References

Behrenfeld, M. J. and E. S. Boss (2017). Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Global Change Biology,1–23 doi:10.1111/gcb.13858

Behrenfeld, M. J., Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, X. Lu, S. Rodier and A. J. Scarino (2017). Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nature Geoscience 10, 118–122 doi:10.1038/ngeo2861

Bracher et al. (2017). Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future Development. Frontiers in Marine Science, 03 March 2017, https://doi.org/10.3389/fmars.2017.00055.  [Full article].

Bulgarelli B., Kiselev V., and Zibordi G. (2017). Adjacency effects in satellite radiometric products from coastal waters: a theoretical analysis for the northern Adriatic Sea. Applied Optics,  56 (4):. 854–16. https://www.osapublishing.org/ao/abstract.cfm?uri=ao-56-4-854#articleBody.. DOI: 10.1364/AO.56.000854

Cael, B. B. and E. Boss (2017). Simplified model of spectral absorption by non-algal particles and dissolved organic materials in aquatic environments. Optics Express, 25: 21, 25486-25491, https://doi.org/10.1364/OE.25.025486

Chase, A. P., E. Boss, I. Cetinic and W. Slade (2017). Estimation of phytoplankton accessory pigments from hyperspectral reflectance spectra: Toward a global algorithm. J. Geophys. Res.: Oceans, 122. https://doi.org/10.1002/2017JC012859

Dall’Olmo G., R. J. W. Brewin, F.Nencioli, E. Organelli, I. Lefering, D. McKee, R. Rottgers, C. Mitchell, E. Boss, A. Bricaud, and G. Tilstone (2017). Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry. Optics Express, 25:24. https://doi.org/10.1364/OE.25.0A1079

Dekker, A.G., and Pinnel, N. (Eds.) (2017). Feasibility Study for an Aquatic Ecosystem Earth Observing System. Committee on Earth Observing Satellites (CEOS), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia, Version 1.1 for endorsement by CEOS. 16 November 2017. [PDF File]

Dev, P.J. and Shanmugam, P (2017). New theoretical formulation for the determination of radiance transmittance at the water-air interface.  Optics Express, 25(22): 27086.

Eleveld, M.A., Ruescas, A.B., Hommersom, A., Moore, T.S., Peters, S.W.M, Brockmann, C. (2017). An optical classification tool for global lake waters. Remote Sens. 9(5), 420 doi:10.3390/rs9050420

Friedrichs A, Busch JA, John C, van der Woerd HJ, Zielinski O (2017) Measuring Chlorophyll a fluorescence in water by means of smart phones. Sensors 17 (4), 678, doi: 10.3390/s17040678. http://www.mdpi.com/1424-8220/17/4/678

Garaba S.P.and Dierssen H.M. (2018). An airborne remote sensing case study of synthetic hydrocarbon detection using short wave infrared absorption features identified from marine-harvested macro- and microplastics. Remote Sensing of Environment 205:224-235. doi:10.1016/j.rse.2017.11.023. www.sciencedirect.com/science/article/pii/S0034425717305722

Gong, X.,W. Jiang, L. Wang, H. Gao, E. Boss, X. Yao, S. Kao, and J. Shi (2017).  Analytical solution of the nitracline with the evolution of subsurface chlorophyll maximum in stratified water columns. Biogeosciences, 14, 2371–2386, doi:10.5194/bg-14-2371-2017.

Haëntjens, N., Boss, E. and Talley, L. D. (2017). Revisiting ocean color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res. Oceans, 122, 6583–6593, doi:10.1002/2017JC012844

Hou X, Feng L, Duan H, et al. (2017). Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sens. Environ. 190: 107-121. http://www.rslakes.com/up/document/2017/1-s2.0-S0034425716304801-main.pdf

Hu, L, C. Hu, and M-X. He (2017). Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea. Remote Sens. Environ., 192:217-227. http://dx.doi.org/10.1016/j.rse.2017.01.037

Kostadinov T., Cabré A., Vedantham H., Marinov I., Bracher A., Brewin R., Bricaud A., Hirata T., Hirawake T., Hardman-Mountford N., Mouw C., Roy S., Uitz J. (2017) Inter-Comparison of Phytoplankton Functional Types Derived from Ocean Color Algorithms and Earth System Models: Phenology. Remote Sensing of Environment 190: 162-177. doi: 10.1016/j.rse.2016.11.014

