	50 20	57	248	500	1000											Τ	M	C	С	M	Cι	J			I	1	R	С								T		U	υι	Jι	JS	, S	R	S	US	S S	U
SW2	138	30 20	8	103	150	1000									Π			U																		1	Π		М	U	c c	c c	C C	С	С	СС	C	Ħ
SW3	1640			50	57	250	U	Т		П	U			U	R	UE	ΞU	JU	С	С	(С						R									Π		м	υι	JI	J C	; C	С	R	UC	_	
SW4	221		1.9	20	211(TBD)	1000	U	Т			U					υι	J				М	ι	J			1	L	R									Π	1	U		ι	,					Τ	\square
T1	10.8	3 ^{*2} 0.7*	² 300) 180~340	0.2	500	U				U				U	U		U	С	U	1	υι	J			Ι	I							M		R		М	U	υι	υU	JM	I S	S	S	SS	S S	\Box
T2	12.0)*2 0.7*	² 300) 180~340	0.2	500	U				М				U	U		U	С	U	I	U				R	R							E				Е	U	F	R	М	1					\square

M: Most essential, E: essential, U: used channel, T: correction targets, R: future research, I: indirect use, C: cloud detection, S: Snow detection *1: defined as intensity of non-polarized light, *2 :Unit is µm, *3: 1km in the open ocean, *4: the light limit is at 1740nm

Green: Succession of GLI standard products, Red: New standard products, and White: research products.

• Normalized Water Leaving Radiance (NWLR) and Atmospheric Correction Parameters (ACP)

- Definition: Standardized radiance of the SGLI spectral channels leaving from a sea surface in the case of atmospheric transmittance 1.0, the solar zenith angle zero and the sun-earth distance 1AU. The reflective ingredient of a sea surface is not included (mW/cm²/str/um). This is same as OCTS, GLI, SeaWiFS, and MODIS.
- Development: Evaluation and improvement of the aerosol processing by the match up of a past satellite and in situ optical observations.

• Photosynthetically Available Radiation (PAR)

- Definition: daily average of the light at wavelengths from 400nm to 700nm which phytoplankton uses for photosynthesis by Ein/m²/day.
- Development: Improvement of treatment of the daily variation of cloud amount, and evaluation using ground PAR observations
- CHLorophyll-A concentration (CHLA)
 - Definition: phytoplankton chlorophyll-a concentration by mg/m³
 - Development: Evaluation and improvement of bio-optical models (formulas) by in situ bio-optical observations
- Suspended Solid concentration (SS)
 - Definition: Filter dry weight by g/m³ (total suspended matter)
 - Development: Same as CHLA
- absorption of Colored Dissolved Organic Matter (CDOM)
 - Definition: attenuation coefficient (m⁻¹) of the colored dissolved organic matter at 440nm (TBD)
 - Development: Same as CHLA
- Sea Surface Temperature (SST)
 - Definition: bulk sea surface temperature (observed by drifting buoy at 1-m) by degree C
 - Development: Atmospheric correction, and cloud detection accuracy evaluation and improvement by comparison with existing satellite data and in-situ SST data distributed on GTS or the Internet. Pre-launch evaluation of the atmospheric correction coefficient equivalent to the SGLI spectrum response by a radiation transfer simulation.

3. SGLI Ocean Science Plan

3.4 SGLI ocean research products definitions and development methods

- Euphotic Zone Depth (EZD)
 - Definition: Total direction illumination (observation is cosine) defines by PAR as depth which becomes 1% (denominator: E0-).
 - Development: Formulize relations between nLw and EZD calculated by in-situ measurements of underwater downward irradiance.
- Inherent Optical Properties (IOP)
 - Meaning: It can be used for the primary productivity model, plankton classification presumption, etc.
 - Development: Formulize relations between in-situ bio-optical observations, such as CHLA, SS and CDOM, and a scattering and absorption coefficients, and evaluate applicability to satellite data.
- multi sensor Merged Ocean Color parameters (MOC)
 - Definition: Data sets which combined with the product of other satellites and improved time resolution
 - Development: Same as an ocean color product peculiar to SGLI.
- multi sensor Merged Sea Surface Temperature (MSST)
 - Definition: Data sets which combined with the product of other satellites and improved time resolution
 - Development: Same as an ocean color product peculiar to SGLI.
- Ocean Net Primary Productivity (ONPP)
 - Definition: Net primary productivity by phytoplankton (breathing respiration is not taken into consideration)
 - Development: Evaluation of the applicability by the satellite data based on presumption and improvement of the parameter of the biological production model by in situ observation, and processing of the existing satellite data.
- PHytoplankton Functional Type (PHFT)
 - Definition: The phytoplankton existence rate for every functions, such as nitrogen fixation, silicon fixation, and carbon dioxide discharge. It grasps what kind of function plankton with exists, and it is used for climate change analyses, such as cloud nucleus formation.
 - Development: The relation of the functional classification and the water-leaving radiance spectrum in in situ observation is put in a database (the existence rate for every phytoplankton function and NWLR are associated), and it applies to satellite data.
- Red TiDe (RTD)
 - Definition: The coloring phenomenon which man distinguishes from red tide
 - Development: From correspondence with in situ visual observation, classification observation, and the observation example by the existing satellite, the relation between a nLw spectrum, and red tide and its classification is typified.

- JAXA is planning Global Climate Observation Mission (GCOM), which consists of GCOM-W and GCOM-C satellite series.
- GCOM-C carries a radiometer of visible-infrared, middle-resolution, and global and frequent observation, Second generation GLI (SGLI).
- Aiming to the target launch year 2011, we have started sensor Breadboard Model (BBM) study (design and trial manufacture) from autumn in 2005. *(This may be delayed by today's difficulty of financial resources.)*
- We are trying to undergo the evaluation of mission approval from points of view of social benefit, costs and reality (the evaluation is very important for the next procedures).
 - JAXA is looking for data requirement from operational agencies or user groups (IOCCG can be?) making commitment to use, and the present use examples, in order to make a decision of the mission approval.
- We hope that SGLI science project, which does not exist yet, can support IOCCG to promote application and merger of SGLI ocean-colour products.