Krug, L.A., Platt, T., Sathyendranath, S., Barbosa, A.B. (2017). Ocean surface partitioning strategies using ocean colour remote Sensing: A review.  Progress in Oceanography,   155: 41–53.   https://doi.org/10.1016/j.pocean.2017.05.013

Lamont, T., M. García-Reyes, S.J. Bograd, C.D. van der Lingen, W.J. Sydeman (2017). Upwelling indices for comparative ecosystem studies: Variability in the Benguela Upwelling System.  J. Mar. Syst.  https://doi.org/10.1016/j.jmarsys.2017.05.007

Lehahn, Y., I. Koren, S. Sharoni, F. d’Ovidio, A. Vardi, and E. Boss (2017). Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters. Nature Communications, 8:14868, DOI:10.1038/ncomms14868

Martias, C., Tedetti M., Lantoine, F., Jamet L., Dupouy, C. (2018). Spatial distribution of chromophoric dissolved organic matter and trace metals in the New Caledonia tropical lagoon (South Pacific Ocean), Science of the Total Environment, 616-617, 438-452.

Mascarenhas VJ, Voß D, Wollschlaeger J, Zielinski O (2017) Fjord light regime: Bio-optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway. Journal of Geophysical Research: Oceans, 122 (3). DOI: 10.1002/2016JC012610.  http://onlinelibrary.wiley.com/doi/10.1002/2016JC012610/full

Matsuoka, A., E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C. W. Proctor, P. J. Werdell and A. Bricaud (2017). Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data. Remote Sens. Environ., 200, 89-101. http://dx.doi.org/10.1016/j.rse.2017.08.009

Mishra, D.R., Ogashawara, I. and Gitelson, A.A. (eds.) (2017).  Bio-optical Modeling and Remote Sensing of Inland Waters, Elsevier. ISBN: 978-0-12-804644-9  http://www.sciencedirect.com/science/book/9780128046449

Mouw C., Hardman-Montford N., Alvain S., Bracher A., Brewin R., Bricaud A., Ciotti A., Devred E., Fujiwara A., Hirata T., Hirawake T., Kostadinov T., Roy S., Uitz J. (2017) A Consumer’s Guide to Satellite Remote Sensing of Multiple Phytoplankton Groups in the Global Ocean. Frontiers in Marine Science 4: 00041, doi: 10.3389/fmars.2017.00041

Pan Y., Shen F., Verhoef W. (2017). An improved spectral optimization algorithm for atmospheric correction over turbid coastal waters: A case study from the Changjiang (Yangtze) estuary and the adjacent coast. Remote Sensing of Environment, 191: 197-214. http://dx.doi.org/10.1016/j.rse.2017.01.013

Pearlman J, Zielinski O (2017) A new generation of optical systems for ocean monitoring – matrix fluorescence for multifunctional ocean sensing. Sea Technology, 2, pp 30-33

Pitarch, J., Ruiz‐Verdú, A., Sendra, M. D., & Santoleri, R. (2017). Evaluation and reformulation of the maximum peak height algorithm (MPH) and application in a hypertrophic lagoon. Journal of Geophysical Research: Oceans.

Poteau, A., E. Boss, and H. Claustre (2017). Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the backscattering coefficient measured with Biogeochemical-Argo floats. Geophys. Res. Lett., 44, doi:10.1002/2017GL073949

Qi, L., Hu, C., Wang, M., Shang, S., and Wilson, C. (2017). Floating algae blooms in the East China Sea. Geophysical Research Letters, 44: 11,501–11,509. https://doi.org/10.1002/2017GL075525

Raitsos D.E., Brewin R.J.W., Zhan P., Dreano D., Pradhan Y., Nanninga G.B., Hoteit I. (2017). Sensing coral reef connectivity pathways from space. Scientific Reports, 7, DOI:10.1038/s41598-017-08729-w

Ramírez-Pérez M., Gonçalves-Araujo R., Wiegmann S., Torrecilla E., Bracher A., Piera J. (2017) Towards cost-effective operational monitoring systems for complex waters: analyzing small-scale coastal processes with optical transmissometry. PLOS ONE 12(1): e0170706, http://dx.doi.org/10.1371/journal.pone.0170706

Randolph,K, H.M. Dierssen, A. Cifuentes, E. Monahan, W. Balch, and C. Zappa (2017). Novel methods for optically measuring whitecaps under natural wave breaking conditions.  J. Atmos. Oceanic Tech. 34(3): 533-554. DOI: http://dx.doi.org/10.1175/JTECH-D-16-0086.

Renosh, P.R.; Jourdin, F.; Charantonis, A.A.; Yala, K.; Rivier, A.; Badran, F.; Thiria, S.; Guillou, N.; Leckler, F.; Gohin, F.; Garlan, T (2017). Construction of Multi-Year Time-Series Profiles of Suspended Particulate Inorganic Matter Concentrations Using Machine Learning Approach. Remote Sens.9, 1320. (http://www.mdpi.com/2072-4292/9/12/1320/pdf)

Roesler, C., J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. D’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens and M. Barbieux (2017). Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnology and Oceanography, Methods, DOI: 10.1002/lom3.10185.

Rozanov V.V., T. Dinter, A.V. Rozanov, A. Wolanin, A. Bracher, Burrows J.P. (2017) Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic scattering processes: Software package SCIATRAN. J. Quant. Spectrosc. Rad. Transfer 194: http://dx.doi.org/10.1016/j.jqsrt.2017.03.009

Schollaert Uz, S., A.J. Busalacchi, T.M. Smith, M.N. Evans, C.W. Brown and E.C. Hackert (2017). Interannual and decadal variability in tropical Pacific chlorophyll from a statistical reconstruction: 1958-2008, J. Climate, 30, 18, doi: 10.1175/JCLI-D-16-0202.1.

Snyder, J., E. Boss, R. Weatherbee, A. C. Thomas, D. Brady and C. Newell (2017). Oyster aquaculture site selection using Landsat 8-derived sea surface temperature, turbidity, and Chlorophyll a. Frontiers in Marine Science, 4, doi: 10.3389/fmars.2017.00190

Sokoletsky, L. and Budak, V. (2017). Looking for the best light transmission model for the Earth’s atmosphere and natural waters. Modern Environmental Science and Engineering3(6): 365-372, DOI: 10.15341/mese(2333-2581)/06.03.2017/001. [Full text]

Spyrakos, E., O’Donnell, R., Hunter, P. D., Miller, C., Scott, M., Simis, S. G. H., Neil, C., Barbosa, C. C. F., Binding, C. E., Bradt, S., Bresciani, M., Dall’Olmo, G., Giardino, C., Gitelson, A. A., Kutser, T., Li, L., Matsushita, B., Martinez-Vicente, V., Matthews, M. W., Ogashawara, I., Ruiz-Verdú, A., Schalles, J. F., Tebbs, E., Zhang, Y. and Tyler, A. N. (2017), Optical types of inland and coastal waters. Limnol. Oceanogr.  doi:10.1002/lno.10674

Tao, J., P. Hill, E. Boss and T. Milligan (2017). Evaluation of optical proxies for suspended particulate mass in stratified waters. Journal of Atmospheric and Oceanic Technology, https://doi.org/10.1175/JTECH-D-17-0042.1

Wattelez, G., Dupouy, C., Juillot, F., Fernandez, J.M., Lefèvre, J., Ouillon, S. (2017). Remotely-sensed assessment of turbidity with MODIS in the oligotrophic lagoon of Voh-Koné-Pouembout area, New Caledonia. Water, 9: 737, http://dx.doi.org/10.3390/w9100737.

Yang, X., Sokoletsky, L., Wei, X., and Shen, F. (2017). Suspended sediment concentration mapping based on the MODIS satellite imagery in the East China inland, estuarine, and coastal waters. Chinese Journal of Oceanology and Limnology, 35(1): 39-60. [Full Article]

Zhai P.-W., Y. Hu, D. Winker, B. Franz, J. Werdell, and E. Boss (2017). Vector radiative transfer model for coupled atmosphere and ocean systems including inelastic sources in ocean waters. Optics Express, 25, 8

Start typing and press Enter to search